

PDFlib-8.0.6-SunOS-sparc64-perl/doc/pCOS-path-reference.pdf

ABC

pCOS Path Reference
PDF Information Retrieval Tool

pCOS Interface Version 5

Copyright © 2005–2010 PDFlib GmbH. All rights reserved.

PDFlib GmbH
Franziska-Bilek-Weg 9, 80339 München, Germany
www.pdflib.com
phone +49 • 89 • 452 33 84-0
fax +49 • 89 • 452 33 84-99

If you have questions check the PDFlib mailing list and archive at tech.groups.yahoo.com/group/pdflib

Licensing contact: sales@pdflib.com
Support for commercial PDFlib licensees: support@pdflib.com (please include your license number)

This publication and the information herein is furnished as is, is subject to change without notice, and
should not be construed as a commitment by PDFlib GmbH. PDFlib GmbH assumes no responsibility or lia-
bility for any errors or inaccuracies, makes no warranty of any kind (express, implied or statutory) with re-
spect to this publication, and expressly disclaims any and all warranties of merchantability, fitness for par-
ticular purposes and noninfringement of third party rights.

PDFlib and the PDFlib logo are registered trademarks of PDFlib GmbH. PDFlib licensees are granted the
right to use the PDFlib name and logo in their product documentation. However, this is not required.

Adobe, Acrobat, PostScript, and XMP are trademarks of Adobe Systems Inc.

http://www.pdflib.com

http://tech.groups.yahoo.com/group/pdflib

mailto:sales@pdflib.com

mailto:support@pdflib.com

Chapter : 3

Contents
1 Introduction 5

1.1 What is pCOS? 5
1.2 Roadmap to Documentation and Samples 5
1.3 Availability of the pCOS Interface 6

2 pCOS Examples 7

2.1 pCOS Functions 7
2.2 Document 9
2.3 Pages 11
2.4 Fonts 12
2.5 Raster Images 13
2.6 Interactive Elements 14

3 pCOS Data Types 15

3.1 Basic PDF Data Types 15
3.2 Composite Data Structures 17
3.3 Object Identifiers (IDs) 19

4 pCOS Path Reference 21

4.1 pCOS Path Syntax 21
4.2 Path Prefixes 22
4.3 Universal Pseudo Objects 23

4.3.1 General Document Information 23
4.3.2 PDF Version Information 24
4.3.3 Library Identification 24

4.4 Pseudo Objects for PDF Standard Identification 25
4.5 Pseudo Objects for Pages 26
4.6 Pseudo Objects for interactive Elements 27
4.7 Pseudo Objects for Resources 28
4.8 Protected PDF Documents and pCOS Mode 31

A pCOS Function Reference 33

B Revision History 34

Index 35

1.1 What is pCOS? 5

1 Introduction
1.1 What is pCOS?

The pCOS (PDFlib Comprehensive Object Syntax) interface provides a simple and elegant
facility for retrieving technical information from all sections of a PDF document which
do not describe page contents, such as page dimensions, metadata, interactive ele-
ments, etc. pCOS users are assumed to have some basic knowledge of internal PDF
structures and dictionary keys, but do not have to deal with PDF syntax and parsing de-
tails. We strongly recommend that pCOS users obtain a copy of the PDF Reference. Since
the standardization of PDF 1.7 in 2008 the PDF Reference is available as ISO 32000. This
standard document can be purchased from www.iso.org. If you don’t want to purchase
the official version you can download a free edition which is identical in content:

Document Management – Portable Document Format – Part 1: PDF 1.7, First Edition
Downloadable PDF from www.adobe.com/devnet/pdf/pdf_reference.html.

1.2 Roadmap to Documentation and Samples
We provide the material listed below to assist you in using pCOS successfully.

Note On Windows Vista and Windows 7 the mini samples will be installed in the »Program Files« di-
rectory by default. Due to the new protection scheme in Windows the output files created by
these samples will only be visible under »compatibility files«. Recommended workaround: copy
the folder with the samples to a user directory.

Mini samples for all language bindings. The dumper mini sample is available in all
packages and for all language bindings. It provides minimal sample code for using
pCOS. The mini sample is useful for testing your pCOS installation and for getting a
quick overview of writing pCOS applications.

pCOS Path Reference. The pCOS Path Reference (this manual) contains examples and a
concise description of the pCOS path syntax which forms the heart of the pCOS inter-
face. Since the pCOS interface is included in various other PDFlib GmbH products, the
pCOS Path Reference can be used with all products that include pCOS.

Corresponding Product Manual. The pCOS interface is available as a stand-alone prod-
uct as well as an integrated part of other PDFlib GmbH products. Each product comes
with one or more additional product-specific manuals which describe the use of the re-
spective programming library (e.g. pCOS or TET) and the corresponding command-line
tool if applicable. The product manual covers the various programming languages
which are supported by a product, and discusses the API in detail.

pCOS Cookbook. The pCOS Cookbook is a collection of code fragments for the pCOS in-
terface. It is available at the following URL:

www.pdflib.com/pcos-cookbook/

The pCOS Cookbook details the use of pCOS for a variety of applications. It is highly rec-
ommended because it serves as a repository of useful pCOS programming idioms.

http://www.pdflib.com/pcos-cookbook/

http://www.adobe.com/devnet/pdf/pdf_reference.html

6 Chapter 1: Introduction

1.3 Availability of the pCOS Interface
The pCOS interface is available as a separate product called PDFlib pCOS. It is also of-
fered as an integrated feature in several other PDFlib GmbH products. As the interface is
extended and support for newer PDF input versions is added, the pCOS interface num-
ber is increased. Table 1.1 details the pCOS interface numbers which are implemented in
various product versions

Some aspects of the pCOS interface are available only in the TET product, but not in oth-
er PDFlib GmbH products. These features are explicitly marked in this manual.

Table 1.1 pCOS interface versions implemented in PDFlib GmbH products

pCOS
interface

supported PDF input version /
corresponding Acrobat version PDFlib GmbH product name and version

1 PDF 1.6 / Acrobat 7 TET 2.0, 2.1

2 PDF 1.6 / Acrobat 7 pCOS 1.0

3 PDF 1.71 / Acrobat 8

1. Identical to ISO 32000-1

PDFlib+PDI 7, PPS 7, TET 2.2, pCOS 2.0, PLOP 3.0,
TET 2.3

4 PDF 1.7 extension level 3 / Acrobat 9
excluding AES-256 encryption

PLOP 4.0, TET 3.0, TET PDF IFilter 3.0

5 PDF 1.7 extension level 3 / Acrobat 9 PDFlib+PDI 8, PPS 8

2.1 pCOS Functions 7

2 pCOS Examples
This chapter provides examples for pCOS paths which can be used to retrieve the corre-
sponding values from PDF documents. More elaborate examples which require addi-
tional programming logic are available in the pCOS Cookbook on the PDFlib Web site.

Except where noted otherwise all programming examples are presented in the Java
language. However, with the obvious changes (mostly of syntactic nature) the examples
can be used with all programming languages supported by pCOS.

The examples shown in this chapter are not comprehensive. Many more pCOS appli-
cations are possible by using other PDF objects.

2.1 pCOS Functions
Basic pCOS function calls. The following functions are the workhorses for querying
PDF documents with pCOS:

> pcos_get_number() retrieves objects of type number or boolean;
> pcos_get_string() retrieves objects of type name, string, or boolean;
> pcos_get_stream() retrieves objects of type stream, fstream, or string.

These functions can be used to retrieve information from a PDF document using the
pCOS path syntax. The basic structure of a pCOS application looks as follows:

/* Open the PDF document */
int doc = p.open_pdi_document(filename, "");
if (doc == -1)

throw new Exception("Error: " + p.get_errmsg());

/* Retrieve the value of a pCOS pseudo object */
System.out.println(" PDF version: " + p.pcos_get_string(doc, "pdfversionstring"));

p.close_pdi_document(doc);

The parameters for the pCOS functions are the same in all products. They are docu-
mented in the respective product reference manuals; a quick overview of pCOS func-
tion prototypes is available in Appendix A, »pCOS Function Reference«.

Adding programming logic. Many pCOS objects consist of arrays of some length. The
length can be retrieved with the length: prefix. The array can then be indexed with inte-
ger values in the range 0 up to length-1. The following code queries the number of fonts
in a document and prints the type and name of each font:

count = (int) p.pcos_get_number(doc, "length:fonts");

for (i = 0; i < count; i++) {
 String fonts;

 System.out.print(p.pcos_get_string(doc, "fonts[" + i + "]/type") + " font ");
 System.out.println(p.pcos_get_string(doc, fonts[" + i + "]/name));
}

8 Chapter 2: pCOS Examples

Formatting placeholders in C. The C language binding offers a convenience feature to
facilitate the use of parameters within a pCOS path. Analogous to the formatting pa-
rameters of the printf() family of functions you can use %s and %d placeholders for
string and integer parameters, respectively. The values of these parameters must be
added as additional function parameters after the pCOS path. pCOS will replace the
placeholders with the actual values. This feature is particularly useful for paths contain-
ing array indices.
For example, the Java idiom above for listing all fonts can be written in C as follows:

count = (int) PDF_pcos_get_number(p, doc, "length:fonts");

for (i = 0; i < count; i++)
{
 printf("%s font ", PDF_pcos_get_string(p, doc, "fonts[%d]/type", i));
 printf("%s\n", PDF_pcos_get_string(p, doc, "fonts[%d]/name", i));
}

Since modern programming languages offer more sophisticated string handling func-
tions this feature is only available in the C language binding, but not any other lan-
guage binding.

2.2 Document 9

2.2 Document
Table 2.1 lists pCOS paths for general and document-related objects.

Encryption status and pCOS mode. You can query the pcosmode pseudo object to de-
termine the pCOS mode for the document. This is important to avoid exception when
later an attempt is made at retrieving information for which no access is granted (e.g.
because the password is encrypted and no suitable password has been supplied). The
following general structure based on values of pcosmode is recommended for all pCOS
applications:

/* Open the PDF document */
int doc = p.open_pdi_document(filename, "");
if (doc == -1)

throw new Exception("Error: " + p.get_errmsg());

int pcosmode = (int) p.pcos_get_number(doc, "pcosmode");
boolean plainmetadata = p.pcos_get_number(doc, "encrypt/plainmetadata") != 0;

// Retrieve universal pseudo objects which are always available
System.out.println(" PDF version: " + p.pcos_get_string(doc, "pdfversionstring"));
System.out.println(" Encryption: " + p.pcos_get_string(doc, "encrypt/description"));

// encrypted document, but password was not supplied
if (pcosmode == 0) {
 System.out.println("Minimum mode: no more information available\n");
 p.delete();
 return;
}

// otherwise query more information
System.out.println("PDF/A status: " + p.pcos_get_string(doc, "pdfa"));

// no master password supplied; we cannot retrieve metadata
if (pcosmode == 1 && !plainmetadata && p.pcos_get_number(doc, "encrypt/nocopy") != 0) {
 System.out.print("Restricted mode: no more information available");
 p.delete();
 return;

Table 2.1 pCOS paths for document-related items

pCOS path type explanation

pcosmode number pCOS mode of the document, i.e. its encryption status (see Section 4.8,
»Protected PDF Documents and pCOS Mode«, page 31)

pdfversionstring string string representing the PDF version number of the document

/Info/Title string Document info field Title; The following field names are predefined in
PDF and can be used in a similar manner:
Title, Author, Subject, Keywords, Creator, Producer,
CreationDate, ModDate, Trapped

/Info/ArticleNumber string custom document info field ArticleNumber (document info entries can
use arbitrary names)

/Root/Metadata stream XMP stream with the document’s metadata

pdfa, pdfe, pdfx string PDF/A, PDF/E, or PDF/X standard conformance status

10 Chapter 2: pCOS Examples

}

// otherwise we can query document information fields and XMP metadata
...

p.close_pdi_document(doc);

PDF version. The following code fragment prints the PDF version number of a docu-
ment:

System.out.println(" PDF version: " + p.pcos_get_string(doc, "pdfversionstring"));

Document info fields. Document information fields can be retrieved with the follow-
ing code sequence. In order to make sure that an object actually exists in the PDF docu-
ment and has the expected type we first check its type. If the object is present and has
type string we can retrieve it:

objtype = p.pcos_get_string(doc, "type:/Info/Title");
if (objtype.equals("string"))
{

/* Document info key found */
title = p.pcos_get_string(doc, "/Info/Title");

}

XMP metadata. A stream containing XMP metadata can be retrieved with the follow-
ing code sequence:

objtype = p.pcos_get_string(doc, "type:/Root/Metadata");
if (objtype.equals("stream"))
{

/* XMP meta data found */
metadata = p.pcos_get_stream(doc, "", "/Root/Metadata");

}

PDF standards. The PDF/A, PDF/E, or PDF/X standard conformance status can be que-
ried with simple pCOS pseudo objects as follows:

System.out.println("PDF/A status: " + p.pcos_get_string(doc, "pdfa"));
System.out.println("PDF/E status: " + p.pcos_get_string(doc, "pdfe"));
System.out.println("PDF/X status: " + p.pcos_get_string(doc, "pdfx"));

2.3 Pages 11

2.3 Pages
Table 2.2 lists pCOS paths for page-related objects.

Number of pages. The total number of pages in a document can be queried as follows:

pagecount = p.pcos_get_number(doc, "length:pages");

Page size. Although the MediaBox, CropBox, and Rotate entries of a page can directly be
obtained via pCOS, they must be evaluated in combination in order to find the actual
size of a page. Determining the page size is much easier with the width and height keys
of the pages pseudo object. The following code retrieves the width and height of page 3
(note that indices for the pages pseudo object start at 0):

pagenum = 2 // page 3 (0-based)
width = p.pcos_get_number(doc, "pages[" + pagenum + "]/width");
height = p.pcos_get_number(doc, "pages[" + pagenum + "]/height");

Table 2.2 pCOS paths for page-related items

pCOS path type explanation

length:pages number number of pages in the document

pages[...]/width
pages[...]/height

number width and height of the page indexed in the array (keep in mind that ar-
ray index are 0-based)

12 Chapter 2: pCOS Examples

2.4 Fonts
Table 2.3 lists pCOS paths for objects related to fonts.

Listing all fonts. The following sequence creates a list of all fonts in a document along
with their embedding status:

count = p.pcos_get_number(doc, "length:fonts");
for (i=0; i < count; i++)
{

fontname = p.pcos_get_string(doc, "fonts[" + i + "]/name");
 embedded = p.pcos_get_number(doc, "fonts[" + i + "]/embedded");

/* ... */
}

Writing mode. The following code fragment checks whether a font uses vertical writ-
ing mode. The font is identified via its id, i.e. the index in the fonts array. This id can be
obtained by enumerating all possible index values:

count = p.pcos_get_number(doc, "length:fonts");
for (i=0; i < count; i++)
{

if (p.pcos_get_number(doc, "fonts[" + id + "]/vertical"))
{

/* font uses vertical writing mode */
vertical = true;

}
}

TET The TET product also provides font IDs with the get_char_info() function.

Font metrics. Fonts in PDF may contain a font descriptor dictionary with metrics val-
ues and other information about the font. Since not all fonts contain a font descriptor
you must first query its existence:

count = p.pcos_get_number(doc, "length:fonts");
for (i=0; i < count; i++)
{

ascender = p.pcos_get_number(doc, "fonts[" + i + "]/ascender");
 descender = p.pcos_get_number(doc, "fonts[" + i + "]/descender");

/* ... */
}

Table 2.3 pCOS paths for font-related properties

pCOS path type explanation

length:fonts number number of fonts in the document

fonts[...]/name string name of a font

fonts[...]/vertical boolean check a font for vertical writing mode

fonts[...]/embedded boolean embedding status of a font

fonts[...]/ascender
fonts[...]/descender

number ascender/descender value of a font (not always available, see code sample
below)

2.5 Raster Images 13

2.5 Raster Images
Table 2.4 lists pCOS paths for objects related to raster images.

Listing all images. Similar to the font list you can create a list of all images in the docu-
ment:

count = p.pcos_get_number(doc, "length:images");
for (i=0; i < count; i++)
{

width = p.pcos_get_string(doc, "images[" + i + "]/Width");
 height = p.pcos_get_number(doc, "images[" + i + "]/Height");

bpc = p.pcos_get_number(doc, "images[" + i + "]/bpc");
}

Table 2.4 pCOS paths for image-related properties

pCOS path type explanation

length:images number number of raster images in the document

images[...]/Width number image width in pixels

images[...]/Height number image height in pixels

14 Chapter 2: pCOS Examples

2.6 Interactive Elements
Table 2.5 lists pCOS paths for objects related to interactive elements.

Bookmarks. The following code fragment queries the number of bookmarks in the
document. For each bookmark its nesting level, destination (target) page and Title are
shown:

int count = (int) p.get_number(doc, "length:bookmarks");

for (int i = 0; i < count; ++i) {
 int level = (int) p.get_number(doc, "bookmarks[" + i + "]/level");
 int destpage = (int) p.get_number(doc, "bookmarks[" + i + "]/destpage");

 for (int j = 0; j < level * 4; j += 1) {
System.out.print(" ");

 }

 System.out.print(p.get_string(doc, "bookmarks[" + i + "]/Title"));

 if (destpage != -1) {
System.out.print(": page " + destpage);

 }
}

Table 2.5 pCOS paths for various PDF objects

pCOS path type explanation

length:bookmarks number number of bookmarks in the document

bookmarks[...]/Title string bookmark text

bookmarks[...]/destpage number number of the target page when the bookmark is activated, or -1 if the
bookmark does not jump to any page in the document

pages[...]/annots[...]/A/URI string target URL of the Web links on all pages

3.1 Basic PDF Data Types 15

3 pCOS Data Types
3.1 Basic PDF Data Types

pCOS offers the three functions pcos_get_number(), pcos_get_string(), and pcos_get_
stream(). These can be used to retrieve all basic data types which may appear in PDF doc-
uments. Refer to the PDF Reference to find out the data type of a particular object in
PDF.

Numbers. Objects of type integer and real can be queried with pcos_get_number(). pCOS
doesn’t make any distinction between integer and floating point numbers. Example:

/* get number of pages in the document */
int n_pages = (int) p.pcos_get_number(doc, "length:pages");

Names and strings. Objects of type name and string can be queried with pcos_get_
string(). Example:

string title = p.pcos_get_string(doc, "/Info/Title");

Name objects in PDF may contain non-ASCII characters and the #xx syntax (hexadeci-
mal value with prefix) to include certain special characters. pCOS deals with PDF names
as follows:

> Name objects will be undecorated (i.e. the #xx syntax will be resolved) before they
are returned.

> Name objects will be returned as Unicode strings in most language bindings. How-
ever, in the C language binding they will be returned as UTF-8 values without BOM.

Since the majority of strings in PDF are text strings, pcos_get_string() will treat them as
such. However, in rare situations strings in PDF are used to carry binary information. In
this case strings should be retrieved with the function pcos_get_stream() which pre-
serves binary strings and does not modify the contents in any way. Example:

byte[] signature = p.pcos_get_stream(doc, "", "fields[0]/V/Contents");

Booleans. Objects of type boolean can be queried with pcos_get_number() and will be
returned as 1 (true) or 0 (false). Example:

string linearized_s = p.pcos_get_string(doc, "linearized");

pcos_get_string() can also be used to query Boolean objects; in this case they will be re-
turned as one of the strings true and false. Example:

int linearized_i = p.pcos_get_number(doc, "linearized");

Streams. Objects of type stream can be queried with pcos_get_stream(). Example:

byte[] contents = p.pcos_get_stream(doc, "", "/Root/Metadata");

Stream data in PDF may be preprocessed with one or more compression filters. Depend-
ing on the pCOS data type (stream or fstream) the contents will be compressed or un-

16 Chapter 3: pCOS Data Types

compressed. Using the keepfilter option of pcos_get_stream() the client can retrieve com-
pressed data even for type stream.

The list of filters present at the stream can be queried from the stream dictionary; for
images this information is much easier accessible in the image’s filterinfo dictionary. If a
stream’s filter chain contains only supported filters its type will be stream. When re-
trieving the contents of a stream object, pcos_get_stream() will remove all filters and re-
turn the resulting unfiltered data.

Note pCOS does not support the following stream filters: JBIG2 and JPX.

If there is at least one unsupported filter in a stream’s filter chain, the object type will be
reported as fstream (filtered stream). When retrieving the contents of an fstream object,
pcos_get_stream() will remove the supported filters at the beginning of a filter chain,
but will keep the remaining unsupported filters and return the stream data with the re-
maining unsupported filters still applied. The list of applied filters can be queried from
the stream dictionary, and the filtered stream contents can be retrieved with pcos_get_
stream(). Note that the names of supported filters will not be removed when querying
the names of the stream’s filters, so the client should ignore the names of supported fil-
ters.

Streams in PDF generally contain binary data. However, in rare cases (text streams)
they may contain textual data instead (e.g. JavaScript streams). In order to trigger the
appropriate text conversion, use the convert=unicode option in pcos_get_stream().

3.2 Composite Data Structures 17

3.2 Composite Data Structures
Objects with one of the basic data types can be arranged in two kinds of composite data
structures: arrays and dictionaries. pCOS does not offer specific functions for retrieving
composite objects. Instead, the objects which are contained in a dictionary or array can
be addressed and retrieved individually.

Arrays. Arrays are one-dimensional collections of any number of objects, where each
object may have arbitrary type.

The contents of an array can be enumerated by querying the number N of elements
it contains (using the length prefix in front of the array’s path) and then iterating over
all elements from index 0 to N-1.

Dictionaries. Dictionaries (also called associative arrays) contain an arbitrary number
of object pairs. The first object in each pair has the type name and is called the key. The
second object is called the value, and may have an arbitrary type except null.

The contents of a dictionary can be enumerated by querying the number N of ele-
ments it contains (using the length prefix in front of the dictionary’s path) and then it-
erating over all elements from index 0 to N-1. Enumerating dictionaries will provide all
dictionary keys in the order in which they are stored in the PDF using the .key suffix at
the end of the dictionary’s path. Similarly, the corresponding values can be enumerated
with the .val suffix. Inherited values (see below) and pseudo objects will not be visible
when enumerating dictionary keys, and will not be included in the length count.

Some page-related dictionary entries in PDF can be inherited across a tree-like data
structure, which makes it difficult to retrieve them. For example the MediaBox for a
page is not guaranteed to be contained in the page dictionary, but may be inherited
from an arbitrarily complex page tree. pCOS eliminates this problem by transparently
inserting all inherited keys and values into the final dictionary. In other words, pCOS
users can assume that all inheritable entries are available directly in a dictionary, and
don’t have to search all relevant parent entries in the tree. This merging of inherited en-
tries is only available when accessing the pages tree via the pages[] pseudo object; ac-
cessing the /Pages tree, the objects[] pseudo object, or enumerating the keys via
pages[][] will return the actual entries which are present in the respective dictionary,
without any inheritance applied.

Reading dictionary entries. The following example enumerates the key/value pairs in
the document info dictionary:

for (i = 0; i < count; i++) {
String info;
String key;

info = "type:/Info[" + i + "]";
objtype = p.pcos_get_string(doc, info);

info = "/Info[" + i + "].key";
key = p.pcos_get_string(doc, info);

/* Info entries can be stored as string or name objects */
if (objtype.equals("name") || objtype.equals("string"))
{

info = "/Info[" + i + "]";

18 Chapter 3: pCOS Data Types

System.out.println("'" + p.pcos_get_string(doc, info) + "'");
}

}

3.3 Object Identifiers (IDs) 19

3.3 Object Identifiers (IDs)
pCOS IDs for dictionaries and arrays. Unlike PDF object IDs, pCOS IDs are guaranteed
to provide a unique identifier for an element addressed via a pCOS path (since arrays
and dictionaries can be nested an object can have the same PDF object ID as its parent
array or dictionary). pCOS IDs can be retrieved with the pcosid prefix in front of the dic-
tionary’s or array’s path.

The pCOS ID can therefore be used as a shortcut for repeatedly accessing elements
without the need for explicit path addressing. For example, this will improve perfor-
mance when looping over all elements of a large array. Use the objects[] pseudo object to
retrieve the contents of an element identified by a particular ID.

20 Chapter 3: pCOS Data Types

4.1 pCOS Path Syntax 21

4 pCOS Path Reference
4.1 pCOS Path Syntax

The backbone of the pCOS interface is a simple path syntax for addressing and retriev-
ing any object contained in a PDF document. In addition to the object data itself pCOS
can retrieve information about an object, e.g. its type or length. Depending on the ob-
ject type (which itself can be queried) one of the functions pcos_get_number(), pcos_get_
string(), and pcos_get_stream() can be used to obtain the value of an object. The general
syntax for pCOS paths is as follows:

[<prefix>:][pseudoname[<index>]]/<name>[<index>]/<name>[<index>] ... [.key|.val]

The meaning of the various path components is as follows:
> The optional prefix can attain the values listed in Table 4.1.
> The optional pseudo object name may contain the name of a pseudo object. Pseudo

objects are not present in PDF, but are supported in pCOS to provide convenient
shortcuts to information which cannot easily be accessed by reading a single value
in the PDF document. Pseudo objects of type dict can not be enumerated.

> The name components are dictionary keys found in the document. Multiple names
are separated with a / character. An empty path, i.e. a single / denotes the docu-
ment’s Trailer dictionary. Each name must be a dictionary key present in the preced-
ing dictionary. Full paths describe the chain of dictionary keys from the initial dic-
tionary (which may be the Trailer or a pseudo object) to the target object.

> Paths or path components specifying an array or dictionary can have a numerical in-
dex which must be specified in decimal format between brackets. Nested arrays or
dictionaries can be addressed with multiple index entries. The first entry in an array
or dictionary has index 0.

> Paths or path components specifying a dictionary can have an index qualifier plus
one of the suffixes .key or .val. This can be used to retrieve a particular dictionary key
or the corresponding value of the indexed dictionary entry, respectively. If a path for
a dictionary has an index qualifier it must be followed by one of these suffixes.

Encoding for pCOS paths. In most cases pCOS paths will contain only plain ASCII char-
acters. However, in a few cases (e.g. PDFlib Block names) non-ASCII characters may be re-
quired. pCOS paths must be encoded according to the following rules:

> When a path component contains any of the characters /, [,], or #, these must be ex-
pressed by a number sign # followed by a two-digit hexadecimal number.

> In Unicode-aware language bindings the path consists of a regular Unicode string
which may contain ASCII and non-ASCII characters.

> In non-Unicode-aware language bindings the path must be supplied in UTF-8. The
string may or may not contain a BOM, but this doesn't make any difference. A BOM
may be placed at the start of the path, or at the start of individual path components
(i.e. after a slash character).
On EBCDIC systems the path must generally be supplied in ebcdic encoding. Charac-
ters outside the ASCII character set must be supplied as EBCDIC-UTF-8 (with or with-
out BOM).

22 Chapter 4: pCOS Path Reference

4.2 Path Prefixes
Prefixes can be used to query various attributes of an object (as opposed to its actual
value). Table 4.1 lists all supported prefixes.

The length prefix and content enumeration via indices are only applicable to plain
PDF objects and pseudo objects of type array, but not any other pseudo objects. The
pcosid prefix cannot be applied to pseudo objects. The type prefix is supported for all
pseudo objects.

Table 4.1 pCOS path prefixes

prefix explanation

length (Number) Length of an object, which depends on the object’s type:
array Number of elements in the array
dict Number of key/value pairs in the dictionary
stream Number of key/value pairs in the stream dict (not the stream length; use the Length key to

determine the length of stream data in bytes)
fstream Same as stream
other 0

pcosid (Number) Unique pCOS ID for an object of type dictionary or array.
If the path describes an object which doesn’t exist in the PDF the result will be -1. This can be used to
check for the existence of an object, and at the same time obtaining an ID if it exists.

type (String or number) Type of the object as number or string:
0, null Null object or object not present (use to check existence of an object)
1, boolean Boolean object
2, number Integer or real number
3, name Name object
4, string String object
5, array Array object
6, dict Dictionary object (but not stream)
7, stream Stream object which uses only supported filters
8, fstream Stream object which uses one or more unsupported filters
Enums for these types are available for the convenience of C and C++ developers.

4.3 Universal Pseudo Objects 23

4.3 Universal Pseudo Objects
Universal pseudo objects are available for all pcosmode levels, i.e. regardless of encryp-
tion and password availability. Table 4.2, Table 4.3, and Table 4.4 together list all univer-
sal pseudo objects.

4.3.1 General Document Information

Table 4.2 Universal pseudo objects for general document information

object name explanation

encrypt (Dict) Dictionary with keys describing the encryption status of the document:
length (Number) Length of the encryption key in bits
algorithm (Number)
description(String) Encryption algorithm number or description:

-1 Unknown encryption
0 No encryption
1 40-bit RC4 (Acrobat 2-4)
2 128-bit RC4 (Acrobat 5)
3 128-bit RC4 (Acrobat 6)
4 128-bit AES (Acrobat 7)
5 Public key on top of 128-bit RC4 (Acrobat 5)1

6 Public key on top of 128-bit AES (Acrobat 7)1

7 Adobe Policy Server (Acrobat 7)1

8 Adobe Digital Editions (EBX)1

9 (pCOS interface 5) 256-bit AES (Acrobat 9)
10 (pCOS interface 5) Public key on top of 256-bit AES (Acrobat 9)1

master (Boolean) True if the PDF requires a master password to change security settings
(permissions, user or master password), false otherwise

user (Boolean) True if the PDF requires a user password for opening, false otherwise
noaccessible, noannots, noassemble, nocopy, noforms, nohiresprint, nomodify, noprint

(Boolean) True if the respective access protection is set, false otherwise
plainmetadata

(Boolean) True if the PDF contains unencrypted meta data, false otherwise

1. Documents encrypted with this algorithm can be identified, but actual decryption is not supported.

filename (String) Name of the PDF file.

filesize (Number) Size of the PDF file in bytes

linearized (Boolean) True if the PDF document is linearized, false otherwise

pcosmode
pcosmode-
name

(Number/string) pCOS mode as number or string:
0 minimum
1 restricted
2 full

shrug (Boolean; only in the TET product) True if and only if security settings were ignored when opening the
PDF document; the client must take care of honoring the document author’s intentions. For TET the val-
ue will be true, and content extraction will be allowed, if all of the following conditions are true:
> Shrug mode has been enabled with the shrug option.
> The document has a master password but this has not been supplied.
> The user password (if required for the document) has been supplied.
> Content extraction is not allowed in the document’s permission settings.

24 Chapter 4: pCOS Path Reference

4.3.2 PDF Version Information

4.3.3 Library Identification

Table 4.3 Universal pseudo objects for PDF version information

object name explanation

extension-
level

(Number) Adobe Extension Level based on ISO 32000, or 0 (zero) if no extension level is present.
Acrobat 9 creates documents with extension level 3; Acrobat X creates extension level 8.

fullpdf-
version

(Number) Numerical value for the PDF version number. The numbers increase with each PDF/Acrobat
version. The value 100 * BaseVersion + ExtensionLevel will be returned, e.g.
150 PDF 1.5 (Acrobat 6)
160 PDF 1.6 (Acrobat 7)
170 PDF 1.7 (Acrobat 8) = ISO 32000-1
173 PDF 1.7 Adobe Extension Level 3 (Acrobat 9)
178 (pCOS interface 5) PDF 1.7 Adobe Extension Level 8 (Acrobat X)
200 (pCOS interface 5) PDF 2.0 = ISO 32000-2

pdfversion (Number) PDF version number multiplied by 10, e.g. 16 for PDF 1.6

pdfversion-
string

(String) Full PDF version string in the form expected by various API functions for setting the PDF output
compatibility, e.g. 1.5, 1.6, 1.7, 1.7ext3

Table 4.4 Universal pseudo objects for library identification

object name explanation

major
minor
revision

(Number) Major, minor, or revision number of the library, respectively.

pcosinterface (Number) Interface version number of the underlying pCOS implementation. See Section 1.3, »Availability
of the pCOS Interface«, page 6, to learn which version of the pCOS interface is implemented in a particu-
lar PDFlib GmbH product version.

version (String) Full library version string in the format <major>.<minor>.<revision>, possibly suffixed with addi-
tional qualifiers such as beta, rc, etc.

4.4 Pseudo Objects for PDF Standard Identification 25

4.4 Pseudo Objects for PDF Standard Identification
Table 4.5 lists pseudo objects for PDF standard identification. The values of these pseudo
objects are created based on the respective standard identification entries in the docu-
ment. They do not apply any validation against the standard.

Table 4.5 Pseudo objects for PDF standard identification

object name explanation

pdfa (String) PDF/A (ISO 19005-1 and 19005-2) conformance level of the document. Possible values are the fol-
lowing:
none

PDF/A-1a:2005, PDF/A-1b:2005
PDF/A-2a, PDF/A-2b, PDF/A-2u

pdfe (String; pCOS interface 5) PDF/E (ISO 24517-1 and 24517-2) conformance level of the document. Possible
values are the following:
none

PDF/E-1

pdfx (String) PDF/X (ISO 15930-1 etc.) conformance level of the document. Possible values are the following:
none

PDF/X-1:2001, PDF/X-1a:2001, PDF/X-1a:2003
PDF/X-2:2003

PDF/X-3:2002, PDF/X-3:2003
PDF/X-4, PDF/X-4p
PDF/X-5g, PDF/X-5n, PDF/X-5p

26 Chapter 4: pCOS Path Reference

4.5 Pseudo Objects for Pages
Table 4.6 lists the pseudo objects for page information.

Table 4.6 Pseudo object for pages

object name explanation

pages (Array of dicts) Each array element addresses a page of the document. Indexing it with the decimal repre-
sentation of the page number minus one addresses that page (the first page has index 0). Using the
length prefix the number of pages in the document can be determined. A page object addressed this way
will incorporate all attributes which are inherited via the /Pages tree. The /MediaBox and /Rotate en-
tries are guaranteed to be present. In addition to standard PDF dictionary entries the following pseudo
entries are available for each page:
colorspaces, extgstates, fonts, images, patterns, properties, shadings, templates

(Arrays of dicts) Page resources according to Table 4.8.
annots (Array of dicts) In addition to the standard PDF keys in the Annots array pCOS supports the

following pseudo key for dictionaries in the annots array:
destpage (Number; only for Subtype=Link and if a Dest entry is present) Number of the tar-

get page (first page is 1)
blocks (Array of dicts) Shorthand for pages[]/PieceInfo/PDFlib/Private/Blocks[], i.e. the

page’s block dictionary. In addition to the existing PDF keys pCOS supports the following
pseudo key for dictionaries in the blocks array:
rect (Rectangle) Similar to Rect, except that it takes into account any relevant

CropBox/MediaBox and Rotate entries and normalizes coordinate ordering.
height (Number) Height of the page. The MediaBox or the CropBox (if present) will be used to

determine the height. Rotate entries will also be applied.
isempty (Boolean) True if the page is empty, and false if the page is not empty
label (String) The page label of the page (including any prefix which may be present). Labels will be

displayed as in Acrobat. If no label is present (or the PageLabel dictionary is malformed), the
string will contain the decimal page number. Roman numbers will be created in Acrobat’s
style (e.g. VL), not in classical style which is different (e.g. XLV). If /Root/PageLabels doesn’t
exist, the document doesn’t contain any page labels.

width (Number) Width of the page (same rules as for height)
The following entries will be inherited: CropBox, MediaBox, Resources, Rotate.

4.6 Pseudo Objects for interactive Elements 27

4.6 Pseudo Objects for interactive Elements
Table 4.6 lists pseudo objects which can be used for retrieving PDF objects or serve as
shortcuts to various interactive elements.

Table 4.7 Pseudo objects for PDF objects and interactive elements

object name explanation

articles (Array of dicts) Array containing the article thread dictionaries for the document. The array will have
length 0 if the document does not contain any article threads. In addition to the standard PDF keys pCOS
supports the following pseudo key for dictionaries in the articles array:
beads (Array of dicts) Bead directory with the standard PDF keys, plus the following:

destpage (Number) Number of the target page (first page is 1)

bookmarks (Array of dicts) Array containing the bookmark (outlines) dictionaries for the document. In addition to
the standard PDF keys pCOS supports the following pseudo keys for dictionaries in the bookmarks array:
level (Number) Indentation level in the bookmark hierarchy
destpage (Number) Number of the target page (first page is 1) if the bookmark points to a page in the

same document, -1 otherwise.

fields (Array of dicts) Array containing the form fields dictionaries for the document. A form field object ad-
dressed this way will incorporate all attributes which are inherited via the form field hierarchy. In addi-
tion to the standard PDF keys in the field dictionary and the entries in the associated Widget annotation
dictionary pCOS supports the following pseudo keys for dictionaries in the fields array:
level (Number) Level in the field hierarchy (determined by ».« as separator)
fullname (String) Complete name of the form field. The same naming conventions as in Acrobat 7 will

be applied.

names (Dict) A dictionary where each entry provides simple access to a name tree. The following name trees are
supported: AP, AlternatePresentations, Dests, EmbeddedFiles, IDS, JavaScript, Pages, Renditions,
Templates, URLS.
Each name tree can be accessed by using the name as a key to retrieve the corresponding value, e.g.:
names/Dests[0].key retrieves the name of a destination
names/Dests[0].val retrieves the corresponding destination dictionary
In addition to standard PDF dictionary entries the following pseudo keys for dictionaries in the Dests
names tree are supported:
destpage (number) Number of the target page (first page is 1) if the destination points to a page in the

same document, -1 otherwise.
In order to retrieve other name tree entries these must be queried directly via /Root/Names/Dests etc.
since they are not present in the name tree pseudo objects.

objects (Array) Address an element for which a pCOS ID has been retrieved earlier using the pcosid prefix. The ID
must be supplied as array index in decimal form; as a result, the PDF object with the supplied ID will be
addressed. The length prefix cannot be used with this array.

tagged (Boolean) True if the PDF document is tagged, false otherwise

28 Chapter 4: pCOS Path Reference

4.7 Pseudo Objects for Resources
Resources are a key concept for managing various kinds of data which are required for
completely describing the contents of a page. The resource concept in PDF is very pow-
erful and efficient, but complicates access with various technical concepts, such as re-
cursion and resource inheritance. pCOS greatly simplifies resource retrieval and sup-
plies several groups of pseudo objects which can be used to directly query resources.
Some of these pseudo resource dictionaries contain entries in addition to the standard
PDF keys in order to further simplify resource information retrieval. pCOS pseudo re-
sources reflect resources from the user’s point of view, and differ from native PDF re-
sources:

> Some entries may have been added (e.g. inline images, simple color spaces) or delet-
ed (e.g. listed fonts which are not used on any page).

> In addition to the original PDF dictionary keys resource dictionaries may contain
some user-friendly keys for auxiliary information (e.g. embedding status of a font,
number of components of a color space).

pCOS supports two groups of pseudo objects for resource retrieval. Global resource ar-
rays contain all resources of a given type in a PDF document, while page-based resourc-
es contain only the resources used by a particular page. The corresponding pseudo ar-
rays are available for all resource types listed in Table 4.8:

> A list of all resources in the document is available in the global resource array (e.g.
images[]). Retrieving the length of one of the global resource pseudo arrays results in
a resource scan (see below) for all pages.

> A list of resources on each page is available in the page-based resource array (e.g.
pages[]/images[]). Accessing the length of one of a page’s resource pseudo arrays re-
sults in a resource scan for that page (to collect all resources which are actually used
on the page, and to merge images on that page).

4.7 Pseudo Objects for Resources 29

Table 4.8 Pseudo objects for resources; each resource category P creates two resource arrays P[] and pages[]/P[].

object name explanation

colorspaces (Array of dicts) Array containing dictionaries for all color spaces on the page or in the document. In addi-
tion to the standard PDF keys in color space and ICC profile stream dictionaries the following pseudo keys
are supported:
alternateid

(Integer; only for name=Separation and DeviceN) Index of the underlying alternate color
space in the colorspaces[] pseudo object.

baseid (Integer; only for name=Indexed) Index of the underlying base color space in the
colorspaces[] pseudo object.

colorantname
(Name; only for name=Separation) Name of the colorant. Non-ASCII CJK color names will be
converted to Unicode.

colorantnames
(Array of names; only for name=DeviceN) Names of the colorants

components
(Integer) Number of components of the color space

name (String) Name of the color space: CalGray, CalRGB, DeviceCMYK, DeviceGray, DeviceN,
DeviceRGB, ICCBased, Indexed, Lab, Separation

csarray (Array; not for name=DeviceGray/RGB/CMYK) Array describing the underlying native color
space, i.e. the original color space object in the PDF.

Color space resources will include all color spaces which are referenced from any type of object, including
the color spaces which do not require native PDF resources (i.e. DeviceGray, DeviceRGB, and DeviceCMYK).

extgstates (Array of dicts) Array containing the dictionaries for all extended graphics states (ExtGStates) on the
page or in the document

fonts (Array of dicts) Array containing dictionaries for all fonts on the page or in the document. In addition to
the standard PDF keys in font dictionaries, the following pseudo keys are supported:
name (String) PDF name of the font without any subset prefix. Non-ASCII CJK font names will be

converted to Unicode.
embedded (Boolean) Embedding status of the font
fullname (String; pCOS interface 5) PDF name of the font including subset prefix if present. Non-ASCII

CJK font names will be converted to Unicode.
type (String) Font type: (unknown), Composite, Multiple Master, OpenType, TrueType, TrueType

(CID), Type 1, Type 1 (CID), Type 1 CFF, Type 1 CFF (CID), Type 3
vertical (Boolean) true for fonts with vertical writing mode, false otherwise

30 Chapter 4: pCOS Path Reference

images (Array of dicts) Array containing dictionaries for all images on the page or in the document. The TET
product will add merged (artificial) images to the images[] array.
In addition to the standard PDF keys the following pseudo keys are supported:
bpc (Integer) The number of bits per component. This entry is usually the same as

BitsPerComponent, but unlike this it is guaranteed to be available. For JPEG2000 images it
may be -1 since the number of bits per component may not be available in the PDF structures.

colorspaceid
(Integer) Index of the image’s color space in the colorspaces[] pseudo object. This can be
used to retrieve detailed color space properties. For JPEG 2000 images the color space id may
be -1 since the color space may not be encoded in the PDF structures.

filterinfo (Dict) Describes the remaining filter for streams with unsupported filters or when retrieving
stream data with the keepfilter option set to true. If there is no such filter no filterinfo
dictionary will be available. The dictionary contains the following entries:
name (Name) Name of the filter
supported (Boolean) True if the filter is supported
decodeparms

(Dict) The DecodeParms dictionary if one is present for the filter
mergetype (Integer; only in the TET product) The following types describe the status of the image:

0 (normal) The image corresponds to an image in the PDF.
1 (artificial) The image is the result of merging multiple consumed images (i.e. im-

ages with mergetype=2) into a single image. The resulting artificial image does
not exist in the PDF data structures as an object.

2 (consumed) The image should be ignored since it has been merged into a larger
image. Although the image exists in the PDF, it usually should not be extracted
because it is part of an artificial image (i.e. an image with mergetype=1).

This entry reflects information regarding all pages processed so far. It may change its value
while processing other pages in the document. If final (constant) information is required, all
pages in the document must have been processed, or the value of the pCOS path
length:images must have been retrieved.

patterns (Array of dicts) Array containing dictionaries for all patterns on the page or in the document

properties (Array of dicts) Array containing dictionaries for all properties on the page or in the document

shadings (Array of dicts) Array containing dictionaries for all shadings on the page or in the document. In addition
to the standard PDF keys in shading dictionaries the following pseudo key is supported:
colorspaceid

(Integer) Index of the underlying color space in the colorspaces[] pseudo object.

templates (Array of dicts) Array containing dictionaries for all templates (Form XObjects) on the page or in the doc-
ument

Table 4.8 Pseudo objects for resources; each resource category P creates two resource arrays P[] and pages[]/P[].

object name explanation

4.8 Protected PDF Documents and pCOS Mode 31

4.8 Protected PDF Documents and pCOS Mode
pCOS supports encrypted and unencrypted PDF documents as input. However, full ob-
ject retrieval for encrypted documents requires the appropriate master password to be
supplied when opening the document. Depending on the availability of user and mas-
ter password, encrypted documents can be processed in one of the pCOS modes de-
scribed below.

Full pCOS mode (mode 2). Unencrypted documents will always be opened in full pCOS
mode. Encrypted PDFs can be processed without any restriction provided the master
password has been supplied upon opening the file. All objects will be returned unen-
crypted.

Restricted pCOS mode (mode 1). If the document has been opened without the appro-
priate master password and does not require a user password (or only the user pass-
word has been supplied) objects with type string, stream, or fstream can not be retrieved.
As an exception, if extraction of page contents is allowed, i.e. if nocopy=false the objects
listed in Table 4.9 are also accessible.

Minimum pCOS mode (mode 0). Regardless of the encryption status and the availabil-
ity of passwords, the universal pCOS pseudo objects listed in Table 4.2, Table 4.3, and Ta-
ble 4.4 are always available. For example, the encrypt pseudo object can be used to query
a document’s encryption status. Encrypted objects can not be retrieved in minimum
pCOS mode.

Summary of password combinations. Table 4.10 lists the resulting pCOS modes for
various password combinations. Depending on the document’s encryption status and
the password supplied when opening the file, PDF object paths may be available in min-
imum, restricted, or full pCOS mode. Trying to retrieve a pCOS path which is inappropri-
ate for the respective mode will trigger an exception.

Table 4.9 Objects which are accessible in restricted pCOS mode if text extraction is allowed, i.e. if nocopy=false

object pCOS path

document metadata1

1. These objects can also be retrieved if plainmetadata=true

/Root/Metadata (XMP Metadata)
/Info/* (document info fields)

bookmarks bookmarks[...]/Title

annotation contents pages[...]/annots[...]/Contents

Table 4.10 Resulting pCOS modes for various password combinations

If you know... ...pCOS will run in...

none of the passwords restricted pCOS mode if no user password is set, minimum pCOS mode otherwise

only the user password restricted pCOS mode

the master password full pCOS mode

32 Chapter 4: pCOS Path Reference

A pCOS Function Reference 33

A pCOS Function Reference
The following table contains an overview of the pCOS API functions. Please refer to the
corresponding product manual for more details and information for specific program-
ming languages.

pCOS function prototypes

double pcos_get_number(int doc, String path)
String pcos_get_string(int doc, String path)
final byte[] pcos_get_stream(int doc, String optlist, String path)

34 Chapter B: Revision History

B Revision History

Revision history of this manual

Date Changes

November 29, 2010 > Republished edition for pCOS interface 5 for PDFlib 8.0.2

October 29, 2010 > Updates for pCOS interface 7 in pCOS 3.0

July 22, 2010 > Reorganized the reference for pCOS interface 6 for use in multiple products

December 07, 2009 > Updates for pCOS interface 5 in PDFlib+PDI 8, PPS 8

February 01, 2009 > Updates for pCOS interface 4 in PLOP 4.0, TET 3.0, TET PDF IFilter 3.0

October 19, 2007 > Updates for pCOS interface 3 in pCOS 2.0

March 28, 2006 > Added a description of the Perl language binding

September 30, 2005 > Edition for pCOS interface 2 in pCOS 1.0

June 20, 2005 > Edition for pCOS interface 1 in TET 2.0

Chapter : 35

Index

A
arrays in pCOS paths 17

B
bookmarks 14
booleans in pCOS paths 15

D
dictionaries in pCOS paths 17
document info fields 10

E
encoding for pCOS paths 21
encrypted PDF documents 31
encryption status 9

F
fonts in a document 12

I
images 13

N
names in pCOS paths 15
number of pages 11
numbers in pCOS paths 15

O
object identifiers (IDs) in pCOS paths 19

P
page size 11
path prefixes 22
path syntax 21
pCOS

data types 15
path syntax 21

pCOS mode 9, 31
PDF version 10
prefixes 22
protected PDF documents 31
pseudo objects 21

for PDF objects, pages, and interactive
elements 26, 27
for resources 28
universal 23

S
streams in pCOS paths 15
strings in pCOS paths 15

U
universal pseudo objects 23

W
writing mode 12

X
XMP metadata 10

ABC

PDFlib GmbH
Franziska-Bilek-Weg 9
80339 München, Germany
www.pdflib.com
phone +49 • 89 • 452 33 84-0
fax +49 • 89 • 452 33 84-99

If you have questions check the PDFlib mailing list
and archive at tech.groups.yahoo.com/group/pdflib

Licensing contact
sales@pdflib.com

Support
support@pdflib.com (please include your license number)

http://tech.groups.yahoo.com/group/pdflib

			Contents

			1 Introduction

			1.1 What is pCOS?

			1.2 Roadmap to Documentation and Samples

			1.3 Availability of the pCOS Interface

			2 pCOS Examples

			2.1 pCOS Functions

			2.2 Document

			2.3 Pages

			2.4 Fonts

			2.5 Raster Images

			2.6 Interactive Elements

			3 pCOS Data Types

			3.1 Basic PDF Data Types

			3.2 Composite Data Structures

			3.3 Object Identifiers (IDs)

			4 pCOS Path Reference

			4.1 pCOS Path Syntax

			4.2 Path Prefixes

			4.3 Universal Pseudo Objects

			4.3.1 General Document Information

			4.3.2 PDF Version Information

			4.3.3 Library Identification

			4.4 Pseudo Objects for PDF Standard Identification

			4.5 Pseudo Objects for Pages

			4.6 Pseudo Objects for interactive Elements

			4.7 Pseudo Objects for Resources

			4.8 Protected PDF Documents and pCOS Mode

			A pCOS Function Reference

			B Revision History

			Index

PDFlib-8.0.6-SunOS-sparc64-perl/doc/PDFlib-API-reference.pdf

ABC

PDFlib, PDFlib+PDI, PPS
A library for generating PDF on the fly
Version 8.0.6

API Reference
Edition for Cobol, C, C++, Java, Objective-C,
Perl, PHP, Python, RPG, Ruby, and Tcl

Copyright © 1997–2013 PDFlib GmbH and Thomas Merz. All rights reserved.
PDFlib users are granted permission to reproduce printed or digital copies of this manual for internal use.

PDFlib GmbH
Franziska-Bilek-Weg 9, 80339 München, Germany
www.pdflib.com
phone +49 • 89 • 452 33 84-0
fax +49 • 89 • 452 33 84-99

If you have questions check the PDFlib mailing list and archive at tech.groups.yahoo.com/group/pdflib

Licensing contact: sales@pdflib.com
Support for commercial PDFlib licensees: support@pdflib.com (please include your license number)

This publication and the information herein is furnished as is, is subject to change without notice, and
should not be construed as a commitment by PDFlib GmbH. PDFlib GmbH assumes no responsibility or lia-
bility for any errors or inaccuracies, makes no warranty of any kind (express, implied or statutory) with re-
spect to this publication, and expressly disclaims any and all warranties of merchantability, fitness for par-
ticular purposes and noninfringement of third party rights.

PDFlib and the PDFlib logo are registered trademarks of PDFlib GmbH. PDFlib licensees are granted the
right to use the PDFlib name and logo in their product documentation. However, this is not required.

Adobe, Acrobat, PostScript, and XMP are trademarks of Adobe Systems Inc. AIX, IBM, OS/390, WebSphere,
iSeries, and zSeries are trademarks of International Business Machines Corporation. ActiveX, Microsoft,
OpenType, and Windows are trademarks of Microsoft Corporation. Apple, Macintosh and TrueType are
trademarks of Apple Computer, Inc. Unicode and the Unicode logo are trademarks of Unicode, Inc. Unix is a
trademark of The Open Group. Java and Solaris are trademarks of Sun Microsystems, Inc. HKS is a regis-
tered trademark of the HKS brand association: Hostmann-Steinberg, K+E Printing Inks, Schmincke. Other
company product and service names may be trademarks or service marks of others.

PANTONE® colors displayed in the software application or in the user documentation may not match
PANTONE-identified standards. Consult current PANTONE Color Publications for accurate color. PANTONE®
and other Pantone, Inc. trademarks are the property of Pantone, Inc. © Pantone, Inc., 2003.
Pantone, Inc. is the copyright owner of color data and/or software which are licensed to PDFlib GmbH to
distribute for use only in combination with PDFlib Software. PANTONE Color Data and/or Software shall
not be copied onto another disk or into memory unless as part of the execution of PDFlib Software.

PDFlib contains modified parts of the following third-party software:
ICClib, Copyright © 1997-2002 Graeme W. Gill
GIF image decoder, Copyright © 1990-1994 David Koblas
PNG image reference library (libpng), Copyright © 1998-2004 Glenn Randers-Pehrson
Zlib compression library, Copyright © 1995-2002 Jean-loup Gailly and Mark Adler
TIFFlib image library, Copyright © 1988-1997 Sam Leffler, Copyright © 1991-1997 Silicon Graphics, Inc.
Cryptographic software written by Eric Young, Copyright © 1995-1998 Eric Young (eay@cryptsoft.com)
Independent JPEG Group’s JPEG software, Copyright © 1991-1998, Thomas G. Lane
Cryptographic software, Copyright © 1998-2002 The OpenSSL Project (www.openssl.org)
Expat XML parser, Copyright © 1998, 1999, 2000 Thai Open Source Software Center Ltd
ICU International Components for Unicode, Copyright © 1995-2009 International Business Machines Cor-
poration and others
Reference sRGB ICC color profile data, Copyright (c) 1998 Hewlett-Packard Company

PDFlib contains the RSA Security, Inc. MD5 message digest algorithm.

http://www.pdflib.com

http://tech.groups.yahoo.com/group/pdflib

mailto:sales@pdflib.com

mailto:support@pdflib.com

Contents 3

Contents
1 Option Lists 7

1.1 Option List Syntax 7

1.2 Basic Types 10

1.3 Fontsize, Color, and Action 12

1.4 Geometric Types 14

1.5 Limits 16

2 General Functions 17

2.1 Function Scopes 17

2.2 Parameter and Option Handling 19

2.3 Setup 22

2.4 PDFlib Virtual File System (PVF) 25

2.5 Exception Handling 27

2.6 Logging 29

3 Document and Page Functions 31

3.1 Document Functions 31

3.2 Fetching PDF Documents from Memory 39

3.3 Page Functions 40

3.4 Layers 45

4 Font and Text Functions 51

4.1 Font Handling 51

4.2 Type 3 Font Definition 62

4.3 Encoding Definition 65

4.4 Simple Text Output 66

4.5 Unicode Conversion Functions 71

5 Text and Table Formatting 75

5.1 Text Options 75

5.2 Single-Line Text with Textlines 79

5.3 Multi-Line Text with Textflows 83

5.4 Table Formatting 99

6 Object Fitting and Matchboxes 109

6.1 Object Fitting 109

6.2 Matchboxes 115

4 Contents

7 Graphics Functions 119

7.1 Graphics Appearance Parameters and Options 119

7.2 Graphics State 122

7.3 Coordinate System Transformations 127

7.4 Path Construction 130

7.5 Painting and Clipping 134

7.6 Path Objects 136

8 Color Functions 141

8.1 Setting Color and Color Space 141

8.2 ICC Profiles 145

8.3 Patterns and Shadings 149

9 Image and Template Functions 153

9.1 Images 154

9.2 Templates 162

9.3 Thumbnails 165

10 PDF Import (PDI) and pCOS Functions 167

10.1 Document Functions 167

10.2 Page Functions 171

10.3 Other PDI Processing 176

10.4 pCOS Functions 177

11 Block Filling Functions (PPS) 181

11.1 Rectangle Options for Block Filling Functions 181

11.2 Textline and Textflow Blocks 182

11.3 Image Blocks 184

11.4 PDF Blocks 185

12 Interactive Features 187

12.1 Parameters for Interactive Elements 187

12.2 Actions 187

12.3 Named Destinations 192

12.4 Annotations 194

12.5 Form Fields 202

12.6 Bookmarks 209

12.7 PDF Packages and Portfolios 211

Contents 5

13 3D and Geospatial Features 217

13.1 3D Artwork 217

13.2 Geospatial Features 222

14 Document Interchange 225

14.1 Document Information Fields 225

14.2 XMP Metadata 227

14.3 Tagged PDF 228

14.4 Marked Content 232

A List of all Functions 235

B List of all Parameters 237

C List of all Options and Keywords 239

D Revision History 253

Index 255

1.1 Option List Syntax 7

1 Option Lists
Option lists are a powerful yet easy method for controlling API function calls. Instead of
requiring a multitude of function parameters, many API methods support option lists,
or optlists for short. These are strings which can contain an arbitrary number of options.
Option lists support various data types and composite data like lists. In most language
bindings optlists can easily be constructed by concatenating the required keywords and
values.

Bindings C language binding: you may want to use the sprintf() function for constructing optlists.

1.1 Option List Syntax
Formal option list syntax definition. Option lists must be constructed according to fol-
lowing rules:

> All elements (keys and values) in an option list must be separated by one or more of
the following separator characters: space, tab, carriage return, newline, equal sign ’=’.

> An outermost pair of enclosing braces is not part of the element. The sequence { }
designates an empty element.

> Separators within the outermost pair of braces no longer split elements, but are part
of the element. Therefore, an element which contains separators must be enclosed
with braces.

> If an element contains brace characters these must be protected with a preceding
backslash character.

> If an element contains a sequence of one or more backslash characters in front of a
brace, each backslash in the sequence must be protected with another backslash
character.

> Option lists must not contain binary zero values.

An option may have a list value according to its documentation in this PDFlib Refer-
ence. List values contain one or more elements (which may themselves be lists). They
are separated according to the rules above, with the only difference that the equal sign
is no longer treated as a separator.

Note Option names (i.e. the key) never contain hyphen characters. Keep this in mind since the tables
with option descriptions may sometimes contain long option names which are hyphenated.
The hyphen must be omitted when supplying the option in an option list.

Simple option lists. In many cases option lists will contain one or more key/value
pairs. Keys and values, as well as multiple key/value pairs must be separated by one or
more whitespace characters (space, tab, carriage return, newline). Alternatively, keys
can be separated from values by an equal sign ’=’:

key=value
key = value
key value
key1 = value1 key2 = value2

To increase readability we recommend to use equal signs between key and value and
whitespace between adjacent key/value pairs.

8 Chapter 1: Option Lists

Since option lists will be evaluated from left to right an option can be supplied mul-
tiply within the same list. In this case the last occurrence will overwrite earlier ones. In
the following example the first option assignment will be overridden by the second,
and key will have the value value2 after processing the option list:

key=value1 key=value2

List values. Lists contain one or more separated values, which may be simple values or
list values in turn. Lists are bracketed with { and } braces, and the values in the list must
be separated by whitespace characters. Examples:

dasharray={11 22 33} (list containing three numbers)
position={ center bottom } (list containing two keywords)

A list may also contain nested lists. In this case the lists must also be separated from
each other by whitespace. While a separator must be inserted between adjacent } and {
characters, it can be omitted between braces of the same kind:

polylinelist={{10 20 30 40} {50 60 70 80}} (list containing two lists)

If the list contains exactly one list the braces for the nested list must not be omitted:

polylinelist={{10 20 30 40}} (list containing one nested list)

Nested option lists and list values. Some options accept the type option list or list of
option lists. Options of type option list contain one or more subordinate options. Options
of type list of option lists contain one or more nested option lists. When dealing with
nested option lists it is important to specify the proper number of enclosing braces.
Several examples are listed below.

The value of the option metadata is an option list which itself contains a single op-
tion filename:

metadata={filename=info.xmp}

The value of the option fill is a list of option lists containing a single option list:

fill={{ area=table fillcolor={rgb 1 0 0} }}

The value of the option fill is a list of option lists containing two option lists:

fill={{ area=rowodd fillcolor={rgb 0 1 0} } { area=roweven fillcolor={rgb 1 0 0} }}

List containing one option list with a value that includes spaces:

attachments={{filename={foo bar.xml} }}

List containing three strings:

itemnamelist = { {Isaac Newton} {James Clark Maxwell} {Albert Einstein} }

List containing two keywords:

position={left bottom}

List containing different types (float and keyword):

1.1 Option List Syntax 9

position={10 bottom}

List containing one rectangle:

boxes={{10 20 30 40}}

List containing two polylines with percentages:

polygons = {{10 20 40 60 90 120}} {12 87 34 98 34% 67% 34% 7%}}

Common traps and pitfalls. This paragraph lists some common errors regarding op-
tion list syntax.

Braces are not separators; the following is wrong:

key1 {value1}key2 {value2} WRONG!

This will trigger the error message Unknown option 'value2'. Similarly, the following are
wrong since the separators are missing:

key{value} WRONG!
key={{value1}{value2}} WRONG!

Braces must be balanced; the following is wrong:

key={open brace {} WRONG!

This will trigger the error message Braces aren't balanced in option list 'key={open brace {}'.
A single brace as part of a string must be preceded by an additional backslash character:

key={closing brace \} and open brace \{} CORRECT!

A backslash at the end of a string value must be preceded by another backslash if it is
followed by a closing brace character:

filename={C:\path\name\} WRONG!
filename={C:\path\name\\} CORRECT!

10 Chapter 1: Option Lists

1.2 Basic Types
String. Strings are plain ASCII strings (or EBCDIC strings on EBCDIC platforms) which
are generally used for non-localizable keywords. Strings containing whitespace or ’=’
characters must be bracketed with { and }:

password={ secret string } (string value contains three blanks)
contents={length=3mm} (string value containing one equal sign)

The characters { and } must be preceded by an additional \ character if they are sup-
posed to be part of the string:

password={weird\}string} (string value contains a right brace)

A backslash in front of the closing brace of an element must be preceded by a backslash
character:

filename={C:\path\name\\} (string ends with a single backslash)

An empty string can be constructed with a pair or braces:

{}

Content strings, hypertext strings and name strings: these can hold Unicode content in
various formats. Single bytes can be expressed by an escape sequence if the parameter
escapesequence is set. For details on these string types and encoding choices for string
options see the PDFlib Tutorial.

Non-Unicode capable language bindings: if an option list starts with a [EBCDIC-]UTF-
8 BOM, each content, hypertext or name string of the option list will be interpreted as a
[EBCDIC-]UTF-8 string.

Unichar. A Unichar is a single Unicode value where several syntax variants are sup-
ported: decimal values ¹ 10 (e.g. 173), hexadecimal values prefixed with x, X, 0x, 0X, or U+
(xAD, 0xAD, U+00AD), numerical references, character references, and glyph name refer-
ences but without the ’&’ and ’;’ decoration (shy, #xAD, #173). Alternatively, literal char-
acters can be supplied. Examples:

replacementchar=? (literal)
replacementchar=63 (decimal)
replacementchar=x3F (hexadecimal)
replacementchar=0x3F (hexadecimal)
replacementchar=U+003F (Unicode notation)
replacementchar=euro (HTML character reference)
replacementchar=.question (standard glyph name reference)
replacementchar=.marina (font-specific glyph name reference)

Single characters which happen to be a number are treated literally, not as decimal Uni-
code values:

replacementchar=3 (U+0033 THREE, not U+0003!)

Unichars must be in the hexadecimal range 0-0x10FFFF (decimal 0-1114111). However,
some options are restricted to the range 0-0xFFFF (0-65535). This is noted in the respec-
tive option description.

1.2 Basic Types 11

Unicode range. A Unicode range identifies a contiguous range of Unicode characters
via start and end characters of the range. The start and end values of a Unicode range
must be separated by a minus sign ’-’ without any spaces, e.g.

forcechars={U+03AC-U+03CE}

Boolean. Booleans have the values true or false; if the value of a Boolean option is
omitted, the value true is assumed. As a shorthand notation noname can be used instead
of name=false:

embedding (equivalent to embedding=true)
noembedding (equivalent to embedding=false)

Keyword. An option of type keyword can hold one of a predefined list of fixed key-
words. Example:

blendmode=overlay

For some options the value hold either a number or a keyword.

Number. Option list support several numerical types.
Integer types can hold decimal and hexadecimal integers. Positive integers starting
with x, X, 0x, or 0X specify hexadecimal values:

-12345
0
0xFF

Floats can hold decimal floating point or integer numbers; period and comma can be
used as decimal separators for floating point values. Exponential notation is also sup-
ported. The following values are all equivalent:

size = -123.45
size = -123,45
size = -1.2345E2
size = -1.2345e+2

Percentages are numbers with a % character directly after the numerical value. Some
options allow negative percentages:

leading=120%
topoffset=-20.5%

Handle. Handles identify various types of objects, e.g. fonts, images, or actions. Tech-
nically these are integer values which have been returned earlier by an API function. For
example, a font handle is returned by PDF_load_font(). Handles must always be treated
as opaque types; they must never be modified or created by the application directly (as
opposed to using a handle returned by an API function). Handles must always be valid
for the respective type of object. For example, an option which expects an image handle
must be supplied with a font handle, although both handles are integer types.

12 Chapter 1: Option Lists

1.3 Fontsize, Color, and Action
Fontsize. A fontsize can be defined in several ways which allow the size of text to be
specified in absolute values, relative to some external entity, or relative to some font
property. In general the fontsize must be different from 0 unless the option description
mentions otherwise.

In the most common case a fontsize contains a single float value which specifies re-
fers to units in the user coordinate system:

fontsize = 12

The second variant contains a percentage, where the basis of the percentage depends on
the context (e.g. the width of the fitbox for PDF_fit_textline():

fontsize = 8%

In the third variant, the fontsize is specified as an option list which must contain a key-
word and a number. The keyword describes the desired font metric according to Table
1.1, and the number contains the desired size. PDFlib will calculate the proper fontsize so
that the selected text metric matches the supplied value:

fontsize = {capheight 5}

Color. Colors can be defined in three different forms: using an RGB color name, hexa-
decimal RGB values, or a flexible option list for colors in any color space.

In the first form all valid color names from SVG 1.1 can be supplied directly to specify
an RGB color, e.g.

strokecolor=pink

The color names are case-insensitive. A list of valid color names can be found at the fol-
lowing location:

www.w3.org/TR/SVG11/types.html#ColorKeywords

In the second form a hash ’#’ character followed by any combination of three pairs of
hexadecimal digits 00-FF can be supplied to specify an RGB color value, e.g.

strokecolor=#FFC0CB

In the third form an color option list specified a color space and color value. A color op-
tion list contains a colorspace keyword and a list with a variable number of float values

Table 1.1 Suboptions for options of type fontsize

option explanation

ascender The number will be interpreted as ascender height.

bodyheight The number will be interpreted as minimum distance between baselines, i.e. descenders and ascenders of
adjacent lines may exactly touch if this value is used as leading. This is the default behavior if no key-
word is provided.

capheight The number will be interpreted as capital letter height.

xheight The number will be interpreted as lowercase letter height.

http://www.w3.org/TR/SVG11/types.html#ColorKeywords

1.3 Fontsize, Color, and Action 13

depending on the particular color space. Color space keywords are the same as for PDF_
setcolor() (see Section 8.1, »Setting Color and Color Space«, page 141). Table 1.2 contains
specific descriptions and examples. As detailed in the respective function descriptions,
a particular option list may supply only a subset of the keywords presented above.

Cookbook A full code sample can be found in the Cookbook topic color/starter_color.

Action list. An action list specifies one or more actions. Each entry in the list consists
of an event keyword (trigger) and a list of action handles which must have been created
with PDF_create_action(). Actions will be performed in the listed order. The set of al-
lowed events (e.g. docopen) and the type of actions (e.g. JavaScript) are documented sep-
arately for the respective options.

List containing a single trigger with three actions:

action={ activate { 0 1 2 } }

List containing three triggers with one action for each:

action={ keystroke=0 format=1 validate=2 }

Table 1.2 Keywords for the color data type in option lists

keyword additional values example

gray single float value for the grayscale color space { gray 0.5 }

rgb three float values for the RGB color space { rgb 1 0 0 }

(no keyword) HTML color name or hexadecimal values for an RGB color pink

#FFC0CB

cmyk four float values for the CMYK color space { cmyk 0 1 0 0 }

lab three float values for the Lab color space { lab 100 50 30 }

spot spot color handle and a float specifying the tint value { spot 1 0.8 }

spotname (up to 63 bytes; fewer Unicode characters depending on format
and encoding) spot color name and a float specifying the tint val-
ue

{ spotname {PANTONE 281 U} 0.5 }

spotname Similar to the simple form of spotname above, but a color value
can be added to specify the alternate color for a custom spot color
(i.e. a spot color name which is not known internally to PDFlib). If
multiple options define the same custom spot color name all defi-
nitions must be consistent (i.e. define the same alternate color).

{ spotname {PDFlib Blue} 0.5
{ lab 100 50 30 } }

iccbasedgray single float value { iccbasedgray 0.5 }

iccbasedrgb three float values { iccbasedrgb 1 0 0 }

iccbasedcmyk four float values { iccbasedcmyk 0 1 0 0 }

pattern pattern handle { pattern 1 }

none specifies the absence of color none

http://www.pdflib.com/pdflib-cookbook/color/starter-color

14 Chapter 1: Option Lists

1.4 Geometric Types
Line. A line is a list of four float values specifying the x and y coordinates of the start
and end point of a line segment. The coordinate system for interpreting the coordinates
(default or user coordinate system) varies depending on the option, and is documented
separately:

line = {10 40 130 90}

Polyline. A polyline is a list containing an even number n of float values with n>2. Each
pair in the list specifies the x and y coordinates of a point; these points will be connected
by line segments. The coordinate system for interpreting the coordinates (default or
user coordinate system) varies depending on the option, and is documented separately:

polyline = {10 20 30 40 50 60}

The following option lists are equivalent:

polyline = {10 20 30r 40r 50r 60r}
polyline = {10 20 40 60 90 120}

Quadrilaterals are a special type of polylines: these are rectangles which may be rotated
and for which exactly four points must be specified.

Another special type are polygons: these are polylines which will automatically be
closed by a line segment.

Rectangle. A rectangle is a list of four float values specifying the x and y coordinates of
the lower left and upper right corners of a rectangle. The coordinate system for inter-
preting the coordinates (default or user coordinate system) varies depending on the op-
tion, and is documented separately. Some options accept percentages, where the basis
for the percentage depends on the context (e.g. the fitbox of a Textflow). Relative coordi-
nates can be supplied by adding the suffix r immediately after a number. Within a coor-
dinate list a relative coordinate relates to the previous x or y coordinate. Relative coordi-
nates at the beginning of a list relate to the origin, i.e. they are absolute coordinates.
Examples:

cropbox={ 0 0 500 600 }
box={40% 30% 50% 70%}

The following options are equivalent:

box={12 34 56r 78r}
box={12 34 68 112}

Circle. A circle is specified as a list of four float values where the first pair specifies the
x and y coordinates of the center, and the second pair specifies the x and y coordinates
of an arbitrary point on the circle. The coordinate system for interpreting the coordi-
nates (default or user coordinate system) varies depending on the option, and is docu-
mented separately:

circle={200 325 200 200}

1.4 Geometric Types 15

Curve list. A curve list consists of two or more connected third-order Bézier curve seg-
ments. A Bézier curve is specified by four control points. The first control point is the
starting point and the fourth point is the end point of the curve. The second and third
point control the shape of the curve. In a curve list the last point of a segment serves as
the first point for the next segment. A curve list is therefore specified as a list of 6 x n
float values with n¹2:

curve={200 700 240 600 80 580 400 660 400 660 440 620}

The last control point will become the new current point after drawing the curves.

16 Chapter 1: Option Lists

1.5 Limits
PDFlib imposes limits on certain entities in order to create PDF output which conforms
to the limitations imposed by the PDF Reference, Acrobat, or some PDF standard. These
limits are documented below.

The following limits will be enforced by suitably modifying the values:
> Smallest absolute floating point value in PDF: 0.000015. Numbers with a smaller ab-

solute value will be replaced with 0.
> (PDF 1.4, but not newer PDF versions) Largest absolute value which can be expressed

as floating point number in PDF: 32767.0. Numbers with a larger absolute value will
be replaced with the closest integer.

Violations of the following limits will result in an exception:
> Although PDFlib doesn’t have any static limits regarding the PDF output file size, it

must enforce certain limits when generating PDF/A-1, PDF/X-4 and PDF/X-5. See the
PDFlib Tutorial for details.

> Largest allowed numerical value in PDF: 2.147.483.647.
> Maximum length of hypertext strings: 65535.
> Maximum length of text strings on the page: 32.763 bytes (i.e. 16.381 characters for

CID fonts) if kerning=false and wordspacing=0; otherwise 4095 characters
> The following options are limited to a maximum of 8191 list entries:

views, namelist, polylinelist, fieldnamelist, itemnamelist, itemtextlist, children, group
> Maximum number of indirect objects in a PDF/A-1, PDF/X-4 or PDF/X-5 document:

8.388.607

2.1 Function Scopes 17

2 General Functions
2.1 Function Scopes

PDFlib applications must obey certain structural rules which are easy to understand.
For example, you obviously begin a document before ending it. Since the PDFlib API is
closely modelled after the document/page paradigm, generating documents the »natu-
ral« way leads to well-formed PDFlib client programs. PDFlib enforces correct ordering
of function calls with a strict scoping system. The scope definitions can be found in Ta-
ble 2.1. Figure 2.1 depicts the nesting of scopes. The function descriptions specify the al-
lowed scope for each function. Calling a function outside of the allowed scopes will trig-
ger an exception. You can query the current scope with the scope parameter.

Cookbook A full code sample can be found in the Cookbook topic general/function_scopes.

page page page page

pathpath

template pattern

document

. . .

. . .

objectnull

path path

font

page page page page

pathpath

template pattern

document

. . .

path path

font
glyph

glyph glyph glyph

Fig. 2.1
Nesting of scopes

http://www.pdflib.com/pdflib-cookbook/general-programming/function-scopes

18 Chapter 2: General Functions

Table 2.1 Function scope definitions

scope name definition

path started by one of PDF_moveto(), PDF_circle(), PDF_arc(), PDF_arcn(), or PDF_rect(), PDF_ellipse();
terminated by any of the functions in Section 7.5, »Painting and Clipping«, page 134

page between PDF_begin_page_ext() and PDF_end_page_ext(), but outside of path scope

template between PDF_begin_template_ext() and PDF_end_template_ext(), but outside of path scope

pattern between PDF_begin_pattern() and PDF_end_pattern(), but outside of path scope

font between PDF_begin_font() and PDF_end_font(), but outside of glyph scope

glyph between PDF_begin_glyph() and PDF_end_glyph(), but outside of path scope

document between PDF_begin_document() and PDF_end_document(), but outside of page, template, pattern,
and font scope

object in object-oriented language bindings: the lifetime of the PDFlib object, but outside of document scope;
in other bindings between PDF_new() and PDF_delete(), but outside of document scope

null outside of object scope

any when a function description mentions any scope it actually means any except null, since a PDFlib object
doesn’t even exist in null scope.

2.2 Parameter and Option Handling 19

2.2 Parameter and Option Handling
PDFlib’s operation can be controlled by a variety of global parameters. There are string
parameters and numerical values for controlling PDFlib and the appearance of the PDF
output. Four functions are available for setting and retrieving numerical and string pa-
rameters. At the beginning of each section the relevant parameter key names and val-
ues are described; a summary of all supported parameters is available in Appendix B,
»List of all Parameters«.

These parameters will retain their settings across the life span of the PDFlib object, or
until they are explicitly changed by the client. However, some parameters will explicitly
be reset at the beginning of each page (this is mentioned in the respective descriptions).

C++ Java double get_value(String key, double modifier)
Perl PHP float get_value(string key, float modifier)

C double PDF_get_value(PDF *p, const char *key, double modifier)

Get the value of some PDFlib parameter with numerical type.

key The name of the parameter to be queried.

modifier An optional modifier to be applied to the parameter. Whether a modifier is
required and what it relates to is explained in the various parameter tables. If the modi-
fier is unused it must be 0. Many parameters require handles to be passed as modifier.

Returns The numerical value of the parameter.

Scope Depends on key.

C++ Java void set_value(String key, double value)
Perl PHP set_value(string key, float value)

C void PDF_set_value(PDF *p, const char *key, double value)

Set the value of some PDFlib parameter with numerical type.

key The name of the parameter to be set.

value The new value of the parameter to be set.

Scope Depends on key.

C++ Java String get_parameter(String key, double modifier)
Perl PHP string get_parameter(string key, float modifier)

C const char * PDF_get_parameter(PDF *p, const char *key, double modifier)

Get the contents of some PDFlib parameter with string type.

key The name of the parameter to be queried.

modifier An optional modifier to be applied to the parameter. Whether a modifier is
required and what it relates to is explained in the various parameter tables. If the modi-
fier is unused it must be 0.

20 Chapter 2: General Functions

Returns The string value of the parameter as a hypertext string. The returned string can be used
until the end of the surrounding document scope. If no information is available an emp-
ty string will be returned.

Scope Depends on key.

Bindings C language binding: clients must not free the returned string. PDFlib manages all string
resources internally.

C++ Java void set_parameter(String key, String value)
Perl PHP set_parameter(string key, string value)

C void PDF_set_parameter(PDF *p, const char *key, const char *value)

Set some PDFlib parameter with string type.

key The name of the parameter to be set.

value (Name string) The new value of the parameter to be set.

Scope Depends on key.

C++ Java void set_option(String optlist)
Perl PHP set_option(string optlist)

C void PDF_set_option(PDF *p, const char *optlist)

Set one or more global options.

optlist An option list specifying global options according to Table 2.2. If an option is
provided more than once the last instance will override all previous ones. In order to
supply multiple values for a single option (e.g. searchpath) supply all values in a list ar-
gument to this option. The following options can be used:

avoiddemostamp, filenamehandling, license, licensefile, logging, resourcefile, searchpath,
shutdownstrategy

Details Except for searchpath, the new value will override the old one. PDF_set_option() supports
a subset of the parameters of PDF_set_parameter().

Scope any

Table 2.2 Options for PDF_set_option()

option description

avoiddemo-
stamp

(Boolean) If true, an exception will be thrown when no valid license key was found; if false, a demo
stamp will be created on all pages. This option must be set before the first call to PDF_begin_
document(). Default: false

2.2 Parameter and Option Handling 21

filename-
handling

(Keyword; not required on Windows) Target encoding for file names (default: auto on i5/iSeries, other-
wise legacy):
ascii 7-bit ASCII
basicebcdic Basic EBCDIC according to code page 1047, but only Unicode values <= U+007E
basicebcdic_37

Basic EBCDIC according to code page 0037, but only Unicode values <= U+007E
honorlang (Not on i5/iSeries) The environment variable LANG is interpreted and applied to file names if

it specifies utf8, UTF-8, cpXXXX, CPXXXX, iso8859-x, or ISO-8859-x.
legacy Use host encoding to interpret the file name and interpret the LANG variable if the

honorlang parameter is set.
unicode Unicode encoding in (EBCDIC-) UTF-8 format
all valid encoding names

Any (internal or user-defined) encoding recognized by PDFlib (see Table 4.3) except glyphid
and builtin

license (String) License key for PDFlib, PDFlib+PDI, or PPS (see PDFlib Tutorial for details).The key can be set be-
fore the first call to PDF_begin_document(). Use the avoiddemostamp option to make sure that missing
license keys will not accidentally result in a demo stamp.

licensefile (Name string) Name of a file containing the license key (see PDFlib Tutorial for details).The license file can
only be set once before the first call to PDF_begin_document().

logging (Option list) Logging options according to Table 2.8

resourcefile (Name string) Relative or absolute file name of the PDFlib UPR resource file. The resource file will be load-
ed immediately. Existing resources will be kept; their values will be overridden by new ones if they are set
again.

searchpath (List of name strings) Relative or absolute path name(s) of a directory containing files to be read. The
search path can be set multiply; the entries will be accumulated and used in least-recently-set order (see
PDFlib Tutorial for details). An empty name string (i.e. {{}}) deletes all existing search path entries. On
Windows the search path can also be set via a registry entry. Default: platform-specifc, see PDFlib
Tutorial

shutdown-
strategy

(Integer) Strategy for releasing global resources which are allocated once for all PDFlib objects. Each
global resource is initialized on demand when it is first needed. This option must be set to the same value
for all PDF objects in a process; otherwise the behavior is undefined (default: 0):
0 A reference counter keeps track of how many PDFlib objects use the resource. When the last

PDFlib object is deleted and the reference counter drops to zero, the resource is released.
1 The resource is kept until the end of the process. This may slightly improve performance, but

requires more memory after the last PDFlib object is deleted.

Table 2.2 Options for PDF_set_option()

option description

22 Chapter 2: General Functions

2.3 Setup
Table 2.3 and Table 2.4 list relevant parameter and value key names for PDFlib setup (see
Section 2.2, »Parameter and Option Handling«, page 19).

Table 2.3 Setup-related keys for PDF_get/set_parameter()

key explanation

any resource
category
name

Entries in any of the resource categories. PDF_get_parameter(): Modifier contains the index of the entry
(starting with 1). If there are no more entries an empty string will be returned. See PDFlib Tutorial for a
list of category names. Scope: any

asciifile (Only supported on iSeries and zSeries). Expect text files (PFA, AFM, UPR, encodings) in ASCII encoding.
Default: true on iSeries; false on zSeries. Scope: any

filename-
handling

 Target encoding for file names according to Table 2.2

honorlang (Deprecated, use filenamehandling=honorlang instead) If true, the environment variable LANG will be
interpreted and applied to file names if it specifies utf8, UTF-8, cp1252, CP1252, iso8859-x, or ISO-
8859-x. Default: false. Scope: object

license1

1. Only for PDF_set_parameter()

(Deprecated) Set the license key for PDFlib, PDFlib+PDI, or PPS.The key can be set before the first call to
PDF_begin_document(). Use the nodemostamp parameter to make sure that missing license keys will not
accidentally result in a demo stamp. Scope: object

licensefile (Deprecated) Set the name of a file containing the license key.The license file can only be set once before
the first call to PDF_begin_document(). Scope: object

nodemo-
stamp

(Deprecated) If true, an exception will be thrown when no valid license key was found; if false, a demo
stamp will be created on all pages. This option must be set before the first call to PDF_begin_
document(). Default: false. Scope: object

resourcefile Relative or absolute file name of the PDFlib UPR resource file. The resource file will be loaded immediate-
ly. Existing resources will be kept; their values will be overridden by new ones if they are set again. Scope:
any

scope2

2. Only for PDF_get_parameter()

Name of the current scope (see Table 2.1). Scope: any

SearchPath Relative or absolute path name of a directory containing files to be read. The SearchPath can be set mul-
tiply; the entries will be accumulated and used in least-recently-set order. An empty string deletes all en-
tries from the SearchPath list (including the default entries).
PDF_get_parameter(): Modifier contains the index of the entry (starting with 1). If there are no more en-
tries an empty string will be returned. The returned string will be encoded in UTF-8. Default: platform-
specifc, see PDFlib Tutorial. Scope: any

string2 Return a string identified by the string index supplied in the modifier. The returned string is valid until
the next call to any API function. Scope: any

version2 Full PDFlib version string in the format <major>.<minor>.<revision>, possibly suffixed with additional
qualifiers such as beta, rc, etc. Scope: any, null3

3. May be called with a PDF * argument of NULL or 0

2.3 Setup 23

C PDF *PDF_new(void)

Create a new PDFlib object.

Details This function creates a new PDFlib object, using PDFlib’s internal default error handling
and memory allocation routines.

Returns A handle to a PDFlib object which is to be used in subsequent PDFlib calls. If this func-
tion doesn’t succeed due to unavailable memory it will return NULL (in C) or throw an
exception.

Scope null; this function starts object scope, and must always be paired with a matching PDF_
delete() call.

Bindings The data type used for the opaque PDFlib object handle varies among language bind-
ings. This doesn’t really affect PDFlib clients, since all they have to do is pass the PDF
handle as the first argument to all functions.

C: In order to load the PDFlib DLL dynamically at runtime use PDF_new_dl(). PDF_new_
dl() will return a pointer to a PDFlib_api structure filled with pointers to all PDFlib API
functions. If the DLL cannot be loaded, or a mismatch of major or minor version num-
ber is detected, NULL will be returned.
Objective-C: this function is called when the PDFlib object’s init method is called.
C++, Java, Perl, PHP: this function is not available since it is hidden in the PDFlib con-
structor.

C PDF *PDF_new2(void (*errorhandler)(PDF *p, int errortype, const char *msg),
void* (*allocproc)(PDF *p, size_t size, const char *caller),
void* (*reallocproc)(PDF *p, void *mem, size_t size, const char *caller),
void (*freeproc)(PDF *p, void *mem),
void *opaque)

Create a new PDFlib object with client-supplied error handling and memory allocation
routines.

errorhandler Pointer to a user-supplied error-handling function. The error handler
will be ignored in PDF_TRY/PDF_CATCH sections.

allocproc Pointer to a user-supplied memory allocation function.

Table 2.4 Setup-related keys for PDF_get/set_value()

key explanation

compress Compression level from 0=no compression, 1=best speed, etc. to 9=best compression. This parameter
does not affect image data handled in passthrough mode. Default: 6. Scope: page, document

major minor
revision1

Major, minor, or revision number of PDFlib, respectively. Scope: any, null2

maxfile-
handles

(Unsupported; implemented on Windows only) New maximum for the number of simultaneously open
files (in the C runtime). The number must be greater or equal than 20 and less or equal than 2048. An ex-
ception will be thrown if the new value is not accepted by the C runtime. Scope: object

1. Only for PDF_get_value()
2. May be called with a PDF * argument of NULL or 0

24 Chapter 2: General Functions

reallocproc Pointer to a user-supplied memory reallocation function.

freeproc Pointer to a user-supplied free function.

opaque Pointer to some user data which may be retrieved later with PDF_get_
opaque().

Returns A handle to a PDFlib object which is to be used in subsequent PDFlib calls. If this func-
tion doesn’t succeed due to unavailable memory it will return NULL (in C) or throw an
exception.

Details This function creates a new PDFlib object with client-supplied error handling and mem-
ory allocation routines. Unlike PDF_new(), the caller may optionally supply own proce-
dures for error handling and memory allocation. The function pointers for the error
handler, the memory procedures, or both may be NULL. PDFlib will use default routines
in these cases. Either all three memory routines must be provided, or none.

Scope null; this function starts object scope, and must always be paired with a matching PDF_
delete() call. No other PDFlib function with the same PDFlib object must be called after
calling this function.

Bindings C++: this function is indirectly available via the PDF constructor. Not all function argu-
ments must be given since default values of NULL are supplied. All supplied functions
must be »C« style functions, not C++ methods.

C void PDF_delete(PDF *p)

Delete a PDFlib object and free all internal resources.

Details This function deletes a PDF object and frees all document-related PDFlib-internal re-
sources. Although not necessarily required for single-document generation, deleting
the PDF object is heavily recommended for all server applications when they are done
producing PDF. This function must only be called once for a given PDF object. PDF_
delete() should also be called for cleanup when an exception occurred. PDF_delete() it-
self is guaranteed to not throw any exception. If more than one PDF document will be
generated it is not necessary to call PDF_delete() after each document, but only when
the complete sequence of PDF documents is done.

Scope any; this function starts null scope, i.e. no more API function calls are allowed.

Bindings C: If the PDFlib DLL has been loaded dynamically at runtime with PDF_new_dl(), use
PDF_delete_dl() to delete the PDFlib object.

C++: this function is indirectly available via the PDF destructor.
Java: this function is automatically called by the wrapper code. However, it can explicit-
ly be called from client code in order to overcome shortcomings in Java’s finalizer sys-
tem.
Objective-C: this function is called when the PDFlib object’s release method is called.
Perl and PHP: this function is automatically called when the PDFlib object goes out of
scope.

2.4 PDFlib Virtual File System (PVF) 25

2.4 PDFlib Virtual File System (PVF)
Cookbook A full code sample can be found in the Cookbook topic general/starter_pvf.

C++ void create_pvf(string filename, const void *data, size_t size, string optlist)
Java void create_pvf(String filename, byte[] data, String optlist)

Perl PHP create_pvf(string filename, string data, string optlist)
C void PDF_create_pvf(PDF *p,

const char *filename, int len, const void *data, size_t size, const char *optlist)

Create a named virtual read-only file from data provided in memory.

filename (Name string) The name of the virtual file. This is an arbitrary string which
can later be used to refer to the virtual file in other PDFlib calls. The name of the virtual
file will be subject to the SearchPath mechanism if it uses only slash ’/’ characters as di-
rectory or file name separators.

len (C language binding only) Length of filename (in bytes) for UTF-16 strings. If len=0
a null-terminated string must be provided.

data A reference to the data for the virtual file. In C and C++ this is a pointer to a mem-
ory location. In Java this is a byte array. In Perl, Python, and PHP this is a string.

size (C and C++ only) The length in bytes of the memory area containing the data.

optlist An option list according to Table 2.5. The following options can be used: copy

Details The virtual file name can be supplied to any API function which uses input files (virtual
files cannot be used for the generated PDF output; use an empty file name in PDF_begin_
document() to achieve this). Some of these functions may set a lock on the virtual file
until the data is no longer needed. Virtual files will be kept in memory until they are de-
leted explicitly with PDF_delete_pvf(), or automatically in PDF_delete().

Each PDFlib object will maintain its own set of PVF files. Virtual files cannot be
shared among different PDFlib objects, but they can be used for creating multiple docu-
ments with the same PDFlib object. Multiple threads working with separate PDFlib ob-
jects do not need to synchronize PVF use. If filename refers to an existing virtual file an
exception will be thrown. This function does not check whether filename is already in
use for a regular disk file.

Unless the copy option has been supplied, the caller must not modify or free (delete)
the supplied data before a corresponding successful call to PDF_delete_pvf(). Not obey-
ing to this rule will most likely result in a crash.

Scope any

Table 2.5 Options for PDF_create_pvf()

option description

copy (Boolean) PDFlib will immediately create an internal copy of the supplied data. In this case the caller may
dispose of the supplied data immediately after this call. The copy option will automatically be set to true
in the COM, .NET, and Java bindings (default for other bindings: false). In other language bindings the
data will not be copied unless the copy option is supplied.

http://www.pdflib.com/pdflib-cookbook/general-programming/starter-pvf

26 Chapter 2: General Functions

C++ Java int delete_pvf(String filename)
Perl PHP int delete_pvf(string filename)

C int PDF_delete_pvf(PDF *p, const char *filename, int len)

Delete a named virtual file and free its data structures (but not the contents).

filename (Name string; will be interpreted according to the global filenamehandling op-
tion or parameter, see Table 2.2) The name of the virtual file as supplied to PDF_create_
pvf().

len (C language binding only) Length of filename (in bytes) for UTF-16 strings. If len=0
a null-terminated string must be provided.

Returns -1 (in PHP: 0) if the virtual file exists but is locked, and 1 otherwise.

Details If the file isn’t locked, PDFlib will immediately delete the data structures associated with
filename. If filename does not refer to a valid virtual file this function will silently do
nothing. After successfully calling this function filename may be reused. All virtual files
will automatically be deleted in PDF_delete().

The detailed semantics depend on whether or not the copy option has been supplied
to the corresponding call to PDF_create_pvf(): If the copy option has been supplied, both
the administrative data structures for the file and the actual file contents (data) will be
freed; otherwise, the contents will not be freed, since the client is supposed to do so.

Scope any

2.5 Exception Handling 27

2.5 Exception Handling
Table 2.6 lists relevant options for this section. These options are supported by many
functions as indicated in the corresponding option list descriptions. These options can
also be used as parameter key name for PDF_get/set_parameter() (see Section 2.2, »Pa-
rameter and Option Handling«, page 19).

C++ Java int get_errnum()
Perl PHP int get_errnum()

C int PDF_get_errnum(PDF *p)

Get the number of the last thrown exception or the reason of a failed function call.

Returns The error code of the most recent error condition.

Scope Between an exception thrown by PDFlib and the death of the PDFlib object. Alternative-
ly, this function may be called after a function returned a -1 (in PHP: 0) error code, but
before calling any other function except those listed in this section.

Bindings In C++, Java, Objective-C, and PHP this function is also available as get_errnum() in the
PDFlibException object.

C++ Java String get_errmsg()
Perl PHP string get_errmsg()

C const char *PDF_get_errmsg(PDF *p)

Get the text of the last thrown exception or the reason of a failed function call.

Returns Text containing the description of the most recent error condition.

Scope Between an exception thrown by PDFlib and the death of the PDFlib object. Alternative-
ly, this function may be called after a function returned a -1 (in PHP: 0) error code, but
before calling any other function except those listed in this section.

Bindings In C++, Java, Objective-C, and PHP this function is also available as get_errmsg() in the
PDFlibException object.

Table 2.6 Exception-related keys for PDF_get/set_parameter() (also available as option)

key explanation

errorpolicy (Keyword) Controls the behavior of various functions in case of an error. The parameter errorpolicy can
be overridden by the errorpolicy option of many functions, and serves as default for this option. Sup-
ported keywords (default: legacy; scope: any):
legacy (Deprecated) The behavior of the functions is the same as in PDFlib 6.
return If an error occurs the function will return. Functions which can return an error code (e.g. PDF_

load_image()) return -1 (in PHP: 0). Functions which return result strings (e.g. PDF_fit_
table()) return the string _error. Application developers must check the return value against
-1 (in PHP: 0) or _error to detect error situations. In case of an error a detailed description
can be queried with PDF_get_errmsg(). This setting is recommended for new applications.

exception If an error occurs, the function will throw an exception. The exception must be caught in
client code using a binding-specific mechanism. The partial PDF output generated so far will
be unusable and must be discarded.

28 Chapter 2: General Functions

C++ Java String get_apiname()
Perl PHP string get_apiname()

C const char *PDF_get_apiname(PDF *p)

Get the name of the API function which threw the last exception or failed.

Returns The name of the API function which threw an exception, or the name of the most re-
cently called function which failed with an error code.

Scope Between an exception thrown by PDFlib and the death of the PDFlib object. Alternative-
ly, this function may be called after a function returned a -1 (in PHP: 0) error code, but
before calling any other function except those listed in this section.

Bindings In C++, Java Objective-C, and PHP this function is also available as get_apiname() in the
PDFlibException object.

C++ void *get_opaque()
C void *PDF_get_opaque(PDF *p)

Fetch the opaque application pointer stored in PDFlib.

Returns The opaque application pointer stored in PDFlib which has been supplied in the call to
PDF_new2().

Details PDFlib never touches the opaque pointer, but supplies it unchanged to the client. This
may be used in multi-threaded applications for storing private thread-specific data
within the PDFlib object. It is especially useful for thread-specific exception handling.

Scope any

Bindings Only available in the C and C++ bindings.

2.6 Logging 29

2.6 Logging
The logging feature can be used to trace API calls. The contents of the log file may be
useful for debugging purposes, or may be requested by PDFlib GmbH support. Table 2.7
lists the parameter key names for the logging feature (see Section 2.2, »Parameter and
Option Handling«, page 19).

The logging options can be supplied in the following ways:
> As an option list for the logging option of PDF_set_option(), e.g.:

p.set_option("logging", "filename={debug.log} remove")

> As an option list for the logging option of PDF_set_parameter(), e.g.:

p.set_parameter("logging", "filename={debug.log} remove")

> In an environment variable called PDFLIBLOGGING. Doing so will activate the log out-
put starting with the very first call to one of the API functions.

Table 2.7 Logging-related keys for PDF_set_parameter()

key explanation

logging Option list with logging options according to Table 2.8

userlog String which will be copied to the log file

Table 2.8 Options for the logging parameter

option description

(empty list) Enable log output

disable (Boolean) Disable logging output

enable (Boolean) Enable logging output

filename (String) Name of the log file; stdout and stderr will be recognized as special names. On CICS this option
will be ignored, and logging output will always be written to stderr. Output will be appended to any ex-
isting contents. Default:
pdflog on z/OS
PDFlib.log on Mac and iSeries
\PDFlib.log on Windows
/tmp/PDFlib.log on all other systems
The log file name can alternatively be supplied in an environment variable called PDFLIBLOGFILE.

flush (Boolean) If true, the log file will be closed after each output, and reopened for the next output to make
sure that the output will actually be flushed. This may be useful when chasing program crashes where
the log file is truncated, but significantly slows down processing. If false, the log file will be opened only
once. Default: false

remove (Boolean) If true, an existing log file will be deleted before writing new output. Default: false

stringlimit (Integer) Limit for the number of characters per line, or 0 for unlimited. Default: 0

30 Chapter 2: General Functions

classes (Option list) List containing options of type integer, where each option describes a logging class and the
corresponding value describes the granularity level. Level 0 disables a logging class, positive numbers en-
able a class. Increasing levels provide more and more detailed output. The following options are provided
(default: {api=1 warning=1}):
api Log all API calls with their function parameters and results. If api=2 a timestamp will be

created in front of all API trace lines, and deprecated functions and options will be marked. If
api=3 try/catch calls will be logged (useful for debugging problems with nested exception
handling).

filesearch Log all attempts related to locating files via SearchPath or PVF.
resource Log all attempts at locating resources via Windows registry, UPR definitions as well as the

results of the resource search.
user User-specified logging output supplied with the userlog parameter.
warning Log all PDFlib warnings, i.e. error conditions which can be ignored or fixed internally. If

warning=2 messages from functions which do not throw any exception, but hook up the
message text for retrieval via PDF_get_errmsg(), and the reason for all failed attempts at
opening a file (searching for a file in searchpath) will also be logged.

Table 2.8 Options for the logging parameter

option description

3.1 Document Functions 31

3 Document and Page Functions

3.1 Document Functions

C++ Java int begin_document(String filename, String optlist)
Perl PHP int begin_document(string filename, string optlist)

C int PDF_begin_document(PDF *p, const char *filename, int len, const char *optlist)

C++ void begin_document_callback(size_t (*writeproc) (PDF *p, void *data, size_t size), string optlist)
C void PDF_begin_document_callback(PDF *p,

size_t (*writeproc) (PDF *p, void *data, size_t size), const char *optlist)

Create a new PDF document subject to various options.

filename (Name string; will be interpreted according to the global filenamehandling op-
tion or parameter, see Table 2.2) Absolute or relative name of the PDF output file to be
generated. If filename is empty, the PDF document will be generated in memory instead
of on file, and the generated PDF data must be fetched by the client with the PDF_get_
buffer() function. The special file name »–« can be used for generating PDF on the stdout
channel. On Windows it is OK to use UNC paths or mapped network drives.

len (C language binding only) Length of filename (in bytes) for UTF-16 strings. If len=0
a null-terminated string must be provided.

writeproc (Only for C and C++) C callback function which will be called by PDFlib in or-
der to submit (portions of) the generated PDF data. The supplied writeproc must be a C-
style function, not a C++ method.

optlist An option list specifying document options:
> General options: errorpolicy (see Table 2.6) and hypertextencoding (see Table 12.1)
> Document options according to Table 3.1. Options specified in PDF_end_document()

have precedence over identical options specified in PDF_begin_document(). The fol-
lowing options can be used:
attachmentpassword, attachments, autoxmp, compatibility, destination, filemode, flush,
groups, inmemory, labels, lang, linearize, masterpassword, metadata, moddate, object-
streams, openmode, optimize, pagelayout, pdfa, pdfx, permissions, recordsize, rolemap2,
search, tagged, tempdirname, tempfilenames, uri, userpassword, viewerpreferences

Returns -1 (in PHP: 0) on error, and 1 otherwise. If filename is empty this function will always suc-
ceed, and never return the -1 (in PHP: 0) error value.

Details This function creates a new PDF file using the supplied filename. PDFlib will attempt to
open a file with the given name, and close the file when the PDF document is finished.

PDF_begin_document_callback() opens a new PDF document, but instead of writing to
a disk file it calls a client-supplied callback function to deliver the PDF output data. The
function supplied as writeproc must return the number of bytes written. If the return
value doesn’t match the size argument supplied by PDFlib, an exception will be thrown.
The frequency of writeproc calls is configurable with the flush option.

32 Chapter 3: Document and Page Functions

Scope object; this function starts document scope if the file could successfully be opened, and
must always be paired with a matching PDF_end_document() call.

Bindings C, C++, Java, JScript: take care of properly escaping the backslash path separator. For ex-
ample, the following denotes a file on a network drive: \\\\malik\\rp\\foo.pdf.
PDF_begin_document_callback() is only available in C and C++.

C++ Java void end_document(String optlist)
Perl PHP end_document(string optlist)

C void PDF_end_document(PDF *p, const char *optlist)

Close the generated PDF document and apply various options.

optlist An option list specifying document processing options:
> General options: errorpolicy (see Table 2.6) and hypertextencoding (see Table 12.1)
> Document options according to Table 3.1. Options specified in PDF_end_document()

have precedence over identical options specified in PDF_begin_document(). The fol-
lowing options can be used:
action, attachmentpassword, attachments, autoxmp, createpvf, destination, destname,
labels, metadata, moddate, objectstreams, openmode, pagelayout, portfolio, rolemap2,
search, uri, viewerpreferences

Details This function finishes the generated PDF document, frees all document-related resourc-
es, and closes the output file if the PDF document has been opened with PDF_begin_
document(). This function must be called when the client is done generating pages, re-
gardless of the method used to open the PDF document.

When the document was generated in memory (as opposed to on file), the document
buffer will still be kept after this function is called (so that it can be fetched with PDF_
get_buffer()), and will be freed in the next call to PDF_begin_document(), or when the
PDFlib object goes out of scope in PDF_delete().

Scope document; this function terminates document scope, and must always be paired with a
matching call to one of PDF_begin_document() or PDF_begin_document_callback().

Table 3.1 Document options for PDF_begin_document() and PDF_end_document()

option description

action1 (Action list; not allowed for PDF/A) List of document actions for one or more of the following events. De-
fault: empty list.
open Actions to be performed when the document is opened. Due to the execution order in Acrobat

document-level JavaScript must not be used for open actions.
didprint/didsave/willclose/willprint/willsave

(PDF 1.4) JavaScript actions to be performed after printing/after saving/before closing/before
printing/ before saving the document.

attachment-
password2, 3

(String; PDF 1.6; will be ignored if userpassword or masterpassword are set; can not be combined with
the linearize and optimize options) File attachments will be encrypted using the supplied string as
password. The rest of the document will not be encrypted.

3.1 Document Functions 33

attachments (List of option lists; not allowed for PDF/A and PDF/X-1a/3) Specifies document-level file attachments (as
opposed to attachment annotations which are bound to a particular location on a page). It is ok to sup-
ply file attachments both in PDF_begin_document() and PDF_end_document(). Supported options:
description (Hypertext string; PDF 1.6) Descriptive text associated with the file.
filename (Hypertext string; required) Name of the file. Unicode file names are supported, but require

PDF 1.7 for correct display in Acrobat.
mimetype (String) MIME type of the file; Acrobat will use it for launching the appropriate application

when the attachment is activated.
name (Hypertext string) Name of the attachment. Default: filename without any path compo-

nents

autoxmp (Boolean; will be forced to true in PDF/X-3/4/5 and PDF/A-1 modes) If true, PDFlib will create XMP docu-
ment metadata from document info fields (see Section 14.2, »XMP Metadata«, page 227). Default: false

compatibility2 (Keyword; will be ignored if one of the pdfx or pdfa options is used with a value different from none) Set
the document’s PDF version to one of the keywords listed below. This option affects which PDF creation
features are available and which PDF documents can be imported with PDFlib+PDI (default: 1.7):
1.3 PDF 1.3 requires Acrobat 4 or above.
1.4 PDF 1.4 requires Acrobat 5 or above.
1.5 PDF 1.5 requires Acrobat 6 or above.
1.6 PDF 1.6 requires Acrobat 7 or above.
1.7 PDF 1.7 is specified in ISO 32000-1 and requires Acrobat 8 or above.
1.7ext3 PDF 1.7 extension level 3 requires Acrobat 9 or above.
1.7ext8 PDF 1.7 extension level 8 requires Acrobat X.

createpvf2 (Boolean) If true, generate the PDF file in memory instead of on file. The supplied file name is the name
of a virtual file which will be created with the call of PDF_end_document(). In this case PDF_get_buffer()
cannot be called to fetch the PDF output data; instead, the name of the generated PVF file can be sup-
plied to other PDFlib functions. This may be useful when generating documents which will be included in
a PDF Portfolio. Default: false

destination (Option list; will be ignored if an open action has been specified) An option list specifying the document
open action according to Table 12.5.

destname1 (Hypertext string; will be ignored if the destination option has been specified) The name of a destina-
tion which has been defined with PDF_add_nameddest(), and will be used as the document open action.

filemode2 (String, z/OS and USS only) Parameter string for setting the file mode of the document file and any tem-
porary file (e.g. with the linearize option). The supplied string will be appended to the default file mode
of »wb,«. The option recordsize must be consistent with the parameters specified in this option. Exam-
ple string: recfm=fb,lrecl=80,space=(cyl,(1,5). Default: empty, or recfm=v for unblocked output.

flush2 (Keyword; only for PDF_begin_document_callback()) Set the flushing strategy. Default: page.
none flush only once at the end of the document
page flush at the end of each page
content flush after all fonts, images, file attachments, and pages
heavy always flush when the internal 64 KB document buffer is full

groups2 (List of strings) Define the names and ordering of the page groups used in the document. Page groups
keep pages together (useful e.g. for attaching page labels); pages can be assigned to one of the page
groups defined in the document, and referenced within the respective group. If page groups are defined
for a document, all pages must be assigned to a page group.

Table 3.1 Document options for PDF_begin_document() and PDF_end_document()

option description

34 Chapter 3: Document and Page Functions

inmemory2 (Boolean; not for PDF_begin_document_callback()) If true and the linearize or optimize option is
true as well, PDFlib will not create any temporary files for linearization, but will process the file in mem-
ory. This can result in tremendous performance gains on some systems (especially z/OS), but requires
memory twice the size of the document. If false, a temporary file will be created for linearization and op-
timization. Default: false

labels (List of option lists) A list containing one or more option lists according to Table 3.2 specifying symbolic
page names. The page name will be displayed as a page label (instead of the page number) in Acrobat’s
status line. The combination of style/prefix/start must be unique within a document. Default: none

lang2 (String; recommended if tagged=true) Set the natural language of the document as a two-character
ISO 639 language code (examples: DE, EN, FR, JA), optionally followed by a hyphen and a two-character
ISO 3166 country code (examples: EN-US, EN-GB, ES-MX). Case is not significant.
The language specification can be overridden for individual items on all levels of the structure tree, but
must be set initially for the document as a whole.

linearize2 (Boolean; not for PDF_begin_document_callback()) If true, the output document will be linearized. On
z/OS this option cannot be combined with an empty filename. Default: false

master-
password2, 3

(String; required if permissions has been specified; not for PDF/A and PDF/X) The master password for
the document. If it is empty no master password will be applied. Default: empty

metadata (Option list; PDF 1.4) Supply XMP document metadata (see Section 14.2, »XMP Metadata«, page 227). The
XMP will overwrite document info entries supplied with PDF_set_info(). In PDF/A mode the supplied
XMP metadata must conform to additional requirements (see PDFlib Tutorial).

moddate (Boolean) If true, the ModDate (modification date) document info key will be created for compliance with
some preflight tools. Default: false

objectstreams2 (List of keywords; PDF 1.5; will be forced to false if optimize or linearize is true) Generate compressed
object streams which significantly reduce output file size (default: {other nodocinfo}):
bookmarksCompress bookmark objects.
docinfo Compress document info fields.
fields Compress form fields.
names Compress objects for named destinations.
none Don’t generate any compressed object streams (except for categories which are explicitly en-

abled after this option).
other All categories which are not explicitly disabled after this keyword, plus other object types

which don’t have their own keyword.
pages Compress the objects comprising the page tree.
tags Compress marked content tags.
xref Generate a compressed xref stream. This category will automatically be enabled if at least

one of the other categories is enabled.
Except for none and other, all keywords can be prefixed with no (e.g. nodocinfo) to disable compression
for the specified category. If at least one such negative keyword is supplied, the keyword other will be
prepended to the list.

openmode (Keyword) Set the appearance when the document is opened. Default: bookmarks if the document con-
tains any bookmarks, otherwise none.
none Open with no additional panel visible.
bookmarks Open with the bookmark panel visible.
thumbnails Open with the thumbnail panel visible.
fullscreen Open in fullscreen mode (does not work in the browser).
layers (PDF 1.5) Open with the layer panel visible.
attachments (PDF 1.6) Open with the attachments panel visible.

Table 3.1 Document options for PDF_begin_document() and PDF_end_document()

option description

3.1 Document Functions 35

optimize2 (Boolean) If true, the output document will be optimized in a separate pass after generating it. Optimi-
zation reduces file size by eliminating redundant duplicate objects. In general optimization will not have
any significant effect except for inefficient client code (e.g. loading the same image or ICC profile multi-
ply instead of reusing the handle). On z/OS this option cannot be combined with in-core generation (i.e.
an empty filename). Default: false

pagelayout (Keyword) The page layout to be used when the document is opened. Default: default.
default The default setting of the Acrobat viewer.
singlepage Display one page at a time.
onecolumn Display the pages continuously in one column.
twocolumnleft Display the pages in two columns, odd pages on the left.
twocolumnright Display the pages in two columns, odd pages on the right
twopageleft (PDF 1.5) Display the pages two at a time, with odd-numbered pages on the left.
twopageright (PDF 1.5) Display the pages two at a time, with odd-numbered pages on the right.

pdfa2 (Keyword) Set the PDF/A conformance level to one of PDF/A-1a:2005, PDF/A-1b:2005, or none. The value
PDF/A-1a:2005 will automatically enable Tagged PDF mode. PDF/A-1 output can at the same time con-
form to the PDF/X-1a:2003, PDF/X-3:2003, and PDF/X-4 settings of the pdfx option. Default: none

pdfx2 (Keyword) Set the PDF/X conformance level to one of PDF/X-1a:2001, PDF/X-1a:2003, PDF/X-3:2002,
PDF/X-3:2003, PDF/X-4, PDF/X-4p, PDF/X-5g, PDF/X-5pg, or none. Default: none

permissions2 (Keyword list; not for PDF/A and PDF/X) The access permission list for the output document. It contains
any number of the following keywords (default: empty):
noprint Acrobat will prevent printing the file.
nohiresprint

(PDF 1.4) Acrobat will prevent high-resolution printing. If noprint isn’t set, printing is restrict-
ed to the »print as image« feature which prints a low-resolution rendition of the page.

nomodify Acrobat will prevent editing or cropping pages and creating or changing form fields.
noassemble (PDF 1.4; implies nomodify) Acrobat will prevent inserting, deleting, or rotating pages and

creating bookmarks and thumbnails.
noannots Acrobat will prevent creating or changing annotations and form fields.
noforms (PDF 1.4; implies nomodify and noannots) Acrobat will prevent form field filling.
nocopy Acrobat will prevent copying and extracting text or graphics; the accessibility interface will

be controlled by noaccessible.
noaccessible

(PDF 1.4) Acrobat will prevent extracting text or graphics for accessibility purposes (such as a
screenreader program).

plainmetadata
(PDF 1.5) Keep XMP document metadata unencrypted even for encrypted documents.

portfolio1 (Option list; PDF 1.7) Suboptions for creating a PDF portfolio according to Table 12.16

recordsize2 (Integer; z/OS and USS only) The record size of the output file, and any temporary file which may have to
be created for the linearize and optimize options. Default: 0 (unblocked output)

rolemap2 (List of string lists; the first element in each string listis a name string, the second element is a string; only
for Tagged PDF; required if custom element types are used) Mapping of custom element types to stan-
dard element types. Each sublist contains the name of a standard or custom element type, and the name
of the standard element type to which the first type will be mapped. Inline-level and pseudo element
types are not allowed for the second entry in a sublist since custom types cannot be mapped to these
types. Standard element type names also can be mapped to other standard element types in order to as-
sign different semantics to existing element types. See Section 14.3, »Tagged PDF«, page 228, regarding
the use of custom element types in Tagged PDF.

Table 3.1 Document options for PDF_begin_document() and PDF_end_document()

option description

36 Chapter 3: Document and Page Functions

search (Option list) Instruct Acrobat to attach a search index when opening the document. The following subop-
tions are supported:
filename (Hypertext string; required) The name of a file containing a search index. The file name of the

index may be relative to the document, but the user is responsible for supplying correct index
file names.

indextype (Name string) The type of the index; must be PDX for Acrobat. Default: PDX

tagged2 (Boolean; PDF 1.4) If true, generate Tagged PDF output. Proper structure information must be provided
by the client in Tagged PDF mode (see Section 14.3, »Tagged PDF«, page 228). If the pdfa option has the
value »PDF/A-1a:2005« this option will automatically be forced to true. Default: false

tempdirname2 (String; not for PDF_begin_document_callback()) Directory where temporary files for the linearize and
optimize options will be created. If empty, PDFlib will generate temporary files in the current directory.
This option will be ignored if the tempfilenames option has been supplied. Default: empty

temp-
filenames2

(List of two strings; only for z/OS and USS and for PDF_begin_document()) Full file names for two tem-
porary files required for the linearize and optimize options. If empty, PDFlib will generate unique tem-
porary file names. The user is responsible for deleting the temporary files after PDF_end_document(). If
this option is supplied the filename parameter must not be empty. Default: empty

uri (String) Set the document’s base URL. This is useful when a document with relative Web links is moved to
a different location. Adjusting the base URL makes sure that relative links will still work. Default: none

user-
password2, 3

(String; not for PDF/A and PDF/X) The user password for the document. If it is empty no user password
will be applied. Default: empty

viewer-
preferences

(Option list) Option list specifying various viewer preferences according to Table 3.3. Default: empty

1. Only for PDF_end_document()
2. Only for PDF_begin_document() and PDF_begin_document_callback()
3. Characters outside of Winansi encoding are only allowed in passwords if PDF 1.7 extension level 3 or higher is generated.

Table 3.2 Suboptions for the labels option in PDF_begin/end_document() and label option in PDF_begin/end_page_ext()

option description

group (String; only for PDF_begin_document(); required if the document uses page groups, but not allowed
otherwise) The label will be applied to all pages in the specified group and all pages in all subsequent
groups until a new label is applied. The group name must have been defined with the groups option in
PDF_begin_document().

hypertext-
encoding

(Keyword) Specifies the encoding for the prefix option. An empty string is equivalent to unicode. De-
fault: value of the global hypertextencoding parameter.

pagenumber (Integer; only for PDF_end_document(); required if the document does not use page groups, but not al-
lowed otherwise) The label will be applied to the specified page and subsequent pages until a new label
is applied.

Table 3.1 Document options for PDF_begin_document() and PDF_end_document()

option description

3.1 Document Functions 37

prefix (Hypertext string) The label prefix for all labels in the range. Default: none

start (Integer >= 1) Numeric value for the first label in the range. Subsequent pages in the range will be num-
bered sequentially starting with this value. Default: 1

style (Keyword) The numbering style to be used. Default: none.
none no page number; labels will only consist of the prefix.
D decimal arabic numerals (1, 2, 3, ...)
R uppercase roman numerals (I, II, III, ...)
r lowercase roman numerals (i, ii, iii, ...)
A uppercase letters (A, B, C, ..., AA, BB, CC, ...)
a lowercase letters (a, b, c, ..., aa, bb, cc, ...)

Table 3.3 Suboptions for the viewerpreferences option in PDF_begin_document() and PDF_end_document()

option description

centerwindow (Boolean) Specifies whether to position the document’s window in the center of the screen. Default:
false

direction (Keyword) The reading order of the document, which affects the scroll ordering in double-page view and
the side (left/right) of the first page for double-page layout in Acrobat (default l2r):
l2r Left to right
r2l Right to left (including vertical writing systems)

displaydoctitle (Boolean) Specifies whether to display the Title document info field in Acrobat’s title bar (true) or the
file name (false). Default: false

duplex (Keyword; PDF 1.7) Paper handling option for the print dialog (default: none):
DuplexFlipShortEdge

Duplex and flip on the short edge of the sheet.
DuplexFlipLongEdge

Duplex and flip on the long edge of the sheet.
none No paper handling specified.
Simplex Print single-sided.

fitwindow (Boolean) Specifies whether to resize the document’s window to the size of the first page. Default: false

Table 3.2 Suboptions for the labels option in PDF_begin/end_document() and label option in PDF_begin/end_page_ext()

option description

38 Chapter 3: Document and Page Functions

hidemenubar1 (Boolean) Specifies whether to hide Acrobat’s menu bar. Default: false

hidetoolbar1 (Boolean) Specifies whether to hide Acrobat’s tool bars. Default: false

hidewindow-
ui1

(Boolean) Specifies whether to hide Acrobat’s window controls. Default: false

nonfullscreen-
pagemode

(Keyword; only relevant if the openmode option is set to fullscreen) Specifies how to display the docu-
ment on exiting full-screen mode. Default: none
bookmarks display page and bookmark pane
thumbnails display page and thumbnail pane
layers display page and layer pane
none display page only

numcopies (Integer in the range 1-5, PDF 1.7) The number of copies for the print dialog. Default: viewer-specific

picktrayby-
pdfsize

(Boolean; PDF 1.7; no effect on Mac OS) Specifies whether the PDF page size is used to select the input pa-
per tray in the print dialog. Default: viewer-specific

printscaling (Keyword; PDF 1.6) Page scaling option to be selected when a print dialog is presented for the document.
Supported keywords (default: appdefault):
none No page scaling; this may be useful for printing page contents at their exact sizes.
appdefault Use the current print scaling as specified in Acrobat.

printpage-
range

(List with pairs of integers; PDF 1.7) Page numbers for the print dialog. Each pair denotes the start and
end page numbers of a page range to be printed (first page is 1). Default: viewer-specific

printarea
printclip
viewarea
viewclip

(Keyword; for PDF/X only media and bleed are allowed) The type of the page boundary box representing
the area of a page to be displayed or clipped when viewing the document on screen or printing it. Acro-
bat ignores this setting, but it may be useful for other applications. Supported keywords (default: crop):
art Use the ArtBox
bleed Use the BleedBox
crop Use the CropBox
media Use the MediaBox
trim Use the TrimBox

1. Acrobat 8 and above does not support the combination of hidemenubar, hidetoolbar, and hidewindowui (i.e. all user interface ele-
ments hidden). The menu bar will still be visible if all three elements are set to hidden.

Table 3.3 Suboptions for the viewerpreferences option in PDF_begin_document() and PDF_end_document()

option description

3.2 Fetching PDF Documents from Memory 39

3.2 Fetching PDF Documents from Memory
If a non-empty filename parameter has been supplied to PDF_begin_document() PDFlib
will write PDF documents to a named disk file. Alternatively, PDF document data will be
generated in memory if the filename parameter is empty. In this case the PDF document
data must be fetched from memory with PDF_get_buffer(). This is especially useful
when shipping PDF from a Web server.

C++ const char *get_buffer(long *size)
Java byte[] get_buffer()

Perl PHP string get_buffer()
C const char * PDF_get_buffer(PDF *p, long *size)

Get the contents of the PDF output buffer.

size (C and C++ language bindings only) C-style pointer to a memory location where
the length of the returned data in bytes will be stored.

Returns A buffer full of binary PDF data for consumption by the client. It returns a language-spe-
cific data type for binary data. The returned buffer must be used by the client before
calling any other PDFlib function. Remember to copy the data if you want to use it while
calling other PDFlib functions (in particular, before calling PDF_create_pvf() to create a
PVF file containing the data).

Details Fetch the full or partial buffer containing the generated PDF data. If this function is
called between page descriptions, it will return the PDF data generated so far. If generat-
ing PDF into memory, this function must at least be called after PDF_end_document(),
and will return the remainder of the PDF document. It can be called earlier to fetch par-
tial document data. If there is only a single call to this function which happens after
PDF_end_document() the returned buffer is guaranteed to contain the complete PDF
document in a contiguous buffer.

Since PDF output contains binary characters, client software must be prepared to ac-
cept non-printable characters including null values.

Scope object, document (in other words: after PDF_end_page_ext() and before PDF_begin_page_
ext(), or after PDF_end_document() and before PDF_delete(). This function can only be
used if an empty filename has been supplied to PDF_begin_document().

If the linearize option in PDF_begin_document() has been set to true, the scope is re-
stricted to object, i.e. this function can only be called after PDF_end_document().

Bindings C and C++: the size parameter is only used for C and C++ clients.

Other bindings: an object of appropriate length will be returned, and the size parameter
must be omitted.

40 Chapter 3: Document and Page Functions

3.3 Page Functions
Table 3.4 and Table 3.5 list relevant parameter and value key names for this section (see
Section 2.2, »Parameter and Option Handling«, page 19).

C++ Java void begin_page_ext(double width, double height, String optlist)
Perl PHP begin_page_ext(float width, float height, string optlist)

C void PDF_begin_page_ext(PDF *p, double width, double height, const char *optlist)

Add a new page to the document and specify various options.

width, height The width and height parameters are the dimensions of the new page in
points (or user units, if the userunit option has been specified). They can be overridden
by the options with the same name (the dummy value 0 can be used for the parameters
in this case). A list of commonly used page formats can be found in Table 3.6. The PDFlib
Tutorial lists applicable page size limits in Acrobat. See also Table 3.7 for more details
(options width and height).

optlist An option list according to Table 3.7. These options have lower priority than
identical options specified in PDF_end_page_ext(). The following options can be used:
action, artbox, bleedbox, cropbox, defaultcmyk1, defaultgray1, defaultrgb1, duration, group,
height, label, mediabox, metadata, pagenumber, rotate, separationinfo, taborder, topdown,
transition, transparencygroup, trimbox, userunit, viewports, width

Details This function resets all text, graphics, and color state parameters for the new page to
their defaults.

Table 3.4 Page-related keys for PDF_get/set_parameter()

key explanation

topdown If true, the origin of the coordinate system at the beginning of a page, pattern, or template will be as-
sumed in the top left corner of the page, and y coordinates will increase downwards; otherwise the de-
fault coordinate system will be used. See PDFlib Tutorial for details. Scope: document. Default: false

Table 3.5 Page-related keys for PDF_get_value()

key explanation

pagewidth
pageheight

Get the page size of the current page (dimensions of the MediaBox). Scope: page, path

Table 3.6 Common standard page size dimensions in points1

1. More information about ISO, Japanese, and U.S. standard formats can be found at
www.cl.cam.ac.uk/~mgk25/iso-paper.html

format width height format width height format width height

a0 2380 3368 a4 595 842 letter 612 792

a1 1684 2380 a5 421 595 legal 612 1008

a2 1190 1684 a6 297 421 ledger 1224 792

a3 842 1190 11x17 792 1224

http://www.cl.cam.ac.uk/~mgk25/iso-paper.html

3.3 Page Functions 41

Scope document; this function starts page scope, and must always be paired with a matching
PDF_end_page_ext() call.

C++ Java void end_page_ext(String optlist)
Perl PHP end_page_ext(string optlist)

C void PDF_end_page_ext(PDF *p, const char *optlist)

Finish a page and apply various options.

optlist An option list according to Table 3.7. Options specified in PDF_end_page_ext()
have priority over identical options specified in PDF_begin_page_ext(). The following
options can be used:
action, artbox, bleedbox, cropbox, defaultcmyk1, defaultgray1, defaultrgb1, duration, group,
height, label, mediabox, metadata, rotate, taborder, transition, transparencygroup, trimbox,
userunit, viewports, width

Scope page; this function terminates page scope, and must always be paired with a matching
PDF_begin_page_ext() call.

Table 3.7 Page options for PDF_begin_page_ext() and PDF_end_page_ext()

option description

action (Action list) List of page actions for one or more of the following events (default: empty list):
open Actions to be performed when the page is opened.
close Actions to be performed when the page is closed.

artbox
bleedbox
cropbox

(Rectangle) Specify the ArtBox, BleedBox, or CropBox for the current page, respectively. The coordinates
are specified in the default coordinate system. Default: no box entries

defaultgray1

defaultrgb1

defaultcmyk1

(ICC handle) Set a default gray, RGB, or CMYK color space for the page according to the supplied profile
handle.

duration (Float) Set the page display duration in seconds for the current page if openmode=fullscreen (see Table
3.1). Default: 1

group1 (String; required if the document uses page groups, but not allowed otherwise) Name of the page group
to which the page will belong. This name can be used to keep pages together in a page group and to ad-
dress pages with PDF_resume_page(). The group name must have been defined with the groups option
in PDF_begin_document().

height (Float or keyword; not allowed if the topdown option or parameter is true) The dimensions of the new
page in points (or user units, if the userunit option has been specified). In order to produce landscape
pages use width > height or the rotate option. PDFlib uses width and height to construct the page’s
MediaBox, but the MediaBox can also explicitly be set using the mediabox option. The width and height
options will override the parameters with the same name.
The following symbolic page size names can be used as keywords by appending .width or .height (e.g.
a4.width, a4.height):
a0, a1, a2, a3, a4, a5, a6, b5, letter, legal, ledger, 11x17

label (Option list) An option list according to Table 3.2 specifying symbolic page names. The page name will be
displayed as a page label (instead of the page number) in Acrobat’s status line. The specified numbering
scheme will be used for the current and subsequent pages until it is changed again. The combination of
style/prefix/start values must be unique within a document.

42 Chapter 3: Document and Page Functions

mediabox (Rectangle; not allowed if the topdown option or parameter is true) Change the MediaBox for the cur-
rent page. The coordinates are specified in the default coordinate system. By default, the MediaBox will
be created by using the width and height parameters. The mediabox option will override the width and
height options and parameters.

metadata (Option list; PDF 1.4) Supply metadata for the page (see Section 14.2, »XMP Metadata«, page 227)

pagenumber1 (Integer) If this option is specified with a value n, the page will be inserted before the existing page n
within the page group specified in the group option (or the document if the document doesn’t use page
groups). If this option is not specified the page will be inserted at the end of the group.

rotate (Integer) The page rotation value. The rotation will affect page display, but does not modify the coordi-
nate system. Possible values are 0, 90, 180, 270. Default: 0

separation-
info1

(Option list) An option list containing color separation details for the current page. This will be ignored in
Acrobat, but may be useful in third-party software for identifying and correctly previewing separated
pages in a preseparated workflow:
pages (Integer; required for the first page of a set of separation pages, but not allowed for subse-

quent pages of the same set) The number of pages which belong to the same set of separa-
tion pages comprising the color data for a single composite page. All pages in the set must
appear sequentially in the file.

spotname (String; required unless spotcolor has been supplied) The name of the colorant for the cur-
rent page.

spotcolor (Spot color handle) A color handle describing the colorant for the current page.

taborder (Keyword; PDF 1.5) Keyword specifying the tab order for form fields and annotations on the page (De-
fault: none):
column Form fields and annotations are visited column by column from top to bottom, where col-

umns are ordered as specified by the direction suboption of the viewerpreferences option
of PDF_begin/end_document().

none The tab order is unspecified.
structure Form fields and annotations are visited in the order in which they appear in the structure

tree. The order for annotations that are not included in the structure tree is unspecified.
row Form fields and annotations are visited row by row starting at the topmost row, where the

direction within a row is as specified by the direction suboption of the viewerpreferences
option of PDF_begin/end_document().

topdown1 (Boolean) If true, the origin of the coordinate system at the beginning of the page will be assumed in the
top left corner of the page, and y coordinates will increase downwards; otherwise the default coordinate
system will be used. Default: false

Table 3.7 Page options for PDF_begin_page_ext() and PDF_end_page_ext()

option description

3.3 Page Functions 43

transition (Keyword) Set the page transition for the current page in order to achieve special effects which may be
useful when displaying the PDF in Acrobat’s fullscreen mode as presentations if openmode=fullscreen
(see Table 3.1). Default: replace
split Two lines sweeping across the screen reveal the page
blinds Multiple lines sweeping across the screen reveal the page
box A box reveals the page
wipe A single line sweeping across the screen reveals the page
dissolve The old page dissolves to reveal the page
glitter The dissolve effect moves from one screen edge to another
replace The old page is simply replaced by the new page
fly (PDF 1.5) The new page flies into the old page.
push (PDF 1.5) The new page pushes the old page off the screen
cover (PDF 1.5) The new page slides on to the screen and covers the old page.
uncover (PDF 1.5) The old page slides off the screen and uncovers the new page.
fade (PDF 1.5) The new page gradually becomes visible through the old one.

trans-
parency-
group

(Option list; PDF 1.4; not allowed for PDF/A, PDF/X-1, and PDF/X-3; certain rules apply for PDF/X-4 and
PDF/X-5, see PDFlib Tutorial) Specifies transparency group attributes for the generated page, an import-
ed page, or a template. Supported options:
colorspace (Keyword; required) Specifies the color space of the transparency group with one of the fol-

lowing keywords: DeviceGray, DeviceRGB, DeviceCMYK.
isolated (Boolean) Specifies whether the transparency group is isolated. Default: false
knockout (Boolean) Specifies whether the transparency group is a knockout group. Default: false
Default: if a page contains image masks with more than 1 bit or the opacityfill/opacitystroke op-
tions of PDF_create_gstate() the following option list will automatically be created to improve output
quality: transparencygroup={colorspace=DeviceRGB}

trimbox (Rectangle) Specify the TrimBox for the current page. The coordinates are specified in the default coordi-
nate system. Default: no TrimBox entry

userunit (Float or keyword; PDF 1.6) A number in the range 1..75 000 specifying the size of a user unit in points, or
one of the keywords mm, cm, or m which scales to the respective unit. User units don’t change the actual
page contents; they are only a hint to Acrobat which is used when printing the page or using the mea-
surement tools. Default: 1 (i.e. one unit is one point)

viewports (List of option lists; PDF 1.7ext3) Specifies one or more georeferenced areas (viewports) on the page; see
Section 13.2, »Geospatial Features«, page 222, for details.
Viewports allow different geospatial references (specified by the georeference option) to be used on dif-
ferent areas of the page, e.g. for multiple maps. The ordering of the option lists in the viewports list is
relevant for overlapping viewports: the last viewport which contains a point will be used for that point.

width (Float or keyword; not allowed if the topdown option or parameter is true) See height option above.

1. Only for PDF_begin_page_ext()

Table 3.7 Page options for PDF_begin_page_ext() and PDF_end_page_ext()

option description

44 Chapter 3: Document and Page Functions

C++ Java void suspend_page(String optlist)
Perl PHP suspend_page(string optlist)

C void PDF_suspend_page(PDF *p, const char *optlist)

Suspend the current page so that it can later be resumed.

optlist An option list for future use.

Details The full graphics (graphics, color, text, etc.) and layer state of the current page will be
saved internally. It can later be resumed with PDF_resume_page() to add more content.
Suspended pages must be resumed before they can be closed.

Scope page; this function starts document scope, and must always be paired with a matching
PDF_resume_page() call. This function must not be used in Tagged PDF mode.

C++ Java void resume_page(String optlist)
Perl PHP resume_page(string optlist)

C void PDF_resume_page(PDF *p, const char *optlist)

Resume a page to add more content to it.

optlist An option list according to Table 3.8. The following options can be used:
group, pagenumber

Details The page must have been suspended with PDF_suspend_page(). It will be opened again
so that more content can be added. All suspended pages must be resumed before they
can be closed, even if no more content has been added.

Scope document; this function starts page scope, and must always be paired with a matching
PDF_suspend_page() call.

Table 3.8 Options for PDF_resume_page()

option description

group (String; required if the document uses page groups, but not allowed otherwise) Name of the page group
of the resumed page. The group name must have been defined with the groups option in PDF_begin_
document().

pagenumber (Integer) If this option is supplied, the page with the specified number within the page group chosen in
the group option (or in the document if the document doesn’t use page groups) will be resumed. If this
option is missing the last page in the group will be resumed.

3.4 Layers 45

3.4 Layers
Cookbook A full code sample can be found in the Cookbook topic graphics/starter_layer.

C++ Java int define_layer(String name, String optlist)
Perl PHP int define_layer(string name, string optlist)

C int PDF_define_layer(PDF *p, const char *name, int len, const char *optlist)

Create a new layer definition (requires PDF 1.5).

name (Hypertext string) The name of the layer.

len (C language binding only) Length of name (in bytes) for UTF-16 strings. If len = 0 a
null-terminated string must be provided.

optlist An option list specifying layer settings according to Table 3.9. The following op-
tions can be used:

> General options: and hypertextencoding and hypertextformat (see Table 12.1)
> Layer control options:

creatorinfo, defaultstate, initialexportstate, initialprintstate, initialviewstate, intent,
language, onpanel, pageelement, printsubtype, removeunused, zoom

Returns A layer handle which can be used in calls to PDF_begin_layer() and PDF_set_layer_
dependency() until the end of the enclosing document scope.

Details PDFlib will issue a warning if a layer was defined but hasn’t been used in the document.
Layers which are used on multiple pages should be defined only once (e.g. before creat-
ing the first page). If PDF_define_layer() is called repeatedly on multiple pages, the layer
definitions will accumulate (even if they have the same name), which is usually not de-
sired.

PDF/X: Layers are not allowed in PDF/X-1/2/3. Some options are restricted in PDF/X-
4/5.

Scope document, page

Table 3.9 Options for PDF_define_layer()

option explanation

creatorinfo (Option list; not for PDF/X) An option list describing the content and the creating application. Both of the
following entries are required if this option is used:
creator (Hypertext string) The name of the application which created the layer
subtype (String) The type of content. Suggested values are Artwork and Technical.

defaultstate (Boolean) Specifies whether or not the layer will be visible by default. Default: true

initial-
exportstate

(Boolean; not for PDF/X) Specifies the layer’s recommended export state. If true, Acrobat will include the
layer when converting/exporting to older PDF versions or other document formats. Default: true

initial-
printstate

(Boolean; not for PDF/X) The layer’s recommended printing state. If true, Acrobat will include the layer
when printing the document. Default: true

initial-
viewstate

(Boolean; not for PDF/X) The layer’s recommended viewing state. If true, Acrobat will display the layer
when opening the document. Default: true

intent (Keyword) Intended use of the graphics: View or Design. Default: View

http://www.pdflib.com/pdflib-cookbook/graphics/starter-layer

46 Chapter 3: Document and Page Functions

C++ Java void set_layer_dependency(String type, String optlist)
Perl PHP set_layer_dependency(string type, string optlist)

C void PDF_set_layer_dependency(PDF *p, const char *type, const char *optlist)

Define layer relationships and variants (requires PDF 1.5).

type The type of dependency or relationship according to Table 3.10.

language (Option list; not for PDF/X) Specifies the language of the layer:
lang (String; required) The language and possibly locale in the format described in Table 3.1 for the

lang option
preferred (Boolean) If true this layer is used if there is only a partial match between the layer and the

system language. Default: false

onpanel (Boolean; not for PDF/X) If false, the layer name will not be visible in Acrobat’s layer panel, and there-
fore cannot be manipulated by the user. Default: true

pageelement (Keyword; not for PDF/X) Specifies that the layer contains a pagination artifact: one of HF (header/foot-
er), FG (foreground image or graphic), BG (background image or graphic), or L (logo).

printsubtype (Option list; not for PDF/X) Specifies whether the layer is intended for printing:
subtype (Keyword) One of Trapping, PrintersMarks, or Watermark specifying the kind of content in

the layer.
printstate (Boolean) If true, Acrobat will activate the layer contents upon printing.

removeunused (Boolean) If true and the layer is not used on a page, the layer will not be included in the page’s layer list.
A layer is considered in use on a page if it has been supplied to PDF_begin_layer() at least once on that
page. Default: false unless the layer is included in a non-default variant with listmode=visiblepages.

zoom (List of floats or percentages; not for PDF/X) One or two values specifying the layer’s visibility depending
on the zoom factor (1.0 means a zoom factor of 100 percent). If one value is provided, it will be used as
the maximum zoom factor at which the layer should be visible; if two values are provided they specify
the minimum and maximum zoom factor. The keyword maxzoom can be used to specify the largest possi-
ble zoom factor.

Table 3.10 Dependency and relationship types for layers

type notes; options specific for this type

GroupAllOn The layer specified in the depend option will be visible if all layers specified in the group option are visi-
ble. Options specific for this type: depend, group

GroupAnyOn The layers specified in the depend option will be visible if any layer specified in the group option is visi-
ble. Options specific for this type: depend, group

GroupAllOff The layer specified in the depend option will be visible if all layers specified in the group option are invis-
ible. Options specific for this type: depend, group

GroupAnyOff The layer specified in the depend option will be visible if any layer specified in the group option is invisi-
ble. Options specific for this type: depend, group

Lock (PDF 1.6) The layers specified in the group option will be locked, i.e. their state cannot be changed interac-
tively in Acrobat. Options specific for this type: group

Parent Specify a hierarchical relationship between the layer specified in the parent option and the layers speci-
fied in the children option. A layer can not belong to more than one parent layer. Options specific for
this type: children, parent

Table 3.9 Options for PDF_define_layer()

option explanation

3.4 Layers 47

optlist An option list specifying layer dependencies according to Table 3.11. The follow-
ing options can be used:

> General option: hypertextencoding (see Table 12.1)
> Layer dependency options:

basestate, children, createorderlist, defaultvariant, depend, includelayers, invisiblelayers,
group, visiblelayers, listmode, parent, variantname.

Details Layer relationships specify the presentation of layer names in Acrobat’s layer pane, as
well as the visibility of one or more layers when the user interactively enables or dis-
ables layers.

Variants can be regarded as a fixed combination of layers to enhance production
safety. Instead of manipulating individual layers the user can only enable or disable a
variant. If a document contains variants, Acrobat 9 will not display individual layer
names but only the names of the variants. Layer variants are presented in Acrobat 9
only for PDF/X documents. Acrobat X does not display layer variants.

In order to specify a dependency in the presence of layer variants where not all af-
fected layers are part of the same variant, the dependency must be specified before set-
ting the default variant.

PDF/X: Layers are not allowed in PDF/X-1/2/3. Some options are restricted in PDF/X-
4/5.

Scope document, page; Layer relationships should be specified after all layers have been
defined.

Radiobtn Specify a radiobutton relationship between the layers specified in the group option. This means that at
most one layer in the group will be visible at a time, which is particularly useful for multiple language
layers. Option specific for this type: group

Title The layer handle specified in the parent option does not control any page contents directly, but serves as
the parent layer node for the layers specified in the children option. Options specific for this type:
children, parent

Variant Specify a document variant, i.e. a combination of one or more layers. Later calls to PDF_set_layer_
dependency() can supply the variantname option again in order to specify dependency rules for this con-
figuration. Options specific for this type: basestate, defaultvariant, includelayers,
invisiblelayers, visiblelayers

Table 3.11 Options for PDF_set_layer_dependency()

option explanation

basestate (Keyword; only for type=Variant; not for PDF/X) Specify the visibility of all layers which are not explicit-
ly configured in the visiblelayers and invisiblelayers options. Supported keywords (default: on):
on All layers will be visible for the selected variant.
off All layers will be invisible for the selected variant.
unchanged The state of all layers will be left unmodified for the selected variant.

children (List of layer handles; only for type=Parent and Title) One or more layer handles specifying the layers
subordinate to the provided parent layer.

Table 3.10 Dependency and relationship types for layers

type notes; options specific for this type

48 Chapter 3: Document and Page Functions

C++ Java void begin_layer(int layer)
Perl PHP begin_layer(int layer)

C void PDF_begin_layer(PDF *p, int layer)

Start a layer for subsequent output on the page (requires PDF 1.5).

layer The layer’s handle, which must have been retrieved with PDF_define_layer().

createorder-
list

(Boolean; only for type=Variant and defaultvariant=true) Include all layers in the /Order array
which can be used to present all layers in a user interface. Setting this option to true has the following
implications:
> Acrobat 9 displays the layer variants in its Layers panel, but not the layer names. Acrobat 9 emits PDF/

X-4 validation errors for documents with createorderlist since this option is not allowed in PDF/X-
4:2008.

> Acrobat X displays the layer names in its Layers panel, but not the layer variants. Acrobat X successful-
ly validates documents with createorderlist since this option is allowed in PDF/X-4:2010.

Default: false for PDF/X without any layer variants, true otherwise

default-
variant

(Boolean; only for type=Variant) If true, the specified variant is the default variant, i.e. it will be active
when the document is opened. Exactly one variant must be specified as default variant. Default: false

depend (Layer handle; only for type=GroupAllOn, GroupAnyOn, GroupAllOff, and GroupAnyOff) The layer which
is controlled by the layers specified in the group option.

group (List of layer handles; only for type=GroupAllOn, GroupAnyOn, GroupAllOff, GroupAnyOff, Lock, and
Radiobtn) One or more layer handles comprising the group. For type=Lock all layers in the group will be
locked.

includelayers (List of layer handles; only for type=Variant) Specify the layers which belong to the variant. Default: all
layers defined so far in the document

invisiblelayers (List of layer handles; only for type=Variant) Specify a list of layers which will initially be invisible for the
selected variant. A layer must not be listed in a variant’s visiblelayers and invisiblelayers lists at
the same time. If defaultvariant=true this option overrides the defaultstate option of PDF_define_
layer(). Default (depends on the basestate option): all layers in the includelayers list if
basestate=off; empty list if basestate=on;

listmode (Keyword; only for type=Variant) Specify which layer names will be displayed in Acrobat’s layer pane.
Supported keywords (default: visiblepages):
allpages The names of all layers on all pages will be displayed.
visiblepages The names of all layers on the currently visible page(s) will be displayed. This implies the de-

fault value removeunused=true for all layers which belong to the variant.
In Acrobat this will have an effect only if defaultvariant=true.

parent (Layer handle; only for type=Parent and Title) The layer which is the parent of the layers specified in
the children option.

variantname (Hypertext string; required for type=Variant) Name of the selected variant. If type=Variant each vari-
ant name must be specified only once. Default if type is different from Variant: the default variant

visiblelayers (List of layer handles; only for type=Variant) Specify a list of layers which will initially be visible in the
selected variant. A layer must not be listed in a variant’s visiblelayers and invisiblelayers lists at
the same time. If defaultvariant=true this option overrides the defaultstate option of PDF_define_
layer(). Default (depends on the basestate option): all layers in the includelayers list if basestate=on;
empty list if basestate=off;

Table 3.11 Options for PDF_set_layer_dependency()

option explanation

3.4 Layers 49

Details All content placed on the page after this call, but before any subsequent call to PDF_
begin_layer() or PDF_end_layer() will be part of the specified layer. The content’s
visibility depends on the layer’s settings.

This function activates the specified layer, and deactivates any layer which may be
currently active.

Layers for annotations, images, templates, and form fields can be controlled with the
layer option of the respective functions.

Scope page

C++ Java void end_layer()
Perl PHP end_layer()

C void PDF_end_layer(PDF *p)

Deactivate all active layers (requires PDF 1.5).

Details Content placed on the page after this call will not belong to any layer. All layers must be
closed at the end of a page.

In order to switch from layer A to layer B a single call to PDF_begin_layer() is suffi-
cient; it is not required to explicitly call PDF_end_layer() to close layer A. PDF_end_layer()
is only required to create unconditional content (which is always visible), and to close
all layers at the end of a page.

Scope page

50 Chapter 3: Document and Page Functions

4.1 Font Handling 51

4 Font and Text Functions

4.1 Font Handling
Table 4.1 lists relevant parameter and value key names for this section (see Section 2.2,
»Parameter and Option Handling«, page 19).

C++ Java int load_font(String fontname, String encoding, String optlist)
Perl PHP int load_font(string fontname, string encoding, string optlist)

C int PDF_load_font(PDF *p, const char *fontname, int len, const char *encoding, const char *optlist)

Search for a font and prepare it for later use.

fontname (Name string) Name of the font. It can alternatively be provided via the
fontname option which will override this parameter. See option fontname in Table 4.3
for details.

len (C language binding only) Length of fontname in bytes for UTF-16 strings. If len = 0
a null-terminated string must be provided.

encoding Name of the encoding. It can alternatively be provided via the encoding op-
tion which will override this parameter. See option encoding in Table 4.3 for details. Note
the following list of common encoding-related problems:

> An 8-bit encoding was supplied but the font does not contain any glyph for this en-
coding, or the font is a standard CJK font.

> The encoding builtin was supplied, but the font does not contain any internal encod-
ing. This can only happen for TrueType fonts.

> A predefined CMap was supplied but doesn’t match the font.

optlist An option list with the following options:
> General option: errorpolicy (see Section 2.5, »Exception Handling«, page 27)
> Font loading options according to Table 4.3:

ascender, autocidfont, autosubsetting, capheight, descender, dropcorewidths, embedding,
encoding, fallbackfonts, fontname, fontstyle, initialsubset, keepfont, keepnative, linegap,
metadata, monospace, optimizeinvisible, readfeatures, readkerning, readshaping, replace-
mentchar, skipposttable, subsetlimit, subsetminsize, subsetting, unicodemap, vertical,
xheight

A font handle for later use with PDF_info_font(), text output functions, and the font text
appearance option. If the requested font/encoding combination cannot be loaded due
to a configuration problem (e.g. a font, metrics, or encoding file could not be found, or a

Table 4.1 Font-related keys for PDF_get/set_parameter()

key and explanation

Encoding, FontAFM, FontPFM, FontOutline, HostFont
The corresponding resource file line as it would appear for the respective category in a UPR file. Multiple calls add new
entries to the internal list. See also resourcefile in Table 2.3. Scope: any

52 Chapter 4: Font and Text Functions

mismatch was detected), an error code of -1 (in PHP: 0) will be returned or an exception
raised. The error behavior can be changed with the errorpolicy parameter or option.

If the function returns -1 (in PHP: 0) you can request the reason of the failure with
PDF_get_errmsg(). Otherwise, the value returned by this function can be used as font
handle when calling other font-related functions. The returned handle doesn’t have any
significance to the user other than serving as a font handle.

The returned font handle is valid until the font is closed with PDF_close_font(). Fin-
ishing the document with PDF_end_document() closes each open font handle unless the
option keepfont has been supplied in the respective PDF_load_font() call, or the font has
been loaded in object scope (i.e. outside of any document).

Details This function prepares a font for later use.
Repeated calls: when this function is called again with the same font name, the same

encoding, and the same options, the same font handle as in the first call will be re-
turned. Exceptions: if one of the following options has been specified in the first call,
but not in the subsequent call, the second font handle will nevertheless be identical to
the first font handle: embedding, readkerning, replacementchar, fallbackfonts, metadata.
Similarly, the initialsubset option will be ignored when comparing fonts, e.g. if the font
has first been loaded without initialsubset and is loaded again with initialsubset, a handle
to the first font will be returned and initialsubset will not have any effect.

Trying to load a font again will fail if embedding=false in the first call and embedding=
true in the second call. This situation usually points to a problem in the application.

Implicit font loading: in addition to explicitly loading a font with PDF_load_font(),
some API functions (e.g. PDF_add/create_textflow() or PDF_fill_textblock()) can implicitly
load a font for which the font name and encoding have been specified in an option list.
A new font handle will be created unless the font has already been loaded earlier.

Some text output features are not available for certain encodings (see Table 4.2).

Scope any

Params See Table 4.1.

Table 4.2 Availability of PDFlib features for various encodings

feature
unicode and
Unicode CMaps

8-bit
encodings

legacy CMaps,
cp936 etc. glyphid

Textflow yes yes yes1

1. This feature is not available for CJK fonts with keepnative=true.

yes

glyph replacement yes2

2. This feature is not available for standard CJK fonts with Unicode CMaps or keepnative=true.

yes yes1 –

fallback fonts yes2 yes yes1 –

shaping yes2 – yes1 yes

OpenType layout features yes – yes1 yes

4.1 Font Handling 53

Table 4.3 Font loading options for PDF_load_font() and implicit font loading

option description

ascender (Integer between -2048 and 2048) Force the corresponding typographic property to the specified value.
This will override any values found in the font, and is especially useful if the font does not contain any
such information (e.g. Type 3 fonts). Default: the value in the font if present, or an estimated value other-
wise (which can be queried with PDF_info_font())

autocidfont (Boolean) If true, TrueType fonts with 8-bit encodings which are not a subset of winansi regarding the
set of Unicode values and OpenType fonts without glyph names will automatically be stored as CID
fonts. This avoids problems with certain non-accessible glyphs outside winansi encoding. Default: true

auto-
subsetting

(Boolean) Dynamically decide whether or not the font will be subset, subject to the subsetlimit and
subsetminsize options and the actual usage of glyphs. This option will be ignored if the subsetting op-
tion has been supplied. Default: true

capheight (Integer between -2048 and 2048) See ascender above.

descender (Integer between -2048 and 2048) See ascender above.

dropcore-
widths

(Boolean; unsupported; will be forced to false in PDF/A and PDF/X mode) The widths for unembedded
core fonts will not be emitted in the generated PDF. The slightly reduces output file size, but may create
incorrect text rendering for certain characters. It is strongly recommended to keep this option at its de-
fault value. Default: false

embedding (Boolean; must be true for PDF/A and PDF/X; will be ignored for SING and Type 3 fonts which are always
embedded) Controls whether or not the font will be embedded. If a font is to be embedded, the font out-
line file must be available in addition to the metrics information (this is irrelevant for TrueType and
OpenType fonts), and the actual font outline definition will be included in the PDF output. If a font is not
embedded, only general information about the font is included in the PDF output.
Default: generally false, but true in certain situations involving TrueType and OpenType fonts with en-
codings which result in conversion to a CID font. Although PDFlib will automatically embed such fonts,
font embedding can be prevented by setting embedding to false. In this case the font must be installed
on the system where the PDF documents are viewed or printed.
The option embedding=false will be ignored if the same font has already been loaded earlier with
embedding=true. The embedding behavior for fonts with invisible text can be modified with the
optimizeinvisible option even for embedding=true.

54 Chapter 4: Font and Text Functions

encoding (String; required for implicit font loading except for PDF_fill_textblock() and if the text appearance op-
tion font is not specified) The encoding in which incoming text for this font will be expected (case is sig-
nificant):
Wide character encodings:
> unicode and the names of Unicode CMaps
> the name of a non-Unicode (legacy) CMap, or Identity-H or Identity-V for CID addressing
> glyphid: all glyphs in the font can be addressed by their font-specific ID

Byte- and multibyte encodings:
> one of the predefined 8-bit encodings winansi, macroman, macroman_apple, ebcdic, ebcdic_37,
pdfdoc, iso8859-X, or cpXXXX, and non-Unicode CMaps

> cp932, cp936, cp949, or cp950 for CJK codepages (on Windows the system code pages will be used; on
all other systems the corresponding CMaps must be available)

> host or auto for an automatically selected encoding;
> the name of a user-defined encoding loaded from file or defined via PDF_encoding_set_char();
> builtin to select the font’s internal encoding (mostly for symbolic fonts);
> an encoding name known to the operating system (not available on all platforms)

In non-Unicode language bindings, the textformat=auto behaves as follows (note that all UTF formats
are allowed for both cases):
> Wide character encodings: text in the loaded font will be treated with text format utf16 (for
encoding=glyphid surrogates will not be interpreted)

> Byte- and multibyte encodings: text in the loaded font will be treated with text format bytes.

PDF_load_font(): this option can alternatively be provided as function parameter.
PDF_fill_textblock(): this option is required unless the string in the text parameter is empty and the
defaulttext property is used, or the font option has been supplied.

fallbackfonts (List of option lists according to Table 4.4) Specify one or more fallback fonts for the loaded font. Each
fallback font must be defined by a font handle in the font suboption or suitable suboptions for implicit
font loading. Fallback fonts are not supported for some combinations of font type and encoding (see Ta-
ble 4.2).
If glyphcheck=replace and the text contains a character which is not part of the base font’s 8-bit encod-
ing, or the base font does not contain a glyph for the character, or glyph replacement is forced via the
forcechars suboption, PDFlib will search a glyph for this character in all specified fallback fonts in the
order in which they are listed. If a suitable glyph is found in one of the fallback fonts, the character will
be rendered with this glyph; otherwise the usual glyph replacement mechanism applies.

fontname (Name string; required for implicit font loading except for PDF_fill_textblock() if the text appearance op-
tion font is not specified) Real or alias name of the font (case is significant). This name will be used to
find the font data. On Windows, font style names can be appended to the font name after a comma (see
PDFlib Tutorial for details). If fontname starts with an ’@’ character the font will be applied in vertical
writing mode.
PDF_load_font(): can alternatively be provided as function parameter.

fontstyle (Keyword) Controls the creation of artificial font styles. Possible keywords are normal, bold, italic,
bolditalic. For TrueType (not TTC) and OpenType fonts which are not embedded the artificial font style
will be created by Acrobat, otherwise by PDFlib (using the same emboldening method as in the fakebold
parameter or option). In the latter case the slanting angle can be controlled with the italicangle pa-
rameter or option. If this option is applied to one of the core fonts, the appropriate bold, italic, or bold-
italic font variant will be chosen instead of creating an artificial font style. If no such font is available
(e.g. applying bold to Times-Bold), the option will be ignored. Default: normal

Table 4.3 Font loading options for PDF_load_font() and implicit font loading

option description

4.1 Font Handling 55

initialsubset (List of Unichars or Unicode ranges, or list of keywords; only relevant for embedding=true and sub-
setting=true) Specify the Unicode values for which glyphs will be included in the initial font subset.
This can be used to reduce the font size in PDF while still creating identical subsets, which in turn facili-
tates later optimizations when merging multiple documents. The Unicode values can be specified explic-
itly by Unichars or Unicode ranges, or implicitly by the name of an 8-bit encoding. Unichars and Unicode
ranges have precedence over encoding names. Supported keywords (default: empty):
empty The initial font subset will be empty; the contents of the subset will be determined by the

text in the document.
any 8-bit encoding name

All Unicode values found in the encoding will be included in the initial subset. Glyphs for
additional characters will be added to the subset automatically if required by the text in the
document or by the features and shaping text options.

keepfont (Boolean; not allowed for Type 3 fonts) If false the font will be deleted automatically in PDF_end_
document(). If true the font can also be used in subsequent documents until PDF_close_font() has been
called. Default: true if PDF_load_font() is called in object scope, otherwise false

keepnative (Boolean; only relevant for unembedded CJK fonts with a predefined CMap; will be ignored for other
fonts; will be forced to false if embedding=true) If false, text in this font will be converted to CID values
when creating PDF output. This does not affect the text supplied to API functions which must still match
the selected CMap (e.g. Shift-JIS). However, the font can be used in Textflow and all simple text output
functions (but not in form fields). Except for glyph replacement and fallback fonts which are unavailable,
a font with Unicode CMaps will behave as with encoding=unicode.
If true, text in this font will be written to the PDF output in its native format according to the specified
CMap. The font can be used in form fields and all simple text output functions, but not in Textflow.
Default: false for TrueType fonts or embedding=true, and true otherwise.

kerning Deprecated, use the readkerning option to control parsing of kerning data from the font.

linegap (Integer between -2048 and 2048) See ascender above.

metadata (Option list; PDF 1.4) Supply metadata for the font (see Section 14.2, »XMP Metadata«, page 227)

monospace (Integer between 1 and 2048; not for PDF/A) Forces all glyphs in the font to use the specified width (in the
font coordinate system: 1000 units equal the font size). For Type 3 fonts all glyph widths which are differ-
ent from 0 will be modified. This option is only recommended for standard CJK fonts, and not supported
for core fonts; it will be ignored if the font is embedded. Default: absent (metrics from the font will be
used)

optimize-
invisible

(Boolean; not for PDF/X-1/2/3) If true, fonts which are exclusively used for invisible text (i.e. text-
rendering=3) will not be embedded even if embedding=true. This may be useful to avoid font embed-
ding for PDF/A output with invisible text containing OCR results. Even if the font is not embedded, font
files must be configured as usual since PDFlib decides about non-embedding only at the end of the docu-
ment. Default: false

readfeatures (Boolean; only relevant for TrueType and OpenType fonts and encoding=unicode, glyphid, or Unicode
CMaps) Specifies whether the feature tables of a TrueType or OpenType font will be read from the font.
Actually applying OpenType features to text is controlled by the features text option (see Table 5.3). Set-
ting this option to false may speed up font loading if OpenType features are not required. Default: true

readkerning (Boolean) Controls whether or not kerning values will be read from the font. Actually applying the kern-
ing values to text is controlled by the kerning text option (see Table 5.3). Setting this option to false
may speed up font loading if kerning is not required. Default: true

readshaping (Boolean; only relevant for TrueType and OpenType fonts and the encodings unicode and glyphid)
Specifies whether the shaping tables of a TrueType or OpenType font will be read, which is a requirement
for complex script shaping. Actually shaping text is controlled by the shaping text option (see Table 5.3).
Setting this option to false can save memory if shaping is not required. Default: true

Table 4.3 Font loading options for PDF_load_font() and implicit font loading

option description

56 Chapter 4: Font and Text Functions

replace-
mentchar

(Unichar; only relevant if glyphcheck=replace; ignored for fonts loaded with a non-Unicode CMap or
glyphid encoding) Glyphs which are not available in the selected font and which cannot be substituted
by fallback fonts or typographically similar characters will be replaced with the specified Unicode value.
U+0000 can be used to specify the font’s »missing glyph« symbol; however, this is not allowed for the
PDF/A-1, PDF/X-4, and PDF/X-5 standards. For symbolic fonts loaded with encoding=builtin the code
must be supplied instead of the Unicode value.
Default: U+00A0 (NO-BREAK SPACE) if available in the font; otherwise U+0020 (SPACE) if available in
the font, otherwise U+0000 (but not for PDF/A-1, PDF/X-4, and PDF/X-5). These values will also be used if
the font doesn’t contain any glyph for the specified replacementchar.

skippost-
table

(Boolean; unsupported; only relevant for TrueType and OpenType fonts) Specifies whether the post table
of TrueType/OpenType fonts will be parsed to determine glyph names. Setting this option to true can
speed up font loading, but glyph name references to glyphs with non-standard names will not work for
the font (this mainly affects symbolic fonts, but usually not text fonts). Default: false

subsetlimit (Float or percentage; will be ignored for Type 3 fonts) Automatic font subsetting will be disabled if the
percentage of glyphs used in the document related to the total number of glyphs in the font exceeds the
provided percentage. Default: 100%

subsetminsize (Float; will be ignored for Type 3 fonts) Automatic font subsetting will be disabled if the size of the origi-
nal font file is less than the provided value in KB. Default: 50

subsetting (Boolean) Controls whether or not the font will be subset. Subsetting for Type 3 fonts requires a two-pass
definition of the font (see PDFlib Tutorial), and the subsetting option must be provided in the first call
to PDF_load_font(). Default: false

unicodemap (Boolean; must not be set to false for pdfa=PDF/A-1a:2005) Controls the generation of ToUnicode
CMaps. This option will be ignored in Tagged PDF mode. Default: true

vertical (Boolean; only for TrueType and OpenType fonts; will be ignored for predefined CMaps, and will be
forced to true if the font name starts with @) If true, the font will be prepared for vertical writing mode.

xheight (Integer between -2048 and 2048) See ascender above.

Table 4.3 Font loading options for PDF_load_font() and implicit font loading

option description

4.1 Font Handling 57

C++ Java void close_font(int font)
Perl PHP close_font(int font)

C void PDF_close_font(PDF *p, int font)

Close an open font handle which has not yet been used in the document.

font A font handle returned by PDF_load_font() which has not already been used in the
document or closed.

Details This function closes a font handle, and releases all resources related to the font. The font
handle must not be used after this call. Usually fonts will automatically be closed at the
end of a document. However, closing a font is useful in the following situations:

> After querying font properties with PDF_info_font() it was determined that the font
will not be used in the current PDF document.

> A font was retained across document boundaries (with the keepfont option of PDF_
load_font()), but now it should be disposed because it is no longer required.

If the font has already been used in the current document it must not be closed.

Scope any

Table 4.4 Suboptions for the fallbackfonts option of PDF_load_font()

option description

font loading
options

If the font is specified implicitly (i.e. via the fontname and encoding options, as opposed to the font op-
tion), all font loading options according to Table 4.3 except fallbackfonts can be supplied as subop-
tions. Fonts loaded with a non-Unicode CMap can not be used as fallback fonts.

font (Font handle) A font handle returned by a call to PDF_load_font() without the fallbackfonts option. If
this option is supplied, all font loading options (including fontname and encoding) will be ignored. The
font must not be a standard CJK font with embedding=false and keepnative=true.

fontsize (Float or percentage) Size of the fallback font in user coordinates or as a percentage of the current font
size. This option can be used to adjust the size of the fallback font if the design size of the fallback font
doesn’t match that of the base font. Default: 100%

forcechars (List of Unichars or Unicode ranges, or single keyword) Specify characters which will always be rendered
with glyphs from the fallback font (regardless of the glyphcheck setting). The fallback font must contain
glyphs for the specified characters (if individual characters are specified), or at least glyphs for the first
and last characters in the specified Unicode range. Unicode values can be specified for this option even if
an 8-bit encoding has been specified for the base font.
The following keyword can be supplied:
gaiji The fallback font must refer to a SING font, and this keyword can be used as a shortcut for the

Unicode value of the main glyph of the SING font.

textrise (Float or percentage) Text rise value (see Table 5.2). Percentages are based on the size specified for the
fallback font (i.e. after applying the fontsize suboption if present). This option can be used to adjust the
position of text in the fallback font if the design size of the fallback font doesn’t match that of the base
font. Default: 0

58 Chapter 4: Font and Text Functions

C++ Java double info_font(int font, String keyword, String optlist)
Perl PHP float info_font(int font, string keyword, string optlist)

C double PDF_info_font(PDF *p, int font, const char *keyword, const char *optlist)

Query detailed information about a loaded font.

font A font handle returned by PDF_load_font(), or -1 (in PHP: 0) for some keywords.

keyword A keyword specifying the requested information according to Table 4.6. The
following keywords can be used:

> Keywords for glyph mapping: cid, code, glyphid, glyphname, unicode
> Font metrics: ascender, capheight, descender, italicangle, linegap, xheight
> Font file, name, and type: cidfont, familyname, fontfile, fontname, fonttype, metricsfile,

outlineformat, singfont, standardfont, supplement
> Technical font information: feature, featurelist, fontstyle, hostfont, kerningpairs,

monospace, numglyphs, shapingsupport, vertical
> Font/encoding relationship: codepage, codepagelist, encoding, fallbackfont, keepnative,

maxcode, numcids, numusableglyphs, predefcmap, replacementchar, symbolfont,
unicodefont, unmappedglyphs

> Results of font processing for the current document: numusedglyphs, usedglyph,
willembed, willsubset

optlist An option list which additionally qualifies the selected keyword. The following
options can be used:

> Keyword-specific options which are detailed along with the corresponding keyword
in Table 4.6.

> Mapping options according to Table 4.5 for specifying glyphs: cid, code, glyphid,
glyphname, unicode. These options define the source value for the mapping keywords
cid, code, glyphid, glyphname, and unicode. The mapping options are mutually exclu-
sive. The code, glyphname, and unicode options can be combined with the encoding
option.

Returns The value of some font or encoding property as requested by keyword and in some cases
auxiliary options. For unspecified combinations of keyword and options -1 will be re-
turned. Some keywords will return a string indirectly by returning its string index. The
corresponding string can be retrieved via PDF_get_parameter() and the string parameter
(see Table 2.3).

Table 4.5 Options for specifying glyphs in PDF_info_font()

option description

cid (Number) CID value of the glyph; only reasonable if cidfont=1

code (Number in the range 0...255; only for fonts with 8-bit encoding) Encoding slot

glyphid (Number in the range 0...65535) Internal glyph id

glyphname (String) Name of a glyph; not reasonable if cidfont=1

unicode (Unichar) Unicode character

4.1 Font Handling 59

Details This function supplies information from the following distinct sources:
> If a valid font handle is supplied it returns information gathered from the font. Ex-

amples: font metrics, name, or type; unicode value for a particular glyphid.
> If font = -1 (in PHP: 0) and the encoding option is supplied it returns information

about this encoding. Example: unicode value for a code in the encoding.
> If font = -1 (in PHP: 0) and the encoding option is not supplied it returns information

gathered from PDFlib’s internal tables. Example: unicode value for a particular
glyphname.

Scope any except object

Table 4.6 Keywords and options for PDF_info_font()

keyword explanation and options

ascender Metrics value for the ascender. Supported options (default: fontsize=1000):
faked (Boolean) 1 if the value had to be estimated because it was not available in the font or metrics

file, otherwise 0
fontsize (Fontsize) Value will be scaled to the specified font size

capheight Metrics value for the capheight. See ascender.

cid CID for the specified glyph, or -1 if not available. Supported options: cid, glyphid, unicode

cidfont 1 if the font will be embedded as a CID font, otherwise 0

code Number in the range 0...255 specifying an encoding slot or -1 if no such slot was found in the font or in
the encoding (if the encoding option was supplied and font=-1 (in PHP: 0)). Supported options are the
mapping options code, glyphid, glyphname, unicode plus the following:
encoding (String) Name of an 8-bit encoding

codepage Check whether the font supports a specific codepage. The information will be taken from the OS/2 table
of TrueType/OpenType fonts if available. Supported option:
name (String; required) Specifies the name of a codepage in the form cpXXXX, where XXXX indicates

the decimal number of a codepage (e.g. cp437, cp1252)
The following return values indicate whether the specified codepage is supported by the font:
-1 Unknown because the font is not a TrueType or OpenType font.
0 Font does not support the specified codepage.
1 Font supports the specified codepage.

codepagelist String index of a space-separated list of all codepages supported by the font (in the form cpXXXX), or -1 if
the codepage list is unknown because the font is not a TrueType or OpenType font (see codepage).

descender Metrics value for the descender. See ascender.

encoding String index of the name of the font’s encoding or CMap. Supported options (default: actual):
api (Boolean) If true, the encoding name as specified in the API
actual (Boolean) If true, the name of the actual encoding used for the font

fallbackfont Handle of the base or fallback font which will be used to render the character specified in the unicode
option. This can be used to check which font in the chain of fallback fonts actually provides the glyph
used for the specified character. If the character cannot be rendered with any of the base or fallback
fonts, -1 will be returned. Supported option: unicode

familyname String index of the name of the font family, or -1 if unavailable

60 Chapter 4: Font and Text Functions

feature Check whether the font contains a specific OpenType feature table which is supported by PDFlib.
Supported options:
language (String; only if script is supplied) Specifies the language name.
name (String; required) Specifies the four-character name of an OpenType feature table, e.g. liga

(standard ligatures), ital (italic forms in CJK fonts), vert (vertical writing). Feature kern can
not be queried.

script (String) Specifies the script name.
The following return values indicate whether the specified OpenType feature table is present in the font
and supported by PDFlib:
-1 No feature tables available in the font.
0 The feature table is not available or not supported by PDFlib.
1 The feature table is available for the specified script and language and is supported by PDFlib.

featurelist String index of a space-separated list of all features which are available in the font and supported by
PDFlib, or -1 if no feature tables are available.

fontfile String index of the path name for the font outline file, or -1 if unavailable

fontname String index of the font name, or -1 if unavailable. Supported options (default: acrobat):
api (Boolean) If true, the font name as specified in the API
full (Boolean) If true, the /FontName entry in the PDF font descriptor
acrobat (Boolean) If true, the font name as displayed in Acrobat

fontstyle String index for the value of the fontstyle option (normal, bold, italic, or bolditalic). Supported op-
tion:
faked 1 if fontstyle will be realized by PDFlib, 0 if fontstyle will be realized by Acrobat

fonttype String index of the font type, or -1 if unavailable. Known font types are Multiple Master, OpenType,
TrueType, TrueType (CID), Type 1, Type 1 (CID), Type 1 CFF, Type 1 CFF (CID), Type 3

glyphid Number in the range 0...65535 specifying the font-internal id (GID) of the specified glyph, or -1 if no such
glyph was found. Supported options are the mapping options cid, code, glyphid, glyphname, unicode.

glyphname String index of the name of the specified glyph, or -1 if no such glyph was found in the font or in the spec-
ified encoding (if the encoding option was supplied and font=-1 (in PHP: 0)). Supported options are the
mapping options code, glyphid, glyphname, unicode plus the following:
encoding (String) Name of an 8-bit encoding

hostfont 1 if the font is a host font, 0 otherwise

italicangle Italic angle of the font (ItalicAngle in the PDF font descriptor)

keepnative The resulting value of the keepnative option.

kerningpairs Number of kerning pairs in the font

linegap Metrics value for the linegap. See ascender.

maingid Glyph ID of the main glyph (member mainGID of SING table).

maxcode Highest code value for the font’s encoding, in particular: 0xFF for single-byte encodings, numglyphs-1 for
encoding=glyphid, and the highest Unicode value in the encoding otherwise.

metricsfile String index of the path name for the font metrics file (AFM or PFM), or -1 if unavailable

monospace The value of the monospace option, or 0 if it hasn’t been supplied.

numcids Number of CIDs if the font uses a standard CMap, otherwise -1

Table 4.6 Keywords and options for PDF_info_font()

keyword explanation and options

4.1 Font Handling 61

numglyphs Number of glyphs in the font (including the .notdef glyph). Since GIDs start at 0 the highest possible GID
value is one smaller than numglyphs.

numusable-
glyphs

Number of glyphs in the font which can be reached by the encoding supplied in PDF_load_font()

numused-
glyphs

Number of glyphs used in generated text so far.

outlineformat Font format; one of PFA, PFB, LWFN, TTF, OTF, TTC

predefcmap String index of the name of a predefined CMap which was specified as encoding for the font, or -1 if un-
available.

replace-
mentchar

Unicode value of the character specified in the replacementchar option. For symbolic fonts loaded with
encoding=builtin the code will be returned instead of the Unicode value.

shaping-
support

1 if the font supports shaping and the readshaping option was supplied in PDF_load_font(), otherwise 0

singfont 1 if the font is a SING (gaiji) font, otherwise 0

standard-
font

1 if the font is a PDF core font or a standard CJK font, otherwise 0

supplement Supplement number of the character collection for fonts with a standard CJK CMap, otherwise 0

symbolfont 1 if the font is a symbolic font, 0 otherwise (symbol flag in the PDF font descriptor)

unicode Unicode UTF-32 value for the specified glyph, or -1 if no Unicode value was found in the font or encoding
(if the encoding option was supplied and font=-1 (in PHP: 0)). Supported options are the mapping op-
tions cid, code, glyphid, glyphname, unicode plus the following:
encoding (String) Name of an 8-bit encoding

unicodefont 1 if the font/encoding combination provides Unicode mapping for the glyphs, otherwise 0. CJK fonts with
non-Unicode CMaps and keepnative=true will return 0.

unmapped-
glyphs

Number of glyphs in the font which are mapped to Unicode PUA values, regardless of whether the PUA
value was already present in the font or has been assigned by PDFlib.

usedglyph 1 if the specified glyph ID was used in the text, otherwise 0. Supported option: glyphid

vertical 1 if the font is for vertical writing mode, otherwise 0

weight Font weight in the range 100...900; 400=normal, 700=bold

willembed 1 if the font will be embedded (via the embedding option or forced font embedding), otherwise 0

willsubset 1 if a font subset will be created (if autosubsetting=true, the subsetlimit must be reached for subset-
ting to be activated), otherwise 0

xheight Metrics value for the xheight. See ascender.

Table 4.6 Keywords and options for PDF_info_font()

keyword explanation and options

62 Chapter 4: Font and Text Functions

4.2 Type 3 Font Definition
Cookbook A full code sample can be found in the Cookbook topic fonts/starter_type3font.

C++ Java void begin_font(String fontname,
double a, double b, double c, double d, double e, double f, String optlist)

Perl PHP begin_font(string fontname, float a, float b, float c, float d, float e, float f, string optlist)
C void PDF_begin_font(PDF *p, const char *fontname, int reserved,

double a, double b, double c, double d, double e, double f, const char *optlist)

Start a Type 3 font definition.

fontname (Name string) The name under which the font will be registered, and can
later be used with PDF_load_font().

reserved (C language binding only) Reserved, must be 0.

a, b, c, d, e, f (Will be ignored in the second pass of the font definition for Type 3 font
subsets) The elements of the font matrix. This matrix defines the coordinate system in
which the glyphs will be drawn. The six values make up a matrix in the same way as in
PostScript and PDF (see references). In order to avoid degenerate transformations, a*d
must not be equal to b*c. A typical font matrix for a 1000 x 1000 coordinate system is
[0.001, 0, 0, 0.001, 0, 0].

optlist (Ignored in the second pass for subset fonts) An option list according to Table
4.7. The following options can be used: colorized, familyname, stretch, weight, widthsonly

Details This function will reset all text, graphics, and color state parameters to their defaults.
The font may contain an arbitrary number of glyphs. The font can be used until the end
of the current document scope.

Scope document; this function starts font scope, and must always be paired with a matching
PDF_end_font() call. For the second pass of subsetted fonts only document scope is al-
lowed.

Table 4.7 Options for PDF_begin_font()

option description

colorized (Boolean) If true, the font may explicitly specify the color of individual characters. If false, all characters
will be drawn with the current color (at the time the font is used, not when it is defined), and the glyph
definitions must not contain any color operators or images other than masks. Default: false

familyname1 (String; PDF 1.5) Name of the font family

stretch1 (Keyword; PDF 1.5) The font stretch value. Keywords: ultracondensed, extracondensed, condensed,
semicondensed, normal, semiexpanded, expanded, extraexpanded, ultraexpanded. Default: normal

weight1 (Integer or keyword; PDF 1.5) The font weight. Possible numbers or equivalent keywords are 100=thin,
200=extralight, 300=light, 400=normal, 500=medium, 600=semibold, 700=bold, 800=extrabold,
900=black. Default: normal

http://www.pdflib.com/pdflib-cookbook/fonts-and-encodings/starter-type3font

4.2 Type 3 Font Definition 63

C++ Java void end_font()
Perl PHP end_font()

C void PDF_end_font(PDF *p)

Terminate a Type 3 font definition.

Scope font; this function terminates font scope, and must always be paired with a matching
PDF_begin_font() call.

C++ Java void begin_glyph(String glyphname, double wx, double llx, double lly, double urx, double ury)
Perl PHP begin_glyph(string glyphname, float wx, float llx, float lly, float urx, float ury)

C void PDF_begin_glyph(PDF *p,
const char *glyphname, double wx, double llx, double lly, double urx, double ury)

Start a glyph definition for a Type 3 font.

glyphname The name of the glyph. This name must be used in any encoding which
will be used with the font. It is strongly recommended to use glyph names according to
the Adobe Glyph List (AGL). Glyph names within a font must be unique.

wx (Will be ignored in the second pass of the font definition for Type 3 font subsets)
The width of the glyph in the glyph coordinate system, as specified by the font’s matrix.

llx, lly, urx, ury (Will be ignored in the second pass of the font definition for Type 3
font subsets) If the font’s colorized option is false (which is default), the coordinates of
the lower left and upper right corners of the glyph’s bounding box. The bounding box
values must be correct in order to avoid problems with PostScript printing. If the font’s
colorized option is true, all four values must be 0.

Details The glyphs in a font can be defined using text, graphics, and image functions. Images,
however, can only be used if the font’s colorized option is true, or the image has been
opened with the mask option. It is strongly suggested to use the inline image feature for
defining bitmaps in Type 3 fonts.

Since the complete graphics state of the surrounding page will be inherited for the
glyph definition when the colorized option is true, the glyph definition should explicitly
set any aspect of the graphics state which is relevant for the glyph definition (e.g.
linewidth).

PDFlib will determine the Unicode value for each glyph by searching the glyph name
in its internal list. If the glyph name isn’t found, a PUA Unicode value will be assigned to
the glyph name (starting with U+E000). This value can be queried with PDF_info_font().

widthsonly (Boolean) If true (pass 1 for Type 3 font subsetting), only the metrics of the font and glyphs will be de-
fined. No other API functions should be called between PDF_begin_glyph() and PDF_end_glyph(). If oth-
er functions are called nevertheless, they will not have any effect on the PDF output, and will not raise
any exception.
If widthsonly=false (pass 2 for Type 3 font subsetting) the actual glyph outlines can be defined. This
two-pass definition enables PDFlib to perform subsetting on Type 3 fonts. Default: false

1. These options are strongly recommended when creating Tagged PDF, and will be ignored otherwise.

Table 4.7 Options for PDF_begin_font()

option description

64 Chapter 4: Font and Text Functions

Scope font; this function starts glyph scope, and must always be paired with a matching PDF_
end_glyph() call. If widthsonly=true in PDF_begin_font() all API function calls between
PDF_begin_glyph() and PDF_end_glyph() will be ignored.

C++ Java void end_glyph()
Perl PHP end_glyph()

C void PDF_end_glyph(PDF *p)

Terminate a glyph definition for a Type 3 font.

Scope glyph; this function changes from glyph scope to font scope, and must always be paired
with a matching PDF_begin_glyph() call.

4.3 Encoding Definition 65

4.3 Encoding Definition

C++ Java void encoding_set_char(String encoding, int slot, String glyphname, int uv)
Perl PHP encoding_set_char(string encoding, int slot, string glyphname, int uv)

C void PDF_encoding_set_char(PDF *p, const char *encoding, int slot, const char *glyphname, int uv)

Add a glyph name and/or Unicode value to a custom 8-bit encoding.

encoding The name of the encoding. This is the name which must be used with PDF_
load_font(). The encoding name must be different from any built-in encoding and all
previously used encodings.

slot The position of the character to be defined, with 0 <= slot <= 255. A particular slot
must only be filled once within a given encoding.

glyphname The character’s name.

uv The character’s Unicode value.

Details This function is only required for specialized applications which must work with non-
standard 8-bit encodings. It can be called multiply to define up to 256 character slots in
an encoding. More characters may be added to a particular encoding until it has been
used for the first time; otherwise an exception will be raised. Not all code points must be
specified; undefined slots will be filled with .notdef and U+0000.

There are three possible combinations of glyph name and Unicode value:
> glyphname supplied, uv=0: this parallels an encoding file without Unicode values;
> uv supplied, but no glyphname supplied: this parallels a codepage file;
> glyphname and uv supplied: this parallels an encoding file with Unicode values.

It is strongly recommended to supply each glyph name/Unicode value only once in an
encoding (with the exception of .notdef/U+0000). If slot 0 is used, it should contain the
.notdef character.

If the encoding is intended for use with Type 3 fonts it is recommended to specify
the encoding slots only with glyph names.

The defined encoding can be used until the end of the current object scope.

Scope any

66 Chapter 4: Font and Text Functions

4.4 Simple Text Output
Note All text supplied to the functions in this section must match the encoding selected with PDF_

load_font() and the specified textformat. Due to restrictions in Acrobat, text strings must not
exceed 32 KB in length.

Table 4.8 and Table 4.9 lists relevant parameters and values for this section (see Section
2.2, »Parameter and Option Handling«, page 19).

Table 4.8 Text-related keys for PDF_get/set_parameter()

key explanation

autospace If true and the current font contains a glyph for U+0020, PDFlib will automatically add a space charac-
ter after each text output generated with a show operation. This may be useful for generating Tagged
PDF. Note that adding spaces changes the current text position after the show operation. Default: false.
Scope: any

charref See Table 5.1. Unlike the option with the same name this parameter also affects hypertext strings and
name strings. Default: false. Scope: any

decoration-
above

See Table 5.2. Default: false. Scope: any

escape-
sequence

See Table 5.1. Unlike the option with the same name this parameter also affects hypertext strings and
name strings. For example, Windows UNC file names must start with four backslash characters if
escapesequence=true. Warning: this parameter also affects environment variables (e.g. PDFLIB-
LICENSEFILE). Since path names in environment variables on Windows usually contain backslash char-
acters this parameter should better be avoided on Windows system; supply the option of the same name
to specific functions instead. Default: false. Scope: any

fakebold See Table 5.2. Default: false. Scope: page, pattern, template, glyph, document

glyphcheck See Table 5.1. Default: replace. Scope: any

kerning See Table 5.2. Default: true. Scope: any

textformat (Only for non Unicode-aware language bindings) The format in which the text output functions will ex-
pect the client-supplied strings. Supported keywords are bytes, utf8, ebcdicutf8 (only on iSeries and
zSeries), utf16, utf16le, utf16be, and auto. Default: auto. Scope: any

underline
overline
strikeout

See Table 5.2. Default: false. Scope: page, pattern, template, glyph, document

Table 4.9 Text-related keys for PDF_get/set_value()

key explanation

charspacing See Table 5.2. Only float values are supported. Scope: page, pattern, template, glyph, document

font1 Identifier of the current font which has been set with PDF_setfont(), or -1 (in PHP: 0) if no font is set.
Scope: page, pattern, template, glyph

fontsize1 Size of the current font which must have been previously set with PDF_setfont(). Scope: page, pattern,
template, glyph

horizscaling See Table 5.2. Only float values are supported. Scope: page, pattern, template, glyph, document

italicangle See Table 5.2. Scope: page, pattern, template, glyph, document

4.4 Simple Text Output 67

C++ Java void PDF_setfont(int font, double fontsize)
Perl PHP setfont(int font, float fontsize)

C void PDF_setfont(PDF *p, int font, double fontsize)

Set the current font in the specified size.

font A font handle returned by PDF_load_font().

fontsize Size of the font, measured in units of the current user coordinate system. The
font size must not be 0; a negative font size will result in mirrored text relative to the
current transformation matrix.

Details This function sets the font which will be used by low-level text output functions, e.g.
PDF_show(). The font must be set on each page before calling any of the simple text out-
put functions. Font settings will not be retained across pages. The current font can be
changed an arbitrary number of times per page.

Scope page, pattern, template, glyph

Params This function automatically sets the leading parameter to fontsize.

C++ Java void set_text_pos(double x, double y)
Perl PHP set_text_pos(float x, float y)

C void PDF_set_text_pos(PDF *p, double x, double y)

Set the position for simple text output on the page.

x, y The current text position to be set.

leading Leading, which is the distance between baselines of adjacent lines of text. The leading is used for PDF_
continue_text(). It is set to the value of the font size when a new font is selected using PDF_setfont().
Setting the leading equal to the font size results in dense line spacing (leading = 0 will result in overprint-
ing lines). However, ascenders and descenders of adjacent lines will generally not overlap. Scope: page,
pattern, template, glyph

strokewidth See Table 5.2. Only float values are supported. The value 0 designates a built-in default. Default: 0

textrendering See Table 5.2. Scope: page, pattern, template, glyph, document

textrise See Table 5.2. Only float values are supported. Scope: page, pattern, template, glyph

textx1

texty1
The x or y coordinate of the current text position. Default: 0. Scope: page, pattern, template, glyph

underline-
position

See Table 5.2. Only float values specifying a fraction of the font size are supported. The value 1000000
can be supplied to set a font-specific value which will be retrieved from the font metrics or outline file.
Default: 1000000

underline-
width

See Table 5.2. Only float values are supported. The value 0 uses a font-specific value from the font metrics
or outline file if available, otherwise 5% of the fontsize. Default: 0

wordspacing See Table 5.2. Only float values are supported. Scope: page, pattern, template, glyph, document

1. Only for PDF_get_value()

Table 4.9 Text-related keys for PDF_get/set_value()

key explanation

68 Chapter 4: Font and Text Functions

Details The text position is set to the default value of (0, 0) at the beginning of each page. The
current point for graphics output and the current text position are maintained sepa-
rately.

Scope page, pattern, template, glyph

Params See Table 4.8 and Table 4.9.

C++ Java void show(String text)
Perl PHP show(string text)

C void PDF_show(PDF *p, const char *text)
C void PDF_show2(PDF *p, const char *text, int len)

Print text in the current font and size at the current text position.

text (Content string) The text to be printed. In C text must not contain null characters
when using PDF_show(), since it is assumed to be null-terminated; use PDF_show2() for
strings which may contain null characters.

len (Only for PDF_show2()) Length of text (in bytes) for UTF-16 strings. If len = 0 a null-
terminated string must be provided.

Details The font must have been set before with PDF_setfont(). The current text position is
moved to the end of the printed text.

Scope page, pattern, template, glyph

Params See Table 4.8 and Table 4.9.

Bindings PDF_show2() is only available in C since in all other bindings arbitrary string contents
can be supplied with PDF_show().

C++ Java void xshow(String text, const double *xadvancelist)
C void PDF_xshow(PDF *p, const char *text, int len, const double *xadvancelist)

Print text in the current font and size, using individual horizontal positions.

text (Content string) The text to be printed.

len (Only for the C language binding) Length of text (in bytes) for UTF-16 strings. If
len = 0 a null-terminated string must be provided.

xadvancelist An array of x advance values for the glyphs in text. Each value specifies
the relative horizontal displacement (in user coordinates) after a glyph has been placed.
The array length must be equal to the number of glyphs in text (not necessarily equal to
len, which is the the number of bytes!).

Details The font must have been set before with PDF_setfont().

Scope page, pattern, template, glyph

Params See Table 4.8 and Table 4.9.

Bindings Only available in the C and C++ language bindings. Other bindings can use the
xadvancelist option in PDF_fit_textline() to achieve the same functionality.

4.4 Simple Text Output 69

C++ Java void show_xy(String text, double x, double y)
Perl PHP show_xy(string text, float x, float y)

C void PDF_show_xy(PDF *p, const char *text, double x, double y)
C void PDF_show_xy2(PDF *p, const char *text, int len, double x, double y)

Print text in the current font at the specified position.

text (Content string) The text to be printed. In C text must not contain null characters
when using PDF_show_xy(), since it is assumed to be null-terminated; use PDF_show_
xy2() for strings which may contain null characters.

x, y The position in the user coordinate system where the text will be printed.

len (Only for PDF_show_xy2()) Length of text (in bytes) for UTF-16 strings. If len = 0 a
null-terminated string must be provided.

Details The font must have been set before with PDF_setfont(). The current text position is
moved to the end of the printed text.

Scope page, pattern, template, glyph

Params See Table 4.8 and Table 4.9.

Bindings PDF_show_xy2() is only available in C since in all other bindings arbitrary string con-
tents can be supplied with PDF_show_xy().

C++ Java void continue_text(String text)
Perl PHP continue_text(string text)

C void PDF_continue_text(PDF *p, const char *text)
C void PDF_continue_text2(PDF *p, const char *text, int len)

Print text at the next line.

text (Content string) The text to be printed. If this is an empty string, the text position
will be moved to the next line anyway. In C text must not contain null characters when
using PDF_continue_text(), since it is assumed to be null-terminated; use PDF_continue_
text2() for strings which may contain null characters.

len (Only for PDF_continue_text2()) Length of text (in bytes) for UTF-16 strings. If
len = 0 a null-terminated string must be provided as in PDF_continue_text().

Details The positioning of text (x and y position) and the spacing between lines is determined
by the leading parameter and the most recent call to PDF_show_xy() or PDF_set_text_
pos(). The current point will be moved to the end of the printed text; the x position for
subsequent calls of this function will not be changed.

Scope page, pattern, template, glyph; this function should not be used in vertical writing mode.

Params See Table 4.8 and Table 4.9.

Bindings PDF_continue_text2() is only available in C since in all other bindings arbitrary string
contents can be supplied with PDF_continue_text().

70 Chapter 4: Font and Text Functions

C++ Java double stringwidth(String text, int font, double fontsize)
Perl PHP float stringwidth(string text, int font, float fontsize)

C double PDF_stringwidth(PDF *p, const char *text, int font, double fontsize)
C double PDF_stringwidth2(PDF *p, const char *text, int len, int font, double fontsize)

Calculate the width of text in an arbitrary font.

text (Content string) The text for which the width will be queried. In C text must not
contain null characters when using PDF_stringwidth(), since it is assumed to be null-ter-
minated; use PDF_stringwidth2() for strings which may contain null characters.

len (Only for PDF_stringwidth2()) Length of text (in bytes) for UTF-16 strings. If len = 0 a
null-terminated string must be provided.

font A font handle returned by PDF_load_font().

fontsize Size of the font, measured in units of the user coordinate system (see PDF_
setfont()).

Returns The width of text in a font which has been selected with PDF_load_font() and the sup-
plied fontsize. The returned width value may be negative (e.g. when negative horizontal
scaling has been set). In vertical writing mode the width of the widest glyph will be re-
turned (use PDF_info_textline() to determine the actual height of the text).
If character spacing has been specified, it will be applied after the last glyph as well (this
behavior differs from PDF_info_textline()).

Details The width calculation takes the current values of the following text parameters into ac-
count: horizscaling, kerning, charspacing, and wordspacing.

Scope font, page, pattern, template, path, glyph, document

Params See Table 4.8 and Table 4.9.

Bindings PDF_stringwidth2() is only available in C since in all other bindings arbitrary string con-
tents can be supplied with PDF_stringwidth().

4.5 Unicode Conversion Functions 71

4.5 Unicode Conversion Functions
These functions may be useful for Unicode string conversion. They are provided for the
benefit of users working in environments that do not provide such converters.

Bindings The Unicode conversion functions are not available in Unicode-aware language bind-
ings (except C++).

C binding: the strings returned by the functions in this chapter will be stored in a ring
buffer with up to 10 entries. If more than 10 strings are converted, the buffers will be re-
used, which means that clients must copy the strings if they want to access more than
10 strings in parallel. For example, up to 10 calls to this function can be used as parame-
ters for a printf() statement since the return strings are guaranteed to be independent if
no more than 10 strings are used at the same time.

C++ string utf16_to_utf8(string utf16string)
Perl PHP string utf16_to_utf8(string utf16string)

C const char *PDF_utf16_to_utf8(PDF *p, const char *utf16string, int len, int *size)

Convert a string from UTF-16 format to UTF-8.

utf16string The string to be converted. A Byte Order Mark (BOM) in the string will be
interpreted. If it is missing the platform’s native byte ordering is assumed.

len (C language binding only) Length of utf16string in bytes.

size (C language binding only) C-style pointer to a memory location where the length
of the returned string (in bytes) will be stored. If the pointer is NULL it will be ignored.

Returns The converted UTF-8 string. The generated UTF-8 string will start with the UTF-8 BOM
(\xEF\xBB\xBF) unless it contains only characters in the range < U+007F. On EBCDIC plat-
forms the conversion result including the BOM will finally be converted to EBCDIC.

Scope any

Bindings This function is not available in Unicode-capable language bindings.

C++ string utf8_to_utf16(string utf8string, string ordering)
Perl PHP string utf8_to_utf16(string utf8string, string ordering)

C const char *PDF_utf8_to_utf16(PDF *p, const char *utf8string, const char *ordering, int *size)

Convert a string from UTF-8 format to UTF-16.

utf8string The string to be converted, which must contain a valid UTF-8 sequence (on
EBCDIC platforms it must be encoded in EBCDIC). If a Byte Order Mark (BOM) is present,
it will be removed.

ordering Specifies the byte ordering of the result string:
> utf16 or an empty string: the converted string will not have any BOM, and will be

stored in the platform’s native byte order.
> utf16le: the converted string will be formatted in little endian format, and will be pre-

fixed with the little-endian BOM (\xFF\xFE).

72 Chapter 4: Font and Text Functions

> utf16be: the converted string will be formatted in big endian format, and will be pre-
fixed with the big-endian BOM (\xFE\xFF).

size (C language binding only) C-style pointer to a memory location where the length
of the returned string (in bytes) will be stored.

Returns The converted UTF-16 string.

Scope any

Bindings This function is not available in Unicode-capable language bindings.

C++ string utf32_to_utf16(string utf32string, string ordering)
Perl PHP string utf32_to_utf16(string utf32string, string ordering)

C const char *PDF_utf32_to_utf16(PDF *p, const char *utf32string, int len, const char *ordering, int *size)

Convert a string from UTF-32 format to UTF-16.

utf32string The string to be converted, which must contain a valid UTF-32 sequence. If
a Byte Order Mark (BOM) is present, it will be interpreted

len (C language binding only) Length of utf32string in bytes.

ordering Specifies the byte ordering of the result string:
> utf16 or an empty string: the converted string will not have any BOM, and will be

stored in the platform’s native byte order.
> utf16le: the converted string will be formatted in little endian format, and will be pre-

fixed with the little-endian BOM (\xFF\xFE).
> utf16be: the converted string will be formatted in big endian format, and will be pre-

fixed with the big-endian BOM (\xFE\xFF).

size (C language binding only) C-style pointer to a memory location where the length
of the returned string (in bytes) will be stored.

Returns The converted UTF-16 string.

Scope any

Bindings This function is not available in Unicode-capable language bindings.

C++ string utf8_to_utf32(string utf8string, string ordering)
Perl PHP string utf8_to_utf32(string utf8string, string ordering)

C const char *PDF_utf8_to_utf32(PDF *p, const char *utf8string, const char *ordering, int *size)

Convert a string from UTF-8 format to UTF-32.

utf8string The string to be converted, which must contain a valid UTF-8 sequence (on
EBCDIC platforms it must be encoded in EBCDIC). If a Byte Order Mark (BOM) is present,
it will be removed.

ordering Reserved, must be empty.

size (C language binding only) C-style pointer to a memory location where the length
of the returned string (in bytes) will be stored.

4.5 Unicode Conversion Functions 73

Returns The converted UTF-32 string in the platform’s native byte order.

Scope any

Bindings This function is not available in Unicode-capable language bindings.

C++ string utf32_to_utf8(string utf32string)
Perl PHP string utf32_to_utf8(string utf32string)

C const char *PDF_utf32_to_utf8(PDF *p, const char *utf32string, int len, int *size)

Convert a string from UTF-32 format to UTF-8.

utf32string The string to be converted, which must contain a valid UTF-32 sequence. If
a Byte Order Mark (BOM) is present, it will be interpreted

len (C language binding only) Length of utf32string in bytes.

size (C language binding only) C-style pointer to a memory location where the length
of the returned string (in bytes) will be stored.

Returns The converted UTF-8 string. The generated UTF-8 string will start with the UTF-8 BOM
(\xEF\xBB\xBF) unless it contains only characters in the range < U+007F. On EBCDIC plat-
forms the conversion result including the BOM will finally be converted to EBCDIC.

Scope any

Bindings This function is not available in Unicode-capable language bindings.

C++ string utf16_to_utf32(string utf16string, string ordering)
Perl PHP string utf16_to_utf32(string utf16string, string ordering)

C const char *PDF_utf16_to_utf32(PDF *p, const char *utf16string, int len, const char *ordering,int *size)

Convert a string from UTF-16 format to UTF-32.

utf16string The string to be converted. A Byte Order Mark (BOM) in the string will be
interpreted. If it is missing the platform’s native byte ordering is assumed.

len (C language binding only) Length of utf16string in bytes.

ordering Reserved, must be empty.

size (C language binding only) C-style pointer to a memory location where the length
of the returned string (in bytes) will be stored. If the pointer is NULL it will be ignored.

Returns The converted UTF-32 string in the platform’s native byte order.

Scope any

Bindings This function is not available in Unicode-capable language bindings.

74 Chapter 4: Font and Text Functions

5.1 Text Options 75

5 Text and Table Formatting

5.1 Text Options
This section lists text options for PDF_fit_textline(), PDF_info_textline(), and PDF_add/
create_textflow(). Text options also apply to table cells and text Blocks:

> input filter options according to Table 5.1;
> text appearance options according to Table 5.2;
> shaping and typographic options according to Table 5.3;

Table 5.1 Input filter options

option explanation

charref (Boolean) If true, enable substitution of numeric and character entity references and glyph name refer-
ences. Default: the global charref parameter

escape-
sequence

(Boolean) If true, enable substitution of escape sequences in content strings, hypertext strings, and
name strings. In text for PDF_create_textflow() with inline option lists the begin character for an inline
option list can be expressed by an escape sequence. However, escape sequences don’t work in inline op-
tion lists including the end character. Default: the global escapesequence parameter

glyphcheck (Keyword) Glyph checking policy: what happens if text contains a code which cannot be mapped to a
glyph in the selected font (default: value of the glyphcheck parameter):
none No checking
error An exception will be thrown for unavailable glyphs. A detailed error message can be retrieved

with PDF_get_errmsg().
replace PDFlib will try to replace unavailable glyphs with appropriate replacement glyphs in the base

and fallback fonts if available; ligatures will be decomposed. If a suitable replacement is not
available, the glyph will be replaced with replacementchar if specified

textformat (Keyword; only for non Unicode compatible language bindings) Format used to interpret the supplied
text. Supported keywords: bytes, utf8, ebcdicutf8 (only on iSeries and zSeries), utf16, utf16le,
utf16be, and auto. Default: the global textformat parameter (see Table 4.8)

Table 5.2 Text appearance options

option explanation

charspacing (Float or percentage) Character spacing, i.e. the shift of the current point after placing individual charac-
ters in a string. Float values specify units of the user coordinate system; percentages are based on
fontsize. In order to spread characters apart use positive values for horizontal writing mode, and nega-
tive values for vertical writing mode. Default1: 0

dasharray (List of two floats) The lengths of dashes and gaps for stroked (outline) text and decoration. Default:
{0 0} (i.e. a solid line)

decoration-
above

(Boolean) If true, the text decoration enabled with the underline, strikeout, and overline options will
be drawn above the text, otherwise below the text. Changing the drawing order affects visibility of the
decoration lines. Default1: false

fakebold (Boolean) If true, simulate bold font by triple overprinting. It is strongly recommended to use bold font
variations for emphasis; this option will create text output which is inferior to real bold text, and may in-
hibit text extraction. Default1: false

76 Chapter 5: Text and Table Formatting

fillcolor (Color) Fill color of the text. Default for PDF_fit_textline() if inittextstate=false: the corresponding
parameter in the current graphics state. Default: {gray 0} (in PDF/A mode: {lab 0 0 0})

font (Font handle) Handle for the font to be used. If this option is supplied, all font loading options (including
fontname and encoding) will be ignored. Using the font option instead of implicit font loading with the
fontname/encoding options offers performance benefits.
Default: the implicitly loaded font if available, else the font in the current text state (only for Textline
and inittextstate=false). Otherwise no font is available, which will trigger an error.

fontsize (Fontsize; required) Size of the font, measured in units of the current user coordinate system. In PDF_fit_
textline() percentages relate to the box width (for orientate=north and south) or height (for
orientate=east and west). With Textflows percentages relate to the size of the preceding text. Default:
the current font size

gstate (Gstate handle) Handle for a graphics state retrieved with PDF_create_gstate(). The graphics state af-
fects all text created with this function. Default: no graphics state (i.e. current settings will be used).

horizscaling (Float or percentage; must be different from 0) Horizontal text scaling to the given percentage (must be
different from 0). Text scaling shrinks or expands the text by a given percentage. Text scaling always re-
lates to the horizontal coordinate. Default1: 100%

italicangle (Float) The italic (slant) angle of text in degrees (between -90° and 90°). Negative values can be used to
simulate italic text when only a regular font is available, especially for CJK fonts. Default1: 0

kerning (Boolean) If true, enable kerning for fonts which have been opened with the readkerning option; dis-
able otherwise. Default: the global kerning parameter

overline (Boolean) Overline mode. Default1: false

strikeout (Boolean) Strikeout mode. Default1: false

strokecolor (Color; only effective if textrendering is set to stroke text) Stroke color of the text. Default: see
fillcolor

strokewidth (Float, percentage, or keyword; only effective if textrendering is set to outline text) Line width for out-
line text (in user coordinates or as a percentage of the fontsize). The keyword auto or the value 0 uses a
built-in default. Default: auto

textrendering (Integer) Text rendering mode. Only the value 3 has an effect on Type 3 fonts (default1: 0):

0 fill text 4 fill text and add it to the clipping path

1 stroke text (outline) 5 stroke text and add it to the clipping path

2 fill and stroke text 6 fill and stroke text and add it to the clipping path

3 invisible text 7 add text to the clipping path (does not have any

effect with PDF_fit_textline() or PDF_fit_textflow())

textrise (Float or percentage) Textrise parameter, which specifies the distance between the desired text position
and the baseline. Positive values of textrise move the text up. The textrise always relates to the vertical
coordinate. This may be useful for superscripts and subscripts. Percentages are based on fontsize.
Default1: 0

underline (Boolean) Underline mode. Default1: false

Table 5.2 Text appearance options

option explanation

P
P

5.1 Text Options 77

underline-
position

(Float, percentage, or keyword) Position of the stroked line for underlined text relative to the baseline
(absolute values or relative to the fontsize; a typical value is -10%). The keyword auto specifies a font-
specific value which will be retrieved from the font metrics or outline file. Default1: auto

underline-
width

(Float, percentage, or keyword) Line width for underlined text (absolute value or percentage of the fon-
tsize). The keyword auto or the value 0 uses a font-specific value from the font metrics or outline file if
available, otherwise 5%. Default1: auto

wordspacing (Float or percentage) Wordspacing, i.e. the shift of the current point after placing individual words in a
line. In other words, the current point is moved horizontally after each space character (U+0020). The
value is specified in user coordinates or a percentage of the fontsize. Default1: 0

1. Default for PDF_fit_textline() and PDF_info_textline() if inittextstate=false: the parameter with the same name as the option
(see Table 4.8 and Table 4.9)

Table 5.3 Shaping and typographic options

option explanation

features (List of keywords) Specifies which typographic features of an OpenType font will be applied to the text,
subject to the script and language options. Keywords for features which are not present in the font will
silently be ignored. The following keywords can be supplied:
_none Apply none of the features in the font. As an exception, the vert feature must explicitly be

disabled with the novert keyword.
<name> Enable a feature by supplying its four-character OpenType tag name. Some common feature

names are liga, ital, tnum, smcp, swsh, zero. The full list with the names and descriptions of
all supported features can be found in the PDFlib Tutorial.

no<name> The prefix no in front of a feature name (e.g. noliga) disables this feature.
Default: _none for horizontal writing mode, vert for vertical writing mode.

language (Keyword; only relevant if script is supplied) The text will be processed according to the specified lan-
guage, which is relevant for the features and shaping options. A full list of keywords can be found in
the PDFlib Tutorial, e.g. ARA (Arabic), JAN (Japanese), HIN (Hindi). Default: _none (undefined language)

script (Keyword; required if shaping=true) The text will be processed according to the specified script, which is
relevant for the features, shaping, and advancedlinebreak options. The most common keywords for
scripts are the following: _none (undefined script), latn, grek, cyrl, armn, hebr, arab, deva, beng, guru,
gujr, orya, taml, thai, laoo, tibt, hang, kana, han. A full list of keywords can be found in the PDFlib Tuto-
rial. The keyword _auto selects the script to which the majority of characters in the text belong, where
latn and _none are ignored. _auto is only relevant for shaping and will be ignored for features and
advancedlinebreak. Default: _none

shaping (Boolean) If true, complex script shaping and bidirectional reordering will be applied to the text accord-
ing to the script and language options. The script option must have a value different from _none and
the font must obey certain conditions (see PDFlib Tutorial). Shaping is only done for characters in the
same font. Shaping is not available for right-to-left text in Textflows (only in Textlines). Default: false

Table 5.2 Text appearance options

option explanation

78 Chapter 5: Text and Table Formatting

Table 5.4 Suboptions for the leader option for PDF_fit_textline() and PDF_add/create_textflow() and inline options in
PDF_create_textflow()

option explanation

font loading
options

If the font is specified implicitly (i.e. via the fontname and encoding options, as opposed to the font op-
tion), all font loading options according to Table 4.3 can be supplied as suboptions.

alignment (One or two keywords) Textline: The first keyword specifies the alignment of the leader between the left
border of the fitbox and the Textline; the second keyword specifies the alignment of the leader between
the Textline and the right border of the fitbox. If only one keyword is specified it will be used for the lead-
er between the Textline and the right border of the fitbox. Supported keywords (default for Textline:
{none grid}; default for Textflow: grid):
center Textline: the leader is justified between the Textline and the border of the fitbox.

Textflow: the leader is centered between the last text fragment (or the start of the line if
there is no text) and the tab position (or the end of the line if there is no tab).

grid PDFlib snaps the position of the leader text to the next multiple of one half of the width of
the leader text to the left or right of the Textline. This may result in a gap between the
Textline and the leader text which spans at most 50% of the width of the leader text.

justify Textline: the leader is justified between the Textline and the border of the fitbox by applying
a suitable character spacing.
Textflow: the leader is justified between the last text fragment (or the start of the line if there
is no text) and the tab position (or the end of the line if there is no tab) by applying a suitable
character spacing.

left The leader is repeated starting from the left border of the fitbox or the end of the Textline,
respectively. This may result in a gap at the start of the Textline or the right border of the
fitbox, respectively.

none No leader
right The leader is repeated starting from the right border of the fitbox or the beginning of the

Textline, respectively. This may result in a gap at the end of the Textline or the left border of
the fitbox, respectively.

fillcolor (Color) Color of the leader. Default: color of the text line

font (Font handle) Handle for the font to be used for the leader. Default: font of the text line

fontsize (Fontsize) Size of the leader. Default: font size of the Textline

text (Content string) The text which will be used for the leader. Default: U+002E ’.’ (period)

yposition (Float or keyword) Specifies the vertical position of the leader relative to the baseline as a numerical val-
ue or as one of the keywords fontsize, ascender, xheight, baseline, descender, textrise. Default:
baseline

5.2 Single-Line Text with Textlines 79

5.2 Single-Line Text with Textlines
Cookbook A full code sample can be found in the Cookbook topic text_output/starter_textline.

C++ Java void fit_textline(String text, double x, double y, String optlist)
Perl PHP fit_textline(string text, float x, float y, string optlist)

C void PDF_fit_textline(PDF*p, const char *text, int len, double x, double y, const char *optlist)

Place a single line of text at position (x, y) subject to various options.

text (Content string) The text to be placed on the page.

len (C language binding only) Length of text (in bytes) for UTF-16 strings. If len = 0 a
null-terminated string must be provided.

x, y The coordinates of the reference point in the user coordinate system where the
text will be placed, subject to various options. See Section 6.1, »Object Fitting«, page 109,
for a description of the fitting algorithm.

optlist An option list specifying font, text, and formatting options. The following op-
tions are supported:

> General option: errorpolicy (see Section 2.5, »Exception Handling«, page 27)
> Font loading options according to Table 4.3 for implicit font loading (i.e. font option

in the text appearance group not supplied):
ascender, autocidfont, autosubsetting, capheight, descender, embedding, encoding,
fallbackfonts, fontname, fontstyle, keepnative, linegap, metadata, monospace,
readfeatures, replacementchar, subsetlimit, subsetminsize, subsetting, unicodemap, vertical,
xheight

> Input filter options according to Table 5.1:
charref, escapesequence, glyphcheck, textformat

> Text appearance options according to Table 5.2:
charspacing, dasharray, decorationabove, fakebold, fillcolor, font, fontsize, gstate,
horizscaling, inittextstate, italicangle, kerning, overline, strikeout, strokecolor, strokewidth,
textrendering, textrise, underline, underlineposition, underlinewidth, wordspacing

> Shaping and typographic options according to Table 5.3:
features, language, script, shaping

> Fitting options according to Table 6.1:
alignchar, blind, boxsize, fitmethod, margin, matchbox, orientate, position, rotate, stamp,
showborder, shrinklimit

> Options for Textline formatting according to Table 5.5:
inittextstate, leader, shadow, textpath, xadvancelist

Details If inittextstate=false (which is the default), the current text and graphics state parame-
ters will be used to control the appearance of the text output unless they are explicitly
overridden by options.

If inittextstate=true the default values of the text and graphics state parameters will
be used to control the appearance of the text output unless they are explicitly overrid-
den by options. The Textline options will not affect any output created after this call to
PDF_fit_textline().

http://www.pdflib.com/pdflib-cookbook/text-output/starter-textline

80 Chapter 5: Text and Table Formatting

The current text and graphics state will not be modified by this function (in particu-
lar, the current font will be unaffected). However, the textx/texty parameters will be ad-
justed to point to the end of the generated text output.

The reference point for PDF_continue_text() will not be set to the beginning of the
text. In order to use PDF_continue_text() after PDF_fit_textline() you must query the
starting point with PDF_info_textline() and the startx/starty keywords, and set the text
position with PDF_set_text_pos().

Scope page, pattern, template, glyph; this function should not be used in vertical writing mode.

Params See Table 4.8 and Table 4.9.

Table 5.5 Additional options for PDF_fit_textline()

option explanation

inittextstate (Boolean) If true all text appearance options will be initialized with the respective default values. If
false the current text state values will be used. Default: false

leader (Option list; will be ignored if boxsize is not specified or the width of the box is 0) Specifies filler text (e.g.
dot leaders) and formatting options. Leaders will be inserted repeatedly between the border of the text
box and the text.
See Table 5.4 for a list of supported suboptions. Default: no leader

shadow (Option list) Create a shadow effect for the text (default: no shadow):
offset (List of 2 floats) The shadow’s offset from the reference point of the text line in user

coordinates or as a percentage of the font size. Default: {5% -5%}
fillcolor (Color) Color of the shadow. Default: {gray 0.8}
gstate (Gstate handle) Graphics state retrieved with PDF_create_gstate() which will be applied to

the shadow. Default: none

textpath (Option list) Draw text along a path. Text beyond the end of the path will not be displayed. See Table 5.6
for a list of supported suboptions. If showborder=true the flattened path will be drawn with the current
linewidth and stroke color.
The following options of PDF_fit_textline() have modified meaning for text on a path:
matchbox A separate box will be created for each glyph.
position The first value specifies the starting position of the text relative to the length of the path

(left/center/right). If the text is longer than the path it will always begin at startoffset.
The second value specifies the vertical position of each glyph relative to the path, i.e. which
part of the glyph box will touch the path (bottom/center/top).

rotate Specifies a rotation angle for each glyph.
The following fitbox-related options will be ignored:
boxsize, margin, fitmethod, orientate, alignchar, showborder, stamp, leader
Kerning and text with CJK legacy encodings are not supported for text on a path.

xadvancelist (List of floats) Specifies the advance width of all glyphs in the text in user coordinates. The length of the
list must be less or equal than the number of glyphs in the text. The xadvance values will be used instead
of the standard glyph widths. Other effects, such as kerning and character spacing, are unaffected.

5.2 Single-Line Text with Textlines 81

C++ Java double info_textline(String text, String keyword, String optlist)
Perl PHP float info_textline(string text, string keyword, string optlist)

C double PDF_info_textline(PDF *p, const char *text, int len, const char *keyword, const char *optlist)

Perform Textline formatting without creating output and query the resulting metrics.

text (Content string) The contents of the Textline.

len (C language binding only) The length of text in bytes, or 0 for null-terminated
strings.

keyword A keyword specifying the requested information according to Table 5.7.

optlist An option list specifying options for PDF_fit_textline(). Options which are not
relevant for the requested keyword will silently be ignored.

Returns The value of some text metric value as requested by keyword.

Details This function will perform all calculations required for placing the text according to the
supplied options, but will not actually create any output on the page. The text reference
position is assumed to be {0 0}.

If errorpolicy=return this function will return 0 in case of an error. If errorpolicy=
exception this function will throw an exception in case of an error (even for the keyword
wellformed).

Scope any except object

Table 5.6 Suboptions for the textpath option of PDF_fit_textline()

option explanation

path (Path handle; required) The path to use as baseline for text output. By default, the text will be placed at
the left side of the path and the path will serve as the text baseline. However, if the second keyword in
the position option is top the text will be placed to the right of the path and the top of the text will
touch the path. The parameters x and y of PDF_fit_textline() will be used as reference point for the path.

rotate (Float) Rotate the path, using the reference point as center and the specified value as rotation angle in
degrees. Default: 0

scale (List with one or two floats) Scale the path, using the reference point as center and the specified value(s)
as horizontal and vertical scaling factor(s). If only one value is supplied it will be used for both directions.
Default: {1 1}

startoffset (Float or percentage) The offset of the starting point of the text along its path in user coordinates or as
percentage of the path length. Default: 0

tolerance (Float or percentage) Indicates how much the last glyph on the path is allowed to extend beyond the
path. The value is specified in user coordinates or as a percentage of the fontsize. Default: 25%

subpaths (List of integers or single keyword) List with the numbers of subpaths to be drawn. The keyword all spec-
ifies all subpaths. Default: all

close (Boolean) If true, each subpath will be closed with a straight line. Default: the value specified when the
path was constructed, or false if no value was specified

round (Float) For each subpath, adjacent line vertices will be rounded in their joining point by a circular arc
with the line segments as its tangents and with the specified radius. If the radius is negative the arc will
be swept so that the corners are circularly grooved. If close=true and no line from the last to the first
point was specified, the first line and the closing line will also be rounded. If round=0 no rounding will be
done. Default: the value specified when the path was constructed, or 0 if no value was specified

82 Chapter 5: Text and Table Formatting

Table 5.7 Keywords for PDF_info_textline()

keyword explanation

angle Rotation angle of the baseline in degree, i.e. the text rotation

ascender
capheight
descender

Corresponding typographic value in user coordinates

endx, endy x/y coordinates of the logical text end position in the user coordinate system

height Height of the text string according to the boxheight specification of the matchbox

perpendiculardir Unit vector perpendicular to writingdir; for standard horizontal text this would be (0, 1), for
vertical text (1, 0)

replacedchars Number of characters which have been replaced with a slightly different glyph from the internal
list of typographically similar characters or with a glyph from a fallback font because they
couldn’t be mapped to a code in the current encoding or to a glyph in the font. This value can
only be different from 0 if glyphcheck=replace.

righttoleft 1 if the global output direction for the text is right-to-left, and 0 for left-to-right or vertical text.
The global direction will be determined based on the initial characters and any directional mark-
ers which may be present in the text (e.g. U+202D or &LRO; LEFT-TO-RIGHT OVERRIDE).

scalex, scaley Horizontal and vertical scaling factors. If these are different from 1 the text had to be scaled to fit
into the box.

scriptlist String containing the space-separated list of the names of all scripts in the text. This may be use-
ful to prepare text shaping. The script names are sorted by frequency in descending order. The
scripts _none and _latn will be ignored since they are not relevant for shaping. If only _none and
_latn characters are present in the text, -1 will be returned.

startx, starty x/y coordinates of the logical text start position in the user coordinate system

unknownchars If glyphcheck=none: number of skipped characters. The number includes character references
which couldn’t be resolved, and characters which couldn’t be mapped to a code in the current en-
coding or to a glyph in the font.
If glyphcheck=replace: number of characters which were replaced with the specified replace-
ment character (option replacementchar). The number includes characters which couldn’t be
mapped to a code in the current encoding or to a glyph in the font, and characters which couldn't
be replaced with typographically similar characters.

unmappedchars The number of characters which have been skipped or replaced, i.e. the sum of replacedchars
and unknownchars.

wellformed 1 if the text is wellformed according to the font/encoding (and textformat, if applicable) selected
in the corresponding options, otherwise 0.

width Width of the text string (in horizontal writing mode) or width of the widest glyph (in vertical
writing mode). Character spacing will not be applied after the last glyph.

writingdirx
writingdiry

x/y coordinates of the dominant writing direction (direction of inline text progression), i.e. unit
vector from (startx, starty) to (endx, endy). For left-to-right horizontal text the values will
be (1, 0), for vertical text (0, -1), and for right-to-left horizontal text (-1, 0). The writing di-
rection will be determined based on the shaping and vertical options as well as the directional-
ity properties of the text.

xheight Corresponding typographic value in user coordinates

5.3 Multi-Line Text with Textflows 83

5.3 Multi-Line Text with Textflows
Cookbook A full code sample can be found in the Cookbook topic text_output/starter_textflow.

C++ Java int add_textflow(int textflow, String text, String optlist)
Perl PHP int add_textflow(int textflow, string text, string optlist)

C int PDF_add_textflow(PDF *p, int textflow, const char *text, int len, const char *optlist)

Create a Textflow object, or add text and explicit options to an existing Textflow.

textflow Textflow handle returned by an earlier call to PDF_create_textflow() or PDF_
add_textflow(), or -1 (in PHP: 0) to create a new Textflow.

text (Content string) The contents of the Textflow. The text may not contain any in-
line options.

len (C language binding only) The length of text in bytes, or 0 for null-terminated
strings.

optlist An option list specifying Textflow options according to Table 5.3 and Table 5.8.
The following options are supported:

> General option: errorpolicy (see Section 2.5, »Exception Handling«, page 27)
> Font loading options according to Table 4.3 for implicit font loading (i.e. font option

in the text appearance group not supplied):
ascender, autocidfont, autosubsetting, capheight, descender, embedding, encoding,
fallbackfonts, fontname, fontstyle, keepnative, linegap, metadata, monospace,
readfeatures, replacementchar, subsetlimit, subsetminsize, subsetting, unicodemap, xheight

> Input filter options according to Table 5.1:
charref, escapesequence, glyphcheck, textformat

> Text appearance options according to Table 5.2:
charspacing, dasharray, decorationabove, fakebold, fillcolor, font, fontsize, gstate,
horizscaling, inittextstate, italicangle, kerning, overline, strikeout, strokecolor, strokewidth,
textrendering, textrise, underline, underlineposition, underlinewidth, wordspacing

> Shaping and typographic options according to Table 5.3:
features, language, script, shaping

> Options for Textflow formatting according to Table 5.8:
alignment, avoidemptybegin, fixedleading, hortabmethod, hortabsize, lastalignment,
leader, leading, leftindent, minlinecount, parindent, rightindent, ruler, tabalignment

> Options for controlling the line break algorithm according to Table 5.9:
adjustmethod, advancedlinebreak, avoidbreak, locale, maxspacing, minspacing, nofitlimit,
shrinklimit, spreadlimit

> Command options according to Table 5.10:
comment, mark, matchbox, nextline, nextparagraph, resetfont, return, space

> Text semantics options according to Table 5.11:
charclass, charmapping, hyphenchar, tabalignchar

Returns A Textflow handle which can be used in Textflow-related function calls. The handle is
valid until the end of the enclosing document scope, or until PDF_delete_textflow() is
called with this handle.

If the textflow parameter is -1, a new Textflow will be created and the corresponding
handle will be returned. Otherwise the handle supplied in the textflow parameter will be

http://www.pdflib.com/pdflib-cookbook/text-output/starter-textflow

84 Chapter 5: Text and Table Formatting

returned. By default, this function returns -1 (in PHP: 0) in case of an error. However, this
behavior can be changed with the errorpolicy parameter or option. In case of an error the
handle supplied in the textflow parameter can no longer be used in subsequent func-
tion calls (except in PDF_delete_textflow() if it was different from -1).

Details This function processes the supplied text and creates an internal data structure from it.
It determines text portions (e.g. words) which will later be used by the formatter, con-
verts the text to Unicode if possible, determines potential line breaks, and calculates the
width of text portions based on font and text options.

As opposed to PDF_create_textflow(), which expects all text contents and options in a
single call, this function is useful for supplying the text contents and options for a Text-
flow in separate calls. It will add the supplied text and optlist to a new or existing Text-
flow. Options specified in optlist will be evaluated before processing text. Both text and
optlist may be empty.

If textflow=-1 this function is almost equivalent to PDF_create_textflow(). However,
unlike PDF_create_textflow() this function will not search for inline options in text. It is
therefore not necessary to redefine the start character for inline option lists or to speci-
fy the length of the text with an inline option (not even for non-Unicode text and UTF-
16 text).

This function will preprocess the supplied text and options, but does not create any
output in the generated PDF document, but only prepares the text. Use PDF_fit_
textflow(), PDF_fit_table(), or PDF_fill_textblock() to create output with the preprocessed
Textflow handle.

By default, a new line will be forced by the characters U+000B (VT), U+2028 (LS),
U+000A (LF), U+000D (CR), CRLF, U+0085 (NEL), U+2029 (PS), and U+000C (FF). These
control characters will not be interpreted for symbolic fonts loaded with encoding=
builtin. All of these except VT and LS force a new paragraph (which means that the
parindent option will be effective). FF immediately stops the process of fitting text to the
current fitbox (the function PDF_fit_textflow() will be exited with a return string of _
nextpage).

A horizontal tab character (HT) sets a new start position for subsequent text. The de-
tails of this are controlled by the hortabmethod and hortabsize options.

Soft hyphen characters (SHY) will be replaced with the character specified in the
hyphenchar option if there is a line break after the soft hyphen.

Vertical writing mode is not supported.

Scope any except object

Table 5.8 Additional formatting options for PDF_add/create_textflow() and inline options in PDF_create_textflow()

option explanation

alignment (Keyword) Specifies formatting for lines in a paragraph. Default: left.
left Left-aligned, starting at leftindent+parindent (for the first line of a paragraph) and at

leftindent (for all other lines)
center Centered between leftindent and rightindent
right Right-aligned, ending at rightindent
justify Left- and right-aligned

avoid-
emptybegin

(Boolean) If true, empty lines at the beginning of a fitbox will be deleted. Default: false

5.3 Multi-Line Text with Textflows 85

fixedleading (Boolean) If true, the first leading value found in each line will be used. Otherwise the maximum of all
leading values in the line will be used. fixedleading will be forced to true if the wrap option of PDF_fit_
textflow() or the createwrapbox suboption of the matchbox option will be used to wrap the text
around shapes. Default: false

hortabmethod (Keyword) Treatment of horizontal tabs in the text. If the calculated position is to the left of the current
text position, the tab will be ignored. Default: relative.
relative The position will be advanced by the amount specified in hortabsize.
typewriter The position will be advanced to the next multiple of hortabsize.
ruler The position will be advanced to the n-th tab value in the ruler option, where n is the

number of tabs found in the line so far. If n is larger than the number of tab positions the
relative method will be applied.

hortabsize (Float or percentage) Width of a horizontal tab1. The interpretation depends on the hortabmethod op-
tion. Default: 7.5%

lastalignment (Keyword) Formatting for the last line in a paragraph. All keywords of the alignment option are sup-
ported, plus the following (default: auto):
auto Use the value of the alignment option if it is different from justify, else left

leader (Option list) Specifies filler text (e.g. dot leaders) and formatting options. Leaders will be inserted until
the next tab position, or the end of the line if no tab is available. Leaders never span more than one line.
See Table 5.4 for a list of supported suboptions. Default: no leader

leading (Float or percentage) Distance between adjacent text baselines2. The actual value will be determined as
follows: if there are option lists at the beginning of a line, the leading will be determined by the last rel-
evant option (font, fontsize, leading, etc.). If there are additional option lists on the same line, any
options relevant for leading will only be taken into account if fixedleading=false. If there are no op-
tion lists in the line at all, the previous leading value will be taken into account. Default: 100%

leftindent (Float or percentage) Left indent of text lines1. If leftindent is specified within a line and the resulting
position is to the left of the current text position, this option will be ignored for this line. Default: 0

minlinecount (Integer) Minimum number of lines in the last paragraph of the fitbox. If there are fewer lines they will
be placed in the next fitbox. The value 2 can be used to prevent single lines of a paragraph at the end of
a fitbox (»orphans«). Default: 1

parindent (Float or percentage) Left indent of the first line of a paragraph1. The amount will be added to
leftindent. Specifying this option within a line will act like a tab. Default: 0

rightindent (Float or percentage) Right indentation of text lines1. Default: 0

ruler (List of floats or percentages) List of absolute tab positions for hortabmethod=ruler1. The list may con-
tain up to 32 non-negative entries in ascending order. Default: integer multiples of hortabsize; if more
than 32 horizontal tabs per line occur in the text the list will be extended with the corresponding default
value.

tabalignment (List of keywords; only with hortabmethod=ruler) Alignment for tab stops. The list may contain up to
32 entries. if more than 32 horizontal tabs per line occur in the text the list will be extended with the last
value. Each entry in the list defines the alignment for the corresponding entry in the ruler option. De-
fault: left.
center Text will be centered at the tab position.
decimal The first instance of tabalignchar will be left-aligned at the tab position. If no tabalign-

char is found, right alignment will be used instead.
left Text will be left-aligned at the tab position.
right Text will be right-aligned at the tab position.

1. In user coordinates or as a percentage of the width of the fitbox

Table 5.8 Additional formatting options for PDF_add/create_textflow() and inline options in PDF_create_textflow()

option explanation

86 Chapter 5: Text and Table Formatting

2. In user coordinates or as a percentage of the font size

Table 5.9 Additional options for controlling the line break algorithm for PDF_add/create_textflow() and inline options in
PDF_create_textflow()

option explanation

adjustmethod (Keyword) Method used to adjust a line when a text portion doesn’t fit into a line after compressing or
expanding the distance between words subject to the limits specified by the minspacing and max-
spacing options. Default: auto.
auto The following methods are applied in order: shrink, spread, nofit, split.
clip Same as nofit, except that the long part at the right edge of the fitbox (taking into account

the rightindent option) will be clipped.
nofit The last word will be moved to the next line provided the remaining (short) line will not be

shorter than the percentage specified in the nofitlimit option. Even justified paragraphs
may look slightly ragged.

shrink If a word doesn’t fit in the line the text will be compressed subject to shrinklimit. If it still
doesn’t fit the nofit method will be applied.

split The last word will not be moved to the next line, but will forcefully be split after the last
character in the box. If hyphenchar is different from none a hyphen character will be
inserted. Setting hyphenchar=none must be used to suppress the hyphen character (e.g. in
formulae or URLs) since PDFlib does not automatically detect such situations.

spread The last word will be moved to the next line and the remaining (short) line will be justified
by increasing the distance between characters in a word, subject to spreadlimit. If
justification still cannot be achieved the nofit method will be applied.

advanced-
linebreak

(Boolean) Enable the advanced line breaking algorithm which is required for complex scripts. This is re-
quired for linebreaking in scripts which do not use space characters for designating word boundaries,
e.g. Thai. The options locale and script will be honored. Default: false

avoidbreak (Boolean) If true, line breaking opportunities (e.g. at space characters) will be ignored until avoidbreak
is reset to false. Mandatory line breaks (e.g. at a newline) and methods defined by adjustmethod will
be still performed. In particular, adjustmethod=split may still create hyphenation. Default: false

locale (Keyword) The locale which will be used for localized linebreaking methods if advancedlinebreak=
true. The keywords consists of one or more components, where the optional components are separated
by an underscore character ’_’ (the syntax slightly differs from NLS/POSIX locale IDs):
> A required two- or three-letter lowercase language code according to ISO 639-2 (see www.loc.gov/

standards/iso639-2), e.g. en, (English), de (German), ja (Japanese). This differs from the language op-
tion.

> An optional two-letter uppercase country code according to ISO 3166 (see www.iso.org/iso/country_
codes/iso_3166_code_lists), e.g. DE (Germany), CH (Switzerland), GB (United Kingdom)

The keyword _none specifies that no locale-specific processing will be done.
Specifying a locale is required for advanced line breaking for some scripts, e.g. Thai. Default: _none
Examples: tha, de_DE, en_US, en_GB

maxspacing
minspacing

(Float or percentage; only relevant if the line contains at least one space character U+0020 and
alignment=justify) Maximum or minimum distance between words (in user coordinates, or as a per-
centage of the width of the space character). The calculated word spacing is limited by the provided val-
ues (but the wordspacing option will still be added). Defaults: minspacing=50%, maxspacing=500%

nofitlimit (Float or percentage; only relevant with alignment=justify) Lower limit for the length of a line with
the nofit method1. Default: 75%.

shrinklimit (Percentage) Lower limit for compressing text with adjustmethod=shrink; the calculated shrinking fac-
tor is limited by the provided value, but will be multiplied with the horizscaling option. Default: 85%

5.3 Multi-Line Text with Textflows 87

spreadlimit (Float or percentage) Upper limit for the distance between characters for the spread method2; the cal-
culated distance will be added to the value of the charspacing option. Default: 0

Table 5.10 Additional command options for PDF_add/create_textflow() and inline options in PDF_create_textflow()

option explanation

comment (String) Arbitrary text which will be ignored; useful for commenting option lists or macros

mark (Integer) Store the supplied number internally as a mark. The mark which has been stored most recently
can later be retrieved with PDF_info_textflow() and the lastmark keyword. This may be useful for de-
termining which portions of text have already been placed on the page.

matchbox (Option list) Option list for creating a matchbox according to Table 6.3

nextline
nextparagraph

(Boolean) Force a new line or paragraph.

resetfont (Boolean) Reset font and fontsize to the most recently values which were different from the current
settings (either different font or font size). This may be useful to reset the font after inserts, such as italic
text. The font option has precedence over this option. This command only makes sense after the second
setting of any font-related parameters, that differ from the first setting, and will be ignored otherwise.

return (String; must not start with an underscore _ character) Exit PDF_fit_textflow() with the supplied string
as return value.

space (Float or percentage) The text position will be advanced by the provided value2.

Table 5.11 Additional text semantics options for PDF_add/create_textflow() and inline options in PDF_create_textflow()

option explanation

charclass (List of pairs, where the first element in each pair is a keyword, and the second element is either a Uni-
char or a list of Unichars; the Unichars must be < 0xFFFF; will be ignored if advancedlinebreak=true)
The specified Unichars will be classified by the specified keyword to determine the line breaking behav-
ior of those character(s):
letter behave like a letter (e.g. a B)
punct behave like a punctuation character (e.g. + / ; :)
open behave like an open parenthesis (e.g. [)
close behave like a close parenthesis (e.g.])
default reset all character classes to PDFlib’s builtin defaults
Example: charclass={ close » open « letter={/ : =} punct & }

Table 5.9 Additional options for controlling the line break algorithm for PDF_add/create_textflow() and inline options in
PDF_create_textflow()

option explanation

88 Chapter 5: Text and Table Formatting

Macros for Textflow options. Option lists for Textflows (either in the optlist parameter
of PDF_create_textflow() or PDF_add_textflow(), or inline in the text supplied to PDF_
create_textflow()) may contain macro definitions and macro calls according to Table
5.12. Macros may be useful for having a central definition of multiply used option val-
ues, such as font names, indentation amounts, etc. Before parsing an option list each
contained macros will be substituted with the contents of the corresponding option list
provided in the macro definition. The resulting option list will then be parsed. The fol-
lowing example demonstrates a macro definition for two macros:

<macro {
comment { The following macros are used as paragraph styles }
H1 {fontname=Helvetica-Bold encoding=winansi fontsize=14 }
body {fontname=Helvetica encoding=winansi fontsize=12 }

}>

These macros could be used as follows in an option list:

<&H1>Chapter 1
<&body>This chapter talks about...

The following rules apply to macro definition and use:
> Macros may be nested to an arbitrary depth (macro definitions may contain calls to

other macros).
> Macros can not be used in the same option list where they are defined. In PDF_create_

textflow() a new inline option list which uses the macro can be started immediately
after the end of the inline option list in which the macro is defined. When using PDF_
add_textflow() one function call is required to define the macro, and another one to
use it (since PDF_add_textflow() accepts only a single option list at a time).

> Macro names are case-insensitive.
> Undefined macros will result in an exception.
> Macros can be redefined at any time.

charmapping (List of pairs, where each pair either contains two Unichars or a Unichar and a list of Unichar and inte-
ger; the Unichars must be < 0xFFFF) Replace individual characters with one or more instances of anoth-
er character. The option list contains one or more pairs of Unichars. The first character in each pair will
be replaced with the second character. Instead of one-to-one mapping the second element in each pair
may be an option list containing a unichar and a count:
count > 0 The replacement character will be repeated count times.
count < 0 A sequence of multiple instances of the character will be reduced to the absolute value of

the specified number.
count = 0 The character will be deleted.
Examples:
charmapping={ hortab space CRLF space LF space CR space }
charmapping={ shy {shy 0} }
charmapping={ hortab {space 4} }

hyphenchar (Unichar < 0xFFFF or keyword) Character which replaces a soft hyphen at line breaks. The value 0 and
the keyword none completely suppress hyphens. Default: U+00AD (soft hyphen) if available in the font,
U+002D (hyphen-minus) otherwise

tabalignchar (Unichar < 0xFFFF) Character at which decimal tabs will be aligned. Default: U+002E ’.’

Table 5.11 Additional text semantics options for PDF_add/create_textflow() and inline options in PDF_create_textflow()

option explanation

5.3 Multi-Line Text with Textflows 89

C++ Java int create_textflow(String text, String optlist)
Perl PHP int create_textflow(string text, string optlist)

C int PDF_create_textflow(PDF *p, const char *text, int len, const char *optlist)

Create a Textflow object from text contents, inline options, and explicit options.

text (Content string) The contents of the Textflow. It may contain text in various en-
codings, macros (see »Macros for Textflow options«, page 88), and inline option lists ac-
cording to Table 5.8 and Table 5.13 (see also »Inline option lists for Textflows«, page 90).
If text is an empty string, a valid Textflow handle will be returned nevertheless.

len (C language binding only) The length of text in bytes, or 0 for null-terminated
strings.

optlist An option list specifying Textflow options. Options specified in the optlist pa-
rameter will be evaluated before those in inline option lists in text so that inline options
have precedence over options provided in the optlist parameter. The following options
can be used:

> General option: errorpolicy (see Section 2.5, »Exception Handling«, page 27)
> All options of PDF_add_textflow() (see option list of PDF_add_textflow())
> Options for controlling inline option list processing according to Table 5.13:

begoptlistchar, endoptlistchar, fixedtextformat, textlen

Returns A Textflow handle which can be used in calls to PDF_add_textflow(), PDF_fit_textflow(),
PDF_info_textflow(), and PDF_delete_textflow(). The handle is valid until the end of the
enclosing document scope, or until PDF_delete_textflow() is called with this handle. By
default this function returns -1 (in PHP: 0) in case of an error. This behavior can be
changed with the errorpolicy parameter or option.

Details This function accepts options and text to be prepared for Textflow. Unlike PDF_add_
textflow() the text may contain inline options. Searching for inline option lists can be
disabled for parts or all of the text by supplying the textlen option in the optlist parame-
ter (see »Inline option lists for Textflows«, page 90).

This function does not create any output in the generated PDF document, but only
prepares the text according to the supplied options. Use PDF_fit_textflow() to create out-
put with the resulting Textflow handle.

Table 5.12 Option list macro definitions and calls for PDF_add/create_textflow() and PDF_ fit_textflow()

option explanation

macro (List of pairs) Each pair describes the name and definition of a macro as follows:
name (string) The name of the macro which can later be used for macro calls. Macros which have

already been defined can be redefined later. The special name comment will be ignored.
suboptlist An option list which will literally replace the macro name when the macro is called. Leading

and trailing whitespace will be ignored.

&name The macro with the specified name will be expanded, and the macro name (including the & character)
will be replaced by the macro’s contents, i.e. the suboptlist which has been defined for the macro (with-
out the surrounding braces). The macro name is terminated by whitespace, {, }, =, or &. Therefore, these
characters can not be used as part of a macro name.
Nested macros will be expanded without any nesting limit. Macros contained in string options will also
be expanded. Macro substitution must result in a valid option list.

90 Chapter 5: Text and Table Formatting

See the Details section of PDF_add_textflow() for more information regarding special
characters, line breaking, etc.

Scope any except object

Inline option lists for Textflows. The content provided in the text parameter of PDF_
create_textflow() (but not PDF_add_textflow()) may include an arbitrary number of op-
tion lists (inline options) specifying Textflow options according to Table 5.8. All of these
options can alternatively be provided in the optlist parameter of PDF_create_textflow()
and PDF_add_textflow(). The same option can be specified multiply in a single option
list; in this case only the last occurrence of an option will be taken into account.

Inline option lists must be enclosed with the characters specified in the begoptlist-
char and endoptlistchar options (by default: < and >). Obviously, conflicts could arise if
the character used for starting inline option lists must also be used in the actual text.
There are several methods to resolve this conflict, depending on whether or not the text
contains any inline option lists. Remember that PDF_add_textflow() completely sepa-
rates text and options, so the conflict doesn’t arise there.

If the text does not contain any inline options lists you can completely disable the
search for inline option lists by one of the following methods:

> Set begoptlistchar=none in the optlist parameter of PDF_create_textflow().
> Set the textlen option in the optlist parameter of PDF_create_textflow() to the length

of the full text.

Table 5.13 Additional options for inline option list processing in PDF_create_textflow()

option explanation

begoptlistchar (Unichar < 0xFFFF or keyword) Character which starts inline option lists. Replacing the default character
may be useful if this character appears in the text literally (see »Inline option lists for Textflows«, page
90). If textlen is not specified, the begoptlistchar character in the text must be encoded in the same
text format and encoding as the preceding text. This means that the Unicode value of begoptlistchar
must be chosen such that it is contained in the encoding of the preceding text. The keyword none can be
used to completely disable the search for option lists. Default: U+003C (<)

endoptlistchar (Unichar < 0xFFFF ; U+007D ’}’ is not allowed) Character which terminates inline option lists. Default:
U+003E (>)

fixedtext-
format

(Boolean; will be ignored in Unicode-aware language bindings; this option doesn’t make sense in inline
option lists, and can only be used in the optlist parameter) If true, all text fragments and inline op-
tions lists will use the same textformat, which must be one of utf8, utf16, utf16be, or utf16le. This is
useful if text and inline options come from the same source.
If false, inline option lists including the delimiters must be encoded in textformat=bytes, regardless of
the format used for the actual text. This allows the combination e.g. of UTF-16 text with ASCII-encoded
inline option lists (the text may come from a Unicode database, while inline options are constructed as
ASCII text within the application). Default: false

textlen (Integer or keyword; required for text fragments with fixedtextformat=false and text-
format=utf16xx in non-Unicode aware languages) Number of bytes or (in Unicode-aware languages)
characters before the next inline option list (see »Inline option lists for Textflows«, page 90). The charac-
ters are counted before character references are resolved, e.g. <textlen=8>①<...>. The key-
word all specifies all of the remaining text. Default: the text will be searched for the next occurrence of
begoptlistchar.

5.3 Multi-Line Text with Textflows 91

If the text actually contains inline option lists you can avoid the conflict between text
contents and the begoptlistchar for starting an inline option list by using one of the fol-
lowing methods:

> Replace all occurrences of the < character in the text with the corresponding numeric
or character entity reference (< or <) and start inline option lists with the lit-
eral < character:

A<B<fontname=Helvetica encoding=winansi>

Note that this method does not work for fonts with encoding=builtin.
> Set the begoptlistchar option in the optlist parameter of PDF_create_textflow() or an

inline option list to a character which is not used in the text (e.g. $), and use this char-
acter to start inline option lists:

<begoptlistchar=$>A<B$fontname=Helvetica encoding=winansi>

> Specify the length of the next text fragment (until the start of the next inline option
list) in the preceding inline option list using the textlen option:

<textlen=3>A<B<fontname=Helvetica encoding=winansi>

Note If an inline option list is provided immediately after another option list, they are assumed to
enclose a text fragment of zero length. This is important when supplying the textlen option in
the first option list.

C++ Java String fit_textflow(int textflow, double llx, double lly, double urx, double ury, String optlist)
Perl PHP string fit_textflow(int textflow, float llx, float lly, float urx, float ury, string optlist)

C const char *PDF_fit_textflow(PDF *p,
int textflow, double llx, double lly, double urx, double ury, const char *optlist)

Format the next portion of a Textflow.

textflow A Textflow handle returned by a call to PDF_create_textflow() or PDF_add_
textflow().

llx, lly, urx, ury x and y coordinates of the lower left and upper right corners of the tar-
get rectangle (the fitbox) in user coordinates. The corners can also be specified in reverse
order. Shapes other than a rectangle can be filled with the wrap option.

optlist An option list specifying processing options according to Table 5.14. The follow-
ing options can be used:
blind, createfittext, createlastindent, exchangefillcolors, exchangestrokecolors, firstlinedist,
fitmethod, fontscale, lastlinedist1, linespreadlimit, maxlines, minfontsize, orientate,
returnatmark, rewind, rotate, showborder, showtabs, stamp, truncatetrailingwhitespace,
verticalalign1, wrap

Returns A string which specifies the reason for returning from the function:
> _stop: all text in the Textflow has been processed. If the text was empty, _stop will al-

ways be returned, even if the return or mark/returnatmark option was supplied.
> _nextpage: Waiting for the next page (caused by a form feed character U+000C). An-

other call to PDF_fit_textflow() is required for processing the remaining text.
> _boxfull: Some text was placed in the fitbox, but no more space is available, or the

maximum number of lines (as specified via the maxlines option) has been placed in

92 Chapter 5: Text and Table Formatting

the fitbox, or fitmethod=auto and minfontsize has been specified but the text didn’t fit
into the fitbox. Another call to PDF_fit_textflow() is required for processing the re-
maining text.

> _boxempty: The box doesn’t contain any text at all after processing. This may happen
if the size of the fitbox is too small to hold any text, or a wrapbox was larger than the
fitbox. No more calls to PDF_fit_textflow() with the same fitbox should be issued in
order to avoid infinite loops.

> _mark#: The option returnatmark has been specified with the number #, and the
mark with the number specified in this option has been placed.

> Any other string: The string supplied to the return command in an inline option list.

If there are multiple simultaneous reasons for returning, the first in the list (from top to
bottom) will be reported. The returned string is valid until the next call to this function.

Details The current text and graphics states do not influence the text output created by this
function (this is different from PDF_fit_textline()). Use fillcolor, strokecolor and other text
appearance options (see Table 5.2) in PDF_create_textflow() or PDF_add_textflow() to con-
trol the appearance of the text. After returning from this function the text state will be
unchanged. However, the textx/texty parameters will be adjusted to point to the end of
the generated text output (unless the blind option has been set to true).

Scope page, pattern, template, glyph

Table 5.14 Options for PDF_fit_textflow()

option explanation

blind (Boolean) If true, no output will be generated, but all calculations will be performed and the formatting
results can be checked with PDF_info_textflow(). Default: false

createfittext (Boolean) If true the text placed in the current fitbox will be saved in memory so that it can later be re-
trieved with a call to PDF_info_textflow() and the keyword fittext. Default: true

createlast-
indent

(Option list) Reserve some space at the end of the last line in the fitbox and optionally create a matchbox
which can be used to fill the reserved space. The reserved space may be useful to add continuation dots,
an image, a link to the continuation of the text, etc. at the end of the text. Supported suboptions:
rightindent (Float or percentage) Additional right indent of the last text line in the fitbox in user coordi-

nates or as percentage of the width of the fitbox. The value will be added to the value of the
rightindent option of PDF_add/create_textflow() . Default: 0

matchbox (Option list according to Table 6.3) Create a matchbox at the end of the last line. If the
matchbox option boxwidth is not specified, the value of rightindent will be used as
boxwidth. If boxwidth=0 no box will be created.

exchange-
fillcolors

(List with an even number of colors) Each pair in the list specifies an original fill color and a replacement
color. Whenever the Textflow specifies the original fill color within the fitbox it will be replaced with the
specified replacement color. This may be useful to adjust the colors to the background. Example:
exchangefillcolors={{gray 0} white Orchid DeepPink {rgb 1 0 1} MediumBlue}

exchange-
strokecolors

(List with an even number of colors) Each pair in the list specifies an original stroke color and a replace-
ment color. Whenever the Textflow specifies the original stroke color within the fitbox it will be replaced
with the specified replacement color. This may be useful to adjust the colors to the background.

5.3 Multi-Line Text with Textflows 93

firstlinedist1 (Float, percentage, or keyword) Distance between the top of the fitbox and the baseline for the first line
of text, specified in user coordinates, as a percentage of the relevant font size (the first font size in the
line if fixedleading=true, and the maximum of all font sizes in the line otherwise), or as a keyword. De-
fault: leading.
leading The leading value determined for the first line; typical diacritical characters such as À will

touch the top of the fitbox.
ascender The ascender value determined for the first line; typical characters with larger ascenders, such

as d and h will touch the top of the fitbox.
capheight The capheight value determined for the first line; typical capital uppercase characters such as

H will touch the top of the fitbox.
xheight The xheight value determined for the first line; typical lowercase characters such as x will

touch the top of the fitbox.
If fixedleading=false the maximum of all leading, ascender, xheight, or capheight values found in
the first line will be used.

fitmethod (Keyword) Specifies the method used to fit the text into the fitbox. Default: clip
auto PDF_fit_textflow() will repeatedly be called in blind mode with reduced font size and other

font-related options (see fontscale) until the text fits into the fitbox (but see also option
minfontsize)

clip The text will be truncated at the bottom of the fitbox.
nofit The text can extend beyond the bottom of the fitbox.

fontscale (Float or percentage) Values of fontsize and absolute values (but not percentages) of leading, min-
spacing, maxspacing, spreadlimit, and space will be multiplied with the supplied scaling factor or per-
centage. Default: 1 if rewind=0, otherwise the value supplied with the corresponding call to PDF_fit_
textflow().

gstate (Gstate handle) Handle for a graphics state retrieved with PDF_create_gstate(). The graphics state af-
fects all text placed with this function. If another graphics state has already been supplied to PDF_add/
create_textflow() both graphics states will be merged. Default: no graphics state (i.e. current settings
will be used)

lastlinedist1 (Float, percentage, or keyword; will be ignored for fitmethod=nofit) Minimum distance between the
baseline for the last line of text and the bottom of the fitbox, specified in user coordinates, as a percent-
age of the font size (the first font size in the line if fixedleading=true, and the maximum of all font sizes
in the line otherwise), or as a keyword. Default: 0, i.e. the bottom of the fitbox will be used as baseline,
and typical descenders will extend below the fitbox. The following keyword can be used:
descender The descender value determined for the last line; typical characters with descenders, such as g

and j will touch the bottom of the fitbox.
If fixedleading=false the maximum of all descender values found in the last line will be used.

linespread-
limit

(Float or percentage; only for verticalalign=justify) Maximum amount in user coordinates or as per-
centage of the leading for increasing the leading for vertical justification. Default: 200%

maxlines (Integer or keyword) Maximum number of lines in the fitbox, or the keyword auto which means that as
many lines as possible will be placed in the fitbox. When the maximum number of lines has been placed
PDF_fit_textflow() will return the string _boxfull. Default: auto

minfontsize (Float or percentage) Minimum font size allowed when text is scaled down to fit into the fitbox, especial-
ly for fitmethod=auto. The limit is specified in user coordinates or as a percentage of the height of the
fitbox. If the limit is reached and the text still does not fit the string _boxfull will be returned. Default:
0.1%

mingapwidth (Float or percentage) Minimal horizontal width for fitting text between shapes (e.g. between wrap con-
tours) in user coordinates or as a percentage of the fontsize. This may be useful to avoid ugly formatting
results in cases where only small gaps are left between wrap contours. Default: 10%

Table 5.14 Options for PDF_fit_textflow()

option explanation

94 Chapter 5: Text and Table Formatting

orientate (Keyword) Specifies the desired orientation of the text when it is placed. Default: north.
north upright
east pointing to the right
south upside down
west pointing to the left

returnatmark (Integer) PDF_fit_textflow() will return prematurely at the text position where the Textflow option mark
is defined with the specified number. The return reason string will be _mark#, where # is the number
specified in this option.

rewind (Integer: -2, -1, 0, or 1) State of the supplied Textflow is reset to the state before some other call to PDF_
fit_textflow() with the same Textflow handle. Default: 0.
1 Rewind to the state before the first call to PDF_fit_textflow().

0 Don’t reset the Textflow.
-1 Rewind to the state before the last call to PDF_fit_textflow().
-2 Rewind to the state before the second last call to PDF_fit_textflow().

rotate (Float) Rotate the coordinate system, using the lower left corner of the fitbox as center and the specified
value as rotation angle in degrees. This results in the fitbox and the text being rotated. The rotation will
be reset when the text has been placed. Default: 0

showborder (Boolean) If true, the border of the fitbox and all wrap boxes will be stroked (using the current graphics
state). This may be useful for development and debugging. Default: false

showtabs (Keyword) Tab stops and left indents will be visualized with vertical lines as a debugging aid. The lines
will be drawn according to the graphics state which was active before calling PDF_fit_textflow() (de-
fault: none):
none no lines will be drawn
fitbox lines will be drawn over the full height of the fitbox
validarea lines will be drawn only in vertical area where they are valid

stamp (Keyword) This option can be used to create a diagonal stamp within the fitbox. Line breaks for the
stamp text should be specified explicitly (i.e. with newline characters or the newline option). If the text
does not contain any explicit line breaks a single-line stamp will be created. The generated stamp text
will be as large as possible, but not larger than the specified fontsize. Supported keywords (default:
none):
ll2ur The stamp will run diagonally from the lower left corner to the upper right corner.
ul2lr The stamp will run diagonally from the upper left corner to the lower right corner.
none No stamp will be created.

truncate-
trailing-
whitespace

(Boolean) Control treatment of fitboxes which contain only trailing whitespace, i.e. the text in the fitbox
starts with whitespace and there is only whitespace until the end of the Textflow. If this option is true,
trailing whitespace is removed, i.e. the fitbox is treated as empty and the return value is _stop. If this op-
tion is false, the whitespace is processed like regular text, i.e. the function may return a value different
from _stop (depending on the amount of trailing whitespace) and the textendx/y and other keywords
of PDF_info_textflow() take the whitespace into account. truncatetrailingwhitespace=false may be
useful if the original text must be processed without any whitespace removal. Default: true

Table 5.14 Options for PDF_fit_textflow()

option explanation

5.3 Multi-Line Text with Textflows 95

C++ Java double info_textflow(int textflow, String keyword)
Perl PHP float info_textflow(int textflow, string keyword)

C double PDF_info_textflow(PDF *p, int textflow, const char *keyword)

Query the current state of a Textflow after a call to PDF_fit_textflow().

textflow A Textflow handle returned by a call to PDF_add/create_textflow() or PDF_fill_
textblock() with the textflowhandle option.

keyword A keyword specifying the requested information according to Table 5.16.

Returns The value of some Textflow parameter as requested by keyword. This function returns
correct geometry information even in blind mode (unlike the textx/texty parameters).

Scope any except object

verticalalign1 (Keyword) Vertical alignment of the text in the fitbox; the firstlinedist and lastlinedist options
will be taken into account as appropriate (default: top):
top Formatting will start at the first line, and continue downwards. If the text doesn’t fill the

fitbox there may be whitespace below the text.
center The text will be vertically centered in the fitbox. If the text doesn’t fill the fitbox there may be

whitespace both above and below the text.
bottom Formatting will start at the last line, and continue upwards. If the text doesn’t fill the fitbox

there may be whitespace above the text.
justify The text will be aligned with top and bottom of the fitbox. In order to achieve this the leading

will be increased up to the limit specified by linespreadlimit. If this limit is exceeded no
justification will be performed. The height of the first line will only be increased if
firstlinedist=leading.

wrap (Option list according to Table 5.15) The text will run around the areas specified with the suboptions list-
ed in Table 5.15. This can be used to place images or paths within the Textflow and wrap the text around
it, or to fill arbitrary shapes with text. The fitbox will be filled according to the fillrule option, starting
at the border of the fitbox.
By default, the specified areas will not contain any text (except where they overlap), i.e. the text is
wrapped around the shapes. Using the addfitbox and inversefill options the opposite effect can be
achieved: the specified areas will be filled with text, and the rest of the fitbox remains empty. This can be
used to fill arbitrary shapes (and not only the rectangle supplied in the llx/lly/urx/ury parameters)
with text.
Absolute and relative coordinate values will be interpreted in the user coordinate system. A relative coor-
dinate will be added to the previous absolute coordinate. Up to 256 values can be supplied as relative val-
ues. Percentages will be interpreted in the fitbox coordinate system, i.e. the lower left corner of the fitbox
is (0, 0) and the upper right corner is (100, 100) (even in a topdown system). Up to 256 values can be sup-
plied as percentage. Examples:
Exclude a box with relative coordinates: wrap={ boxes={{120r 340r 50r 60r}} }
(equivalent to wrap={ boxes={{120 340 170 400}} }
Exclude the upper right quarter of the fitbox: wrap={ boxes={{50% 50% 100% 100%}} }
Fill a triangular shape: wrap={ addfitbox polygons={{50% 80% 30% 40% 70% 40% 50% 80%}} }
Exclude the area of an image with a matchbox called image1: wrap={ usematchboxes={{ image1 }}}

1. The firstlinedist, lastlinedist and verticalalign options always refer to the fitbox, even in the presence of wrap elements.
This means – especially in the case of inverse filling, i.e. the wrap elements are filled with text – that Textflow will not use the bounding
box of the wrap elements to determine the distance between text and fitbox borders and the position of the text box according to the
verticalalign option. This may lead to unexpected results, especially if the outer edges of the wrap elements don’t touch the fitbox.
This effect can almost completely be avoided by supplying wrap elements which touch the fitbox.

Table 5.14 Options for PDF_fit_textflow()

option explanation

96 Chapter 5: Text and Table Formatting

Table 5.15 Suboptions for the wrap option of PDF_fit_textflow()

option explanation

addfitbox (Boolean) If true, the fitbox will be added to the wrap area. As a result, the shapes specified with other
wrapping options will be filled with text instead of wrapping the text around the shapes. Default:
false

beziers (List of two or more Bézier curves) Two or more Bézier curves which will be added to the wrap area.

boxes (List of rectangles) One or more rectangles which will be added to the wrap area.

circles (List of circles) One or more circles which will be added to the wrap area.

creatematch-
boxes

(List of option lists) Create matchboxes from one or more rectangles in the boxes option. Each option
list corresponds to one entry in the boxes option (ordering is relevant), and controls the creation of a
matchbox. All relevant matchbox options in Table 6.3 can be used. A suboption list can be empty; in this
case no matchbox will be created for the corresponding wrap box.

fillrule (Keyword) Specifies the method for determining the interior of overlapping wrap shapes (default: even-
odd). See Table 7.2 for details:
evenodd Use the even-odd rule.
winding Use the non-zero winding number rule. Use this rule to process the interior of overlapping

circles (i.e. to avoid »doughnut holes«) , or to process the union of overlapping shapes
(instead of the intersection).

inversefill (Boolean) If true, wrap shape processing starts at the first intersection of the text line with the border of
a wrap element inside the fitbox. If false, processing starts at the fitbox border. If fillrule=evenodd,
the option inversefill=true has the same effect as addfitbox=true. If fillrule=winding, the option
addfitbox=true leads to an empty or a full fitbox (for inversefill=false or true, respectively).

lineheight (List with two elements, each being a positive float or a keyword) Defines the vertical extent of the text
line to be used for calculating the intersection with wrap areas. Two keywords/floats specify the extent
above and below the text baseline. Supported keywords:
none (no extent), xheight, descender, capheight, ascender, fontsize, leading, textrise
Default: {ascender descender}

usematch-
boxes

(List of string lists) The first element in each list is a name string which specifies a matchbox. The second
element is either an integer specifying the number of the desired rectangle, or the keyword all to spec-
ify all rectangles referring to the selected matchbox. If the second element is missing, it defaults to all.
The bounding box of each rectangle will be added to the wrap area.

offset (Float or percentage) Horizontal distance between the text and the contour of the wrap area, supplied
in user coordinates or as a percentage of the width of the fitbox. This can be used to horizontally extend
the wrap area. Default: 0

paths (List of option lists) One or more path objects which will be added to the wrap area. Supported subop-
tions:
path (Path handle; required) Handle for the path to be added to the wrap area.
refpoint (List of two floats or percentages) Coordinates of the reference point for the path in user

coordinates or as percentages of the width and height of the fitbox. Default: {0 0}
The following options of PDF_draw_path() can also be used (see Table 6.1 and Table 7.8):
align, attachmentpoint, boxsize, close, fitmethod, orientate, position, round, scale, subpaths

polygons (List of polylines) One or more polylines (not necessarily closed) which will be added to the wrap area.

5.3 Multi-Line Text with Textflows 97

Table 5.16 Keywords for PDF_info_textflow()

keyword explanation

boundingbox Handle of the path containing the Textflow’s bounding box in user coordinates or -1 (0 in PHP)

boxlinecount Number of lines in the last fitbox

firstparalinecount Number of lines in the first paragraph of the fitbox

firstlinedist Distance between the first text baseline and the fictitious baseline above (if verticalalign=top
this will be the upper border of the fitbox)

fittext String index for a text string which corresponds to the text placed in the previous call to PDF_fit_
textflow(). This can be used to determine the amount of text which could be placed in the fitbox.
The string will be normalized as follows: encoding is UTF-16 in Unicode-capable languages or
(EBCDIC-)UTF-8 otherwise, line breaks will be marked with U+000A, and horizontal tabs will be
replaced with a space character U+0020.

fontscale The value of fontscale after the most recent call to PDF_fit_textflow() with fitmethod=auto.

lastfont Handle of the font used in the last text line in the fitbox

lastfontsize Font size used in the last text line in the fitbox

lastmark Number of the last mark found in the processed part of the Textflow in the last fitbox (marks can
be set with the mark option)

lastlinedist Distance between the last text baseline and the fictitious baseline below, assuming unmodified
leading (if verticalalign=bottom this will be the lower border of the fitbox)

lastparalinecount Number of lines in the last paragraph of the fitbox

leading The current value of the leading option, as determined by the text and options within the Text-
flow

leftlinex1, leftliney1 The x and y coordinates of the line with the leftmost start in the most recently filled fitbox, in
current user coordinates

maxlinelength Length of the longest text line in the most recently filled fitbox

maxliney1 The y coordinate of the baseline of the longest text line in the most recently filled fitbox, in cur-
rent user coordinates

minlinelength Length of the shortest text line in the most recently filled fitbox

minliney1 The y coordinate of the baseline of the shortest text line in the most recently filled fitbox, in cur-
rent user coordinates

returnreason String index which can be used with the string parameter in PDF_get_parameter() (see Table
2.3) to retrieve the return reason of the most recent direct or indirect call to PDF_fit_textflow().
The retrieved return reason will be one of the return strings of PDF_fit_textflow(). This is useful
for querying the result of indirect Textflow calls issued internally by PDF_fill_textblock().

rightlinex1, rightliney1 The x and y coordinates of the line with the rightmost end in the most recently filled fitbox, in
current user coordinates

split Specifies whether word splitting occurred in the last fitbox:
0 No word had to be split.
1 At least one word had to be split.

textendx, textendy The x or y coordinate of the current text position after the most recently filled fitbox in current
user coordinates

textheight Height of the bounding box of the whole text (taking firstlinedist and lastlinedist into ac-
count) in current user coordinates

98 Chapter 5: Text and Table Formatting

C++ Java void delete_textflow(int textflow)
Perl PHP delete_textflow(int textflow)

C void PDF_delete_textflow(PDF *p, int textflow)

Delete a Textflow and all associated data structures.

textflow A Textflow handle returned by a call to PDF_create_textflow() or PDF_add_
textflow().

Details Textflows which have not been deleted with this function will be deleted automatically
at the end of the enclosing document scope. However, failing to call PDF_delete_
textflow() may significantly slow down the application if many Textflows are generat-
ed.

Scope any

textwidth Width of the bounding box of the whole text in current user coordinates

used Percentage of text (0...100) which has been placed so far

x1, y1, ... , x4, y4 Coordinates of the bounding box of the whole text (taking firstlinedist and lastlinedist
into account) in current user coordinates

1. If rotate is different from 0 this value refers to the rotated system.

Table 5.16 Keywords for PDF_info_textflow()

keyword explanation

5.4 Table Formatting 99

5.4 Table Formatting
Cookbook A full code sample can be found in the Cookbook topic tables/starter_table.

C++ Java int add_table_cell(int table, int column, int row, string text, string optlist)
Perl PHP int add_table_cell(int table, int column, int row, string text, string optlist)

C int PDF_add_table_cell(PDF *p,
int table, int column, int row, const char *text, int len, const char *optlist)

Add a cell to a new or existing table.

table A valid table handle retrieved with another call to PDF_add_table_cell(), or -1 (in
PHP: 0) to start a new table. The table handle must not yet have been used in a call to
PDF_fit_table(), i.e. all table contents must be defined before placing the table on the
page.

column, row Number of the column and row containing the cell. If the cell spans mul-
tiple columns and/or rows the numbers of the leftmost column and the topmost row
must be supplied. The first column/row has number 1.

text (Content string) Text for filling the cell. If text is not empty it will be used for fill-
ing the cell with PDF_fit_textline().

len (C language binding only) Length of text (in bytes) for UTF-16 strings. If len = 0 a
null-terminated string must be provided.

optlist An option list specifying table cell formatting details according to Table 5.17.
The following options can be used:

> General option: errorpolicy (see Section 2.5, »Exception Handling«, page 27)
> Column and row definition: colwidth, colscalegroup, minrowheight, return, rowheight,

rowjoingroup, rowscalegroup
> Cell properties: checkwordsplitting, colspan, margin, marginleft, marginbottom,

marginright, margintop, matchbox, rowspan
> Cell contents: annotationtype, continuetextflow, fieldname, fieldtype, fitannotation,

fitfield, fitimage, fitpdipage, fittextline, fittextflow, fitpath, image, path, pdipage, repeat-
content, textflow

Returns A table handle which can be used in subsequent table-related calls. If errorpolicy=return
the caller must check for a return value of -1 (in PHP: 0) since it signals an error. In case
of an error only the last cell definition will be discarded; no contents will be added to the
table, but the table handle is still valid. The returned table handle can not be reused
across multiple PDF output documents.

Details A table cell can be filled with images, imported PDF pages, path objects, form fields, an-
notations, Textflows, or Textlines. Multiple content types can be specified for a particu-
lar cell in a single function call.

See the PDFlib Tutorial for a description of the table formatting algorithm and width
and height calculations.

Scope any except object

http://www.pdflib.com/pdflib-cookbook/tables/starter-table

100 Chapter 5: Text and Table Formatting

Table 5.17 Options for PDF_add_table_cell()

key explanation

annotation-
type

(String) Specifies the type of an annotation to be inserted in the table cell according to Table 12.6.

checkword-
splitting

(Boolean; only relevant for Textflow cells) If true, the table formatter will check whether the Textflow
requires at least one forced word splitting when fitting the text into the table cell. If so, the cell width will
be increased in an attempt to avoid word splittings. Default: true

colscale-
group1

(String) Name of a column group to which the column will be added. All columns in a group will be scaled
uniformly if one of the columns in the group must be enlarged to completely hold long text. If a cell
spans multiple columns the affected columns form a scale group automatically.

colspan (Integer) Number of columns spanned by the cell. Default: 1

colwidth1 (Float or percentage) Width of the column specified in the column parameter. The width can be specified
in user coordinates2, or as a percentage of the width of the table’s first fitbox (see PDF_fit_table()). User
coordinates and percentages must not be mixed, i.e. either user coordinates or percentages must be used
in all column width definitions of a table. The column width may be increased automatically if the col-
umn traverses cells containing text. Images and PDF pages in table cells don’t have any influence on col-
umn widths. Default: see option colwidthdefault of PDF_fit_table()

continue-
textflow

(Boolean; only relevant for Textflows) If true the contents of the Textflow specified in the textflow op-
tion can be continued in another cell provided that the other cell is filled with the same Textflow handle
and continuetextflow=true as well. The parts of the Textflow will be placed in the order in which the
cells are added. PDFlib will not adjust the cell size to the whole Textflow, and the checkwordsplitting
option will be ignored. Therefore, a suitable cell size should be defined.
If false the Textflow will be started from the beginning. Default: false

fieldname (Hypertext string) Form field name for fieldtype.

fieldtype (String) Specifies the type of a form field to be inserted in the table cell according to Table 12.9. Form field
groups should be defined outside of tables.

fitannotation (Option list) Annotation options for annotationtype according to Table 12.7.

fitfield (Option list) Form field options for fieldtype according to Table 12.10.

fitimage (Option list; only relevant for images and templates) Option list for PDF_fit_image(). This option list will
be applied to place the image or template supplied in the image option in the cell. The lower left corner of
the inner cell box will be used as the reference point.
Default: boxsize={<width> <height>} fitmethod=meet position=center, where <width> and
<height> are the calculated width and height of the inner cell box. This calculated option list will be
prepended to the user-specified option list.3

fitpath (Option list; only relevant for path objects) Option list for PDF_draw_path(). This option list will be ap-
plied to place the path object specified in the path option within its bounding box in the cell. The lower
left corner of the inner cell box will be used as reference point.
Default: boxsize={<width> <height>} fitmethod=meet position=center, where <width> and
<height> are the calculated width and height of the inner cell box. This calculated option list will be
prepended to the user-specified option list.3

fitpdipage (Option list; only relevant for PDI pages; only if PDI is available) Option list for PDF_fit_pdi_page(). This
option list will applied to place the supplied page in the cell. The lower left corner of the inner cell box will
be used as the reference point.
Default: boxsize={<width> <height>} fitmethod=meet position=center, where <width> and
<height> are the calculated width and height of the inner cell box. This calculated option list will be
prepended to the user-specified option list.3

5.4 Table Formatting 101

fittextflow (Option list; only relevant for Textflows) Option list for PDF_fit_textflow(). This option list will be applied
to place the Textflow supplied in the textflow option in the cell. The inner cell box will be used as fitbox.
Default: verticalalign=center lastlinedist=descender. This option list will be prepended to the
user-specified option list.

fittextline (Option list; only relevant for textlines) Option list for PDF_fit_textline(). This option list will be applied
to fit the supplied text into the cell. The lower left corner of the inner cell box will be used as the reference
point. Options which have not been specified will be replaced with the respective defaults; the current
text state is not taken into account.
Default: boxsize={<width> <height>} fitmethod=nofit position=center, where <width> and
<height> are the calculated width and height of the inner cell box. This calculated option list will be
prepended to the supplied option list.3

image (Image handle) The image or template associated with the handle will be placed in the inner cell box.

margin
marginleft
marginbottom
marginright
margintop

(Float or percentage) Left/bottom/right/top cell margins in user coordinates (must be greater than or
equal to 0) or as a percentage of the cell width or height (must be less than 100%). The specified margins
define the inner cell box which serves as the fitbox for the cell contents. Default for margin: 0; Default
for all others: margin

matchbox (Option list) Option list with matchbox details according to Table 6.3.

minrow-
height1

(Float or percentage) If a row cannot completely be placed in a table instance, this option specifies
whether the row can be split and how small the fragments can get. The minimum fragment height can
be specified in user coordinates or as a percentage of the row height. Default: 100%, i.e. no splitting

path (Path handle) The path object within its bounding box will be placed in the inner cell box according to
the fitpath option.

pdipage (Page handle) The imported PDF page associated with the handle will be placed in the inner cell box. De-
fault: none

repeatcontent (Boolean) Specify whether the contents of a table cell will be displayed repeatedly if a cell or row is split
between several table instances. Default: true
Splitting a cell: If the last rows spanned by a cell don’t fit into the fitbox, the cell will be split. Except for
Textflows (which will not be repeated), the cell contents will be repeated in the next table instance if
repeatcontent=true. Otherwise it will not be repeated.
Splitting a row: If the last body row doesn’t fit into the fitbox, it will usually not be split but will com-
pletely be placed in the next table instance. You can decrease the minrowheight value to split the last
body row with the given percentage of contents in the first instance, and place the remaining parts of
that row in the next instance. Except for Textflows (which will not be repeated), the cell contents will be
repeated in the next table instance if repeatcontent=true. Otherwise it will not be repeated.

return1 (String) PDF_fit_table() will stop after placing the specified row, and will return the specified string. The
string must not start with an underscore character ’_’ . If the specified row is part of a join group it must
be the last row of the group; otherwise an error will occur.

rowheight1 (Float or percentage) Height of the row specified in the row parameter. The height can be specified in user
coordinates2, or as a percentage of the height of the table’s first fitbox (see PDF_fit_table()). User coordi-
nates and percentages must not be mixed, i.e. either user coordinates or percentages must be used in all
row height definitions of a table. The row height may be increased automatically if the row traverses
cells containing text. Images and PDF pages in table cells don’t have any influence on row heights. De-
fault: see option rowheightdefault of PDF_fit_table()

rowscale-
group1

(String) Name of a row group to which the row will be added. All rows in a group will be scaled uniformly
if one of the rows in the group must be enlarged to completely hold long text. If a cell spans multiple
rows the affected rows form a scale group automatically.

Table 5.17 Options for PDF_add_table_cell()

key explanation

102 Chapter 5: Text and Table Formatting

C++ Java String fit_table(int table, double llx, double lly, double urx, double ury, String optlist)
Perl PHP string fit_table(int table, float llx, float lly, float urx, float ury, string optlist)

C const char *PDF_fit_table(PDF *p,
int table, double llx, double lly, double urx, double ury, const char *optlist)

Fully or partially place a table on the page.

table A valid table handle retrieved with a call to PDF_add_table_cell().

llx, lly, urx, ury Coordinates of the lower left and upper right corners of the target rect-
angle for the table instance (the fitbox) in user coordinates. The corners can also be
specified in reverse order.

optlist An option list specifying filling details according to Table 5.18. The following
options can be used:

> General option: errorpolicy (see Section 2.5, »Exception Handling«, page 27)
> Fitting options according to Table 6.1: fitmethod, position, showborder
> General table options: blind, colwidthdefault, horshrinklimit, rewind, rowheightdefault,

vertshrinklimit
> Table contents: header, footer
> Table decoration: fill, firstdraw, gstate, stroke
> Visualization aids for development and debugging: debugshow, showcells, showgrid

Returns A string which specifies the reason for returning from the function:
> _stop: all rows in the table have been processed.
> _boxfull: there are still rows to be placed, but not enough space is available in the ta-

ble’s fitbox; another call to PDF_fit_table() is required for processing the remaining
rows.

> _error: an error occurred; call PDF_get_errmsg() to obtain details about the problem.
> Any other string: the string supplied to the return option in a call to PDF_add_table_

cell().

The error behavior can be changed with the errorpolicy parameter or option.

Details Place the table on the page. The table cells must have been filled with prior calls to PDF_
add_table_cell(). If the full table doesn’t fit in the fitbox, the first table instance will be
placed; more table instances can be placed with subsequent calls to this function de-

rowjoin-
group1

(String) Name of a row group to which the row will be added. All rows in the group will be kept together
in a table instance. The rows in a group must be numbered consecutively. If a cell spans multiple rows the
affected rows do not automatically form a join group.

rowspan (Integer) Number of rows spanned by the cell. Default: 1

textflow (Textflow handle) The Textflow associated with the handle will be placed in the inner cell box. The
continuetextflow option controls the behavior for a Textflow handle which is used in multiple cells.
The Textflow handle must not be used outside the table. Default: no Textflow

1. The last specification of this option is dominant; earlier specifications for the same row or column will be ignored.
2. More precisely, the coordinate system which is in effect when PDF_fit_table() is called for placing the first table instance.
3. The box size will be calculated automatically; the boxsize option in the supplied option list will be ignored.

Table 5.17 Options for PDF_add_table_cell()

key explanation

5.4 Table Formatting 103

pending on the return value. The contents of a table cell will be placed in the following
order:

> Filling: the areas specified with the fill option will be filled in the following order:
table, colother, colodd, coleven, col#, collast, rowother, rowodd, roweven, row#, rowlast,
header, footer.

> Matchbox filling: single cell areas which are defined by a matchbox definition.
> Contents: the specified cell contents will be placed in the following order: image, im-

ported PDF page, path objects, Textflow, Textline, annotations, form fields.
> Matchbox ruling: single cell areas which are defined by a matchbox definition.
> Ruling: the lines specified with the stroke option will be stroked according to the

linecap and linejoin suboptions of the stroke option in the following order: other,
horother, hor#, horlast, vertother, vert#, vertlast, frame (the order of horizontal and ver-
tical lines can be changed with the firstdraw option). Cells which span multiple rows
or columns will not be intersected by strokes. Similarly, lines will not be stroked
around cells with a matchbox which specifies border decoration (unless the match-
box uses the inner cell box). The table border lines vert0, hor0, vertN, and horN will be
suppressed if frame is specified.

> Named matchboxes: these can be filled with other elements like annotations, form
fields, images etc. outside of the table functions.

Scope Generally page, pattern, template, glyph; however, if the table contains form fields or
annotations the respective scopes are dominant. For example, a table containing form
fields or annotations cannot be placed on a template.

Table 5.18 Options for PDF_fit_table()

key explanation

blind (Boolean) If true, all calculations will be performed, but no output will be created. The formatting results
can be checked with PDF_info_table(). Default: false

colwidth-
default

(Float or keyword; only relevant in the first call to PDF_fit_table() for a particular table) Default width
for columns which do not contain any Textline nor Textflow and for which the colwidth option of PDF_
add_table_cell() was not specified. The default width can be specified as an absolute value or as a
keyword. The value 0 (zero) is equivalent to the keyword distribute. The following keywords are
supported (default: auto):
auto Columns with unspecified width which contain only Textline cells will have the width of the

text. The remaining width of the fitbox will be distributed among all rows with Textflow or
other cells. The table covers the full width of the fitbox.

distribute The width of the fitbox will be distributed equally among all columns with unspecified width
and which don’t contain any Textline. The table covers the full width of the fitbox unless it
contains only Textlines.

minimum Columns with unspecified width which contain only Textline cells will have the width of the
text, i.e. the smallest possible width to hold the text.

In order to create columns with minimal width you can supply a small value (e.g. 1). The width of all col-
umns which contain Textline or Textflow cells will be adjusted automatically (see PDFlib Tutorial).

debugshow (Boolean) If true, all errors for tables which are too high, too wide, or where the cells get too small will be
suppressed and logged instead. The resulting table instance will be created as a debugging aid although
the table is damaged. Default: false

104 Chapter 5: Text and Table Formatting

fill (List of option lists) This option can be used to fill rows or columns with color (the matchbox option can be
used to fill single cells with color, see Section 6.2, »Matchboxes«, page 115):
area (Keyword) Table area(s) to be filled:

col# column number # in the table
collast last column
coleven all columns with even numbers (according to col in PDF_add_table_cell())
colodd all columns with odd numbers
colother all unspecified columns
row# row number # in the table
rowlast last body row in the table instance
roweven all rows with even numbers (according to row in PDF_add_table_cell())
rowodd all rows with odd numbers
header all rows in the header group
footer all rows in the footer group
rowother all unspecified body rows
table complete table area (i.e. all rows in the table)

The following graphics appearance options according to Table 7.2 can also be used:
fillcolor, shading
Examples:
fill all rows in the table with red: fill = { {area=table fillcolor={rgb 1 0 0}} }
fill odd-numbered rows with green and even-numbered rows with red:
fill = { {area=rowodd fillcolor={rgb 0 1 0}} {area=roweven fillcolor={rgb 1 0 0}} }

Use fillcolor=none to suppress shading for a table area.

firstdraw (Keyword) Specifies the order in which horizontal and vertical lines will be created (default: vertlines):
horlines Horizontal lines will be created first.
vertlines Vertical lines will be created first.

footer (Integer) Number of final (footer) rows in the table definition which will be repeated at the bottom of the
table instance. Default: 0 (no footer rows)

gstate (Gstate handle) Handle for a graphics state retrieved with PDF_create_gstate(). All table decorations will
be subject to the supplied graphics state. The cell contents will not be affected. Default: no gstate (i.e.
current settings will be used).

header (Integer) Number of initial (header) rows in the table definition which will be repeated at the top of the
table instance. Default: 0 (no header rows)

horshrinklimit (Float or percentage) Lower limit for the horizontal shrinking factor which will be used when the table is
shrunk to fit in the table’s fitbox (if a percentage is supplied) or the absolute difference between the table
width and the width of the fitbox (if a float is supplied). Default: 50%

rewind (Integer: -1, 0, or 1) State of the table is reset to the state before some other call to PDF_fit_table(). Cur-
rently the following values are supported (default: 0):
1 Rewind to the state before the first call to PDF_fit_table().
0 Don’t reset the table.
-1 Rewind to the state before the last call to PDF_fit_table() (the one before the current call)

Table 5.18 Options for PDF_fit_table()

key explanation

5.4 Table Formatting 105

rowheight-
default

(Float or keyword; only relevant in the first call to PDF_fit_table() for a particular table) Default height
for rows for which the rowheight option of PDF_add_table_cell() was not specified. The default height
can be specified as an absolute value or as a keyword. If a float value is specified it will be used as default
row height unless it is smaller than the textbox height. The value 0 (zero) is equivalent to the keyword
distribute. The following keywords are supported (default: auto):
auto Rows which contain only Textline cells will have a height of two times the height of the

textbox. The remaining height of the fitbox will be distributed among all rows with Textflow
or other cells. The table covers the full height of the fitbox.

distribute The height of the fitbox will be distributed equally among all rows with unspecified height.
The table covers the full height of the fitbox.

minimum Rows with unspecified height which contain only Textline cells will have the height of the
textbox, i.e. the smallest possible height to hold the text. You can use the boxsize or margin
options to increase the height of Textline cells.

In order to create rows with minimal height you can supply a small positive value (e.g. 1). The height of
all rows which contain Textline or Textflow cells will be adjusted automatically (see PDFlib Tutorial).

showcells (Boolean) If true, the border of each inner cell box will be stroked using the current graphics state. De-
fault: false

showgrid (Boolean) If true, the vertical and horizontal boundary of all columns and rows will be stroked. Default:
false

stroke (List of option lists) This option can be used to create stroked lines at the cell borders:
line (Keyword) Table line(s) to be stroked:

vert# vertical line at the right border of column number #; vert0 is the left table border
vertfirst first vertical line (equivalent to vert0)
vertlast last vertical line
vertother all unspecified vertical lines
hor# horizontal line at the bottom of row number # in the table; row0 is the top border
horfirst first horizontal line in the table instance
horother all unspecified horizontal lines
horlast last horizontal line in the table instance
frame outer border of the table
other all unspecified lines

The following graphics appearance options according to Table 7.2 can also be used:
dasharray, dashphase, linecap, linejoin, linewidth, strokecolor
Examples:
stroke all lines with black and linewidth 1: stroke = {line=other}
stroke the outer border lines with linewidth 0.5: stroke = { {line=frame linewidth=0.5} }
stroke the outer border lines with linewidth 0.5, and all other lines with linewidth 0.1:
stroke = { {line=frame linewidth=0.5} {line=other linewidth=0.1} }

Use strokecolor=none to suppress stroking for a table area.

vertshrink-
limit

(Float or percentage) The lower limit for the vertical shrinking factor which will be used when the table is
shrunk to fit the table’s fitbox (if a percentage is supplied) or the absolute difference between the height
of the table instance and the height of the fitbox (if a float is supplied). Default: 90%

Table 5.18 Options for PDF_fit_table()

key explanation

106 Chapter 5: Text and Table Formatting

C++ Java double info_table(int table, String keyword)
Perl PHP float info_table(int table, string keyword)

C double PDF_info_table(PDF *p, int table, const char *keyword)

Retrieve table information related to the most recently placed table instance.

table A valid table handle retrieved with a call to PDF_add_table_cell(). The table han-
dle must already have been used in at least one call to PDF_fit_table() since the returned
values are meaningful only after placing a table instance on the page.

keyword A keyword specifying the requested information according to Table 5.19.

Returns The value of some table parameter as requested by keyword. This function returns cor-
rect geometry information even in blind mode.

Scope any except object

Table 5.19 Keywords for PDF_info_table()

keyword explanation

boundingbox Handle of the path containing the table instance’s bounding box in user coordinates or -1 (0 in PHP)

firstbodyrow Number of the first body row in the most recently placed table instance

height Height of the table instance

horboxgap Difference between the width of the table instance and the width of the fitbox. If the table had to be
shrunk the value will specify the deviation from the width of the fitbox (i.e. a negative value).

horshrinking Horizontal shrinking factor as a percentage of the calculated table width. If the table had to be shrunk
horizontally the value will specify the shrinking percentage, otherwise it will be 100.

lastbodyrow Number of the last body row in the most recently placed table instance

returnreason String index of the return reason

rowcount Number of rows in the most recently placed table instance (including headers and footers)

rowsplit 1 if the last row had to be split, 0 otherwise

vertboxgap Difference between the height of the most recently generated table instance and the height of the fit-
box. If the table had to be shrunk, the value will specify the deviation from the height of the fitbox (i.e. a
negative value).

vert-
shrinking

Vertical shrinking factor as a percentage of the calculated table height. If the table had to be shrunk ver-
tically the value will specify the shrinking percentage, otherwise it will be 100.

width Width of the table instance

x1, y1, ... ,
x4, y4

Coordinates of the corners of the table instance in user coordinates, counterclockwise starting at the
lower left corner

xvertline# x coordinate of the vertical line with number #. xvertline0 is the left table border.

yhorline# x coordinate of the horizontal line with number #. yhorline0 is the top table border.

5.4 Table Formatting 107

C++ Java void delete_table(int table, String optlist)
Perl PHP delete_table(int table, string optlist)

C void PDF_delete_table(PDF *p, int table, const char *optlist)

Delete a table and all associated data structures.

table A valid table handle retrieved with a call to PDF_add_table_cell().

optlist An option list specifying cleanup options according to Table 5.20.

Details Tables which have not been deleted with this function will be deleted automatically at
the end of the enclosing document scope.

Scope any

Table 5.20 Options for PDF_delete_table()

key explanation

keephandles (Boolean) If false, all handles supplied to the textflow, image, and pdipage options of PDF_add_table_
cell() will automatically be deleted. Default: false

108 Chapter 5: Text and Table Formatting

6.1 Object Fitting 109

6 Object Fitting and Matchboxes

6.1 Object Fitting
PDFlib’s fitting algorithm places a rectangular graphical object relative to a point, a hor-
izontal or vertical line, or a rectangle. The fitting algorithm is implemented in several
functions:

> PDF_fit_textline(), PDF_info_textline()
> PDF_fit_image(), PDF_info_image()
> PDF_fit_pdi_page(), PDF_info_pdi_page()
> PDF_draw_path(), PDF_info_path()
> PDF_add_table_cell() (via option lists for the fittextline, fitimage, fitpdipage, fitpath op-

tions)
> PDF_fit_table()
> PDF_fill_*block()

Note Since the fitting options for Textflow are slightly different they are not described here, but in
Section 5.3, »Multi-Line Text with Textflows«, page 83.

Table 6.1 lists fitting options which can be supplied to the fitting functions. Not all op-
tions are available for all functions, and the behavior of some options may slightly
change depending on the function; see Table 6.1 for details. The following options form
the group of fitting options:

alignchar, boxsize, dpi, fitmethod, margin, matchbox, minfontsize, orientate, position,
refpoint, rotate, scale, stamp, showborder, shrinklimit

Object box. In all cases the fitting algorithm calculates the smallest enclosing rectan-
gle of the placed object. This rectangle is called the object box. It can be modified accord-
ing to the type of object:

> Textlines (PDF_fit/info_textline(), single-line text Blocks, table cells): the default
width of the object box is the width of the text, and the default height of the text box
is the capheight of the selected font. This can be changed with the boxheight subop-
tion of the matchbox option.

> Images and templates (PDF_fit/info_image(), image Blocks, table cells): the suboption
clipping of the matchbox option can be used to define some part of the object as ob-
ject box. For TIFF and JPEG images with a clipping path the smallest enclosing rectan-
gle with edges parallel to the coordinate axes will be used as object box if the subop-
tion innerbox of the matchbox option is set.

> Imported PDF pages (PDF_fit/info_pdi_page(), PDF Blocks, table cells): the suboption
clipping of the matchbox option can be used to define some part of the object as ob-
ject box.

> Path objects (PDF_draw/info_path(), table cells): the smallest rectangle with edges
parallel to the coordinate axes which encloses the path will be used as object box.
The object box will only be calculated if the boxsize and position options have values
different from zero.

> Table instances (PDF_fit_table()): the smallest rectangle with edges parallel to the co-
ordinate axes which encloses the table instance will be used as object box.

110 Chapter 6: Object Fitting and Matchboxes

Reference point. The reference point is used as an anchor for placing the object box. It is
defined as follows:

> In PDF_fit_*() and PDF_draw_path(): the x and y function parameters;
> In PDF_info_*(): the point (0, 0); PDF_info_path() additionally supports the refpoint

option for specifying the reference point.
> PDF_add_table_cell(), PDF_fit_table(), and PDF_fill_*block(): the lower left corner of the

table cell, table instance, or PDFlib Block; PDF_fill_*block() additionally supports the
refpoint option for specifying the reference point.

Fitbox and reference line segment. The rectangle in which the object box will be
placed is called the fitbox. It has the reference point (x, y) as its lower left corner and its
size is specified by the two values of the boxsize option:

lower left corner = (x, y)
upper right corner = x + boxsize[0], y + boxsize[1] (if topdown=false)
upper right corner = x + boxsize[0], y - boxsize[1] (if topdown=true)

In addition to the definition above the fitbox can be modified as follows:
> Textlines: the fitbox can be reduced with the margin option;
> table cells: the fitbox is defined by the inner cell box, i.e. the cell box as modified by

the margin* options;
> table instances: the fitbox is defined by the llx/lly/ury/ury parameters;
> PDFlib Blocks: the fitbox is by default defined by the Block’s Rect property, but it can

be modified with the refpoint and/or boxsize options.

In the last three cases above the fitbox is always available; otherwise it is only available
if the boxsize option was specified with two values different from zero.

If boxsize[0]=0 the box degenerates to a vertical line. The fitting algorithm will place
the object box relative to this line segment. Similarly, if boxsize[1]=0 the box will be
placed relative to the resulting horizontal line segment. The vertical or horizontal line
segment is called the reference line segment.

Placing the object box. The object box can be placed in different ways:
> If no fitbox is available the object will be placed relative to the reference point (not

for table cells, table instances, and PDFlib Blocks): the lower left corner of the object
box will coincide with the reference point. Using the position option other points
within the object box can be selected. For example, position=center places the object
box’s center point at the reference point.
The option scale will be honored for images, templates, path objects, and imported
PDF pages; the option dpi will be honored for images. The fitmethod option will be ig-
nored in this case.
Path objects: if position={0 0} the bounding box will not be calculated and the origin
of the path object will coincide with the reference point.

> Relative to a reference line segment (not for table cells, table instances, and PDFlib
Blocks): this works similarly to placing an object relative to the reference point as de-
scribed above. In addition, the position option also defines a point on the line seg-
ment which will serve as reference point.

> Relative to the fitbox: The fitmethod option specifies whether and how the object box
will be forced to fit into the fit box. If fitmethod=nofit nothing will be done to restrict
the result to the fitbox. Other values of fitmethod define details of the fitting algo-

6.1 Object Fitting 111

rithm according to Table 6.2.
In this case the options scale and dpi will be ignored, and the options margin,
shrinklimit, and showborder will be honored.
The lower left corner of the object box will coincide with the lower left corner of the
fitbox. Using the position option other points within the object box and simulta-
neously the corresponding point within the fitbox can be selected. For example,
position=center places the object box’s center point at the center point of the fitbox.

Table 6.1 Fitting options for various functions

option explanation

align (List of two floats; only for path objects) The coordinates of a direction vector in user coordinates which
defines the rotation of the path object. The x direction of the path object’s coordinate system will be
aligned with the specified vector. The coordinates must not both be 0. The calculated rotation will be
added to the rotation defined by the orientate option. Default: {1 0}, i.e. no additional rotation

alignchar (Unichar < 0xFFFF or keyword; only for Textlines) If the specified character is found in the text, its lower
left corner will be aligned at the reference point. For horizontal text with orientate=north or south the
first value supplied in the position option defines the position. For horizontal text with orientate=west
or east the second value supplied in the position option defines the position.
If this option is present the formatted text may exceed beyond the fitbox. This option will be ignored if
the specified alignment character is not present in the text. If the specified character cannot be found in
the font or encoding, an exception will be thrown if glyphcheck=error. For other values of glyphcheck
the alignchar option will silently be ignored if the character is not available.
The value 0 and the keyword none suppress alignment characters. The specified fitmethod will be ap-
plied, although the text cannot be placed within the fitbox because of the forced positioning of
alignchar. Default: none

attachment-
point

(String; only for path objects) Name of the attachment point: If fitmethod=nofit the path object will be
placed so that the specified attachment point coincides with the reference point. Default: origin of the
path object

blind (Boolean) If true, no output will be generated, but all calculations will be performed and the formatting
results can be checked with the appropriate info function PDF_info_*(). Default: false

boxsize (List of floats; not for tables) Width and height of the fitbox, relative to which the object (possibly rotated
according to the rotate option) will be placed. The lower left corner of the fitbox coincides with the refer-
ence point (x, y). Placing the object is controlled by the position and fitmethod options. If width=0,
only the height is considered; If height=0, only the width is considered. In these cases the fitmethod op-
tion will be ignored and the object will be placed relative to the vertical line from (x, y) to (x,
y+height) (or (x, y-height) for topdown systems), or the horizontal line from (x, y) to (x+width, y),
according to the position option.
Default for Blocks: width and height of the Block’s Rect property
Default for all other fitting functions: {0 0}

dpi (List of floats; only for images) One or two values specifying the desired image resolution in pixels per
inch in horizontal and vertical direction. This option does not change the number of pixels in the image
(downsampling). If a single value is supplied it will be used for both dimensions. With the value zero the
image’s internal resolution will be used if available, or 72 dpi otherwise. The keyword internal is equiva-
lent to zero. The scaling resulting from this option is relative to the current user coordinate system; if the
coordinate system has been scaled the resulting physical resolution will be different from the supplied
values. The scale option will be applied in addition to the dpi values.
This option will be ignored if the fitmethod option has been supplied with one of the keywords auto,
meet, slice, or entire. Default: internal

fitmethod (Keyword) Method used to fit the object into the specified fitbox. See Table 6.2 for supported keywords.
Keywords other than nofit will be ignored if no fitbox has been specified.
Default: clip for Textflow; meet for tables, path objects and reference option; and nofit otherwise

112 Chapter 6: Object Fitting and Matchboxes

margin (List of floats; only for Textlines) One or two float values describing additional horizontal and vertical re-
ductions of the fitbox. Default: 0

matchbox (Option list; not for path objects) Option list for creating a matchbox according to Table 6.3

minfontsize (Float or percentage; only for Textflow) Minimum allowed font size when text is scaled down to fit into
the fitbox with fitmethod=auto when shrinklimit is exceeded. The limit is specified in user coordinates
or as a percentage of the height of the fitbox. If the limit is reached the text will be created with the spec-
ified minfontsize as fontsize. Default: 0.1%

orientate (Keyword or float; not for tables) Specifies the desired orientation of the object relative to the current co-
ordinate system. Default: north.
Arbitrary rotation angles (in degrees) can be specified for path objects, but not other object types. The
bounding box of the path object will be calculated after rotating the path object. All functions support
the following keywords (corresponding equivalent angles are shown in parentheses):
north upright (0)
east pointing to the right (270)
south upside down (180)
west pointing to the left (90)

position (List of floats or keywords) One or two values specifying the position of the object box relative to the ref-
erence point, the reference line segment, or the fitbox. The values specify a position within the object
box. This position is defined horizontally as percentage of the box width (first value) and vertically as
percentage of the box height (second value). This specified position coincides with the reference point, a
point on the reference line segment or a point within the fitbox. Although the values designate percent-
ages, they must be specified without any percent sign. Negative values are allowed. If both values are
equal, it is sufficient to specify a single value. Default: {0 100} for tables, center for the reference op-
tion, otherwise {0 0}
Examples:
{0 0} The lower left corner of the object box coincides with the reference point, the start of the

reference line segment, or the lower left corner of the fitbox.
{100 100} The upper right corner of the object box coincides with the reference point, the end of the

reference line segment, or the upper right corner of the fitbox.
The keywords left, center, right (in x direction) or bottom, center, top (in y direction) can be used as
equivalents for the values 0, 50, and 100. If only one keyword has been specified, the corresponding key-
word for the other direction will be added. Examples:
{left center} or {0 50} left-aligned
{center} or {50 50} centered
{right center} or {100 50} right-aligned
Only for Textlines: the keyword auto can be used for the first value in the list. It indicates right if the
writing direction of the text is from right to left (e.g. for Arabic and Hebrew text), and left otherwise
(e.g. for Latin text).

refpoint (List of floats; only for PDF_fill_*block() and PDF_info_path()) Specifies the reference point in user coor-
dinates for fitting the block contents or path.
Default for PDF_fill_*block(): lower left corner of the rectangle defined by the Block’s Rect property
Default for PDF_info_path(): {0 0}

rotate (Float; not for tables, table cells, path objects) Rotate the coordinate system, using the reference point as
center and the specified value as rotation angle in degrees. This results in the fitbox and the object being
rotated. The rotation will be reset when the object has been placed. Default: 0

Table 6.1 Fitting options for various functions

option explanation

6.1 Object Fitting 113

scale (List of floats; only for images, templates, imported PDF pages, path objects) Scales the object in horizon-
tal and vertical direction by the specified scaling factors (not percentages), using the reference point as
center. If both factors are equal it is sufficient to specify a single value. This option will be ignored if the
fitmethod option has been supplied with one of the keywords auto, meet, slice, or entire. Default:
{1 1}

stamp (Keyword; only for Textlines; will be ignored if boxsize is not specified) This option can be used to create
a diagonal stamp of maximal size in the rectangle specified with the boxsize option. More specifically,
the text will be placed diagonally in the fitbox. The size of the text box will be chosen so that it covers the
fitbox as much as possible while preserving the aspect ratio of the text box (i.e. the text comprising the
stamp will be as large as possible). The options fontsize, fitmethod, and position will be ignored. The
options orientate=west and =east don’t make any sense (only north and south). Supported keywords
(default: none):
ll2ur The stamp runs diagonally from the lower left corner to the upper right corner.
ul2lr The stamp runs diagonally from the upper left corner to the lower right corner.
none No stamp will be created.

showborder (Boolean) If true, the border of the fitbox will be stroked using the current graphics state. If a stamp is
created, the bounding box of the stamp will also be stroked. This may be useful for development and de-
bugging. Default: false

shrinklimit (Float or percentage; only for Textlines) The lower limit of the shrinkage factor which will be applied to fit
text with fitmethod=auto. Default: 0.75

Table 6.1 Fitting options for various functions

option explanation

114 Chapter 6: Object Fitting and Matchboxes

Table 6.2 Keywords for the fitmethod option of various functions; the illustrations demonstrate the typical effect of each
keyword on a Textline, using the same value for the fontsize option in all examples.

keyword explanation

auto (Only for Textlines; other object types: same behavior as meet) This meth-
od tries to fit the text box into the fitbox automatically.
In detail: Same as nofit if the text fits into the fitbox. Otherwise a scaling
factor is calculated such that the text will be shrunk horizontally (distort-
ed) to fit into the fitbox. If the calculated factor is smaller than the
shrinklimit option, the meet method is applied by reducing the fontsize
until the text can be fit or the value of minfontsize is reached.

clip Position the object and graphically clip it at the edges of the fitbox.
PDF_fit_table(): the calculated table box will be logically clipped at the
bottom edge of the fitbox and can be continued in the next fitbox. Logical
clipping is similar to PDF_fit_textflow(), but not graphical clipping as in
PDF_fit_image() etc. The table box will be placed inside the fitbox accord-
ing to the position option.

entire Scale the object box such that it entirely covers the fitbox. Generally this
method will distort the object. The position option doesn’t have any ef-
fect.
PDF_fit_table(): similar to clip. If the table box is smaller than the fitbox, the cells of the table box (but
not their contents) will be enlarged uniformly until the table box entirely covers the fitbox.

meet Position the object according to the position option, and scale it such
that it entirely fits into the fitbox while preserving its aspect ratio. Gener-
ally at least two edges of the object box will meet the corresponding
edges of the fitbox.
PDF_fit_table(): similar to clip. If the table box is smaller than the fit-
box, the cells of the table box (but not their contents) will be enlarged uniformly until the horizontal or
vertical table edge meets the fitbox.

nofit Position the object only. The scale and dpi will be applied to images.
PDF_fit_table(): The table will be calculated for a virtual fitbox with
infinite height. The table box will be placed inside the fitbox according to
the position option. The default sizes of columns and rows relate to the
specified fitbox height. fitmethod=nofit is recommended to format the
table in blind mode.

slice Position the object according to the position option, and scale it such
that it entirely covers the fitbox, while preserving the aspect ratio and
making sure that at least one dimension of the object is fully contained in
the fitbox. Generally parts of the object’s other dimension will extend be-
yond the fitbox, and will therefore be clipped.
PDF_fit_table(): similar to clip. If the table box is smaller than the fitbox the cells of the table box (but
not their contents) will be enlarged uniformly until the fitbox is entirely covered by the table box while
preserving its aspect ratio. The table box will be placed inside the fitbox according to the position op-
tion. The parts of the table box which exceed beyond the fitbox will be clipped graphically at the edges of
the fitbox.

Kraxi Systems

Kraxi Systems

Kraxi Systems

Kraxi Sys

Kraxi Systems

Kraxi Systems

Kraxi Systems

Kraxi S

6.2 Matchboxes 115

6.2 Matchboxes
Matchboxes are not defined with a dedicated function, but with the matchbox option in
the function call which creates the actual element:

> Textlines: PDF_fit_textline(), PDF_fill_textblock() with textflow=false
> Textflows: PDF_add/create_textflow(), PDF_fill_textblock() with textflow=true
> imported PDF pages: PDF_fit_pdi_page(), PDF_fill_pdf_block()
> images and templates: PDF_fit_image(), PDF_fill_image_block()
> table cells: PDF_add_table_cell()

Matchboxes are defined with the matchbox option of these functions. It expects an op-
tion list which supports the following suboptions:

> Graphics appearance options according to Table 7.2:
borderwidth, dasharray, dashphase, fillcolor, gstate, linecap, linejoin, shading, strokecolor

> Matchbox controlling options according to Table 6.3

Details of the rectangle(s) corresponding to a matchbox can be queried with PDF_info_
matchbox().

Table 6.3 Suboptions for the matchbox option of various functions

option explanation

boxheight (List with two elements, each being a positive float or a keyword; only for Textline and Textflow) Vertical
extent of the text box. Two values can be specified numerically or via keywords for the extent above and
below the baseline:
none (no extent), xheight, descender, capheight, ascender, fontsize, leading, textrise
With Textflows the values corresponding to the text at the beginning of the matchbox will be used.
Default: {capheight none}

boxwidth (Float or percentage; only for Textflow) Width of the matchbox specified in user coordinates or as a per-
centage of the box height. If this option is supplied, horizontal space of the specified width will be insert-
ed between the matchbox option and the next text fragment or the matchbox end specification. This may
be useful to reserve space for inserting an image, template, or PDF page in the Textflow. Default: 0

clipping (Rectangle or 4 percentages; only for images and imported PDF pages; will be ignored if the innerbox op-
tion has been specified) Coordinates of the lower left and upper right corner of a rectangle within the im-
age or page specifying which part should be displayed. With images, the clipping rectangle can be speci-
fied in pixels or as a percentage of the width/height. With PDF pages, the clipping rectangle can be
specified in default units or as a percentage of the width/height of the page’s crop box. Default: {0% 0%
100% 100%}

create-
wrapbox

(Boolean; only for Textflow) If true, the rectangle(s) comprising the matchbox will be inserted as wrap
areas in the Textflow after they have been calculated. The subsequent lines after the lines containing the
matchbox will be wrapped around the rectangle(s). Default: false

doubleadapt If true the start and end point of the second line will be adapted to the first line. Otherwise the second
line will be shorter or longer by the amount of doubleoffset. Default: true

doubleoffset (Float) If different from 0 the lines around the border of the inner matchbox rectangle will be doubled.
The second line has the specified offset from the original line. If the offset is positive the line will be
drawn outside the matchbox rectangle, and inside if the offset is negative. Default: 0 (i.e. single line)

drawleft
drawbottom
drawright
drawtop

(Boolean) If true, the corresponding border of the rectangle will be drawn provided that the
borderwidth is set to a value greater than 0. Default: true

116 Chapter 6: Object Fitting and Matchboxes

C++ Java double info_matchbox(String boxname, int num, String keyword)
Perl PHP float info_matchbox(string boxname, int num, string keyword)

C double PDF_info_matchbox(PDF *p,const char *boxname, int len, int num, const char *keyword)

Query information about a matchbox on the current page.

boxname (Name string) Name of the matchbox. The name must have been defined
with the name suboption of the matchbox option when the matchbox was defined.

Alternatively, the name ’*’ (single asterisk character) can be used to enumerate all
matchboxes on the page.

end (Boolean; only for Textflow) Specifies the end of the matchbox. If true, all other suboptions for the cur-
rent matchbox definition will be ignored. Matchboxes in Textflows cannot be nested. The width of a Tex-
tflow matchbox is defined by the option boxwidth (if specified) and the extent of the text enclosed in the
options matchbox and matchbox= end. If the end option has not been specified, the matchbox will end af-
ter the last character in the Textflow.

exceedlimit (Float or percentage; only for Textflow) Upper limit for the part of the matchbox which is allowed to ex-
ceed beyond the bottom or right edge of the fitbox, specified in user coordinates or as a percentage of
the matchbox height. If the specified limit would be exceeded PDF_fit_textflow() will return _boxfull;
the remaining text and the matchbox can be continued in the next fitbox. Default: 0, i.e. the matchbox
must completely fit into the box.

innerbox (Boolean; only for table cells, and TIFF and JPEG images) Table cells: If true, the cell box will be reduced by
the margins defined for the cell; otherwise the full cell box will be used.
TIFF and JPEG images: If true and the image contains a clipping path the bounding box of the clipping
path will be used instead of the full image.
Default: false

margin (Float or percentage) Additional margin for the matchbox rectangle, specified in user coordinates (must
be greater than or equal to 0) or as a percentage of the rectangle width or height (must be less than
100%). This option will be ignored for an edge for which offset* has been supplied. Default: 0

name (Name string) Name of the matchbox. If the name has already been assigned to a matchbox, another
rectangle for this name will be created. This means that a matchbox may consist of more than one rect-
angle. The name can be used in PDF_info_matchbox(). Various functions support the option
usematchbox to reference one or more rectangles of a matchbox, e.g. to add an annotation with PDF_
create_annotation(). Matchbox names can be used until the end of the current page. Default: no name

offsetleft
offsetbottom
offsetright
offsettop

(Float or percentage) User-defined offset from the left/right/bottom/top edge of the calculated rectan-
gle and the desired box. The values are specified in user coordinates or as a percentage of the rectangle’s
width (for offsetleft/offsetright) or height (for offsetbottom/offsettop). Negative values are al-
lowed, and can be used to extend the matchbox. Default of offsetleft/offsetbottom: margin; De-
fault of offsetright/offsettop: -margin

openrect (Boolean; only for Textflow and table cells) Textflow: If true and a matchbox rectangle is split to the next
line, the right border of the first rectangle and the left border of the second rectangle will not be drawn.
Table cells: If true and a table row is split to the next table instance the bottom border of the first part
and the top border of the second part will not be drawn. Default: false

round (Float) Adjacent lines of a matchbox rectangle will be joined with a circular arc with the specified radius
and the line segments as tangents. If the specified radius is negative the arc segments will be swept in-
wards, and the tangents will be perpendicular to the line segments of the box. Default: 0 (no rounding)

Table 6.3 Suboptions for the matchbox option of various functions

option explanation

6.2 Matchboxes 117

len (C language binding only) Length of name in bytes for UTF-16 strings. If len = 0 a
null-terminated string must be provided.

num Number of the requested matchbox rectangle (the first has number 1). See Table
6.4 for the special case num=0.

keyword A keyword specifying the requested information according to Table 6.4.

Returns The value of some matchbox parameter as requested by keyword. If a matchbox with the
specified name or a matchbox rectangle with the specified number does not exist on
the current page, all keywords will return the value 0.

Details Named matchboxes within a Textflow can only be queried after calling PDF_fit_
textflow().

Scope page, pattern, template, glyph, path, font

Table 6.4 Keywords for PDF_info_matchbox()

keyword explanation

count (The num parameter will be ignored)
If boxname contains the name of a matchbox: Number of rectangles for this matchbox on the page
If boxname=*: number of matchboxes with at least one rectangle on the page

exists If boxname contains the name of a matchbox: 1 if the rectangle exists, 0 otherwise.
With boxname=* this keyword can be used to enumerate all matchboxes on the page:

if num=0: 1 if a matchbox exists at all, 0 otherwise
otherwise: 1 if a matchbox with number num exists

height1

1. This keyword will be ignored if boxname=*

Height of the rectangle in user coordinates

name String index for the name of the matchbox with number num. The corresponding string can be retrieved
via PDF_get_parameter() and the string parameter (see Table 2.3).

rectangle Handle of the path containing the num-th rectangle in user coordinates or -1 (in PHP: 0)

width1 Width of the rectangle in user coordinates

x1, y1, ... ,
x4, y41

Position of the i-th rectangle corner (i=1, 2, 3, 4) in user coordinates. In the coordinate system of the re-
spective fit element (image, text, etc.), x1, y1 correspond to the lower left, x2, y2 to the lower right, x3,
y3 to the upper right and x4, y4 to the upper left corner.

118 Chapter 6: Object Fitting and Matchboxes

7.1 Graphics Appearance Parameters and Options 119

7 Graphics Functions
Cookbook A full code sample can be found in the Cookbook topic graphics/starter_graphics.

7.1 Graphics Appearance Parameters and Options
Table 7.1 lists relevant parameter key names for this section (see Section 2.2, »Parameter
and Option Handling«, page 19).

Table 7.2 lists graphics appearance options for PDF_create_gstate(), PDF_draw_path(),
PDF_shading_pattern(), the fill and stroke options of PDF_fit_table(), and the matchbox op-
tion of various functions.

Table 7.1 Path-related keys for PDF_get/set_parameter()

key explanation

fillrule Set the current fill rule to winding or evenodd (see Table 7.2). Scope: page, pattern, template, glyph

Table 7.2 Graphics appearance options

option explanation and possible values

borderwidth (Float; only for matchboxes) Line width for the rectangle’s border. If you set borderwidth to a
value greater than 0 all rectangle borders will be stroked. To prevent the upper, lower, left, or
right border from being stroked, set the corresponding drawtop, drawbottom, drawleft, or
drawright option to false. Default: 0

dasharray (List of floats) List of 2-8 alternating values for the lengths of dashes and gaps for stroked paths
(measured in the user coordinate system). The array values must be greater than zero. They will
be cyclically reused until the complete path is stroked.

dashphase (Float) Distance into the dash pattern at which to start the dash. Default: 0

fillcolor (Color) Fill color of the area. Default: generally {gray 0} (in PDF/A mode: {lab 0 0 0}), but none
for tables and matchboxes

fillrule (Keyword) Fill rule which determines the interior of areas for filling and clipping (default:
winding):

winding Use the nonzero winding number rule.
For simple shapes, the result of filling
matches intuitive expectations. For
shapes consisting of multiple paths the
direction of the paths is relevant.

evenodd Use the even-odd rule, which yields the
same results as winding for simple
shapes, but produces different results
for more complex shapes, especially
self-intersecting paths.

flatness (Float > 0) A positive number which describes the maximum distance (in device pixels) between a
circular arc or a curve and an approximation constructed from straight line segments. Default: 1

gstate (Gstate handle) Handle for a graphics state retrieved with PDF_create_gstate(). Default: no
graphics state (i.e. current settings will be used)

http://www.pdflib.com/pdflib-cookbook/graphics/starter-graphics

120 Chapter 7: Graphics Functions

linecap (Integer or keyword) Shape at the end of a path (default: butt):
butt (Equivalent value: 0) Butt end caps: the stroke is squared off

at the endpoint of the path.
round (Equivalent value: 1) Round end caps: a semicircular arc

with a diameter equal to the line width is drawn around
the endpoint and filled in.

projecting (Equivalent value: 2) Projecting square end caps: the stroke
extends beyond the end of the line by a distance which is
half the line width and is squared off.

linejoin (Integer or keyword) Shape at the corners of paths (default: miter):
miter (Equivalent value: 0) Miter joins: the outer edges of the strokes for the

two segments are continued until they meet. If the extension projects
too far, as determined by the miter limit, a bevel join is used instead.

round (Equivalent value: 1) Round joins: a circular arc with a diameter equal to
the line width is drawn around the point where the segments meet and
filled in, producing a rounded corner.

bevel (Equivalent value: 2) Bevel joins: the two path segments are drawn with
butt end caps (see the discussion of the linecap parameter), and the re-
sulting notch beyond the ends of the segments is filled in with a triangle.

linewidth (Float > 0) Line width. Default: 1

miterlimit (Float >= 1) Controls the spike produced by miter joins (default: 10;
this corresponds to an angle of roughly 11.5 degrees)
If the linejoin style is set to 0 (miter join), two line segments joining
at a small angle will result in a sharp spike. This spike will be re-
placed by a straight end (i.e. the miter join will be changed to a bev-
el join) when the ratio of the miter length and the linewidth ex-
ceeds the miter limit.

shading (Option list according to Table 7.3; only for matchboxes and tables) Specify a shading for the
matchbox’s rectangle(s) or table area, using the value of the fillcolor option (if specified) or
the current fill color as the starting color.

strokecolor (Color) Stroke color of the path. Default: generally {gray 0} (in PDF/A mode: {lab 0 0 0}), but
none for tables and matchboxes

Table 7.2 Graphics appearance options

option explanation and possible values

Miter
length

Line width

7.1 Graphics Appearance Parameters and Options 121

Table 7.3 Suboptions for the shading graphics appearance option

option explanation

antialias (Boolean) Specifies whether to activate antialiasing for the shading. Default: false

domain (List of 2 Floats) Two numbers specifying the limiting values of a parametric variable t. The variable is
considered to vary linearly between these two values as the color gradient varies between the starting
and ending points of the axis. Default: {0 1}

end (List of 2 floats or percentages) The x and y coordinates of the end point for the shading axis
(type=axial) or a point on the circle to calculate the radius (type=radial), specified as percentages of
the rectangle’s width and height or in user coordinates. Default: {100% 100%}

endcolor (Color; required) Color for the end point.

N (Float) Exponent for the color transition function; must be > 0. Default: 1

start (List of 2 floats or percentages) The x and y coordinates of the starting point for the shading axis
(type=axial) or the center of the shading circle (type=radial), specified as percentages of the rectan-
gle’s width and height or in user coordinates. Default: {0% 0%}

type (Keyword) Shading type: axial (linear shading) or radial (radial shading). Default: axial

122 Chapter 7: Graphics Functions

7.2 Graphics State
All graphics state parameters are restored to their default values at the beginning of a
page. The default values are documented in the respective function descriptions. Func-
tions related to the text state are listed in Chapter 4, »Font and Text Functions«, page 51.

Note None of the graphics state functions must be used in path scope.

C++ Java void setdash(double b, double w)
Perl PHP setdash(float b, float w)

C void PDF_setdash(PDF *p, double b, double w)

Set the current dash pattern.

b, w The number of alternating black and white units. b and w must be non-negative
numbers.

Details In order to produce a solid line, set b=w=0. The dash parameter is set to solid at the be-
ginning of each page.

Scope page, pattern, template, glyph

C++ Java void setdashpattern(String optlist)
Perl PHP setdashpattern(string optlist)

C void PDF_setdashpattern(PDF *p, const char *optlist)

Set a dash pattern defined by an option list.

optlist Graphics appearance options according to Table 7.2 (an empty list will generate
a solid line): dasharray, dashphase

Details The dash parameter is set to a solid line at the beginning of each page.

Scope page, pattern, template, glyph

C++ Java void setflat(double flatness)
Perl PHP setflat(float flatness)

C void PDF_setflat(PDF *p, double flatness)

Set the flatness tolerance.

flatness The flatness tolerance, see Table 7.2.

Details The flatness tolerance is set to the default value of 1 at the beginning of each page.

Scope page, pattern, template, glyph

7.2 Graphics State 123

C++ Java void setlinejoin(int linejoin)
Perl PHP setlinejoin(int linejoin)

C void PDF_setlinejoin(PDF *p, int linejoin)

Set the linejoin style.

linejoin Specifies the shape at the corners of paths that are stroked, see Table 7.2. The
linejoin style must be specified as one of the numbers 0, 1, or 2.

Details The linejoin style is set to the default value of 0 at the beginning of each page.

Scope page, pattern, template, glyph

C++ Java void setlinecap(int linecap)
Perl PHP setlinecap(int linecap)

C void PDF_setlinecap(PDF *p, int linecap)

Set the linecap parameter.

linecap Controls the shape at the end of a path with respect to stroking, see Table 7.2.
The linecap parameter must be specified as one of the numbers 0, 1, or 2.

Details The linecap parameter is set to the default value of 0 at the beginning of each page.

Scope page, pattern, template, glyph

C++ Java void setmiterlimit(double miter)
Perl PHP setmiterlimit(float miter)

C void PDF_setmiterlimit(PDF *p, double miter)

Set the miter limit.

miter A value greater than or equal to 1 which controls the spike produced by miter
joins, see Table 7.2.

Details The miter limit is set to the default value of 10 at the beginning of each page. This corre-
sponds to an angle of roughly 11.5 degrees.

Scope page, pattern, template, glyph

C++ Java void setlinewidth(double width)
Perl PHP setlinewidth(float width)

C void PDF_setlinewidth(PDF *p, double width)

Set the current line width.

width The linewidth in units of the user coordinate system.

Details The width parameter is set to the default value of 1 at the beginning of each page.

Scope page, pattern, template, glyph

124 Chapter 7: Graphics Functions

C++ Java void initgraphics()
Perl PHP initgraphics()

C void PDF_initgraphics(PDF *p)

Reset all color and graphics state parameters to their default values

Details The fill and stroke colors, line width, line cap style, line join style, miter limit, dash pat-
tern, and flatness tolerance settings, and the coordinate system (but not the text state
parameters) are reset to their respective default values. The current clipping path is not
affected.

This function may be useful in situations where the program flow doesn’t allow for
easy use of PDF_save()/PDF_restore().

Scope page, pattern, template, glyph

C++ Java void save()
Perl PHP save()

C void PDF_save(PDF *p)

Save the current graphics state to a stack.

Details The graphics state contains parameters that control all types of graphics objects. Saving
the graphics state is not required by PDF; it is only necessary if the application wishes to
return to some specific graphics state later (e.g. a custom coordinate system) without
setting all relevant parameters explicitly again. The following items are subject to save/
restore:

> graphics parameters which have been set with the corresponding functions: clipping
path, coordinate system, current point, flatness tolerance, line cap style, dash pat-
tern, line join style, line width, miter limit;

> color parameters: fill and stroke colors;
> graphics parameters which have been set with explicit graphics states in PDF_set_

gstate();
> text position and the following text-related parameters: charspacing,

decorationabove, fakebold, font, fontsize, horizscaling, italicangle, leading, strokewidth,
textrendering, textrise, underlineposition, underlinewidth, wordspacing.

Pairs of PDF_save() and PDF_restore() may be nested. Although the PDF specification
doesn’t limit the nesting level of save/restore pairs, applications must keep the nesting
level below 26 in order to avoid printing problems caused by restrictions in the Post-
Script output produced by PDF viewers, and to allow for additional save levels required
by PDFlib internally.

Scope page, pattern, template, glyph; must always be paired with a matching PDF_restore() call.
PDF_save() and PDF_restore() calls must be balanced on each page, pattern, template,
and glyph description.

Params Most text-related parameters are affected by save/restore; see list above. The following
parameters are not subject to save/restore: fillrule, kerning, underline, overline, strikeout.

7.2 Graphics State 125

C++ Java void restore()
Perl PHP restore()

C void PDF_restore(PDF *p)

Restore the most recently saved graphics state from the stack.

Details The corresponding graphics state must have been saved on the same page, pattern, or
template.

Scope page, pattern, template, glyph; must always be paired with a matching PDF_save() call.
PDF_save() and PDF_restore() calls must be balanced on each page, pattern, template,
and glyph description.

C++ Java int create_gstate(String optlist)
Perl PHP int create_gstate(string optlist)

C int PDF_create_gstate(PDF *p, const char *optlist)

Create a graphics state object subject to various options.

optlist An options list with graphics state options:
> Graphics appearance options according to Table 7.2:

flatness, linecap, linejoin, linewidth, miterlimit
> Graphics state options according to Table 7.4:

alphaisshape, blendmode, opacitystroke, overprintfill, overprintmode, overprintstroke,
renderingintent, smoothness, softmask, strokeadjust, textknockout

Returns A graphics state handle that can be used in subsequent calls to PDF_set_gstate() during
the enclosing document scope.

Details The option list may contain any number of graphics state parameters. Not all parame-
ters are allowed for all PDF versions. The table lists the minimum required PDF version.

Scope document, page, pattern, template, glyph

Table 7.4 Options for PDF_create_gstate()

key explanation and possible values

alphaisshape (Boolean; PDF 1.4) Sources of alpha are treated as shape (true) or opacity (false). Default:
false

blendmode (Keyword list; PDF 1.4; f used with PDF/X-1, PDF/X-3, or PDF/A-1 it must have the value Normal)
Name of the blend mode. Multiple blend modes can be specified. Possible values: Color,
ColorDodge, ColorBurn, Darken, Difference, Exclusion, HardLight, Hue, Lighten, Luminosity,
Multiply, None, Normal, Overlay, Saturation, Screen, SoftLight. Default: None

opacityfill (Float; PDF 1.4; if used in PDF/A mode it must have the value 1) Opacity for fill operations in the
range 0..1. The value 0 means fully transparent; 1 means fully opaque.

opacitystroke (Float; PDF 1.4; if used in PDF/A mode it must have the value 1) Opacity for stroke operations in
the range 0..1. The value 0 means fully transparent; 1 means fully opaque.

overprintfill (Boolean) Overprint for operations other than stroke. Default: false

overprintmode (Integer) Overprint mode. 0 means that each color component replaces previously placed marks;
mode 1 (called »overprinting default is nonzero overprinting« in Acrobat) means that a color
component of 0 leaves the corresponding component unchanged. Default: 0

126 Chapter 7: Graphics Functions

C++ Java void set_gstate(int gstate)
Perl PHP set_gstate(int gstate)

C void PDF_set_gstate(PDF *p, int gstate)

Activate a graphics state object.

gstate A handle for a graphics state object retrieved with PDF_create_gstate().

Details All options contained in the graphics state object will be set. Graphics state options ac-
cumulate when this function is called multiply. Options which are not explicitly set in
the graphics state object will keep their current values. All graphics state options will be
reset to their default values at the beginning of a page.

Scope page, pattern, template, glyph

overprintstroke (Boolean) Overprint for stroke operations. Default: false

renderingintent (Keyword) Color rendering intent used for gamut compression; possible keywords: Auto,
AbsoluteColorimetric, RelativeColorimetric, Saturation, Perceptual

smoothness (Float) Maximum error of a linear interpolation for a shading; must be >= 0 and <= 1

softmask (Option list or keyword) Current soft mask with mask shape or opacity values for transparent im-
aging. The keyword none specifies no soft mask at all; this is required to disable soft masks which
may be in effect from a previously set gstate. Supported options (default: none):
backdropcolor

(List with one, three, or four floats; only relevant for type=luminosity) Color to be
used as the backdrop against which to composite the transparency group template.
The number of float values depends on the colorspace suboption of the transpa-
rencygroup option used when creating the transparency group template (1 for
DeviceGray, 3 for DeviceRGB, 4 for DeviceCMYK). Default: black in the respective
colorspace

template (Template handle; required) Transparency group template which has been created
with PDF_begin_template_ext() and the transparencygroup option.

type (Keyword; required) Method for deriving mask values from the transparency group
template:
alpha Use the transparency group’s alpha value and ignore the color.
luminosity Convert the transparency group’s color to a single-component luminosity

value.

strokeadjust (Boolean) Whether or not to apply automatic stroke adjustment. Default: false

textknockout (Boolean; PDF 1.4) With respect to compositing, glyphs in a text object will be treated as separate
objects (false) or as a single object (true). Default: true

Table 7.4 Options for PDF_create_gstate()

key explanation and possible values

7.3 Coordinate System Transformations 127

7.3 Coordinate System Transformations
All transformation functions (PDF_translate(), PDF_scale(), PDF_rotate(), PDF_align(),
PDF_skew(), PDF_concat(), PDF_setmatrix(), and PDF_initgraphics()) change the coordinate
system used for drawing subsequent objects. They do not affect existing objects on the
page.

C++ Java void translate(double tx, double ty)
Perl PHP translate(float tx, float ty)

C void PDF_translate(PDF *p, double tx, double ty)

Translate the origin of the coordinate system.

tx, ty The new origin of the coordinate system is the point (tx, ty), measured in the old
coordinate system.

Scope page, pattern, template, glyph

C++ Java void scale(double sx, double sy)
Perl PHP scale(float sx, float sy)

C void PDF_scale(PDF *p, double sx, double sy)

Scale the coordinate system.

sx, sy Scaling factors in x and y direction.

Details This function scales the coordinate system by sx and sy. It may also be used for achiev-
ing a reflection (mirroring) by using a negative scaling factor. One unit in the x direction
in the new coordinate system equals sx units in the x direction in the old coordinate sys-
tem; analogous for y coordinates.

Scope page, pattern, template, glyph

C++ Java void rotate(double phi)
Perl PHP rotate(float phi)

C void PDF_rotate(PDF *p, double phi)

Rotate the coordinate system.

phi The rotation angle in degrees.

Details Angles are measured counterclockwise from the positive x axis of the current coordi-
nate system. The new coordinate axes result from rotating the old coordinate axes by
phi degrees.

Scope page, pattern, template, glyph

128 Chapter 7: Graphics Functions

C++ Java void align(double dx, double dy)
Perl PHP align(float dx, float dy)

C void PDF_align(PDF *p, double dx, double dy)

Align the coordinate system with a relative vector.

dx, dy Coordinates of a direction vector dx and dy must not both be 0.

Details Rotate the coordinate system such that the x axis of the new coordinate system is
aligned with the vector (dx, dy), and the y axis is aligned with (-dy, dx). This is equivalent
to PDF_rotate() with phi=180° / pi * atan2(dy/dx).

Scope page, pattern, template, glyph

C++ Java void skew(double alpha, double beta)
Perl PHP skew(float alpha, float beta)

C void PDF_skew(PDF *p, double alpha, double beta)

Skew the coordinate system.

alpha, beta Skewing angles in x and y direction in degrees.

Details Skewing (or shearing) distorts the coordinate system by the given angles in x and y di-
rection. alpha is measured counterclockwise from the positive x axis of the current coor-
dinate system, beta is measured clockwise from the positive y axis. Both angles must be
in the range -360˚ < alpha, beta < 360˚, and must be different from -270˚, -90˚, 90˚, and
270˚.

Scope page, pattern, template, glyph

C++ Java void concat(double a, double b, double c, double d, double e, double f)
Perl PHP concat(float a, float b, float c, float d, float e, float f)

C void PDF_concat(PDF *p, double a, double b, double c, double d, double e, double f)

Apply a transformation matrix to the current coordinate system.

a, b, c, d, e, f Elements of a transformation matrix. The six values make up a matrix in
the same way as in PostScript and PDF (see references). In order to avoid degenerate
transformations, a*d must not be equal to b*c.

Details This function applies a matrix to the current coordinate system. It allows for the most
general form of transformations. Unless you are familiar with the use of transforma-
tion matrices, the use of PDF_translate(), PDF_scale(), PDF_rotate(), and PDF_skew() is
suggested instead of this function. The coordinate system is reset to the default coordi-
nate system (i.e. the current transformation matrix is the identity matrix [1, 0, 0, 1, 0, 0])
at the beginning of each page.

Scope page, pattern, template, glyph

7.3 Coordinate System Transformations 129

C++ Java void setmatrix(double a, double b, double c, double d, double e, double f)
Perl PHP setmatrix(float a, float b, float c, float d, float e, float f)

C void PDF_setmatrix(PDF *p, double a, double b, double c, double d, double e, double f)

Explicitly set the current transformation matrix.

a, b, c, d, e, f See PDF_concat().

Details This function is similar to PDF_concat(). However, it disposes of the current transforma-
tion matrix, and completely replaces it with the new matrix.

Scope page, pattern, template, glyph

130 Chapter 7: Graphics Functions

7.4 Path Construction
Table 7.5 lists relevant value key names for this section (see Section 2.2, »Parameter and
Option Handling«, page 19). The key names cannot be used with PDF_set_value() since
there are corresponding API functions available for setting these values.

Note Make sure to call one of the functions in Section 7.5, »Painting and Clipping«, page 134, after
using the functions in this section, or the constructed path will have no effect, and subsequent
operations may raise an exception.

C++ Java void moveto(double x, double y)
Perl PHP moveto(float x, float y)

C void PDF_moveto(PDF *p, double x, double y)

Set the current point for graphics output.

x, y The coordinates of the new current point.

Details The current point is set to the default value of undefined at the beginning of each page.
The current points for graphics and the current text position are maintained separately.

Scope page, pattern, template, path, glyph; this function starts path scope.

Params currentx, currenty

C++ Java void lineto(double x, double y)
Perl PHP lineto(float x, float y)

C void PDF_lineto(PDF *p, double x, double y)

Draw a line from the current point to another point.

x, y The coordinates of the second endpoint of the line.

Details This function adds a straight line from the current point to (x, y) to the current path. The
current point must be set before using this function. The point (x, y) becomes the new
current point.

The line will be centered around the »ideal« line, i.e. half of the linewidth (as deter-
mined by the value of the linewidth parameter) will be painted on each side of the line
connecting both endpoints. The behavior at the endpoints is determined by the value of
the linecap parameter.

Scope path

Params currentx, currenty

Table 7.5 Keys for PDF_get_value()

key explanation

currentx
currenty

The x or y coordinate (in units of the current coordinate system), respectively, of the cur-
rent point. Scope: page, pattern, template, path

ctm_a
ctm_d

ctm_b
ctm_e

ctm_c
ctm_f

The components of the current transformation matrix (CTM) for vector graphics. Scope:
page, pattern, template, path

7.4 Path Construction 131

C++ Java void curveto(double x1, double y1, double x2, double y2, double x3, double y3)
Perl PHP curveto(float x1, float y1, float x2, float y2, float x3, float y3)

C void PDF_curveto(PDF *p, double x1, double y1, double x2, double y2, double x3, double y3)

Draw a Bézier curve from the current point, using three more control points.

x1, y1, x2, y2, x3, y3 The coordinates of three control points.

Details A Bézier curve is added to the current path from the current point to (x3, y3), using (x1, y1)
and (x2, y2) as control points. The current point must be set before using this function.
The endpoint of the curve becomes the new current point.

Scope path

Params currentx, currenty

C++ Java void circle(double x, double y, double r)
Perl PHP circle(float x, float y, float r)

C void PDF_circle(PDF *p, double x, double y, double r)

Draw a circle.

x, y The coordinates of the center of the circle.

r The radius of the circle.

Details This function adds a circle to the current path as a complete subpath. The point (x + r, y)
becomes the new current point. The resulting shape will be circular in user coordinates.
If the coordinate system has been scaled differently in x and y directions, the resulting
curve will be elliptical.

Scope page, pattern, template, path, glyph; this function starts path scope.

Params currentx, currenty

C++ Java void arc(double x, double y, double r, double alpha, double beta)
Perl PHP arc(float x, float y, float r, float alpha, float beta)

C void PDF_arc(PDF *p, double x, double y, double r, double alpha, double beta)

Draw a counterclockwise circular arc segment.

x, y The coordinates of the center of the circular arc segment.

r The radius of the circular arc segment. r must be nonnegative.

alpha, beta The start and end angles of the circular arc segment in degrees.

Details This function adds a counterclockwise circular arc segment to the current path, extend-
ing from alpha to beta degrees. For both PDF_arc() and PDF_arcn(), angles are measured
counterclockwise from the positive x axis of the current coordinate system. If there is a
current point an additional straight line is drawn from the current point to the starting
point of the arc. The endpoint of the arc becomes the new current point.

The arc segment will be circular in user coordinates. If the coordinate system has
been scaled differently in x and y directions the resulting curve will be elliptical.

132 Chapter 7: Graphics Functions

Scope page, pattern, template, path, glyph; this function starts path scope.

Params currentx, currenty

C++ Java void arcn(double x, double y, double r, double alpha, double beta)
Perl PHP arcn(float x, float y, float r, float alpha, float beta)

C void PDF_arcn(PDF *p, double x, double y, double r, double alpha, double beta)

Draw a clockwise circular arc segment.

Details Except for the drawing direction, this function behave exactly like PDF_arc(). In particu-
lar, the angles are still measured counterclockwise from the positive x axis.

C++ Java void circular_arc(double x1, double y1, double x2, double y2)
Perl PHP circular_arc(float x1, float y1, float x2, float y2)

C void PDF_circular_arc(PDF *p, double x1, double y1, double x2, double y2)

Draw a circular arc segment defined by three points.

x1, y1 The coordinates of an arbitrary point on the circular arc segment.

x2, y2 The coordinates of the end point of the circular arc segment.

Details This function adds a circular arc segment to the current path. The arc segment will start
at the current point, pass through (x1, y1), and end at (x2, y2). The current point must be
set before using this function. The endpoint of the curve becomes the new current
point.

The arc segment will be circular in user coordinates. If the coordinate system has
been scaled differently in x and y directions the resulting curve will be elliptical.

Scope path

Params currentx, currenty

C++ Java void ellipse(double x, double y, double rx, double ry)
Perl PHP ellipse(float x, float y, double rx, double ry)

C void PDF_ellipse(PDF *p, double x, double y, double rx, double ry)

Draw an ellipse.

x, y The coordinates of the center of the ellipse.

rx, ry The x and y radii of the ellipse.

Details This function adds an ellipse to the current path as a complete subpath. The point
(x + rx, y) becomes the new current point.

Scope page, pattern, template, path, glyph; this function starts path scope.

Params currentx, currenty

7.4 Path Construction 133

C++ Java void rect(double x, double y, double width, double height)
Perl PHP rect(float x, float y, float width, float height)

C void PDF_rect(PDF *p, double x, double y, double width, double height)

Draw a rectangle.

x, y The coordinates of the lower left corner of the rectangle.

width, height The size of the rectangle.

Details This function adds a rectangle to the current path as a complete subpath. Setting the
current point is not required before using this function. The point (x, y) becomes the
new current point. The lines will be centered around the »ideal« line, i.e. half of the line-
width (as determined by the value of the linewidth parameter) will be painted on each
side of the line connecting the respective endpoints.

Scope page, pattern, template, path, glyph; this function starts path scope.

Params currentx, currenty

C++ Java void closepath()
Perl PHP closepath()

C void PDF_closepath(PDF *p)

Close the current path.

Details This function closes the current subpath, i.e. adds a line from the current point to the
starting point of the subpath.

Scope path

Params currentx, currenty

134 Chapter 7: Graphics Functions

7.5 Painting and Clipping
Note Most functions in this section clear the path, and leave the current point undefined. Subse-

quent drawing operations must therefore explicitly set the current point (e.g. using PDF_
moveto()) after one of these functions has been called.

C++ Java void stroke()
Perl PHP stroke()

C void PDF_stroke(PDF *p)

Stroke the path with the current line width and current stroke color, and clear it.

Scope path; this function terminates path scope.

C++ Java void closepath_stroke()
Perl PHP closepath_stroke()

C void PDF_closepath_stroke(PDF *p)

Close the path, and stroke it.

Details This function closes the current subpath (adds a straight line segment from the current
point to the starting point of the path), and strokes the complete current path with the
current line width and the current stroke color.

Scope path; this function terminates path scope.

C++ Java void fill()
Perl PHP fill()

C void PDF_fill(PDF *p)

Fill the interior of the path with the current fill color.

Details This function fills the interior of the current path with the current fill color. The interior
of the path is determined by one of two algorithms (see the fillrule parameter). Open
paths are implicitly closed before being filled.

Scope path; this function terminates path scope.

Params fillrule

C++ Java void fill_stroke()
Perl PHP fill_stroke()

C void PDF_fill_stroke(PDF *p)

Fill and stroke the path with the current fill and stroke color.

Scope path; this function terminates path scope.

Params fillrule

7.5 Painting and Clipping 135

C++ Java void closepath_fill_stroke()
Perl PHP closepath_fill_stroke()

C void PDF_closepath_fill_stroke(PDF *p)

Close the path, fill, and stroke it.

Details This function closes the current subpath (adds a straight line segment from the current
point to the starting point of the path), and fills and strokes the complete current path.

Scope path; this function terminates path scope.

Params fillrule

C++ Java void clip()
Perl PHP clip()

C void PDF_clip(PDF *p)

Use the current path as clipping path, and terminate the path.

Details This function uses the intersection of the current path and the current clipping path as
the clipping path for subsequent operations. The clipping path is set to the default val-
ue of the page size at the beginning of each page. The clipping path is subject to PDF_
save()/PDF_restore(). It can only be enlarged by means of PDF_save()/PDF_restore().

Scope path; this function terminates path scope.

C++ Java void endpath()
Perl PHP endpath()

C void PDF_endpath(PDF *p)

End the current path without filling or stroking it.

Details This function doesn’t have any visible effect on the page. It generates an invisible path
on the page.

Scope path; this function terminates path scope.

136 Chapter 7: Graphics Functions

7.6 Path Objects

C++ Java int add_path_point(int path, double x, double y, String type, String optlist)
Perl PHP int add_path_point(int path, float x, float y, string type, string optlist)

C int PDF_add_path_point(PDF *p, int path, double x, double y, const char *type,
const char *optlist)

Add a point to a new or existing path object.

path A valid path handle returned by another call to PDF_add_path_point() or -1 (in
PHP: 0) to create a new path.

x, y Coordinates of the new current point. If polar=false the two numbers designate
the cartesian coordinates (x, y) of the point. If polar=true the two numbers designate the
radius r and angle phi (in degrees or radians depending on the option radians) of the
point.

This point will become the new current point for type=move, line, curve, circular.

type Specifies the type of the point according to Table 7.6.

optlist An option list specifying path construction options:
> Path calculation and naming options for a point according to Table 7.7: name, polar,

radians, relative
> Options for assigning attributes to a single subpath (only for type=move) according

to Table 7.7: close, fill, round, stroke
> Graphics appearance options (only for type=move) according to Table 7.2:

dasharray, dashphase, fillcolor, fillrule, flatness, gstate, linecap, linejoin, linewidth,
miterlimit, strokecolor

Returns A path handle which can be used until it is deleted with PDF_delete_path().

Table 7.6 Types of points for PDF_add_path_point()

keyword explanation

circular Add a circular arc from the current point to the new point with the previously defined control point as
third circular arc point which is required. If the new point is identical with the current point a circle with
diameter between the current point and the control point will be created.

control Control point for a Bézier curve or a circular arc.

curve Add a Bézier curve from the current point to the new point with the previously defined control points. At
least one control point must be provided. If only one control point is available, it will be used as the sec-
ond control point for the curve, and the first control point will be constructed as the reflection of the sec-
ond control point at the endpoint of the previous Bézier curve.

line Add a line segment from the current point to the new point.

move Start a new subpath or (if the appearance changes or a different path operation is used) a new path. Sub-
paths will be numbered consecutively (1, 2, ...). The first subpath starts at the origin.

origin New origin for absolute coordinates. If relative=true the coordinates refer to the last origin. Origins
can be set arbitrarily often and will not be inserted in the path object. Default: (0, 0)

7.6 Path Objects 137

Details A path object serves as a container for vector graphics. The path object can be populated
with paths and subpaths incrementally. The generated path can later be used with PDF_
draw_path() and other functions.

A path object can hold any number of paths: whenever the appearance changes (e.g.
a new color) or a different path operation option is used (e.g. stroke vs. fill) a new path is
started automatically.

Each path in turn can contain one or more subpaths. A subpath starts at a point with
type=move and ends before the next point with type=move, or before the end of the
chain of points.

All subpaths will be closed, filled, stroked, and rounded separately according to the
specified options. All paths will be filled separately.

Scope any

C++ Java void draw_path(int path, double x, double y, String optlist)
Perl PHP draw_path(int path, float x, float y, string optlist)

C void PDF_draw_path(PDF *p, int path, double x, double y, const char *optlist)

Draw a path object.

path A valid path handle returned by a call to PDF_add_path_point() or another func-
tion which returns a path handle (e.g. PDF_info_image() with the boundingbox keyword).

x, y Coordinates of the reference point in user coordinates. The reference point is used
by various options, and specifies the position of the origin of the path object in the cur-
rent user system. This implies a translation of the path object.

Table 7.7 Options for PDF_add_path_point()

option explanation

close (Boolean; only for type=move) If true, the subpath will be closed with a straight line. Default: see foot-
note1

1. The default is specified in PDF_draw_path(), PDF_info_path(), the textpath option of PDF_fit_textline(), the wrap option of PDF_
fit_textflow(), or the fitpath option of PDF_add_table_cell().

fill (Boolean; only for type=move) If true the subpath will be closed and filled. Default: see footnote1

name (String) Name of the point. Default: p<i> (e.g. p1) where i is the consecutive number of supplied points.

polar (Boolean) If true, the (x, y) parameters are polar coordinates specifying radius r and angle phi, other-
wise cartesian coordinates specifying x and y values. Default:false

radians (Boolean) If true, angles for polar coordinates are specified in radians, otherwise in degrees. Default:
false

relative (Boolean) If true, (x, y) are relative to the current point, otherwise to the current origin. Default: see
footnote1

round (Float; only for type=move) Adjacent line vertices in the subpath will be rounded in their joining point
by a circular arc with the line segments as its tangents and with the specified radius. If the radius is neg-
ative the arc will be grooved so that the corners are circularly grooved. If close=true and no line from
the last to the first point was explicitly specified, the first line and the closing line will also be rounded. If
round=0 no rounding will be done. Default: see footnote1

stroke (Boolean; only for type=move) If true the subpath will be stroked. Default: see footnote1

138 Chapter 7: Graphics Functions

If the boxsize option is specified, (x, y) is the lower left corner of the fitbox (see Table 6.1)
into which the path object will be fit.

optlist An option list specifying path drawing options:
> Fitting options according to Table 6.1:

align, attachmentpoint, boxsize, fitmethod, orientate, position, scale
> Path operation and subpath selection options according to Table 7.8:

clip, close, fill, round, stroke, subpaths
> Graphics appearance options according to Table 7.2; these are relevant for the fill and

stroke options:
dasharray, dashphase, fillcolor, flatness, gstate, linecap, linejoin, linewidth, miterlimit,
strokecolor

> Graphics appearance option according to Table 7.2; this is relevant for the clip and fill
options: fillrule

Details The path(s) will be placed at the reference point (x, y) and then be stroked, filled, or used
as a clipping path according to the specified options. This function does not modify the
current graphics state unless the clip option is used. The appearance and operation op-
tions override the default settings, but they do not override any appearance option
which may have been specified for a subpath in PDF_add_path_point().

Scope page, pattern, template, glyph

C++ Java double info_path(int path, String keyword, String optlist)
Perl PHP float info_path(int path, string keyword, string optlist)

C double PDF_info_path(PDF *p, int path, const char *keyword, const char *optlist)

Query the results of drawing a path object without actually drawing it.

path A valid path handle returned by a call to PDF_add_path_point() or another func-
tion which returns a path handle (e.g. PDF_info_image() with the boundingbox keyword).

keyword A keyword specifying the requested information according to Table 7.9.

Table 7.8 Path operation options for PDF_draw_path_point() for controlling all subpaths in a path object

option explanation

clip (Boolean) If true the path will be closed and used as clipping path. Default: false

close (Boolean) If true, each subpath will be closed with a straight line. Default: the value specified when the
path was constructed, or false if no value was specified

fill (Boolean) If true each path will be filled. Default: the value specified when the path was constructed, or
false if no value was specified

round (Float) For each subpath, adjacent line vertices will be rounded in their joining point by a circular arc
with the line segments as its tangents and with the specified radius. If the radius is negative the arc will
be grooved so that the corners are circular grooved. If close=true and no line from the last to the first
point was explicitly specified, the first line and the closing line will also be rounded. If round=0 no round-
ing will be done. Default: the value specified when the path was constructed, or 0 if no value was speci-
fied

stroke (Boolean) If true the path will be stroked. Default: false

subpaths (List of integers or single keyword) List with the numbers of subpaths to be drawn. The keyword all spec-
ifies all subpaths. Default: all

7.6 Path Objects 139

optlist An option list specifying path drawing options:
> All options of PDF_draw_path() according to Table 7.8
> Additional fitting option according to Table 6.1: refpoint
> Additional option according to Table 7.10:name

Returns The value of some path properties as requested by keyword.

Details This function will perform the same calculations as PDF_add_path_point(), but will not
create any visible output on the page.

Scope any

C++ Java void delete_path(int path)
Perl PHP delete_path(int path)

C void PDF_delete_path(PDF *p, int path)

Delete a path object.

path A valid path handle returned by a call to PDF_add_path_point() or another func-
tion which returns a path handle (e.g. PDF_info_image() with the boundingbox keyword).

Details Delete the path object and all associated internal data structures. Note that path objects
will not automatically be deleted in PDF_end_document().

Scope any

Table 7.9 Keywords for PDF_info_path()

keyword explanation

bounding-
box

A handle to a path containing the bounding box in user coordinates (relative to the reference point)

numpoints Number of supplied points. The option subpaths will be ignored.

px, py The x or y coordinate (in the user coordinate system) of the path point specified in the name option. The
option subpaths will be ignored.

width,
height

Width and height of the bounding box of the path in user coordinates; linewidth and miterlimit will be
ignored.

x1, y1, x2, y2,
x3, y3, x4, y4

Position of the i-th rectangle corner (i=1, 2, 3, 4) of the bounding box in user coordinates relative to the
reference point

Table 7.10 Options for PDF_info_path()

option explanation

name Name of a path point for the keys px or py. A default name (e.g. p1) can be used even if an explicit name
has been specified in PDF_add_path_point().

140 Chapter 7: Graphics Functions

8.1 Setting Color and Color Space 141

8 Color Functions

8.1 Setting Color and Color Space
Cookbook A full code sample can be found in the Cookbook topic color/starter_color.

Table 8.1 lists relevant parameter key names for this section (see Section 2.2, »Parameter
and Option Handling«, page 19).

Color spaces. PDFlib clients may specify the colors used for filling and stroking the in-
terior of paths and text characters. Colors may be specified in several color spaces (each
list item starts with the corresponding color space keyword for PDF_setcolor() and color
options):

> gray: Gray values between 0=black and 1=white;
> rgb: RGB triples, i.e. three values between 0 and 1 specifying the percentage of red,

green, and blue; (0, 0, 0)=black, (1, 1, 1)=white. The commonly used RGB color values in
the range 0–255 must be divided by 255 in order to scale them to the range 0–1 as re-
quired by PDFlib.
As an alternative to numerical RGB values you can specify RGB colors via their HTML
name or hexadecimal values (see »Color«, page 12).

Cookbook A full code sample for using RGB color values can be found in the Cookbook topic
color/web_colornames.

> cmyk: Four CMYK values between 0 = no color and 1 = full color, representing cyan,
magenta, yellow, and black values; (0, 0, 0, 0)=white, (0, 0, 0, 1)=black. Note that this is
different from the RGB specification.

> iccbasedgray/rgb/cmyk: ICC-based colors are specified with the help of an ICC profile.
> spot: Spot color (separation color space): a predefined or arbitrarily named custom

color with an alternate representation in one of the other color spaces above; this is
generally used for preparing documents which are intended to be printed on an off-
set printing machine with one or more custom colors. The tint value (percentage)
ranges from 0 = no color to 1 = maximum intensity of the spot color.

> lab expects device-independent colors in the CIE L*a*b* color space with D50 stan-
dard illuminant. Colors are specified by a luminance value in the range 0-100 and
two color values a and b in the range -128 to 127. The a component ranges from green
to red/magenta (negative values indicate green, positive values indicate magenta),

Table 8.1 Color-related keys for PDF_get/set_parameter()

key explanation

preserveold-
pantonenames

If false, old-style Pantone spot color names will be converted to the corresponding new color
names, otherwise they will be preserved. Default: false. Scope: any

spotcolorlookup If false, PDFlib will not use its internal database of spot color names. This can be used to provide
custom definitions of known spot colors, which may be required as a workaround to match the
definitions used by other applications. This feature should be used with care, and is not recom-
mended. Default: true. Scope: any

http://www.pdflib.com/pdflib-cookbook/color/web-colornames

http://www.pdflib.com/pdflib-cookbook/color/starter-color

142 Chapter 8: Color Functions

and the b component ranges from blue to yellow (negative values indicate blue, pos-
itive values indicate yellow).

> pattern: tiling pattern with an object composed of arbitrary text, vector, or image
graphics.

> Shadings (smooth blends) provide a gradual transition between two colors, and are
based on another color space. Shadings can be created with PDF_shading().

> The indexed color space is a not really a color space on its own, but rather an efficient
coding of another color space. It will automatically be generated when an indexed
(palette-based) image is imported, but cannot be specified directly.

The default color for stroke and fill operations is black.

Color specification in option lists. See »Color«, page 12, for a description and examples
of the color data type in option lists.

C++ Java void setcolor(String fstype, String colorspace, double c1, double c2, double c3, double c4)
Perl PHP setcolor(string fstype, string colorspace, float c1, float c2, float c3, float c4)

C void PDF_setcolor(PDF *p,
const char *fstype, const char *colorspace, double c1, double c2, double c3, double c4)

Set the current color space and color.

fstype One of fill, stroke, or fillstroke to specify that the color is set for filling, stroking,
or both.

colorspace Specifies the colorspace to be used for the supplied color values, or an RGB
color value which is specified by name or hexadecimal values.

First form: one of gray, rgb, cmyk, spot, pattern, iccbasedgray, iccbasedrgb, iccbasedcmyk,
or lab to specify the color space.

Second form: an RGB color name (e.g. pink) or a hash character followed by six hexa-
decimal digits (e.g. #FFC0CB). See »Color«, page 12, for more details.

c1, c2, c3, c4 Color components for the chosen color space. The interpretation of these
values depends on the colorspace parameter:

> gray: c1 specifies a gray value;
> rgb: c1, c2, c3 specify red, green, and blue values.
> cmyk: c1, c2, c3, c4 specify cyan, magenta, yellow, and black values;
> iccbasedgray: c1 specifies a gray value;
> iccbasedrgb: c1, c2, c3 specify red, green, and blue values;
> iccbasedcmyk: c1, c2, c3, c4 specify cyan, magenta, yellow, and black values;
> spot: c1 specifies a spot color handle returned by PDF_makespotcolor(), and c2 specifies

a tint value between 0 and 1;
> lab: c1, c2, and c3 specify color values in the CIE L*a*b* color space with D50 illumi-

nant. c1 specifies the L* (luminance) in the range 0 to 100, and c2, c3 specify the a*, b*
(chrominance) values in the range -128 to 127.

> pattern: c1 specifies a pattern handle returned by PDF_begin_pattern() or PDF_
shading_pattern(). The current fill or stroke color will be applied when the pattern is
used for filling or stroking. The current color space must not be another pattern col-
or space.

8.1 Setting Color and Color Space 143

Details All color values for the gray, rgb, and cmyk color spaces and the tint value for the spot col-
or space must be numbers in the inclusive range 0–1. Unused parameters should be set
to 0.

The fill and stroke color values for the gray, rgb, and cmyk color spaces are set to a de-
fault value of black at the beginning of each page. There are no defaults for spot and pat-
tern colors.

If the iccbasedgray/rgb/cmyk color spaces are used, a suitable ICC profile must have
been set before using the setcolor:iccprofilegray/rgb/cmyk parameters (see Table 8.3).

PDF/X-1a: colorspace=rgb, iccbasedgray/rgb/cmyk, and lab are not allowed.
PDF/X-3: Using iccbasedgray/rgb/cmyk and lab color requires an ICC profile in the

output intent (a standard name is not sufficient in this case).
PDF/X-3/4/5: colorspace=gray requires that the defaultgray option in PDF_begin_page_

ext() has been set unless the PDF/X output intent is a grayscale or CMYK device.
colorspace=rgb requires that the defaultrgb option in PDF_begin_page_ext() has been

set unless the output intent is an RGB device.
colorspace=cmyk requires that the defaultcmyk option in PDF_begin_page_ext() has

been set unless the output intent is a CMYK device.
PDF/A: colorspace=gray requires that the defaultgray option in PDF_begin_page_ext()

has been set unless an output intent (any type) has been specified.
colorspace=rgb requires that the defaultrgb option in PDF_begin_page_ext() has been

set unless the output intent is an RGB device.
colorspace=cmyk requires that the defaultcmyk option in PDF_begin_page_ext() has

been set unless the output intent is a CMYK device.

Scope page, pattern (only if the pattern’s paint type is 1), template, glyph (only if the Type 3
font’s colorized option is true), document; a pattern color can not be used within its own
definition. Setting the color in document scope may be useful for defining spot colors
with PDF_makespotcolor().

Params setcolor:iccprofilegray/rgb/cmyk

C++ Java int makespotcolor(String spotname)
Perl PHP int makespotcolor(string spotname)

C int PDF_makespotcolor(PDF *p, const char *spotname, int reserved)

Find a built-in spot color name, or make a named spot color from the current fill color.

spotname The name of a built-in spot color, or an arbitrary name for the spot color to
be defined. This name is restricted to a maximum length of 126 bytes. Only 8-bit charac-
ters are supported in the spot color name; Unicode or embedded null characters are not
supported. PANTONE® colors are not supported in PDF/X-1a mode.

The special spot color name All can be used to apply color to all color separations,
which is useful for painting registration marks. A spot color name of None will produce
no visible output on any color separation.

reserved (C language binding only) Reserved, must be 0.

Returns A color handle which can be used in subsequent calls to PDF_setcolor() throughout the
document. Spot color handles can be reused across all pages, but not across documents.
There is no limit for the number of spot colors in a document.

144 Chapter 8: Color Functions

Details If spotname is known in the internal color tables and the spotcolorlookup parameter is
true (which is default), the supplied spot color name will be used. Otherwise the (CMYK
or other) color values of the current fill color will be used to define the appearance of a
new spot color. These alternate values will only be used for screen preview and low-end
printing. The supplied spot color name will be used for producing color separations in-
stead of the alternate values.

If spotname has already been used in a previous call to PDF_makespotcolor(), the re-
turn value will be the same as in the earlier call, and will not reflect the current color.

Scope page, pattern, template, glyph (only if the Type 3 font’s colorized option is true), document;
the current fill color must not be a spot color or pattern if a custom color is to be de-
fined.

Params spotcolorlookup, preserveoldpantonenames

8.2 ICC Profiles 145

8.2 ICC Profiles

C++ Java int load_iccprofile(String profilename, String optlist)
Perl PHP int load_iccprofile(string profilename, string optlist)

C int PDF_load_iccprofile(PDF *p, const char *profilename, int len, const char *optlist)

Search for an ICC profile and prepare it for later use.

profilename (Name string) The name of an ICCProfile resource, or a disk-based or virtu-
al file name. If PDF/X-1 or PDF/X-3 is generated and usage=outputintent, one of the stan-
dard output condition names listed in Table 8.5 (or a name defined with the Standard-
OutputIntent resource category) can also be used without embedding the corresponding
ICC profile. If one of the standard output intents is to be used with PDF/X-4 or PDF/X-
5pg, the corresponding ICC profile must be configured as with the ICCProfile resource,
using the reference name in Table 8.5 as the resource name.

len (C language binding only) Length of profilename (in bytes) for UTF-16 strings. If
len = 0 a null-terminated string must be provided.

optlist An option list describing aspects of profile handling:
> General option: errorpolicy (see Section 2.5, »Exception Handling«, page 27)
> Profile handling options according to Table 8.2: description, embedprofile, metadata, urls,

usage

Table 8.2 Options for PDF_load_iccprofile()

key explanation and possible values

description (String; only for usage=outputintent and non-standard output conditions) Human-readable description
of the ICC profile which will be used along with the output intent.

embedprofile (Boolean; only for PDF/X-1 or PDF/X-3 and usage=outputintent; will be forced to true for PDF/X-4 and
PDF/X-5g) Force an embedded ICC profile even if a standard output intent for PDF/X has been supplied as
profilename. Default: false

metadata (Option list; will be ignored for standard output intents and referenced output intents, i.e. usage=
outputintent in PDF/X-4p and PDF/X-5pg mode; PDF 1.4) Supply metadata for the profile (see Section
14.2, »XMP Metadata«, page 227)

urls (List of one or more strings; only for PDF/X-4p and PDF/X-5pg, and required in this case) A list of URLs
which indicate where a referenced output intent ICC profile can be obtained. Sender and receiver should
arrange reasonable URL entries. The strings can freely be chosen, but must contain valid URL syntax.

usage (Keyword) Intended use of the ICC profile. Supported keywords (default: iccbased):
iccbased The ICC profile will be used to define an ICC-based color space for text or graphics, or will be

applied to an image. Input, display and output device (scanner, monitor, and printer) profiles
as well as color space conversion profiles can be used.

outputintent
The ICC profile will be used to define an output intent for PDF/X or PDF/A. In PDF/X-4p and
PDF/X-5pg mode the specified output intent ICC profile will not be embedded, but a reference
to an external profile will be created. The profile must be available locally when generating
the PDF, and must be available to the PDF consumer when viewing or printing the document.
In PDF/X mode only output device (printer) profiles can be used for usage=outputintent.

146 Chapter 8: Color Functions

Returns A profile handle which can be used in subsequent calls to PDF_load_image() or for set-
ting profile-related parameters. If errorpolicy=return the caller must check for a return
value of -1 (in PHP: 0) since it signals an error. The returned profile handle can not be re-
used across multiple PDF documents. Also, the returned handle can not be applied to an
image if usage=outputintent. There is no limit to the number of ICC profiles in a docu-
ment. If the function call fails you can request the reason of the failure with PDF_get_
errmsg().

Details If usage=iccbased the named profile will be searched according to the profile search
strategy. If the profile is found, it will be checked whether it is suitable (e.g. number of
color components). The sRGB profile is always available internally, and must not be con-
figured. Loaded ICC profiles must conform to ICC versions up to 2.x for PDF 1.4, and to
ICC versions up to 4.x for PDF 1.5 and above. Profiles can be specified in the gray, RGB,
CMYK, or Lab color spaces.

PDF/X: the output intent must be set either using this function or by copying an im-
ported document’s output intent using PDF_process_pdi().

PDF/X-1 and PDF/X-3: If usage=outputintent the named profile is first searched in the
internal list of standard output intents and then in the list of user-configured output
intents. If the supplied profilename was found to be a standard output intent, no ICC
profile is required and only the name will be written to the PDF output as output intent.
If the name was not found to be a standard output intent identifier, it is treated as a pro-
file name and the corresponding ICC profile (possibly mapped via the ICCProfile resource
category) will be embedded in the PDF as output intent.

PDF/X-4/5: a CMYK profile which has been loaded with usage=iccbased can not be
used with usage=outputintent in the same document. This requirement is mandated by
the PDF/X standard, and applies only to CMYK profiles, but not to grayscale or RGB.

PDF/A: the output intent can be set using this function or by copying an imported
document’s output intent using PDF_process_pdi(). However, if only device-indepen-
dent colors are used in the document no output intent is required.

Scope document; the output intent should be set immediately after PDF_begin_document(). If
usage=iccbased the following scopes are also allowed: page, pattern, template, glyph.

Params See Table 8.3 and Table 8.4

Table 8.3 Keys for PDF_get/set_parameter() (see Section 2.2, »Parameter and Option Handling«, page 19)

key explanation

ICCProfile
StandardOutputIntent

The corresponding resource file line as it would appear for the respective category in a UPR file.
Multiple calls add new entries to the internal list (see also resourcefile in Table 2.3). Scope: any

Table 8.4 Keys for PDF_get/set_value() (see Section 2.2, »Parameter and Option Handling«, page 19)

key explanation

icccomponents Number of color components in the ICC profile referenced by the handle provided in the modifier

setcolor:icc-
profilegray

ICC profile which specifies a Gray color space for use with PDF_setcolor(). Scope: document, page,
pattern, template, glyph

8.2 ICC Profiles 147

setcolor:icc-
profilergb

ICC profile which specifies an RGB color space for use with PDF_setcolor(). Scope: document, page,
pattern, template, glyph

setcolor:icc-
profilecmyk

ICC profile which specifies a CMYK color space for use with PDF_setcolor(). Scope: document, page,
pattern, template, glyph

Table 8.5 Standard CMYK output intents for PDF/X-1 and PDF/X-3 (see also www.color.org)

reference
name description

CGATS standards for the US (www.npes.org/standards/tools.html)

CGATS TR 001 SWOP (Publication) printing in USA: ANSI CGATS.6

CGATS TR 002 SNAP printing in USA

CGATS TR 003 SWOP proofing and printing on U.S. Grade 3 coated publication paper

CGATS TR 005 SWOP proofing and printing on U.S. Grade 5 coated publication paper

CGATS TR 006 GRACoL proofing and printing on U.S. Grade 1 coated paper

FOGRA standards (www.fogra.org)

FOGRA30 ISO/DIS 12647-2:2004, Offset commercial and specialty printing according to ISO 12647-2, positive plates,
paper type 5 (uncoated, slightly yellowish, offset, 115 g/m2), screen frequency 60/cm.

FOGRA31 ISO/DIS 12647-2:2003, Continuous forms printing according to ISO 12647-2, positive plates, paper type 2
(matt coated offset, 115 g/m2), screen frequency 60/cm.

FOGRA32 ISO/DIS 12647-2:2004, Continuous forms printing according to ISO 12647-2, positive plates, paper type 4
(white uncoated offset, 80 g/m2), screen frequency 60/cm.

FOGRA33 ISO/DIS 12647-2:2004, Continuous forms printing according to ISO 12647-2, positive plates, paper type 2
(matte coated offset, 115 g/m2), screen frequency 54/cm.

FOGRA34 ISO/DIS 12647-2:2004, Continuous forms printing according to ISO 12647-2, positive plates, paper type 4
(white uncoated offset, 120 g/m2), screen frequency 60/cm.

FOGRA35 ISO/DIS 12647-2:2004, Continuous forms printing according to ISO 12647-2, negative plates, paper type 2
(matte coated offset, 115 g/m2), screen frequency 54/cm.

FOGRA36 ISO/DIS 12647-2:2004, Continuous forms printing according to ISO 12647-2, negative plates, paper type 4
(white uncoated offset, 120 g/m2), screen frequency 54/cm.

FOGRA38 ISO/DIS 12647-2:2004, Continuous forms printing according to ISO 12647-2, negative plates, paper type 4
(white uncoated offset, 120 g/m2), screen frequency 60/cm.

FOGRA39 ISO 12647-2:2004 / Amd 1, Offset commercial and specialty printing according to ISO 12647-2, paper type
1 or 2 (gloss or matte coated offset, 115 g/m2), screen frequency 60/cm.

FOGRA40 ISO 12647-2:2004, Offset commercial and specialty printing according to ISO 12647-2, super calendered
(SC) paper, 60 g/m2, screen frequency 60/cm.

FOGRA41 ISO 12647-2:2004, Offset printing according to ISO 12647-2, paper type MFC (machine finished coated),
tone value increase curves B (CMY) and C (K).

FOGRA42 ISO 12647-2:2004, Offset printing according to ISO 12647-2, paper type SNP (Standard Newsprint), tone
value increase curves C (CMY) and D (K).

FOGRA43 ISO 12647-2:2004/Amd1, Offset printing according to ISO 12647-2, paper type 1 or 2 (coated art) 115 g/m2
non-periodic screening, tone value increase curves F (CMYK).

Table 8.4 Keys for PDF_get/set_value() (see Section 2.2, »Parameter and Option Handling«, page 19)

key explanation

http://www.color.org

148 Chapter 8: Color Functions

FOGRA44 ISO 12647-2:2004/Amd1, Offset printing according to ISO 12647-2, paper type 4 (uncoated white) 115 g/m2
non-periodic screening, tone value increase curves F (CMYK).

FOGRA45 ISO 12647-2:2004, Heatset web offset printing according to ISO 12647-2, improved light-weight coated
(LWC), 60 l/cm

FOGRA46 ISO 12647-2, Heatset web offset printing according to ISO 12647-2:2004, standard light-weight coated
(LWC), 60 l/cm

FOGRA47 ISO 12647-2, Sheetfed offset printing according to ISO 12647-2:2004 / Amd 1, uncoated white (paper type
4), 115 gsm, 60 l/cm

IFRA standards for newsprint (www.ifra.com)

IFRA26 ISO/DIS 12647-3:2004, Coldset offset printing, contact exposed negative acting plates or computer to
plate (tone value increase of 26%), newsprint, screen ruling 40 lines per cm.

IFRA30 ISO/DIS 12647-3:2004, Coldset offset printing, contact exposed negative acting plates or computer to
plate (tone value increase of 30%), newsprint, screen ruling 40 lines per cm. (Principally applicable to the
USA).

Eurostandard System Brunner (www.systembrunner.com)

EUROSB104 Offset printing, according to Eurostandard System Brunner specification, within ISO 12647-2:2004 toler-
ances, paper type coated/semi-matte, 115 g/m2, TVI 15%, screen ruling 60 L/cm, for further information
see documentation.

EUROSB204 Offset printing, according to Eurostandard System Brunner specification, within ISO 12647-2:2004 toler-
ances, LWC woodpulp paper, 80 g/m2, TVI 15%, screen ruling 60 L/cm, for further information see docu-
mentation.

Japanese standards

JC200103 Japan Color 2001 Coated: ISO 12647-2:2004, sheet-fed offset printing, positive plates, paper type 3, (coat-
ed, 105 g/m2), screen frequency 69/cm.

JC200104 Japan Color 2001 Uncoated: ISO 12647-2:2004, sheet-fed offset printing, positive plates, paper type 4,
(uncoated, 105 g/m2), screen frequency 69/cm.

JCN2002 Japan Color 2002 for Newspaper Printing: ISO/DIS 12647-3:2004, coldset offset printing, negative plates,
newsprint, screen frequency 39/cm.

JCW2003 Japan Color 2003 for Web Offset: ISO 12647-2:2004, heat-set web offset printing, positive plates, paper
type 3, (coated, 70 g/m2), screen frequency 69/cm.

Table 8.5 Standard CMYK output intents for PDF/X-1 and PDF/X-3 (see also www.color.org)

reference
name description

8.3 Patterns and Shadings 149

8.3 Patterns and Shadings

C++ Java int begin_pattern(double width, double height, double xstep, double ystep, int painttype)
Perl PHP int begin_pattern(float width, float height, float xstep, float ystep, int painttype)

C int PDF_begin_pattern(PDF *p,
double width, double height, double xstep, double ystep, int painttype)

Start a pattern definition.

width, height The dimensions of the pattern’s bounding box in points.

xstep, ystep The offsets when repeatedly placing the pattern to stroke or fill some ob-
ject. Most applications will set these to the pattern width and height, respectively.

painttype This parameter indicates whether the pattern contains color specifications
on its own, or is used as a stencil which will be colorized with the current fill or stroke
color when the pattern is used for filling or stroking:

> painttype=1 must be used if the pattern is colorized with one or more calls to PDF_
setcolor(), or places images or imported PDF pages.

> painttype=2 must be used if the pattern does not contain any color specification. In-
stead, the current fill or stroke color will be applied when the pattern is used for fill-
ing or stroking. Image masks may be used for painttype=2. Before using the pattern,
PDF_setcolor() must be called to set the current color with a color space which is not
itself based on another pattern.

Undesired behavior may result if the wrong value of painttype is supplied.

Returns A pattern handle that can be used in subsequent calls to PDF_setcolor() during the en-
closing document scope.

Details This function will reset all text, graphics, and color state parameters to their defaults,
and establish a coordinate system according to the global topdown parameter. Hyper-
text functions and functions for opening images must not be used during a pattern def-
inition, but all text, graphics, and color functions (with the exception of the pattern
which is in the process of being defined) can be used.

Scope document, page; this function starts pattern scope, and must always be paired with a
matching PDF_end_pattern() call.

Params topdown

C++ Java void end_pattern()
Perl PHP end_pattern()

C void PDF_end_pattern(PDF *p)

Finish a pattern definition.

Scope pattern; this function terminates pattern scope, and must always be paired with a
matching PDF_begin_pattern() call.

150 Chapter 8: Color Functions

C++ Java int shading_pattern(int shading, String optlist)
Perl PHP int shading_pattern(int shading, string optlist)

C int PDF_shading_pattern(PDF *p, int shading, const char *optlist)

Define a shading pattern using a shading object (requires PDF 1.4).

shading A shading handle returned by PDF_shading().

optlist An option list describing the graphics appearance of the shading pattern ac-
cording to Table 7.2: gstate

Returns A pattern handle that can be used in subsequent calls to PDF_setcolor() during the en-
closing document scope.

Details This function can be used to fill arbitrary objects with a shading. To do so, a shading
handle must be retrieved using PDF_shading(), then a pattern must be defined based on
this shading using PDF_shading_pattern(). Finally, the pattern handle can be supplied to
PDF_setcolor() to set the current color to the shading pattern.

Scope document, page, font

C++ Java void shfill(int shading)
Perl PHP shfill(int shading)

C void PDF_shfill(PDF *p, int shading)

Fill an area with a shading, based on a shading object (requires PDF 1.4).

shading A shading handle returned by PDF_shading().

Details This function allows shadings to be used without involving PDF_shading_pattern() and
PDF_setcolor(). However, it works only for simple shapes where the geometry of the ob-
ject to be filled is the same as that of the shading itself. Since the current clip area will be
shaded (subject to the extend0 and extend1 options of the shading) this function will
generally be used in combination with PDF_clip().

Scope page, pattern (only if the pattern’s paint type is 1), template, glyph (only if the Type 3
font’s colorized option is true)

C++ Java int shading(String shtype, double x0, double y0, double x1, double y1,
double c1, double c2, double c3, double c4, String optlist)

Perl PHP int shading(string shtype, float x0, float y0, float x1, float y1,
float c1, float c2, float c3, float c4, string optlist)

C int PDF_shading(PDF *p, const char *shtype, douZPble x0, double y0, double x1, double y1,
double c1, double c2, double c3, double c4, const char *optlist)

Define a blend from the current fill color to another color (requires PDF 1.4).

shtype The type of the shading; must be axial for linear shadings or radial for circle-like
shadings.

8.3 Patterns and Shadings 151

x0, y0, x1, y1 For axial shadings, (x0, y0) and (x1, y1) are the coordinates of the starting
and ending points of the shading. For radial shadings these points specify the centers of
the starting and ending circles.

c1, c2, c3, c4 Color values of the shading’s endpoint, interpreted in the current fill color
space in the same way as the color parameters in PDF_setcolor(). If the current fill color
space is a spot color space c1 will be ignored, and c2 contains the tint value.

optlist An option list describing aspects of the shading according to Table 8.6. The fol-
lowing options can be used: antialias, boundingbox, domain, extend0, extend1, N, r0, r1,
startcolor

Returns A shading handle that can be used in subsequent calls to PDF_shading_pattern() and
PDF_shfill() during the enclosing document scope.

Details The current fill color will be used as the starting color; it must not be based on a pattern.

Scope document, page, font

Table 8.6 Options for PDF_shading()

Option explanation

antialias (Boolean) Specifies whether to activate antialiasing for the shading. Default: false

boundingbox (Rectangle) A rectangle defining the shading’s bounding box in user coordinates. The bounding box will
be applied as a temporary clipping path when the shading is painted (in addition to the current clipping
path which may be in effect). This option may be useful to clip the shading without applying PDF_clip().

domain (List of 2 Floats) Two numbers specifying the limiting values of a parametric variable t. The variable is
considered to vary linearly between these two values as the color gradient varies between the starting
and ending points of the axis. Default: {0 1}

extend0 (Boolean) Specifies whether to extend the shading beyond the starting point. Default: false

extend1 (Boolean) Specifies whether to extend the shading beyond the endpoint. Default: false

N (Float) Exponent for the color transition function; must be > 0. Default: 1

r0 (Float; only for radial shadings, and required in this case) Radius of the starting circle

r1 (Float; only for radial shadings, and required in this case) Radius of the ending circle

startcolor (Color) The color of the starting point. This option may be useful to make the function independent of
the current color. Default: the current fill color

152 Chapter 8: Color Functions

153

9 Image and Template Functions
Table 9.1 and Table 9.2 list relevant parameter and value key names for this section (see
Section 2.2, »Parameter and Option Handling«, page 19).

Table 9.1 Image-related keys for PDF_get/set_parameter()

key explanation

honoriccprofile Read ICC color profiles embedded in images, and apply them to the image data. Default: true

renderingintent The rendering intent for images. Default: Auto.
Auto Do not specify any rendering intent in the PDF file, but use the device’s default intent

instead. Typical use: unknown cases
AbsoluteColorimetric

No correction for the device’s white point (such as paper white) is made. Colors which
are out of gamut are mapped to nearest value within the device’s gamut. Typical use:
exact reproduction of solid colors; not recommended for other uses

RelativeColorimetric
The color data is scaled into the device’s gamut, mapping the white points onto one
another while slightly shifting colors. Typical use: vector graphics

Saturation Saturation of the colors will be preserved while the color values may be shifted.
Typical use: business graphics

Perceptual Color relationships are preserved by modifying both in-gamut and out-of-gamut
colors in order to provide a pleasing appearance. Typical use: scanned images

Table 9.2 Image-related keys for PDF_get_value()

key explanation

imagewidth
imageheight

Deprecated, use PDF_info_image() with the imagewidth and imageheight keys.

image:iccprofile Deprecated, use PDF_info_image() with the iccprofile key.

orientation Deprecated, use PDF_info_image() with the orientation key.

resx, resy Deprecated, use PDF_info_image() with the resx and resy keys.

154 Chapter 9: Image and Template Functions

9.1 Images
Cookbook A full code sample can be found in the Cookbook topic images/starter_image.

C++ Java int load_image(String imagetype, String filename, String optlist)
Perl PHP int load_image(string imagetype, string filename, string optlist)

C int PDF_load_image(PDF *p,
const char *imagetype, const char *filename, int len, const char *optlist)

Open a disk-based or virtual image file subject to various options.

imagetype The string auto instructs PDFlib to automatically detect the image file type
(this is not possible for CCITT and raw images). Explicitly specifying the image format
with one of the strings bmp, ccitt, gif, jbig2 (PDF 1.4 and above), jpeg, jpeg2000 (PDF 1.5 and
above), png, raw, or tiff offers slight performance advantages. Type ccitt is different from
a TIFF file which contains CCITT-compressed image data.

filename (Name string; will be interpreted according to the global filenamehandling op-
tion or parameter, see Table 2.2) Generally the name of the image file to be opened. This
must be the name of a disk-based or virtual file; PDFlib will not pull image data from
URLs.

If a file with the specified file name cannot be found and imagetype=auto PDFlib will
try to determine the appropriate file name suffix automatically; it will append all suf-
fixes from the following list (in both lowercase and uppercase) to the specified filename
and try to locate a file with that name in the directories specified in the searchpath:

.bmp, .ccitt, .g3, .g4, .fax, .gif, .jbig2, .jb2, .jpg .jpeg, .jpx, .jp2, .jpf, .jpm,

.j2k, .png, .raw, .tif, .tiff

len (C language binding only) Length of filename (in bytes) for UTF-16 strings. If len = 0
a null-terminated string must be provided.

optlist An option list specifying image-related properties according to Table 9.3. The
following options can be used:

> General options: errorpolicy (see Table 2.6) and hypertextencoding (see Table 12.1)
> Color-related options: colorize, honoriccprofile, iccprofile, invert, renderingintent
> Clipping, masking, and transparency options: alphachannelname, clippingpathname,

honorclippingpath, ignoremask, mask, masked
> Special PDF features for using the image: georeference, iconname, template
> Options for raw and CCITT images: bitreverse, bpc, components, height, K, width
> Options for JBIG2 images: copyglobals, imagehandle
> Options for processing the image data: cascadedflate, ignoreorientation, inline, page,

passthrough
> Other options: interpolate, layer, metadata, OPI-1.3, OPI-2.0

Returns An image handle which can be used in subsequent image-related calls. If
errorpolicy=return the caller must check for a return value of -1 (in PHP: 0) since it signals
an error. The returned image handle can not be reused across multiple PDF documents.
If the function call fails you can request the reason of the failure with PDF_get_errmsg().

Details This function opens and analyzes a raster graphics file in one of the supported formats
as determined by the imagetype parameter, and copies the relevant image data to the

http://www.pdflib.com/pdflib-cookbook/images/starter-image

9.1 Images 155

output document. This function will not have any visible effect on the output. In order
to actually place the imported image somewhere in the generated output document,
PDF_fit_image() must be used. Opening the same image more than once per generated
document is not recommended because the actual image data will be copied to the out-
put document more than once.

PDFlib will open the image file with the provided filename, process the contents, and
close the file before returning from this call. Although images can be placed multiply
within a document (see PDF_fit_image()), the actual image file will not be kept open af-
ter this call.

If imagetype=raw or ccitt, the width, height, components, and bpc options must be sup-
plied since PDFlib cannot deduce those from the image data. The user is responsible for
supplying option values which actually match the image. Otherwise corrupt PDF out-
put may be generated, and Acrobat may respond with the message Insufficient data for
an Image.

If imagetype=raw, the length of the supplied image data must be equal to [width x
components x bpc / 8] x height bytes, with the bracketed term adjusted upwards to the
next integer. The image samples are expected in the standard PostScript/PDF ordering,
i.e. top to bottom and left to right (assuming no coordinate transformations have been
applied). 16-bit samples must be provided with the most significant byte first (big-endi-
an or »Mac« byte order). The polarity of the pixel values is as discussed in Section , »Col-
or spaces«, page 141. If bpc is smaller than 8, each pixel row begins on a byte boundary,
and color values must be packed from left to right within a byte. Image samples are al-
ways interleaved, i.e. all color values for the first pixel are supplied first, followed by all
color values for the second pixel, and so on.

PDF/X-1a: RGB images are not allowed.
PDF/X-1a/3: JBIG2 images are not allowed.
PDF/X-3/4/5: Grayscale images require that the defaultgray option in PDF_begin_

page_ext() must have been set unless the output intent is a grayscale or CMYK device.
RGB images require that the defaultrgb option in PDF_begin_page_ext() must have been
set unless the output intent is an RGB device. CMYK images require that the defaultcmyk
option in PDF_begin_page_ext() must have been set unless the output intent is a CMYK
device.

PDF/A: Grayscale images require that the defaultgray option in PDF_begin_page_ext()
has been set unless an output intent (any type) has been specified.

RGB images require that the defaultrgb option in PDF_begin_page_ext() has been set
unless the output intent is an RGB device.

CMYK images require that the defaultcmyk option in PDF_begin_page_ext() has been
set unless the output intent is a CMYK device.

Scope document, page, font; must always be paired with a matching call to PDF_close_image().
Loading images in document or font scope instead of page scope offers slight output size
advantages.

Params See Table 9.1 and Table 9.2

156 Chapter 9: Image and Template Functions

Table 9.3 Options for PDF_load_image()

key explanation

alphachannel-
name

(Name string; only for TIFF images; will be ignored if ignoremask=true) Read the alpha channel with the
specified name from the image file and apply it as a soft mask to the image. The named channel must be
present in the image file. Default: the first alpha channel in the image

bitreverse (Boolean; only for imagetype=ccitt) If true, do a bitwise reversal of all bytes in the compressed data.
Default: false

bpc (Integer; only for imagetype=raw; required in this case) Number of bits per component; must be 1, 2, 4, or
8. In PDF 1.5, bpc=16 is also allowed.

cascadedflate (Boolean; only for imagetype=jpeg) If true, an additional layer of Flate compression will be applied to
the JPEG-compressed image data. This can reduce output file size in certain cases, e.g. for images with
large areas of the same color. Note that for most types of image content this option will not decrease file
size, and may even result in larger output. Default: false

clipping-
pathname

(String; only for imagetype=tiff and jpeg; will be ignored if honorclippingpath=false) Read the path
with the specified name from the image file and use it as clipping path. The named path must be present
in the image file. The special name Work Path can be used to address a temporary path created in Photo-
shop. Default: name of the path which is provided as clipping path in the image file

colorize (Spot color handle; will be ignored if the iccprofile option is provided) Colorize the image with a spot
color handle, which must have been retrieved with PDF_makespotcolor(). The image must be a black
and white or grayscale image.

components (Integer; only for imagetype=raw; required in this case) Number of image components (channels); must
be 1, 3, or 4.

copyglobals (Keyword; only for imagetype=jbig2) Specify which global segments in a JBIG2 stream will be copied to
the PDF. If the JBIG2 stream doesn’t contain any global segments this option will not have any effect (de-
fault: current):
all Copy the global segments for all pages in the JBIG2 stream to the PDF. This should be used if

more than one page from the same JBIG2 stream will be imported. The imagehandle option
should be used if more pages from the same JBIG2 stream will be imported later.

current Copy only the global segments required for the current page (i.e. the page specified in the
page option) in the JBIG2 stream to the PDF. This should be used if no more pages from the
same JBIG2 stream will be imported.

georeference (Option list; PDF 1.7ext3) Specifies the description of an earth-based coordinate system associated with
the image to use for geospatial measuring; see Section 13.2, »Geospatial Features«, page 222, for details.

height (Integer; only for imagetype=raw and ccitt; required in this case) Image height in pixels.

honor-
clippingpath

 (Boolean; only for imagetype=tiff and jpeg) Read the clipping path from the image file if available,
and apply it to the image. Default: true

honor-
iccprofile

(Boolean; only for imagetype=jpeg, png, and tiff; will be set to false if the colorize option is provided)
Read an embedded ICC profile (if any) and apply it to the image. Default: the value of the honoricc-
profile parameter.

iccprofile (ICC handle; only for imagetype=jpeg, jbig2, png, and tiff) Handle of an ICC profile which will be ap-
plied to the image. Default: an embedded profile if one is present in the image and
honoriccprofile=true.

iconname (Hypertext string; will be ignored if inline=true; forces template=true) Attaches a name to the image
so that it can be referenced via JavaScript, e.g. to use the image as an icon for form fields.

ignoremask (Boolean; must be set to true in PDF/X-1, PDF/X-3, and PDF/A modes for images with an alpha channel)
Ignore transparency information and alpha channels in the image. Default: false

9.1 Images 157

ignore-
orientation

(Boolean; only for imagetype=tiff) Ignores any orientation tag in the image. This may be useful for
compensating wrong orientation information. Default: false

imagehandle (Image handle; only for imagetype=jbig2) Add a reference to an existing global segment attached to
another image created from the same JBIG2 stream which must have been loaded earlier with the copy-
globals=all option. It is an error to refer to an image which has been created from a different file than
the current JBIG2 stream. The specified image handle must not have been closed. Default: no image han-
dle, i.e. a new PDF object will be created with all required global segments for the current page only

inline (Boolean; only for imagetype=ccitt, jpeg, and raw) If true, the image will be written directly into the
content stream of a page, pattern, template, or glyph description. This option will implicitly call PDF_fit_
image() and PDF_close _image() (see PDFlib Tutorial). Using this option is recommended for bitmap
glyphs of Type 3 fonts, and should not be used in other situations. If this option is provided, PDF_load_
image() can be called in page, pattern, template, glyph scope, and PDF_close_image() must not be
called. Default: false

interpolate (Boolean; must be false for PDF/A) Enables image interpolation to improve the appearance on screen
and paper. This is useful for bitmap images for glyph descriptions in Type 3 fonts. Default: false

invert (Boolean; not for imagetype=jpeg2000 unless mask=true) Inverts the image (swap light and dark colors).
This can be used as a workaround for images which are interpreted differently by applications. Default:
false

K (Integer; only for imagetype=ccitt) CCITT parameter for compression scheme selection. Default: 0
-1 G4 compression
0 One-dimensional G3 compression (G3-1D)
1 Mixed one- and two-dimensional compression (G3, 2-D)

layer (Layer handle; PDF 1.5) Layer to which the image will belong unless another layer has been activated with
PDF_begin_layer() prior to placing the image. Calling PDF_begin_layer() to activate a layer before
placing the image overrides the image’s layer option. Call PDF_end_layer() before placing the image to
make sure that the image’s layer option will not be overridden.

mask (Boolean; only for images with one color component, including indexed color). The image is going to be
used as a mask. This is required for 1-bit masks, but optional for masks with more than 1 bit per pixel.
However, masks with more than 1 bit require PDF 1.4. Default: false. There are two uses for masks:
> Masking another image: The returned image handle may be used in subsequent calls for opening an-

other image and can be supplied for the masked option.
> Placing a colorized transparent image: Treat the 0-bit pixels in the image as transparent, and colorize

the 1-bit pixels with the current fill color.
This option forces ignoremask=true since an image which is used as mask cannot itself have an internal
mask.

masked (Image handle) Image handle for an image which will be applied as a mask to the current image. The im-
age handle has been returned by a previous call to PDF_load_image() and has not yet been closed. In
PDF 1.3 compatibility mode the mask handle must refer to a 1-bit image and must have been loaded with
the mask option. This option is ignored if the image contains an alpha channel and ignoremask=false. In
PDF/A and PDF/X-1/3 mode this option is only allowed with 1-bit masks.

metadata (Option list; PDF 1.4) Supply metadata for the image (see Section 14.2, »XMP Metadata«, page 227).

Table 9.3 Options for PDF_load_image()

key explanation

158 Chapter 9: Image and Template Functions

OPI-1.3 (Option list; not for PDF/A and PDF/X) An option list containing OPI 1.3 PostScript comments as option
names; the following entries are required: ALDImageFilename (string1), ALDImageDimensions (list of inte-
gers), ALDImageCropRect (rectangle with integers), ALDImagePosition (list of floats)
The following entries are optional:
ALDImageID (string), ALDObjectComments (string), ALDImageCropFixed (rectangle), ALDImageResolution
(list of floats), ALDImageColorType (keyword; one of Process, Spot, Separation; default: Spot),
ALDImageColor (list of four color values in the range 0...1 and a color name), ALDImageTint (float),
ALDImageOverprint (boolean), ALDImageType (list of integers), ALDImageGrayMap (list of integers),
ALDImageTransparency (boolean), ALDImageAsciiTag (list of integer/string pairs)
The suboption normalizefilename controls the handling of file names: if true, file names will be nor-
malized as mandated by the PDF reference. If false they will be copied to the output without any modi-
fication. The latter can be useful to deal with some OPI servers which do not properly process normalized
file names. Default: false

OPI-2.0 (Option list; not for PDF/A and PDF/X) An option list containing OPI 2.0 PostScript comments as option
names; the following entry is required: ImageFilename (string1)
The following entries should either both be present or absent:
ImageCropRect (rectangle), ImageDimensions (list of floats)
The following entries are optional:
MainImage (string), TIFFASCIITag (list of integer/string pairs), ImageOverprint (boolean), ImageInks
(the string full_color, the string registration, or a list containing the string monochrome and string/
float pairs for each colorant name and tint), IncludedImageDimensions (list of integers), Included-
ImageQuality (integer with one of the values 1, 2, or 3)
The option normalizefilename is also supported (see OPI-1.3).

page (Integer; only for imagetype=gif, jbig2, and tiff; must be 1 if used with other formats) Extract the im-
age with the given number from a multi-page image file. The first image has the number 1. The call will
fail if the requested page cannot be found in the image file. Default: 1

passthrough (Boolean; only for imagetype=tiff or jpeg) Controls handling of TIFF and JPEG image data.
tiff (Default: true) If true, compressed TIFF image data will be directly passed through to the PDF

output if possible. Setting this option to false may help in cases where a TIFF image contains
damaged or incomplete data.

jpeg (Default: false) If false, PDFlib will transcode JPEG image data in order to clean up the data
for compatibility with Acrobat. If true, JPEG image data will be directly copied to the PDF
output. This option will be ignored for multiscan and certain CMYK JPEG images. Setting this
option to true may speed up processing, but certain rare JPEG flavors won’t display correctly
in Acrobat.

rendering-
intent

(Keyword) Rendering intent for the image. See Table 9.1 for a list of possible keywords and their meaning.
Default: the value of the global renderingintent parameter

template (Boolean) If true, generate a PDF Image XObject embedded in a Form XObject (called template in PDFlib)
instead of a plain Image XObject. This can be useful for creating templates for form field icons which con-
sist of an image only. It is also required for compatibility with certain OPI servers when using one of the
OPI-1.3 or OPI-2.0 options. Default: false. Scope: document

width (Integer; only for imagetype=raw and ccitt; required in this case) Image width in pixels

1. Windows users keep in mind that a sequence of two backslash characters is required in the option list to create a single backslash in
the resulting path (see »Common traps and pitfalls«, page 9).

Table 9.3 Options for PDF_load_image()

key explanation

9.1 Images 159

C++ Java void close_image(int image)
Perl PHP close_image(int image)

C void PDF_close_image(PDF *p, int image)

Close an image.

image A valid image handle retrieved with PDF_load_image().

Details This function only affects PDFlib’s associated internal image structure. If the image has
been opened from file, the actual image file is not affected by this call since it has al-
ready been closed at the end of the corresponding PDF_load_image() call. An image han-
dle cannot be used any more after it has been closed with this function, since it breaks
PDFlib’s internal association with the image.

Scope document, page, font; must always be paired with a matching call to PDF_load_image()
unless the inline option has been used.

C++ Java void fit_image(int image, double x, double y, String optlist)
Perl PHP fit_image(int image, float x, float y, string optlist)

C void PDF_fit_image(PDF *p, int image, double x, double y, const char *optlist)

Place an image or template on the page, subject to various options.

image A valid image or template handle retrieved with one of the PDF_load_image() or
PDF_begin_template_ext() functions.

x, y The coordinates of the reference point in the user coordinate system where the
image or template will be located, subject to various options.

optlist An option list specifying image fitting and processing options. The following
options are supported:

> Fitting options according to Table 6.1:
boxsize, blind, dpi, fitmethod, matchbox, orientate, position, rotate, scale, showborder

> Options for image processing according to Table 9.4:
adjustpage, gstate, ignoreclippingpath, ignoreorientation

Details The image or template (collectively referred to as an object below) will be placed relative
to the reference point (x, y). By default, the lower left corner of the object will be placed
at the reference point. However, the orientate, boxsize, position, and fitmethod options
can modify this behavior. By default, an image will be scaled according to its resolution
value(s). This behavior can be modified with the dpi, scale, and fitmethod options.

Scope page, pattern (only if the pattern's painttype is 1, or if the image is a mask), template, glyph
(only if the Type 3 font’s colorized option is true, or if the image is a mask); this function
can be called an arbitrary number of times on arbitrary pages, as long as the image
handle has not been closed with PDF_close_image().

160 Chapter 9: Image and Template Functions

C++ Java double info_image(int image, String keyword, String optlist)
Perl PHP float info_image(int image, string keyword, string optlist)

C double PDF_info_image(PDF *p, int image, const char *keyword, const char *optlist)

Format an image and query metrics and other image properties.

image A valid image or template handle retrieved with one of the PDF_load_image() or
PDF_begin_template_ext() functions.

keyword A keyword specifying the requested information according to Table 9.5.

optlist An option list specifying options for PDF_fit_image(). Options which are not rel-
evant for determining the value of the requested keyword will be ignored.

Returns The value of some image property as requested by keyword. If the requested property is
not available in the image file, the function returns 0. If an object handle is requested
(e.g. clippingpath) this function will return a handle to the object, or -1 (in PHP: 0) if the
object is not available.

Details This function performs all calculations required for placing the image according to the
supplied options, but will not actually create any output on the page. The image refer-
ence point is assumed to be {0 0}.

Scope page, pattern, template, glyph, document, path

Table 9.4 Options for PDF_fit_image(), PDF_fit_pdi_page(), and PDF_fill_*block()

key explanation

adjustpage (Boolean; only effective in page scope; not allowed if the topdown option has been supplied in PDF_
begin_page_ext()) Adjust the dimensions of the current page to the object such that the upper right cor-
ner of the page coincides with the upper right corner of the object plus (x, y) with the function parame-
ters x and y. The MediaBox will be adjusted, and all other box entries will be reset to their defaults. With
the value 0 for the position option the following useful cases shall be noted:
x >= 0 and y >= 0

The object is surrounded by a white margin. This margin has thickness y in horizontal
direction and thickness x in vertical direction.

x < 0 and y < 0
Horizontal and vertical strips will be cropped from the image.

Default: false

gstate (Gstate handle) Handle for a graphics state retrieved with PDF_create_gstate(). The graphics state af-
fects all graphical elements created with this function. Default: no gstate (i.e. current settings will be
used)

ignore-
clippingpath

(Boolean; only for TIFF and JPEG images) A clipping path which may be present in the image file will be
ignored. Default: false, i.e. the clipping path will be applied

ignore-
orientation

(Boolean; only for TIFF images) Ignore any orientation tag in the image. This may be useful for compen-
sating wrong orientation information. Default: the value of the ignoreorientation option in PDF_
load_image()

9.1 Images 161

Table 9.5 Keywords for PDF_info_image()

keyword explanation

boundingbox Path handle of the image’s bounding box

clippingpath Path handle of the image’s clipping path, or -1 (in PHP: 0) if no clipping path is present

filename String index for the name of the image file (including a searchpath directory if applicable), or -1
for templates

fitscalex, fitscaley Scaling factors which resulted from fitting the image to a box according to the supplied options

height Image height in user coordinates according to the supplied options

iccprofile Handle for the ICC profile embedded in the image or -1 (in PHP: 0) if no profile is present

imageheight Images: height in pixels
Templates: user-supplied height, or automatically determined height if the reference option has
been specified

imagemask Image handle of the mask associated with the image, or -1 (in PHP: 0) if no mask is attached

imagetype String index for the type (format) of the image:
bmp, ccitt, gif, jbig2, jpeg, jpeg2000, png, raw, tiff, or template for templates

imagewidth Images: width in pixels
Templates: user-supplied width, or automatically determined width if the reference option has
been specified

mirroringx,
mirroringy

Horizontal or vertical mirroring of the image (expressed as 1 or -1) according to the supplied op-
tions

orientation Orientation value of the image. For TIFF images containing an orientation tag the value of this
tag will be returned; in all other cases 1 will be returned. PDFlib will automatically compensate
orientation values different from 1.

resx, resy Horizontal or vertical resolution of the image. Positive values represent the image resolution in
pixels per inch (dpi). The value zero means that the resolution is unknown. Negative values can be
used together to determine the aspect ratio of non-square pixels, but don’t have any absolute
meaning.

strips Number of image strips (will be different from 1 only for certain multi-strip TIFF images)

targetbox Deprecated

targetx1, targety1,
targetx2, targety2,
targetx3, targety3,
targetx4, targety4

Deprecated

width Image width in user coordinates according to the supplied options

x1, y1, x2, y2,
x3, y3, x4, y4

Position of the i-th rectangle corner (i=1, 2, 3, 4) of the image bounding box in user coordinates ac-
cording to the supplied options

162 Chapter 9: Image and Template Functions

9.2 Templates
Note The template functions described in this section are unrelated to variable data processing with

PDFlib blocks. Use PDF_fill_textblock(), PDF_fill_imageblock(), and PDF_fill_pdfblock() to fill
blocks prepared with the PDFlib Block plugin (see Chapter 11, »Block Filling Functions (PPS)«,
page 181).

C++ Java int begin_template_ext(double width, double height, String optlist)
Perl PHP int begin_template_ext(float width, float height, string optlist)

C int PDF_begin_template_ext(PDF *p, double width, double height, const char *optlist)

Start a template definition.

width, height The dimensions of the template’s bounding box in points. The width
and height parameters can be 0. In this case they must be supplied in PDF_end_template_
ext(). Ultimately both values must be different from 0 unless the postscript option is
specified.

optlist Option list specifying template-related properties.
> The following options of PDF_load_image() can be used (see Table 9.3):

iconname, layer, metadata, OPI-1.3, OPI-2.0
> The following options of PDF_begin_page_ext() can be used (see Table 3.7):

topdown, transparencygroup
> The reference option (see Table 9.6).
> The following option for including PostScript code can be used (see Table 9.6):

postscript

Returns A template handle which can be used in subsequent calls to PDF_fit_image() and PDF_
info_image(), and PDF_end_template_ext(), or -1 (in PHP: 0) in case of an error.

Details This function will reset all text, graphics, and color state parameters to their defaults,
and establish a coordinate system according to the global topdown parameter.
Hypertext functions and functions for opening images must not be used during a
template definition, but all text, graphics, and color functions can be used.

Template size: in the simplest case width and height are supplied in PDF_begin_
template_ext(). However, if they are not yet known they can also be specified as zero. In
this case they must be supplied in the corresponding call to PDF_end_template_ext().

If the reference option has been supplied the size will be determined automatically
from the size of the target PDF page, and no values must be specified. However, if width
and height are specified nevertheless they will be used, but will automatically be adjust-
ed to the same aspect ratio as the target page.

Scope document, page; this function starts template scope, and must always be paired with a
matching PDF_end_template_ext() call.

9.2 Templates 163

Table 9.6 Options for PDF_begin_template_ext()

key explanation

postscript (Option list; not for PDF/A and PDF/X) Create a PostScript XObject instead a PDF Form XObject. This op-
tion should only be used in scenarios with tight control over postprocessing of the generated PDF docu-
ments; it is not suitable for importing EPS graphics. The PostScript XObject will be written immediately.
Although the scope will change to template, no API function calls for producing graphical output are al-
lowed until the corresponding call to PDF_end_template_ext(). If this option is supplied no other options
are allowed. Supported suboption:
filename (Name string; required) Name of a disk-based or virtual file containing PostScript code. The

PostScript code should be terminated with a whitespace character. This code will be inserted
in the PostScript XObject without any validation. The user is responsible for the PostScript
contents.

reference (Option list; PDF 1.4, but requires Acrobat 9 or above for proper page rendering; not allowed in PDF/X-1/
2/3/4 and PDF/A-1 modes; not available in PDFlib source code packages) Specify a reference to a page in
an external PDF (the »target« document). The page or template will be used as a proxy for this reference.
Depending on viewer configuration and availability of the target PDF either the internal proxy or the ex-
ternal target will be displayed and printed. See Table 9.7 for available suboptions.
The target PDF must be available locally and must contain the page addressed with the pagelabel or
pagenumber suboption. The target must not require a user or master password. The size of the reference
page will be determined according to the pdiusebox suboption of the reference option.
PDF_begin_template_ext(): If width and height have been supplied with the value 0 the template size
can be retrieved with the imagewidth/imageheight keywords of PDF_info_image(). If width and height
have been supplied with values different from 0, the following suboptions can also be used (see Table
6.1): fitmethod, position.
In PDF/X-5g or PDF/X-5pg mode the target must conform to one of the following standards: PDF/X-
1a:2003, PDF/X-3:2003, PDF/X-4, PDF/X-4p, PDF/X-5g, or PDF/X-5pg, and must have been prepared for
the same output intent.

Table 9.7 Suboptions for the reference option in PDF_begin_template_ext() and PDF_open_pdi_page()

key explanation

filename (Name string; required) Name of the file containing the target PDF. This name will be stored in the PDF
and used by the viewer. It will also be used to locate the target PDF locally (i.e. the PDF must exist) unless
the target option has been supplied. It is recommended to use plain base names without any directories.

hypertext-
encoding

(Keyword) Specifies the encoding for the pagelabel option. An empty string is equivalent to unicode. De-
fault: value of the global hypertextencoding parameter

pagelabel (Hypertext string; must not be combined with pagenumber) Page label of the page to be referenced

pagenumber (Integer) The number of the page to be referenced. The first page has page number 1. Default: 1 (this may
be overwritten by pagelabel, however).

pdiusebox (Keyword; will be forced to media in PDF/X-5g and PDF/X-5pg mode) Specifies which box dimensions will
be used for determining the size of the target page. Default: media in PDF/X-5g and PDF/X-5pg mode, else
crop.
media Use the MediaBox (which is always present)
crop Use the CropBox if present, else the MediaBox
bleed Use the BleedBox if present, else the CropBox
trim Use the TrimBox if present, else the CropBox
art Use the ArtBox if present, else the CropBox

164 Chapter 9: Image and Template Functions

C++ Java void end_template_ext(double width, double height)
Perl PHP end_template_ext(float width, float height)

C void PDF_end_template_ext(PDF *p, double width, double height)

Finish a template definition.

width, height The dimensions of the template’s bounding box in points. If width or
height is 0, the value supplied in PDF_begin_template_ext() will be used. Otherwise the
value supplied in PDF_begin_template_ext() will be overwritten. However, if the refer-
ence option has been specified in the corresponding call to PDF_begin_template_ext(),
the values supplied to PDF_end_template_ext() will be ignored.

Scope template; this function terminates template scope, and must always be paired with a
matching PDF_begin_template_ext() call.

C++ Java void end_template()
Perl PHP end_template()

C void PDF_end_template(PDF *p)

Deprecated, use PDF_end_template_ext().

C++ Java int begin_template(double width, double height)
Perl PHP int begin_template(float width, float height)

C int PDF_begin_template(PDF *p, double width, double height)

Deprecated, use PDF_begin_template_ext().

strongref (Boolean; will be forced to true in PDF/X-5g and PDF/X-5pg mode) If true, PDFlib will use the target’s ID
entry to create a strong reference to the target. The reference will break (i.e. the viewer will use the proxy)
if the target is replaced with another document. If the flexibility of swapping targets is desired, this op-
tion must be set to false, and the local target and the target which is ultimately used for rendering the
document must have identical page boxes and rotation entries. Default: true

target (PDF document handle) A handle to the target document retrieved with PDF_open_pdi_document(). The
target PDF must have been opened with the repair=none option and without the password option. Sup-
plying a document handle in addition to the filename may be useful in two situations:
> If many generated documents reference the same target PDF, the target must be opened only once

and the results can be cached internally.
> The filename of the local target is different from the target filename to be stored in the PDF.

Table 9.7 Suboptions for the reference option in PDF_begin_template_ext() and PDF_open_pdi_page()

key explanation

9.3 Thumbnails 165

9.3 Thumbnails

C++ Java void add_thumbnail(int image)
Perl PHP add_thumbnail(int image)

C void PDF_add_thumbnail(PDF *p, int image)

Add an image as thumbnail for the current page.

image A valid image handle retrieved with PDF_load_image().

Details This function adds the supplied image as thumbnail image for the current page. A
thumbnail image must adhere to the following restrictions:

> The image must be no larger than 106 x 106 pixels.
> The image must use the grayscale, RGB, or indexed RGB color space.
> Multi-strip TIFF images can not be used as thumbnails because thumbnails must be

constructed from a single PDF image object.

This function doesn’t generate thumbnail images for pages, but only offers a hook for
adding existing images as thumbnails. The actual thumbnail images must be generated
by the client. The client must ensure that color, height/width ratio, and actual contents
of a thumbnail match the corresponding page contents.

Since Acrobat and Adobe Reader generate thumbnails on the fly, and thumbnails in-
crease the overall file size of the generated PDF, it is recommended not to add thumb-
nails, but rely on client-side thumbnail generation instead.

Scope page; must only be called once per page. Not all pages need to have thumbnails attached
to them.

166 Chapter 9: Image and Template Functions

10.1 Document Functions 167

10 PDF Import (PDI) and pCOS Functions
Note All functions described in this chapter require the PDF import library (PDI) which is included in

PDFlib+PDI and PDFlib Personalization Server (PPS), but not in the base PDFlib product. Please
visit our Web site for more information on obtaining PDI.

10.1 Document Functions
Cookbook A full code sample can be found in the Cookbook topic pdf_import/starter_pdfmerge.

Table 10.1 lists relevant parameter key names for this section (see Section 2.2, »Parame-
ter and Option Handling«, page 19).

C++ Java int open_pdi_document(String filename, String optlist)
Perl PHP int open_pdi_document(string filename, string optlist)

C int PDF_open_pdi_document(PDF *p, const char *filename, int len, const char *optlist)

Open a disk-based or virtual PDF document and prepare it for later use.

filename (Name string; will be interpreted according to the global filenamehandling op-
tion or parameter, see Table 2.2) The name of the PDF file.

optlist An option list specifying PDF open options:
> General option: errorpolicy (see Section 2.5, »Exception Handling«, page 27)
> PDF document options according to Table 10.2:

infomode, inmemory, password, repair, requiredmode

len (C language binding only) Length of filename (in bytes) for UTF-16 strings. If len = 0
a null-terminated string must be provided.

Returns A PDI document handle which can be used for processing individual pages of the docu-
ment or for querying document properties. A return value of -1 (in PHP: 0) indicates that
the PDF document couldn’t be opened. An arbitrary number of PDF documents can be
opened simultaneously. The return value can be used until the end of the enclosing
document scope. If the function call fails you can request the reason of the failure with
PDF_get_errmsg().

The error behavior can be changed with the errorpolicy parameter or option.

Details By default, the document will be rejected if at least one of the following conditions is
true:

> The document is damaged and couldn’t be repaired (or repair=none was specified).

Table 10.1 PDI-related keys for PDF_get/set_parameter()

key explanation

pdi1

1. Only for PDF_get_parameter()

Returns the string true if PDI has been included when building the underlying library. This is true for all
combined PDFlib, PDFlib+PDI, and PPS binaries distributed by PDFlib GmbH, regardless of the license key.
Otherwise it returns false. Scope: any, null2

2. May be called with a PDF * argument of NULL or 0

http://www.pdflib.com/pdflib-cookbook/pdf-import/starter-pdfmerge

168 Chapter 10: PDF Import (PDI) and pCOS Functions

> The document is encrypted, but the corresponding password has not been supplied
in the password option.

> The document is not compatible to the current PDF/X or PDF/A output conformance
level, or uses an incompatible output intent.

> The document is Tagged PDF, and the tagged option in PDF_begin_document() is true.

Except for the first reason, the infomode option can be used to open the document nev-
ertheless. This may be useful to query information about the PDF using the PDF_pcos_
get_*() functions, such as encryption, PDF/A or PDF/X status, document info fields, etc.

In order to get more detailed information about the nature of a PDF import-related
problem (wrong PDF file name, unsupported format, bad PDF data, etc.), use PDF_get_
errmsg() to receive a more detailed error message.

PDF/A: the imported document must be compatible to the current PDF/A output
conformance level and output intent unless infomode=true.

PDF/X: the imported document must be compatible to the current PDF/X output
conformance level unless infomode=true, and must use the same output intent as the
generated document.

Scope any; in object scope a PDI document handle can only be used in the PDF_pcos_get_*()
functions.

Table 10.2 Options for PDF_open_pdi_document()

key explanation

infomode (Boolean) If true, the document will be opened such that information can be queried with the pCOS in-
terface, but the pages can not be imported into the current output document. In particular, the following
kinds of documents can be opened when infomode=true:
> PDFs which are not compatible to the current PDF/X or PDF/A conformance level
> Encrypted PDFs where the password is not known (exception: PDF 1.6 documents created with the Dis-

tiller setting »Object Level Compression: Maximum«)
> Tagged PDF when the tagged option in PDF_begin_document() is true
Default: false if requiredmode=full, otherwise true

inmemory (Boolean) If true, PDI will load the complete file into memory and process it from there. This can result in
a tremendous performance gain on some systems (especially z/OS) at the expense of memory usage. If
false, individual parts of the document will be read from disk as needed. Default: false

password (String with a maximum length of 32 characters) Master password required to open a protected PDF doc-
ument for import. If infomode=true the user password (which may even be empty) is sufficient to query
document information. If no password has been supplied at all for an encrypted document the document
handle can only be used to query its encryption status.

repair (Keyword) Specifies how to treat damaged PDF input documents. Repairing a document takes more time
than normal parsing, but may allow processing of certain damaged PDFs. Note that some documents
may be damaged beyond repair. Supported keywords (default: auto):
auto Repair the document only if problems are detected while opening the PDF.
force Unconditionally try to repair the document, regardless of whether or not it has problems.
none No attempt will be made at repairing the document. If there are problems in the PDF the

function call will fail.

requiredmode (Keyword) The minimum pcos mode (minimum/restricted/full) which is acceptable when opening
the document. The call will fail if the resulting pcos mode would be lower than the required mode. If the
call succeeds it is guaranteed that the resulting pcos mode is at least the one specified in this option.
However, it may be higher; e.g. requiredmode=minimum for an unencrypted document will result in full
mode. Default: full

10.1 Document Functions 169

C int PDF_open_pdi_callback(PDF *p, void *opaque, size_t filesize,
size_t (*readproc)(void *opaque, void *buffer, size_t size),
int (*seekproc)(void *opaque, long offset), const char *optlist)

Open a PDF document from a custom data source and prepare it for later use.

opaque A pointer to some user data that might be associated with the input PDF docu-
ment. This pointer will be passed as the first parameter of the callback functions, and
can be used in any way. PDI will not use the opaque pointer in any other way.

filesize The size of the complete PDF document in bytes.

readproc A callback function which copies size bytes to the memory pointed to by
buffer. If the end of the document is reached it may copy less data than requested. The
function must return the number of bytes copied.

seekproc A callback function which sets the current read position in the document.
offset denotes the position from the beginning of the document (0 meaning the first
byte). If successful, this function must return 0, otherwise -1.

optlist An option list specifying PDF open options according to Table 10.2. The follow-
ing options can be used:
infomode, inmemory, password, requiredmode

Returns A PDI document handle which can be used for processing individual pages of the docu-
ment or for querying document properties. A return value of -1 indicates that the PDF
document couldn’t be opened. An arbitrary number of PDF documents can be opened
simultaneously. The return value can be used until the end of the enclosing document
scope. If the function call fails you can request the reason of the failure with PDF_get_
errmsg().

Details This is a specialized interface for applications which retrieve arbitrary chunks of PDF
data from some data source instead of providing the PDF document in a disk file or in
memory.

Scope object, document, page; in object scope a PDI document handle can only be used to query
information from a PDF document.

Bindings Only available in the C binding.

C++ Java void close_pdi_document(int doc)
Perl PHP close_pdi_document(int doc)

C void PDF_close_pdi_document(PDF *p, int doc)

Close all open PDI page handles, and close the input PDF document.

doc A valid PDF document handle retrieved with PDF_open_pdi_document().

Details This function closes a PDF import document, and releases all resources related to the
document. All document pages which may be open are implicitly closed. The document
handle must not be used after this call. A PDF document should not be closed if more
pages are to be imported. Although you can open and close a PDF import document an
arbitrary number of times, doing so may result in unnecessary large PDF output files.

170 Chapter 10: PDF Import (PDI) and pCOS Functions

Scope any

10.2 Page Functions 171

10.2 Page Functions

C++ Java int open_pdi_page(int doc, int pagenumber, String optlist)
Perl PHP int open_pdi_page(int doc, int pagenumber, string optlist)

C int PDF_open_pdi_page(PDF *p, int doc, int pagenumber, const char* optlist)

Prepare a page for later use with PDF_fit_pdi_page().

doc A valid PDF document handle retrieved with PDF_open_pdi_document().

pagenumber The number of the page to be opened. The first page has page number 1.

optlist An option list specifying page-specific options:
> General options: errorpolicy (see Table 2.6) and hypertextencoding (see Table 12.1)
> Page options according to Table 10.3:

boxexpand, clippingarea, cloneboxes, forcebox, iconname, layer, metadata, pdiusebox,
reference

> The following option of PDF_begin_page_ext() (see Table 3.7): transparencygroup

Returns A page handle which can be used for placing pages with PDF_fit_pdi_page(). A return val-
ue of -1 (in PHP: 0) indicates that the page couldn’t be opened. If the function call fails
you can request the reason of the failure with PDF_get_errmsg(). The returned handle
can be used until the end of the enclosing document scope. If the infomode option was
true when the document has been opened with PDF_open_pdi_document(), the handle
can not be used with PDF_fit_pdi_page().

The error behavior can be changed with the errorpolicy parameter or option.

Details This function will copy all data comprising the imported page to the output document,
but will not have any visible effect on the output. In order to actually place the import-
ed page somewhere in the generated output document, PDF_fit_pdi_page() must be
used.

This function fails if the document uses a PDF version which is incompatible to the
current PDF document. For PDF versions up to PDF 1.6 all versions up to and including
the same version are compatible. For PDF 1.7 and 1.7 extension level 3 all versions up to
PDF 1.7, PDF 1.7 extension level 3 (Acrobat 9), and PDF 1.7 extension level 8 (Acrobat X) are
compatible (note that Acrobat X encryption is not yet supported). However, in PDF/A
mode the input PDF version number is ignored since PDF version headers must be ig-
nored in PDF/A.

In order to get more detailed information about a problem related to PDF import
(unsupported format, bad PDF data, etc.) you can call PDF_get_errmsg().

If the imported page contains referenced XObjects, PDF_open_pdi_page() will copy
both proxy and reference to the target.

An arbitrary number of pages can be opened simultaneously. If the same page is
opened multiply, different handles will be returned, and each handle must be closed ex-
actly once.

PDF/A and PDF/X: this call may fail if the document containing the imported page
uses an output intent which is incompatible to the generated document.

PDF/X-4/5: the imported page is rejected if it uses a CMYK ICC profile which is identi-
cal to the generated document’s output intent profile.

Scope document, page

172 Chapter 10: PDF Import (PDI) and pCOS Functions

Table 10.3 Options for PDF_open_pdi_page()

key explanation

boxexpand (Float or list with four floats) Expand the page box selected via the pdiusebox option on all four sides by
the same amount (if one value is provided) or on the left/bottom/right/top sides individually (if four val-
ues are provided). Negative values are allowed to reduce the page size. This option may be used to place
content which is located outside of all page boxes of the imported page, or to add margins. Default: 0

clippingarea (Keyword) Specify which of the page boxes of the imported page will be used for clipping. Content out-
side the specified area will not be visible after placing the imported page on a new page. Supported key-
words (default: pdiusebox):
art Use the ArtBox if present, else the CropBox
bleed Use the BleedBox if present, else the CropBox
crop Use the CropBox if present, else the MediaBox
media Use the MediaBox (which is always present)
pdiusebox Use the box specified in the pdiusebox option
trim Use the TrimBox if present, else the CropBox

cloneboxes (Boolean; not allowed if boxexpand, forcebox, or pdiusebox is supplied; must match the cloneboxes op-
tion in PDF_fit_pdi_page()) If true, the page will be prepared for box cloning with the cloneboxes op-
tion of PDF_fit_pdi_page(). Default: false

forcebox (Rectangle) Force the page box to the specified values. This option overrides the pdiusebox and
boxexpand options. It may be used to place content which is located outside of all page boxes of the im-
ported page. The values must be chosen carefully if the imported page contains a /Rotate key. The
boxexpand option is preferable since it works regardless of any /Rotate key. Default: the box selected
with the pdiusebox option

iconname (Hypertext string) Attach a name to the imported page so that it can be referenced via JavaScript, e.g. to
use the page as an icon for form fields.

layer (Layer handle; PDF 1.5) Layer to which the page will belong unless another layer has been activated with
PDF_begin_layer() prior to placing the page. Calling PDF_begin_layer() to activate a layer before placing
the page overrides the page’s layer option. Call PDF_end_layer() before placing the page to make sure
that the page’s layer option will not be overridden.

metadata (Option list; PDF 1.4) Supply metadata for the imported page (see Section 14.2, »XMP Metadata«, page
227)

pdiusebox (Keyword; not allowed if cloneboxes is supplied) Specifies which box dimensions will be used for deter-
mining an imported page’s size. The box size will be used for scaling operations in PDF_fit_pdi_page().
This box will also determine the visible contents of the page unless modified with the clippingarea op-
tion. Default: crop.
art Use the ArtBox if present, else the CropBox
bleed Use the BleedBox if present, else the CropBox
crop Use the CropBox if present, else the MediaBox
media Use the MediaBox (which is always present)
trim Use the TrimBox if present, else the CropBox

reference (Option list; PDF 1.4, but requires Acrobat 9 or above for proper page rendering) Define the page as a
proxy which carries a reference to a page in an external PDF document (the target page). The page
opened with the current call will be used as a proxy for the referenced target page (see Table 9.6 for de-
tails). The proxy page and the target page must have compatible page geometry, i.e. the page boxes se-
lected with the pdiusebox option must be identical to make sure that both pages will be placed at the
same location on the page.

10.2 Page Functions 173

C++ Java void close_pdi_page(int page)
Perl PHP close_pdi_page(int page)

C void PDF_close_pdi_page(PDF *p, int page)

Close the page handle and free all page-related resources.

page A valid PDF page handle (not a page number!) retrieved with PDF_open_pdi_
page().

Details This function closes the page associated with the page handle identified by page, and re-
leases all related resources. page must not be used after this call.

Scope document, page

C++ Java void fit_pdi_page(int page, double x, double y, String optlist)
Perl PHP fit_pdi_page(int page, float x, float y, string optlist)

C void PDF_fit_pdi_page(PDF *p, int page, double x, double y, const char *optlist)

Place an imported PDF page on the output page subject to various options.

page A valid PDF page handle (not a page number!) retrieved with PDF_open_pdi_
page(). The infomode option must have been false when opening the document. The
page handle must not have been closed.

x, y The coordinates of the reference point in the user coordinate system where the
page will be located, subject to various options.

optlist An option list specifying page options:
> Fitting options according to Table 6.1:

blind, boxsize, fitmethod, matchbox, orientate, position, rotate, scale, showborder
> Options for page processing according to Table 9.4: adjustpage, gstate
> The cloneboxes option according to Table 10.4.

Details This function is similar to PDF_fit_image(), but operates on imported PDF pages instead.
The following option for PDF_begin/end_page_ext() is recommended to improve the
output quality if an imported page contains ExtGState objects:
transparencygroup={colorspace=DeviceRGB}.

Scope page, pattern, template, glyph

C++ Java double info_pdi_page(int page, String keyword, String optlist)
Perl PHP float info_pdi_page(int page, string keyword, string optlist)

C double PDF_info_pdi_page(PDF *p, int page, const char *keyword, const char *optlist)

Perform formatting calculations for a PDI page and query the resulting metrics.

page A valid page handle retrieved with PDF_open_pdi_page().

keyword A keyword specifying the requested information according to Table 10.5.

optlist An option list specifying scaling and placement details:
> General option: errorpolicy (see Section 2.5, »Exception Handling«, page 27)

174 Chapter 10: PDF Import (PDI) and pCOS Functions

> Fitting options according to Table 6.1 (if the PDF page has been opened with the
cloneboxes option of PDF_open_pdi_page() these options will be ignored):
boxsize, fitmethod, matchbox, orientate, position, rotate, scale

> Options for page processing according to Table 9.4 don’t make sense; they will be ig-
nored to facilitate unified option lists for PDF_fit_pdi_page() and PDF_info_pdi_
page(): adjustpage, gstate

Returns The value of some page metrics as requested by keyword. If errorpolicy=return this func-
tion will return 0 (in PHP: 0) in case of an error. If errorpolicy=exception this function will
throw an exception in case of an error.

Details This function performs all calculations required for placing the imported page accord-
ing to the supplied options, but will not actually create any output on the page. The ref-
erence point for placing the page is assumed to be {0 0}. If the cloneboxes option of PDF_
open_pdi_page() has been supplied, the page will be placed on the same location (rela-
tive to the page boxes) as in the original page.

Scope page, pattern, template, glyph, document, path

Table 10.4 Additional option for PDF_fit_pdi_page()

key explanation

cloneboxes (Boolean; not allowed if the topdown option has been supplied in PDF_begin_page_ext(); must match
the cloneboxes option in PDF_open_pdi_page(); only in page scope).
Setting this option to true has the following consequences (Default: false):
> All of the Rotate, MediaBox, TrimBox, ArtBox, BleedBox and CropBox entries which are present in the

imported page will be copied to the current output page.
> The page contents will be placed such that the input page is duplicated; the user cannot change posi-

tion or size of the placed page. The parameters x, y and the following options will therefore be ignored:
adjustpage, boxsize, fitmethod, orientate, position, rotate, scale. Duplication of the input page
is only possible if the default coordinate system is active when calling PDF_fit_pdi_page().

> Page boxes created by the cloneboxes option overrides the artbox, bleedbox, cropbox, trimbox,
mediabox, and rotate options as well as the width and height parameters of PDF_begin_page_ext().

Table 10.5 Keywords for PDF_info_pdi_page()

keyword explanation

boundingbox Path handle for the page’s bounding box

fitscalex, fitscaley Scaling factors which resulted from fitting the page to a box according to the supplied options

height Page height in user coordinates according to the supplied options and the options used in PDF_
open_pdi_page()

mirroringx,
mirroringy

Horizontal or vertical mirroring of the page (expressed as 1 or -1) according to the supplied op-
tions

pageheight Original page height in points

pagewidth Original page width in points

rotate If cloneboxes=true: the rotation angle of the imported page in degrees, i.e. the value of the
page’s Rotate key. Possible values are 0, 90, 180, and 270).
If cloneboxes=false: always 0

10.2 Page Functions 175

width Page width in user coordinates according to the supplied options and the options used in PDF_
open_pdi_page()

x1, y1, x2, y2,
x3, y3, x4, y4

Position of the i-th rectangle corner (i=1, 2, 3, 4) of the page bounding box in user coordinates ac-
cording to the supplied options.
If cloneboxes=true the visible box will be used (i.e. the CropBox if present, else the MediaBox).

Table 10.5 Keywords for PDF_info_pdi_page()

keyword explanation

176 Chapter 10: PDF Import (PDI) and pCOS Functions

10.3 Other PDI Processing

C++ Java int process_pdi(int doc, int page, String optlist)
Perl PHP int process_pdi(int doc, int page, string optlist)

C int PDF_process_pdi(PDF *p, int doc, int page, const char* optlist)

Process certain elements of an imported PDF document.

doc A valid PDF document handle retrieved with PDF_open_pdi_document().

page If optlist requires a page handle (see Table 10.6), page must be a valid PDF page
handle (not a page number!) retrieved with PDF_open_pdi_page(). The page handle must
not have been closed. If optlist does not require any page handle, page must be -1 (in PHP:
0).

optlist An option list specifying PDI processing options:
> General option: errorpolicy (see Section 2.5, »Exception Handling«, page 27)
> PDI processing options according to Table 10.6. The following option can be used:

action

Returns The value 1 if the function succeeded, or an error code of -1 (in PHP: 0) if the function call
failed. If errorpolicy=exception this function will throw an exception in case of an error.

Details PDF/X: the output intent must be set either using this function with the copyoutput-
intent option, or with PDF_load_iccprofile().

PDF/A: the output intent can be set using this function with the copyoutputintent
option, or with PDF_load_iccprofile(). However, if only device-independent colors are
used in the document no output intent is required.

Scope document

Table 10.6 Options for PDF_process_pdi()

key explanation

action (Keyword; required; this option does not require a page handle) Specifies the kind of PDF processing:
copyoutputintent

(Doesn’t do anything if the output document neither conforms to PDF/X nor PDF/A.) Copy
the PDF/X or PDF/A output intent ICC profile of the imported document to the output
document. The second and subsequent attempts to copy an output intent will be ignored. If
the document contains more than one output intent the first one will be used. Standard
output intents (without an embedded ICC profile) cannot be copied with this method.
If the input and output documents conform to PDF/X-4p or PDF/X-5pg the reference to the
external output intent ICC profile will be copied. The option action=copyoutputintent is not
allowed if the input conforms to PDF/X-4p or PDF/X-5pg, but not the output.

10.4 pCOS Functions 177

10.4 pCOS Functions
All pCOS functions work with paths designating the target object in the PDF document.
pCOS paths are discussed in detail in the pCOS Path Reference.

Cookbook A full code sample for using pCOS within PDFlib+PDI or PPS can be found in the Cookbook topic
pdf_import/starter_pcos. A large number of pCOS programming samples is available in the
pCOS Cookbook.

Note In evaluation mode pCOS will accept input documents up to a maximum of 1 MB or 10 pages.
However, the following elements can also be queried for larger documents in evaluation
mode: page count, page dimensions, Block details, and all universal pseudo objects.

C++ Java double pcos_get_number(int doc, string path)
Perl PHP double pcos_get_number(long doc, string path)

C double PDF_pcos_get_number(PDF *p, int doc, const char *path, ...)

Get the value of a pCOS path with type number or boolean.

doc A valid document handle obtained with PDF_open_pdi_document().

path A full pCOS path for a numerical or boolean object.

Additional parameters (C language binding only) A variable number of additional pa-
rameters can be supplied if the key parameter contains corresponding placeholders (%s
for strings or %d for integers; use %% for a single percent sign). Using these parameters
will save you from explicitly formatting complex paths containing variable numerical
or string values. The client is responsible for making sure that the number and type of
the placeholders matches the supplied additional parameters.

Returns The numerical value of the object identified by the pCOS path. For Boolean values 1 will
be returned if they are true, and 0 otherwise.

Scope any

C++ Java string pcos_get_string(int doc, string path)
Perl PHP string pcos_get_string(long doc, string path)

C const char *PDF_pcos_get_string(PDF *p, int doc, const char *path, ...)

Get the value of a pCOS path with type name, string, or boolean.

doc A valid document handle obtained with PDF_open_pdi_document().

path A full pCOS path for a name, string, or boolean object.

Additional parameters (C language binding only) A variable number of additional pa-
rameters can be supplied if the key parameter contains corresponding placeholders (%s
for strings or %d for integers; use %% for a single percent sign). Using these parameters
will save you from explicitly formatting complex paths containing variable numerical
or string values. The client is responsible for making sure that the number and type of
the placeholders matches the supplied additional parameters.

http://www.pdflib.com/pdflib-cookbook/pdf-import/starter-pcos

178 Chapter 10: PDF Import (PDI) and pCOS Functions

Returns A string with the value of the object identified by the pCOS path. For Boolean values the
strings true or false will be returned.

Details This function will raise an exception if pCOS does not run in full mode and the type of
the object is string. As an exception, the objects /Info/* (document info keys) can also be
retrieved in restricted pCOS mode if nocopy=false or plainmetadata=true, and
bookmarks[...]/Title and pages[...]/annots[...]/Contents can be retrieved in restricted pCOS
mode if nocopy=false.

This function assumes that strings retrieved from the PDF document are text strings.
String objects which contain binary data should be retrieved with PDF_pcos_get_
stream() instead which does not modify the data in any way.

Scope any

Bindings C language binding: The string will be returned in UTF-8 format (on zSeries and i5/
iSeries: EBCDIC-UTF-8) without BOM. The returned strings will be stored in a ring buffer
with up to 10 entries. If more than 10 strings are queried, buffers will be reused, which
means that clients must copy the strings if they want to access more than 10 strings in
parallel. For example, up to 10 calls to this function can be used as parameters for a
printf() statement since the return strings are guaranteed to be independent if no more
than 10 strings are used at the same time.

C++ language binding: The string will be returned as wstring in the default wstring con-
figuration of the C++ wrapper. In string compatibility mode on zSeries and i5/iSeries the
result will be returned in EBCDIC-UTF-8 without BOM.

Java, .NET, and Python: the result will be provided as Unicode string. If no more text is
available a null object will be returned.

Perl and PHP language bindings: the result will be provided as UTF-8 string. If no more
text is available a null object will be returned.

RPG language binding: the result will be provided as EBCDIC-UTF-8 string.

C++ Java const unsigned char *pcos_get_stream(int doc, int *length, string optlist, string path)
Perl PHP string pcos_get_stream(long doc, string optlist, string path)

C const unsigned char *PDF_pcos_get_stream(PDF *p, int doc, int *length, const char *optlist,
const char *path, ...)

Get the contents of a pCOS path with type stream, fstream, or string.

doc A valid document handle obtained with PDF_open_pdi_document().

length (C and C++ language bindings only) A pointer to a variable which will receive
the length of the returned stream data in bytes.

optlist An option list specifying stream retrieval options according to Table 10.7.

path A full pCOS path for a stream or string object.

Additional parameters (C language binding only) A variable number of additional pa-
rameters can be supplied if the key parameter contains corresponding placeholders (%s
for strings or %d for integers; use %% for a single percent sign). Using these parameters
will save you from explicitly formatting complex paths containing variable numerical

10.4 pCOS Functions 179

or string values. The client is responsible for making sure that the number and type of
the placeholders matches the supplied additional parameters.

Returns The unencrypted data contained in the stream or string. The returned data will be emp-
ty (in C: NULL) if the stream or string is empty.

If the object has type stream, all filters will be removed from the stream contents (i.e.
the actual raw data will be returned) unless keepfilter=true. If the object has type fstream
or string the data will be delivered exactly as found in the PDF file, with the exception of
ASCII85 and ASCIIHex filters which will be removed.

Details This function will throw an exception if pCOS does not run in full mode. As an excep-
tion, the object /Root/Metadata can also be retrieved in restricted pCOS mode if nocopy=
false or plainmetadata=true. An exception will also be thrown if path does not point to an
object of type stream, fstream, or string.

Despite its name this function can also be used to retrieve objects of type string. Un-
like PDF_pcos_get_string(), which treats the object as a text string, this function will not
modify the returned data in any way. Binary string data is rarely used in PDF, and can-
not be reliably detected automatically. The user is therefore responsible for selecting
the appropriate function for retrieving string objects as binary data or text.

Scope any

Bindings C language binding: The returned data buffer can be used until the next call to this func-
tion.

Python: the result will be returned as 8-bit string (Python 3: bytes).

Note This function can be used to retrieve embedded font data from a PDF. Users are reminded that
fonts are subject to the respective font vendor’s license agreement, and must not be reused
without the explicit permission of the respective intellectual property owners. Please contact
your font vendor to discuss the relevant license agreement.

Table 10.7 Options for PDF_pcos_get_stream()

option description

convert (Keyword; will be ignored for streams which are compressed with unsupported filters) Controls
whether or not the string or stream contents will be converted (default: none):
none Treat the contents as binary data without any conversion.
unicode Treat the contents as textual data (i.e. exactly as in PDF_pcos_get_string()), and

normalize it to Unicode. In non-Unicode-aware language bindings this means the
data will be converted to UTF-8 format without BOM.
This option is required for the data type »text stream« in PDF which is rarely used (e.g.
it can be used for JavaScript, although the majority of JavaScripts is contained in
string objects, not stream objects).

keepfilter (Boolean; recommended only for image data streams; will be ignored for streams which are com-
pressed with unsupported filters) If true, the stream data will be compressed with the filter
which is specified in the image’s filterinfo pseudo object. If false, the stream data will be un-
compressed. Default: true for all unsupported filters, false otherwise

180 Chapter 10: PDF Import (PDI) and pCOS Functions

11.1 Rectangle Options for Block Filling Functions 181

11 Block Filling Functions (PPS)
The PDFlib Personalization Server (PPS) offers dedicated functions for processing vari-
able Blocks of type Text, Image, and PDF. These PDFlib Blocks must be contained in the
imported PDF page, but will not be retained in the generated output. The imported page
must have been placed on the output page with PDF_fit_pdi_page() before using any of
the Block filling functions. When calculating the Block position on the page, the Block
functions will take into account the scaling options which have been in effect when
placing the imported page with PDF_fit_pdi_page().

Note The Block processing functions discussed in this chapter require the PDFlib Personalization
Server (PPS). The PDFlib Block plugin for Adobe Acrobat is required for creating PDFlib Blocks in
PDF templates.

Cookbook A full code sample can be found in the Cookbook topic blocks/starter_block.

11.1 Rectangle Options for Block Filling Functions
Table 11.1 lists rectangle options for PDF_fill_textblock(), PDF_image_block(), and PDF_fill_
pdfblock(). Options which are specific for a particular Block type (i.e. text, image, or PDF
Blocks) are listed in the next sections. Almost all Block properties can be overridden
with options with the same name, except for the following properties which can not be
overridden with options:

Name, Description, Subtype, Type
defaulttext, defaultimage, defaultpdf, defaultpdfpage

Table 11.1 Rectangle options for the PDF_fill_*block() functions

key explanation

Rect (Rectangle) The coordinates of the Block in the coordinate system of the Block PDF. The Block rectangle
can be specified with the refpoint and boxsize options (in user coordinates).

Status (Keyword) Describes how the Block will be processed (default: active):
active The Block will be fully processed according to its properties.
ignore The Block will be ignored.
ignoredefault

Like active, except that the defaulttext/image/pdf properties will be ignored, i.e. the Block
remains empty if no default contents have been provided. This may be useful to make sure
that the Block’s default contents will not be used for filling Blocks on the server side although
the Block may contain default contents for the Preview in the Block Plugin. It can also be used
to disable the default contents for previewing a Block without removing it from the Block
properties.

static No variable contents will be placed; instead, the Block’s default text, image, or PDF contents
will be used if available.

background-
color

(Color) Fill color for the Block; this color will be applied before filling the Block. This may be useful to cover
existing page contents. Default: none

bordercolor (Color) Border color for the Block; this color will be applied before filling the Block. Default: none

linewidth (Float; must be greater than 0) Stroke width of the line used to draw the Block rectangle; only used if
bordercolor is set. Default: 1

http://www.pdflib.com/pdflib-cookbook/block-handling-and-pps/starter-block

182 Chapter 11: Block Filling Functions (PPS)

11.2 Textline and Textflow Blocks

C++ Java int fill_textblock(int page, String blockname, String text, String optlist)
Perl PHP int fill_textblock(int page, string blockname, string text, string optlist)

C int PDF_fill_textblock(PDF *p,
int page, const char *blockname, const char *text, int len, const char *optlist)

Fill a Textline or Textflow Block with variable data according to its properties.

page A valid PDF page handle for a page containing PDFlib Blocks. The input PDF page
with Blocks must have been placed on the page earlier, either directly with PDF_fit_pdi_
page(), indirectly in a table cell with PDF_fit_table(), or as contents of a PDF Block with
PDF_fill_pdfblock().

blockname (Name string) The name of the Block.

text (Content string) The text to be filled into the Block, or an empty string if the de-
fault text (as defined by Block properties) is to be used. If the textflowhandle option is
supplied and contains a valid Textflow handle this parameter will be ignored.

len (C language binding only) Length of text (in bytes) for UTF-16 strings. If len = 0 a
null-terminated string must be provided.

optlist An option list specifying text Block filling options. The following options are
supported:

> General option: errorpolicy (see Section 2.5, »Exception Handling«, page 27)
> Rectangle options for Block filling functions according to Table 11.1:

Rect, Status, backgroundcolor, bordercolor, linewidth
> Fitting options (see Section 6.1, »Object Fitting«, page 109)
> Textline Blocks, i.e. the textflow property or option is false:

all Textline options (see Section 5.2, »Single-Line Text with Textlines«, page 79);
> Textflow Blocks, i.e. the textflow property or option is true:

all options for PDF_add/create_textflow() (see Section 5.3, »Multi-Line Text with Text-
flows«, page 83)) and all options for PDF_fit_textflow() (see Table 5.14)

> Text Block options according to Table 11.2: textflow, textflowhandle

Returns -1 (in PHP: 0) if the named Block doesn’t exist on the page, the Block cannot be filled (e.g.
due to font problems), or the Block requires a newer PDFlib version for processing; 1 if
the Block could be processed successfully. If the textflowhandle option is supplied a valid
Textflow handle will be returned which can be used in subsequent calls.

If the PDF document is found to be corrupt, this function will either throw an excep-
tion or return -1 subject to the errorpolicy parameter or option.

Details The supplied text will be formatted into the Block, subject to the Block’s properties. If
text is empty the function will use the Block’s default text if available (unless Status=
ignoredefault), and silently return otherwise. This may be useful to take advantage of
other Block properties, such as fill or stroke color.

Font selection: If neither the font option is supplied nor implicit font loading based
on options is used, the font will be implicitly loaded based on the Block properties. Since
the encoding for the font can only be specified as an option, but not as a Block property
it will be set as follows by default:

11.2 Textline and Textflow Blocks 183

> builtin if the font is a symbolic font and charref=false and (only relevant for non-Uni-
code aware languages) textformat=auto or bytes.

> unicode otherwise.

It is recommended to avoid the encoding, charref and textformat options if defaulttext is
to be used.

Special care should be taken regarding the embedding option: if the font is implicitly
loaded based on Block properties it will not automatically be embedded. If font embed-
ding is desired the embedding option must be specified.

Linking Textflow Blocks: If a Textflow doesn’t fit into a Block, the textflowhandle op-
tion can be used to connect multiple Blocks to a chain so that they hold multiple parts
of the same Textflow:

> In the first call a value of -1 (in PHP: 0) must be supplied. The Textflow handle created
internally will be returned by PDF_fill_textblock(), and must be stored by the user.

> In the next call the Textflow handle returned in the previous step can be supplied to
the textflowhandle option (the text supplied in the text parameter will be ignored in
this case, and should be empty). The Block will be filled with the remainder of the
Textflow.

> This process can be repeated with more Textflow Blocks.
> The returned Textflow handle can be supplied to PDF_info_textflow() in order to de-

termine the results of Block filling, e.g. the end position of the text.
This process can be repeated an arbitrary number of times. The user is responsible for
deleting the Textflow handle with PDF_delete_textflow() at the end.

Scope page, template

Table 11.2 Additional options for PDF_fill_textblock()

key explanation

textflow (Boolean) Control single- or multiline processing. This property can be used to switch between Textline
and Textflow Blocks:
false Text can span a single line and will be processed with PDF_fit_textline().
true Text can span multiple lines and will be processed with PDF_fit_textflow().
The default depends on the Block type: true for Textflow Blocks, and false for Textline Blocks

textflow-
handle

(Textflow handle; only for PDF_fill_textblock() with textflow=true) This option can be used for Text-
flow Block chaining. For the first Block in a chain of Blocks a value of -1 (in PHP: 0) must be supplied; the
value returned by this function can be supplied as Textflow handle in subsequent calls for other Blocks in
the chain. This option will change the default of fitmethod to clip. Note that all properties in the Text
Preparation, Text Formatting and Appearance property groups of the Block will be ignored if textflow-
handle is supplied since the corresponding values used for creating the Textflow will be applied.

184 Chapter 11: Block Filling Functions (PPS)

11.3 Image Blocks

C++ Java int fill_imageblock(int page, String blockname, int image, String optlist)
Perl PHP int fill_imageblock(int page, string blockname, int image, string optlist)

C int PDF_fill_imageblock(PDF *p, int page, const char *blockname, int image, const char *optlist)

Fill an image Block with variable data according to its properties.

page A valid PDF page handle for a page containing PDFlib Blocks. The input PDF page
with Blocks must have been placed on the page earlier, either directly with PDF_fit_pdi_
page(), indirectly in a table cell with PDF_fit_table(), or as contents of a PDF Block with
PDF_fill_pdfblock().

blockname (Name string) The name of the Block.

image A valid image handle for the image to be filled into the Block, or -1 if the default
image (as defined by Block properties) is to be used.

optlist An option list specifying image Block filling options. The following options are
supported:

> General option: errorpolicy (see Section 2.5, »Exception Handling«, page 27)
> Rectangle options for Block filling functions according to Table 11.1:

Rect, Status, backgroundcolor, bordercolor, linewidth
> Fitting options (see Section 6.1, »Object Fitting«, page 109)
> Options for image processing according to Table 9.4.

Returns -1 (in PHP: 0) if the named Block doesn’t exist on the page, the Block cannot be filled, or
the Block requires a newer PDFlib version for processing; 1 if the Block could be pro-
cessed successfully. Use PDF_get_errmsg() to get more information about the nature of
the problem.

Details The image referred to by the supplied image handle will be placed in the Block, subject
to the Block’s properties. If image is -1 (in PHP: 0) the function will use the Block’s default
image if available (unless Status=ignoredefault), and silently return otherwise.

If the PDF document is found to be corrupt, this function will either throw an excep-
tion or return -1 subject to the errorpolicy parameter or option.

Scope page, template

11.4 PDF Blocks 185

11.4 PDF Blocks

C++ Java int fill_pdfblock(int page, String blockname, int contents, String optlist)
Perl PHP int fill_pdfblock(int page, string blockname, int contents, string optlist)

C int PDF_fill_pdfblock(PDF *p, int page, const char *blockname, int contents, const char *optlist)

Fill a PDF Block with variable data according to its properties.

page A valid PDF page handle for a page containing PDFlib Blocks. The input PDF page
with Blocks must have been placed on the page earlier, either directly with PDF_fit_pdi_
page(), indirectly in a table cell with PDF_fit_table(), or as contents of a PDF Block with
PDF_fill_pdfblock().

blockname (Name string) The name of the Block.

contents A valid PDF page handle for the PDF page to be filled into the Block, or -1 if the
default PDF page (as defined by Block properties) is to be used.

optlist An option list specifying PDF Block filling options. The following options are
supported:

> General option: errorpolicy (see Section 2.5, »Exception Handling«, page 27)
> Rectangle options for Block filling functions according to Table 11.1:

Rect, Status, backgroundcolor, bordercolor, linewidth
> Fitting options (see Section 6.1, »Object Fitting«, page 109)
> Options for page processing according to Table 9.4.

Returns -1 (in PHP: 0) if the named Block doesn’t exist on the page, the Block cannot be filled, or
the Block requires a newer PDFlib version for processing; 1 if the Block could be pro-
cessed successfully. Use PDF_get_errmsg() to get more information about the nature of
the problem.

Details The PDF page referred to by the supplied page handle contents will be placed in the
Block, subject to the Block’s properties. If contents is -1 (in PHP: 0) the function will use
the Block’s default PDF page if available (unless Status=ignoredefault), and silently re-
turn otherwise.

If the PDF document is found to be corrupt, this function will either throw an excep-
tion or return -1 subject to the errorpolicy parameter or option.

Scope page, template

186 Chapter 11: Block Filling Functions (PPS)

12.1 Parameters for Interactive Elements 187

12 Interactive Features

12.1 Parameters for Interactive Elements
Table 12.1 lists relevant parameter key names for interactive elements (see Section 2.2,
»Parameter and Option Handling«, page 19). These parameters are not available in Uni-
code-aware language bindings.

12.2 Actions

C++ Java int create_action(String type, String optlist)
Perl PHP int create_action(string type, string optlist)

C int PDF_create_action(PDF *p, const char *type, const char *optlist)

Create an action which can be applied to various objects and events.

type The action type according to Table 12.2.

Table 12.1 String-related keys for PDF_get/set_parameter()

key explanation

hypertextencoding (Also available as option) Encoding for options and parameters of type hypertext. An empty
string is equivalent to unicode. Default: auto. Scope: any

hypertextformat Format for options and parameters of type hypertext. Possible values are bytes, utf8, utf16,
utf16le, utf16be, and auto. Default: auto. Scope: any

usehypertextencoding If true, the encoding specified in the hypertextencoding parameter will also be used for name
strings. If false, the encoding for name strings without UTF-8 BOM is host. Default: false.
Scope: any

usercoordinates If false, coordinates for hypertext rectangles will be expected in the default coordinate system;
otherwise the current user coordinate system will be used. Default: false. Scope: any

Table 12.2 Action types

type notes; options specific for this type (in addition to general options)

GoTo Go to a destination in the current document: destination, destname

GoTo3DView (PDF 1.6) Set the current view of a 3D animation: 3Dview, target

GoToE (PDF 1.6) Go to a destination in an embedded document: targetpath

GoToR Go to a destination in another (remote) document: destination, destname, filename, newwindow

Hide (Not for PDF/A) Hide or show an annotation or form field: hide, namelist

ImportData (Not for PDF/A) Import form field values from a file.

JavaScript (Not for PDF/A) Execute a script with JavaScript code: script, scriptname

Launch (Not for PDF/A) Launch an application or document: defaultdir, filename, newwindow, operation,
parameters

188 Chapter 12: Interactive Features

optlist An option list specifying properties of the action:
> General options: errorpolicy (see Table 2.6) and hypertextencoding (see Table 12.1)
> Options for properties of the action according to Table 12.3.

Returns An action handle which can be used to attach actions to objects within the document
The action handle can be used until the end of the enclosing document scope.

Details This function creates a single action. Various objects (e.g. pages, form field events, book-
marks) can be provided with one or more actions, but each action must be generated
with a separate call to PDF_create_action(). Using an action multiply for different objects
is allowed. It is recommended to re-use existing handles if an action with the same op-
tions has already been created earlier.
PDF/X: Actions are prohibited in PDF/X.
PDF/A: Some actions are prohibited in PDF/A (see Table 12.2).

Scope page, document. The returned handle can be used until the next call to PDF_end_
document().

Movie (Not for PDF/A) Play an external sound or movie file in a floating window or within the rectangle of a
movie annotation: operation, target

Named Execute an Acrobat menu item identified by its name: menuname

ResetForm (Not for PDF/A) Set some or all form fields to their default values.

SetOCGState (PDF 1.5) Hide or show layers: layerstate, preserveradio

SubmitForm Send data to a uniform resource locator, i.e. an Internet address (submits which require basic authentica-
tion don’t work in Acrobat): canonicaldate, exclude, exportmethod, submitemptyfields, url

Trans (PDF 1.5) Update the display using some visual effect. This can be useful to control the display during a se-
quence of multiple actions: duration, transition

URI Resolve a uniform resource identifier, i.e. jump to an Internet address: ismap, url

Table 12.3 Options for action properties with PDF_create_action()

option explanation

3Dview (Keyword or 3D view handle; GoTo3DView; required) Selects the view of the target 3D annotation; One of
the keywords first, last, next, previous (referring to the respective entries in the annotation’s views
option), or default (referring to the annotation’s defaultview option), or a 3D view handle created with
PDF_create_3dview().

canonical-
date

(Boolean; SubmitForm) If true, any submitted field values representing dates are converted to a stan-
dard format. The interpretation of a field as a date is not specified explicitly in the field itself, but only in
the JavaScript code that processes it. Default: false

defaultdir (String; Launch) Set the default directory for the launched application. This is only supported by Acrobat
on Windows. Default: none

destination (Option list; GoTo, GoToE, GoToR; required unless destname is supplied) Option list according to Table 12.5
defining the destination to jump to.

Table 12.2 Action types

type notes; options specific for this type (in addition to general options)

12.2 Actions 189

destname (Hypertext string)
GoTo (required unless destination is supplied): name of a destination which has been defined with PDF_
add_nameddest().The destination can be created before or after referring to it.
GoToR, GoToE (required unless destination is supplied): name of a destination in the remote or embed-
ded document.

duration (Float; Trans) Set the duration of the transition effect in seconds for the current page. Default: 1

exclude (Boolean; SubmitForm) If true, the namelist option specifies which fields to exclude; all fields in the doc-
ument are submitted except those listed in the namelist array and those whose exportable option is
false. If false, the namelist option specifies which fields to include in the submission. All members of
specified field groups will be submitted as well. Default: false
(ResetForm) If true, the namelist option specifies which fields to exclude; all fields in the document are
reset except those listed in the namelist array. If false, the namelist option specifies which fields to in-
clude in resetting. All members of specified field groups will be reset as well. Default: false

export-
method

(Keyword list; SubmitForm) Controls how the field names and values are submitted. Default: fdf.
html, fdf, xfdf, pdf

In HTML, FDF, XFDF, or PDF format, respectively
annotfields (Only for fdf) Include all annotations and fields.
coordinate (Only for html) The coordinates of the mouse click that caused the submitform action will be

transmitted as part of the form data. The coordinate values are relative to the upper-left
corner of the field’s rectangle.

exclurl (Only for fdf) The submitted FDF will exclude the url string.
getrequest (Only for html and pdf) Submit using HTTP GET; otherwise HTTP POST
onlyuser (Only for fdf and annotfields) The submit will include only those annotations whose name

matches the name of the current user, as determined by the remote server.
updates (Only for fdf) Include all incremental updates contained in the underlying PDF document
Example for combined options: exportmethod {fdf updates onlyuser}

filename (Hypertext string) GoToR, Launch (required): name of an external (PDF or other) file or application which
will be opened when the action is triggered. UNC file names must be written as \\server\volume. Since
fully qualified file names (including paths) for Launch actions do not work in Acrobat 8 it is recommend-
ed to supply the directory name in the defaultdir option and only a simple file name (without directory
components) in the filename option.
ImportData (required): name of the external file containing forms data.
GoToE: name of the root document of the target relative to the root document of the source. If this entry
is absent, the source and target share the same root document.

hide (Boolean; Hide) Indicates whether to hide (true) or show (false) annotations. Default: true

ismap (Boolean; URI) If true, the coordinates of the mouse position will be added to the target URI when the
url is resolved. Default: false

layerstate (Option list; SetOCGState; required) List of pairs where each pair consists of a keyword and a layer han-
dle. Supported keywords:
on Activate the layer
off Deactivate the layer
toggle Reverse the state of the layer. If this is used preserveradio should be set to false.

menuname (String; Named; required) The name of the menu item to be performed. In PDF/A mode only the well-
known names nextpage, prevpage, firstpage, lastpage are allowed. Otherwise more names will be ac-
cepted. A full code sample for finding the names of other menu items can be found in the Cookbook topic
interactive/acrobat_menu_items.

Table 12.3 Options for action properties with PDF_create_action()

option explanation

http://www.pdflib.com/pdflib-cookbook/interactive-elements/acrobat-menu-items

190 Chapter 12: Interactive Features

namelist (List of strings; Hide; required) The names (including group names) of the annotations or fields to be hid-
den or shown.
(SubmitForm) The names (including group names) of form fields to include in the submission or which to
exclude, depending on the setting of the exclude option. Default: all fields are submitted except those
whose exportable option is false.
(ResetForm) The names (including group names) of form fields to include in the resetting or which to ex-
clude, depending on the setting of the exclude option. Default: all fields are reset.

newwindow (Boolean; GoToE, GoToR) A flag specifying whether to open the destination document in a new window.
If this flag is false, the destination document will replace the current document in the same window.
Launch: This entry is ignored if the file is not a PDF document. Default: Acrobat behaves according to the
current user preference.

operation This option is used differently for type=Launch and type=Movie:
(Keyword; Launch) A keyword specifying the operation to be applied to the document specified in the
filename option. This is only supported by Acrobat on Windows. If the filename option designates an
application instead of a document, this option will be ignored and the application is launched. Support-
ed keywords (default: open):
open open a document
print print a document

(Keyword; Movie) A keyword specifying the operation to be applied to the movie or sound. Supported
keywords (default: play):
play Start playing the movie, using the mode specified in the movie annotation’s playmode option.

If the movie is currently paused, it is repositioned to the beginning before playing.
stop Stop playing the movie.
pause Pause a playing movie.
resume Resume a paused movie.

parameters (String; Launch) A parameter string to be passed to the application specified with the filename option.
This is only supported by Acrobat on Windows. Multiple parameters can be separated with a space char-
acter, but individual parameters must not contain any space characters. This option should be omitted if
filename designates a document. Default: none

preserve-
radio

(Boolean; SetOCGState) If true, preserve the radio-button state relationship between layers. Default:
true

script (Hypertext string; JavaScript; required) A string containing the JavaScript code to be executed.

scriptname (Hypertext string; JavaScript) If present, the JavaScript supplied in the script option will be inserted as
a document-level JavaScript with the supplied name. If the same scriptname is supplied more than once
in a document only the last script will be used, the others will be ignored. Document-level JavaScript will
be executed after loading the document in Acrobat. This may be useful for scripts which are used in form
fields.

submit-
emptyfields

(Boolean; SubmitForm; PDF 1.4) If true, all fields characterized by the namelist and exclude options are
submitted, regardless of whether they have a value. For fields without a value, only the field name is
transmitted. If false, fields without a value are not submitted. Default: false

target (String; GoTo3DView, Movie; required) Name of the target 3D or movie annotation as specified in the name
option of PDF_create_annotation().

targetpath (Option list; GoToE; required unless filename is specified) A target option list (see Table 12.4) specifying
path information for the target document. Each target option list specifies one element in the full path
to the target and may have nested target option lists with additional elements.

Table 12.3 Options for action properties with PDF_create_action()

option explanation

12.2 Actions 191

transition (Keyword; Trans) Set the transition effect; see Table 3.7 for a list of keywords. Default: replace

url (String; URI and SubmitForm; required) A Uniform Resource Locator encoded in 7-bit ASCII or EBCDIC (but
only containing ASCII characters) specifying the link target (for type=URI) or the address of the script at
the Web server that will process the submission (for type=SubmitForm). It can point to an arbitrary (Web
or local) resource, and must start with a protocol identifier (such as http://). The textx/texty,
currentx/currenty, and imagewidth/imageheight parameters may be useful for retrieving positioning
information for calculating the dimension of link rectangles.

Table 12.4 Suboptions for the targetpath option of PDF_create_action()

option explanation

annotation (Hypertext string; required if relation=child and the target is associated with a file attachment anno-
tation) Specifies the name of the target’s file attachment annotation on the page specified by
pagenumber or destname.

destname (Hypertext string; required unless pagenumber is supplied and relation=child and the target is associat-
ed with a file attachment annotation) Specifies a named destination for a page in the current document
which contains the target’s file attachment annotation. This option will be ignored if pagenumber is spec-
ified.

name (Hypertext string; required if relation=child and the target is located in the attachments list; other-
wise it must be absent; will be ignored if annotation is specified) Name of the target in the attachments
list of PDF_begin/end_document().

pagenumber (Integer; required unless destname is supplied and relation=child and the target is associated with a
file attachment annotation; will be ignored if destname is specified) Specifies the number of a page in the
current document which contains the target’s file attachment annotation.

relation (Keyword; required) Specifies the relationship of the current document and the target (which may be an
intermediate target). Supported keywords:
parent The target is the parent of the current document.
child The target is a child of the current document.

targetpath (Option list) A target option list according to Table 12.4 specifying additional path information to the tar-
get document. If this option is absent the current document is the target file containing the destination.

Table 12.3 Options for action properties with PDF_create_action()

option explanation

192 Chapter 12: Interactive Features

12.3 Named Destinations

C++ Java void add_nameddest(String name, String optlist)
Perl PHP add_nameddest(string name, string optlist)

C void PDF_add_nameddest(PDF *p, const char *name, int len, const char *optlist)

Create a named destination on a page in the document.

name (Hypertext string) The name of the destination, which can be used as a target for
links, bookmarks, or other triggers. Destination names must be unique within a docu-
ment. If the same name is supplied more than once for a document only the last defini-
tion will be used, the others will be silently ignored.

len (C language binding only) Length of name (in bytes) for UTF-16 strings. If len = 0 a
null-terminated string must be provided.

optlist An option list specifying the destination. An empty list is equivalent to
{type=fitwindow page=0}. The following options can be used:

> General options: errorpolicy (see Table 2.6), hypertextencoding and hypertextformat
(see Table 12.1)

> Destination control options according to Table 12.5:
bottom, group, left, page, right, top, type, zoom

Details The destination details must be specified in optlist, and the destination may be located
on any page in the current document. The provided name can be used with the destname
option in PDF_create_action(), PDF_create_annotation(), PDF_create_bookmark(), and
PDF_begin/end_document(). This way defining and using a destination can be split into
two separate steps.

Alternatively, if the destination is known at the time when it is used, defining and
using the named destination can be combined by using the destination option of those
functions, and PDF_add_nameddest() is not required in this case.

Scope document, page

Table 12.5 Destination options for PDF_add_nameddest(), as well as for the destination option in PDF_create_action(),
PDF_create_annotation(), PDF_create_bookmark(), and PDF_begin/end_document().

option explanation

bottom (Float; only for type=fitrect) The y coordinate of the page which will positioned at the bottom edge of
the window. Default: 0

group (String; required if the page option has been specified and the document uses page groups; not allowed
otherwise.) Name of the page group that the destination page belongs to.

left (Float; only for type=fixed, fitheight, fitrect, or fitvisibleheight) The x coordinate of the page
which will positioned at the left edge of the window. Default: 0

page (Integer) Page number of the destination page (first page is 1). The page must exist in the destination
PDF. Page 0 means the current page if in scope page, and page 1 if in scope document. Default: 0

right (Float; only for type=fitrect) The x coordinate of the page which will positioned at the right edge of
the window. Default: 1000

top (Float; only for type=fixed, fitwidth, fitrect, or fitvisiblewidth) The y coordinate of the page
which will positioned at the top edge of the window. Default: 1000

12.3 Named Destinations 193

type (Keyword) Specifies the location of the window on the target page. Supported keywords (default:
fitwindow):

fitheight Fit the page height to the window, with the x coordinate left at the left edge of the window.
fitrect Fit the rectangle specified by left, bottom, right, and top to the window.
fitvisible Fit the visible contents of the page (the ArtBox) to the window.
fitvisibleheight

Fit the visible contents of the page to the window with the x coordinate left at the left edge
of the window.

fitvisiblewidth
Fit the visible contents of the page to the window with the y coordinate top at the top edge
of the window.

fitwidth Fit the page width to the window, with the y coordinate top at the top edge of the window.
fitwindow Fit the complete page to the window.
fixed Use a fixed destination view specified by the left, top, and zoom options. If any of these is

missing its current value will be retained.

zoom (Float or percentage; only for type=fixed) The zoom factor (1 means 100%) to be used to display the
page contents. If this option is missing or 0 the zoom factor which was in effect when the link was acti-
vated will be retained.

Table 12.5 Destination options for PDF_add_nameddest(), as well as for the destination option in PDF_create_action(),
PDF_create_annotation(), PDF_create_bookmark(), and PDF_begin/end_document().

option explanation

194 Chapter 12: Interactive Features

12.4 Annotations

C++ Java void create_annotation(double llx, double lly, double urx, double ury, String type, String optlist)
Perl PHP create_annotation(float llx, float lly, float urx, float ury, string type, string optlist)

C void PDF_create_annotation(PDF *p,
double llx, double lly, double urx, double ury, const char *type, const char *optlist)

Create an annotation on the current page.

llx, lly, urx, ury x and y coordinates of the lower left and upper right corners of the an-
notation rectangle in default coordinates (if the usercoordinates parameter or option is
false) or user coordinates (if it is true). Acrobat will align the upper left corner of the an-
notation at the upper left corner of the specified rectangle.

Note that annotation coordinates are different from the parameters of the PDF_rect()
function. While PDF_create_annotation() expects parameters for two corners directly,
PDF_rect() expects the coordinates of one corner, plus width and height values.

If the usematchbox option has been specified, llx/lly/urx/ury will be ignored.

type The annotation type according to Table 12.6. Markup annotations are marked in
the table since certain options apply only to markup annotations.

Table 12.6 Annotation types

type notes; options specific for this type (in addition to general options)

3D (PDF 1.6) animated 3D model: 3Dactivate, 3Ddata, 3Dinteractive, 3Dshared, 3Dinitialview

Circle1 cloudy, createrichtext, inreplyto, interiorcolor, replyto

File-
Attachment1

(Not for PDF/A and PDF/X-1a/3) calloutline, createrichtext, filename, iconname, inreplyto,
mimetype, replyto

FreeText1 alignment, calloutline, cloudy, createrichtext, endingstyles, fillcolor, font, fontsize,
inreplyto, orientate, replyto

Highlight1 createrichtext, inreplyto, polylinelist, replyto

Ink1 createrichtext, inreplyto, polylinelist, replyto

Line1 captionoffset, captionposition, createrichtext, endingstyles, interiorcolor, inreplyto,
leaderlength, leaderoffset, line, showcaption, replyto

Link destination, destname, highlight

Movie (Movie or sound annotation; not for PDF/A) filename, movieposter, playmode, showcontrols,
soundvolume, windowposition, windowscale

Polygon1 (PDF 1.5; vertices connected by straight lines): cloudy, createrichtext, inreplyto, polylinelist,
replyto

PolyLine1 (PDF 1.5; similar to polygons, except that the first and last vertices are not connected) createrichtext,
endingstyles, inreplyto, interiorcolor, polylinelist, replyto

Popup open, parentname

Square1 cloudy, createrichtext, inreplyto, interiorcolor, replyto

Squiggly1 (PDF 1.4; squiggly-underline annotation) createrichtext, inreplyto, polylinelist, replyto

Stamp1 createrichtext, iconname, inreplyto, orientate, replyto

12.4 Annotations 195

optlist An option list specifying annotation properties. The following options can be
used:

> General option: hypertextencoding (see Table 12.1)
> The following common options according to Table 12.7 are supported for all annota-

tion types:
action, annotcolor, borderstyle, cloudy, contents, createdate, custom, dasharray, display,
layer, linewidth, locked, lockedcontents, name, opacity, popup, readonly, rotate, subject,
template, title, usematchbox, usercoordinates, zoom

> The following type-specific options according to Table 12.7 are supported only for
some annotation types according to Table 12.6:
3Dactivate, 3Ddata, 3Dinteractive, 3Dshared, 3Dinitialview, alignment, calloutline, caption-
offset, captionposition, createrichtext , destname, endingstyles, filename, fillcolor, font,
fontsize, highlight, iconname, inreplyto, interiorcolor, leaderlength, leaderoffset, line,
mimetype, movieposter, open, orientate, parentname, playmode, polylinelist, replyto,
showcaption, showcontrols, soundvolume, windowposition, windowscale

Details PDF/X: Annotations are only allowed if they are positioned completely outside of the
BleedBox (or TrimBox/ArtBox if no BleedBox is present).
PDF/A: some annotation types and options are restricted, see Table 12.6 and Table 12.7.

Tagged PDF: the annotation will be inserted as a child of the current item if an item is
currently active.

Scope page

StrikeOut1 createrichtext, inreplyto, polylinelist, replyto

Text1 (In Acrobat this type is called note annotation) createrichtext, iconname, inreplyto, open, replyto,
state, statemodel

Underline1 createrichtext, inreplyto, polylinelist, replyto

1. Markup annotation; this is relevant for the createrichtext option.

Table 12.7 Options for PDF_create_annotation()

option explanation

3Dactivate (Option list; only for type=3D) Specifies when the 3D annotation should be activated and its state upon
activation/deactivation. Supported options are listed in Table 12.8.

3Ddata (3D handle; only for type=3D; required) 3D handle created with PDF_load_3ddata().

3Dinteractive (Boolean; only for type=3D) If true, the 3D model is intended for interactive use. If false, it is intended to
be manipulated with JavaScript. Default: true

3Dshared (Boolean; only for type=3D) If true, the 3D data specified in the 3Ddata option will be referenced indirect-
ly. Multiple 3D annotations which indirectly reference the same data share a single run-time instance of
the model. This means that changes will be visible in all such annotations simultaneously. Default: false

3Dinitialview (Keyword or 3D view handle) Specifies the initial view of the 3D model; One of the keywords first, last,
(referring to the respective entries in the views option of PDF_load_3ddata()), or default (referring to
the model’s defaultview option), or a 3D view handle created with PDF_create_3dview(). Default:
default

Table 12.6 Annotation types

type notes; options specific for this type (in addition to general options)

196 Chapter 12: Interactive Features

action (Action list) List of annotation actions for the following events (default: empty list). All types of actions
are permitted:
activate (Only for type=Link) Actions to be performed when the annotation is activated.
close (PDF 1.5) Actions to be performed when the page containing the annotation is closed.
open (PDF 1.5) Actions to be performed when the page containing the annotation is opened.
invisible (PDF 1.5) Actions to be performed when the page containing the annotation is no longer

visible.
visible (PDF 1.5) Actions to be performed when the page containing the annotation becomes visible.

alignment (Keyword; only for type=FreeText) Alignment of text in the annotation: left, center, or right. Default:
left

annotcolor (Color) The color of the background of the annotation’s icon when closed, the title bar of the annota-
tion’s pop-up window, and the border of a link annotation. Supported color spaces: none (not for
type=Square, Circle), gray, rgb, and (in PDF 1.6) cmyk.
In PDF/A mode this option must only be used if an RGB output intent has been specified, and gray or rgb
color must be used.
Default: white for type=Square, Circle, otherwise none

borderstyle (Keyword) Style of the annotation border or the line of the annotation types Polygon, PolyLine, Line,
Square, Circle, Ink: solid, beveled, dashed, inset, or underline. Note that the beveled, inset, and
underline styles do not work reliably in Acrobat. Default: solid

calloutline (List of four or six floats; PDF 1.6; only for type=FreeText) List of 4 or 6 float values specifying a callout
line attached to the FreeText annotation. Six numbers {x1 y1 x2 y2 x3 y3} represent the starting, knee
point, and end coordinates of the line. Four numbers {x1 y1 x2 y2} represent the starting and end coor-
dinates of the line. The coordinates will be interpreted in default coordinates (if the usercoordinates
option is false) or user coordinates (if it is true).
The start point will be decorated with the symbol specified in the first keyword of the endingstyles op-
tion.

captionoffset (2 Floats; only for type=Line; PDF 1.7) The offset of the caption text from its normal position. The first
value specifies the horizontal offset along the annotation line from its midpoint, with a positive value in-
dicating offset to the right and a negative value indicating offset to the left. The second value specifies
the vertical offset perpendicular to the annotation line, with a positive value indicating a shift up and a
negative value indicating a shift down. Default: {0, 0}, i.e. no offset from the normal position

caption-
position

(Keyword; only for type=Line; PDF 1.7) The annotation’s caption position. This option will be ignored if
showcaption=false. Supported keywords (default: Inline):
Inline The caption will be centered inside the line.
Top The caption will be positioned on top of the line.

cloudy (Float; only for type=Circle, FreeText, Polygon, and Square; PDF 1.5) Specifies the intensity of the
»cloud« effect used to render the polygon. Possible values are 0 (no effect), 1, and 2. If this option is used
the borderstyle option will be ignored. Default: 0

contents (String for type=FreeText, otherwise Hypertext string with a maximum length of 65535 bytes; recom-
mended for PDF/A-1a) Text to be displayed for the annotation or (if the annotation does not display text)
an alternate description of its contents in human-readable form. Carriage return or line feed characters
can be used to force a new paragraph.

createdate (Boolean; PDF 1.5) If true, a date/time entry will be created for the annotation. Default: true for Markup
annotations, false otherwise

Table 12.7 Options for PDF_create_annotation()

option explanation

12.4 Annotations 197

createrich-
text

(Option list; only for markup annotations; option contents must be empty; PDF 1.5) Create rich text con-
tents from a Textflow. This may be useful to generate formatted text for annotations. Supported subop-
tions:
textflow (Textflow handle) A Textflow which will be attached to the annotation as rich text. If the

Textflow handle has been supplied to PDF_fit_textflow/table() before the call to PDF_
create_annotation() only the remaining text will be used for the annotation. If no more text
is available the Textflow will be restarted from the beginning. Using a Textflow for an anno-
tation does not affect subsequent calls to PDF_fit_textflow/table().

userunit (Keyword) Measurement unit for scalar values (e.g. firstlinedist, fontsize): cm (centimeter), in
(inches), mm (millimeters), or pt (points). Default: pt

The following Textflow options will be honored when creating rich text; all others will be ignored:
nextline, alignment, fillcolor, underline, strikeout, font, fontsize, textrise, text formatting op-
tions
Note: setting the font and alignment doesn’t have the expected effect in Acrobat.

custom (List of option lists; only for advanced users) This option can be used to insert an arbitrary number of pri-
vate entries in the annotation dictionary, which may be useful for specialized applications such as insert-
ing processing instructions for digital printing machines. Using this option requires knowledge of the PDF
file format and the target application. Corrupt PDF output may be generated if unsuitable values are
supplied. Supported suboptions:
key (String; required) Name of the dictionary key (excluding the / character). Any non-standard

PDF key can be specified, as well as the following standard keys: Contents, Name (option
iconname), NM (option name), and Open. The corresponding options will be ignored in this case.

type (Keyword; required) Type of the corresponding value, which must be one of boolean, name, or
string

value (Hypertext string if type=string, otherwise string; required) Value as it will appear in the PDF
output; PDFlib will automatically apply any decoration required for strings and names.

dasharray (List of floats; only for borderstyle=dashed). The lengths of dashes and gaps for a dashed border in de-
fault units (see PDF_setdash()). Default: 3 3

destination (Option list; only for type=Link; will be ignored if an activate action has been specified) Option list ac-
cording to Table 12.5 defining the destination to jump to

destname (Hypertext string; only for type=Link; will be ignored if the destination option has been specified)
Name of a destination which has been defined with PDF_add_nameddest(). Actions created with the
destination or destname options of PDF_create_action() are dominant over this option.

display (Keyword) Visibility on screen and paper: visible, hidden, noview, noprint. Default: visible

endingstyles (Keyword list; only for type=FreeText, Line, PolyLine) A list with two keywords specifying the line end-
ing styles. The second keyword will be ignored for type=FreeText (default: {none none}):
none, square, circle, diamond, openarrow, closedarrow
Additionally for PDF 1.5: butt, ropenarrow, rclosedarrow
Additionally for PDF 1.6: slash

filename (String; only for type=FileAttachment and Movie; required) The file name will be interpreted according
to the global filenamehandling option or parameter, see Table 2.2.
For type=FileAttachment:name of the file associated with the annotation.
For type=Movie: name of the media file in one of the following formats: AVI or QuickTime movie, WAV
or AIFF sound

fillcolor (Color; only for type=FreeText) Fill color of the text. Supported color spaces are gray, rgb, cmyk. In PDF/A
mode this option must only be used if an RGB or CMYK output intent has been specified, and a corre-
sponding rgb or cmyk color space must be used. Default: {gray 0} (=black)

Table 12.7 Options for PDF_create_annotation()

option explanation

198 Chapter 12: Interactive Features

font (Font handle; only for type=FreeText; required) Specifies the font to be used for the annotation.

fontsize (Fontsize; only for type=FreeText; required) The font size in default or user coordinates depending on
the usercoordinates option or parameter. The value 0 or keyword auto which means that Acrobat will
adjust the fontsize to the rectangle.

highlight (Keyword; only for type=Link) Highlight mode of the annotation when the user clicks on it: none,
invert, outline, push. Default: invert

iconname (String; only for type=Text, Stamp, FileAttachment) Name of an icon to be used in displaying the anno-
tation (to create an annotation without any visible icon set opacity=0):
For type=Text (default: note):

comment , key , note , help , newparagraph , paragraph , insert

For type=Stamp, but note that these don’t work reliably in Adobe Reader; the template option is recom-
mended instead (default: draft):
approved, experimental, notapproved, asis, expired, notforpublicrelease, confidential, final,
sold, departmental, forcomment, topsecret, draft, forpublicrelease
For type=FileAttachment (default: pushpin):

graph , pushpin , paperclip , tag

The template option can be used to create custom icons.

inreplyto (Hypertext string; PDF 1.5; only for markup annotations; required if the replyto option is supplied) The
name of the annotation (see option name) that this annotation is in reply to. Both annotations must be
on the same page of the document. The relationship between the two annotations must be specified by
the replyto option.

interiorcolor (Color; only for type=Line, PolyLine, Square, Circle) The color for the annotation’s line endings, rect-
angle, or ellipse, respectively. Supported color spaces are none, gray, rgb, and (in PDF 1.6) cmyk. In PDF/A
mode this option must only be used if an RGB output intent has been specified, and gray or rgb color
must be used. Default: none

layer (Layer handle; PDF 1.5) Layer to which the annotation will belong. The annotation will only be visible if
the corresponding layer is visible.

leaderlength (List with one or two floats; the second float must not be negative; only for type=Line; PDF 1.6) The
length of leader lines in default coordinates (if the usercoordinates option is false) or user coordinates
(if it is true). The length is specified by two numbers (default: {0 0}):
The first number is the extension from each endpoint of the line perpendicular to the line itself. A positive
value means that the leader lines appear in the direction that is clockwise when traversing the line from
its start point to its end point (as specified by the line option); a negative value indicates the opposite di-
rection.
The second value, which can be omitted, represents the length of leader line extensions that extend from
the line proper 180°
from the leader lines. A positive value will be ignored if the first value is 0.

leaderoffset (Non-negative float; only for type=Line; PDF 1.7) The length of the leader line offset, which is the
amount of empty space between the endpoints of the annotation and the beginning of the leader lines
in default coordinates (if the usercoordinates option is false) or user coordinates (if it is true). De-
fault: 0

line (Line; only for type=Line; required) A list of four numbers x1, y1, x2, y2 specifying the start and end coor-
dinates of the line in default coordinates (if the usercoordinates option or parameter is false) or user
coordinates (if it is true).

linewidth (Integer) Width of the annotation border or the line of the annotation types Line, PolyLine, Polygon,
Square, Circle, Ink in default units (=points). If linewidth=0 the border will be invisible. Default: 1

Table 12.7 Options for PDF_create_annotation()

option explanation

12.4 Annotations 199

locked (Boolean) If true, the annotation properties (e.g. position and size) cannot be edited in Acrobat. How-
ever, the contents can still be modified. Default: false

locked-
contents

(Boolean; PDF 1.7) If true, the annotation contents cannot be edited in Acrobat. However, the annotation
can still be deleted or properties changed (e.g. position and size) Default: false

mimetype (String; only for type=FileAttachment) MIME type of the file. Acrobat will use it for launching the ap-
propriate application when the annotation is activated.

movieposter (Keyword; only for type=Movie) Keyword which specifies a poster image representing the movie on the
page. Supported keywords: auto (the poster image will be retrieved from the movie file), none (no poster
will be displayed). Default: none

name (Hypertext string) Name uniquely identifying the annotation. The name is necessary for some actions,
and must be unique on the page. Default: none

opacity (Float or percentage; PDF 1.4; not allowed for PDF/A) The constant opacity value (0-1 or 0%-100%) to be
used in painting the annotation. Default: 1

open (Boolean; only for type=Text, Popup) If true, the annotation will initially be open. Default: false

orientate (Keyword; only for type=FreeText, Stamp) Specifies the desired orientation of the annotation within its
rectangle. Supported keywords: north (upright), east (pointing to the right), south (upside down), west
(pointing to the left). Default: north

parentname (String; only for type=PopUp) Name of the parent annotation for the annotation

playmode (Keyword; only for type=Movie) The mode for playing the movie or sound. Supported keywords: once
(play once and stop), open (play and leave the movie controller bar open), repeat (play repeatedly from
beginning to end until stopped), palindrome (play continuously forward and backward until stopped).
Default: once

polylinelist (List containing one or more polylines or quadrilaterals; only for type=Polygon, PolyLine, Ink,
Highlight, Underline, Squiggly, Strikeout). The coordinates will be interpreted in default coordinates
(if the usercoordinates option is false) or user coordinates (if it is true). Default: a polyline connecting
the vertices of the annotation rectangle.
type=Polygon, PolyLine, Ink

A single list containing a polyline with n segments (minimum: n=2).
others The list contains n sublists with 8 float values each, specifying n quadrilaterals (minimum:

n=1). Each quadrilateral encompasses a word or group of contiguous words in the text
underlying the annotation. The quadrilaterals must be provided in zigzag order (top right, top
left, lower right, lower left).

popup (String) Name of a PopUp annotation for entering or editing the text associated with this annotation.
Default: none

readonly (Boolean) If true, do not allow the annotation to interact with the user. The annotation may be dis-
played or printed, but should not respond to mouse clicks or change its appearance in response to mouse
motions. Default: false

replyto (Keyword; PDF 1.6; only for markup annotations) Specifies the relationship (the reply type) between this
annotation and the one specified by the inreplyto option. Supported keywords (default: reply):
reply The annotation must be considered a reply to the annotation specified by inreplyto.
group The annotation must be grouped with the annotation specified by inreplyto.

rotate (Boolean; must not be set to true for text annotations in PDF/A mode) If true, rotate the annotation to
match the rotation of the page. Otherwise the annotation’s rotation will remain fixed. This option will
be ignored for the icons of text annotations. Default: false for text annotations in PDF/A mode, true
otherwise

Table 12.7 Options for PDF_create_annotation()

option explanation

200 Chapter 12: Interactive Features

showcaption (Boolean; only for type=Line; PDF 1.6) If true, the text specified in the contents or createrichtext op-
tions will be replicated as a caption in the appearance of the line. Default: false

showcontrols (Boolean; only for type=Movie) If true a controller bar while playing the movie or sound will be dis-
played. Default: false

soundvolume (Float; only for type=Movie) The initial sound volume at which to play the movie, in the range -1.0 to 1.0.
Higher values denote greater volume; negative values mute the sound. Default: 1.0

subject (Hypertext string; PDF 1.5) Text representing a short description of the subject being addressed by the an-
notation. Default: none

template (Option list) Visual appearance of the annotation for one or more states. This may be useful e.g. for cus-
tom stamps. Supported suboptions:
normal/rollover/down

(Template handle or keyword) Template which will be used for the annotation’s normal,
mouse rollover, or mouse button down appearance, respectively. The keyword viewer
instructs Acrobat to create the appearance when rendering the page. Default for normal:
viewer; default for rollover and down: the value of normal

fitmethod (Keyword) Method to fit the template into the annotation rectangle. If fitmethod is different
from entire the annotation rectangle will be adapted to the template box (default: entire):
nofit Position the template only, without any scaling or clipping.
meet Position the template according to the position option, and scale it so that it en-

tirely fits into the rectangle while preserving its aspect ratio. Generally at least
two edges of the template will meet the corresponding edges of the rectangle.

entire Position the template according to the position option, and scale it such that it
entirely covers the rectangle. Generally this method will distort the template.

position (List of floats or keywords) One or two values specifying the position of the reference point
(x, y) within the template with {0 0} being the lower left corner of the template, and
{100 100} the upper right corner. The values are expressed as percentages of the template’s
width and height. If both percentages are equal it is sufficient to specify a single float value.
The keywords left, center, right (in x direction) or bottom, center, top (in y direction) can
be used as equivalents for the values 0, 50, and 100. If only one keyword has been specified
the corresponding keyword for the other direction will be added. Default: {left bottom}.

title (Hypertext string; recommended for movie annotations) The text label to be displayed in the title bar of
the annotation’s pop-up window when open and active. This string corresponds to the »Author« field in
Acrobat. The maximum length of title is 255 single-byte characters or 126 Unicode characters. However,
a practical limit of 32 characters is advised. Default: none

usematchbox (List of strings) The llx/lly/urx/ury parameters will be ignored, and the matchbox will be used instead.
The first element in the option list is a name string which specifies a matchbox. The second element is ei-
ther an integer specifying the number of the desired rectangle, or the keyword all to specify all rectan-
gles referring to the selected matchbox. If the second element is missing, it defaults to all.
If the matchbox itself or the specified rectangle does not exist on the current page, the function will si-
lently return without creating any annotation.

user-
coordinates

(Boolean) If false, annotation coordinates and font size will be expected in the default coordinate sys-
tem; otherwise the current user coordinate system will be used. Default: the value of the global
usercoordinates parameter

window-
position

(List of 2 floats or keywords; only for type=Movie) For floating movie windows, the relative position of
the window on the screen. The two values specify the position of the floating window on the screen, with
{0 0} denoting the lower left corner of the screen and {100 100} the upper right corner. The keywords
left, center, right (in horizontal screen direction) or bottom, center, top (in vertical screen direction)
can be used as equivalents for the values 0, 50, and 100. Default: {center center}

Table 12.7 Options for PDF_create_annotation()

option explanation

12.4 Annotations 201

windowscale (Float or keyword; only for type=Movie) The zoom factor at which to play the movie in a floating win-
dow. If the option is absent, the movie will be played in the annotation rectangle. The value of this op-
tion is either a zoom factor for the movie, or the following keyword (default: option is absent, i.e. the
movie is played in the annotation rectangle):
fullscreen The movie will be played using all of the available screen area.

zoom (Boolean; must not be set to true for text annotations in PDF/A mode) If true, scale the annotation to
match the magnification of the page. Otherwise the annotation’s size will remain fixed. This option will
be ignored for the icons of text annotations. Default: false for text annotations in PDF/A mode, true
otherwise

Table 12.8 Suboptions for the 3Dactivate option of PDF_create_annotation()

option explanation

enable (Keyword) Specifies when the animation should be enabled (default: click):
open Activate when the page is opened.
visible Activate when the page becomes visible.
click Annotation must explicitly be activated by a script or user action.

enablestate (Keyword) Initial animation state (default: play):
pause The 3D model is instantiated, but script animations are disabled.
play The 3D model is instantiated; script animations are enabled if present.

disable (Keyword) Specifies when the animation should be disabled (default: invisible):
close Deactivate when the page is closed.
invisible Deactivate when the page becomes invisible.
click Annotation must explicitly be deactivated by a script or user action.

disablestate (Keyword) State of the animation upon disabling (default: reset):
pause The 3D model can be rendered, but animations are disabled.
play The 3D model can be rendered and animations are enabled.
reset Initial state of the 3D model before it has been used in any way.

modeltree (Boolean; PDF 1.6) If true, the Model Tree navigation tab will be opened when the annotation is activat-
ed (default: false)

toolbar (Boolean; PDF 1.6) If true, the 3D toolbar (at the top of the annotation) will be displayed when the anno-
tation is activated (default: true)

Table 12.7 Options for PDF_create_annotation()

option explanation

202 Chapter 12: Interactive Features

12.5 Form Fields
Cookbook A full code sample can be found in the Cookbook topic webserver/starter_webform.

C++ Java void create_field(double llx, double lly, double urx, double ury,
String name, String type, String optlist)

Perl PHP create_field(float llx, float lly, float urx, float ury, string name, string type, string optlist)
C void PDF_create_field(PDF *p, double llx, double lly, double urx, double ury,

const char *name, int len, const char *type, const char *optlist)

Create a form field on the current page subject to various options.

llx, lly, urx, ury x and y coordinates of the lower left and upper right corners of the
field rectangle in default coordinates (if the usercoordinates parameter or option is false)
or user coordinates (if it is true).

Note that form field coordinates are different from the parameters of the PDF_rect()
function. While PDF_create_field() expects parameters for two corners directly, PDF_
rect() expects the coordinates of one corner, plus width and height values.

name (Hypertext string) The form field name, possibly prefixed with the name(s) of
one or more groups which have been created with PDF_create_fieldgroup(). Group names
must be separated from each other and from the field name by a period ».« character.
Field names must be unique on a page, and must not end in a period ».« character.

len (C language binding only) Length of text (in bytes) for UTF-16 strings. If len = 0 a
null-terminated string must be provided.

type The field type according to Table 12.9.

Table 12.9 Form field types

type icon Options specific for this type (in addition to general options)

pushbutton buttonlayout, caption, captiondown, captionrollover, charspacing, fitmethod, icon,
icondown, iconrollover, position, submitname

checkbox currentvalue, itemname

radiobutton buttonstyle, currentvalue, itemname, toggle, unisonselect
The name must be prefixed with a group name since radio buttons must always belong to a
group. For all other field types group membership is optional.

listbox charspacing, currentvalue, itemnamelist, itemtextlist, multiselect, sorted, topindex

combobox commitonselect, charspacing, currentvalue, editable, itemnamelist, itemtextlist, sorted,
spellcheck

textfield comb, charspacing, currentvalue, fileselect, maxchar, multiline, password, richtext,
scrollable, spellcheck

Text fields are also used for barcodes: barcode

signature charspacing, lockmode

http://www.pdflib.com/pdflib-cookbook/pdf-on-the-web-server/starter-webform

12.5 Form Fields 203

optlist An option list specifying field properties:
> General options: errorpolicy (see Table 2.6), hypertextencoding and hypertextformat

(see Table 12.1)
> An option list specifying the field’s properties according to Table 12.10. String op-

tions will be interpreted as hypertext strings or text strings as noted in the table. The
following options are supported for all field types (see Table 12.9 for more type-spe-
cific options):
action, alignment, backgroundcolor, barcode, bordercolor, borderstyle, calcorder,
dasharray, defaultvalue, display, exportable, fieldtype, fillcolor, font, fontsize, highlight,
layer, linewidth, locked, orientate, readonly, required, strokecolor, taborder, tooltip, user-
coordinates

Details The tab order of the fields on the page (the order in which they receive the focus when
the tab key is pressed) is determined by the order of calls to PDF_create_field() by default,
but a different order can be specified with the taborder option. The tab order can not be
modified after creating the fields. However, this behavior can be overridden with the
taborder option of PDF_begin/end_page_ext().

In Acrobat it is possible to assign a format (number, percentage, etc.) to text fields.
However, this is not specified in the PDF reference, but implemented with custom Java-
Script. You can achieve the same effect by attaching JavaScript actions to the field which
refers to the predefined (but not standardized) JavaScript functions in Acrobat.

This function must not be called in PDF/A mode.
In all PDF/X modes form fields are only allowed if they are positioned completely

outside of the BleedBox (or TrimBox/ArtBox if no BleedBox is present).
Tagged PDF: the field will be inserted as a child of the current item if an item is cur-

rently active.

Scope page

C++ Java void create_fieldgroup(String name, String optlist)
Perl PHP create_fieldgroup(string name, string optlist)

C void PDF_create_fieldgroup(PDF *p, const char *name, int len, const char *optlist)

Create a form field group subject to various options.

name (Hypertext string) The name of the form field group, which may in turn be pre-
fixed with the name of another group. Field groups can be nested to an arbitrary level.
Group names must be separated with a period ».« character. Group names must be
unique within the document, and must not end in a period ».« character.

len (C language binding only) Length of text (in bytes) for UTF-16 strings. If len = 0 a
null-terminated string must be provided.

optlist An option list with field options for PDF_create_field()

Details Field groups are useful for mirroring the contents of a field in one or more other fields.
If the name of a field group is provided as prefix for a field name created with PDF_
create_field(), the new field will be part of this group. All field property options provided
in the optlist for a group will be inherited by all fields belonging to this group.

Scope page, document

204 Chapter 12: Interactive Features

Table 12.10 Options for field properties with PDF_create_field() and PDF_create_fieldgroup()

option explanation

action (Action list) List of field actions for one or more of the following events. The activate event is allowed for
all field types, the other events are not allowed for type=pushbutton, checkbox, radiobutton. Default:
empty list
activate Actions to be performed when the field is activated.
blur Actions to be performed when the field loses the input focus.
calculate JavaScript actions to be performed in order to recalculate the value of this field when the

value of another field changes.
close (PDF 1.5) Actions to be performed when the page containing the field is closed.
down Actions to be performed when the mouse button is pressed inside the field’s area.
enter Actions to be performed when the mouse enters the field’s area.
exit Actions to be performed when the mouse exits the field’s area.
focus Actions to be performed when the field receives the input focus.
format JavaScript actions to be performed before the field is formatted to display its current value.

This allows the field’s value to be modified before formatting.
invisible (PDF 1.5) Actions to be performed when the page containing the field is no longer visible.
keystroke JavaScript actions to be performed when the user types into a text field or combo box, or

modifies the selection in a scrollable list box.
open (PDF 1.5) Actions to be performed when the page containing the field is opened.
up Actions to be performed when the mouse button is released inside the field’s area (this is

typically used to activate a field).
validate JavaScript actions to be performed when the field’s value is changed. This allows the new

value to be checked for validity.
visible (PDF 1.5) Actions to be performed when the page containing the field becomes visible.

alignment (Keyword) Alignment of text in the field: left, center, right. Default: left

background-
color
bordercolor

(Color) Color of the field background or border. Supported color spaces: none, gray, rgb, cmyk. Default:
none

barcode (Option list; only for type=textfield; implies readonly; PDF 1.7ext3) Create a barcode field according to
the options in Table 12.11. The field should provide the action option with a calculate event script which
determines the barcode contents based on the contents of other fields or supplies a static value:
action={calculate=...}.
The barcode will be rendered in Acrobat 9 or above, but not any version of Adobe Reader. Acrobat 9 and
X will crash if the first field on a page is a barcode field. In order to work around this problem you must
create another field before adding the barcode field. The first field may be as simple as a dummy text
field with zero width and height to prevent the crash.

borderstyle (Keyword) Style of the field border, which is one of solid, beveled, dashed, inset, underline. Default:
solid

button-
layout

(Keyword; only for type=pushbutton) The position of the button caption relative to the button icon, pro-
vided both have been specified: below, above, right, left, overlaid. Default: right

buttonstyle (Keyword; only for type=radiobutton and checkbox) Specifies the symbol to be used for the field: check,
cross, diamond, circle, star, square. Default: check

calcorder (Integer; only used if the field has a JavaScript action for the calculate event) Specifies the calculation or-
der of the field relative to other fields. Fields with smaller numbers will be calculated before fields with
higher numbers. Default: 10 plus the maximum calcorder used on the current page (and 10 initially)

12.5 Form Fields 205

caption (Content string; only for type=pushbutton; one of the caption or icon options must be supplied for push
buttons) The caption text which will be visible when the button doesn’t have input focus. It will be dis-
played with the font supplied in the font option. Use an empty string (i.e. caption { }) if you don’t
want caption or icon. Default: none

caption-
down

(Content string; only for type=pushbutton) The caption text which will be visible when the button is ac-
tivated. It will be displayed with the font supplied in the font option. Default: none

caption-
rollover

(Content string; only for type=pushbutton) The caption text which will be visible when the button has
input focus. It will be displayed with the font supplied in the font option. Default: none

charspacing (Float; not for type=radiobutton, checkbox) The character spacing for text in the field in units of the
current user coordinate system. This option is ignored by Acrobat 7. Default: 0

comb (Boolean; only for type=textfield; PDF 1.5) If true and the multiline, fileselect, and password op-
tions are false, and the maxchar option has been supplied with an integer value, the field will be divided
into a number of equidistant subfields (according to the maxchar option) for individual characters. De-
fault: false

commit-
onselect

(Boolean; only for type=listbox, combobox; PDF 1.5) If true, an item selected in the list will be committed
immediately upon selection. If false, the item will only be committed upon exiting the field. Default:
false

currentvalue (Not for type=pushbutton, signature) The field’s initial value. Type and default depend on the field
type:
checkbox, radiobutton

(String) Arbitrary string other than Off means that the button is activated. The string Off
means that the button is deactivated. This option should be set for the first button. Default:
Off

textfield, combobox
(Content string) Contents of the field. It will be displayed with the font supplied in the font
option. Default: empty

listbox (List of integers) Indices of the selected items within itemtextlist. Default: none

dasharray (List of floats; only for borderstyle=dashed). The lengths of dashes and gaps for a dashed border in de-
fault units (see PDF_setdash()). Default: 3 3

defaultvalue The field’s value after a reset action. Types and defaults are the same as for the currentvalue option. Ex-
ception: for listboxes only a single integer value is allowed.

display (Keyword) Visibility on screen and paper: visible, hidden, noview, noprint. Default: visible

editable (Boolean; only for type combobox) If true, the currently selected text in the box can be edited. Default:
false

exportable (Boolean) The field will be exported when a SubmitForm action happens. Default: true

fieldtype (Keyword; only for PDF_create_fieldgroup()) Type of the fields contained in the group: mixed,
pushbutton, checkbox, radiobutton, listbox, combobox, textfield, or signature. Unless
fieldtype=mixed the group may only contain fields of the specified type. If a particular fieldtype has
been specified for the group, the current value is displayed in all contained fields simultaneously, even if
the fields are located on separate pages. If fieldtype=radiobutton the option unisonselect must be
supplied. The options itemtextlist, itemnamelist, currentvalue and defaultvalue must be specified
in the options of PDF_create_fieldgroup(), and not in the options of PDF_create_field(). Default: mixed

fileselect (Boolean; only for type=textfield) If true, the text in the field will be treated as a file name. Default:
false

fillcolor (Color) Fill color for text. Supported color spaces: gray, rgb, cmyk. Default: {gray 0} (=black)

Table 12.10 Options for field properties with PDF_create_field() and PDF_create_fieldgroup()

option explanation

206 Chapter 12: Interactive Features

fitmethod (Keyword; only for type=pushbutton) Method of placing a template provided with the icon, icondown,
and iconrollover options within the button. Supported keywords (default: meet):
auto same as meet if the template fits into the button, otherwise clip
nofit same as clip
clip template will not be scaled, but clipped at the field border
meet template will be scaled proportionally so that it fits into the button
slice same as meet
entire template will be scaled so that it fully fits into the button

font (Font handle; required except for type=radiobutton and checkbox which always use ZapfDingbats; for
type=pushbutton it is only required if one or more of the caption, captionrollover, or captiondown op-
tions are specified).
The font to be used for the field. The following font types are not allowed for text form fields: CJK fonts
with legacy CMaps, TrueType or OpenType subsets (i.e. subsetting=true), CID fonts (i.e.
autocidfont=true or encoding=unicode for TrueType fonts). Acrobat can display characters even if they
are not included in the font’s encoding. For example, you can use encoding=winansi and supply Unicode
characters outside winansi.

fontsize (Fontsize) Font size in user coordinates. The value 0 or keyword auto which means that Acrobat will ad-
just the fontsize to the rectangle.Default: auto

highlight (Keyword) Highlight mode of the field when the user clicks on it: none, invert, outline, push. Default:
invert

icon (Template handle1; only for type=pushbutton; one of the caption or icon options must be supplied for
push buttons) Handle for a template which will be visible when the button doesn’t have input focus. De-
fault: none

icondown (Template handle1; only for type=pushbutton) Handle for a template which will be visible when the but-
ton is activated. Default: none

iconrollover (Template handle1; only for type=pushbutton) Handle for a template which will be visible when the but-
ton has input focus. Default: none

itemname (Hypertext string; only for type=radiobutton, checkbox; must be used if the export value is not a Latin 1
string) Export value of the field. Item names for multiple radio buttons in a group may be identical. De-
fault: field name

item-
namelist

(Hypertext string; only for type=listbox, combobox) Export values of the list items. Multiple items may
have the same export value. Default: none

itemtextlist (List of content strings; only for type=listbox and combobox, and required in these cases) Text contents
for all items in the list. If both itemnamelist and itemtextlist are specified both must contain the
same number of strings.

layer (Layer handle; PDF 1.5) Layer to which the field will belong. The field will only be visible if the correspond-
ing layer is visible.

linewidth (Integer) Line width of the field border in default units (=points). Default: 1

locked (Boolean) If true, the field properties cannot be edited in Acrobat. Default: false

lockmode (Keyword; only for type=signature; PDF 1.5) Indicates the set of fields that should be locked when the
field is signed:
all All fields in the document will be locked.

maxchar (Integer or keyword; only for type=textfield) The upper limit for the number of text characters in the
field, or the keyword unlimited if there is no limit. Default: unlimited

Table 12.10 Options for field properties with PDF_create_field() and PDF_create_fieldgroup()

option explanation

12.5 Form Fields 207

multiline (Boolean; only for type=textfield) If true, text will be wrapped to multiple lines if required. Default:
false

multiselect (Boolean; only for type=listbox) If true, multiple items in the list can be selected. Default: false

orientate (Keyword) Orientation of the contents within the field: north, west, south, east. Default: north

password (Boolean; only for type=textfield) If true, the text will be simulated with bullets or asterisks upon in-
put. Default: false

position (List of floats or keywords; only for type=pushbutton) One or two values specifying the position of a
template provided with the icon... options within the field rectangle, with {0 0} being the lower left cor-
ner of the field, and {100 100} the upper right corner. The values are expressed as percentages of the field
rectangle’s width and height. If both percentages are equal it is sufficient to specify a single float value.
The keywords left, center, right (in x direction) or bottom, center, top (in y direction) can be used as
equivalents for the values 0, 50, and 100. If only one keyword has been specified, the corresponding key-
word for the other direction will be added. Default: {center}. Examples:
{0 50} or {left center} left-justified template
{50 50} or {center} centered template
{100 50} or {right center}right-justified template

readonly2 (Boolean) If true, the field does not allow any input. Default: false

required (Boolean) If true, the field must contain a value when the form is submitted. Default: false

richtext (Boolean; only for type=textfield; PDF 1.5) Allow rich text formatting. If true, the fontsize must not
be 0, and fillcolor must not use color space cmyk. Default: false

scrollable (Boolean; only for type=textfield) If true, text will be moved to the invisible area outside the field if
the text doesn’t fit into the field. If false, no more input will be accepted when the text fills the full field.
Default: true

sorted (Boolean; only for type=listbox and combobox) If true, the contents of the list will be sorted. Default:
false

spellcheck (Boolean; only for type=textfield and combobox) If true, the spell checker will be active in the field. De-
fault: true

strokecolor (Color) Stroke color for text. Supported color spaces: gray, rgb, cmyk. Default: {gray 0} (=black).

submitname (Hypertext string; recommended only for type=pushbutton) URL-encoded string of the Internet address
to which the form will be submitted. Default: none

taborder (Integer) Specifies the tab order of the field relative to other fields. Fields with smaller numbers will be
reached before fields with higher numbers. Default: 10 plus the maximum taborder used on the current
page (and 10 for the first field on the page); the result of this default is that the creation order will specify
the tab order.

toggle (Boolean; only for PDF_create_fieldgroup() and type=radiobutton) If true, a radio button within a
group can be activated and deactivated by clicking. If false, it can only be activated by clicking, and de-
activating by clicking another button. Default: false

tooltip2 (Hypertext string) The text visible in the field’s tooltip. For radio buttons and groups Acrobat will always
use the tooltip of the first button in the group, others will be ignored. Default: none

topindex (Integer; only for type=listbox) Index of the first visible entry. The first item has index 0. Default: 0

unisonselect (Boolean; only for PDF_create_fieldgroup(), type=radiobutton and PDF 1.5) If true, radio buttons with
the same field name or item name will be selected simultaneously. Default: false

Table 12.10 Options for field properties with PDF_create_field() and PDF_create_fieldgroup()

option explanation

208 Chapter 12: Interactive Features

user-
coordinates

(Boolean) If false, field coordinates will be expected in the default coordinate system; otherwise the cur-
rent user coordinate system will be used. Default: the value of the global usercoordinates parameter

1. Templates for icons can be created with the PDF_begin_template_ext() function; if the icon consists of an image only you can create
the template by supplying the template option to PDF_load_image().
2. For type=radiobutton this option should not be used with PDF_create_field(), but only with PDF_create_fieldgroup().

Table 12.11 Suboptions for the barcode option of PDF_create_field() and PDF_create_fieldgroup()

option explanation

caption (Hypertext string) Caption which will be rendered below the barcode. By default, Acrobat creates the
file: URL for the document as caption.

dataprep (Integer) Applicable data preparation. Supported values (default: 0):
0 Do not apply any compression before encoding the data in the barcode.
1 Compress the data with the Flate compression algorithm before encoding the data.

ecc (Integer; required for symbology=PDF417 and QRCode) Error correction coefficient where higher values
create better error correction through redundancy, but require a larger barcode. For symbology=PDF417
the values must be in the range 0-8; for symbology=QRCode the values must be in the range 0-3.

resolution (Positive integer) Resolution in dpi at which the barcode is rendered (default: 300)

symbology (Keyword; required) Barcode technology to use:
PDF417 PDF417 bar code according to ISO 15438
QRCode QR Code 2005 bar code according to ISO 18004
DataMatrix Data Matrix bar code according to ISO 16022

xsymheight (Integer; only for symbology=PDF417, and required in this case) Vertical distance between two barcode
modules in pixels. The ratio xsymheight/xsymwidth must be an integer value. The allowed range for this
ratio is 1-4.

xsymwidth (Integer; required) Horizontal distance between two barcode modules in pixels

Table 12.10 Options for field properties with PDF_create_field() and PDF_create_fieldgroup()

option explanation

12.6 Bookmarks 209

12.6 Bookmarks

C++ Java int create_bookmark(String text, String optlist)
Perl PHP int create_bookmark(string text, string optlist)

C int PDF_create_bookmark(PDF *p, const char *text, int len, const char *optlist)

Create a bookmark subject to various options.

text (Hypertext string) Contains the text of the bookmark.

len (C language binding only) Length of text (in bytes) for UTF-16 strings. If len = 0 a
null-terminated string must be provided.

optlist An option list specifying the bookmark’s properties. The following options can
be used:

> General options: errorpolicy (see Table 2.6), hypertextencoding and hypertextformat
(see Table 12.1)

> Bookmark control options according to Table 12.12:
action, destination, destname, fontstyle, index, open, parent, textcolor

Returns A handle for the generated bookmark, which may be used with the parent option in sub-
sequent calls.

Details This function adds a PDF bookmark with the supplied text. Unless the destination option
has been specified the bookmark will point to the current page (or the last page if used
in document scope, or the first page if used before the first page).

Creating bookmarks sets the openmode option of PDF_begin/end_document() to
bookmarks unless another mode has explicitly been set.

Scope document, page

Table 12.12 Options for PDF_create_bookmark()

option explanation

action (Action list) List of bookmark actions for the following event. Default: GoTo action with the target speci-
fied in the destination option.
activate Actions to be performed when the bookmark is activated. All types of actions are permitted.

destination (Option list; will be ignored if an activate action has been specified) Option list specifying the bookmark
destination according to Table 12.5. Default: {type fitwindow page 0} if destination, destname, and
action are absent.

destname (Hypertext string; may be empty; will be ignored if the destination option has been specified) Name of
a destination which has been defined with PDF_add_nameddest(). Destination or destname actions will
be dominant over this option. If destname is an empty string (i.e. {}) and neither destination nor action
are specified, the bookmark won’t have any action, which may be useful if the bookmark serves as a sep-
arator.

fontstyle (Keyword) Specifies the font style of the bookmark text: normal, bold, italic, bolditalic. Default:
normal

index (Integer) Index where to insert the bookmark within the parent. Values between 0 and the number of
bookmarks of the same level will be used to insert the bookmark at that specific location within the par-
ent. The value -1 can be used to insert the bookmark as the last one on the current level. Default: -1. How-
ever, for inserted or resumed pages bookmarks will be placed as if all pages had been generated in their
physical order (the bookmarks will reflect the page order).

210 Chapter 12: Interactive Features

open (Boolean) If false, subordinate bookmarks will not be visible. If true, all children will be folded out. De-
fault: false

parent (Bookmark handle) The new bookmark will be specified as a subordinate of the bookmark specified in
the handle. If parent=0 a new top-level bookmark will be created. Default: 0

textcolor (Color) Specifies the color of the bookmark text. Supported color spaces: none, gray, rgb.
Default: rgb {0 0 0} (=black)

Table 12.12 Options for PDF_create_bookmark()

option explanation

12.7 PDF Packages and Portfolios 211

12.7 PDF Packages and Portfolios

C++ Java int add_portfolio_folder(int parent, String, foldername, String optlist)
Perl PHP int add_portfolio_folder(int parent, string foldername, string optlist)

C int PDF_add_portfolio_folder(PDF *p, int parent, const char *foldername, int len, const char *optlist)

Add a folder to a new or existing portfolio (requires PDF 1.7ext3).

parent The parent folder, specified by a folder handle returned by an earlier call to
PDF_add_portfolio_folder(), or -1 (in PHP: 0) for the root folder.

foldername (Hypertext string with 1-255 characters; the characters / \ : * " < > | must not
be used; the last character must not be a period ’.’) Name of the folder. Two folders with
the same parent must not have the same name after case normalization. The name of
the root folder will be ignored by Acrobat.

len (C language binding only) Length of foldername (in bytes) for UTF-16 strings. If
len=0 a null-terminated string must be provided.

optlist An option list specifying portfolio properties. The following options can be
used:

> General options: errorpolicy (see Table 2.6), hypertextencoding and hypertextformat
(see Table 12.1)

> Portfolio options according to Table 12.13: description, fieldlist, thumbnail

Returns A handle which can be used in PDF_add_portfolio_folder() or PDF_add_portfolio_file().

Details The generated folder structure will be used to create a PDF portfolio for the current doc-
ument. The folder structure will be deleted after PDF_end_document(). This function
must not be used if the attachments option has been supplied to PDF_begin_document().

Scope document

C++ Java int add_portfolio_file(int folder, String filename, String optlist)
Perl PHP int add_portfolio_file(int folder, string filename, string optlist)

C int PDF_add_portfolio_file(PDF *p, int folder, const char *filename, int len, const char *optlist)

Add a file to a portfolio folder or a package (requires PDF 1.7).

folder A folder handle returned by an earlier call to PDF_add_portfolio_folder() or -1 (in
PHP: 0) for the root folder. Folders different from the root folder require PDF 1.7ext3.

Table 12.13 Options for PDF_add_portfolio_folder()

option explanation

description (Hypertext string) Description of the folder

fieldlist (List of option lists) Specify metadata fields for the folder. Each list refers to a field in the schema subop-
tion of the portfolio option of PDF_end_document(). Supported suboptions are listed in Table 12.15.

thumbnail (Image handle) Specifies an image to be used as thumbnail for the folder. The handle must have been
created with PDF_load_image() and the image must satisfy the conditions listed for PDF_add_
thumbnail().

212 Chapter 12: Interactive Features

filename (Name string; will be interpreted according to the global filenamehandling op-
tion or parameter, see Table 2.2) Name of a disk-based or virtual file which will be at-
tached to the specified folder of the PDF portfolio. With the createpvf option of PDF_
begin_document() you can create documents in memory and pass them on for inclusion
in a PDF Portfolio without creating any temporary files on disk.

Note that Acrobat will use the file name suffix to determine which application to
launch when interacting with the file in Acrobat. If a file name with the appropriate suf-
fix cannot be used due to external restrictions you can create a PVF file (which supports
arbitrary file names) instead.

len (C language binding only) Length of filename (in bytes) for UTF-16 strings. If len=0
a null-terminated string must be provided.

optlist An option list specifying file properties:
> General options: errorpolicy (see Table 2.6) and hypertextencoding (see Table 12.1)
> Options for file properties according to Table 12.14:

description, fieldlist, mimetype, name, password, thumbnail

Returns The value 1 if the file could be added successfully, or an error code of -1 (in PHP: 0) if the
function call failed. If errorpolicy=exception this function will throw an exception in case
of an error. PDF documents will be opened to fetch the modification and creation dates.
If the PDF document cannot be opened (e.g. because no password was supplied) the doc-
ument will be included in the PDF portfolio nevertheless.

Details The specified file will be attached to the specified folder of a PDF 1.7ext3 portfolio or a
PDF 1.7 package. If PDI is available, PDF documents will be opened if possible and their
creation and modification dates will be written to the portfolio. This function must not
be used if the attachments option has been supplied to PDF_begin_document().

Scope document

Table 12.14 Options for PDF_add_portfolio_file()

option explanation

description (Hypertext string) Descriptive text associated with the file.

fieldlist (List of option lists) Specify metadata fields for the file. Each list refers to a field in the schema suboption
of the portfolio option of PDF_end_document(). Supported suboptions are listed in Table 12.15.

mimetype (String) MIME type of the file. Note that Acrobat will use the filename suffix instead of the MIME type for
launching the appropriate application when the file is activated. The MIME type application/pdf will
be set automatically if the file can successfully be opened as PDF document.

name (Hypertext string) Name of the file to be used in the portfolio if a name different from filename is de-
sired. It is recommended to use names with the usual type-specific suffixes (e.g. .pdf) to make sure that
Acrobat will properly preview PDF documents and launch the appropriate application for other file types.
Two file names in the same folder must be different after case normalization. It is recommended to avoid
slash characters ’/’ in the name since Acrobat will drop all characters before the slash. Default: filename
without any path components.

password (String with up to 127 characters; only if PDI is available) PDF master password required to open a pro-
tected PDF document for fetching its date entries.

thumbnail (Image handle) Specifies an image to be used as thumbnail for the file. The handle must have been creat-
ed with PDF_load_image() and the image must satisfy the conditions listed for PDF_add_thumbnail().

12.7 PDF Packages and Portfolios 213

Table 12.15 Suboptions of the fieldlist option of PDF_add_portfolio_folder() and PDF_add_portfolio_file()

option explanation

key (String; required) Name of the field, which must refer to a key in the schema suboption of the portfolio
option list of PDF_end_document(). The name must be unique.

prefix (Hypertext string) A prefix string which will be prepended to the field value presented to the user. Acro-
bat will use this entry only if type=text. Default: none

type (Keyword) Data type of the field. Supported keywords (default: text):
text Text field: the field value will be stored as hypertext string.
date Date field: the field value will be stored as PDF date string.
number Number field: the field value will be stored as PDF number.

value (Hypertext string; required) Specifies the value of a field in the schema suboption of the portfolio option
list of PDF_end_document(). The data type must be specified in the type option and must match the cor-
responding type suboption of the schema suboption of the portfolio option.

214 Chapter 12: Interactive Features

Table 12.16 Suboptions of the portfolio option of PDF_end_document()

option explanation

coversheet (Hypertext string) The name of the file within the portfolio which will be initially presented in the user
interface. Default: the document which contains the portfolio

coversheet-
folder

(Folder handle) The name of the folder within the portfolio which contains the file specified in the
coversheet option. If a file with the coversheet name exists in multiple portfolio folders and no
coversheetfolder has been specified, the first occurrence will be used. Default: none

initialview (Keyword) Specifies the initial view. Supported keywords (default: detail):
detail The portfolio is presented in details mode, with all information in the schema option

presented in a multi-column format. This mode provides the most information to the user
(Acrobat: »View top«).

tile The portfolio is presented in tile mode, with each file in the collection denoted by a small icon
and a subset of information from the schema option. This mode provides top-level
information about the file attachments to the user (Acrobat: »View left«).

hidden The portfolio is initially hidden, without preventing the user from obtaining a file list via
explicit action (Acrobat: »Minimize view«).

schema (List of option lists) Metadata schema for the portfolio: each option list defines a field with a unique
name which corresponds to a key in the fieldlist of a folder or file, or to the name of a standard field.
These fields define the display behavior of the portfolio in Acrobat (default: Acrobat displays the file
name and size, modification date, and description if specified):
editable (Boolean) Specifies whether Acrobat should allow editing the field value. Default: false
key (String; required) The internal field name, which must be unique.

The following names (which can not be used for user-defined fields) can be used to assign
new labels to the builtin fields: _creationdate, _description, _filename, _moddate, _size.

label (Hypertext string; required) The textual field label that is displayed to the user.
order (Integer) Relative order of the fields in the user interface (1,2,3,...)
type (Keyword) Data type of the field. The following types can be used to refer to user-defined

fields in the fieldlist option (default: text):
text hypertext string
date PDF date string
number number

visible (Boolean) Initial visibility of the field in the user interface. Default: true; however, in the
presence of user-defined fields Acrobat will hide builtin fields unless they are explicitly
specified as visible.

sort (List of option lists, where each list contains a string and an optional keyword) Specifies the order in
which the fields specified in the schema option will be sorted in the user interface. Each sublist contains
the field name (required) and a keyword (optional). Supported keywords (Default: ascending):
ascending field values are sorted in ascending order
descending field values are sorted in descending order
Acrobat uses this list to sort the fields in the portfolio. The list is used to allow additional fields to contrib-
ute to the sort, where each additional field is used to break ties: if multiple fields in the schema option
have the same value for the first field in the list, the values for successive fields in the list are used for
sorting until a unique order is determined or until the field names are exhausted. Default: no sorting

12.7 PDF Packages and Portfolios 215

split (Option list; PDF 1.7ext3) Specifies the orientation and position of the splitter bar. The default depends on
the initialview option: The value detail (or no value) implies horizontal orientation and tile indi-
cates vertical orientation. No splitter is used if initalview=hidden. Supported suboptions:
direction (Keyword) Orientation of the splitter bar. Supported keywords:

horizontal Split the window horizontally.
vertical Split the window vertically.
none Don’t split the window. The entire window is dedicated to the file navigation

view.
position (Percentage) Initial position of the splitter bar, specified as a percentage of the available

window area. Allowed values are in the range from 0 to 100. This entry will be ignored if
direction=none. Default: viewer dependent

Table 12.16 Suboptions of the portfolio option of PDF_end_document()

option explanation

216 Chapter 12: Interactive Features

13.1 3D Artwork 217

13 3D and Geospatial Features

13.1 3D Artwork
Cookbook A full code sample can be found in the Cookbook topic multimedia/starter_3d.

C++ Java int load_3ddata(String filename, String optlist)
Perl PHP int load_3ddata(string filename, string optlist)

C int PDF_load_3ddata(PDF *p, const char *filename, int len, const char *optlist)

Load a 3D model from a disk-based or virtual file (requires PDF 1.6).

filename (Name string; will be interpreted according to the global filenamehandling op-
tion or parameter, see Table 2.2) Name of a disk-based or virtual file containing a 3D
model.

len (C language binding only) Length of filename (in bytes) for UTF-16 strings. If len = 0
a null-terminated string must be provided.

optlist An option list specifying properties of the 3D model:
> General option: errorpolicy (see Table 2.6) and hypertextencoding (see Table 12.1)
> Options for specifying properties of the 3D model according to Table 13.1:

defaultview, script, type, views

Returns A 3D handle which can be used to create 3D annotations with PDF_create_annotation().
The 3D handle can be used until the end of the enclosing document scope. If
errorpolicy=return the caller must check for a return value of -1 (in PHP: 0) since it signals
an error.

Details Load a 3D model from a file containing PRC or U3D format.

Scope page, document. The returned handle can be used until the next call to PDF_end_
document().

Table 13.1 Options for PDF_load_3ddata()

option explanation

defaultview (Keyword or 3D view handle) Specifies the initial view of the 3D annotation; One of the keywords first
or last (referring to the respective entries in the views option), or a 3D view handle created with PDF_
create_3dview(). Default: first

script (Hypertext string) String containing JavaScript code to be executed when the 3D model is instantiated.
Default: no script

http://www.pdflib.com/pdflib-cookbook/multimedia/starter-3d

218 Chapter 13: 3D and Geospatial Features

C++ Java int create_3dview(String username, String optlist)
Perl PHP int create_3dview(string username, string optlist)

C int PDF_create_3dview(PDF *p, const char *username, int len, const char *optlist)

Create a 3D view (requires PDF 1.6).

username (Hypertext string) User interface name of the 3D view.

len (C language binding only) Length of username (in bytes) for UTF-16 strings. If len =
0 a null-terminated string must be provided.

optlist An option list specifying 3D view properties:
> General options: errorpolicy (see Table 2.6) and hypertextencoding (see Table 12.1)
> Options for specifying 3D view properties according to Table 13.2:

background, camera2world, cameradistance, lighting, namerendermode, type, U3Dpath

Returns A 3D view handle which can be used until the end of the enclosing document scope. If
errorpolicy=return the caller must check for a return value of -1 (in PHP: 0) since it signals
an error.

Details The 3D view handle can be attached to 3D models with the views option in PDF_load_
3ddata() or can be used to create 3D annotations with PDF_create_annotation() or 3D-
related actions with PDF_create_action().

Scope page, document. The returned handle can be used until the next call to PDF_end_
document().

type (Keyword) Specify the type of 3D data (default: U3D):
PRC (PDF 1.7ext3) Product Representation Compact (PRC) format (ISO 14739-1)
U3D Universal 3D File Format (U3D) in the following flavors (see www.ecma-international.org):

PDF 1.6, but requires Acrobat 7.0.7 or above: ECMA-363, Universal 3D File Format (U3D), 1st
Edition;
PDF 1.6, but requires Acrobat 8.1 or above: ECMA-363, Universal 3D File Format (U3D), 3rd
Edition;
Note that Acrobat 9.3.x and 9.4.x (but not Acrobat 8 and X) have trouble displaying U3D
artwork, and issue an error message »A 3D data parsing error has occurred« instead.

views (List of 3D view handles) List of predefined views for the 3D model. Each list element is a 3D view handle
created with PDF_create_3dview(). The type option used when creating the views with PDF_create_
3dview() must match the type option in PDF_load_3ddata(). Default: empty list

Table 13.2 Options for PDF_create_3dview()

option explanation

background (Option list) Specifies the background for the 3D model:
fillcolor (Color) Background color, expressed in the RGB color space. Default: white
entire (Boolean) If true, the background applies to the entire annotation; otherwise it applies only

to the rectangle specified in the annotations’s 3Dbox option. Default: false

camera2world (List of 12 floats) 3D transformation matrix specifying position and orientation of the camera in world co-
ordinates (see description below). Default: the initial view defined internally in the 3D model

Table 13.1 Options for PDF_load_3ddata()

option explanation

http://www.ecma-international.org/

http://www.ecma-international.org/

13.1 3D Artwork 219

Camera position. The position of the camera can be specified with the camera2world
option. Alternatively, JavaScript code can be attached to position and align the camera
towards the model. The PDFlib Cookbook contains sample code for attaching such Java-
Script code to a 3D model.

The following values can be supplied to the camera2world option for common cam-
era positions. x, y, and z are suitable values which describe the position of the camera.
These values should satisfy the stated conditions (see below):
View from the front:

{-1 0 0 0 0 1 0 1 0 x y z} x small, y large negative, z small

View from left:

{ 0 1 0 0 0 1 1 0 0 x 0 z} x large negative, z small

View from the top:

{-1 0 0 0 1 0 0 0 -1 x 0 z} x small, z large positive

camera-
distance

(Float; must not be negative; will be ignored if camera2world is not specified) Distance between the cam-
era and the center of the orbit. For details see description of the CO key in section 13.6.4 »3D Views« of ISO
32000-1. Default: defined internally in the 3D data

lighting (Option list; PDF 1.7) Specifies the lighting scheme for the 3D artwork. The following option is supported:
type (Keyword) Specifies the lighting scheme. Supported keywords (Default: Artwork):

Artwork Lights are specified in the 3D artwork.
None No lights; lights specified in the 3D artwork will be ignored.
White Three light-grey infinite lights, no ambient term
Day Three light-grey infinite lights, no ambient term
Night One yellow, one aqua, and one blue infinite light, no ambient term
Hard Three grey infinite lights, moderate ambient term
Primary One red, one green, and one blue infinite light, no ambient term
Blue Three blue infinite lights, no ambient term
Red Three red infinite lights, no ambient term
Cube Six grey infinite lights aligned with the major axes, no ambient term
CAD Three grey infinite lights and one light attached to the camera, no ambient term
Headlamp Single infinite light attached to the camera, low ambient term

name (Hypertext string) Name of the 3D view, which can be used in GoTo actions. This is an optional internal
name which is treated separately from the required username parameter.

rendermode (Option list; PDF 1.7) Specifies the render mode for displaying the 3D artwork. Table 13.3 lists the support-
ed suboptions.

type (Keyword; required if the view will be used in PDF_load_3ddata() with type=PRC) Specify the type of 3D
data (default: U3D):
PRC The view will be used in PDF_load_3ddata() with type=PRC.
U3D The view will be used in PDF_load_3ddata() with type=U3D.

U3Dpath (Hypertext string; will be ignored if the camera2world option is specified; only for type=U3D) A View
Node name used to access a view node within the 3D artwork.

Table 13.2 Options for PDF_create_3dview()

option explanation

220 Chapter 13: 3D and Geospatial Features

View from the back:

{ 1 0 0 0 0 1 0 -1 0 x y z} x small, y large positive, z small

View from the bottom:

{-1 0 0 0 -1 0 0 0 1 x 0 z} x small, z large negative

View from right:

{ 0 -1 0 0 0 1 -1 0 0 x 0 z} x large positive, z small

Isometric view, i.e. the direction of projection intersects all three axes at the same angle.
There are exactly eight such views, one in each octant:

{0.707107 -0.707107 0 -0.5 -0.5 0.707107 -0.5 -0.5 -0.707107 x y z}
x, y, z large positive

The x, y, z values should be selected depending on the position and size of the model.
»Large« means the values should be significantly larger than the size of the model in or-
der to provide a large enough distance between the camera and the model. If the value
is too large the model will appear very small and will quickly get out of sight when ro-
tating the view. If the value is too small the model may not completely fit into the view.
»Small« means the absolute value should be small compared to the large value and
should not exceed the size of the model very much.

13.1 3D Artwork 221

Table 13.3 Suboptions for the rendermode option of PDF_create_3dview()

option explanation

crease (Float in the range 0..180) Crease value

facecolor (RGB color or keyword; only for type=Illustration) Face color; this color will be used by several render
modes. The keyword backgroundcolor refers to the current background color. Default:
backgroundcolor

opacity (Float in the range 0..1) Opacity for some render modes. Default: 0.5

rendercolor (RGB color) Auxiliary color. This color will be used by several render modes. Default: black

type (Option list; PDF 1.7) Specifies the render mode for displaying the 3D artwork. Supported options:
(Keyword) Specifies the render mode. Supported keywords (Default: Artwork):
Artwork Render mode is specified in the 3D artwork; all other suboptions of the rendermode option

will be ignored.
Solid Displays textured and lit geometric shapes.
SolidWireframe

Displays textured and lit geometric shapes (triangles) with single color edges on top of
them.

Transparent Displays textured and lit geometric shapes (triangles) with an added level of transparency.
TransparentWireframe

Displays textured and lit geometric shapes (triangles) with an added level of transparency.
BoundingBox

Displays textured and lit geometric shapes (triangles) with an added level of transparency,
with single color opaque edges on top of it.

TransparentBoundingBox
Displays bounding boxes faces of each node, aligned with the axes of the local coordinate
space for that node, with an added level of transparency.

TransparentBoundingBoxOutline
Displays bounding boxes edges and faces of each node, aligned with the axes of the local
coordinate space for that node, with an added level of transparency.

Wireframe Displays bounding boxes edges and faces of each node, aligned with the axes of the local
coordinate space for that node, with an added level of transparency.

ShadedWireframe
Displays only edges, though interpolates their color between their two vertices and applies
lighting.

HiddenWireframe
Displays edges in a single color, though removes back-facing and obscured edges.

Vertices Displays only vertices in a single color.
ShadedVertices

Displays only vertices, though uses their vertex color and applies lighting.
Illustration Displays silhouette edges with surfaces, removes obscured lines.
SolidOutline Displays silhouette edges with lit and textured surfaces, removes obscured lines.
ShadedIllustration

Displays silhouette edges with lit and textured surfaces and an additional emissive term to
remove poorly lit areas of the artwork.

222 Chapter 13: 3D and Geospatial Features

13.2 Geospatial Features
Note Acrobat 9 or above is required for interacting with geospatial data in PDF.

Geospatial features are implemented with the following functions and options:
> One or more georeferenced areas can be assigned to a page with the viewports option

of PDF_begin/end_page_ext().
> The georeference option of PDF_load_image() can be used to assign an earth-based co-

ordinate system to an image.

Table 13.4 and subsequent tables specify the options for geospatial features in detail.

Table 13.4 Suboptions for the viewports option of PDF_begin/end_page_ext()

option explanation

bounding-
box

(Rectangle; required) A rectangle in default coordinates specifying the location of the viewport on the
page.

georeference (Option list; required) Specifies the description of a world coordinate system associated with the view-
port to use for geospatial measuring; see Table 13.5 for supported options.

hypertext-
encoding

(Keyword) Specifies the encoding for the name option. An empty string is equivalent to unicode. Default:
the value of the global hypertextencoding parameter

name (Hypertext string) A descriptive title of the viewport (map name). However, Acrobat does not display the
viewport name in the user interface.

Table 13.5 Suboptions for the georeference option of PDF_load_image() and the georeference suboption of the
viewports option of PDF_begin/end_page_ext()

option explanation

angularunit (Keyword) Specifies the preferred angular display unit (default: deg):
degree degrees
grad grad (1/400 of the full circle, or 0.9 degrees)

areaunit (Keyword) Specifies the preferred area display unit (default: sqm):
sqm square meter
ha hectar (10.000 square meters)
sqkm square kilometer
sqft square foot
a acre
sqmi square mile
The specified unit will be used for display only if the following Acrobat setting is disabled: »Preferences,
Measuring (Geo), Use Default Area Unit«.

bounds (Polyline with two or more points) Specifies the bounds of an area for which the geospatial transforma-
tions are valid (for maps this bounding polyline is known as a neatline). The points are expressed relative
to the boundingbox of a page viewport or the extent of an image. Default: {0 0 0 1 1 1 1 0}, i.e. the
full viewport or image area will be used for the map.

displaysystem (Option list) Specifies a coordinate system according to Table 13.6 for the user-visible display of position
values, such as latitude and longitude. This entry can be used to display the coordinates in another sys-
tem than the one supplied in the coords option to specify the map.

13.2 Geospatial Features 223

linearunit (Keyword) Specifies the preferred linear display unit (default: m):
m meter
km kilometer
ft international foot
usft US survey foot
mi international mile
nm nautical mile
The specified unit will be used for display only if the following Acrobat setting is disabled: »Preferences,
Measuring (Geo), Use Default Distance Unit«.

mappoints (List with two or more pairs of floats; required) A list of numbers where each pair defines a point in a 2D
unit square. The unit square is mapped to the rectangular bounds of the page viewport or image which
contains the georeference option list. The mappoints list must contain the same number of points as
the worldpoints list; each point is the map position in the unit square corresponding to the geospatial
position in the worldpoints list.

worldpoints (List with two or more pairs of floats; required) A list of coordinate pairs where each pair specifies the
world coordinates of the corresponding point in the mappoints option. The number of pairs must match
the number of pairs in the mappoints option. The coordinate values are based on the coordinate system
specified in the worldsystem option: if type=geographic, latitude/longitude values in degrees must be
provided. If type=projected, projected x/y values must be provided.

worldsystem (Option list; required) World coordinate system (for interpretation of worldpoints) according to Table
13.6.

Table 13.6 Suboptions for the mapsystem and displaysystem suboptions of the georeference option of PDF_load_
image() and the georeference suboption of the viewports option of PDF_begin/end_page_ext()

option explanation

epsg (Integer; exactly one of epsg or wkt must be supplied) Specifies the coordinate system as an EPSG refer-
ence code. Note that Acrobat 9 does not support EPSG codes for type=geographic; use wkt in this case.

type (Keyword; required) Specifies the type of the coordinate system:
geographic geographic coordinate system (supports only wkt)
projected projected coordinate system (supports wkt and epsg)

wkt (String with up to 1024 ASCII characters; exactly one of epsg or wkt must be supplied) Specifies the coordi-
nate system as a string of »Well Known Text« (WKT). WKT is recommended for custom coordinate sys-
tems without any EPSG code and seems to be required in Acrobat 9 if type=geographic.

Table 13.5 Suboptions for the georeference option of PDF_load_image() and the georeference suboption of the
viewports option of PDF_begin/end_page_ext()

option explanation

224 Chapter 13: 3D and Geospatial Features

14.1 Document Information Fields 225

14 Document Interchange

14.1 Document Information Fields

C++ Java void set_info(String key, String value)
Perl PHP set_info(string key, string value)

C void PDF_set_info(PDF *p, const char *key, const char *value)
C void PDF_set_info2(PDF *p, const char *key, const char *value, int len)

Fill document information field key with value.

key (Name string) The name of the document info field, which may be any of the stan-
dard names, or an arbitrary custom name (see Table 14.1). There is no limit for the num-
ber of custom fields. Regarding the use and semantics of custom document information
fields, PDFlib users are encouraged to take a look at the Dublin Core Metadata element
set.1

value (Hypertext string) The string to which the key parameter will be set. Acrobat im-
poses a maximum length of value of 255 bytes. Note that due to a bug in Adobe Reader 6
for Windows the & character does not display properly in some info strings.

len (Only for PDF_set_info2(), and only for the C binding) Length of value (in bytes) for
UTF-16 strings. If len = 0 a null-terminated string must be provided.

Details The supplied info value will only be used for the current document, but not for all docu-
ments generated within the same object scope. If the autoxmp option has been supplied
to PDF_begin/end_document() PDFlib will automatically create synchronized XMP docu-
ment metadata from the info entries supplied to PDF_set_info().

The document info entries will be overwritten by XMP document metadata supplied
to the metadata option of PDF_begin/end_document().

Scope any. If used in object scope the supplied values will only be used for the next document.

1. See dublincore.org

Table 14.1 Values for the document information field key

key explanation

Subject Subject of the document

Title Title of the document. This entry must be supplied in PDF/X mode.

Creator Software used to create the document (as opposed to the Producer of the PDF out-
put, which is always PDFlib). Acrobat will display this entry as »Application«. This
entry must be supplied in PDF/X mode.

Author Author of the document

Keywords Keywords describing the contents of the document

Trapped Indicates whether trapping has been applied to the document. Allowed values are
True, False, and Unknown. In PDF/X mode Unknown is not allowed.

http://dublincore.org

226 Chapter 14: Document Interchange

any other name User-defined document information field. PDFlib supports an arbitrary number of
fields. A custom field name should only be supplied once. With multiple occur-
rences of the same field name the last one will be used. See also moddate option of
PDF_begin/end_document().
Custom document info fields must not contain any of the following characters if
XMP metadata is created (via the autoxmp or metadata options): & \ < > " space
Fields which are used for standard identification will be rejected.

Table 14.1 Values for the document information field key

key explanation

14.2 XMP Metadata 227

14.2 XMP Metadata
As an alternative or in addition to document information fields PDFlib supports XMP
(Extensible Metadata Platform1) as a framework for specifying metadata. XMP is required,
for example, for PDF/A compliance, and is supported by an increasing number of appli-
cations. There are several flavors of XMP support in PDFlib as detailed below.

Automatic XMP synchronization for document info fields. If the autoxmp option in
PDF_begin/end_document() is true, PDFlib will synchronize document information fields
supplied to PDF_set_info() as well as several internally generated entries (e.g.
CreationDate) to the corresponding entries in the document-level XMP metadata.

Document info fields which correspond to a well-known element in one of the stan-
dard XMP schemas will be placed in the appropriate schema. Unknown info fields will
usually be placed in the extended PDF (pdfx) schema, but will be ignored in PDF/A mode.

User-supplied XMP streams. Users can supply full or partial XMP metadata streams to
the metadata option of various functions. This option expects an XMP stream and will
validate it. PDFlib will automatically generate the XDP packet header and trailer.

Cookbook A simple XMP sample can be found in the Cookbook topic interchange/embed_xmp.

For document-level metadata PDFlib will add several internally generated properties
(e.g. CreationDate). In PDF/A mode PDFlib will synchronize relevant entries in user-sup-
plied XMP streams to standard document info fields (analogous to autoxmp mode
which synchronizes document info fields to XMP). However, PDFlib will not synchro-
nize other XMP entries to custom document info fields. Additional requirements for
XMP document metadata for PDF/A are discussed in the PDFlib Tutorial.

In addition to document-level metadata, XMP can be supplied for pages, fonts, ICC
profiles, images, templates, and imported PDF pages. Table 14.2 lists suboptions for the
metadata option of various functions. Example:

metadata={filename=info.xmp inputencoding=winansi}

1. See www.adobe.com/products/xmp

Table 14.2 Suboptions for the metadata option in PDF_begin/end_document(), PDF_begin/end_page_ext(), PDF_load_
font(), PDF_load_iccprofile(), PDF_load_image(), PDF_begin_template_ext(), PDF_open_pdi_page()

option description

compress (Boolean; not for PDF_begin/end_document()) Compress the XMP metadata stream in the PDF output.
If the option is only supplied in PDF_begin_page_ext() but not in PDF_end_page_ext(), its value takes
precedence over the default. Default: false
PDF/A and PDF/X: compress=true is not allowed.

inputencoding (Keyword) The encoding to interpret the metadata supplied in filename. Default: unicode

inputformat (Keyword) The format of the metadata supplied in filename. Default: utf8, but bytes if inputencoding
is an 8-bit encoding

keepxmp (Boolean; only for PDF_load_image(); can not be combined with filename) XMP metadata present in
an image will be kept, i.e. attached to the resulting image in the PDF document. XMP metadata is hon-
ored in the TIFF, JPEG, and JPEG 2000 image formats. If no XMP metadata is found in the image file this
option doesn’t have any effect. Default: false

filename (Name string; required unless keepxmp is supplied) The name of a file containing well-formed XMP meta-
data. It will be interpreted according to the global filenamehandling option or parameter, see Table 2.2.

http://www.pdflib.com/pdflib-cookbook/document-interchange/embed-xmp

http://www.adobe.com/products/xmp

228 Chapter 14: Document Interchange

14.3 Tagged PDF
The tagged option in PDF_begin_document() must have been set to true in order to gener-
ate Tagged PDF. The lang option must be provided as well. Tagged PDF mode will auto-
matically be activated if the pdfa document option has been set to PDF/A-1a:2005.

Cookbook A full code sample can be found in the Cookbook topic interchange/starter_tagged.

C++ Java int begin_item(String tag, String optlist)
Perl PHP int begin_item(string tag, string optlist)

C int PDF_begin_item(PDF *p, const char *tag, const char *optlist)

Open a structure element or other content item with attributes supplied as options.

tag The item’s element type according to Table 14.3:
> standard element types
> pseudo element types which are not structure elements
> The tag name Plib_custom_tag implies use of a custom element type; the actual tag

name must be supplied in the tagname option.

Table 14.3 Standard, pseudo, and custom types for PDF_begin_item(), PDF_begin_mc(), and PDF_mc_point()

category tags

standard element types

grouping Document, Part, Art, Sect, Div, BlockQuote, Caption, TOC, TOCI, Index, NonStruct, Private

paragraph-
like

P, H, H1-H6 (BLSEs)

list L, LI, Lbl, LBody (BLSEs)

table Table (BLSE), TR, TH, TD, THead1, TBody1, TFoot1

1. Requires PDF 1.5 or above

inline-level Span, TagSuspect2, Quote, Note, Reference, BibEntry, Code, (ILSEs)

2. Requires PDF 1.6 or above

illustration Figure, Formula, Form

Japanese Ruby1 (grouping), RB1, RT1, RP1, Warichu1 (grouping), WT1, WP1

pseudo element types

non-
structural
elements

Artifact Specifies an artifact, to be distinguished from real page content.
ASpan (Accessibility span; will be written to PDF as Span, but must be distinguished from the inline-

level item Span) Can be used to attach accessibility properties to content which does not
belong to a structure element, or which resembles only a fraction of a structure element.

ReversedChars
(Not recommended) Specifies text in a right-to-left language with reversed characters.

Clip Specifies a marked clipping sequence. This is a sequence containing only clipping paths or text
in rendering mode 7, but no visible graphics or PDF_save() / PDF_restore().

custom element types

user-defined
elements

The tag name Plib_custom_tag must be supplied in the tagname parameter. The actual tag name
which will be written to PDF must be supplied in the tagname option.

http://www.pdflib.com/pdflib-cookbook/document-interchange/starter-tagged

14.3 Tagged PDF 229

optlist An option list specifying details of the item. All inheritable settings will be in-
herited to child elements, and therefore need not be repeated. All properties of an item
must be set here since they cannot be modified later. The following options can be used:

> General option: hypertextencoding (see Table 12.1)
> Tag control options according to Table 14.4:

ActualText, Alt, artifactsubtype, artifacttype, Attached, BBox, ColSpan, E, index, inline,
Lang, parent, RowSpan, Scope, tagname, Title

Returns An item handle which can be used in subsequent item-related calls.

Details This function generates the document’s structure tree, which is essential for Tagged
PDF. The position of the new element in the structure tree can be controlled with the
parent and index options. Structure elements can be nested to an arbitrary level. Pseudo
element types are not allowed as parent items. Regular items are not bound to the page
where they have been opened, but can be continued on an arbitrary number of pages.

Scope page; for grouping elements also document; must always be paired with a matching PDF_
end_item() call. This function is only allowed in Tagged PDF mode.

Table 14.4 Options for structure and pseudo tags for PDF_begin_item(), PDF_begin_mc(), and PDF_mc_point()

option explanation

ActualText (Hypertext string; not for pseudo tags except in PDF 1.5 with ASpan; not for TagSuspect) Equivalent re-
placement text for the content item. It should be provided for text content which is represented in some
non-standard way, such as ligatures, swash characters in illustrations, drop caps, etc. If this option is
used in PDF 1.4 mode the inline option must be set to false.

Alt (Hypertext string; not for pseudo tags except in PDF 1.5 with ASpan; not for TagSuspect) Alternate de-
scription for the content item. It should be provided for figures, images, etc., which cannot be recognized
as text. Alternate text for images is required for accessibility. If this option is used in PDF 1.4 mode the
inline option must be set to false.

artifact-
subtype

(Keyword; tag=Artifact and artifacttype=Pagination; PDF 1.7) Subtype of the artifact: Header,
Footer, Watermark

artifacttype (Keyword; only for tag=Artifact) Identifies the artifact type of the content item: Pagination, Layout,
Page, Background (PDF 1.7)

Attached (Keyword list; only for tag=Artifact and artifacttype=Pagination or artifacttype=Background with
full-page background artifacts) A list containing one to four of the keywords Top, Bottom, Left, and
Right

BBox (Rectangle; only for tag=Artifact as well as all table and illustration tags; required for artifacttype=
Background, otherwise optional, but recommended for reflow) The artifact’s bounding box in the default
coordinate system (if usercoordinates=false) or the user coordinate system (if usercoordi-
nates=true). If this option has not been supplied PDFlib will automatically create a BBox entry for im-
ported images and PDF pages.

ColSpan (Integer; only for tag=TH and TD) Number of table columns spanned by a cell.

E (Hypertext string; not for pseudo tags except ASpan; not for TagSuspect; requires PDF 1.5 for structure
tags) Abbreviation expansion for the content item. It should be provided for explaining abbreviations
and acronyms. Acrobat’s Read Aloud feature will consider the expansion text as a separate word even in
the absence of explicit word breaks.

index (Integer; not for pseudo tags and TagSuspect) The index at which to insert the element within the par-
ent. Values between 0 and the current number of children will be used to insert the item at that specific
location within the parent. The value -1 can be used to insert the element as the last item. Default: -1

230 Chapter 14: Document Interchange

C++ Java void end_item(int id)
Perl PHP end_item(int id)

C void PDF_end_item(PDF *p, int id)

Close a structure element or other content item.

id The item’s handle, which must have been retrieved with PDF_begin_item().

Details All inline items must be closed before the end of the page. All regular items must be
closed before the end of the document. However, it is strongly recommended to close all
regular items as soon as they are completed to reduce memory consumption. An item
can only be closed if all of its children have been closed before. After closing an item its
parent will become the active item.

Scope page for inline items, and for regular items also document; must always be paired with a
matching PDF_begin_item() call. This function is only allowed in Tagged PDF mode.

C++ Java void activate_item(int id)
Perl PHP activate_item(int id)

C void PDF_activate_item(PDF *p, int id)

Activate a previously created structure element or other content item.

id The item’s handle, which must have been retrieved with PDF_begin_item(), and
must not yet have been closed. Pseudo and inline-level items can not be activated.

inline (Boolean; only for tag=ASpan and all inline-level tags except TagSuspect) If true, the content item will
be written inline, and no structure element will be created. Default: true

Lang (String; not for TagSuspect and pseudo tags except ASpan) Language identifier for the content item in
the format described in Table 3.1 for the lang option. This can be used to override the document’s domi-
nant language for individual content items.

parent (Item handle; not for TagSuspect and pseudo tags) The item handle of the element’s parent, as returned
by another call to PDF_begin_item(). The value 0 refers to the structure tree root. -1 refers to the cur-
rently active element. In other words, parent=-1 opens a child of the current element. Pseudo element
types are not allowed as parent items. Default: -1

RowSpan (Integer; only for tag=TH and TD) The number of table rows spanned by a cell.

Scope (Keyword; only for tag=TH; PDF 1.5 or above) One of the keywords Row, Column, or Both indicating whether
the header cell applies to the rest of the cells in the row that contains it, the column that contains it, or
both the row and the column that contain it.

tagname (Name string; only for tag=Plib_custom_tag, and required in this case) Arbitrary name of a custom tag
for which a mapping to a standard element type must have been defined with the rolemap option of
PDF_begin_document(). Custom element types are restricted to 127 winansi characters or a sequence
containing arbitrary Unicode characters provided the length of the corresponding UTF-8 sequence does
not exceed 127 bytes.

Title (Hypertext string; not for inline and pseudo tags) Name of the structure element

Table 14.4 Options for structure and pseudo tags for PDF_begin_item(), PDF_begin_mc(), and PDF_mc_point()

option explanation

14.3 Tagged PDF 231

Details Putting aside a structure element and activating it later gives additional flexibility for
efficiently creating Tagged PDF pages even when there are multiple parallel structure
branches on a page, e.g. with multi-column layouts or text inserts which interrupt the
main text.

Scope document, page; This function is only allowed in Tagged PDF mode.

232 Chapter 14: Document Interchange

14.4 Marked Content

C++ Java void begin_mc(String tag, String optlist)
Perl PHP begin_mc(string tag, string optlist)

C void PDF_begin_mc(PDF *p, const char *tag, const char *optlist)

Begin a marked content sequence with optional properties.

tag The name of the marked content sequence. The following tags are supported:
> All inline-level and pseudo tags in Table 14.3.
> The tag Plib_custom can be used for custom entries with user-defined properties.
> The tag Plib is reserved.

optlist The following options for marked content sequences are supported:
> Options for standard properties of the according to Table 14.4.
> The tags Plib_custom and Plib additionally support the option in Table 14.5.

Details A marked content sequence with the specified tag and properties will be started. If no
options are provided a sequence without any properties will be created. Marked content
sequences can be nested to an arbitrary level. The user is responsible for creating prop-
erly nested sequences of PDF_begin/end_item() and PDF_begin/end_mc().

Scope page, pattern, template, glyph, must always be paired with a matching PDF_end_mc() call
in the same page, pattern, template, or glyph scope.

C++ Java void end_mc()
Perl PHP end_mc()

C void PDF_end_mc(PDF *p)

End the least recently opened marked content sequence.

Details All marked content sequences must be closed before calling PDF_end_page_ext().

Scope page, pattern, template, glyph, must always be paired with a matching PDF_begin_mc()
call in the same page, pattern, template, or glyph scope.

Table 14.5 Option for user-defined properties of tags with PDF_begin_mc() and PDF_mc_point()

option explanation

properties (List of option lists; only for tag=Plib and tag=Plib_custom) Each list contains three options which spec-
ify a user-defined property:
key (String; required) Name of the property.
type (Keyword; required) Type of the property value: boolean, name, or string.
value (Hypertext string if type=string, otherwise string; required) Value of the property.

14.4 Marked Content 233

C++ Java void mc_point(String tag, String optlist)
Perl PHP mc_point(string tag, string optlist)

C void PDF_mc_point(PDF *p, const char *tag, const char *optlist)

Add a marked content point with optional properties.

tag The name of the marked content point. The following tags are supported:
> All inline-level and pseudo tags in Table 14.3.
> The tag Plib_custom can be used for custom entries.
> The tag Plib is reserved.

optlist The following options are supported:
> Options for standard properties of the marked content point according to Table 14.4.
> The tags Plib_custom and Plib additionally support the option in Table 14.5.

Details A marked content point with the specified tag and properties will be created. If no op-
tions are provided a marked content point without any properties will be created.

Scope page, pattern, template, glyph

234 Chapter 14: Document Interchange

Chapter A: List of all Functions 235

General
get_value
set_value
get_parameter
set_parameter
set_option
new
delete
begin_document
begin_document_callback
end_document
get_buffer

begin_page_ext
end_page_ext
suspend_page
resume_page
define_layer
set_layer_dependency
begin_layer
end_layer

create_pvf
delete_pvf
get_errnum
get_errmsg
get_apiname
get_opaque

Font
load_font
close_font
setfont
info_font
begin_font
end_font
begin_glyph
end_glyph
encoding_set_char

Text Output
set_text_pos
show
xshow
show_xy
continue_text
stringwidth

Unicode Conversion
utf16_to_utf8
utf8_to_utf16
utf32_to_utf16
utf8_to_utf32
utf32_to_utf8
utf16_to_utf32

Text Formatting
fit_textline
info_textline
add_textflow
create_textflow
fit_textflow
info_textflow
delete_textflow

Table Formatting
add_table_cell
fit_table
info_table
delete_table

Matchboxes
info_matchbox

Color
setcolor
makespotcolor
load_iccprofile
begin_pattern
end_pattern
shading_pattern
shfill
shading

Image
load_image
close_image
fit_image
info_image
begin_template_ext
end_template_ext
add_thumbnail

A List of all Functions
This appendix lists all API functions. Click on a function name to jump to the cor-
responding description.

236 Chapter A: List of all Functions

Graphics State
setdash
setdashpattern
setflat
setlinejoin
setlinecap
setmiterlimit
setlinewidth
initgraphics
save
restore
create_gstate
set_gstate

Coordinate Transformation
translate
scale
rotate
align
skew
concat
setmatrix

Path Construction
moveto
lineto
curveto
circle
arc
arcn
circular_arc
ellipse
rect
closepath

Path Painting and Clipping
stroke
closepath_stroke
fill
fill_stroke
closepath_fill_stroke
clip
endpath

Path Objects
add_path_point
draw_path
info_path
delete_path

PDI
open_pdi_document
open_pdi_callback
close_pdi_document
open_pdi_page
close_pdi_page
fit_pdi_page
info_pdi_page
process_pdi

pCOS
pcos_get_number
pcos_get_string
pcos_get_stream

Block Filling (PPS)
fill_textblock
fill_imageblock
fill_pdfblock

Interactive Features
create_action
add_nameddest
create_annotation
create_field
create_fieldgroup
create_bookmark
add_portfolio_folder
add_portfolio_file

Multimedia
load_3ddata
create_3dview

Document Interchange
set_info
begin_item
end_item
activate_item
begin_mc
end_mc
mc_point

B List of all Parameters 237

B List of all Parameters
This appendix lists all keywords for PDF_get/set_parameter() and PDF_get/set_value().
Click on a keyword to jump to the corresponding description.

setup logging font handling simple text output
PDF_get/set_parameter(): PDF_get/set_parameter(): PDF_get/set_parameter(): PDF_get/set_parameter():
errorpolicy logging1 Encoding autospace
filenamehandling userlog1 FontAFM charref
resourcefile FontPFM decorationabove
scope versioning FontOutline escapesequence
SearchPath1

1. Only for PDF_get_parameter()

PDF_get/set_parameter(): HostFont fakebold
string1 version21 PDF_get/set_value(): glyphcheck
asciifile PDF_get/set_value(): font2 kerning

major fontsize2 underline, overline,
strikeout

PDF_get/set_value(): minor textformat
compress revision2

2. Only for PDF_get_value()

image PDF_get/set_value():
maxfilehandles PDF_get/set_parameter(): charspacing

page honoriccprofile horizscaling
graphics PDF_get/set_parameter(): renderingintent italicangle

PDF_get/set_parameter(): topdown leading
fillrule PDF_get/set_value(): strokewidth
PDF_get/set_value(): pagewidth textrendering
currentx2, currenty2 pageheight textrise
ctm_a2, ctm_b2, ctm_c2 textx2, texty2

ctm_d2, ctm_e2, ctm_f2 ICC profiles underlineposition
PDF_get/set_parameter(): underlinewidth

color ICCProfile interactive wordspacing
PDF_get/set_parameter(): StandardOutputIntent PDF_get/set_parameter():
preserveoldpantonenames PDF_get/set_value(): usercoordinates PDI
spotcolorlookup icccomponents2 hypertextencoding PDF_get/set_parameter():

setcolor:iccprofilegray hypertextformat pdi1

setcolor:iccprofilergb usehypertextencoding
setcolor:iccprofilecmyk

List of all Options 239

C List of all Options and Keywords
This index contains an alphabetical list of all options and keywords along with the func-
tions in which they can be used. Click on the page number to jump to the description.

&
&name option list macro call in fit_textflow() 89

3D
3Dactivate in create_annotation() 195
3Ddata in create_annotation() 195
3Dinitialview in create_annotation() 195
3Dinteractive in create_annotation() 195
3Dshared in create_annotation() 195
3Dview in create_action() 188

A
acrobat suboption for fontname in info_font() 60
action

in begin/end_page_ext() 41
in create_annotation() 196
in create_bookmark() 209
in create_field() and create_fieldgroup() 204
in end_document() 32
in process_pdi() 176

actual suboption for encoding in info_font() 59
ActualText in begin_item() 229
addfitbox suboption for wrap in fit_textflow() 96
adjustmethod in add/create_textflow() 86
adjustpage

in fit_image/pdi_page() 160
in fit_pdi_page() 173

advancedlinebreak in add/create_textflow() 86
align in draw_path() 111
alignchar in fit/info_textline() 111
alignment

in add/create_textflow() 84
in create_annotation() 196
suboption for leader in fit/info_textline() and
add/create_textflow() 78

alphachannelname in load_image() 156
alphaisshape in create_gstate() 125
Alt in begin_item() 229
angle keyword in info_textline() 82
angularunit suboption for georeference 222
annotation suboption for targetpath in

create_action() 191
annotationtype in add_table_cell() 100
annotcolor in create_annotation() 196
antialias

in shading() 151
suboption for shading option of several
functions 121

api
suboption for encoding in info_font() 59
suboption for fontname in info_font() 60

area suboption for fill in fit_table() 104
areaunit suboption for georeference 222
artbox in begin/end_page_ext() 41
artifactsubtype in begin_item() 229
artifacttype in begin_item() 229
ascender

in info_font() 59
in load_font() 53
keyword in info_textline() 82

Attached in begin_item() 229
attachmentpassword in begin_document() 32
attachmentpoint in draw_path() 111
attachments in begin/end_document() 33
autocidfont in load_font() 53
autosubsetting in load_font() 53
autoxmp in begin/end_document() 33
avoidbreak in add/create_textflow() 86
avoiddemostamp in set_option() 20
avoidemptybegin in add/create_textflow() 84

B
background in create_3dview() 218
backgroundcolor in create_field() and

create_fieldgroup() 204
barcode in create_field() and create_fieldgroup()

204
basestate in set_layer_dependency() 47
BBox in begin_item() 229
begoptlistchar in create_textflow() 90
beziers suboption for wrap in fit_textflow() 96
bitreverse in load_image() 156
bleedbox in begin/end_page_ext() 41
blendmode in create_gstate() 125
blind

in fit_table() 103
in fit_textflow() 92
in many functions 111

bordercolor in create_field() and
create_fieldgroup() 204

borderstyle
in create_annotation() 196
in create_field() and create_fieldgroup() 204

borderwidth in several functions 119
bottom in add_nameddest() and suboption for

destination in create_action(),
create_annotation(), create_bookmark() and
begin/end_document() 192

240 List of all Options

boundingbox
in shading() 151
keyword in info_image() 161
keyword in info_path() 139
keyword in info_pdi_page() 174
keyword in info_table() 106
keyword in info_textflow() 97
suboption for viewports option in begin/
end_page_ext() 222

bounds suboption for georeference 222
boxes suboption for wrap in fit_textflow() 96
boxexpand in open_pdi_page() 172
boxheight suboption for matchbox 115
boxlinecount keyword in info_textflow() 97
boxsize in various functions 111
boxwidth suboption for matchbox 115
bpc in load_image() 156
buttonlayout in create_field() and

create_fieldgroup() 204
buttonstyle in create_field() and

create_fieldgroup() 204

C
calcorder in create_field() and

create_fieldgroup() 204
calloutline in create_annotation() 196
camera2world in create_3dview() 218
cameradistance in create_3dview() 219
canonicaldate in create_action() 188
capheight

in info_font() 59
in load_font() 53
keyword in info_textline() 82

caption
in create_field() and create_fieldgroup() 205
suboption for the barcode option in
create_field() and create_fieldgroup() 208

captiondown in create_field() and
create_fieldgroup() 205

captionoffset in create_annotation() 196
captionposition in create_annotation() 196
captionrollover in create_field() and

create_fieldgroup() 205
cascadedflate in load_image() 156
centerwindow suboption for viewerpreferences

in begin/end_document() 37
charclass in add/create_textflow() 87
charmapping in add/create_textflow() 88
charref in many functions 75
charspacing

in create_field() and create_fieldgroup() 205
in many functions 75

checkwordsplitting in add_table_cell() 100
children in set_layer_dependency() 47
cid in info_font() 58, 59
cidfont in info_font() 59
circles suboption for wrap in fit_textflow() 96
circular keyword in add_path_point() 136

classes for logging parameter 30
clip in draw_path() 138
clipping suboption for matchbox 115
clippingarea in open_pdi_page() 172
clippingpath keyword in info_image() 161
clippingpathname in load_image() 156
cloneboxes

in fit_pdi_page() 174
in open_pdi_page() 172

close
in add_path_point() 137
in draw_path() 138
suboption for textpath in fit_textline() 81

cloudy in create_annotation() 196
code in info_font() 58, 59
codepage in info_font() 59
codepagelist in info_font() 59
colorize in load_image() 156
colorized in begin_font() 62
colscalegroup in add_table_cell() 100
colspan in add_table_cell() 100
ColSpan in begin_item() 229
colwidth in add_table_cell() 100, 101
colwidthdefault in fit_table() 103
comb in create_field() and create_fieldgroup()

205
comment option list macro definition in

fit_textflow() 87
commitonselect in create_field() and

create_fieldgroup() 205
compatibility in begin_document() 33
components in load_image() 156
compress suboption for metadata 227
contents in create_annotation() 196
continuetextflow in add_table_cell() 100
control keyword in add_path_point() 136
convert in pcos_get_stream() 179
copy in create_pvf() 25
copyglobals in load_image() 156
coversheet suboption for portfolio in

begin_document() 214
coversheetfolder suboption for portfolio in

begin_document() 214
crease suboption for rendermode in

create_3dview() 221
createdate in create_annotation() 196
createfittext in fit_textflow() 92
createlastindent in fit_textflow() 92
creatematchboxes suboption for wrap in

fit_textflow() 96
createorderlist in set_layer_dependency() 48
createpvf in begin_document() 33
createrichtext in create_annotation() 197
createwrapbox suboption for matchbox 115
creatorinfo in define_layer() 45
cropbox in begin/end_page_ext() 41
currentvalue in create_field() and

create_fieldgroup() 205

List of all Options 241

curve keyword in add_path_point() 136
custom in create_annotation() 197

D
dasharray

in add_path_point() 136
in create_annotation() 197
in create_field() and create_fieldgroup() 205
in many functions 75
in setdashpattern 122
in several functions 119

dashphase
in add_path_point() 136
in setdashpattern 122
in several functions 119

dataprep
suboption for the barcode option in
create_field() and create_fieldgroup() 208

debugshow in fit_table() 103
decorationabove

in fit/info_textline() and add/
create_textflow() 66
in many functions 75

defaultcmyk in begin_page_ext() 41
defaultdir in create_action() 188
defaultgray in begin_page_ext() 41
defaultrgb in begin_page_ext() 41
defaultstate in define_layer() 45
defaultvalue in create_field() and

create_fieldgroup() 205
defaultvariant in set_layer_dependency() 48
defaultview in load_3d() 217
depend in set_layer_dependency() 48
descender

in info_font() 59
in load_font() 53
keyword in info_textline() 82

description
in add_portfolio_file() 212
in add_portfolio_folder() 211
in load_iccprofile() 145
suboption for attachments in begin/
end_document() 33

destination
in begin/end_document() 33
in create_action() 188
in create_annotation() 197
in create_bookmark() 209

destname
in create_action() 189
in create_annotation() 197
in create_bookmark() 209
in end_document() 33
suboption for targetpath in create_action()
191

direction suboption for viewerpreferences in
begin/end_document() 37

disable
for logging parameter 29
suboption for 3Dactivate in
create_annotation() 201

disablestate suboption for 3Dactivate in
create_annotation() 201

display
in create_annotation() 197
in create_field() and create_fieldgroup() 205

displaydoctitle suboption for viewerpreferences
in begin/end_document() 37

displaysystem suboption for georeference 222
domain

in shading() 151
suboption for shading option of several
functions 121

doubleadapt suboption for matchbox 115
doubleoffset suboption for matchbox 115
down

suboption for template in
create_annotation() 200

dpi in many functions 111
drawbottom, drawleft, drawright, drawtop

suboptions for matchbox 115
dropcorewidths in load_font() 53
duplex suboption for viewerpreferences in begin/

end_document() 37
duration

in begin/end_page_ext() 41
in create_action() 189

E
E in begin_item() 229
ecc

suboption for the barcode option in
create_field() and create_fieldgroup() 208

editable in create_field() and create_fieldgroup()
205

embedding in load_font() 53
embedprofile in load_iccprofile() 145
enable

for logging parameter 29
suboption for 3Dactivate in
create_annotation() 201

enablestate suboption for 3Dactivate in
create_annotation() 201

encoding
in info_font() 59
in load_font() 54

end
suboption for matchbox 116
suboption for shading option of several
functions 121

endcolor suboption for shading option of several
functions 121

endingstyles in create_annotation() 197
endoptlistchar in create_textflow() 90
endx, endy keywords in info_textline() 82

242 List of all Options

entire suboption for background in
create_3dview() 218

epsg suboption for the coords and displaycoords
suboptions of georeference 223

errorpolicy parameter and option for various
functions 27

escapesequence in many functions 75
exceedlimit suboption for matchbox 116
exchangefillcolors in fit_textflow() 92
exchangestrokecolors in fit_textflow() 92
exclude in create_action() 189
exists keyword in info_matchbox() 117
exportable in create_field() and

create_fieldgroup() 205
exportmethod in create_action() 189
extend0, extend1 in shading() 151

F
facecolor suboption for rendermode in

create_3dview() 221
fakebold in many functions 75
faked

suboption for ascender in info_font() 59
suboption for fontstyle in info_font() 60

fallbackfont in info_font() 59
fallbackfonts in load_font() 54
familyname

in begin_font() 62
in info_font() 59

feature in info_font() 60
featurelist in info_font() 60
features in many functions 77
fieldlist

in add_portfolio_file() 212
in add_portfolio_folder() 211

fieldname in add_table_cell() 100
fieldtype

in add_table_cell() 100
in create_fieldgroup() 205

filemode in begin_document() 33
filename

for logging parameter 29
in create_action() 189
in create_annotation() 197
suboption for attachments in begin/
end_document() 33
suboption for metadata 227
suboption for reference in
begin_template_ext(), load_image(), and
open_pdi_page() 163
suboption for search in begin/
end_document() 36

filename keyword in info_image() 161
filenamehandling in set_option() 21
fileselect in create_field() and create_fieldgroup()

205

fill
in draw_path() 137, 138
in fit_table() 104

fillcolor
in add_path_point() 136
in create_annotation() 197
in create_field() and create_fieldgroup() 205
in many functions 76
in several functions 119
suboption for background in create_3dview()
218
suboption for leader in fit/info_textline() and
add/create_textflow() 78
suboption for leader in fit_textline() 80

fillrule
in add_path_point() 136
in several functions 119
suboption for wrap in fit_textflow() 96

firstbodyrow
keyword in info_matchbox() 117
keyword in info_table() 106

firstdraw in fit_table() 104
firstlinedist

in fit_textflow() 93
keyword in info_textflow() 97

firstparalinecount keyword in info_textflow() 97
fitannotation in add_table_cell() 100
fitfield in add_table_cell() 100
fitimage in add_table_cell() 100
fitmethod

in create_field() and create_fieldgroup() 206
in fit_textflow() 93
in various functions 111
suboption for template in
create_annotation() 200

fitpath in add_table_cell() 100
fitpdipage in add_table_cell() 100
fitscalex, fitscaley

keywords in info_image() 161
keywords in info_pdi_page() 174

fittext keyword in info_textflow() 97
fittextflow in add_table_cell() 101
fittextline in add_table_cell() 101
fitwindow suboption for viewerpreferences in

begin/end_document() 37
fixedleading in add/create_textflow() 85
fixedtextformat in create_textflow() 90
flatness

in add_path_point() 136
in create_gstate() 125
in several functions 119

flush
for logging parameter 29
in begin_document() 33

List of all Options 243

font
in create_annotation() 198
in create_field() and create_fieldgroup() 206
in many functions 76
suboption for leader in fit/info_textline() and
add/create_textflow() 78

fontfile in info_font() 60
fontname

in info_font() 60
in load_font() 54

fontscale
in fit_textflow() 93
keyword in info_textflow() 97

fontsize
in create_annotation() 198
in create_field() and create_fieldgroup() 206
in many functions 76
suboption for ascender in info_font() 59
suboption for leader in fit/info_textline() and
add/create_textflow() 78

fontstyle
in create_bookmark() 209
in info_font() 60
in load_font() 54

fonttype in info_font() 60
footer in fit_table() 104
forcebox in open_pdi_page() 172
full suboption for fontname in info_font() 60

G
georeference

in begin_template_ext() 162
in load_image() 156
suboption for viewports in begin/
end_page_ext() 222

glyphcheck in many functions 75
glyphid in info_font() 58, 60
glyphname in info_font() 58, 60
group

in begin_page_ext() 41
in resume_page() 44
in set_layer_dependency() 48
option in add_nameddest() and suboption for
destination option in create_action(),
create_annotation(), create_bookmark() and
begin/end_document() 192
suboption for labels in begin_document() 36

groups in begin_document() 33

gstate
in add_path_point() 136
in fit/info_textline() and add/
create_textflow() 93
in fit_image/pdi_page() 160
in fit_pdi_page() 173
in fit_table() 104
in many graphics functions 119
in many text functions 76
in shading_pattern() 150
suboption for shadow in fit_textline() 80

H
header in fit_table() 104
height

in begin/end_page_ext() 41
in load_image() 156
keyword in info_image() 161
keyword in info_matchbox() 117
keyword in info_path() 139
keyword in info_pdi_page() 174
keyword in info_table() 106
keyword in info_textline() 82

hide in create_action() 189
hidemenubar suboption for viewerpreferences in

begin/end_document() 38
hidetoolbar suboption for viewerpreferences in

begin/end_document() 38
hidewindowui suboption for viewerpreferences

in begin/end_document() 38
highlight

in create_annotation() 198
in create_field() and create_fieldgroup() 206

honorclippingpath in load_image() 156
honoriccprofile in load_image() 156
horboxgap keyword in info_table() 106
horizscaling in many functions 76
horshrinking keyword in info_table() 106
horshrinklimit in fit_table() 104
hortabmethod in add/create_textflow() 85
hortabsize in add/create_textflow() 85
hostfont in info_font() 60
hypertextencoding

parameter and option for various functions
187
suboption for labels in begin/
end_document() and label in begin/
end_page_ext() 36
suboption for reference in
begin_template_ext(), load_image(), and
open_pdi_page() 163
suboption for viewports in begin/
end_page_ext() 222

hypertextformat parameter and option for
various functions 187

hyphenchar in add/create_textflow() 88

244 List of all Options

I
iccprofile

in load_image() 156
keyword in info_image() 161

icon in create_field() and create_fieldgroup() 206
icondown in create_field() and

create_fieldgroup() 206
iconname

in begin_template_ext() 162
in create_annotation() 198
in load_image() and begin_template_ext()
156
in open_pdi_page() 172

iconrollover in create_field() and
create_fieldgroup() 206

ignoreclippingpath in fit_image/pdi_page() 160
ignoremask in load_image() 156
ignoreorientation

in fit_image/pdi_page() 160
in load_image() 157

image in add_table_cell() 101
imagehandle in load_image() 157
imageheight keyword in info_image() 161
imagemask keyword in info_image() 161
imagetype keyword in info_image() 161
imagewidth keyword in info_image() 161
index

in begin_item() 229
in create_bookmark() 209

indextype suboption for search in begin/
end_document() 36

infomode in open_pdi_document() 168
initialexportstate in define_layer() 45
initialprintstate in define_layer() 45
initialsubset in load_font() 55
initialview suboption for portfolio in

begin_document() 214
initialviewstate in define_layer() 45
inittextstate in fit/info_textline() 80
inline

in begin_item() 230
in load_image() 157

inmemory
in begin_document() 34
in open_pdi_document 168

innerbox suboption for matchbox 116
inputencoding suboption for metadata 227
inputformat suboption for metadata 227
inreplyto in create_annotation() 198
intent in define_layer() 45
interiorcolor in create_annotation() 198
interpolate in load_image() 157
inversefill suboption for wrap in fit_textflow() 96
invert in load_image() 157
invisiblelayers in set_layer_dependency() 48
ismap in create_action() 189

italicangle
in info_font() 60
in many functions 76

itemname in create_field() and
create_fieldgroup() 206

itemnamelist in create_field() and
create_fieldgroup() 206

itemtextlist in create_field() and
create_fieldgroup() 206

K
K in load_image() 157
keepfilter in pcos_get_stream() 179
keepfont in load_font() 55
keephandles in delete_table() 107
keepnative

in info_font() 60
in load_font() 55

keepxmp suboption for metadata 227
kerning in many functions 76
kerningpairs in info_font() 60
key

suboption for custom in create_annotation()
197
suboption for fieldlist in
add_portfolio_folder() and
add_portfolio_file() 213
suboption for properties in begin_mc() and
mc_point() 232

L
label in begin/end_page_ext() 41
labels in begin/end_document() 34
lang in begin_document() 34
Lang in begin_item() 230
language

in define_layer() 46
in many functions 77
suboption for feature in info_font() 60

lastalignment in add/create_textflow() 85
lastbodyrow keyword in info_table() 106
lastfont keyword in info_textflow() 97
lastfontsize keyword in info_textflow() 97
lastlinedist

in fit_textflow() 93
keyword in info_textflow() 97

lastmark keyword in info_textflow() 97
lastparalinecount keyword in info_textflow() 97
layer

in begin_template_ext() 162
in create_annotation() 198
in create_field() and create_fieldgroup() 206
in load_image() and begin_template_ext()
157
in open_pdi_page() 172

layerstate in create_action() 189

List of all Options 245

leader
in add/create_textflow() 85
in fit/info_textline() 80

leaderlength in create_annotation() 198
leaderoffset

in create_annotation() 198
leading

in add/create_textflow() 85
keyword in info_textflow() 97

left option in add_nameddest() and suboption for
destination in create_action(),
create_annotation(), create_bookmark() and
begin/end_document() 192

leftindent in add/create_textflow() 85
leftlinex, leftliney keywords in info_textflow() 97
license in set_option() 21
licensefile in set_option() 21
lighting in create_3dview() 219
line

in create_annotation() 198
keyword in add_path_point() 136
suboption for stroke in fit_table() 105

linearize in begin_document() 34
linearunit suboption for georeference 223
linecap

in add_path_point() 136
in create_gstate() 125
in load_font() 55
in several functions 120

linegap in info_font() 60
lineheight suboption for wrap in fit_textflow() 96
linejoin

in add_path_point() 136
in create_gstate() 125
in several functions 120

linespreadlimit in fit_textflow() 93
linewidth

in add_path_point() 136
in create_annotation() 198
in create_field() and create_fieldgroup() 206
in create_gstate() 125
in several functions 120

listmode in set_layer_dependency() 48
locale in add/create_textflow() 86
locked

in create_annotation() 199
in create_field() and create_fieldgroup() 206

lockedcontents in create_annotation() 199
lockmode in create_field() and

create_fieldgroup() 206
logging in set_option() 21

M
macro option list macro definition in

fit_textflow() 89
maingid in info_font() 60
mappoints suboption for georeference 223
mapsystem suboption for georeference 223

margin
in add_table_cell() 101
in various functions 112
suboption for matchbox 116

marginbottom in add_table_cell() 101
marginleft in add_table_cell() 101
marginright in add_table_cell() 101
margintop in add_table_cell() 101
mark in add/create_textflow() 87
mask in load_image() 157
masked in load_image() 157
masterpassword in begin_document() 34
matchbox

in fit/info_textline() and add/
create_textflow() 87
in various functions 112
suboption for createlastindent in
fit_textflow() 92

maxchar in create_field() and create_fieldgroup()
206

maxcode in info_font() 60
maxlinelength keyword in info_textflow() 97
maxlines in fit_textflow() 93
maxliney keyword in info_textflow() 97
maxspacing in add/create_textflow() 86
mediabox in begin/end_page_ext() 42
menuname in create_action() 189
metadata 227

in begin/end_document() 34
in begin/end_page_ext() 42
in begin_template_ext() 162
in load_font() 55
in load_iccprofile() 145
in load_image() and begin_template_ext()
157
in open_pdi_page() 172

metricsfile in info_font() 60
mimetype

in add_portfolio_file() 212
in create_annotation() 199
suboption for attachments in begin/
end_document() 33

minfontsize in fit_textflow() 93, 112
mingapwidth in fit_textflow() 93
minlinecount in add/create_textflow() 85
minlinelength keyword in info_textflow() 97
minliney keyword in info_textflow() 97
minrowheight in add_table_cell() 101
minspacing in add/create_textflow() 86
mirroringx, mirroringy

keywords in info_image() 161
keywords in info_pdi_page() 174

miterlimit
in add_path_point() 136
in create_gstate() 125
in several functions 120

moddate in begin/end_document() 34

246 List of all Options

modeltree suboption for 3Dactivate in
create_annotation() 201

monospace
in info_font() 60
in load_font() 55

move keyword in add_path_point() 136
movieposter in create_annotation() 199
multiline in create_field() and

create_fieldgroup() 207
multiselect in create_field() and

create_fieldgroup() 207

N
N

in shading() 151
suboption for shading option of several
functions 121

name
in add_path_point() 137
in add_portfolio_file() 212
in create_3dview() 219
in create_annotation() 199
keyword in info_matchbox() 117
suboption for attachments in begin/
end_document() 33
suboption for codepage in info_font() 59
suboption for feature in info_font() 60
suboption for matchbox 116
suboption for targetpath in create_action()
191
suboption for viewports in begin/
end_page_ext() 222

namelist in create_action() 190
newwindow in create_action() 190
nextline in add/create_textflow() 87
nextparagraph in add/create_textflow() 87
nofitlimit in add/create_textflow() 86
nonfullscreenpagemode suboption for

viewerpreferences in begin/end_document()
38

normal suboption for template in
create_annotation() 200

numcids in info_font() 60
numcopies suboption for viewerpreferences in

begin/end_document() 38
numglyphs in info_font() 61
numpoints in info_path() 139
numusableglyphs in info_font() 61
numusedglyphs in info_font() 61

O
objectstreams in begin_document() 34
offset

suboption for shadow in fit_textline() 80
suboption for wrap in fit_textflow() 96

offsetbottom, offsetleft, offsetright, offsettop
suboptions for matchbox 116

onpanel in define_layer() 46
opacity

in create_annotation() 199
suboption for rendermode in create_3dview()
221

opacityfill in create_gstate() 125
opacitystroke in create_gstate() 125
open

in create_annotation() 199
in create_bookmark() 210

openmode in begin/end_document() 34
openrect suboption for matchbox 116
operation in create_action() 190
OPI-1.3 in load_image() and

begin_template_ext() 158
OPI-2.0 in load_image() and

begin_template_ext() 158
optimize in begin_document() 35
optimizeinvisible in load_font() 55
orientate

in create_annotation() 199
in create_field() and create_fieldgroup() 207
in fit_textflow() 94
in various functions 112

origin keyword in add_path_point() 136
outlineformat in info_font() 61
overline in many functions 76
overprintfill in create_gstate() 125
overprintmode in create_gstate() 125
overprintstroke in create_gstate() 126

P
page

in load_image() 158
option in add_nameddest() and suboption
for destination in create_action(),
create_annotation(), create_bookmark() and
begin/end_document() 192

pageelement in define_layer() 46
pageheight keyword in info_pdi_page() 174
pagelabel suboption for reference in

begin_template_ext(), load_image(), and
open_pdi_page() 163

pagelayout in begin/end_document() 35
pagenumber

in begin_page_ext() 42
in resume_page() 44
suboption for labels in begin/
end_document() and label in begin/
end_page_ext() 36
suboption for reference in
begin_template_ext(), load_image(), and
open_pdi_page() 163
suboption for targetpath in create_action()
191

pages suboption for separationinfo in begin/
end_page_ext() 42

pagewidth keyword in info_pdi_page() 174

List of all Options 247

parameters in create_action() 190
parent

in begin_item() 230
in create_bookmark() 210
in set_layer_dependency() 48

parentname in create_annotation() 199
parindent in add/create_textflow() 85
passthrough in load_image() 158
password

in add_portfolio_file() 212
in create_field() and create_fieldgroup() 207
in open_pdi_document 168

path
in add_table_cell() 101
suboption for textpath in fit_textline() 81

paths suboption for wrap in fit_textflow() 96
pdfa in begin_document() 35
pdfx in begin_document() 35
pdipage in add_table_cell() 101
pdiusebox

in open_pdi_page() 172
suboption for reference in
begin_template_ext(), load_image(), and
open_pdi_page() 163

permissions in begin_document() 35
perpendiculardir keyword in info_textline() 82
picktraybypdfsize suboption for

viewerpreferences in begin/end_document()
38

playmode in create_annotation() 199
polar in add_path_point() 137
polygons suboption for wrap in fit_textflow() 96
polylinelist in create_annotation() 199
popup in create_annotation() 199
portfolio in end_document() 35
position

in create_field() and create_fieldgroup() 207
in various functions 112
suboption for template in
create_annotation() 200

postscript in begin_template_ext() 163
predefcmap in info_font() 61
prefix

suboption for fieldlist in
add_portfolio_folder() and
add_portfolio_file() 213
suboption for labels in begin/
end_document() and label in begin/
end_page_ext() 37

preserveradio in create_action() 190
printarea suboption for viewerpreferences in

begin/end_document() 38
printclip suboption for viewerpreferences in

begin/end_document() 38
printpagerange suboption for viewerpreferences

in begin/end_document() 38
printscaling suboption for viewerpreferences in

begin/end_document() 38

printsubtype in define_layer() 46
properties in begin_mc() and mc_point() 232
px, py in info_path() 139

R
r0, r1 in shading() 151
radians in add_path_point() 137
readfeatures in load_font() 55
readkerning in load_font() 55
readonly

in create_annotation() 199
in create_field() and create_fieldgroup() 207

readshaping in load_font() 55
recordsize in begin_document() 35
rectangle keyword in info_matchbox() 117
reference

in begin_template_ext() 162, 163
in open_pdi_page() 172

refpoint
in fill_*block() 139
in fill_*block() and info_path() 112

relation suboption for targetpath in
create_action() 191

relative in add_path_point() 137
remove for logging parameter 29
removeunused in define_layer() 46
rendercolor suboption for rendermode in

create_3dview() 221
renderingintent

in create_gstate() 126
in load_image() 158

rendermode in create_3dview() 219
repair in open_pdi_document 168
repeatcontent in add_table_cell() 101
replacedchars in info_textline() 82
replacementchar

in info_font() 61
in load_font() 56

replyto in create_annotation() 199
required in create_field() and create_fieldgroup()

207
requiredmode in open_pdi_document 168
resetfont in add/create_textflow() 87
resolution

suboption for the barcode option in
create_field() and create_fieldgroup() 208

resourcefile in set_option() 21
resx, resy keywords in info_image() 161
return

in add/create_textflow() 87
in add_table_cell() 101

returnatmark in fit_textflow() 94
returnreason

keyword in info_table() 106
keyword in info_textflow() 97

rewind
in fit_table() 104
in fit_textflow() 94

248 List of all Options

richtext in create_field() and create_fieldgroup()
207

right option in add_nameddest() and suboption
for destination in create_action(),
create_annotation(), create_bookmark() and
begin/end_document() 192

rightindent
in add/create_textflow() 85
suboption for createlastindent in
fit_textflow() 92

rightlinex, rightliney keywords in info_textflow()
97

righttoleft in info_textline() 82
rolemap in begin_document() 35
rollover

suboption for template in
create_annotation() 200

rotate
in begin/end_page_ext() 42
in create_annotation() 199
in fit_textflow() 94
in various functions 112
keyword in info_pdi_page() 174
suboption for textpath in fit_textline() 81

round
in add_path_point() 137
in draw_path() 138
suboption for matchbox 116
suboption for textpath in fit_textline() 81

rowcount keyword in info_table() 106
rowheight in add_table_cell() 101
rowheightdefault in fit_table() 105
rowjoingroup in add_table_cell() 102
rowscalegroup in add_table_cell() 101
rowspan in add_table_cell() 102
RowSpan in begin_item() 230
rowsplit keyword in info_table() 106
ruler in add/create_textflow() 85

S
scale

in various functions 113
suboption for textpath in fit_textline() 81

scalex, scaley keywords in info_textline() 82
schema suboption for portfolio in

begin_document() 214
Scope in begin_item() 230
script

in create_action() 190
in load_3d() 217
in many functions 77
suboption for feature in info_font() 60

scriptlist keyword in info_textline() 82
scriptname in create_action() 190
scrollable in create_field() and

create_fieldgroup() 207
search in begin/end_document() 36
searchpath in set_option() 21

separationinfo in begin_page_ext() 42
shading in several functions 120
shadow in fit/info_textline() 80
shaping in many functions 77
shapingsupport in info_font() 61
showborder

in fit_textflow() 94
in various functions 113

showcaption in create_annotation() 200
showcells in fit_table() 105
showcontrols in create_annotation() 200
showgrid in fit_table() 105
showtabs in fit_textflow() 94
shrinklimit

in add/create_textflow() 86
in various functions 113

shutdownstrategy in set_option() 21
singfont in info_font() 61
smoothness in create_gstate() 126
softmask in create_gstate() 126
sort suboption for portfolio in begin_document()

214
sorted in create_field() and create_fieldgroup()

207
soundvolume in create_annotation() 200
space in add/create_textflow() 87
spellcheck in create_field() and

create_fieldgroup() 207
split

keyword in info_textflow() 97
suboption for portfolio in begin_document()
215

spotcolor suboption for separationinfo in begin/
end_page_ext() 42

spotname suboption for separationinfo in begin/
end_page_ext() 42

spreadlimit in add/create_textflow() 87
stamp

in fit_textflow() 94
in various functions 113

standardfont in info_font() 61
start

suboption for labels in begin/
end_document() and label in begin/
end_page_ext() 37
suboption for shading option of several
functions 121

startcolor in shading() 151
startoffset suboption for textpath in

fit_textline() 81
startx, starty keywords in info_textline() 82
stretch in begin_font() 62
strikeout in many functions 76
stringlimit for logging parameter 29
strips keyword in info_image() 161
stroke

in draw_path() 137, 138
in fit_table() 105

List of all Options 249

strokeadjust in create_gstate() 126
strokecolor

in add_path_point() 136
in create_field() and create_fieldgroup() 207
in many functions 76
in several functions 120

strokewidth in many functions 76
strongref suboption for reference in

begin_template_ext() and open_pdi_page()
164

style suboption for labels in begin/
end_document() and label in begin/
end_page_ext() 37

subject in create_annotation() 200
submitemptyfields in create_action() 190
submitname in create_field() and

create_fieldgroup() 207
subpaths

in draw_path() 138
suboption for textpath in fit_textline() 81

subsetlimit in load_font() 56
subsetminsize in load_font() 56
subsetting in load_font() 56
supplement in info_font() 61
symbolfont in info_font() 61
symbology

suboption for the barcode option in
create_field() and create_fieldgroup() 208

T
tabalignchar in add/create_textflow() 88
tabalignment in add/create_textflow() 85
taborder

in begin/end_page_ext() 42
in create_field() and create_fieldgroup() 207

tagged in begin_document() 36
tagname in begin_item() 230
target

in create_action() 190
suboption for reference in
begin_template_ext(), load_image(), and
open_pdi_page() 164

targetbox keyword in info_image() 161
targetpath

in create_action() 190
suboption for targetpath in create_action()
191

targetx1, targety1, ..., targetx4, targety4
keywords in info_image() 161

tempdirname in begin_document() 36
tempfilenames in begin_document() 36
template

in create_annotation() 200
in load_image() 158

text suboption for leader in fit/info_textline()
and add/create_textflow() 78

textcolor in create_bookmark() 210

textendx, textendy keywords in info_textflow()
97

textflow
in add_table_cell() 102
in fill_textblock() 183
suboption for createrichtext in
create_annotation() 197

textflowhandle in fill_textblock() 183
textformat in many functions 75
textheight keyword in info_textflow() 97
textknockout in create_gstate() 126
textlen in create_textflow() 90
textpath in fit/info_textline() 80
textrendering in many functions 76
textrise in many functions 76
textwidth keyword in info_textflow() 98
thumbnail

in add_portfolio_file() 212
in add_portfolio_folder() 211

Title in begin_item() 230
title in create_annotation() 200
toggle in create_fieldgroup() 207
tolerance suboption for textpath in fit_textline()

81
toolbar

suboption for 3Dactivate in
create_annotation() 201

tooltip in create_field() and create_fieldgroup()
207

top option in add_nameddest() and suboption for
destination in create_action(),
create_annotation(), create_bookmark() and
begin/end_document() 192

topdown
in begin_page_ext() 42
in begin_template_ext() 162

topindex in create_field() and create_fieldgroup()
207

transition
in begin/end_page_ext() 43
in create_action() 191

transparencygroup
in begin/end_page_ext() 43
in begin_template_ext() 162
in open_pdi_page() 171

trimbox in begin/end_page_ext() 43
truncatetrailingwhitespace

in fit_textflow() 94
type

in create_3dview() 219
in load_3d() 218
option in add_nameddest() and suboption for
destination in create_action(),

250 List of all Options

create_annotation(), create_bookmark() and
begin/end_document() 193
suboption for custom in create_annotation()
197
suboption for fieldlist in
add_portfolio_folder() and
add_portfolio_file() 213
suboption for properties in begin_mc() and
mc_point() 232
suboption for rendermode in create_3dview()
221
suboption for shading option of several
functions 121
suboption for the coords and displaycoords
suboptions of georeference 223

U
U3Dpath in create_3dview() 219
underline in many functions 76
underlineposition many functions 77
underlinewidth in many functions 77
unicode in info_font() 58, 61
unicodefont in info_font() 61
unicodemap in load_font() 56
unisonselect in create_fieldgroup() 207
unknownchars in info_textline() 82
unmappedchars

in info_font() 61
in info_textline() 82

uri in begin/end_document() 36
url in create_action() 191
urls in load_iccprofile() 145
usage in load_iccprofile() 145
used keyword in info_textflow() 98
usedglyph in info_font() 61
usematchbox in create_annotation() 200
usematchboxes suboption for wrap in

fit_textflow() 96
usercoordinates

in create_annotation() 200
in create_field() and create_fieldgroup() 208

userpassword in begin_document() 36
userunit

in begin/end_page_ext() 43
suboption for createrichtext in
create_annotation() 197

V
value

suboption for custom in create_annotation()
197
suboption for fieldlist in
add_portfolio_folder() and
add_portfolio_file() 213
suboption for properties in begin_mc() and
mc_point() 232

variantname in set_layer_dependency() 48

vertboxgap keyword in info_table() 106
vertical

in info_font() 61
in load_font() 56

verticalalign in fit_textflow() 95
vertshrinking keyword in info_table() 106
vertshrinklimit in fit_table() 105
viewarea suboption for viewerpreferences in

begin/end_document() 38
viewclip suboption for viewerpreferences in

begin/end_document() 38
viewerpreferences in begin_document() and

end_document() 36
viewports in begin/end_page_ext() 43
views in load_3d() 218
visiblelayers in set_layer_dependency() 48

W
weight

in begin_font() 62
in info_font() 61

wellformed keyword in info_textline() 82
width

in begin/end_page_ext() 43
in load_image() 158
keyword in info_image() 161
keyword in info_matchbox() 117
keyword in info_path() 139
keyword in info_pdi_page() 175
keyword in info_table() 106
keyword in info_textline() 82

widthsonly in begin_font() 63
willembed in info_font() 61
willsubset in info_font() 61
windowposition in create_annotation() 200
windowscale in create_annotation() 201
wkt suboption for the coords and displaycoords

suboptions of georeference 223
wordspacing in many functions 77
worldpoints suboption for georeference 223
wrap in fit_textflow() 95
writingdirx, writingdiry keywords in

info_textline() 82

X
x1, y1, ..., x4, y4

keywords in info_image() 161
keywords in info_matchbox() 117
keywords in info_path() 139
keywords in info_pdi_page() 175
keywords in info_table() 106
keywords in info_textflow() 98

xadvancelist in fit/info_textline() 80
xheight

in info_font() 61
in load_font() 56
keyword in info_textline() 82

List of all Options 251

xsymheight
suboption for the barcode option in
create_field() and create_fieldgroup() 208

xsymwidth
suboption for the barcode option in
create_field() and create_fieldgroup() 208

xvertline keyword in info_table() 106

Y
yhorline keyword in info_table() 106
yposition suboption for leader in fit/

info_textline() and add/create_textflow() 78

Z
zoom

in add_nameddest() and suboption for
destination in create_action(),
create_annotation(), create_bookmark() and
begin/end_document() 193
in create_annotation() 201
in define_layer() 46

252 List of all Options

D Revision History 253

D Revision History
Date Changes

June 11, 2013 > Various updates and corrections for PDFlib 8.0.6

October 23, 2012 > Various updates and corrections for PDFlib 8.0.5

December 22, 2011 > Various updates and corrections for PDFlib 8.0.4

July 11, 2011 > Various updates and corrections for PDFlib 8.0.3

December 09, 2010 > Various updates and corrections for PDFlib 8.0.2

September 22, 2010 > Various updates and corrections for PDFlib 8.0.1p7

April 13, 2010 > Various updates and corrections for PDFlib 8.0.1

December 04, 2009 > Updates for PDFlib 8.0.0

April 20, 2010 > Minor corrections for PDFlib 7.0.5

March 13, 2009 > Various updates and corrections for PDFlib 7.0.4

February 13, 2008 > Various updates and corrections for PDFlib 7.0.3

August 08, 2007 > Various updates and corrections for PDFlib 7.0.2

March 09, 2007 > Various updates and corrections for PDFlib 7.0.1

October 03, 2006 > Updates and restructuring for PDFlib 7.0.0; split the manual in tutorial and API reference

February 15, 2007 > Various updates and corrections for PDFlib 6.0.4

February 21, 2006 > Various updates and corrections for PDFlib 6.0.3; added Ruby section

August 09, 2005 > Various updates and corrections for PDFlib 6.0.2

November 17, 2004 > Minor updates and corrections for PDFlib 6.0.1
> introduced new format for language-specific function prototypes in chapter 8
> added hypertext examples in chapter 3

June 18, 2004 > Major changes for PDFlib 6

January 21, 2004 > Minor additions and corrections for PDFlib 5.0.3

September 15, 2003 > Minor additions and corrections for PDFlib 5.0.2; added block specification

May 26, 2003 > Minor updates and corrections for PDFlib 5.0.1

March 26, 2003 > Major changes and rewrite for PDFlib 5.0.0

June 14, 2002 > Minor changes for PDFlib 4.0.3 and extensions for the .NET binding

January 26, 2002 > Minor changes for PDFlib 4.0.2 and extensions for the IBM eServer edition

May 17, 2001 > Minor changes for PDFlib 4.0.1

April 1, 2001 > Documents PDI and other features of PDFlib 4.0.0

February 5, 2001 > Documents the template and CMYK features in PDFlib 3.5.0

December 22, 2000 > ColdFusion documentation and additions for PDFlib 3.03; separate COM edition of the manual

August 8, 2000 > Delphi documentation and minor additions for PDFlib 3.02

July 1, 2000 > Additions and clarifications for PDFlib 3.01

254

Feb. 20, 2000 > Changes for PDFlib 3.0

Aug. 2, 1999 > Minor changes and additions for PDFlib 2.01

June 29, 1999 > Separate sections for the individual language bindings
> Extensions for PDFlib 2.0

Feb. 1, 1999 > Minor changes for PDFlib 1.0 (not publicly released)

Aug. 10, 1998 > Extensions for PDFlib 0.7 (only for a single customer)

July 8, 1998 > First attempt at describing PDFlib scripting support in PDFlib 0.6

Feb. 25, 1998 > Slightly expanded the manual to cover PDFlib 0.5

Sept. 22, 1997 > First public release of PDFlib 0.4 and this manual

Date Changes

Index 255

Index
Note that parameters and options are listed in separate appendices.

A
action lists in option lists 13
alignment (position option) 112
All spot color name 143
any scope 18
Author field 225

B
Bézier curve 131
Boolean values in option lists 11

C
circles in option lists 14
CMYK color 141
cmyk keyword 13
color functions 141
color in option lists 12
Creator field 225
curves in option lists 15

D
dash pattern for lines 122
document and page functions 31
document information fields 225
document scope 18
Dublin Core 225

F
fast Web view 34
float and integer values in option lists 11
floats in option lists 11
font scope 18
fontsize in option lists 12
function scopes 17

G
glyph scope 18
graphics functions 119
gray keyword 13

H
handles in option lists 11

I
ICC Profiles 145

ICC-based color 141
iccbasedcmyk keyword 13
iccbasedgray keyword 13
iccbasedrgb keyword 13
image functions 153
import functions for PDF (PDI) 167
indexed color 142
info fields 225
inline option lists for Textflows 90
inner cell box for table cells 101
invisible text 76

K
Keywords field 225
keywords in option lists 11

L
lab keyword 13
landscape mode 41
licence 22
license 22
linearized PDF 34
lines in option lists 14
lines: dashed and patterned 122
list values in option lists 8
logging 29

M
metadata 227
mirroring 127

N
nested option lists 8
None spot color name 143
null scope 18
numbers in option lists 11

O
object scope 18
option list syntax 7
outline text 76

P
page scope 18
page size formats 40
parameter handling functions 19
path painting and clipping 134

256 Index

path scope 18
pattern keyword 13
pattern scope 18
pCOS functions 167, 177
PDF import functions (PDI) 167
PDF/A or PDF/X output intent 176
PDF_activate_item() 230
PDF_add_nameddest() 192
PDF_add_path_point() 136
PDF_add_portfolio_folder() 211
PDF_add_table_cell() 99
PDF_add_textflow() 83
PDF_add_thumbnail() 165
PDF_align() 128
PDF_arc() 131, 132
PDF_arcn() 132
PDF_begin_document() 31
PDF_begin_font() 62
PDF_begin_glyph() 63
PDF_begin_item() 228
PDF_begin_layer() 48
PDF_begin_mc() 232
PDF_begin_page_ext() 40, 41
PDF_begin_pattern 149
PDF_begin_template_ext() 162
PDF_circle() 131, 132
PDF_clip() 135
PDF_close_font() 57
PDF_close_image() 159
PDF_close_pdi_document() 169
PDF_close_pdi_page() 173
PDF_closepath() 133
PDF_closepath_fill_stroke() 135
PDF_closepath_stroke() 134
PDF_concat() 128
PDF_continue_text() 69
PDF_continue_text2() 69
PDF_create_3dview() 218
PDF_create_action() 187
PDF_create_annotation() 194
PDF_create_bookmark() 209
PDF_create_field() 202
PDF_create_fieldgroup() 203
PDF_create_gstate() 125
PDF_create_pvf() 25
PDF_create_textflow() 89
PDF_curveto() 131
PDF_define_layer() 45
PDF_delete() 24
PDF_delete_dl() 24
PDF_delete_path() 139
PDF_delete_pvf() 26
PDF_delete_table() 107
PDF_delete_textflow() 98
PDF_draw_path() 137
PDF_encoding_set_char() 65
PDF_end_document() 32
PDF_end_font() 63

PDF_end_glyph() 64
PDF_end_item() 230
PDF_end_layer() 49
PDF_end_mc() 232
PDF_end_pattern() 149
PDF_end_template_ext() 164
PDF_endpath() 135
PDF_fill() 134
PDF_fill_imageblock() 184
PDF_fill_pdfblock() 185
PDF_fill_stroke() 134
PDF_fill_textblock() 182
PDF_fit_image() 159
PDF_fit_pdi_page() 173
PDF_fit_table() 102
PDF_fit_textflow() 91
PDF_fit_textline() 79
PDF_get_apiname() 28
PDF_get_buffer() 39
PDF_get_errmsg() 27
PDF_get_errnum() 27
PDF_get_opaque() 28
PDF_get_parameter() 19
PDF_get_value() 19
PDF_info_font() 58
PDF_info_image() 160
PDF_info_matchbox() 116
PDF_info_path() 138
PDF_info_pdi_page() 173
PDF_info_table() 106
PDF_info_textflow() 95
PDF_info_textline() 81
PDF_initgraphics() 124
PDF_lineto() 130
PDF_load_3ddata() 217
PDF_load_font() 51
PDF_load_iccprofile() 145
PDF_load_image() 154
PDF_makespotcolor() 143
PDF_mc_point() 233
PDF_moveto() 130
PDF_new() 23
PDF_new_dl() 23
PDF_new2() 23
PDF_open_pdi_callback() 169
PDF_open_pdi_document() 167
PDF_open_pdi_page() 171
PDF_pcos_get_number() 177
PDF_pcos_get_stream() 178
PDF_pcos_get_string() 177
PDF_process_pdi() 176
PDF_rect() 133
PDF_restore() 125
PDF_resume_page() 44
PDF_rotate() 127
PDF_save() 124
PDF_scale() 127
PDF_set_gstate() 126

Index 257

PDF_set_info() 225
PDF_set_info2() 225
PDF_set_layer_dependency() 46
PDF_set_option() 20
PDF_set_parameter() 20
PDF_set_text_pos() 67
PDF_set_value() 19
PDF_setcolor() 142
PDF_setdash() 122
PDF_setdashpattern() 122
PDF_setflat() 122
PDF_setfont() 67
PDF_setlinecap() 123
PDF_setlinejoin() 123
PDF_setlinewidth() 123
PDF_setmatrix() 129
PDF_setmiterlimit() 123
PDF_shading() 150
PDF_shading_pattern() 150
PDF_shfill() 150
PDF_show() 68
PDF_show_xy() 69
PDF_show_xy2() 69
PDF_show2() 68
PDF_skew() 128
PDF_stringwidth() 70
PDF_stringwidth2() 70
PDF_stroke() 134
PDF_suspend_page() 44
PDF_translate() 127
PDF_utf16_to_utf32() 73
PDF_utf16_to_utf8() 71
PDF_utf32_to_utf16() 72
PDF_utf32_to_utf8() 73
PDF_utf8_to_utf16() 71, 72, 73
PDF_utf8_to_utf32() 72
PDF_xshow() 68
PDFlib Personalization Server (PPS) 181
PDI (PDF import) 167
polylines in option lists 14
PPS (PDFlib Personalization Server) 181

R
raster image functions 153

rectangles in option lists 14
reflection 127
RGB color 141
rgb keyword 13

S
scopes 17
separation color space 141
setup functions 22
skewing 128
spot color (separation color space) 141
spot keyword 13
spotname keyword 13
standard page sizes 40
string index 22
strings in option lists 10
Subject field 225
subscript 76
superscript 76
syntax of option lists 7

T
table formatting 99
template scope 18
text functions 51
Textflow: inline option lists 90
thumbnails 165
Title field 225
Trapped field 225

U
Unichar values in option lists 10
Unicode ranges in option lists 11
userlog 29

W
web-optimized PDF 34

X
XMP metadata 227

ABC

PDFlib GmbH
Franziska-Bilek-Weg 9
80339 München, Germany
www.pdflib.com
phone +49 • 89 • 452 33 84-0
fax +49 • 89 • 452 33 84-99

If you have questions check the PDFlib mailing list
and archive at tech.groups.yahoo.com/group/pdflib

Licensing contact
sales@pdflib.com

Support
support@pdflib.com (please include your license number)

http://tech.groups.yahoo.com/group/pdflib

			Contents

			1 Option Lists

			1.1 Option List Syntax

			1.2 Basic Types

			1.3 Fontsize, Color, and Action

			1.4 Geometric Types

			1.5 Limits

			2 General Functions

			2.1 Function Scopes

			2.2 Parameter and Option Handling

			2.3 Setup

			2.4 PDFlib Virtual File System (PVF)

			2.5 Exception Handling

			2.6 Logging

			3 Document and Page Functions

			3.1 Document Functions

			3.2 Fetching PDF Documents from Memory

			3.3 Page Functions

			3.4 Layers

			4 Font and Text Functions

			4.1 Font Handling

			4.2 Type 3 Font Definition

			4.3 Encoding Definition

			4.4 Simple Text Output

			4.5 Unicode Conversion Functions

			5 Text and Table Formatting

			5.1 Text Options

			5.2 Single-Line Text with Textlines

			5.3 Multi-Line Text with Textflows

			5.4 Table Formatting

			6 Object Fitting and Matchboxes

			6.1 Object Fitting

			6.2 Matchboxes

			7 Graphics Functions

			7.1 Graphics Appearance Parameters and Options

			7.2 Graphics State

			7.3 Coordinate System Transformations

			7.4 Path Construction

			7.5 Painting and Clipping

			7.6 Path Objects

			8 Color Functions

			8.1 Setting Color and Color Space

			8.2 ICC Profiles

			8.3 Patterns and Shadings

			9 Image and Template Functions

			9.1 Images

			9.2 Templates

			9.3 Thumbnails

			10 PDF Import (PDI) and pCOS Functions

			10.1 Document Functions

			10.2 Page Functions

			10.3 Other PDI Processing

			10.4 pCOS Functions

			11 Block Filling Functions (PPS)

			11.1 Rectangle Options for Block Filling Functions

			11.2 Textline and Textflow Blocks

			11.3 Image Blocks

			11.4 PDF Blocks

			12 Interactive Features

			12.1 Parameters for Interactive Elements

			12.2 Actions

			12.3 Named Destinations

			12.4 Annotations

			12.5 Form Fields

			12.6 Bookmarks

			12.7 PDF Packages and Portfolios

			13 3D and Geospatial Features

			13.1 3D Artwork

			13.2 Geospatial Features

			14 Document Interchange

			14.1 Document Information Fields

			14.2 XMP Metadata

			14.3 Tagged PDF

			14.4 Marked Content

			A List of all Functions

			B List of all Parameters

			C List of all Options and Keywords

			D Revision History

			Index

PDFlib-8.0.6-SunOS-sparc64-perl/doc/PDFlib-tutorial.pdf

ABC

PDFlib, PDFlib+PDI, PPS
A library for generating PDF on the fly
Version 8.0.6

Tutorial
Edition for Cobol, C, C++, Java, Objective-C,
Perl, PHP, Python, RPG, Ruby, and Tcl

Copyright © 1997–2012 PDFlib GmbH and Thomas Merz. All rights reserved.
PDFlib users are granted permission to reproduce printed or digital copies of this manual for internal use.

PDFlib GmbH
Franziska-Bilek-Weg 9, 80339 München, Germany
www.pdflib.com
phone +49 • 89 • 452 33 84-0
fax +49 • 89 • 452 33 84-99

If you have questions check the PDFlib mailing list and archive at tech.groups.yahoo.com/group/pdflib

Licensing contact: sales@pdflib.com
Support for commercial PDFlib licensees: support@pdflib.com (please include your license number)

This publication and the information herein is furnished as is, is subject to change without notice, and
should not be construed as a commitment by PDFlib GmbH. PDFlib GmbH assumes no responsibility or lia-
bility for any errors or inaccuracies, makes no warranty of any kind (express, implied or statutory) with re-
spect to this publication, and expressly disclaims any and all warranties of merchantability, fitness for par-
ticular purposes and noninfringement of third party rights.

PDFlib and the PDFlib logo are registered trademarks of PDFlib GmbH. PDFlib licensees are granted the
right to use the PDFlib name and logo in their product documentation. However, this is not required.

Adobe, Acrobat, PostScript, and XMP are trademarks of Adobe Systems Inc. AIX, IBM, OS/390, WebSphere,
iSeries, and zSeries are trademarks of International Business Machines Corporation. ActiveX, Microsoft,
OpenType, and Windows are trademarks of Microsoft Corporation. Apple, Macintosh and TrueType are
trademarks of Apple Computer, Inc. Unicode and the Unicode logo are trademarks of Unicode, Inc. Unix is
a trademark of The Open Group. Java and Solaris are trademarks of Sun Microsystems, Inc. HKS is a regis-
tered trademark of the HKS brand association: Hostmann-Steinberg, K+E Printing Inks, Schmincke. Other
company product and service names may be trademarks or service marks of others.

PANTONE® colors displayed in the software application or in the user documentation may not match
PANTONE-identified standards. Consult current PANTONE Color Publications for accurate color.
PANTONE® and other Pantone, Inc. trademarks are the property of Pantone, Inc. © Pantone, Inc., 2003.
Pantone, Inc. is the copyright owner of color data and/or software which are licensed to PDFlib GmbH to
distribute for use only in combination with PDFlib Software. PANTONE Color Data and/or Software shall
not be copied onto another disk or into memory unless as part of the execution of PDFlib Software.

PDFlib contains modified parts of the following third-party software:
ICClib, Copyright © 1997-2002 Graeme W. Gill
GIF image decoder, Copyright © 1990-1994 David Koblas
PNG image reference library (libpng), Copyright © 1998-2004 Glenn Randers-Pehrson
Zlib compression library, Copyright © 1995-2002 Jean-loup Gailly and Mark Adler
TIFFlib image library, Copyright © 1988-1997 Sam Leffler, Copyright © 1991-1997 Silicon Graphics, Inc.
Cryptographic software written by Eric Young, Copyright © 1995-1998 Eric Young (eay@cryptsoft.com)
Independent JPEG Group’s JPEG software, Copyright © 1991-1998, Thomas G. Lane
Cryptographic software, Copyright © 1998-2002 The OpenSSL Project (www.openssl.org)
Expat XML parser, Copyright © 1998, 1999, 2000 Thai Open Source Software Center Ltd
ICU International Components for Unicode, Copyright © 1995-2009 International Business Machines Cor-
poration and others
Reference sRGB ICC color profile data, Copyright (c) 1998 Hewlett-Packard Company

PDFlib contains the RSA Security, Inc. MD5 message digest algorithm.

http://www.pdflib.com

http://tech.groups.yahoo.com/group/pdflib

mailto:sales@pdflib.com

mailto:support@pdflib.com

Contents 3

Contents
0 Applying the PDFlib License Key 9

1 Introduction 13

1.1 Roadmap to Documentation and Samples 13

1.2 PDFlib Programming 15
1.3 What’s new in PDFlib/PDFlib+PDI/PPS 8? 17

1.3.1 PDF Features for Acrobat 9 17
1.3.2 Font Handling and Text Output 18
1.3.3 PDFlib Block Plugin and PDFlib Personalization Server (PPS) 19
1.3.4 Other important Features 20

1.4 Features in PDFlib 21
1.5 Additional Features in PDFlib+PDI 24
1.6 Additional Features in PPS 25
1.7 Availability of Features in different Products 26

2 PDFlib Language Bindings 27

2.1 Data Types for Language Bindings 27
2.2 Cobol Binding 28
2.3 COM Binding 29
2.4 C Binding 30
2.5 C++ Binding 33

2.6 Java Binding 36
2.7 .NET Binding 39
2.8 Objective-C Binding 40
2.9 Perl Binding 42
2.10 PHP Binding 44
2.11 Python Binding 46

2.12 REALbasic Binding 47
2.13 RPG Binding 48
2.14 Ruby Binding 50
2.15 Tcl Binding 52

3 Creating PDF Documents 53

3.1 General PDFlib Programming Aspects 53
3.1.1 Exception Handling 53
3.1.2 The PDFlib Virtual File System (PVF) 55
3.1.3 Resource Configuration and File Search 56
3.1.4 Generating PDF Documents in Memory 61

4 Contents

3.1.5 Large PDF Documents 62
3.1.6 Using PDFlib on EBCDIC-based Platforms 62

3.2 Page Descriptions 64
3.2.1 Coordinate Systems 64
3.2.2 Page Size 66
3.2.3 Direct Paths and Path Objects 67
3.2.4 Templates 69
3.2.5 Referenced Pages from an external PDF Document 70

3.3 Encrypted PDF 72
3.3.1 PDF Security Features 72
3.3.2 Protecting Documents with PDFlib 73

3.4 Web-Optimized (Linearized) PDF 75

3.5 Working with Color 76
3.5.1 Patterns and Smooth Shadings 76
3.5.2 Pantone, HKS, and custom Spot Colors 77
3.5.3 Color Management and ICC Profiles 80

3.6 Interactive Elements 83
3.6.1 Links, Bookmarks, and Annotations 83
3.6.2 Form Fields and JavaScript 85

3.7 Georeferenced PDF 89
3.7.1 Using Georeferenced PDF in Acrobat 89
3.7.2 Geographic and projected Coordinate Systems 89
3.7.3 Coordinate System Examples 90
3.7.4 Georeferenced PDF restrictions in Acrobat 91

4 Unicode and Legacy Encodings 93

4.1 Important Unicode Concepts 93

4.2 Single-Byte (8-Bit) Encodings 95

4.3 Chinese, Japanese, and Korean Encodings 99

4.4 String Handling in PDFlib 102
4.4.1 Content Strings, Hypertext Strings, and Name Strings 102
4.4.2 Strings in Unicode-aware Language Bindings 103
4.4.3 Strings in non-Unicode-aware Language Bindings 103

4.5 Addressing Characters 107
4.5.1 Escape Sequences 107
4.5.2 Character References 108

5 Font Handling 111

5.1 Font Formats 111
5.1.1 TrueType Fonts 111
5.1.2 OpenType Fonts 111
5.1.3 PostScript Type 1 Fonts 112
5.1.4 SING Fonts (Glyphlets) 112
5.1.5 Type 3 Fonts 113

Contents 5

5.2 Unicode Characters and Glyphs 115
5.2.1 Glyph IDs 115
5.2.2 Unicode Mappings for Glyphs 115
5.2.3 Unicode Control Characters 116

5.3 The Text Processing Pipeline 118
5.3.1 Normalizing Input Strings to Unicode 118
5.3.2 Converting Unicode Values to Glyph IDs 119
5.3.3 Transforming Glyph IDs 120

5.4 Loading Fonts 121
5.4.1 Selecting an Encoding for Text Fonts 121
5.4.2 Selecting an Encoding for symbolic Fonts 123
5.4.3 Example: Selecting a Glyph from the Wingdings Symbol Font 124
5.4.4 Searching for Fonts 126
5.4.5 Host Fonts on Windows and Mac OS X 131
5.4.6 Fallback Fonts 133

5.5 Font Embedding and Subsetting 137
5.5.1 Font Embedding 137
5.5.2 Font Subsetting 138

5.6 Querying Font Information 140
5.6.1 Font-independent Encoding, Unicode, and Glyph Name Queries 140
5.6.2 Font-specific Encoding, Unicode, and Glyph Name Queries 141
5.6.3 Querying Codepage Coverage and Fallback Fonts 142

6 Text Output 145

6.1 Text Output Methods 145
6.2 Font Metrics and Text Variations 147

6.2.1 Font and Glyph Metrics 147
6.2.2 Kerning 148
6.2.3 Text Variations 149

6.3 OpenType Layout Features 152
6.3.1 Supported OpenType Layout Features 152
6.3.2 OpenType Layout Features with Textlines and Textflows 154

6.4 Complex Script Output 158
6.4.1 Complex Scripts 158
6.4.2 Script and Language 160
6.4.3 Complex Script Shaping 162
6.4.4 Bidirectional Formatting 162
6.4.5 Arabic Text Formatting 164

6.5 Chinese, Japanese, and Korean Text Output 166
6.5.1 Standard CJK Fonts 166
6.5.2 Custom CJK Fonts 168
6.5.3 EUDC and SING Fonts for Gaiji Characters 169
6.5.4 OpenType Layout Features for advanced CJK Text Output 170

6 Contents

7 Importing Images and PDF Pages 173

7.1 Importing Raster Images 173
7.1.1 Basic Image Handling 173
7.1.2 Supported Image File Formats 175
7.1.3 Clipping Paths 178
7.1.4 Image Masks and Transparency 178
7.1.5 Colorizing Images 180

7.2 Importing PDF Pages with PDI 182
7.2.1 PDI Features and Applications 182
7.2.2 Using PDI Functions with PDFlib 182
7.2.3 Acceptable PDF Documents 184

7.3 Placing Images and imported PDF Pages 186
7.3.1 Simple Object Placement 186
7.3.2 Placing an Object in a Box 186
7.3.3 Orientating an Object 188
7.3.4 Rotating an Object 190
7.3.5 Adjusting the Page Size 191
7.3.6 Querying Information about placed Images and PDF Pages 192

8 Text and Table Formatting 193

8.1 Placing and Fitting Textlines 193
8.1.1 Simple Textline Placement 193
8.1.2 Positioning Text in a Box 194
8.1.3 Fitting Text into a Box 195
8.1.4 Aligning Text at a Character 197
8.1.5 Placing a Stamp 198
8.1.6 Using Leaders 198
8.1.7 Text on a Path 199

8.2 Multi-Line Textflows 201
8.2.1 Placing Textflows in the Fitbox 202
8.2.2 Paragraph Formatting Options 204
8.2.3 Inline Option Lists and Macros 204
8.2.4 Tab Stops 207
8.2.5 Numbered Lists and Paragraph Spacing 208
8.2.6 Control Characters and Character Mapping 209
8.2.7 Hyphenation 212
8.2.8 Controlling the standard Linebreak Algorithm 212
8.2.9 Advanced script-specific Line Breaking 216
8.2.10 Wrapping Text around Paths and Images 217

8.3 Table Formatting 221
8.3.1 Placing a Simple Table 222
8.3.2 Contents of a Table Cell 225
8.3.3 Table and Column Widths 227
8.3.4 Mixed Table Contents 228
8.3.5 Table Instances 231
8.3.6 Table Formatting Algorithm 234

Contents 7

8.4 Matchboxes 237
8.4.1 Decorating a Textline 237
8.4.2 Using Matchboxes in a Textflow 238
8.4.3 Matchboxes and Images 239

9 The pCOS Interface 241

10 PDF Versions and Standards 243

10.1 Acrobat and PDF Versions 243
10.2 ISO 32 000 246
10.3 PDF/X for Print Production 247

10.3.1 The PDF/X Family of Standards 247
10.3.2 Generating PDF/X-conforming Output 248
10.3.3 Output Intent and Standard Output Conditions 251
10.3.4 Importing PDF/X Documents with PDI 252

10.4 PDF/A for Archiving 254
10.4.1 The PDF/A Standards 254
10.4.2 Generating PDF/A-conforming Output 255
10.4.3 Importing PDF/A Documents with PDI 258
10.4.4 Color Strategies for creating PDF/A 259
10.4.5 XMP Document Metadata for PDF/A 260

10.5 Tagged PDF 262
10.5.1 Generating Tagged PDF with PDFlib 262
10.5.2 Creating Tagged PDF with direct Text Output and Textflows 264
10.5.3 Activating Items for complex Layouts 265
10.5.4 Using Tagged PDF in Acrobat 268

11 PPS and the PDFlib Block Plugin 271

11.1 Installing the PDFlib Block Plugin 271
11.2 Overview of the Block Concept 273

11.2.1 Separation of Document Design and Program Code 273
11.2.2 Block Properties 273
11.2.3 Why not use PDF Form Fields? 274

11.3 Editing Blocks with the Block Plugin 276
11.3.1 Creating Blocks 276
11.3.2 Editing Block Properties 280
11.3.3 Copying Blocks between Pages and Documents 281
11.3.4 Converting PDF Form Fields to PDFlib Blocks 282
11.3.5 Customizing the Block Plugin User Interface with XML 285

11.4 Previewing Blocks in Acrobat 286
11.5 Filling Blocks with PPS 290
11.6 Block Properties 294

11.6.1 Administrative Properties 294
11.6.2 Rectangle Properties 295
11.6.3 Appearance Properties 296

8 Contents

11.6.4 Text Preparation Properties 298
11.6.5 Text Formatting Properties 299
11.6.6 Object Fitting Properties 302
11.6.7 Properties for default Contents 305
11.6.8 Custom Properties 305

11.7 Querying Block Names and Properties with pCOS 306
11.8 PDFlib Block Specification 308

11.8.1 PDF Object Structure for PDFlib Blocks 308
11.8.2 Block Dictionary Keys 310
11.8.3 Generating PDFlib Blocks with pdfmarks 311

A Revision History 313

Index 315

9

0 Applying the PDFlib License Key
Restrictions of the evaluation version. All binary versions of PDFlib, PDFlib+PDI, and
PPS supplied by PDFlib GmbH can be used as fully functional evaluation versions re-
gardless of whether or not you obtained a commercial license. However, unlicensed ver-
sions display a www.pdflib.com demo stamp across all generated pages, and the inte-
grated pCOS interface is limited to small documents (up to 10 pages and 1 MB file size).
Unlicensed binaries must not be used for production purposes, but only for evaluating
the product. Using any PDFlib GmbH product for production purposes requires a valid
license.

Companies which are interested in PDFlib licensing and wish to get rid of the evalua-
tion restrictions during the evaluation phase or for prototype demos can submit their
company and project details with a brief explanation to sales@pdflib.com, and apply for
a temporary license key (we reserve the right to refuse evaluation key requests, e.g. for
anonymous requests).

PDFlib, PDFlib+PDI, and PDFlib Personalization Server (PPS) are different products
which require different license keys although they are delivered in a single package.
PDFlib+PDI license keys will also be valid for PDFlib, but not vice versa, and PPS license
keys will be valid for PDFlib+PDI and PDFlib. All license keys are platform-dependent,
and can only be used on the platform for which they have been purchased.

Once you purchased a license key you must apply it in order to get rid of the demo
stamp. Several methods are supported for setting the license key; they are detailed be-
low.

Cookbook A full code sample can be found in the Cookbook topic general/license_key.

Windows installer. If you are working with the Windows installer you can enter the li-
cense key when you install the product. The installer will add the license key to the reg-
istry (see below).

Applying a license key with an API call at runtime. Add a line to your script or pro-
gram which sets the license key at runtime. The license parameter must be set immedi-
ately after instantiating the PDFlib object (i.e., after PDF_new() or equivalent call). The
exact syntax depends on your programming language:

> In C and Python:

PDF_set_option(p, "license=...your license key...")

> In C++, Java, and Ruby:

p.set_option("license=...your license key...")

> In Objective-C:

[pdflib set_option: @"license=...your license key..."];

> In Perl and PHP:

p->set_option("license=...your license key...")

> In RPG:

c callp PDF_set_option(p:%ucs2('license=...your license key...')

http://www.pdflib.com/pdflib-cookbook/general-programming/license-key

10 Chapter 0: Applying the PDFlib License Key

> In Tcl:

PDF_set_option $p, "license=...your license key..."

Working with a license file. As an alternative to supplying the license key with a run-
time call, you can enter the license key in a text file according to the following format
(you can use the license file template licensekeys.txt which is contained in all PDFlib dis-
tributions). Lines beginning with a ’#’ character contain comments and will be ignored;
the second line contains version information for the license file itself:

Licensing information for PDFlib GmbH products
PDFlib license file 1.0
PDFlib 8.0.6 ...your license key...

The license file may contain license keys for multiple PDFlib GmbH products on sepa-
rate lines. It may also contain license keys for multiple platforms so that the same li-
cense file can be shared among platforms. License files can be configured in the follow-
ing ways:

> A file called licensekeys.txt will be searched in all default locations (see »Default file
search paths«, page 11).

> You can specify the licensefile parameter with the set_option() API function:

p.set_option("licensefile={/path/to/licensekeys.txt}");

> You can set an environment (shell) variable which points to a license file. On Win-
dows use the system control panel and choose System, Advanced, Environment
Variables; on Unix apply a command similar to the following:

export PDFLIBLICENSEFILE=/path/to/licensekeys.txt

> On IBM i5/iSeries the license file can be specified as follows (this command can be
specified in the startup program QSTRUP and will work for all PDFlib GmbH prod-
ucts):

ADDENVVAR ENVVAR(PDFLIBLICENSEFILE) VALUE(<... path ...>) LEVEL(*SYS)

License keys in the registry. On Windows you can also enter the name of the license
file in the following registry key:

HKLM\SOFTWARE\PDFlib\PDFLIBLICENSEFILE

As another alternative you can enter the license key directly in one of the following reg-
istry keys:

HKLM\SOFTWARE\PDFlib\PDFlib8\license
HKLM\SOFTWARE\PDFlib\PDFlib8\8.0.6\license

The MSI installer will write the license key provided at install time in the last of these
entries.

Note Be careful when manually accessing the registry on 64-bit Windows systems: as usual, 64-bit
PDFlib binaries will work with the 64-bit view of the Windows registry, while 32-bit PDFlib bi-
naries running on a 64-bit system will work with the 32-bit view of the registry. If you must
add registry keys for a 32-bit product manually, make sure to use the 32-bit version of the
regedit tool. It can be invoked as follows from the Start, Run... dialog:

11

%systemroot%\syswow64\regedit

Default file search paths. On Unix, Linux, Mac OS X and i5/iSeries systems some direc-
tories will be searched for files by default even without specifying any path and directo-
ry names. Before searching and reading the UPR file (which may contain additional
search paths), the following directories will be searched:

<rootpath>/PDFlib/PDFlib/8.0/resource/cmap
<rootpath>/PDFlib/PDFlib/8.0/resource/codelist
<rootpath>/PDFlib/PDFlib/8.0/resource/glyphlst
<rootpath>/PDFlib/PDFlib/8.0/resource/fonts
<rootpath>/PDFlib/PDFlib/8.0/resource/icc
<rootpath>/PDFlib/PDFlib/8.0
<rootpath>/PDFlib/PDFlib
<rootpath>/PDFlib

On Unix, Linux, and Mac OS X <roothpath> will first be replaced with /usr/local and then
with the HOME directory. On i5/iSeries <roothpath> is empty.

Default file names for license and resource files. By default, the following file names
will be searched for in the default search path directories:

licensekeys.txt (license file)
pdflib.upr (resource file)

This feature can be used to work with a license file without setting any environment
variable or runtime option.

Multi-system license files on i5/iSeries and zSeries. License keys for i5/iSeries and
zSeries are system-specific and therefore cannot be shared among multiple systems. In
order to facilitate resource sharing and work with a single license file which can be
shared by multiple systems, the following license file format can be used to hold multi-
ple system-specific keys in a single file:

PDFlib license file 2.0
Licensing information for PDFlib GmbH products
PDFlib 8.0.6 ...your license key... ...serial number of machine 1...
PDFlib 8.0.6 ...your license key... ...serial number of machine 2...

Note the changed version number in the first line and the presence of multiple license
keys, followed by the corresponding eight-digit hexadecimal serial number (on i5/iSer-
ies) or four-digit hexadecimal CPU ID (on zSeries).

Working with license files on i5/iSeries. On i5/iSeries systems the license file must be
encoded in ASCII (see asciifile parameter). The following command sets the
PDFLIBLICENSEFILE environment variable to point to a suitable license file:

ADDENVVAR ENVVAR(PDFLIBLICENSEFILE) VALUE('/PDFLIB/8.0.6/licensefile.txt')
LEVEL(*SYS)

Updates and Upgrades. If you purchased an update (change from an older version of a
product to a newer version of the same product) or upgrade (change from PDFlib to
PDFlib+PDI or PPS, or from PDFlib+PDI to PPS) you must apply the new license key that
you received for your update or upgrade. The old license key for the previous product

12 Chapter 0: Applying the PDFlib License Key

must no longer be used. Note that license keys will work for all maintenance releases of
a particular product version; as far as licensing is concerned, all versions 8.0.x are treat-
ed the same.

Evaluating features which are not yet licensed. You can fully evaluate all features by
using the software without any license key applied. However, once you applied a valid
license key for a particular product using features of a higher category will no longer be
available. For example, if you installed a valid PDFlib license key the PDI functionality
will no longer be available for testing. Similarly, after installing a PDFlib+PDI license key
the personalization features (block functions) will no longer be available.

When a license key for a product has already been installed, you can replace it with
the dummy license string »0« (digit zero) to enable functionality of a higher product
class for evaluation. This will enable the previously disabled functions, and re-activate
the demo stamp across all pages.

Licensing options. Different licensing options are available for PDFlib use on one or
more servers, and for redistributing PDFlib with your own products. We also offer sup-
port and source code contracts. Licensing details and the PDFlib purchase order form
can be found in the PDFlib distribution. Please contact us if you are interested in obtain-
ing a commercial PDFlib license, or have any questions:

PDFlib GmbH, Licensing Department
Franziska-Bilek-Weg 9, 80339 München, Germany
www.pdflib.com
phone +49 • 89 • 452 33 84-0
fax +49 • 89 • 452 33 84-99
Licensing contact: sales@pdflib.com
Support for PDFlib licensees: support@pdflib.com

http://www.pdflib.com

mailto:sales@pdflib.com

mailto:support@pdflib.com

1.1 Roadmap to Documentation and Samples 13

1 Introduction
1.1 Roadmap to Documentation and Samples

We provide the material listed below to assist you in using PDFlib products successfully.

Note On Windows Vista and Windows 7 the mini samples and starter samples will be installed in the
»Program Files« directory by default. Due to the Windows protection scheme the PDF output
files created by these samples will only be visible under »compatibility files«. Recommended
workaround: copy the folder with the samples to a user directory.

Mini samples for all language bindings. The mini samples (hello, image, pdfclock, etc.)
are available in all packages and for all language bindings. They provide minimalistic
sample code for text output, images, and vector graphics. The mini samples are mainly
useful for testing your PDFlib installation, and for getting a very quick overview of writ-
ing PDFlib applications.

Starter samples for all language bindings. The starter samples are contained in all
packages and are available for a variety of language bindings. They provide a useful ge-
neric starting point for important topics, and cover simple text and image output, Text-
flow and table formatting, PDF/A and PDF/X creation and many other topics. The starter
samples demonstrate basic techniques for achieving a particular goal with PDFlib prod-
ucts. It is strongly recommended to take a look at the starter samples.

PDFlib Tutorial. The PDFlib Tutorial (this manual), which is contained in all packages as
a single PDF document, explains important programming concepts in more detail, in-
cluding small pieces of sample code. If you start extending your code beyond the starter
samples you should read up on relevant topics in the PDFlib Tutorial.

Note Most examples in this PDFlib Tutorial are provided in the Java language (except for the
language-specific samples in Chapter 2, »PDFlib Language Bindings«, page 27, and a few C-
specific samples which are marked as such). Although syntax details vary with each language,
the basic concepts of PDFlib programming are the same for all language bindings.

PDFlib API Reference. The PDFlib API Reference, which is contained in all packages as a
single PDF document, contains a concise description of all functions, parameters, and
options which together comprise the PDFlib application programming interface (API).
The PDFlib API Reference is the definitive source for looking up parameter details, sup-
ported options, input conditions, and other programming rules which must be ob-
served. Note that some other reference documents are incomplete, e.g. the Javadoc API
listing for PDFlib and the PDFlib function listing on php.net. Make sure to always use the
full PDFlib API Reference when working with PDFlib.

pCOS Path Reference. The pCOS interface can be used to query a variety of properties
from PDF documents. pCOS is included in PDFlib+PDI and PPS. The pCOS Path Reference
contains a description of the path syntax used to address individual objects within a
PDF document in order to retrieve the corresponding values.

14 Chapter 1: Introduction

PDFlib Cookbook. The PDFlib Cookbook is a collection of PDFlib coding fragments for
solving specific problems. Most Cookbook examples are written in the Java language,
but can easily be adjusted to other programming languages since the PDFlib API is al-
most identical for all supported language bindings. The PDFlib Cookbook is maintained
as a growing list of sample programs. It is available at the following URL:

www.pdflib.com/pdflib-cookbook/

pCOS Cookbook. The pCOS Cookbook is a collection of code fragments for the pCOS in-
terface which is contained in PDFlib+PDI and PPS. The pCOS interface can be used to
query a variety of properties from PDF documents. It is available at the following URL:

www.pdflib.com/pcos-cookbook/

TET Cookbook. PDFlib TET (Text Extraction Toolkit) is a separate product for extract-
ing text and images from PDF documents. It can be combined with PDFlib+PDI to pro-
cess PDF documents based on their contents. The TET Cookbook is a collection of code
fragments for TET. It contains a group of samples which demonstrate the combination
of TET and PDFlib+PDI, e.g. add Web links or bookmarks based on the text on the page,
highlight search terms, split documents based on text, create a table of contents, etc.
The TET Cookbook is available at the following URL:

www.pdflib.com/tet-cookbook/

http://www.pdflib.com/pdflib-cookbook/

http://www.pdflib.com/pcos-cookbook/

http://www.pdflib.com/tet-cookbook/

1.2 PDFlib Programming 15

1.2 PDFlib Programming
What is PDFlib? PDFlib is a development component which allows you to generate
files in Adobe’s Portable Document Format (PDF). PDFlib acts as a backend to your own
programs. While the application programmer is responsible for retrieving the data to be
processed, PDFlib takes over the task of generating the PDF output which graphically
represents the data. PDFlib frees you from the internal details of PDF, and offers various
methods which help you formatting the output. The distribution packages contain dif-
ferent products in a single binary:

> PDFlib contains all functions required to create PDF output containing text, vector
graphics and images plus hypertext elements. PDFlib offers powerful formatting
features for placing single- or multi-line text, images, and creating tables.

> PDFlib+PDI includes all PDFlib functions, plus the PDF Import Library (PDI) for in-
cluding pages from existing PDF documents in the generated output, and the pCOS
interface for querying arbitrary PDF objects from an imported document (e.g. list all
fonts on page, query metadata, and many more).

> PDFlib Personalization Server (PPS) includes PDFlib+PDI, plus additional functions
for automatically filling PDFlib blocks. Blocks are placeholders on the page which
can be filled with text, images, or PDF pages. They can be created interactively with
the PDFlib Block Plugin for Adobe Acrobat (Mac or Windows), and will be filled auto-
matically with PPS. The plugin is included in PPS.

How can I use PDFlib? PDFlib is available on a variety of platforms, including Unix,
Windows, Mac, and EBCDIC-based systems such as IBM i5/iSeries and zSeries. PDFlib is
written in the C language, but it can be also accessed from several other languages and
programming environments which are called language bindings. These language bind-
ings cover all current Web and stand-alone application environments. The Application
Programming Interface (API) is easy to learn, and is identical for all bindings. Currently
the following bindings are supported:

> COM for use with Visual Basic, Active Server Pages with VBScript or JScript, Borland
Delphi, Windows Script Host, and other environments

> ANSI C
> ANSI C++
> Cobol (IBM zSeries)
> Java, including J2EE Servlets and JSP
> .NET for use with C#, VB.NET, ASP.NET, and other environments
> Objective C (Mac OS X, iOS)
> PHP
> Perl
> Python
> REALbasic
> RPG (IBM i5/iSeries)
> Ruby, including Ruby on Rails
> Tcl

What can I use PDFlib for? PDFlib’s primary target is dynamic PDF creation within
your own software or on a Web server. Similar to HTML pages dynamically generated on
a Web server, you can use a PDFlib program for dynamically generating PDF reflecting

16 Chapter 1: Introduction

user input or some other dynamic data, e.g. data retrieved from the Web server’s data-
base. The PDFlib approach offers several advantages:

> PDFlib can be integrated directly in the application generating the data.
> As an implication of this straightforward process, PDFlib is the fastest PDF-generat-

ing method, making it perfectly suited for the Web.
> PDFlib’s thread-safety as well as its robust memory and error handling support the

implementation of high-performance server applications.
> PDFlib is available for a variety of operating systems and development environ-

ments.

Requirements for using PDFlib. PDFlib makes PDF generation possible without wading
through the PDF specification. While PDFlib tries to hide technical PDF details from the
user, a general understanding of PDF is useful. In order to make the best use of PDFlib,
application programmers should ideally be familiar with the basic graphics model of
PostScript (and therefore PDF). However, a reasonably experienced application pro-
grammer who has dealt with any graphics API for screen display or printing shouldn’t
have much trouble adapting to the PDFlib API.

1.3 What’s new in PDFlib/PDFlib+PDI/PPS 8? 17

1.3 What’s new in PDFlib/PDFlib+PDI/PPS 8?
The following list discusses the most important new or improved features in PDFlib/
PDFlib+PDI/PPS 8 and Block Plugin 4. There are many more new features; see the PDFlib
API Reference for details.

1.3.1 PDF Features for Acrobat 9
PDFlib supports various PDF features according to Acrobat 9 (technically: PDF 1.7 Adobe
extension level 3).

External graphical content. Pages in PDF documents can contain references to pages
in another PDF file, so-called Reference XObjects. The original file contains only a place-
holder, e.g. a low-resolution version of an image or simply a note which mentions that
the actual page contents are missing. Using this technique repeated content (e.g. for
transactional printing) does not have to be transferred again and again. Reference
XObjects are a crucial component of PDF/X-5g and PDF/X-5pg.

Layer variants. Layer variants (also called layer configurations) can be considered
groups of layers. The grouping makes layers safe for production because the user can no
longer inadvertently activate or deactivate the wrong set of layers (e.g. enable a particu-
lar language layer but forget to activate the image layer which is common to all lan-
guages). For this reason layer variants are the basis for using layers in the PDF/X-4 and
PDF/X-5 standards.

PDF Portfolios. PDF Portfolios group PDF and other documents in a single entity
which can conveniently be used with Acrobat 9. If no hierarchical folders are used for
organizing the file attachments, the resulting PDF collections can be used with
Acrobat 8 as well. PDFlib also supports predefined and custom metadata fields to facili-
tate the organization of file attachments within a PDF Portfolio. New actions can be
used to create bookmarks which directly jump to a page in an embedded document.

Georeferenced PDF. Georeferenced PDF contains geographic reference information
for the whole page or individual maps on the page. Acrobat 9 and above offer various
features for interacting with Georeferenced PDF. PDFlib can be used to assign geospatial
reference data to images and partial or full pages.

AES-256 encryption and Unicode passwords. PDFlib supports AES-256 encryption for
improved security. AES-256 encryption has been introduced with Acrobat 9 and also al-
lows Unicode passwords.

Import Acrobat 9 documents. PDFlib+PDI and PPS can import and process Acrobat 9
documents. The pCOS interface can also analyze Acrobat 9 documents.

18 Chapter 1: Introduction

1.3.2 Font Handling and Text Output

Complex script shaping and bidirectional text formatting. Simple scripts, e.g. Latin,
are scripts in which characters are placed one after the other from left to right. Complex
scripts require additional processing for shaping the text (selecting appropriate glyph
form depending on context), reordering characters, or formatting text from right to left.
PDFlib supports complex script output for a variety of scripts including the Arabic, He-
brew, Devanagari, and Thai scripts.

Fallback fonts. Fallback fonts are a powerful mechanism for dealing with a variety of
font and encoding-related restrictions. You can mix and match fonts, pull missing
glyphs from another font, extend encodings, etc. Fallback fonts can adjust the size of in-
dividual glyphs automatically to account for design differences in the combined fonts.

OpenType layout features. OpenType layout features add intelligence to an Open-
Type font in the form of additional tables in the font file. These tables describe ad-
vanced typographic features such as ligatures, small capitals, swash characters, etc.
They also support advanced CJK text output with halfwidth, fullwidth, and proportion-
al glyphs, alternate forms, and many others.

Retain fonts across documents. Fonts and associated data can be kept in memory after
the generated document is finished. This improves performance since the font doesn’t
have to be parsed again for the next document, while still doing document-specific pro-
cessing such as font subsetting.

SING fonts for CJK Gaiji characters. The Japanese term Gaiji refers to custom charac-
ters (e.g. family or place names) which are in common use, but are not included in any
encoding standard. Adobe’s SING font architecture (glyphlets) solves the Gaiji problem
for CJK text. PDFlib supports SING fonts as well as the related Microsoft concept of EUDC
fonts (end-user defined fonts). Using the fallback font feature SING and EUDC fonts can
be merged into an existing font.

Redesigned font engine. PDFlib’s font engine has been redesigned and streamlined,
resulting in a variety of Unicode and encoding-related advantages as well as general
performance improvements and reduced memory requirements. Due to the redesign
some restrictions could be eliminated and the functionality of existing features extend-
ed. For example, it is now possible to address more than 256 glyphs in Type 1 or Type 3
fonts, address swash characters by glyph name, etc.

Wrap text around image clipping paths. The Textflow formatting engine wraps text
around arbitrary paths and can also use the clipping path of an imported TIFF or JPEG
image. This way multi-line text can be wrapped around an image.

Text on a path. Text can be placed on arbitrary vector paths consisting of an arbitrary
mixture of straight line segments, curves, and arcs. The paths can be constructed pro-
grammatically. Alternatively, the clipping paths from TIFF or JPEG images can be ex-
tracted and used as text paths.

1.3 What’s new in PDFlib/PDFlib+PDI/PPS 8? 19

1.3.3 PDFlib Block Plugin and PDFlib Personalization Server (PPS)
The PDFlib Block Plugin is used to prepare PDF documents for Block filling (personaliza-
tion) with the PDFlib Personalization Server (PPS).

Preview PPS Block processing in Acrobat. The Plugin can generate previews of the
Block filling process with PPS directly in Acrobat. The immediate preview allows design-
ers to quickly review the results of PPS-filling their Block documents before submitting
them to the server for processing. The preview PDF contains bookmarks, layers, and an-
notations with possible error messages as debugging and development aids. The pre-
view feature speeds up development cycles and can also be used as an interactive test
framework for trying PDFlib features.

Clone PDF/A or PDF/X status of the Block container. When generating Block previews
based on PDF/A or PDF/X documents, the Block Plugin can clone all relevant aspects of
the standard, e.g. standard identification, output intent, and metadata. If a Block filling
operation in PDF/A or PDF/X cloning mode would violate the selected standard (e.g. be-
cause a default image uses RGB color space although the document does not contain a
suitable output intent) an error message will be displayed. This way users can catch po-
tential standard violations very early in the workflow.

Redesigned user interface and snap-to-grid. The user interface of the PDFlib Block
Plugin has been restructured to facilitate access to the large number of existing and new
Block properties.

The new snap-to-grid feature is useful for quickly laying out Blocks according to a
design raster.

Additional Block properties. More Block properties have been added to the Block
Plugin and PPS, e.g. for specifying transparency of text, image, or PDF contents placed in
a Block.

Leverage PDFlib 8 features with Blocks. Relevant new features of PDFlib 8 such as text
output for complex scripts and OpenType layout features can be activated directly with
Block properties. For example, Blocks can be filled with Arabic or Hindi text.

20 Chapter 1: Introduction

1.3.4 Other important Features

Reusable path objects. Path objects can be constructed independently from any page
and used one or more times for stroking, filling, or clipping. Path objects can also be
used as wrapping shapes (format text into irregularly shaped areas) or to place text on
the path.

PDF/X-4 and PDF/X-5. PDFlib creates output according to the PDF/X-4 and PDF/X-5
standards for the graphic arts industry. Compared to the earlier PDF/X-1 and PDF/X-3
standards these are based on a newer PDF version and allow transparency and layers.
PDF/X-4p and PDF/X-5pg support externally referenced ICC profiles as output intents.
PDF/X-5g and PDF/X-5pg support the use of external graphical content.

Alpha channel in TIFF and PNG images. PDFlib honors image transparency (alpha
channel) when importing TIFF and PNG images. Alpha channels can be used to create
smooth transitions and to blend an image with the background.

JBIG2-compressed images. JBIG2 is a highly effective image compression format for
black and white images. PDFlib imports single- and multi-page JBIG2 images and main-
tains the advantages of their compression in the generated PDF output.

Compressed object streams and cross-reference streams. PDFlib creates compressed
object streams and cross-reference streams. These methods reduce the overall file size
of the generated PDF documents and help PDF documents to jump over the previous
10 GB limit which holds for PDFs with conventional cross-reference tables. While 10 GB
may seem an awful lot of data, an increasing number of applications in transaction
printing are approach this limit. We expect to see more and more scenarios where
PDFlib users want to create PDF documents in this range.

Builtin PANTONE® Goe™ color libraries. PDFlib supports the new PANTONE® Goe™ col-
or libraries with 2058 new colors for coated and uncoated paper as well as a new color
naming scheme. The Goe™ color libraries have been introduced by Pantone, Inc. in
2008.

Improvements in existing functions. The list below mentions some of the most impor-
tant improvements of existing features in PDFlib 8:

> query image details with PDF_info_image()
> PPS and Block Plugin: additional Block properties which make new PDFlib features

accessible via PDFlib Blocks
> Unicode filenames on Unix systems
> Table formatter: place path objects, annotations, and form fields in table cells
> Textflow: additional formatting control options, advanced language-specific line-

breaking
> shadow text
> retain XMP metadata in imported images
> many improvements in PDF_info_font()
> additional options for creating annotations
> Configurable string data type for the C++ binding, e.g. wstring for Unicode support

1.4 Features in PDFlib 21

1.4 Features in PDFlib
Table 1.1 lists major PDFlib features for generating PDF. New and improved features in
PDFlib 8 are marked.

Table 1.1 Feature list for PDFlib

topic features
PDF output Generate PDF documents on disk file or directly in memory (for Web servers)

High-volume output and arbitrary PDF file size (even beyond 10 GB)
Suspend/resume and insert page features to create pages out of order

PDF flavors PDF 1.3 – PDF 1.7ext81 (Acrobat 4–X) including ISO 32000-1 (=PDF 1.7)
Linearized (web-optimized) PDF for byteserving over the Web
Tagged PDF for accessibility and reflow
Marked Content for adding application-specific data or alternate text without Tagging1

ISO standards ISO 15930: PDF/X for the graphic arts industry1

ISO 19005: PDF/A for archiving
ISO 32000: standardized version of PDF 1.71

Graphics Common vector graphics primitives: lines, curves, arcs, ellipses1, rectangles, etc.
Smooth shadings (color blends), pattern fills and strokes
Transparency (opacity) and blend modes
External graphical content (Reference XObjects) for variable data printing1

Reusable path objects and clipping paths imported from images1

Layers Optional page content which can selectively be displayed
Annotations and form fields can be placed on layers
Layers can be locked, automatically activated depending on zoom factor, etc.
Layer variants1 (production-safe groups of layers) for PDF/X-4 and PDF/X-5

Fonts TrueType (TTF and TTC) and PostScript Type 1 fonts (PFB and PFA, plus LWFN on the Mac)
OpenType fonts with PostScript or TrueType outlines (TTF, OTF)
Support for dozens of OpenType layout features for Western and CJK text output, e.g. ligatures,
small caps, old-style numerals, swash characters, simplified/traditional forms, vertical alternates1

Directly use fonts which are installed on the Windows or Mac system (»host fonts«)
Font embedding for all font types; subsetting for TrueType, OpenType, and Type 3 fonts
User-defined (Type 3) fonts for bitmap fonts or custom logos
EUDC and SING1 fonts (glyphlets) for CJK Gaiji characters
Fallback fonts (pull missing glyphs from an auxiliary font)1

Retain fonts across documents to increase performance1

Text output Text output in different fonts; underlined, overlined, and strikeout text
Glyphs in a font can be addressed by numerical value, Unicode value, or glyph name1

Kerning for improved character spacing
Artificial bold, italic, and shadow1 text
Create text on a path1

Proportional widths for CJK fonts1

Configurable replacement of missing glyphs

22 Chapter 1: Introduction

Internationalization Unicode strings for page content, interactive elements, and file names1; UTF-8, UTF-16, and UTF-
32 formats
Support for a variety of 8-bit and legacy multi-byte CJK encodings (e.g. Shift-JIS; Big5)
Fetch code pages from the system (Windows, IBM i5/iSeries and zSeries)
Standard and custom CJK fonts and CMaps for Chinese, Japanese, and Korean text
Vertical writing mode for Chinese, Japanese, and Korean text
Character shaping for complex scripts, e.g. Arabic, Thai, Devanagari1

Bidirectional text formatting for right-to-left scripts, e.g. Arabic and Hebrew1

Embed Unicode information in PDF for proper text extraction in Acrobat
Images Embed BMP, GIF, PNG, TIFF, JBIG21, JPEG, JPEG 20001, and CCITT raster images

Automatic detection of image file formats
Query image information (pixel size, resolution, ICC profile, clipping path, etc.)1

Interpret clipping paths in TIFF and JPEG images
Interpret alpha channel (transparency) in TIFF and PNG images1

Image masks (transparent images with a color applied), colorize images with a spot color
Color Grayscale, RGB (numerical, hexadecimal strings, HTML color names), CMYK, CIE L*a*b* color

Integrated support for PANTONE® colors (incl. PANTONE® Goe™)1 and HKS® colors
User-defined spot colors

Color management ICC-based color with ICC profiles; support for ICC 4 profiles1

Rendering intent for text, graphics, and raster images
Default gray, RGB, and CMYK color spaces to remap device-dependent colors
ICC profiles as output intent for PDF/A and PDF/X

Archiving PDF/A-1a and PDF/A-1b (ISO 19005-1)
XMP extension schemas for PDF/A-1

Graphic arts PDF/X-1a, PDF/X-3, PDF/X-41, PDF/X-4p1, PDF/X-5p1, PDF/X-5pg1 (ISO 15930)
Embedded or externally referenced1 output intent ICC profile
External graphical content (referenced pages) for PDF/X-5p and PDF/X-5pg1

Create OPI 1.3 and OPI 2.0 information for imported images
Separation information (PlateColor)
Settings for text knockout, overprinting etc.

Textflow
Formatting

Format text into one or more rectangular or arbitrarily shaped areas with hyphenation (user-
supplied hyphenation points required), font and color changes, justification methods, tabs, lead-
ers, control commands; wrap text around images
Advanced line-breaking with language-specific processing
Flexible image placement and formatting
Wrap text around images or image clipping paths1

Table formatting Table formatter places rows and columns, and automatically calculates their sizes according to a
variety of user preferences. Tables can be split across multiple pages.
Table cells can hold single- or multi-line text, images, PDF pages, path objects, annotations, and
form fields
Table cells can be formatted with ruling and shading options
Flexible stamping function
Matchbox concept for referencing the coordinates of placed images or other objects

Table 1.1 Feature list for PDFlib

topic features

1.4 Features in PDFlib 23

Security Encrypt PDF output with RC4 (40/128 bit) or AES encryption algorithms (128/2561 bit)
Unicode passwords1

Specify permission settings (e.g. printing or copying not allowed)
Interactive elements Create form fields with all field options and JavaScript

Create barcode form fields
Create actions for bookmarks, annotations, page open/close and other events
Create bookmarks with a variety of options and controls
Page transition effects, such as shades and mosaic
Create all PDF annotation types, such as PDF links, launch links (other document types), Web links
Named destinations for links, bookmarks, and document open action
Create page labels (symbolic names for pages)

Multimedia Embed 3D animations in PDF
Georeferenced PDF Create PDF with geospatial reference information1

Tagged PDF Create Tagged PDF and structure information for accessibility, page reflow, and improved con-
tent repurposing; links and other annotations can be integrated in the document structure

Metadata Document information: common fields (Title, Subject, Author, Keywords) and user-defined fields
Create XMP metadata from document info fields or from client-supplied XMP streams
Process XMP image metadata in TIFF, JPEG, and JPEG 2000 images1

Programming Language bindings for Cobol, COM, C, C++1, Objective C1, Java, .NET, Perl, PHP, Python, REALbasic,
RPG, Ruby, Tcl
Virtual file system for supplying data in memory, e.g., images from a database

1. New or considerably improved in PDFlib 8

Table 1.1 Feature list for PDFlib

topic features

24 Chapter 1: Introduction

1.5 Additional Features in PDFlib+PDI
Table 1.2 lists features in PDFlib+PDI and PPS in addition to the basic PDF generation fea-
tures in Table 1.1.

Table 1.2 Additional features in PDFlib+PDI

topic features
PDF input (PDI) Import pages from existing PDF documents

Import all PDF versions up to PDF 1.7 extension level 3 (Acrobat 9)1

1. New or considerably improved in PDFlib+PDI 8

Import documents which are encrypted with any of PDF’s standard encryption algorithms (mas-
ter password required)1

Query information about imported pages1

Clone page geometry of imported pages (e.g. BleedBox, TrimBox, CropBox)1

Delete redundant objects (e.g. identical fonts) across multiple imported PDF documents
Repair malformed input PDF documents1

Copy PDF/A or PDF/X output intent from imported PDF documents
pCOS interface pCOS interface for querying details about imported PDF documents1

1.6 Additional Features in PPS 25

1.6 Additional Features in PPS
Table 1.3 lists features which are only available in the PDFlib Personalization Server (PPS)
(in addition to the basic PDF generation features in Table 1.1 and the PDF import fea-
tures in Table 1.2).

Table 1.3 Additional features in the PDFlib Personalization Server (PPS)

topic features
Variable Data
Processing (PPS)

PDF personalization with PDFlib Blocks for text, image, and PDF data

PDFlib Block Plugin PDFlib Block plugin for creating PDFlib Blocks interactively in Acrobat on Windows and Mac
Redesigned user interface1

1. New or considerably improved in PDFlib Personalization Server 8

Preview PPS Block filling in Acrobat1

Snap-to-grid for interactively creating or editing Blocks in Acrobat1

Clone PDF/X or PDF/A properties of the Block container1

Convert PDF form fields to PDFlib Blocks for automated filling
Textflow Blocks can be linked so that one Block holds the overflow text of a previous Block
List of PANTONE® and HKS® spot color names integrated in the Block plugin1

26 Chapter 1: Introduction

1.7 Availability of Features in different Products
Table 1.4 details the availability of features in different products with the PDFlib family.

Table 1.4 Availability of features in different products

feature API functions and options PD
Fl

ib

PD
Fl

ib
+P

DI

PP
S

basic PDF generation all except those listed below X X X

linearized (Web-optimized) PDF linearize option in PDF_end_document() X1

1. Not available in PDFlib source code packages since PDI is required internally for this feature

X X

optimize PDF (only relevant for inefficient
client code and non-optimized imported
PDF documents)

optimize option in PDF_end_document() X1 X X

Referenced PDF, PDF/X-5g and PDF/X-5pg reference option in PDF_begin_template_ext()
and PDF_open_pdi_page()

X1 X X

Parsing PDF documents for Portfolio cre-
ation

password option in PDF_add_portfolio_file() X1 X X

PDF import (PDI) all PDI functions – X X

Query information from PDF with pCOS all pCOS functions – X X

Variable data processing and personaliza-
tion with Blocks

all PPS functions for Block filling – – X

PDFlib Block plugin for Acrobat interactively create PDFlib blocks for use with PPS – – X

2.1 Data Types for Language Bindings 27

2 PDFlib Language Bindings
Note It is strongly recommended to take a look at the starter examples which are contained in all

PDFlib packages. They provide a convenient starting point for your own application develop-
ment, and cover many important aspects of PDFlib programming.

2.1 Data Types for Language Bindings
This manual documents the function/method prototypes for various language bind-
ings. The main difference between language bindings is that in object-oriented lan-
guage bindings the PDFlib methods do not have the PDF_ prefix in the name, while in
other language bindings the PDF_ prefix is part of all function names. Also, the PDF con-
text parameter must be supplied as the first argument to all functions in non-object
oriented language bindings. In contrast, the object-oriented language bindings hide the
PDF context in an object created by the language wrapper.

Table 2.1 details the use of the PDF document type and the string data type in all lan-
guage bindings. See the PDFlib Tutorial for more details on text and string handling. The
data types integer, long, and double are not mentioned since there is an obvious map-
ping of these types in all bindings.

Table 2.1 Data types in the language bindings

language binding p parameter and PDF_ prefix? string data type binary data type

C yes const char * 1

1. C language NULL string values and empty strings are considered equivalent.

const char *

C++ no std::wstring by default2

2. The C++ API can be customized via instantiation of the std::basic_string template. For example, the API can be switched to
std::string to achieve compatibility with older applications. Alternatively, user-defined data types can also be used as the basis of
the string type used in the API (see Section 2.5, »C++ Binding«, page 33).

const char *

Cobol yes3

3. Cobol programs must use abbreviated names for the PDFlib functions.

STRING STRING

Java no String byte[]

Objective-C no NSString NSData

Perl no string string

PHP no string string

Python no string string

RPG yes Unicode string (use %ucs2) data

Ruby no string string

Tcl yes string byte array

28 Chapter 2: PDFlib Language Bindings

2.2 Cobol Binding
The PDFlib API functions for Cobol are not available under the standard C names, but
use abbreviated function names instead. The short function names are not documented
here, but can be found in a separate cross-reference listing (xref.txt). For example, in-
stead of using PDF_load_font() the short form PDLODFNT must be used.

PDFlib clients written in Cobol are statically linked to the PDFLBCOB object. It in turn
dynamically loads the PDLBDLCB Load Module (DLL), which in turn dynamically loads
the PDFlib Load Module (DLL) upon the first call to PDNEW (which corresponds to PDF_
new()). The instance handle of the newly allocated PDFlib internal structure is stored in
the P parameter which must be provided to each call that follows.

The PDLBDLCB load module provides the interfaces between the 8-character Cobol
functions and the core PDFlib routines. It also provides the mapping between PDFlib’s
asynchronous exception handling and the monolithic »check each function’s return
code« method that Cobol expects.

Note PDLBDLCB and PDFLIB must be made available to the COBOL program through the use of a
STEPLIB.

Data types. The data types used in the PDFlib API Reference must be mapped to Cobol
data types as in the following samples:

05 PDFLIB-A4-WIDTH USAGE COMP-1 VALUE 5.95E+2. // float
05 WS-INT PIC S9(9) BINARY. // int
05 WS-FLOAT COMP-1. // float
05 WS-STRING PIC X(128). // const char *
05 P PIC S9(9) BINARY. // long *
05 RETURN-RC PIC S9(9) BINARY. // int *

All Cobol strings passed to the PDFlib API should be defined with one extra byte of stor-
age for the expected LOW-VALUES (NULL) terminator.

Return values. The return value of PDFlib API functions will be supplied in an addi-
tional ret parameter which is passed by reference. It will be filled with the result of the
respective function call. A zero return value means the function call executed just fine;
other values signal an error, and PDF generation cannot be continued.

Functions which do not return any result (C functions with a void return type) don’t
use this additional parameter.

Error handling. PDFlib exception handling is not available in the Cobol language bind-
ing. Instead, all API functions support an additional return code (rc) parameter which
signals errors. The rc parameter is passed by reference, and will be used to report prob-
lems. A non-zero value indicates that the function call failed.

2.3 COM Binding 29

2.3 COM Binding
(This section is only included in the COM/.NET/REALbasic edition of the PDFlib tutorial.)

30 Chapter 2: PDFlib Language Bindings

2.4 C Binding
PDFlib is written in C with some C++ modules. In order to use the PDFlib C binding, you
can use a static or shared library (DLL on Windows and MVS), and you need the central
PDFlib include file pdflib.h for inclusion in your PDFlib client source modules. Alterna-
tively, pdflibdl.h can be used for dynamically loading the PDFlib DLL at runtime (see next
section for details).

Note Applications which use the PDFlib binding for C must be linked with a C++ compiler since the
PDFlib library includes some parts which are implemented in C++. Using a C linker may result
in unresolved externals unless the application is explicitly linked against the required C++ sup-
port libraries.

Using PDFlib as a DLL loaded at runtime. While most clients will use PDFlib as a stati-
cally bound library or a dynamic library which is bound at link time, you can also load
the PDFlib DLL at runtime and dynamically fetch pointers to all API functions. This is es-
pecially useful to load the PDFlib DLL only on demand, and on MVS where the library is
customarily loaded as a DLL at runtime without explicitly linking against PDFlib. PDFlib
supports a special mechanism to facilitate this dynamic usage. It works according to the
following rules:

> Include pdflibdl.h instead of pdflib.h.
> Use PDF_new_dl() and PDF_delete_dl() instead of PDF_new() and PDF_delete().
> Use PDF_TRY_DL() and PDF_CATCH_DL() instead of PDF_TRY() and PDF_CATCH().
> Use function pointers for all other PDFlib calls.
> PDF_get_opaque() must not be used.
> Compile the auxiliary module pdflibdl.c and link your application against it.

Note Loading the PDFlib DLL at runtime is supported on selected platforms only.

Error handling in C. PDFlib supports structured exception handling with try/catch
clauses. This allows C and C++ clients to catch exceptions which are thrown by PDFlib,
and react on the exception in an adequate way. In the catch clause the client will have
access to a string describing the exact nature of the problem, a unique exception num-
ber, and the name of the PDFlib API function which threw the exception. The general
structure of a PDFlib C client program with exception handling looks as follows:

PDF_TRY(p)
{

...some PDFlib instructions...
}
PDF_CATCH(p)
{
 printf("PDFlib exception occurred in hello sample:\n");
 printf("[%d] %s: %s\n",
 PDF_get_errnum(p), PDF_get_apiname(p), PDF_get_errmsg(p));
 PDF_delete(p);
 return(2);
}

PDF_delete(p);

PDF_TRY/PDF_CATCH are implemented as tricky preprocessor macros. Accidentally omit-
ting one of these will result in compiler error messages which may be difficult to com-

2.4 C Binding 31

prehend. Make sure to use the macros exactly as shown above, with no additional code
between the TRY and CATCH clauses (except PDF_CATCH()).

An important task of the catch clause is to clean up PDFlib internals using PDF_
delete() and the pointer to the PDFlib object. PDF_delete() will also close the output file if
necessary. After fatal exceptions the PDF document cannot be used, and will be left in
an incomplete and inconsistent state. Obviously, the appropriate action when an ex-
ception occurs is application-specific.

For C and C++ clients which do not catch exceptions, the default action upon excep-
tions is to issue an appropriate message on the standard error channel, and exit on fatal
errors. The PDF output file will be left in an incomplete state! Since this may not be ade-
quate for a library routine, for serious PDFlib projects it is strongly advised to leverage
PDFlib’s exception handling facilities. A user-defined catch clause may, for example,
present the error message in a GUI dialog box, and take other measures instead of abort-
ing.

Volatile variables. Special care must be taken regarding variables that are used in both
the PDF_TRY() and the PDF_CATCH() blocks. Since the compiler doesn’t know about the
control transfer from one block to the other, it might produce inappropriate code (e.g.,
register variable optimizations) in this situation. Fortunately, there is a simple rule to
avoid these problems:

Note Variables used in both the PDF_TRY() and PDF_CATCH() blocks should be declared volatile.

Using the volatile keyword signals to the compiler that it must not apply (potentially
dangerous) optimizations to the variable.

Nesting try/catch blocks and rethrowing exceptions. PDF_TRY() blocks may be nested
to an arbitrary depth. In the case of nested error handling, the inner catch block can acti-
vate the outer catch block by re-throwing the exception:

PDF_TRY(p) /* outer try block */
{

/* ... */

PDF_TRY(p) /* inner try block */
{
 /* ... */
}
PDF_CATCH(p) /* inner catch block */
{
 /* error cleanup */
 PDF_RETHROW(p);
}
/* ... */

}
PDF_CATCH(p) /* outer catch block */
{

/* more error cleanup */
PDF_delete(p);

}

The PDF_RETHROW() invocation in the inner error handler will transfer program execu-
tion to the first statement of the outer PDF_CATCH() block immediately.

32 Chapter 2: PDFlib Language Bindings

Prematurely exiting a try block. If a PDF_TRY() block is left – e.g., by means of a return
statement –, thus bypassing the invocation of the corresponding PDF_CATCH() macro,
the PDF_EXIT_TRY() macro must be used to inform the exception machinery. No other li-
brary function must be called between this macro and the end of the try block:

PDF_TRY(p)
{

/* ... */

if (error_condition)
{

PDF_EXIT_TRY(p);
return -1;

}
}
PDF_CATCH(p)
{

/* error cleanup */
PDF_RETHROW(p);

}

Memory management in C. In order to allow for maximum flexibility, PDFlib’s inter-
nal memory management routines (which are based on standard C malloc/free) can be
replaced by external procedures provided by the client. These procedures will be called
for all PDFlib-internal memory allocation or deallocation. Memory management rou-
tines can be installed with a call to PDF_new2(), and will be used in lieu of PDFlib’s inter-
nal routines. Either all or none of the following routines must be supplied:

> an allocation routine
> a deallocation (free) routine
> a reallocation routine for enlarging memory blocks previously allocated with the al-

location routine.

The memory routines must adhere to the standard C malloc/free/realloc semantics, but
may choose an arbitrary implementation. All routines will be supplied with a pointer to
the calling PDFlib object. The only exception to this rule is that the very first call to the
allocation routine will supply a PDF pointer of NULL. Client-provided memory alloca-
tion routines must therefore be prepared to deal with a NULL PDF pointer.

Using the PDF_get_opaque() function, an opaque application specific pointer can be
retrieved from the PDFlib object. The opaque pointer itself is supplied by the client in
the PDF_new2() call. The opaque pointer is useful for multi-threaded applications which
may want to keep a pointer to thread- or class specific data inside the PDFlib object, for
use in memory management or error handling.

Unicode in the C language binding. Clients of the C language binding must take care
not to use the standard text output functions (PDF_show(), PDF_show_xy(), and PDF_
continue_text()) when the text may contain embedded null characters. In such cases the
alternate functions PDF_show2() etc. must be used, and the length of the string must be
supplied separately. This is not a concern for all other language bindings since the
PDFlib language wrappers internally call PDF_show2() etc. in the first place.

2.5 C++ Binding 33

2.5 C++ Binding
In addition to the pdflib.h C header file, an object-oriented wrapper for C++ is supplied
for PDFlib clients. It requires the pdflib.hpp header file, which in turn includes pdflib.h.
Since pdflib.hpp contains a template-based implementation no corresponding .cpp mod-
ule is required. Using the C++ object wrapper replaces the PDF_ prefix in all PDFlib func-
tion names with a more object-oriented approach.

Using PDFlib as a DLL loaded at runtime. Similar to the C language binding the C++
binding allows you to dynamically attach PDFlib to your application at runtime (see
»Using PDFlib as a DLL loaded at runtime«, page 30). Dynamic loading can be enabled as
follows when compiling the application module which includes pdflib.hpp:

#define PDFCPP_DL 1

In addition you must compile the auxiliary module pdflibdl.c and link your application
against the resulting object file. Since the details of dynamic loading are hidden in the
PDFlib object it does not affect the C++ API: all method calls look the same regardless of
whether or not dynamic loading is enabled.

Note Loading the DLL at runtime is supported on selected platforms only.

String handling in C++. PDFlib 8 introduces a new Unicode-capable C++ binding. The
new template-based approach supports the following usage patterns with respect to
string handling:

> Strings of the C++ standard library type std::wstring are used as basic string type.
They can hold Unicode characters encoded as UTF-16 or UTF-32. This is the default be-
havior in PDFlib 8 and the recommended approach for new applications unless cus-
tom data types (see next item) offer a significant advantage over wstrings.

> Custom (user-defined) data types for string handling can be used as long as the cus-
tom data type is an instantiation of the basic_string class template and can be con-
verted to and from Unicode via user-supplied converter methods. As an example a
custom string type implementation for UTF-8 strings is included in the PDFlib distri-
bution.

> Plain C++ strings can be used for compatibility with existing C++ applications which
have been developed against PDFlib 7 or earlier versions. This compatibility variant
is only meant for existing applications (see below for notes on source code compati-
bility).

The new interface assumes that all strings passed to and received from PDFlib methods
are native wstrings. Depending on the size of the wchar_t data type, wstrings are as-
sumed to contain Unicode strings encoded as UTF-16 (2-byte characters) or UTF-32 (4-
byte characters). Literal strings in the source code must be prefixed with L to designate
wide strings. Unicode characters in literals can be created with the \u and \U syntax. Al-
though this syntax is part of standard ISO C++, some compilers don’t support it. In this
case literal Unicode characters must be created with hex characters.

Note On EBCDIC-based systems the formatting of option list strings for the wstring-based interface
requires additional conversions to avoid a mixture of EBCDIC and UTF-16 wstrings in option
lists. Convenience code for this conversion and instructions are available in the auxiliary mod-
ule utf16num_ebcdic.hpp.

34 Chapter 2: PDFlib Language Bindings

Adjusting applications to the new C++ binding. Existing C++ applications which have
been developed against PDFlib 7 or earlier versions can be adjusted to PDFlib 8 as fol-
lows:

> Since the PDFlib C++ class now lives in the pdflib namespace the class name must be
qualified. In order to avoid the pdflib::PDFlib construct client applications should add
the following before using PDFlib methods:

using namespace pdflib;

> Switch the application’s string handling to wstrings. This includes data from exter-
nal sources. However, string literals in the source code (including option lists) must
also be adjusted by prepending the L prefix, e.g.

const wstring imagefile = L"nesrin.jpg";

image = p.load_image(L"auto", imagefile, L"");

> Suitable wstring-capable methods (wcerr etc.) must be used to process PDFlib error
messages and exception strings (get_errmsg() method in the PDFlib and PDFlib-
Exception classes).

> Remove PDFlib method calls which are required only for non-Unicode-capable lan-
guages, especially the following:

p.set_parameter("hypertextencoding", "host");

> The pdflib.cpp module is no longer required for the PDFlib C++ binding. Although the
PDFlib distribution contains a dummy implementation of this module, it should be
removed from the build process for PDFlib applications.

Full source code compatibility with legacy applications. The new C++ binding has
been designed with application-level source code compatibility mind, but client appli-
cations must be recompiled. The following aids are available to achieve full source code
compatibility for legacy applications:

> Disable the wstring-based interface as follows before including pdflib.hpp:

#define PDFCPP_PDFLIB_WSTRING 0

> Disable the PDFlib namespace as follows before including pdflib.hpp:

#define PDFCPP_USE_PDFLIB_NAMESPACE 0

Error handling in C++. PDFlib API functions will throw a C++ exception in case of an er-
ror. These exceptions must be caught in the client code by using C++ try/catch clauses. In
order to provide extended error information the PDFlib class provides a public
PDFlib::Exception class which exposes methods for retrieving the detailed error message,
the exception number, and the name of the PDFlib API function which threw the excep-
tion.

Native C++ exceptions thrown by PDFlib routines will behave as expected. The fol-
lowing code fragment will catch exceptions thrown by PDFlib:

try {
...some PDFlib instructions...

catch (PDFlib::Exception &ex) {
wcerr << L"PDFlib exception occurred in hello sample: " << endl
 << L"[" << ex.get_errnum() << L"] " << ex.get_apiname()

2.5 C++ Binding 35

 << L": " << ex.get_errmsg() << endl;
}

Memory management in C++. Client-supplied memory management for the C++
binding works the same as with the C language binding.

The PDFlib constructor accepts an optional error handler, optional memory manage-
ment procedures, and an optional opaque pointer argument. Default NULL arguments
are supplied in pdflib.hpp which will result in PDFlib’s internal error and memory man-
agement routines becoming active. All memory management functions must be »C«
functions, not C++ methods.

36 Chapter 2: PDFlib Language Bindings

2.6 Java Binding
Java supports a portable mechanism for attaching native language code to Java pro-
grams, the Java Native Interface (JNI). The JNI provides programming conventions for
calling native C or C++ routines from within Java code, and vice versa. Each C routine
has to be wrapped with the appropriate code in order to be available to the Java VM, and
the resulting library has to be generated as a shared or dynamic object in order to be
loaded into the Java VM.

PDFlib supplies JNI wrapper code for using the library from Java. This technique al-
lows us to attach PDFlib to Java by loading the shared library from the Java VM. The ac-
tual loading of the library is accomplished via a static member function in the pdflib
Java class. Therefore, the Java client doesn’t have to bother with the specifics of shared
library handling.

Taking into account PDFlib’s stability and maturity, attaching the native PDFlib li-
brary to the Java VM doesn’t impose any stability or security restrictions on your Java
application, while at the same time offering the performance benefits of a native imple-
mentation.

Installing the PDFlib Java Edition. For the PDFlib binding to work, the Java VM must
have access to the PDFlib Java wrapper and the PDFlib Java package. PDFlib is organized
as a Java package with the following package name:

com.pdflib.pdflib

This package is available in the pdflib.jar file and contains a single class called pdflib. In
order to supply this package to your application, you must add pdflib.jar to your
CLASSPATH environment variable, add the option -classpath pdflib.jar in your calls to the
Java compiler and runtime, or perform equivalent steps in your Java IDE. In the JDK you
can configure the Java VM to search for native libraries in a given directory by setting
the java.library.path property to the name of the directory, e.g.

java -Djava.library.path=. pdfclock

You can check the value of this property as follows:

System.out.println(System.getProperty("java.library.path"));

In addition, the following platform-dependent steps must be performed:
> Unix: the library libpdf_java.so (on Mac OS X: libpdf_java.jnilib) must be placed in one

of the default locations for shared libraries, or in an appropriately configured direc-
tory.

> Windows: the library pdf_java.dll must be placed in the Windows system directory, or
a directory which is listed in the PATH environment variable.

Using PDFlib in J2EE application servers and Servlet containers. PDFlib is perfectly
suited for server-side Java applications. The PDFlib distribution contains sample code
and configuration for using PDFlib in J2EE environments. The following configuration
issues must be observed:

> The directory where the server looks for native libraries varies among vendors. Com-
mon candidate locations are system directories, directories specific to the underly-

2.6 Java Binding 37

ing Java VM, and local server directories. Please check the documentation supplied
by the server vendor.

> Application servers and Servlet containers often use a special class loader which may
be restricted or uses a dedicated classpath. For some servers it is required to define a
special classpath to make sure that the PDFlib package will be found.

More detailed notes on using PDFlib with specific Servlet engines and application serv-
ers can be found in additional documentation in the J2EE directory of the PDFlib distri-
bution.

Error handling in Java. The Java binding installs a special error handler which trans-
lates PDFlib errors to native Java exceptions. In case of an exception PDFlib will throw a
native Java exception of the following class:

PDFlibException

The Java exceptions can be dealt with by the usual try/catch technique:

try {

...some PDFlib instructions...

} catch (PDFlibException e) {
 System.err.print("PDFlib exception occurred in hello sample:\n");
 System.err.print("[" + e.get_errnum() + "] " + e.get_apiname() +
 ": " + e.get_errmsg() + "\n");

} catch (Exception e) {
System.err.println(e.getMessage());

} finally {
if (p != null) {

p.delete(); /* delete the PDFlib object */
}

}

Since PDFlib declares appropriate throws clauses, client code must either catch all possi-
ble PDFlib exceptions, or declare those itself.

Unicode and legacy encoding conversion. For the convenience of PDFlib users we list
some useful string conversion methods here. Please refer to the Java documentation for
more details. The following constructor creates a Unicode string from a byte array, us-
ing the platform’s default encoding:

String(byte[] bytes)

The following constructor creates a Unicode string from a byte array, using the encod-
ing supplied in the enc parameter (e.g. SJIS, UTF8, UTF-16):

String(byte[] bytes, String enc)

The following method of the String class converts a Unicode string to a string according
to the encoding specified in the enc parameter:

byte[] getBytes(String enc)

38 Chapter 2: PDFlib Language Bindings

Javadoc documentation for PDFlib. The PDFlib package contains Javadoc documenta-
tion for PDFlib. The Javadoc contains only abbreviated descriptions of all PDFlib API
methods; please refer to the PDFlib API Reference for more details.

In order to configure Javadoc for PDFlib in Eclipse proceed as follows:
> In the Package Explorer right-click on the Java project and select Javadoc Location.
> Click on Browse... and select the path where the Javadoc (which is part of the PDFlib

package) is located.

After these steps you can browse the Javadoc for PDFlib, e.g. with the Java Browsing per-
spective or via the Help menu.

Using PDFlib with Groovy. The PDFlib Java binding can also be used with the Groovy
language. The API calls are identical to the Java calls; only the object instantiation is
slightly different. A simple example for using PDFlib with Groovy is contained in the
PDFlib distribution.

2.7 .NET Binding 39

2.7 .NET Binding
(This section is only included in the COM/.NET/REALbasic edition of the PDFlib tutorial.)

40 Chapter 2: PDFlib Language Bindings

2.8 Objective-C Binding
Although the C and C++ language bindings can be used with Objective-C1, a genuine lan-
guage binding for Objective-C is also available. The PDFlib framework is available in the
following flavors:

> PDFlib for use on Mac OS X
> PDFlib_ios for use on iOS

Both frameworks contain language bindings for C, C++, and Objective-C.

Installing the PDFlib Edition for Objective-C on Mac OS X. In order to use PDFlib in
your application you must copy PDFlib.framework or PDFlib_ios.framework to the directo-
ry /Library/Frameworks. Installing the PDFlib framework in a different location is possi-
ble, but requires use of Apple’s install_name_tool which is not described here. The PDFlib_
objc.h header file with PDFlib method declarations must be imported in the application
source code:

#import "PDFlib/PDFlib_objc.h"

or

#import "PDFlib_ios/PDFlib_objc.h"

Data types and parameter naming conventions. PDFlib expects the following Objec-
tive-C datatypes in its method interfaces: NSString (instead of string in C++), NSInteger
(instead of int), NSData (instead of const char *). For PDFlib method calls you must supply
parameters according to the following conventions:

> The value of the first parameter is provided directly after the method name, separat-
ed by a colon character.

> For each subsequent parameter the parameter’s name and its value (again separated
from each other by a colon character) must be provided. The parameter names can
be found in the PDFlib API Reference or in PDFlib_objc.h.

For example, the following line in the PDFlib API Reference:

void begin_page_ext(double width, double height, String optlist)

corresponds to the following Objective-C method:

- (void) begin_page_ext: (double) width height: (double) height optlist: (NSString *) optlist;

This means your application must make a call similar to the following:

[pdflib begin_page_ext:595.0 height:842.0 optlist:@""];

XCode Code Sense for code completion can be used with the PDFlib framework.

Error handling in Objective-C. The Objective-C binding installs a special error handler
which translates PDFlib errors to native Objective-C exceptions. In case of a runtime
problem PDFlib throws a native Objective-C exception of the class PDFlibException. These
exceptions can be handled with the usual try/catch mechanism:

1. See developer.apple.com/library/mac/#documentation/Cocoa/Conceptual/ObjectiveC/Introduction/
introObjectiveC.html

developer.apple.com/library/mac/#documentation/Cocoa/Conceptual/ObjectiveC/Introduction/introObjectiveC.html

developer.apple.com/library/mac/#documentation/Cocoa/Conceptual/ObjectiveC/Introduction/introObjectiveC.html

2.8 Objective-C Binding 41

@try {
...some PDFlib instructions...

}
@catch (PDFlibException *ex) {

NSString * errorMessage =
[NSString stringWithFormat:@"PDFlib error %d in '%@': %@",
[ex get_errnum], [ex get_apiname], [ex get_errmsg]];

NSAlert *alert = [[NSAlert alloc] init];
[alert setMessageText: errorMessage];
[alert runModal];
[alert release];

}
@catch (NSException *ex) {

NSAlert *alert = [[NSAlert alloc] init];
[alert setMessageText: [ex reason]];
[alert runModal];
[alert release];

}
@finally {

[pdflib release];
}

In addition to the get_errmsg method you can also use the reason field of the exception
object to retrieve the error message.

42 Chapter 2: PDFlib Language Bindings

2.9 Perl Binding
The PDFlib wrapper for Perl1 consists of a C wrapper file and two Perl package modules,
one for providing a Perl equivalent for each PDFlib API function and another one for the
PDFlib object. The C module is used to build a shared library which the Perl interpreter
loads at runtime, with some help from the package file. Perl scripts refer to the shared li-
brary module via a use statement.

Installing the PDFlib Perl Edition. The Perl extension mechanism loads shared libraries
at runtime through the DynaLoader module. The Perl executable must have been com-
piled with support for shared libraries (this is true for the majority of Perl configura-
tions).

For the PDFlib binding to work, the Perl interpreter must access the PDFlib Perl wrap-
per and the modules pdflib_pl.pm and PDFlib/PDFlib.pm. In addition to the platform-spe-
cific methods described below you can add a directory to Perl’s @INC module search
path using the -I command line option:

perl -I/path/to/pdflib hello.pl

Unix. Perl will search pdflib_pl.so (on Mac OS X: pdflib_pl.bundle) , pdflib_pl.pm and
PDFlib/PDFlib.pm in the current directory or the directory printed by the following Perl
command:

perl -e 'use Config; print $Config{sitearchexp};'

Perl will also search the subdirectory auto/pdflib_pl. Typical output of the above com-
mand looks like

/usr/lib/perl5/site_perl/5.8/i686-linux

Windows. PDFlib supports the ActiveState port of Perl 5 to Windows, also known as
ActivePerl.2 The DLL pdflib_pl.dll and the modules pdflib_pl.pm and PDFlib/PDFlib.pm will
be searched in the current directory or the directory printed by the following Perl com-
mand:

perl -e "use Config; print $Config{sitearchexp};"

Typical output of the above command looks like

C:\Program Files\Perl5.8\site\lib

Error Handling in Perl. The Perl binding installs a special error handler which trans-
lates PDFlib errors to native Perl exceptions. The Perl exceptions can be dealt with by ap-
plying the appropriate language constructs, i.e., by bracketing critical sections:

eval {
...some PDFlib instructions...

};
if ($@) {

die("$0: PDFlib Exception occurred:\n$@");
}

1. See www.perl.com
2. See www.activestate.com

http://www.perl.com

http://www.activestate.com

2.9 Perl Binding 43

More than one way of String handling. Depending on the requirements of your appli-
cation you can work with UTF-8, UTF-16, or legacy encodings. The following code snip-
pets demonstrate all three variants. All examples create the same Japanese output, but
accept the string input in different formats.

The first example works with Unicode UTF-8 and uses the Unicode::String module
which is part of most modern Perl distributions, and available on CPAN). Since Perl
works with UTF-8 internally no explicit UTF-8 conversion is required:

use Unicode::String qw(utf8 utf16 uhex);
...
$p->set_parameter("textformat", "utf8");
$font = $p->load_font("Arial Unicode MS", "unicode", "");
$p->setfont($font, 24.0);
$p->set_text_pos(50, 700);
$p->show(uhex("U+65E5 U+672C U+8A9E"));

The second example works with Unicode UTF-16 and little-endian byte order:

$p->set_parameter("textformat", "utf16le");
$font = $p->load_font("Arial Unicode MS", "unicode", "");
$p->setfont($font, 24.0);
$p->set_text_pos(50, 700);
$p->show("\xE5\x65\x2C\x67\x9E\x8A");

The third example works with Shift-JIS. Except on Windows systems it requires access to
the 90ms-RKSJ-H CMap for string conversion:

$p->set_parameter("SearchPath", "../../../resource/cmap");
$font = $p->load_font("Arial Unicode MS", "cp932", "");
$p->setfont($font, 24.0);
$p->set_text_pos(50, 700);
$p->show("\x93\xFA\x96\x7B\x8C\xEA");

Unicode and legacy encoding conversion. For the convenience of PDFlib users we list
some useful string conversion methods here. Please refer to the Perl documentation for
more details. The following constructor creates a UTF-16 Unicode string from a byte ar-
ray:

$logos="\x{039b}\x{03bf}\x{03b3}\x{03bf}\x{03c3}\x{0020}" ;

The following constructor creates a Unicode string from the Unicode character name:

$delta = "\N{GREEK CAPITAL LETTER DELTA}";

The Encode module supports many encodings and has interfaces for converting be-
tween those encodings:

use Encode 'decode';
$data = decode("iso-8859-3", $data); # convert from legacy to UTF-8

44 Chapter 2: PDFlib Language Bindings

2.10 PHP Binding
Note Detailed information about the various flavors and options for using PDFlib with PHP1,

including the question of whether or not to use a loadable PDFlib module for PHP, can
be found in the PDFlib-in-PHP-HowTo.pdf document which is contained in the distribu-
tion packages and also available on the PDFlib Web site.

Installing the PDFlib PHP Edition. You must configure PHP so that it knows about the
external PDFlib library. You have two choices:

> Add one of the following lines in php.ini:

extension=libpdf_php.so ; for Unix and Mac OS X
extension=libpdf_php.dll ; for Windows

PHP will search the library in the directory specified in the extension_dir variable in
php.ini on Unix, and additionally in the standard system directories on Windows.
You can test which version of the PHP PDFlib binding you have installed with the fol-
lowing one-line PHP script:

<?phpinfo()?>

This will display a long info page about your current PHP configuration. On this page
check the section titled pdf. If this section contains PDFlib GmbH Binary Version (and
the PDFlib version number) you are using the supported new PDFlib wrapper. The
unsupported old wrapper will display PDFlib GmbH Version instead.

> Load PDFlib at runtime with one of the following lines at the start of your script:

dl("libpdf_php.so"); # for Unix
dl("libpdf_php.dll"); # for Windows

Modified error return for PDFlib functions in PHP. Since PHP uses the convention of
returning the value 0 (FALSE) when an error occurs within a function, all PDFlib func-
tions have been adjusted to return 0 instead of -1 in case of an error. This difference is
noted in the function descriptions in the PDFlib API Reference. However, take care when
reading the code fragment examples in Section 3, »Creating PDF Documents«, page 53,
since they use the usual PDFlib convention of returning -1 in case of an error.

File name handling in PHP. Unqualified file names (without any path component) and
relative file names for PDF, image, font and other disk files are handled differently in
Unix and Windows versions of PHP:

> PHP on Unix systems will find files without any path component in the directory
where the script is located.

> PHP on Windows will find files without any path component only in the directory
where the PHP DLL is located.

In order to provide platform-independent file name handling the use of PDFlib’s
SearchPath facility is strongly recommended (see Section 3.1.3, »Resource Configuration
and File Search«, page 56).

Exception handling in PHP. Since PHP supports structured exception handling, PDFlib
exceptions will be propagated as PHP exceptions. PDFlib will throw an exception of the

1. See www.php.net

http://www.php.net

2.10 PHP Binding 45

class PDFlibException, which is derived from PHP’s standard Exception class. You can use
the standard try/catch technique to deal with PDFlib exceptions:

try {

...some PDFlib instructions...

} catch (PDFlibException $e) {
print "PDFlib exception occurred:\n";
print "[" . $e->get_errnum() . "] " . $e->get_apiname() . ": "

$e->get_errmsg() . "\n";
}
catch (Exception $e) {

print $e;
}

Unicode and legacy encoding conversion. The iconv module can be used for string con-
versions. Please refer to the PHP documentation for more details.

PDFlib development with Eclipse and Zend Studio. The PHP Development Tools (PDT)1
support PHP development with Eclipse and Zend Studio. PDT can be configured to sup-
port context-sensitive help with the steps outlined below.

Add PDFlib to the Eclipse preferences so that it will be known to all PHP projects:
> Select Window, Preferences, PHP, PHP Libraries, New... to launch a wizard.
> In User library name enter PDFlib, click Add External folder... and select the folder

bind\php\Eclipse PDT.

In an existing or new PHP project you can add a reference to the PDFlib library as fol-
lows:

> In the PHP Explorer right-click on the PHP project and select Include Path, Configure
Include Path...

> Go to the Libraries tab, click Add Library..., and select User Library, PDFlib.

After these steps you can explore the list of PDFlib methods under the PHP Include Path/
PDFlib/PDFlib node in the PHP Explorer view. When writing new PHP code Eclipse will as-
sist with code completion and context-sensitive help for all PDFlib methods.

1. See www.eclipse.org/pdt

http://www.eclipse.org/pdt/

46 Chapter 2: PDFlib Language Bindings

2.11 Python Binding
Installing the PDFlib Python Edition. The Python1 extension mechanism works by
loading shared libraries at runtime. For the PDFlib binding to work, the Python inter-
preter must have access to the PDFlib library for Python which will be searched in the
directories listed in the PYTHONPATH environment variable. The name of the Python
wrapper depends on the platform:

> Unix and Mac OS X: pdflib_py.so
> Windows: pdflib_py.pyd

In addition to the PDFlib library the following files must be available in the same direc-
tory where the libary sits:

> PDFlib/PDFlib.py
> PDFlib/__init__.py

Error Handling in Python. PDFlib installs an error handler which translates PDFlib ex-
ceptions to native Python exceptions. The Python exceptions can be dealt with by the
usual try/catch technique:

try:
...some PDFlib instructions...

except PDFlibException:
print("PDFlib exception occurred:\n[%d] %s: %s" %
((p.get_errnum()), p.get_apiname(), p.get_errmsg()))

finally:
p.delete()

1. See www.python.org

http://www.python.org

2.12 REALbasic Binding 47

2.12 REALbasic Binding
(This section is only included in the COM/.NET/REALbasic edition of the PDFlib tutorial.)

48 Chapter 2: PDFlib Language Bindings

2.13 RPG Binding
PDFlib provides a /copy module that defines all prototypes and some useful constants
needed to compile ILE-RPG programs with embedded PDFlib functions.

Unicode string handling. Since all functions provided by PDFlib use Unicode strings
with variable length as parameters, you have to use the %UCS2 builtin function to con-
vert a single-byte string to a Unicode string. All strings returned by PDFlib functions are
Unicode strings with variable length. Use the %CHAR builtin function to convert these
Unicode strings to single-byte strings.

Note The %CHAR and %UCS2 functions use the current job’s CCSID to convert strings from and to
Unicode. The examples provided with PDFlib are based on CCSID 37 (US EBCDIC). Some special
characters in option lists (e.g. { [] }) may not be translated correctly if you run the examples
under other codepages.

Since all strings are passed as variable length strings you must not pass the length pa-
rameters in various functions which expect explicit string lengths (the length of a vari-
able length string is stored in the first two bytes of the string).

Compiling and binding RPG Programs for PDFlib. Using PDFlib functions from RPG re-
quires the compiled PDFLIB and PDFLIB_RPG service programs. To include the PDFlib
definitions at compile time you have to specify the name of the /copy member in the D
specs of your ILE-RPG program:

d/copy QRPGLESRC,PDFLIB

If the PDFlib source file library is not on top of your library list you have to specify the li-
brary as well:

d/copy PDFsrclib/QRPGLESRC,PDFLIB

Before you start compiling your ILE-RPG program you have to create a binding directory
that includes the PDFLIB and PDFLIB_RPG service programs shipped with PDFlib. The
following example assumes that you want to create a binding directory called PDFLIB in
the library PDFLIB:

CRTBNDDIR BNDDIR(PDFLIB/PDFLIB) TEXT('PDFlib Binding Directory')

After creating the binding directory you need to add the PDFLIB and PDFLIB_RPG service
programs to your binding directory. The following example assumes that you want to
add the service program PDFLIB in the library PDFLIB to the binding directory created
earlier.

ADDBNDDIRE BNDDIR(PDFLIB/PDFLIB) OBJ((PDFLIB/PDFLIB *SRVPGM))
ADDBNDDIRE BNDDIR(PDFLIB/PDFLIB) OBJ((PDFLIB/PDFLIB_RPG *SRVPGM))

Now you can compile your program using the CRTBNDRPG command (or option 14 in
PDM):

CRTBNDRPG PGM(PDFLIB/HELLO) SRCFILE(PDFLIB/QRPGLESRC) SRCMBR(*PGM) DFTACTGRP(*NO)
BNDDIR(PDFLIB/PDFLIB)

2.13 RPG Binding 49

Error Handling in RPG. PDFlib clients written in ILE-RPG can use the monitor/on-error/
endmon error handling mechanism that ILE-RPG provides. Another way to monitor for
exceptions is to use the *PSSR global error handling subroutine in ILE-RPG. If an excep-
tion occurs, the job log shows the error number, the function that failed and the reason
for the exception. PDFlib sends an escape message to the calling program.

c eval p=PDF_new
*
c monitor
*
c eval doc=PDF_begin_document(p:%ucs2(’/tmp/my.pdf’):docoptlist)
:
:
* Error Handling
c on-error
* Do something with this error
* don’t forget to free the PDFlib object
c callp PDF_delete(p)
c endmon

50 Chapter 2: PDFlib Language Bindings

2.14 Ruby Binding
Installing the PDFlib Ruby edition. The Ruby1 extension mechanism works by loading
a shared library at runtime. For the PDFlib binding to work, the Ruby interpreter must
have access to the PDFlib extension library for Ruby. This library (on Windows and Unix:
PDFlib.so; on Mac OS X: PDFlib.bundle) will usually be installed in the site_ruby branch of
the local ruby installation directory, i.e. in a directory with a name similar to the follow-
ing:

/usr/local/lib/ruby/site_ruby/<version>/

However, Ruby will search other directories for extensions as well. In order to retrieve a
list of these directories you can use the following ruby call:

ruby -e "puts $:"

This list will usually include the current directory, so for testing purposes you can sim-
ply place the PDFlib extension library and the scripts in the same directory.

Error Handling in Ruby. The Ruby binding installs an error handler which translates
PDFlib exceptions to native Ruby exceptions. The Ruby exceptions can be dealt with by
the usual rescue technique:

begin
...some PDFlib instructions...

rescue PDFlibException => pe
print "PDFlib exception occurred in hello sample:\n"
print "[" + pe.get_errnum.to_s + "] " + pe.get_apiname + ": " + pe.get_errmsg + "\n"

end

Ruby on Rails. Ruby on Rails2 is an open-source framework which facilitates Web de-
velopment with Ruby. The PDFlib extension for Ruby can be used with Ruby on Rails.
Follow these steps to run the PDFlib examples for Ruby on Rails:

> Install Ruby and Ruby on Rails.
> Set up a new controller from the command line:

$ rails new pdflibdemo
$ cd pdflibdemo
$ cp <PDFlib dir>/bind/ruby/<version>/PDFlib.so vendor/ # use .so/.dll/.bundle
$ rails generate controller home demo
$ rm public/index.html

> Edit config/routes.rb:

...
remember to delete public/index.html
root :to => "home#demo"

> Edit app/controllers/home_controller.rb as follows and insert PDFlib code for creating
PDF contents. Keep in mind that the PDF output must be generated in memory, i.e.

1. See www.ruby-lang.org/en
2. See www.rubyonrails.org

http://www.ruby-lang.org/en

http://www.rubyonrails.org/

2.14 Ruby Binding 51

an empty file name must be supplied to begin_document(). As a starting point you
can use the code in the hello-rails.rb sample:

class HomeController < ApplicationController
def demo
require "PDFlib"
begin

p = PDFlib.new
...
...PDFlib application code, see hello-rails.rb...
...
send_data p.get_buffer(), :filename => "hello.pdf",
:type => "application/pdf", :disposition => "inline"
rescue PDFlibException => pe
error handling

end
end
end

> In order to test your installation start the WEBrick server with the command

$ rails s

and point your browser to http://0.0.0.0:3000. The generated PDF document will be
displayed in the browser.

Local PDFlib installation. If you want to use PDFlib only with Ruby on Rails, but cannot
install it globally for general use with Ruby, you can install PDFlib locally in the vendors
directory within the Rails tree. This is particularly useful if you do not have permission
to install Ruby extensions for general use, but want to work with PDFlib in Rails never-
theless.

52 Chapter 2: PDFlib Language Bindings

2.15 Tcl Binding
Installing the PDFlib Tcl edition. The Tcl 1extension mechanism works by loading
shared libraries at runtime. For the PDFlib binding to work, the Tcl shell must have ac-
cess to the PDFlib Tcl wrapper shared library and the package index file pkgIndex.tcl. You
can use the following idiom in your script to make the library available from a certain
directory (this may be useful if you want to deploy PDFlib on a machine where you
don’t have root privilege for installing PDFlib):

lappend auto_path /path/to/pdflib

Unix: the library pdflib_tcl.so (on Mac OS X: pdflib_tcl.dylib) must be placed in one of the
default locations for shared libraries, or in an appropriately configured directory. Usual-
ly both pkgIndex.tcl and pdflib_tcl.so will be placed in the directory

/usr/lib/tcl8.4/pdflib

Windows: the files pkgIndex.tcl and pdflib_tcl.dll will be searched for in the directories

C:\Program Files\Tcl\lib\pdflib
C:\Program Files\Tcl\lib\tcl8.4\pdflib

Error handling in Tcl. The Tcl binding installs a special error handler which translates
PDFlib errors to native Tcl exceptions. The Tcl exceptions can be dealt with by the usual
try/catch technique:

if [catch { ...some PDFlib instructions... } result] {
puts stderr "Exception caught!"
puts stderr $result

}

1. See www.tcl.tk

http://www.tcl.tk

3.1 General PDFlib Programming Aspects 53

3 Creating PDF Documents
3.1 General PDFlib Programming Aspects

Cookbook Code samples regarding general programming issues can be found in the general category of
the PDFlib Cookbook.

3.1.1 Exception Handling
Errors of a certain kind are called exceptions in many languages for good reasons – they
are mere exceptions, and are not expected to occur very often during the lifetime of a
program. The general strategy is to use conventional error reporting mechanisms (i.e.
special error return codes such as -1) for function calls which may often fail, and use a
special exception mechanism for those rare occasions which don’t warrant cluttering
the code with conditionals. This is exactly the path that PDFlib goes: Some operations
can be expected to go wrong rather frequently, for example:

> Trying to open an output file for which one doesn’t have permission
> Trying to open an input PDF with a wrong file name
> Trying to open a corrupt image file

PDFlib signals such errors by returning a special value (usually – 1, but 0 in the PHP
binding) as documented in the PDFlib API Reference. This error code must be checked by
the application developer for all functions which are documented to return -1 on error.

Other events may be considered harmful, but will occur rather infrequently, e.g.
> running out of virtual memory
> scope violations (e.g., closing a document before opening it)
> supplying wrong parameters to PDFlib API functions (e.g., trying to draw a circle with

negative radius), or supplying wrong options.

When PDFlib detects such a situation, an exception will be thrown instead of passing a
special error return value to the caller. It is important to understand that the generated
PDF document cannot be finished when an exception occurred. The only methods
which can safely be called after an exception are PDF_delete(), PDF_get_apiname(), PDF_
get_errnum(), and PDF_get_errmsg(). Calling any other PDFlib method after an exception
may lead to unexpected results. The exception will contain the following information:

> A unique error number;
> The name of the PDFlib API function which caused the exception;
> A descriptive text containing details of the problem.

Querying the reason of a failed function call. As noted above, the generated PDF out-
put document must always be abandoned when an exception occurs. Some clients,
however, may prefer to continue the document by adjusting the program flow or sup-
plying different data. For example, when a particular font cannot be loaded most clients
will give up the document, while others may prefer to work with a different font. In this
case it may be desirable to retrieve an error message which describes the problem in
more detail. In this situation the functions PDF_get_errnum(), PDF_get_errmsg(), and
PDF_get_apiname() can be called immediately after a failed function call, i.e., a function
call which returned a -1 (in PHP: 0) error value.

http://www.pdflib.com/pdflib-cookbook/general-programming

54 Chapter 3: Creating PDF Documents

Error policies. When PDFlib detects an error condition, it will react according to one of
several strategies which can be configured with the errorpolicy parameter. All functions
which can return error codes also support an errorpolicy option. The following error pol-
icies are supported:

> errorpolicy=legacy: this deprecated setting ensures behavior which is compatible to
earlier versions of PDFlib, where exceptions and error return values are controlled by
parameters and options such as fontwarning, imagewarning, etc. This is only recom-
mended for applications which require source code compatibility with PDFlib 6. It
should not be used for new applications. The legacy setting is the default error policy.

> errorpolicy=return: when an error condition is detected, the respective function will
return with a -1 (in PHP: 0) error value regardless of any warning parameters or op-
tions. The application developer must check the return value to identify problems,
and must react on the problem in whatever way is appropriate for the application.
This is the recommended approach since it allows a unified approach to error han-
dling.

> errorpolicy=exception: an exception will be thrown when an error condition is detect-
ed. However, the output document will be unusable after an exception. This can be
used for lazy programming without any error conditionals at the expense of sacrific-
ing the output document even for problems which may be fixable by the applica-
tion.

The following code fragments demonstrate different strategies with respect to excep-
tion handling. The examples try to load a font which may or may not be available.

If errorpolicy=return the return value must be checked for an error. If it indicates fail-
ure, the reason of the failure can be queried in order to properly deal with the situation:

font = p.load_font("MyFontName", "unicode", "errorpolicy=return");
if (font == -1)
{

/* font handle is invalid; find out what happened. */
errmsg = p.get_errmsg());
/* Try a different font or give up */
...

}
/* font handle is valid; continue */

If errorpolicy=exception the document must be abandoned if an error occurs:

font = p.load_font("MyFontName", "unicode", "errorpolicy=exception");
/* Unless an exception was thrown the font handle is valid;
* if an exception occurred, the PDF output cannot be continued
*/

Cookbook A full code sample can be found in the Cookbook topic general/error_handling.

Warnings. Some problem conditions can be detected by PDFlib internally, but do not
justify interrupting the program flow by throwing an exception. While earlier versions
of PDFlib supported the concept of non-fatal exceptions which can be disabled, PDFlib 7
never throws an exception for non-fatal conditions. Instead, a description of the condi-
tion will be logged (if logging is enabled). Logging can be enabled as follows:

p.set_parameter("logging", "filename=private.log");

http://www.pdflib.com/pdflib-cookbook/general-programming/error-handling

3.1 General PDFlib Programming Aspects 55

We recommend the following approach with respect to warnings:
> Enable warning logging in the development phase, and carefully study any warning

messages in the log file. They may point to potential problems in your code or data,
and you should try to understand or eliminate the reason for those warnings.

> Disable warning logging in the production phase, and re-enable it only in case of
problems.

3.1.2 The PDFlib Virtual File System (PVF)
Cookbook A full code sample can be found in the Cookbook topic general/starter_pvf.

In addition to disk files a facility called PDFlib Virtual File System (PVF) allows clients to di-
rectly supply data in memory without any disk files involved. This offers performance
benefits and can be used for data fetched from a database which does not even exist on
an isolated disk file, as well as other situations where the client already has the required
data available in memory as a result of some processing.

PVF is based on the concept of named virtual read-only files which can be used just
like regular file names with any API function. They can even be used in UPR configura-
tion files. Virtual file names can be generated in an arbitrary way by the client. Obvious-
ly, virtual file names must be chosen such that name clashes with regular disk files are
avoided. For this reason a hierarchical naming convention for virtual file names is rec-
ommended as follows (filename refers to a name chosen by the client which is unique in
the respective category). It is also recommended to keep standard file name suffixes:

> Raster image files: /pvf/image/filename
> font outline and metrics files (it is recommended to use the actual font name as the

base portion of the file name): /pvf/font/filename
> ICC profiles: /pvf/iccprofile/filename
> Encodings and codepages: /pvf/codepage/filename
> PDF documents: /pvf/pdf/filename

When searching for a named file PDFlib will first check whether the supplied file name
refers to a known virtual file, and then try to open the named file on disk.

Lifetime of virtual files. Some functions will immediately consume the data supplied
in a virtual file, while others will read only parts of the file, with other fragments being
used at a later point in time. For this reason close attention must be paid to the lifetime
of virtual files. PDFlib will place an internal lock on every virtual file, and remove the
lock only when the contents are no longer needed. Unless the client requested PDFlib to
make an immediate copy of the data (using the copy option in PDF_create_pvf()), the vir-
tual file’s contents must only be modified, deleted, or freed by the client when it is no
longer locked by PDFlib. PDFlib will automatically delete all virtual files in PDF_delete().
However, the actual file contents (the data comprising a virtual file) must always be
freed by the client.

Different strategies. PVF supports different approaches with respect to managing the
memory required for virtual files. These are governed by the fact that PDFlib may need
access to a virtual file’s contents after the API call which accepted the virtual file name,
but never needs access to the contents after PDF_close(). Remember that calling PDF_
delete_pvf() does not free the actual file contents (unless the copy option has been sup-

http://www.pdflib.com/pdflib-cookbook/general-programming/starter-pvf

56 Chapter 3: Creating PDF Documents

plied), but only the corresponding data structures used for PVF file name administra-
tion. This gives rise to the following strategies:

> Minimize memory usage: it is recommended to call PDF_delete_pvf() immediately af-
ter the API call which accepted the virtual file name, and another time after PDF_
close(). The second call is required because PDFlib may still need access to the data so
that the first call refuses to unlock the virtual file. However, in some cases the first
call will already free the data, and the second call doesn’t do any harm. The client
may free the file contents only when PDF_delete_pvf() succeeded.

> Optimize performance by reusing virtual files: some clients may wish to reuse some
data (e.g., font definitions) within various output documents, and avoid multiple
create/delete cycles for the same file contents. In this case it is recommended not to
call PDF_delete_pvf() as long as more PDF output documents using the virtual file
will be generated.

> Lazy programming: if memory usage is not a concern the client may elect not to call
PDF_delete_pvf() at all. In this case PDFlib will internally delete all pending virtual
files in PDF_delete().

In all cases the client may free the corresponding data only when PDF_delete_pvf() re-
turned successfully, or after PDF_delete().

Creating PDF output in a virtual file. In addition to supplying user data to PDFlib, PVF
can also hold the PDF document data generated by PDFlib. This can be achieved by sup-
plying the createpvf option to PDF_begin_document(). The PVF file name can later be sup-
plied to other PDFlib API functions. This is useful, for example, when generating PDF
documents for inclusion in a PDF Portfolio. It is not possible to directly retrieve the PVF
data created by PDFlib; use the active or passive in-core PDF generation interface to
fetch PDF data from memory (see Section 3.1.4, »Generating PDF Documents in Memo-
ry«, page 61).

3.1.3 Resource Configuration and File Search
In most advanced applications PDFlib needs access to resources such as font file, encod-
ing definition, ICC color profiles, etc. In order to make PDFlib’s resource handling plat-
form-independent and customizable, a configuration file can be supplied for describing
the available resources along with the names of their corresponding disk files. In addi-
tion to a static configuration file, dynamic configuration can be accomplished at run-
time by adding resources with PDF_set_parameter(). For the configuration file we dug
out a simple text format called Unix PostScript Resource (UPR) which came to life in the
era of Display PostScript, and is still in use on several systems. However, we extended
the original UPR format for our purposes. The UPR file format as used by PDFlib will be
described below. There is a utility called makepsres (often distributed as part of the X
Window System) which can be used to automatically generate UPR files from PostScript
font outline and metrics files.

Resource categories. The resource categories supported by PDFlib are listed in Table
3.1. Other resource categories will be ignored. The values are treated as name strings;
they can be encoded in ASCII or UTF-8 (with BOM). Unicode values may be useful for lo-
calized font names with the HostFont resource.

3.1 General PDFlib Programming Aspects 57

The UPR file format. UPR files are text files with a very simple structure that can easily
be written in a text editor or generated automatically. To start with, let’s take a look at
some syntactical issues:

> Lines can have a maximum of 1023 characters.
> A backslash character ’\’ at the end of a line cancels the line end. This may be used to

extend lines.
> A percent ’%’ character introduces a comment until the end of the line. Percent char-

acters which are part of the line data (i.e. which do not start a comment) must be pro-
tected with a preceding backslash character.

> Backslash characters in front of a backslash which protects the line end and back-
slash characters which protect a percent character must be duplicated if they are
part of the line data.

> An isolated period character ’ . ’ serves as a section terminator.
> All entries are case-sensitive.
> Whitespace is ignored everywhere except in resource names and file names.
> Resource names and values must not contain any equal character ’=’.
> If a resource is defined more than once, the last definition will overwrite earlier defi-

nitions.

UPR files consist of the following components:
> A magic line for identifying the file. It has the following form:

PS-Resources-1.0

> An optional section listing all resource categories described in the file. Each line de-
scribes one resource category. The list is terminated by a line with a single period
character. Available resource categories are described below.
If this optional section is not present, a single period character must be present nev-
ertheless.

> A section for each of the resource categories listed at the beginning of the file. Each
section starts with a line showing the resource category, followed by an arbitrary
number of lines describing available resources. The list is terminated by a line with a
single period character. Each resource data line contains the name of the resource
(equal signs have to be quoted). If the resource requires a file name, this name has to

Table 3.1 Resource categories supported in PDFlib

category format explanation

SearchPath value Relative or absolute path name of directories containing data files

CMap key=value CMap file for CJK encoding

FontAFM key=value PostScript font metrics file in AFM format

FontPFM key=value PostScript font metrics file in PFM format

FontOutline key=value PostScript, TrueType or OpenType font outline file

Encoding key=value text file containing an 8-bit encoding or code page table

HostFont key=value Name of a font installed on the system

ICCProfile key=value name of an ICC color profile

StandardOutputIntent key=value name of a standard output condition for PDF/X (in addition to those built
into PDFlib, see PDFlib API Reference for a complete list)

58 Chapter 3: Creating PDF Documents

be added after an equal sign. The SearchPath (see below) will be applied when PDFlib
searches for files listed in resource entries.

File search and the SearchPath resource category. PDFlib reads a variety of data items,
such as raster images, font outline and metrics information, encoding definitions, PDF
documents, and ICC color profiles from disk files. In addition to relative or absolute
path names you can also use file names without any path specification. The SearchPath
resource category can be used to specify a list of path names for directories containing
the required data files. When PDFlib must open a file it will first use the file name exact-
ly as supplied and try to open the file. If this attempt fails, PDFlib will try to open the file
in the directories specified in the SearchPath resource category one after another until it
succeeds. SearchPath entries can be accumulated, and will be searched in reverse order
(paths set at a later point in time will searched before earlier ones). This feature can be
used to free PDFlib applications from platform-specific file system schemes. You can set
search path entries as follows:

p.set_parameter("SearchPath", "/path/to/dir1");

p.set_parameter("SearchPath", "/path/to/dir2");

In order to disable the search you can use a fully specified path name in the PDFlib func-
tions. Note the following platform-specific features of the SearchPath resource category:

> On Windows PDFlib will initialize the SearchPath with entries from the registry. The
following registry entries may contain a list of path names separated by a semicolon
’;’ character. They will be searched in the order provided below:

HKLM\SOFTWARE\PDFlib\PDFlib8\8.0.6\SearchPath
HKLM\SOFTWARE\PDFlib\PDFlib8\SearchPath

HKLM\SOFTWARE\PDFlib\SearchPath

> On IBM iSeries the SearchPath resource category will be initialized with the following
values:

/PDFlib/PDFlib/8.0/resource/icc
/PDFlib/PDFlib/8.0/resource/fonts

/PDFlib/PDFlib/8.0/resource/cmap
/PDFlib/PDFlib/8.0

/PDFlib/PDFlib
/PDFlib

The last of these entries is especially useful for storing a license file for multiple
products.

> On OpenVMS logical names can be supplied as SearchPath.

Default file search paths. On Unix, Linux, Mac OS X and i5/iSeries systems some direc-
tories will be searched for files by default even without specifying any path and directo-
ry names. Before searching and reading the UPR file (which may contain additional
search paths), the following directories will be searched:

<rootpath>/PDFlib/PDFlib/8.0/resource/cmap
<rootpath>/PDFlib/PDFlib/8.0/resource/codelist
<rootpath>/PDFlib/PDFlib/8.0/resource/glyphlst
<rootpath>/PDFlib/PDFlib/8.0/resource/fonts
<rootpath>/PDFlib/PDFlib/8.0/resource/icc
<rootpath>/PDFlib/PDFlib/8.0

3.1 General PDFlib Programming Aspects 59

<rootpath>/PDFlib/PDFlib
<rootpath>/PDFlib

On Unix, Linux, and Mac OS X <roothpath> will first be replaced with /usr/local and then
with the HOME directory. On i5/iSeries <roothpath> is empty.

Default file names for license and resource files. By default, the following file names
are searched for in the default search path directories:

licensekeys.txt (license file; on MVS: license)
pdflib.upr (resource file)

This feature can be used to work with a license file without setting any environment
variable or runtime option.

Sample UPR file. The following listing gives an example of a UPR configuration file:

PS-Resources-1.0
.
SearchPath
/usr/local/lib/fonts
C:/psfonts/pfm
C:/psfonts
/users/kurt/my_images
.
FontAFM
Code-128=Code_128.afm
.
FontPFM
Corporate-Bold=corpb___.pfm
Mistral=c:/psfonts/pfm/mist____.pfm
.
FontOutline
Code-128=Code_128.pfa
ArialMT=Arial.ttf
.
HostFont
Wingdings=Wingdings
.
Encoding
myencoding=myencoding.enc
.
ICCProfile
highspeedprinter=cmykhighspeed.icc
.

Searching for the UPR resource file. If only the built-in resources (e.g., PDF core font,
built-in encodings, sRGB ICC profile) or system resources (host fonts) are to be used, a
UPR configuration file is not required since PDFlib will find all necessary resources with-
out any additional configuration.

If other resources are to be used you can specify such resources via calls to PDF_set_
parameter() (see below) or in a UPR resource file. PDFlib reads this file automatically
when the first resource is requested. The detailed process is as follows:

> On Unix systems, Mac OS X systems, and i5/iSeries some directories will be searched
by default for license and resource files even without specifying any path and direc-

60 Chapter 3: Creating PDF Documents

tory names. Before searching and reading the UPR file, the following directories will
be searched (in this order):

<rootpath>/PDFlib/PDFlib/8.0/resource/icc
<rootpath>/PDFlib/PDFlib/8.0/resource/fonts
<rootpath>/PDFlib/PDFlib/8.0/resource/cmap
<rootpath>/PDFlib/PDFlib/8.0
<rootpath>/PDFlib/PDFlib
<rootpath>/PDFlib

On Unix systems and Mac OS X <roothpath> will first be replaced with /usr/local and
then with the HOME directory. On i5/iSeries <roothpath> is empty. This feature can
be used to work with a license file, UPR file, or resources without setting any environ-
ment variables or runtime parameters.

> If the environment variable PDFLIBRESOURCE is defined PDFlib takes its value as the
name of the UPR file to be read. If this file cannot be read an exception will be
thrown.

> If the environment variable PDFLIBRESOURCE is not defined PDFlib tries to open a file
with the following name:

upr (on MVS; a dataset is expected)
pdflib/<version>/fonts/pdflib.upr (on IBM i5/iSeries)
pdflib.upr (Windows, Unix, and all other systems)

If this file cannot be read no exception will be thrown.
> On Windows PDFlib will additionally try to read the following registry entries which

will be searched in the order provided below:

HKLM\Software\PDFlib\PDFlib8\8.0.6\resourcefile
HKLM\Software\PDFlib\PDFlib8\resourcefile
HKLM\Software\PDFlib\resourcefile

The values of these entries will be taken as the name of the resource file to be used. If
this file cannot be read an exception will be thrown.
Be careful when manually accessing the registry on 64-bit Windows systems: as usu-
al, 64-bit PDFlib binaries will work with the 64-bit view of the Windows registry,
while 32-bit PDFlib binaries running on a 64-bit system will work with the 32-bit view
of the registry. If you must add registry keys for a 32-bit product manually, make
sure to use the 32-bit version of the regedit tool. It can be invoked as follows from the
Start, Run... dialog:

%systemroot%\syswow64\regedit

> The client can force PDFlib to read a resource file at runtime by explicitly setting the
resourcefile parameter:

p.set_parameter("resourcefile", "/path/to/pdflib.upr");

This call can be repeated arbitrarily often; the resource entries will be accumulated.

Configuring resources at runtime. In addition to using a UPR file for the configuration,
it is also possible to directly configure individual resources within the source code via
the PDF_set_parameter() function. This function takes a category name and a corre-
sponding resource entry as it would appear in the respective section of this category in
a UPR resource file, for example:

3.1 General PDFlib Programming Aspects 61

p.set_parameter("FontAFM", "Foobar-Bold=foobb___.afm");
p.set_parameter("FontOutline", "Foobar-Bold=foobb___.pfa");

Note Font configuration is discussed in more detail in Section 5.4.4, »Searching for Fonts«, page 126.

Querying resource values. In addition to setting resource entries you can query values
using PDF_get_parameter(). Specify the category name as key and the index in the list as
modifier. For example, the following call:

s = p.get_parameter("SearchPath", n);

will retrieve the n-th entry in the SearchPath list If n is larger than the number of avail-
able entries for the requested category an empty string will be returned. The returned
string is valid until the next call to any API function.

3.1.4 Generating PDF Documents in Memory
In addition to generating PDF documents on a file, PDFlib can also be instructed to gen-
erate the PDF directly in memory (in-core). This technique offers performance benefits
since no disk-based I/O is involved, and the PDF document can, for example, directly be
streamed via HTTP. Webmasters will be especially happy to hear that their server will
not be cluttered with temporary PDF files.

You may, at your option, periodically collect partial data (e.g., every time a page has
been finished), or fetch the complete PDF document in a single chunk at the end (after
PDF_end_document()). Interleaving production and consumption of the PDF data has
several advantages. Firstly, since not all data must be kept in memory, the memory re-
quirements are reduced. Secondly, such a scheme can boost performance since the first
chunk of data can be transmitted over a slow link while the next chunk is still being
generated. However, the total length of the generated data will only be known when the
complete document is finished.

You can use the createpvf option to create PDF data in memory and subsequently
pass it to PDFlib without writing a disk file (see »Creating PDF output in a virtual file«,
page 56).

The active in-core PDF generation interface. In order to generate PDF data in memory,
simply supply an empty filename to PDF_begin_document(), and retrieve the data with
PDF_get_buffer():

p.begin_document("", "");
...create document...
p.end_document("");

buf = p.get_buffer();
... use the PDF data contained in the buffer ...
p.delete();

Note The PDF data in the buffer must be treated as binary data.

This is considered »active« mode since the client decides when he wishes to fetch the
buffer contents. Active mode is available for all supported language bindings.

Note C and C++ clients must not free the returned buffer.

62 Chapter 3: Creating PDF Documents

The passive in-core PDF generation interface. In »passive« mode, which is only avail-
able in the C and C++ language bindings, the user installs (via PDF_open_document_
callback()) a callback function which will be called at unpredictable times by PDFlib
whenever PDF data is waiting to be consumed. Timing and buffer size constraints relat-
ed to flushing (transferring the PDF data from the library to the client) can be config-
ured by the client in order to provide for maximum flexibility. Depending on the envi-
ronment, it may be advantageous to fetch the complete PDF document at once, in
multiple chunks, or in many small segments in order to prevent PDFlib from increasing
the internal document buffer. The flushing strategy can be set using the flush option of
PDF_open_document_callback()).

3.1.5 Large PDF Documents
Although most users won’t see any need for PDF documents in the range of Gigabytes,
some enterprise applications must create or process documents containing a large
number of, say, invoices or statements. While PDFlib itself does not impose any limits
on the size of the generated documents, there are several restrictions mandated by the
PDF Reference and some PDF standards:

> 2 GB file size limit: The PDF/A-1 standard limits the file size to 2 GB. If a document
gets larger than this limit, PDFlib will throw an exception in PDF/A-1, PDF/X-4 and
PDF/X-5 mode. Otherwise documents beyond 2 GB can be created.

> 10 GB file size limit: PDF documents have traditionally been limited internally by the
cross-reference table to 10 decimal digits and therefore 1010-1 bytes, which equates to
roughly 9.3 GB. However, using compressed object streams this limit can be exceed-
ed. If you plan to create output documents beyond 10 GB you must set the object-
streams={other} option in PDF_begin_document(). This requires PDF 1.5 or above.
While compressed object streams will reduce the overall file size anyway, the com-
pressed cross-reference streams which are part of the objectstreams implementation
are no longer subject to the 10-decimal-digits limit, and therefore allow creation of
PDF documents beyond 10 GB.

> Number of objects: while the object count in a document is not limited by PDF in
general, the PDF/A-1, PDF/X-4 and PDF/X-5 standards limits the number of indirect
objects in a document to 8.388.607. If a document requires objects beyond this limit,
PDFlib will throw an exception in PDF/A-1, PDF/X-4 and PDF/X-5 mode. Otherwise
documents with more objects can be created. While the number of generated objects
can not directly be retrieved from PDFlib, the client application can save some ob-
jects by re-using image handles and loading images outside of page scope. The num-
ber of objects in PDF depends on the complexity of the page contents, number of in-
teractive elements, etc. Since typical high-volume documents with simple contents
require ca. 4-10 objects per page on average, documents with ca. 1-2 million pages can
be created without exceeding the object limit.

3.1.6 Using PDFlib on EBCDIC-based Platforms
The operators and structure elements in the PDF file format are based on ASCII which
doesn’t work well with EBCDIC-based platforms such as IBM iSeries and zSeries with the
z/OS, USS or MVS operating systems (but not zLinux which is based on ASCII). However,
a special mainframe version of PDFlib is available in order to allow mixing of ASCII-
based PDF operators and EBCDIC (or other) text output. The EBCDIC-safe version of
PDFlib is available for various operating systems and machine architectures.

3.1 General PDFlib Programming Aspects 63

In order to leverage PDFlib’s features on EBCDIC-based platforms the following items
are expected to be supplied in EBCDIC text format (more specifically, in code page 037
on iSeries, and code page 1047 on zSeries):

> PFA font files, UPR configuration files, AFM font metrics files
> encoding and code page files
> string parameters to PDFlib functions
> input and output file names
> environment variables (if supported by the runtime environment)
> PDFlib error messages will also be generated in EBCDIC format (except in Java).

If you prefer to use input text files (PFA, UPR, AFM, encodings) in ASCII format you can
set the asciifile parameter to true (default is false). PDFlib will then expect these files in
ASCII encoding. String parameters will still be expected in EBCDIC encoding, however.

In contrast, the following items must always be treated in binary mode (i.e., any con-
version must be avoided):

> PDF input and output files
> PFB font outline and PFM font metrics files
> TrueType and OpenType font files
> image files and ICC profiles

64 Chapter 3: Creating PDF Documents

3.2 Page Descriptions
3.2.1 Coordinate Systems

PDF’s default coordinate system is used within PDFlib. The default coordinate system
(or default user space) has the origin in the lower left corner of the page, and uses the
DTP point as unit:

1 pt = 1/72 inch = 25.4/72 mm = 0.3528 mm

The first coordinate increases to the right, the second coordinate increases upwards.
PDFlib client programs may change the default user space by rotating, scaling, translat-
ing, or skewing, resulting in new user coordinates. The respective functions for these
transformations are PDF_rotate(), PDF_scale(), PDF_translate(), and PDF_skew(). If the co-
ordinate system has been transformed, all coordinates in graphics and text functions
must be supplied according to the new coordinate system. The coordinate system is re-
set to the default coordinate system at the start of each page.

Using metric coordinates. Metric coordinates can easily be used by scaling the coor-
dinate system. The scaling factor is derived from the definition of the DTP point given
above:

p.scale(28.3465, 28.3465);

After this call PDFlib will interpret all coordinates (except for interactive features, see
below) in centimeters since 72/2.54 = 28.3465.

As a related feature, the userunit option in PDF_begin/end_page_ext() (PDF 1.6) can be
specified to supply a scaling factor for the whole page. Note that user units will only af-
fect final page display in Acrobat, but not any coordinate scaling in PDFlib.

Cookbook A full code sample can be found in the Cookbook topic general/metric_topdown_coordinates.

Coordinates for interactive elements. PDF always expects coordinates for interactive
functions, such as the rectangle coordinates for creating text annotations, links, and file
annotations in the default coordinate system, and not in the (possibly transformed)
user coordinate system. Since this is very cumbersome PDFlib offers automatic conver-
sion of user coordinates to the format expected by PDF. This automatic conversion is ac-
tivated by setting the usercoordinates parameter to true:

p.set_parameter("usercoordinates", "true");

Since PDF supports only link and field rectangles with edges parallel to the page edges,
the supplied rectangles must be modified when the coordinate system has been trans-
formed by scaling, rotating, translating, or skewing it. In this case PDFlib will calculate
the smallest enclosing rectangle with edges parallel to the page edges, transform it to
default coordinates, and use the resulting values instead of the supplied coordinates.

The overall effect is that you can use the same coordinate systems for both page con-
tent and interactive elements when the usercoordinates parameter has been set to true.

http://www.pdflib.com/pdflib-cookbook/general-programming/metric-topdown-coordinates

3.2 Page Descriptions 65

Visualizing coordinates. In order to assist PDFlib users in working with PDF’s coordi-
nate system, the PDFlib distribution contains the PDF file grid.pdf which visualizes the
coordinates for several common page sizes. Printing the appropriately sized page on
transparent material may provide a useful tool for preparing PDFlib development.

You can visualize page coordinates in Acrobat as follows:
> To display cursor coordinates use the following:

Acrobat X: View, Show/Hide, Cursor Coordinates
Acrobat 9: View, Cursor Coordinates
Acrobat 8: View, Navigation Tabs, Info

> The coordinates will be displayed in the unit which is currently selected in Acrobat.
To change the display units in Acrobat 8/9/X proceed as follows: go to Edit, Prefer-
ences, [General...], Units & Guides and choose one of Points, Inches, Millimeters, Picas,
Centimeters.

Note that the coordinates displayed refer to an origin in the top left corner of the page,
and not PDF’s default origin in the lower left corner. See »Using top-down coordinates«,
page 66, for details on selecting a coordinate system which aligns with Acrobat’s coordi-
nate display.

Don’t be mislead by PDF printouts which seem to experience wrong page dimen-
sions. These may be wrong because of some common reasons:

> The Page Scaling: option in Acrobat’s print dialog has a setting different from None,
resulting in scaled print output.

> Non-PostScript printer drivers are not always able to retain the exact size of printed
objects.

Rotating objects. It is important to understand that objects cannot be modified once
they have been drawn on the page. Although there are PDFlib functions for rotating,
translating, scaling, and skewing the coordinate system, these do not affect existing ob-
jects on the page but only subsequently drawn objects.

Rotating text, images, and imported PDF pages can easily be achieved with the rotate
option of PDF_fit_textline(), PDF_fit_textflow(), PDF_fit_image(), and PDF_fit_pdi_page().
Rotating such objects by multiples of 90 degrees inside the respective fitbox can be ac-
complished with the orientate option of these functions. The following example gener-
ates some text at an angle of 45˚ degrees:

p.fit_textline("Rotated text", 50.0, 700.0, "rotate=45");

Cookbook A full code sample can be found in the Cookbook topic text_output/rotated_text.

Rotation for vector graphics can be achieved by applying the general coordinate trans-
formation functions PDF_translate() and PDF_rotate(). The following example creates a
rotated rectangle with lower left corner at (200, 100). It translates the coordinate origin
to the desired corner of the rectangle, rotates the coordinate system, and places the rect-
angle at (0, 0). The save/restore nesting makes it easy to continue placing objects in the
original coordinate system after the rotated rectangle is done:

p.save();
p.translate(200, 100); /* move origin to corner of rectangle*/
p.rotate(45.0); /* rotate coordinates */
p.rect(0.0, 0.0, 75.0, 25.0); /* draw rotated rectangle */
p.stroke();

p.restore();

http://www.pdflib.com/pdflib-cookbook/text-output/rotated-text

66 Chapter 3: Creating PDF Documents

Using top-down coordinates. Unlike PDF’s bottom-up coordinate system some graph-
ics environments use top-down coordinates which may be preferred by some develop-
ers. Such a coordinate system can easily be established using PDFlib’s transformation
functions. However, since the transformations will also affect text output (text easily
appears bottom-up), additional calls are required in order to avoid text being displayed
in a mirrored sense.

In order to facilitate the use of top-down coordinates PDFlib supports a special mode
in which all relevant coordinates will be interpreted differently. The topdown feature
has been designed to make it quite natural for PDFlib users to work in a top-down coor-
dinate system. Instead of working with the default PDF coordinate system with the ori-
gin (0, 0) at the lower left corner of the page and y coordinates increasing upwards, a
modified coordinate system will be used which has its origin at the upper left corner of
the page with y coordinates increasing downwards. This top-down coordinate system
for a page can be activated with the topdown option of PDF_begin_page_ext():

p.begin_page_ext(595.0, 842.0, "topdown");

For the sake of completeness we’ll list the detailed consequences of establishing a top-
down coordinate system below.

»Absolute« coordinates will be interpreted in the user coordinate system without
any modification:

> All function parameters which are designated as »coordinates« in the function de-
scriptions. Some examples: x, y in PDF_moveto(); x, y in PDF_circle(), x, y (but not width
and height!) in PDF_rect(); llx, lly, urx, ury in PDF_create_annotation()).

»Relative« coordinate values will be modified internally to match the top-down system:
> Text (with positive font size) will be oriented towards the top of the page;
> When the manual talks about »lower left« corner of a rectangle, box etc. this will be

interpreted as you see it on the page;
> When a rotation angle is specified the center of the rotation is still the origin (0, 0) of

the user coordinate system. The visual result of a clockwise rotation will still be
clockwise.

Cookbook A full code sample can be found in the Cookbook topic general/metric_topdown_coordinates.

3.2.2 Page Size
Cookbook A full code sample can be found in the Cookbook topic pagination/page_sizes.

Standard page formats. Absolute values and symbolic page size names may be used
for the width and height options in PDF_begin/end_page_ext(). The latter are called
<format>.width and <format>.height, where <format> is one of the standard page formats
(in lowercase, e.g. a4.width).

Page size limits. Although PDF and PDFlib don’t impose any restrictions on the usable
page size, Acrobat implementations suffer from architectural limits regarding the page
size. Note that other PDF interpreters may well be able to deal with larger or smaller doc-
ument formats. The page size limits for Acrobat are shown in Table 3.2. In PDF 1.6 and
above the userunit option in PDF_begin/end_page_ext() can be used to specify a global
scaling factor for the page.

http://www.pdflib.com/pdflib-cookbook/general-programming/metric-topdown-coordinates

http://www.pdflib.com/pdflib-cookbook/pagination/page-sizes

3.2 Page Descriptions 67

Different page size boxes. While many PDFlib developers only specify the width and
height of a page, some advanced applications (especially for prepress work) may want
to specify one or more of PDF’s additional box entries. PDFlib supports all of PDF’s box
entries. The following entries, which may be useful in certain environments, can be
specified by PDFlib clients (definitions taken from the PDF reference):

> MediaBox: this is used to specify the width and height of a page, and describes what
we usually consider the page size.

> CropBox: the region to which the page contents are to be clipped; Acrobat uses this
size for screen display and printing.

> TrimBox: the intended dimensions of the finished (possibly cropped) page;
> ArtBox: extent of the page’s meaningful content. It is rarely used by application soft-

ware;
> BleedBox: the region to which the page contents are to be clipped when output in a

production environment. It may encompass additional bleed areas to account for in-
accuracies in the production process.

PDFlib will not use any of these values apart from recording it in the output file. By de-
fault PDFlib generates a MediaBox according to the specified width and height of the
page, but does not generate any of the other entries. The following code fragment will
start a new page and set the four values of the CropBox:

/* start a new page with custom CropBox */
p.begin_page_ext(595, 842, "cropbox={10 10 500 800}");

Number of pages in a document. There is no limit in PDFlib regarding the number of
generated pages in a document. PDFlib generates PDF structures which allow Acrobat to
efficiently navigate documents with hundreds of thousands of pages.

3.2.3 Direct Paths and Path Objects
A path is a shape made of an arbitrary number of straight lines, rectangles, circles, Bézi-
er curves, or elliptical segments. A path may consist of several disconnected sections,
called subpaths. There are several operations which can be applied to a path:

> Stroking draws a line along the path, using client-supplied parameters (e.g., color,
line width) for drawing.

> Filling paints the entire region enclosed by the path, using client-supplied parame-
ters for filling.

> Clipping reduces the imageable area for subsequent drawing operations by replacing
the current clipping area (which is unlimited by default) with the intersection of the
current clipping area and the area enclosed by the path.

> Merely terminating the path results in an invisible path, which will nevertheless be
present in the PDF file. This will only rarely be useful.

Table 3.2 Minimum and maximum page size of Acrobat

PDF viewer minimum page size maximum page size

Acrobat 4 and above 1/24" = 3 pt = 0.106 cm 200" = 14400 pt = 508 cm

Acrobat 7 and above with
the userunit option

3 user units 14 400 user units
The maximum value 75 000 for userunit allows page sizes
up to 14 400 * 75 000 = 1 080 000 000 points = 381 km

68 Chapter 3: Creating PDF Documents

Direct Paths. Using the path functions PDF_moveto(), PDF_lineto(), PDF_rect() etc. you
can construct a direct path which will immediately be written to the current page or an-
other content stream (e.g. a template or Type 3 glyph description). Immediately after
constructing the path it must be processed with one of PDF_stroke (), PDF_fill(), PDF_
clip() and related functions. These functions will consume and delete the path. The only
way to use a path multiply is with PDF_save() and PDF_restore().
It is an error to construct a direct path without applying any of the above operations to
it. PDFlib’s scoping system ensures that clients obey to this restriction. If you want to set
any appearance properties (e.g. color, line width) of a path you must do so before start-
ing any drawing operations. These rules can be summarized as »don’t change the ap-
pearance within a path description«.

Merely constructing a path doesn’t result in anything showing up on the page; you
must either fill or stroke the path in order to get visible results:

p.setcolor("stroke", "rgb", 1, 0, 0, 0);
p.moveto(100, 100);
p.lineto(200, 100);
p.stroke();

Most graphics functions make use of the concept of a current point, which can be
thought of as the location of the pen used for drawing.

Cookbook A full code sample can be found in the Cookbook topic graphics/starter_graphics.

Path objects. Path objects are more convenient and powerful alternative to direct
paths. Path objects encapsulate all drawing operations for constructing the path. Path
objects can be created with PDF_add_path_point() or extracted from an image file which
includes an image clipping path (see below). PDF_add_path_point() supports several
convenience options to facilitate path construction. Once a path object has been created
it can be used for different purposes:

> The path object can be used on the page description with PDF_draw_path(), i.e. filled,
stroked, or used as a clipping path.

> Path objects can be used as wrap shapes for Textflow: the text will be formatted so
that it wraps inside or outside of an arbitrary shape (see Section 8.2.10, »Wrapping
Text around Paths and Images«, page 217).

> Text can also be placed on a path, i.e. the characters follow the lines and curves of the
path (see Section 8.1.7, »Text on a Path«, page 199).

> Path objects can be placed in table cells.

Unlike direct paths, path objects can be used multiply until they are explicitly de-
stroyed with PDF_delete_path(). Information about a path can be retrieved with PDF_
info_path(). The following code fragment creates a simple path shape with a circle,
strokes it at two different locations on the page, and finally deletes it:

path = p.add_path_point(-1, 0, 100, "move", "");
path = p.add_path_point(path, 200, 100, "control", "");
path = p.add_path_point(path, 0, 100, "circular", "");

p.draw_path(path, 0, 0, "stroke");
p.draw_path(path, 400, 500, "stroke");
p.delete_path(path);

http://www.pdflib.com/pdflib-cookbook/graphics/starter-graphics

3.2 Page Descriptions 69

Instead of creating a path object with individual drawing operations you can extract the
clipping path from an imported image:

image = p.load_image("auto", "image.tif", "clippingpathname={path 1}");

/* create a path object from the image’s clipping path */
path = (int) p.info_image(image, "clippingpath", "");
if (path == -1)

throw new Exception("Error: clipping path not found!");

p.draw_path(path, 0, 0, "stroke");

3.2.4 Templates

Templates in PDF. PDFlib supports a PDF feature with the technical name Form
XObjects. However, since this term conflicts with interactive forms we refer to this fea-
ture as templates. A PDFlib template can be thought of as an off-page buffer into which
text, vector, and image operations are redirected (instead of acting on a regular page).
After the template is finished it can be used much like a raster image, and placed an ar-
bitrary number of times on arbitrary pages. Like images, templates can be subjected to
geometrical transformations such as scaling or skewing. When a template is used on
multiple pages (or multiply on the same page), the actual PDF operators for construct-
ing the template are only included once in the PDF file, thereby saving PDF output file
size. Templates suggest themselves for elements which appear repeatedly on several
pages, such as a constant background, a company logo, or graphical elements emitted
by CAD and geographical mapping software. Other typical examples for template usage
include crop and registration marks or custom Asian glyphs.

Using templates with PDFlib. Templates can only be defined outside of a page descrip-
tion, and can be used within a page description. However, templates may also contain
other templates. Obviously, using a template within its own definition is not possible.
Referring to an already defined template on a page is achieved with the PDF_fit_image()
function just like images are placed on the page (see Section 7.3, »Placing Images and
imported PDF Pages«, page 186). The general template idiom in PDFlib looks as follows:

/* define the template */
template = p.begin_template_ext(template_width, template_height, "");
...place marks on the template using text, vector, and image functions...
p.end_template_ext(0, 0);
...
p.begin_page(page_width, page_height);
/* use the template */
p.fit_image(template, 0.0, 0.0, "");
...more page marking operations...
p.end_page();
...
p.close_image(template);

All text, graphics, and color functions can be used on a template. However, the follow-
ing functions must not be used while constructing a template:

> PDF_load_image(): images must be loaded outside of a template definition, but can
be used within a template.

70 Chapter 3: Creating PDF Documents

> PDF_begin_pattern(), PDF_shading_pattern(), PDF_shading(): patterns and shadings
must be defined outside the template, but can be used within the template.

> PDF_begin_item() and tag option of various functions: structure elements cannot be
created within a template.

> All interactive functions, since these must always be defined on the page where they
should appear in the document, and cannot be generated as part of a template.

Cookbook A full code sample can be found in the Cookbook topic general/repeated_contents.

3.2.5 Referenced Pages from an external PDF Document
Cookbook A full code sample can be found in the Cookbook topic pdfx/starter_pdfx5g.

PDF documents can contain references to pages in external documents: the (scaled or
rotated) reference page is not part of the document, it will be displayed and printed just
like other page content. This can be used to reference re-used graphical contents (e.g.
logos or cover pages) without including the corresponding PDF data. PDFlib supports
strong references, i.e. references where the referenced page is identified via internal
metadata. If the referenced page is not available or does not match the expected meta-
data, a proxy image will be displayed instead of the referenced page.

Using referenced pages in Acrobat. Although referenced pages (the technical term is
Reference XObjects) have already been specified in PDF 1.4 (i.e. the file format of
Acrobat 5), they require Acrobat 9 or above for proper display and printing. Referenced
pages are a crucial component of PDF/X-5g and PDF/X-5pg. The generated (new) docu-
ment is called the container document; the external PDF document with the referenced
page is called the target file.

In order to use referenced pages with Acrobat 9 or X it is important to properly con-
figure Acrobat as follows:

> Edit, Preferences, General..., Page Display, Show reference XObject targets: set to Always
(the setting Only PDF-X/5 compliant ones doesn’t work due to a bug in Acrobat).

> Edit, Preferences, General..., Page Display, Location of referenced files: enter the name of
the directory where the target files live.

> Edit, Preferences, General..., Security (Enhanced), Privileged Locations, Add Folder Path: add
the name of the directory where the container documents live. This must be done re-
gardless of the Enable Enhanced Security setting.

The target page, whose file name and page number are specified inside the container
PDF, will be displayed instead of the proxy if all of the following conditions are true:

> The container document is trusted according to Acrobat’s configuration;
> The target file can be found in the specified directory;
> The target file does not require any password and can be opened without errors.
> The page number of the referenced page specified in the container document exists

in the target file.
> PDF/X-5 only: the ID and certain XMP metadata entries in the target must match the

corresponding entries in the container document.

If one or more of these conditions are violated, the proxy will silently be displayed in-
stead of the target page. Acrobat will not issue any error message.

http://www.pdflib.com/pdflib-cookbook/general-programming/repeated-contents

http://www.pdflib.com/pdflib-cookbook/pdfx/starter_pdfx5g

3.2 Page Descriptions 71

Proxy for the target page. PDFlib can use one of the following objects as placeholder
(proxy) for the reference page:

> Another imported PDF page (e.g. a simplified version of the target). A PDF page which
serves as a proxy for an external target must have the same page geometry as the
target page.

> A template, e.g. a simple geometric shape such as a crossed-out rectangle. Templates
will be adjusted to the size and aspect ratio of the target page.

The following code segment constructs a proxy template with a reference to an external
page:

proxy = p.begin_template_ext(0, 0,
"reference={filename=target.pdf pagenumber=1 strongref=true}");

if (proxy == -1)
{

/* Error */
}
...construct template contents...
p.end_template_ext(0, 0);

The proxy can be placed on the page as usual. It will carry the reference to the external
target.

72 Chapter 3: Creating PDF Documents

3.3 Encrypted PDF
3.3.1 PDF Security Features

PDF supports various security features which aid in protecting document contents.
They are based on Acrobat’s standard encryption handler which uses symmetric en-
cryption. Adobe Reader and Adobe Acrobat support the following security features:

> Permissions restrict certain actions for the PDF document, such as printing or ex-
tracting text.

> The user password is required to open the file.
> The master password is required to change any security settings, i.e. permissions,

user or master password. Files with user and master passwords can be opened for
reading or printing with either password.

> (PDF 1.6) Attachments can be encrypted even in otherwise unprotected documents.

If a file has a user or master password or any permission restrictions set, it will be en-
crypted.

Access permissions. Setting some access restriction, such as printing prohibited will dis-
able the respective function in Acrobat. However, this not necessarily holds true for
third-party PDF viewers or other software. It is up to the developer of PDF tools whether
or not access permissions will be honored. Indeed, several PDF tools are known to ignore
permission settings altogether; commercially available PDF cracking tools can be used
to disable any access restrictions. This has nothing to do with cracking the encryption;
there is simply no way that a PDF file can make sure it won’t be printed while it still re-
mains viewable. This is actually documented in Adobe’s own PDF reference:

There is nothing inherent in PDF encryption that enforces the document permissions speci-
fied in the encryption dictionary. It is up to the implementors of PDF viewers to respect the in-
tent of the document creator by restricting user access to an encrypted PDF file according to
the permissions contained in the file.

Unicode passwords. PDF 1.7 extension level 3 (Acrobat 9) supports Unicode passwords.
While earlier versions support only passwords with characters in WinAnsi encoding,
PDF 1.7 extension level 3 allows arbitrary Unicode characters for the user and master
passwords.

Good and bad passwords. The strength of PDF encryption is not only determined by
the length of the encryption key, but also by the length and quality of the password. It is
widely known that names, plain words, etc. should not be used as passwords since these
can easily be guessed or systematically tried using a so-called dictionary attack. Surveys
have shown that a significant number of passwords are chosen to be the spouse’s or
pet’s name, the user’s birthday, the children’s nickname etc., and can therefore easily be
guessed.

While PDF encryption internally works with 40-256 bit key length, on the user level
passwords of up to 32 characters are used up to PDF 1.7, and passwords with up to 127
UTF-8 bytes with PDF 1.7 extension level 3. The internal key which is used to encrypt the
PDF document is derived from the user-supplied password by applying some compli-
cated calculations. If the password is weak, the resulting protection will be weak as well,
regardless of the key length. Even long keys and AES encryption are not very secure if
short passwords are used.

3.3 Encrypted PDF 73

3.3.2 Protecting Documents with PDFlib

Encryption algorithm and key length. When creating protected documents PDFlib will
use the strongest possible encryption and key length which are possible with the PDF
compatibility level chosen by the client:

> For PDF 1.3 (Acrobat 4) RC4 with 40-bit keys is used.
> For PDF 1.4 (Acrobat 5) RC4 with 128-bit keys is used.
> For PDF 1.5 (Acrobat 6) RC4 with 128-bit keys is used. This is the same key length as

with PDF 1.4, but a slightly different encryption method will be used which requires
Acrobat 6.

> For PDF 1.6 (Acrobat 7) and above the Advanced Encryption Standard (AES) with 128-
bit keys will be used.

> For PDF 1.7 extension level 3 (Acrobat 9) the Advanced Encryption Standard (AES)
with 256-bit keys will be used. This version also allows Unicode passwords, while all
earlier algorithms support only passwords with characters in WinAnsi encoding.

Passwords. Passwords can be set with the userpassword and masterpassword options in
PDF_begin_document(). PDFlib interacts with the client-supplied passwords in the fol-
lowing ways:

> If a user password or permissions (see below), but no master password has been sup-
plied, a regular user would be able to change the security settings. For this reason
PDFlib considers this situation as an error.

> If user and master password are the same, a distinction between user and owner of
the file would no longer be possible, again defeating effective protection. PDFlib con-
siders this situation as an error.

> For both user and master passwords up to 32 characters are accepted. Empty pass-
words are not allowed.

The supplied passwords will be used for all subsequently generated documents.

Security recommendations. For maximum security we recommend the following:
> Use AES encryption unless you must support older viewers than Acrobat 7.
> Documents which have only a master password, but no user password, can always be

cracked. You should therefore consider applying a user password (but of course the
user password must be available to legitimate users of the document).

> Passwords should be at least eight characters long and should contain non-alphabet-
ic characters. Words which can be found in dictionaries and the names of people or
places should not be used as passwords.

Permissions. Access restrictions can be set with the permissions option in PDF_begin_
document(). It contains one or more access restriction keywords. When setting the
permissions option the masterpassword option must also be set, because otherwise Acro-
bat users could easily remove the permission settings. By default, all actions are al-
lowed. Specifying an access restriction will disable the respective feature in Acrobat. Ac-
cess restrictions can be applied without any user password. Multiple restriction
keywords can be specified as in the following example:

p.begin_document(filename, "masterpassword=abcd1234 permissions={noprint nocopy}");

Table 3.3 lists all supported access restriction keywords.

74 Chapter 3: Creating PDF Documents

Cookbook A full code sample can be found in the Cookbook topic general/permission_settings.

Note When serving PDFs over the Web, clients can always produce a local copy of the document
with their browser. There is no way for a PDF to prevent users from saving a local copy.

Encrypted file attachments. In PDF 1.6 and above file attachments can be encrypted
even in otherwise unprotected documents. This can be achieved by supplying the
attachmentpassword option to PDF_begin_document().

Table 3.3 Access restriction keywords for the permissions option in PDF_begin_document()

keyword explanation

noprint Acrobat will prevent printing the file.

nomodify Acrobat will prevent editing or cropping pages and creating or changing form fields.

nocopy Acrobat will prevent copying and extracting text or graphics; the accessibility interface will be
controlled by noaccessible.

noannots Acrobat will prevent creating or changing annotations and form fields.

noforms (PDF 1.4; implies nomodify and noannots) Acrobat will prevent form field filling.

noaccessible (PDF 1.4) Acrobat will prevent extracting text or graphics for accessibility purposes (such as a
screenreader program).

noassemble (PDF 1.4; implies nomodify) Acrobat will prevent inserting, deleting, or rotating pages and
creating bookmarks and thumbnails.

nohiresprint (PDF 1.4) Acrobat will prevent high-resolution printing. If noprint isn’t set, printing is restricted to
the »print as image« feature which prints a low-resolution rendition of the page.

plainmetadata (PDF 1.5) Keep XMP document metadata unencrypted even for encrypted documents.

http://www.pdflib.com/pdflib-cookbook/general-programming/permission-settings

3.4 Web-Optimized (Linearized) PDF 75

3.4 Web-Optimized (Linearized) PDF
PDFlib can apply a process called linearization to PDF documents (linearized PDF is also
called Optimized or Fast Web View). Linearization reorganizes the objects within a PDF
file and adds supplemental information which can be used for faster access.

While non-linearized PDFs must be fully transferred to the client, a Web server can
transfer linearized PDF documents one page at a time using a process called byte-
serving. It allows Acrobat (running as a browser plugin) to retrieve individual parts of a
PDF document separately. The result is that the first page of the document will be pre-
sented to the user without having to wait for the full document to download from the
server. This provides enhanced user experience.

Note that the Web server streams PDF data to the browser, not PDFlib. Instead, PDFlib
prepares the PDF files for byteserving. All of the following requirements must be met in
order to take advantage of byteserving PDFs:

> The PDF document must be linearized. This can be achieved with the linearize option
in PDF_begin_document() as follows:

p.begin_document(outfilename, "linearize");

In Acrobat you can check whether a file is linearized by looking at its document
properties (»Fast Web View: yes«).

> The Web server must support byteserving. The underlying byterange protocol is part
of HTTP 1.1 and therefore implemented in all current Web servers.

> The user must use Acrobat as a Browser plugin, and have page-at-a-time download
enabled in Acrobat (Edit, Preferences, [General...,] Internet, Allow fast web view). Note
that this is enabled by default.

The larger a PDF file (measured in pages or MB), the more it will benefit from lineariza-
tion when delivered over the Web.

Note Linearizing a PDF document generally slightly increases its file size due to the additional linear-
ization information.

Temporary storage requirements for linearization. PDFlib must create the full docu-
ment before it can be linearized; the linearization process will be applied in a separate
step after the document has been created. For this reason PDFlib has additional storage
requirements for linearization. Temporary storage will be required which has roughly
the same size as the generated document (without linearization). Subject to the
inmemory option in PDF_begin_document() PDFlib will place the linearization data either
in memory or on a temporary disk file.

76 Chapter 3: Creating PDF Documents

3.5 Working with Color
Note The PDFlib API Reference contains a detailed list of supported color spaces with descriptions.

Cookbook Code samples regarding color issues can be found in the color category of the PDFlib Cook-
book. For an overview of using color spaces, see the Cookbook topic color/starter_color.

3.5.1 Patterns and Smooth Shadings
As an alternative to solid colors, patterns and shadings are special kinds of colors which
can be used to fill or stroke arbitrary objects.

Patterns. A pattern is defined by an arbitrary number of painting operations which
are grouped into a single entity. This group of objects can be used to fill or stroke arbi-
trary other objects by replicating (or tiling) the group over the entire area to be filled or
the path to be stroked. Working with patterns involves the following steps:

> First, the pattern must be defined between PDF_begin_pattern() and PDF_end_
pattern(). Most graphics operators can be used to define a pattern.

> The pattern handle returned by PDF_begin_pattern() can be used to set the pattern as
the current color using PDF_setcolor().

Depending on the painttype parameter of PDF_begin_pattern() the pattern definition
may or may not include its own color specification. If painttype is 1, the pattern defini-
tion must contain its own color specification and will always look the same; if painttype
is 2, the pattern definition must not include any color specification. Instead, the current
fill or stroke color will be applied when the pattern is used for filling or stroking.

Note Patterns can also be defined based on a smooth shading (see below).

Cookbook Full code samples can be found in the Cookbook topics graphics/fill_pattern and
images/tiling_pattern.

Smooth shadings. Smooth shadings, also called color blends or gradients, provide a
continuous transition from one color to another. Both colors must be specified in the
same color space. PDFlib supports two different kinds of geometry for smooth shadings:

> axial shadings are defined along a line;
> radial shadings are defined between two circles.

Shadings are defined as a transition between two colors. The first color is always taken
to be the current fill color; the second color is provided in the c1, c2, c3, and c4 parameters
of PDF_shading(). These numerical values will be interpreted in the first color’s color
space according to the description of PDF_setcolor().

Calling PDF_shading() will return a handle to a shading object which can be used in
two ways:

> Fill an area with PDF_shfill(). This method can be used when the geometry of the ob-
ject to be filled is the same as the geometry of the shading. Contrary to its name this
function will not only fill the interior of the object, but also affects the exterior. This
behavior can be modified with PDF_clip().

> Define a shading pattern to be used for filling more complex objects. This involves
calling PDF_shading_pattern() to create a pattern based on the shading, and using
this pattern to fill or stroke arbitrary objects.

http://www.pdflib.com/pdflib-cookbook/color

http://www.pdflib.com/pdflib-cookbook/graphics/fill-pattern

http://www.pdflib.com/pdflib-cookbook/images/tiling-pattern

http://www.pdflib.com/pdflib-cookbook/color/starter-color

3.5 Working with Color 77

Cookbook A full code sample can be found in the Cookbook topic color/color_gradient.

3.5.2 Pantone, HKS, and custom Spot Colors
PDFlib supports spot colors (technically known as Separation color space in PDF, al-
though the term separation is generally used with process colors, too) which can be
used to print custom colors outside the range of colors mixed from process colors. Spot
colors are specified by name, and in PDF are always accompanied by an alternate color
which closely, but not exactly, resembles the spot color. Acrobat will use the alternate
color for screen display and printing to devices which do not support spot colors (such
as office printers). On the printing press the requested spot color will be applied in addi-
tion to any process colors which may be used in the document. This requires the PDF
files to be post-processed by a process called color separation.

PDFlib supports various built-in spot color libraries as well as custom (user-defined)
spot colors. When a spot color name is requested with PDF_makespotcolor() PDFlib will
first check whether the requested spot color can be found in one of its built-in libraries.
If so, PDFlib will use built-in values for the alternate color. Otherwise the spot color is as-
sumed to be a user-defined color, and the client must supply appropriate alternate col-
or values (via the current color). Spot colors can be tinted, i.e., they can be used with a
percentage between 0 and 1.

By default, built-in spot colors can not be redefined with custom alternate values.
However, this behavior can be changed with the spotcolorlookup parameter. This can be
useful to achieve compatibility with older applications which may use different color
definitions, and for workflows which cannot deal with PDFlib’s Lab alternate values for
PANTONE colors.

PDFlib will automatically generate suitable alternate colors for built-in spot colors
when a PDF/X or PDF/A conformance level has been selected (see Section 10.3, »PDF/X
for Print Production«, page 247). For custom spot colors it is the user’s responsibility to
provide alternate colors which are compatible with the selected PDF/X or PDF/A con-
formance level.

Note Built-in spot color data and the corresponding trademarks have been licensed by PDFlib GmbH
from the respective trademark owners for use in PDFlib software.

Cookbook A full code sample can be found in the Cookbook topic color/spot_color.

PANTONE® colors. PANTONE colors are well-known and
widely used on a world-wide basis. PDFlib fully supports the
Pantone Matching System® (totalling ca. 26 000 swatches),
plus the Pantone® Goe™ System which was introduced in
2008 with 2058 additional colors in coated/uncoated vari-
ants. All color swatch names from the digital color libraries
listed in Table 3.4 can be used. Commercial PDFlib customers
can request a text file with the full list of PANTONE spot color
names from our support.

Spot color names are case-sensitive; use uppercase as shown in the examples. Old
color name prefixes CV, CVV, CVU, CVC, and CVP will also be accepted, and changed to
the corresponding new color names unless the preserveoldpantonenames parameter is
true. The PANTONE prefix must always be provided in the swatch name as shown in the

http://www.pdflib.com/pdflib-cookbook/color/color-gradient

http://www.pdflib.com/pdflib-cookbook/color/spot-color

78 Chapter 3: Creating PDF Documents

examples. Generally, PANTONE color names must be constructed according to the fol-
lowing scheme:

PANTONE <id> <paperstock>

where <id> is the identifier of the color (e.g., 185) and <paperstock> the abbreviation of the
paper stock in use (e.g., C for coated). A single space character must be provided between
all components constituting the swatch name. If a spot color is requested where the
name starts with the PANTONE prefix, but the name does not represent a valid PANTONE
color a warning is logged. The following code snippet demonstrates the use of a PAN-

TONE color with a tint value of 70 percent:

spot = p.makespotcolor("PANTONE 281 U");
p.setcolor("fill", "spot", spot, 0.7, 0, 0);

Note PANTONE® colors displayed here may not match PANTONE-identified standards. Consult cur-
rent PANTONE Color Publications for accurate color. PANTONE® and other Pantone, Inc. trade-
marks are the property of Pantone, Inc. © Pantone, Inc., 2003.

Note PANTONE® colors are not supported in PDF/X-1a mode.

Table 3.4 PANTONE spot color libraries built into PDFlib

color library name sample color name remarks

PANTONE solid coated PANTONE 185 C

PANTONE solid uncoated PANTONE 185 U

PANTONE solid matte PANTONE 185 M

PANTONE process coated PANTONE DS 35-1 C

PANTONE process uncoated PANTONE DS 35-1 U

PANTONE process coated EURO PANTONE DE 35-1 C

PANTONE process uncoated EURO PANTONE DE 35-1 U introduced in May 2006

PANTONE pastel coated PANTONE 9461 C includes new colors introduced in 2006

PANTONE pastel uncoated PANTONE 9461 U includes new colors introduced in 2006

PANTONE metallic coated PANTONE 871 C includes new colors introduced in 2006

PANTONE color bridge CMYK PC PANTONE 185 PC replaces PANTONE solid to process coated

PANTONE color bridge CMYK EURO PANTONE 185 EC replaces PANTONE solid to process coated EURO

PANTONE color bridge uncoated PANTONE 185 UP introduced in July 2006

PANTONE hexachrome coated PANTONE H 305-1 C not recommended; will be discontinued

PANTONE hexachrome uncoated PANTONE H 305-1 U not recommended; will be discontinued

PANTONE solid in hexachrome coated PANTONE 185 HC

PANTONE solid to process coated PANTONE 185 PC replaced by PANTONE color bridge CMYK PC

PANTONE solid to process coated EURO PANTONE 185 EC replaced by PANTONE color bridge CMYK EURO

PANTONE Goe coated PANTONE 42-1-1 C 2058 colors introduced in 2008

PANTONE Goe uncoated PANTONE 42-1-1 U 2058 colors introduced in 2008

3.5 Working with Color 79

HKS® colors. The HKS color system is widely used in Germa-
ny and other European countries. PDFlib fully supports HKS
colors. All color swatch names from the following digital col-
or libraries (Farbfächer) can be used (sample swatch names are
provided in parentheses):

> HKS K (Kunstdruckpapier) for gloss art paper, 88 colors
(HKS 43 K)

> HKS N (Naturpapier) for natural paper, 86 colors (HKS 43 N)
> HKS E (Endlospapier) for continuous stationary/coated, 88 colors (HKS 43 E)
> HKS Z (Zeitungspapier) for newsprint, 50 colors (HKS 43 Z)

Commercial PDFlib customers can request a text file with the full list of HKS spot color
names from our support.

Spot color names are case-sensitive; use uppercase as shown in the examples. The
HKS prefix must always be provided in the swatch name as shown in the examples.
Generally, HKS color names must be constructed according to one of the following
schemes:

HKS <id> <paperstock>

where <id> is the identifier of the color (e.g., 43) and <paperstock> the abbreviation of the
paper stock in use (e.g., N for natural paper). A single space character must be provided
between the HKS, <id>, and <paperstock> components constituting the swatch name. If a
spot color is requested where the name starts with the HKS prefix, but the name does
not represent a valid HKS color a warning is logged. The following code snippet demon-
strates the use of an HKS color with a tint value of 70 percent:

spot = p.makespotcolor("HKS 38 E");
p.setcolor("fill", "spot", spot, 0.7, 0, 0);

User-defined spot colors. In addition to built-in spot colors as detailed above, PDFlib
supports custom spot colors. These can be assigned an arbitrary name (which must not
conflict with the name of any built-in color, however) and an alternate color which will
be used for screen preview or low-quality printing, but not for high-quality color sepa-
rations. The client is responsible for providing suitable alternate colors for custom spot
colors.

There is no separate PDFlib function for setting the alternate color for a new spot col-
or; instead, the current fill color will be used. Except for an additional call to set the al-
ternate color, defining and using custom spot colors works similarly to using built-in
spot colors:

p.setcolor("fill", "cmyk", 0.2, 1.0, 0.2, 0); /* define alternate CMYK values */
spot = p.makespotcolor("CompanyLogo"); /* derive a spot color from it */
p.setcolor("fill", "spot", spot, 1, 0, 0); /* set the spot color */

80 Chapter 3: Creating PDF Documents

3.5.3 Color Management and ICC Profiles
PDFlib supports several color management concepts including device-independent col-
or, rendering intents, and ICC profiles.

Cookbook A full code sample can be found in the Cookbook topic color/iccprofile_to_image.

Device-Independent CIE L*a*b* Color. Device-independent color values can be speci-
fied in the CIE 1976 L*a*b* color space by supplying the color space name lab to PDF_
setcolor(). Colors in the L*a*b* color space are specified by a luminance value in the
range 0-100, and two color values in the range -127 to 128. The illuminant used for the
lab color space will be D50 (daylight 5000K, 2˚ observer)

Rendering Intents. Although PDFlib clients can specify device-independent color val-
ues, a particular output device is not necessarily capable of accurately reproducing the
required colors. In this situation some compromises have to be made regarding the
trade-offs in a process called gamut compression, i.e., reducing the range of colors to a
smaller range which can be reproduced by a particular device. The rendering intent can
be used to control this process. Rendering intents can be specified for individual images
by supplying the renderingintent parameter or option to PDF_load_image(). In addition,
rendering intents can be specified for text and vector graphics by supplying the render-
ingintent option to PDF_create_gstate().

ICC profiles. The International Color Consortium (ICC)1 defined a file format for speci-
fying color characteristics of input and output devices. These ICC color profiles are con-
sidered an industry standard, and are supported by all major color management system
and application vendors. PDFlib supports color management with ICC profiles in the
following areas:

> Define ICC-based color spaces for text and vector graphics on the page.
> Process ICC profiles embedded in imported image files.
> Apply an ICC profile to an imported image (possibly overriding an ICC profile em-

bedded in the image).
> Define default color spaces for mapping grayscale, RGB, or CMYK data to ICC-based

color spaces.
> Define a PDF/X or PDF/A output intent by means of an external ICC profile.

Color management does not change the number of components in a color specification
(e.g., from RGB to CMYK).

Note ICC color profiles for common printing conditions are available for download from
www.pdflib.com, as well as links to other freely available ICC profiles.

Searching for ICC profiles. PDFlib will search for ICC profiles according to the follow-
ing steps, using the profilename parameter supplied to PDF_load_iccprofile():

> If profilename=sRGB, PDFlib will use its internal sRGB profile (see below), and termi-
nate the search.

> Check whether there is a resource named profilename in the ICCProfile resource cate-
gory. If so, use its value as file name in the following steps. If there is no such re-
source, use profilename as a file name directly.

1. See www.color.org

http://www.color.org

http://www.pdflib.com/pdflib-cookbook/color/iccprofile-to-image

3.5 Working with Color 81

> Use the file name determined in the previous step to locate a disk file by trying the
following combinations one after another:

<filename>
<filename>.icc
<filename>.icm
<colordir>/<filename>
<colordir>/<filename>.icc
<colordir>/<filename>.icm

On Windows colordir designates the directory where device-specific ICC profiles are
stored by the operating system (typically C:\WINNT\system32\spool\drivers\ color). On
Mac OS X the following paths will be tried for colordir:

/System/Library/ColorSync/Profiles
/Library/ColorSync/Profiles
/Network/Library/ColorSync/Profiles
~/Library/ColorSync/Profiles

On other systems the steps involving colordir will be omitted.

The sRGB color space and sRGB ICC profile. PDFlib supports the industry-standard
RGB color space called sRGB (formally IEC 61966-2-1). sRGB is supported by a variety of
software and hardware vendors and is widely used for simplified color management for
consumer RGB devices such as digital still cameras, office equipment such as color
printers, and monitors. PDFlib supports the sRGB color space and includes the required
ICC profile data internally. Therefore an sRGB profile must not be configured explicitly
by the client, but it is always available without any additional configuration. It can be
requested by calling PDF_load_iccprofile() with profilename=sRGB.

Using embedded profiles in images (ICC-tagged images). Some images may contain
embedded ICC profiles describing the nature of the image’s color values. For example,
an embedded ICC profile can describe the color characteristics of the scanner used to
produce the image data. PDFlib can handle embedded ICC profiles in the PNG, JPEG, and
TIFF image file formats. If the honoriccprofile option or parameter is set to true (which is
the default) the ICC profile embedded in an image will be extracted from the image, and
embedded in the PDF output such that Acrobat will apply it to the image. This process is
sometimes referred to as tagging an image with an ICC profile. PDFlib will not alter the
image’s pixel values.

The image:iccprofile parameter can be used to obtain an ICC profile handle for the
profile embedded in an image. This may be useful when the same profile shall be ap-
plied to multiple images.

In order to check the number of color components in an unknown ICC profile use the
icccomponents parameter.

Applying external ICC profiles to images (tagging). As an alternative to using ICC pro-
files embedded in an image, an external profile may be applied to an individual image
by supplying a profile handle along with the iccprofile option to PDF_load_image().

ICC-based color spaces for page descriptions. The color values for text and vector
graphics can directly be specified in the ICC-based color space specified by a profile. The
color space must first be set by supplying the ICC profile handle as value to one of the

82 Chapter 3: Creating PDF Documents

setcolor:iccprofilegray, setcolor:iccprofilergb, setcolor:iccprofilecmyk parameters. Subse-
quently ICC-based color values can be supplied to PDF_setcolor() along with one of the
color space keywords iccbasedgray, iccbasedrgb, or iccbasedcmyk:

p.set_parameter("errorpolicy", "return");
icchandle = p.load_iccprofile(...);
if (icchandle == -1)
{

return;
}
p.set_value("setcolor:iccprofilecmyk", icchandle);
p.setcolor("fill", "iccbasedcmyk", 0, 1, 0, 0);

Mapping device colors to ICC-based default color spaces. PDF provides a feature for
mapping device-dependent gray, RGB, or CMYK colors in a page description to device-
independent colors. This can be used to attach a precise colorimetric specification to
color values which otherwise would be device-dependent. Mapping color values this
way is accomplished by supplying a DefaultGray, DefaultRGB, or DefaultCMYK color
space definition. In PDFlib it can be achieved by setting the defaultgray, defaultrgb, or
defaultcmyk options of PDF_begin_page_ext() and supplying an ICC profile handle as the
corresponding value. The following examples will set the sRGB color space as the de-
fault RGB color space for text, images, and vector graphics:

/* sRGB is guaranteed to be always available */
icchandle = p.load_iccprofile("sRGB", "usage=iccbased");
p.begin_page_ext(595, 842, "defaultrgb=" + icchandle);

Defining output intents for PDF/X and PDF/A. An output device (printer) profile can
be used to specify an output condition for PDF/X. This is done by supplying
usage=outputintent in the call to PDF_load_iccprofile(). For PDF/A any kind of profile can
be specified as output intent. For details see Section 10.3, »PDF/X for Print Production«,
page 247, and Section 10.4, »PDF/A for Archiving«, page 254.

3.6 Interactive Elements 83

3.6 Interactive Elements
Cookbook Code samples for creating interactive elements can be found in the interactive category of

the PDFlib Cookbook.

3.6.1 Links, Bookmarks, and Annotations
This section explains how to create interactive elements such as bookmarks, form
fields, and annotations. Figure 3.1 shows the resulting document with all interactive ele-
ments that we will create in this section. The document contains the following interac-
tive elements:

> At the top right there is an invisible Web link to www.kraxi.com at the text
www.kraxi.com. Clicking this area will bring up the corresponding Web page.

> A gray form field of type text is located below the Web link. Using JavaScript code it
will automatically be filled with the current date.

> The red pushpin contains an annotation with an attachment. Clicking it will open
the attached file.

> At the bottom left there is a form field of type button with a printer symbol. Clicking
this button will execute Acrobat’s menu item File, Print.

> The navigation page contains the bookmark »Our Paper Planes Catalog«. Clicking
this bookmark will bring up a page of another PDF document.

In the next paragraphs we will show in detail how to create these interactive elements
with PDFlib.

Web link. Let’s start with a link to the Web site www.kraxi.com. This is accomplished in
three steps. First, we fit the text on which the Web link should work. Using the matchbox
option with name=kraxi we specify the rectangle of the text’s fitbox for further refer-
ence.

Second, we create an action of type URI (in Acrobat: Open a web link). This will provide
us with an action handle which subsequently can be assigned to one or more interactive
elements.

Third, we create the actual link. A link in PDF is an annotation of type Link. The action
option for the link contains the event name activate which will trigger the action, plus
the act handle created above for the action itself. By default the link will be displayed

Fig. 3.1
Document with interactive
elements

http://www.pdflib.com/pdflib-cookbook/interactive-elements

84 Chapter 3: Creating PDF Documents

with a thin black border. Initially this is convenient for precise positioning, but we dis-
abled the border with linewidth=0.

normalfont = p.load_font("Helvetica", "unicode", "");
p.begin_page_ext(pagewidth, pageheight, "topdown");

/* place the text line "Kraxi Systems, Inc." using a matchbox */
String optlist =

"font=" + normalfont + " fontsize=8 position={left top} " +
"matchbox={name=kraxi} fillcolor={rgb 0 0 1} underline";

p.fit_textline("Kraxi Systems, Inc.", 2, 20, optlist);

/* create URI action */
optlist = "url={http://www.kraxi.com}";
int act = p.create_action("URI", optlist);

/* create Link annotation on matchbox "kraxi" */
optlist = "action={activate " + act + "} linewidth=0 usematchbox={kraxi}";
/* 0 rectangle coordinates will be replaced with matchbox coordinates */
p.create_annotation(0, 0, 0, 0, "Link", optlist);

p.end_page_ext("");

For an example of creating a Web link on an image or on parts of a textflow, see Section
8.4, »Matchboxes«, page 237.

Cookbook A full code sample can be found in the Cookbook topic interactive/link_annotations.

Bookmark for jumping to another file. Now let’s create the bookmark »Our Paper
Planes Catalog« which jumps to another PDF file called paper_planes_catalog.pdf. First
we create an action of Type GoToR. In the option list for this action we define the name
of the target document with the filename option; the destination option specifies a cer-
tain part of the page which will be enlarged. More precisely, the document will be dis-
played on the second page (page 2) with a fixed view (type fixed), where the middle of the
page is visible (left 50 top 200) and the zoom factor is 200% (zoom 2):

String optlist =
"filename=paper_planes_catalog.pdf " +
"destination={page 2 type fixed left 50 top 200 zoom 2}";

goto_action = p.create_action("GoToR", optlist);

In the next step we create the actual bookmark. The action option for the bookmark con-
tains the activate event which will trigger the action, plus the goto_action handle created
above for the desired action. The option fontstyle bold specifies bold text, and textcolor
{rgb 0 0 1} makes the bookmark blue. The bookmark text »Our Paper Planes Catalog« is
provided as a function parameter:

String optlist =
"action={activate " + goto_action + "} fontstyle=bold textcolor={rgb 0 0 1}";

catalog_bookmark = p.create_bookmark("Our Paper Planes Catalog", optlist);

Clicking the bookmark will display the specified part of the page in the target docu-
ment.

http://www.pdflib.com/pdflib-cookbook/interactive-elements/link-annotations

3.6 Interactive Elements 85

Cookbook A full code sample can be found in the Cookbook topic interactive/nested_bookmarks.

Annotation with file attachment. In the next example we create a file attachment. We
start by creating an annotation of type FileAttachment. The filename option specifies the
name of the attachment, the option mimetype image/gif specifies its type (MIME is a
common convention for classifying file contents). The annotation will be displayed as a
pushpin (iconname pushpin) in red (annotcolor {rgb 1 0 0}) and has a tooltip (contents {Get
the Kraxi Paper Plane!}). It will not be printed (display noprint):

String optlist =
"filename=kraxi_logo.gif mimetype=image/gif iconname=pushpin " +
"annotcolor={rgb 1 0 0} contents={Get the Kraxi Paper Plane!} display=noprint";

p.create_annotation(left_x, left_y, right_x, right_y, "FileAttachment", optlist);

Note that the size of the symbol defined with iconname does not vary; the icon will be
displayed in its standard size in the top left corner of the specified rectangle.

3.6.2 Form Fields and JavaScript

Button form field for printing. The next example creates a button form field which
can be used for printing the document. In the first version we add a caption to the but-
ton; later we will use a printer symbol instead of the caption. We start by creating an ac-
tion of type Named (in Acrobat: Execute a menu item). Also, we must specify the font for
the caption:

print_action = p.create_action("Named", "menuname=Print");
button_font = p.load_font("Helvetica-Bold", "unicode", "");

The action option for the button form field contains the up event (in Acrobat: Mouse Up)
as a trigger for executing the action, plus the print_action handle created above for the
action itself. The backgroundcolor {rgb 1 1 0} option specifies yellow background, while
bordercolor {rgb 0 0 0} specifies black border. The option caption Print adds the text Print
to the button, and tooltip {Print the document} creates an additional explanation for the
user. The font option specifies the font using the button_font handle created above. By
default, the size of the caption will be adjusted so that it completely fits into the but-
ton’s area. Finally, the actual button form field is created with proper coordinates, the
name print_button, the type pushbutton and the appropriate options:

String optlist =
"action {up " + print_action + "} backgroundcolor=yellow " +
"bordercolor=black caption=Print tooltip={Print the document} font=" +
button_font;

p.create_field(left_x, left_y, right_x, right_y, "print_button", "pushbutton", optlist);

Now we extend the first version of the button by replacing the text Print with a little
printer icon. To achieve this we load the corresponding image file print_icon.jpg as a
template before creating the page. Using the icon option we assign the template handle
print_icon to the button field, and create the form field similarly to the code above:

print_icon = p.load_image("auto", "print_icon.jpg", "template");
if (print_icon == -1)

http://www.pdflib.com/pdflib-cookbook/interactive-elements/nested-bookmarks

86 Chapter 3: Creating PDF Documents

{
/* Error handling */
return;

}
p.begin_page_ext(pagewidth, pageheight, "");
...
String optlist = "action={up " + print_action + "} icon=" + print_icon +

" tooltip={Print the document} font=" + button_font;

p.create_field(left_x, left_y, right_x, right_y, "print_button", "pushbutton", optlist);

Cookbook A full code sample can be found in the Cookbook topic interactive/form_pushbutton.

Simple text field. Now we create a text field near the upper right corner of the page.
The user will be able to enter the current date in this field. We acquire a font handle and
create a form field of type textfield which is called date, and has a gray background:

textfield_font = p.load_font("Helvetica-Bold", "unicode", "");
String optlist = "backgroundcolor={gray 0.8} font=" + textfield_font;
p.create_field(left_x, left_y, right_x, right_y, "date", "textfield", optlist);

By default the font size is auto, which means that initially the field height is used as the
font size. When the input reaches the end of the field the font size is decreased so that
the text always fits into the field.

Cookbook Full code samples can be found in the Cookbook topics in teractive/form_textfield_layout
and interactive/form_textfield_height.

Text field with JavaScript. In order to improve the text form field created above we au-
tomatically fill it with the current date when the page is opened. First we create an ac-
tion of type JavaScript (in Acrobat: Run a JavaScript). The script option in the action’s op-
tion list defines a JavaScript snippet which displays the current date in the date text
field in the format month-day-year:

String optlist =
"script={var d = util.printd('mmm dd yyyy', new Date()); "
"var date = this.getField('date'); date.value = d;}"

show_date = p.create_action("JavaScript", optlist);

In the second step we create the page. In the option list we supply the action option
which attaches the show_date action created above to the trigger event open (in Acrobat:
Page Open):

String optlist = "action={open " + show_date + "}";
p.begin_page_ext(pagewidth, pageheight, optlist);

Finally we create the text field as we did above. It will automatically be filled with the
current date whenever the page is opened:

textfield_font = p.load_font("Helvetica-Bold", "winansi", "");
String optlist = "backgroundcolor={gray 0.8} font=" + textfield_font;
p.create_field(left_x, left_y, right_x, right_y, "date", "textfield", optlist);

http://www.pdflib.com/pdflib-cookbook/interactive-elements/form-pushbutton

http://www.pdflib.com/pdflib-cookbook/interactive-elements/form-textfield-layout

http://www.pdflib.com/pdflib-cookbook/interactive-elements/form-textfield-height

3.6 Interactive Elements 87

Cookbook A full code sample can be found in the Cookbook topic interactive/form_textfield_fill_
with_js.

Formatting Options for Text Fields. In Acrobat it is possible to specify various options
for formatting the contents of a text field, such as monetary amounts, dates, or percent-
ages. This is implemented via custom JavaScript code used by Acrobat. PDFlib does not
directly support these formatting features since they are not specified in the PDF refer-
ence. However, for the benefit of PDFlib users we present some information below
which will allow you to realize formatting options for text fields by supplying simple
JavaScript code fragments with the action option of PDF_create_field().

In order to apply formatting to a text field JavaScript snippets are attached to a text
field as keystroke and format actions. The JavaScript code calls some internal Acrobat
function where the parameters control details of the formatting.

The following sample creates two keystroke and format actions, and attaches them to
a form field so that the field contents will be formatted with two decimal places and the
EUR currency identifier:

keystroke_action = p.create_action("JavaScript",
"script={AFNumber_Keystroke(2, 0, 3, 0, \"EUR \", true); }");

format_action = p.create_action("JavaScript",
"script={AFNumber_Format(2, 0, 0, 0, \"EUR \", true); }");

String optlist = "font=" + font + " action={keystroke " + keystroke_action +
" format=" + format_action + "}";

p.create_field(50, 500, 250, 600, "price", "textfield", optlist);

Cookbook A full code sample can be found in the Cookbook topic interactive/form_textfield_input_
format.

In order to specify the various formats which are supported in Acrobat you must use ap-
propriate functions in the JavaScript code. Table 3.5 lists the JavaScript function names
for the keystroke and format actions for all supported formats; the function parameters
are described in Table 3.6. These functions must be used similarly to the example above.

Table 3.5 JavaScript formatting functions for text fields

format JavaScript functions to be used for keystroke and format actions

number AFNumber_Keystroke(nDec, sepStyle, negStyle, currStyle, strCurrency, bCurrencyPrepend)
AFNumber_Format(nDec, sepStyle, negStyle, currStyle, strCurrency, bCurrencyPrepend)

percentage AFPercent_Keystroke(ndec, sepStyle), AFPercent_Format(ndec, sepStyle)

date AFDate_KeystrokeEx(cFormat), AFDate_FormatEx(cFormat)

time AFTime_Keystroke(tFormat), AFTime_FormatEx(cFormat)

special AFSpecial_Keystroke(psf), AFSpecial_Format(psf)

http://www.pdflib.com/pdflib-cookbook/interactive-elements/form-textfield-fill-with-js

http://www.pdflib.com/pdflib-cookbook/interactive-elements/form-textfield-fill-with-js

http://www.pdflib.com/pdflib-cookbook/interactive-elements/form-textfield-input-format

http://www.pdflib.com/pdflib-cookbook/interactive-elements/form-textfield-input-format

88 Chapter 3: Creating PDF Documents

Table 3.6 Parameters for the JavaScript formatting functions

parameters explanation and possible values

nDec Number of decimal places

sepStyle The decimal separator style:
0 1,234.56
1 1234.56
2 1.234,56
3 1234,56

negStyle Emphasis used for negative numbers:
0 Normal
1 Use red text
2 Show parenthesis
3 both

strCurrency Currency string to use, e.g. \u20AC for the Euro sign

bCurrency-
Prepend

false do not prepend currency symbol
true prepend currency symbol

cFormat A date format string. It may contain the following format placeholders, or any of the time formats listed
below for tFormat:
d day of month
dd day of month with leading zero
ddd abbreviated day of the week
m month as number
mm month as number with leading zero
mmm abbreviated month name
mmmm full month name
yyyy year with four digits
yy last two digits of year

tFormat A time format string. It may contain the following format placeholders:
h hour (0-12)
hh hour with leading zero (0-12)
H hour (0-24)
HH hour with leading zero (0-24)
M minutes
MM minutes with leading zero
s seconds
ss seconds with leading zero
t 'a' or 'p'
tt 'am' or 'pm'

psf Describes a few additional formats:
0 Zip Code
1 Zip Code + 4
2 Phone Number
3 Social Security Number

3.7 Georeferenced PDF 89

3.7 Georeferenced PDF
Cookbook A full code sample can be found in the Cookbook topic interactive/starter_geospatial.

3.7.1 Using Georeferenced PDF in Acrobat
PDF 1.7ext3 allows geospatial reference information (world coordinates) to be added to
PDF page contents. Geospatially referenced PDF documents can be used in Acrobat 9
and above for several purposes (only the first two features are available in Adobe Read-
er):

> display the coordinates of the map point under the mouse cursor: Tools, Analysis/
Analyze, Geospatial Location Tool (in Acrobat X you may have to activate the Analyze
toolbar using the button at the top of the Tools pane). You can copy the coordinates
of the map point under the mouse cursor by right-clicking and selecting Copy Coor-
dinates to Clipboard;

> search for a location on the map: Tools, Analysis/Analyze, Geospatial Location Tool,
right-click and select Find a Location, and enter the desired coordinates;

> mark a location on the map: Tools, Analysis, Geospatial Location Tool, right-click and se-
lect Mark Location;

> measure distance, perimeter and area on geographic maps: Tools, Analysis, Measuring
Tool;

Various settings for geospatial measuring can be changed in Edit, Preferences, General...,
Measuring (Geo), e.g. the preferred coordinate system for coordinate readouts.

Geospatial features in PDFlib are implemented with the following functions and op-
tions:

> One or more georeferenced areas can be assigned to a page with the viewports option
of PDF_begin/end_page_ext(). Viewports allow different geospatial references (speci-
fied by the georeference option) to be used on different areas of the page, e.g. for mul-
tiple maps on the same page.

> The georeference option of PDF_load_image()can be used to assign an earth-based co-
ordinate system to an image.

> The georeference option could as well be offered in PDF_open_pdi_page() and PDF_
begin_template_ext() to assign an earth-based coordinate system to an imported PDF
page or a template. Unfortunately, this doesn’t work in Acrobat 9 and Acrobat X and
therefore isn’t supported.

3.7.2 Geographic and projected Coordinate Systems
A geographic coordinate system describes the earth in geographic coordinates, i.e. an-
gular units of latitude and longitude. A projected coordinate system can be specified on
top of a geographic coordinate system and describes the transformation of points in
geographic coordinates to a two-dimensional (projected) coordinate system. The result-
ing coordinates are called Northing and Easting values; degrees are no longer required
for projected coordinate systems. While geographic coordinate systems are in use for
GPS and other global applications, projections are required for map-making and other
applications with more or less local character.

For historical and mathematical reasons a variety of different coordinate systems is
in use around the world. Both geographic and projected coordinate systems can be de-
scribed using two well-established methods which are called EPSG and WKT.

http://www.pdflib.com/pdflib-cookbook/interactive/starter-geospatial

90 Chapter 3: Creating PDF Documents

EPSG. EPSG is a collection of thousands of coordinate systems which are referenced
via numeric codes. EPSG is named after the defunct European Petroleum Survey Group and
now maintained by the International Association of Oil and Gas Producers (OGP).

EPSG reference codes point to one of the coordinate systems in the EPSG database.
The full EPSG database can be downloaded from the following location:

www.epsg.org

Well-known text (WKT). The WKT (Well-Known Text) system is descriptive and consists
of a textual specification of all relevant parameters of a coordinate system. WKT is spec-
ified in the document OpenGIS® Implementation Specification: Coordinate Transformation
Services, which has been published as Document 01-009 by the Open Geospatial Consor-
tium (OGC).It is available at the following location:

www.opengeospatial.org/standards/ct

WKT has also been standardized in ISO 19125-1. Although both WKT and EPSG can be
used in Acrobat (and are supported in PDFlib), Acrobat does not implement all possible
EPSG codes. In particular, EPSG codes for geographic coordinate systems don’t seem to
be supported in Acrobat. In this case the use of WKT is recommended. The following
Web site delivers the WKT corresponding to a particular EPSG code:

www.spatialreference.org/ref/epsg

3.7.3 Coordinate System Examples

Examples for geographic coordinate systems. The WGS84 (World Geodetic System)
geographic coordinate system is the basis for GPS and many applications (e.g. Open-
StreetMap). It can be expressed as follows in the worldsystem suboption of the geo-
reference option:

worldsystem={type=geographic wkt={
GEOGCS["WGS 84",
 DATUM["WGS_1984", SPHEROID["WGS 84", 6378137, 298.257223563]],
 PRIMEM["Greenwich", 0],
 UNIT["degree", 0.01745329251994328]]
}}

The ETRS (European Terrestrial Reference System) geographic coordinate system is al-
most identical to WGS84. It can be specified as follows:

worldsystem={type=geographic wkt={
GEOGCS["ETRS_1989",

DATUM["ETRS_1989", SPHEROID["GRS_1980", 6378137.0, 298.257222101]],
PRIMEM["Greenwich", 0.0],
UNIT["Degree", 0.0174532925199433]]

}}

Note EPSG codes for the WGS84 and ETRS systems are not shown here because Acrobat doesn’t seem
to support EPSG codes for geographic coordinate systems, but only for projected coordinate
systems (see below).

3.7 Georeferenced PDF 91

Examples for projected coordinate systems. A projection is based on an underlying
geographic coordinate system. In the following example we specify a projected coordi-
nate system suitable for use with GPS coordinates.

In middle Europe the system called ETRS89 UTM zone 32 N applies. It uses the com-
mon UTM (Universal Mercator Projection), and can be expressed as follows in the
worldsystem suboption of the georeference option:

worldsystem={type=projected wkt={
 PROJCS["ETRS_1989_UTM_Zone_32N",
 GEOGCS["GCS_ETRS_1989",
 DATUM["D_ETRS_1989", SPHEROID["GRS_1980", 6378137.0, 298.257222101],
 TOWGS84[0, 0, 0, 0, 0, 0, 0]],
 PRIMEM["Greenwich", 0.0],
 UNIT["Degree", 0.0174532925199433]],
 PROJECTION["Transverse_Mercator"],
 PARAMETER["False_Easting", 500000.0],
 PARAMETER["False_Northing", 0.0],
 PARAMETER["Central_Meridian", 9.0],
 PARAMETER["Scale_Factor", 0.9996],
 PARAMETER["Latitude_Of_Origin", 0.0],
 UNIT["Meter", 1.0]]
}}

The corresponding EPSG code for this coordinate system is 25832. As an alternative to
WKT, the system above can also be specified via its EPSG code as follows:

worldsystem={type=projected epsg=25832}

3.7.4 Georeferenced PDF restrictions in Acrobat
We experienced the following shortcomings when working with georeferenced PDF in
Acrobat 9 and Acrobat X:

> EPSG codes don’t seem to work at all for geographic coordinate systems, but only for
projected systems.
Workaround: use the corresponding WKT instead of the EPSG code.

> Attaching geospatial data to vector objects does not work. For this reason PDFlib does
not support the georeference option for PDF_open_pdi_page() and PDF_begin_
template_ext(), although in theory this should work according to the PDF Reference.
Workaround for creating vector-based maps: you can attach the geospatial data to
the page, i.e. use the viewports option of PDF_begin_page_ext().

> Overlapping maps: you can place multiple image-based maps on the same page. If
the maps overlap and you display the coordinates of a point in the overlapping area,
Acrobat will use the coordinates of the map which has been placed last (this makes
sense since this is also the map which is visible). However, if both image handles are
identical (i.e. retrieved with a single call to PDF_load_image()), Acrobat does no longer
take into account the different image geometries: the coordinates of the first image
will incorrectly be extended to the area of second image, resulting in wrong coordi-
nate readouts.
Workaround: if you need multiple instances of the same image-based map on the
same page, open the image multiply.

> The area measurement tool doesn’t work correctly for geographic coordinate sys-
tems, but only for projected systems.

92 Chapter 3: Creating PDF Documents

4.1 Important Unicode Concepts 93

4 Unicode and Legacy Encodings
This chapter provides basic information about Unicode and other encoding schemes.
Text handling in PDFlib heavily relies on the Unicode standard, but also supports vari-
ous legacy and special encodings.

4.1 Important Unicode Concepts
Characters and glyphs. When dealing with text it is important to clearly distinguish
the following concepts:

> Characters are the smallest units which convey information in a language. Common
examples are the letters in the Latin alphabet, Chinese ideographs, and Japanese syl-
lables. Characters have a meaning: they are semantic entities.

> Glyphs are different graphical variants which represent one or more particular char-
acters. Glyphs have an appearance: they are representational entities.

There is no one-to-one relationship between characters and glyphs. For example, a liga-
ture is a single glyph which is represented by two or more separate characters. On the
other hand, a specific glyph may be used to represent different characters depending on
the context (some characters look identical, see Figure 4.1).

BMP and PUA. The following terms will occur frequently in Unicode-based environ-
ments:

> The Basic Multilingual Plane (BMP) comprises the code points in the Unicode range
U+0000...U+FFFF. The Unicode standard contains many more code points in the sup-
plementary planes, i.e. in the range U+10000...U+10FFFF.

> A Private Use Area (PUA) is one of several ranges which are reserved for private use.
PUA code points cannot be used for general interchange since the Unicode standard
does not specify any characters in this range. The Basic Multilingual Plane includes a
PUA in the range U+E000...U+F8FF. Plane fifteen (U+F0000... U+FFFFD) and plane six-
teen (U+100000...U+10FFFD) are completely reserved for private use.

U+0067 LATIN SMALL LETTER G

Characters Glyphs

U+0066 LATIN SMALL LETTER F +
U+0069 LATIN SMALL LETTER I

U+2126 OHM SIGN or
U+03A9 GREEK CAPITAL LETTER OMEGA

U+2167 ROMAN NUMERAL EIGHT or
U+0056 V U+0049 I U+0049 I U+0049 I

Fig. 4.1
Relationship of glyphs
and characters

94 Chapter 4: Unicode and Legacy Encodings

Unicode encoding forms (UTF formats). The Unicode standard assigns a number (code
point) to each character. In order to use these numbers in computing, they must be rep-
resented in some way. In the Unicode standard this is called an encoding form (former-
ly: transformation format); this term should not be confused with font encodings. Uni-
code defines the following encoding forms:

> UTF-8: This is a variable-width format where code points are represented by 1-4 bytes.
ASCII characters in the range U+0000...U+007F are represented by a single byte in
the range 00...7F. Latin-1 characters in the range U+00A0...U+00FF are represented by
two bytes, where the first byte is always 0xC2 or 0xC3 (these values represent Â and Ã
in Latin-1).

> UTF-16: Code points in the Basic Multilingual Plane (BMP) are represented by a single
16-bit value. Code points in the supplementary planes, i.e. in the range U+10000...
U+10FFFF, are represented by a pair of 16-bit values. Such pairs are called surrogate
pairs. A surrogate pair consists of a high-surrogate value in the range D800...DBFF
and a low-surrogate value in the range DC00...DFFF. High- and low-surrogate values
can only appear as parts of surrogate pairs, but not in any other context.

> UTF-32: Each code point is represented by a single 32-bit value.

Cookbook A full code sample can be found in the Cookbook topic text_output/process_utf8.

Unicode encoding schemes and the Byte Order Mark (BOM). Computer architectures
differ in the ordering of bytes, i.e. whether the bytes constituting a larger value (16- or
32-bit) are stored with the most significant byte first (big-endian) or the least significant
byte first (little-endian). A common example for big-endian architectures is PowerPC,
while the x86 architecture is little-endian. Since UTF-8 and UTF-16 are based on values
which are larger than a single byte, the byte-ordering issue comes into play here. An en-
coding scheme (note the difference to encoding form above) specifies the encoding
form plus the byte ordering. For example, UTF-16BE stands for UTF-16 with big-endian
byte ordering. If the byte ordering is not known in advance it can be specified by means
of the code point U+FEFF, which is called Byte Order Mark (BOM). Although a BOM is not
required in UTF-8, it may be present as well, and can be used to identify a stream of
bytes as UTF-8. Table 4.1 lists the representation of the BOM for various encoding forms.

Table 4.1 Byte order marks for various Unicode encoding forms

Encoding form Byte order mark (hex) graphical representation in WinAnsi1

1. The black square ■ denotes a null byte.

UTF-8 EF BB BF ï»¿

UTF-16 big-endian FE FF þÿ

UTF-16 little-endian FF FE ÿþ

UTF-32 big-endian 00 00 FE FF ■ ■ þÿ

UTF-32 little-endian FF FE 00 00 ÿþ■ ■

http://www.pdflib.com/pdflib-cookbook/text-output/process-utf8

4.2 Single-Byte (8-Bit) Encodings 95

4.2 Single-Byte (8-Bit) Encodings
8-bit encodings (also called single-byte encodings) map a byte value 0x01-0xFF to a sin-
gle character with a Unicode value in the BMP (i.e. U+0000...U+FFFF). They are limited to
255 different characters at a time since code 0 (zero) is reserved for the .notdef character
U+0000. Table 4.2 lists the predefined encodings in PDFlib. It is important to keep in
mind that certain scripts or languages have requirements which cannot be met by com-
mon fonts.

Note The »chartab« example contained in the PDFlib distribution can be used to easily print charac-
ter tables for arbitrary font/encoding combinations.

Table 4.2 Predefined encodings in PDFlib

code page supported languages
winansi identical to cp1252 (superset of iso8859-1)
macroman Mac Roman encoding, the original Macintosh character set
macroman_apple similar to macroman, but replaces currency with Euro and includes additional mathematical/

greek symbols
ebcdic EBCDIC code page 1047
ebcdic_37 EBCDIC code page 037
pdfdoc PDFDocEncoding
iso8859-1 (Latin-1) Western European languages
iso8859-2 (Latin-2) Slavic languages of Central Europe
iso8859-3 (Latin-3) Esperanto, Maltese
iso8859-4 (Latin-4) Estonian, the Baltic languages, Greenlandic
iso8859-5 Bulgarian, Russian, Serbian
iso8859-6 Arabic
iso8859-7 Modern Greek
iso8859-8 Hebrew and Yiddish
iso8859-9 (Latin-5) Western European, Turkish
iso8859-10 (Latin-6) Nordic languages
iso8859-13 (Latin-7) Baltic languages
iso8859-14 (Latin-8) Celtic
iso8859-15 (Latin-9) Adds Euro as well as French and Finnish characters to Latin-1
iso8859-16 (Latin-10) Hungarian, Polish, Romanian, Slovenian
cp1250 Central European
cp1251 Cyrillic
cp1252 Western European (same as winansi)
cp1253 Greek
cp1254 Turkish
cp1255 Hebrew
cp1256 Arabic
cp1257 Baltic
cp1258 Viet Nam

96 Chapter 4: Unicode and Legacy Encodings

Host encoding. The special encoding host does not have any fixed meaning, but will be
mapped to another 8-bit encoding depending on the current platform as follows (see
Table 4.2):

> on IBM zSeries with MVS or USS it will be mapped to ebcdic;
> on IBM i5/iSeries it will be mapped to ebcdic_37;
> on Windows it will be mapped to winansi;
> on all other systems (including Mac OS X) it will be mapped to iso8859-1;

Host encoding is primarily useful for writing platform-independent test programs (like
those contained in the PDFlib distribution) and other simple applications. Host encod-
ing is not recommended for production use, but should be replaced by whatever encod-
ing is appropriate.

Automatic encoding. PDFlib supports a mechanism which can be used to specify the
most natural encoding for certain environments without further ado. Supplying the
keyword auto as an encoding name specifies a platform- and environment-specific 8-bit
encoding for text fonts as follows:

> On Windows: the current system code page (see below for details)
> On Unix and Mac OS X: iso8859-1 (except LWFN PostScript fonts on the Mac for which

auto will be mapped to macroman)
> On IBM i5/iSeries: the current job’s encoding (IBMCCSID000000000000)
> On IBM zSeries: ebcdic (=code page 1047).

For symbol fonts the keyword auto is mapped to builtin encoding (see Section 5.4.2, »Se-
lecting an Encoding for symbolic Fonts«, page 123). While automatic encoding is conve-
nient in many circumstances, using this method will make your PDFlib client programs
inherently non-portable.

Encoding auto is used as the default encoding for Name strings (see Section 4.4.3,
»Strings in non-Unicode-aware Language Bindings«, page 103) in non-Unicode-aware
language bindings, since this is the most appropriate encoding for file names etc.

Tapping system code pages. PDFlib can be instructed to fetch code page definitions
from the system and transform it appropriately for internal use. This is very convenient
since it frees you from implementing the code page definition yourself. Instead of sup-
plying the name of a built-in or user-defined encoding for PDF_load_font(), simply use
an encoding name which is known to the system. This feature is only available on se-
lected platforms, and the syntax for the encoding string is platform-specific:

> On Windows the encoding name is cp<number>, where <number> is the number of
any single-byte code page installed on the system (see Section 6.5.2, »Custom CJK
Fonts«, page 168, for information on multi-byte Windows code pages):

font = p.load_font("Helvetica", "cp1250", "");

Single-byte code pages will be transformed into an internal 8-bit encoding, while
multi-byte code pages will be mapped to Unicode at runtime. The text must be sup-
plied in a format which is compatible with the chosen code page (e.g. SJIS for cp932).

> On IBM i5/iSeries any Coded Character Set Identifier (CCSID) can be used. The CCSID
must be supplied as a string, and PDFlib will apply the prefix IBMCCSID to the sup-
plied code page number. PDFlib will also add leading 0 characters if the code page
number uses fewer than 5 characters. Supplying 0 (zero) as the code page number
will result in the current job’s encoding to be used:

4.2 Single-Byte (8-Bit) Encodings 97

font = p.load_font("Helvetica", "273", "");

> On IBM zSeries with USS or MVS any Coded Character Set Identifier (CCSID) can be used.
The CCSID must be supplied as a string, and PDFlib will pass the supplied code page
name to the system literally without applying any change:

font = p.load_font("Helvetica", "IBM-273", "");

User-defined 8-bit encodings. In addition to predefined encodings PDFlib supports
user-defined 8-bit encodings. These are the way to go if you want to deal with some
character set which is not internally available in PDFlib, such as EBCDIC character sets
different from the one supported internally in PDFlib. PDFlib supports encoding tables
defined by PostScript glyph names, as well as tables defined by Unicode values.

The following tasks must be done before a user-defined encoding can be used in a
PDFlib program (alternatively the encoding can also be constructed at runtime using
PDF_encoding_set_char()):

> Generate a description of the encoding in a simple text format.
> Configure the encoding in the PDFlib resource file (see Section 3.1.3, »Resource Con-

figuration and File Search«, page 56) or via PDF_set_parameter().
> Provide a font (metrics and possibly outline file) that supports all characters used in

the encoding.

The encoding file simply lists glyph names and numbers line by line. The following ex-
cerpt shows the start of an encoding definition:

% Encoding definition for PDFlib, based on glyph names
% name code Unicode (optional)
space 32 0x0020
exclam 33 0x0021
...

If no Unicode value has been specified PDFlib will search for a suitable Unicode value in
its internal tables. A Unicode value can be specified instead of a glyph name:

% Code page definition for PDFlib, based on Unicode values
% Unicode code
0x0020 32
0x0021 33
...

More formally, the contents of an encoding or code page file are governed by the follow-
ing rules:

> Comments are introduced by a percent ’%’ character, and terminated by the end of
the line.

> The first entry in each line is either a PostScript glyph name or a hexadecimal Uni-
code value composed of a 0x prefix and four hex digits (upper or lower case). This is
followed by whitespace and a hexadecimal (0xoo–0xFF) or decimal (0–255) character
code. Optionally, name-based encoding files may contain a third column with the
corresponding Unicode value.

> Character codes which are not mentioned in the encoding file are assumed to be un-
defined. Alternatively, a Unicode value of 0x0000 or the character name .notdef can
be provided for unused slots.

> All Unicode values in an encoding or codepage file must be smaller than U+FFFF.

98 Chapter 4: Unicode and Legacy Encodings

As a naming convention we refer to name-based tables as encoding files (*.enc), and Uni-
code-based tables as code page files (*.cpg), although PDFlib treats both kinds in the
same way.

4.3 Chinese, Japanese, and Korean Encodings 99

4.3 Chinese, Japanese, and Korean Encodings
Historically, a wide variety of CJK encoding schemes have been developed by diverse
standards bodies and companies. Fortunately, all prevalent encodings are supported by
Acrobat and PDF by default. Since the concept of an encoding is much more complicat-
ed for CJK text than for Latin text, simple 8-bit encodings no longer suffice. Instead,
PostScript and PDF use the concept of character collections and character maps (CMaps)
for organizing the characters in a font.

Predefined CMaps for common CJK encodings. The predefined CJK CMaps are listed in
Table 4.3. As can be seen from the table, they support most CJK encodings used on Mac,
Windows, and Unix systems, as well as several vendor-specific encodings, e.g. Shift-JIS,
EUC, and ISO 2022 for Japanese, GB and Big5 for Chinese, and KSC for Korean. Unicode is
supported for all locales as well.

Note Unicode-aware language bindings support only Unicode CMaps (UCS2 or UTF16). Other CMaps
can not be used (see Section 4.4.2, »Strings in Unicode-aware Language Bindings«, page 103).

CJK text encoding for standard CMaps. The client is responsible for supplying text en-
coded such that it matches the requested CMap. PDFlib checks whether the supplied
text conforms to the requested CMap, and will raise an exception for bad text input
which doesn’t conform to the selected CMap.

CMap configuration. In order to create Chinese, Japanese, or Korean (CJK) text output
with one of the predefined CMaps PDFlib requires the corresponding CMap files for pro-
cessing the incoming text and mapping CJK encodings to Unicode. The CMap files are
available in a separate package. They should be installed as follows:

> On Windows the CMap files will be found automatically if you place them in the
resource/cmap directory within the PDFlib installation directory.

> On other systems you can place the CMap files at any convenient directory, and
must manually configure the CMap files by setting the SearchPath at runtime:

p.set_parameter("SearchPath", "/path/to/resource/cmap");

As an alternative method for configuring access to the CJK CMap files you can set the
PDFLIBRESOURCEFILE environment variable to point to a UPR configuration file which
contains a suitable SearchPath definition.

Note On MVS the CMap files must be installed from an alternate package which contains CMaps
with shortened file names.

Code pages for custom CJK fonts. On Windows PDFlib supports any CJK code page in-
stalled on the system. On other platforms the code pages listed in Table 4.4 can be used.
These code pages will be mapped internally to the corresponding CMap (e.g. cp932 will
be mapped to 90ms-RKSJ-H/V). Because of this mapping the appropriate CMaps must be
configured (see above).

100 Chapter 4: Unicode and Legacy Encodings

Table 4.3 Predefined CMaps for Japanese, Chinese, and Korean text (from the PDF Reference)

locale CMap name character set and text format
Simplified
Chinese

UniGB-UCS2-H
UniGB-UCS2-V

Unicode (UCS-2) encoding for the Adobe-GB1 character collection

UniGB-UTF16-H
UniGB-UTF16-V

Unicode (UTF-16BE) encoding for the Adobe-GB1 character collection. Contains
mappings for all characters in the GB18030-2000 character set.

GB-EUC-H
GB-EUC-V

Microsoft Code Page 936 (charset 134), GB 2312-80 character set, EUC-CN encoding

GBpc-EUC-H
GBpc-EUC-V

Macintosh, GB 2312-80 character set, EUC-CN encoding, Script Manager code 2

GBK-EUC-H, -V Microsoft Code Page 936 (charset 134), GBK character set, GBK encoding
GBKp-EUC-H
GBKp-EUC-V

Same as GBK-EUC-H, but replaces half-width Latin characters with proportional
forms and maps code 0x24 to dollar ($) instead of yuan (¥).

GBK2K-H, -V GB 18030-2000 character set, mixed 1-, 2-, and 4-byte encoding
Traditional
Chinese

UniCNS-UCS2-H
UniCNS-UCS2-V

Unicode (UCS-2) encoding for the Adobe-CNS1 character collection

UniCNS-UTF16-H
UniCNS-UTF16-V

Unicode (UTF-16BE) encoding for the Adobe-CNS1 character collection. Contains
mappings for all of HKSCS-2001 (2- and 4-byte character codes)

B5pc-H, -V Macintosh, Big Five character set, Big Five encoding, Script Manager code 2
HKscs-B5-H
HKscs-B5-V

Hong Kong SCS (Supplementary Character Set), an extension to the Big Five
character set and encoding

ETen-B5-H, -V Microsoft Code Page 950 (charset 136), Big Five with ETen extensions
ETenms-B5-H
ETenms-B5-V

Same as ETen-B5-H, but replaces half-width Latin characters with proportional
forms

CNS-EUC-H, -V CNS 11643-1992 character set, EUC-TW encoding
Japanese UniJIS-UCS2-H, -V Unicode (UCS-2) encoding for the Adobe-Japan1 character collection

UniJIS-UCS2-HW-H
UniJIS-UCS2-HW-V

Same as UniJIS-UCS2-H, but replaces proportional Latin characters with half-
width forms

UniJIS-UTF16-H
UniJIS-UTF16-V

Unicode (UTF-16BE) encoding for the Adobe-Japan1 character collection. Contains
mappings for all characters in the JIS X 0213:1000 character set.

83pv-RKSJ-H Mac, JIS X 0208 with KanjiTalk6 extensions, Shift-JIS, Script Manager code 1
90ms-RKSJ-H
90ms-RKSJ-V

Microsoft Code Page 932 (charset 128), JIS X 0208 character set with NEC and IBM
extensions

90msp-RKSJ-H
90msp-RKSJ-V

Same as 90ms-RKSJ-H, but replaces half-width Latin characters with proportional
forms

90pv-RKSJ-H Mac, JIS X 0208 with KanjiTalk7 extensions, Shift-JIS, Script Manager code 1
Add-RKSJ-H, -V JIS X 0208 character set with Fujitsu FMR extensions, Shift-JIS encoding
EUC-H, -V JIS X 0208 character set, EUC-JP encoding
Ext-RKSJ-H, -V JIS C 6226 (JIS78) character set with NEC extensions, Shift-JIS encoding
H, V JIS X 0208 character set, ISO-2022-JP encoding

Korean UniKS-UCS2-H, -V Unicode (UCS-2) encoding for the Adobe-Korea1 character collection
UniKS-UTF16-H, -V Unicode (UTF-16BE) encoding for the Adobe-Korea1 character collection
KSC-EUC-H, -V KS X 1001:1992 character set, EUC-KR encoding
KSCms-UHC-H
KSCms-UHC-V

Microsoft Code Page 949 (charset 129), KS X 1001:1992 character set plus 8822
additional hangul, Unified Hangul Code (UHC) encoding

KSCms-UHC-HW-H
KSCms-UHC-HW-V

Same as KSCms-UHC-H, but replaces proportional Latin characters with half-
width forms

KSCpc-EUC-H Mac, KS X 1001:1992 with Mac OS KH extensions, Script Manager Code 3

4.3 Chinese, Japanese, and Korean Encodings 101

Table 4.4 CJK code pages (must be used with textformat=auto or textformat=bytes)

locale code page format character set

Simplified Chinese cp936 GBK GBK

Traditional Chinese cp950 Big Five Big Five with Microsoft extensions

Japanese cp932 Shift-JIS JIS X 0208:1997 with Microsoft extensions

Korean cp949 UHC KS X 1001:1992, remaining 8822 hangul as
extension

cp1361 Johab Johab

102 Chapter 4: Unicode and Legacy Encodings

4.4 String Handling in PDFlib
4.4.1 Content Strings, Hypertext Strings, and Name Strings

PDF and operating system requirements impose different string handling in PDFlib de-
pending on the purpose of a string. The PDFlib API uses the string types below. All rele-
vant parameters and options are marked as content string, hypertext string, or name
string in the PDFlib API Reference.

Content strings, hypertext strings, and name strings can be used with Unicode and
8-bit encodings. Non-Unicode CJK CMaps can only be used in non-Unicode-aware lan-
guage bindings. The details of string handling depend on the language binding, and are
discussed in Section 4.4.2, »Strings in Unicode-aware Language Bindings«, page 103 and
Section 4.4.3, »Strings in non-Unicode-aware Language Bindings«, page 103.

Content strings. Content strings are used to create genuine page content (page de-
scriptions) according to the encoding chosen by the user for a particular font. All
function parameters with the name text in the PDFlib API Reference for the page content
functions fall in this class. Since content strings are represented with glyphs from a par-
ticular font, the range of usable characters depends on the font/encoding combination.
Examples:

The text parameters of PDF_show(), PDF_fit_textline(), PDF_add_textflow().

Hypertext strings. Hypertext strings are used for interactive features such as book-
marks and annotations, and are explicitly labeled Hypertext string in the function de-
scriptions. Many parameters and options of the functions for interactive features fall in
this class, as well as some others. The range of characters which can be displayed de-
pends on external factors, such as the fonts available to Acrobat and the operating sys-
tem.
Examples:

fieldname option of PDF_add_table_cell()
name option of PDF_define_layer()
destname option of PDF_create_action()
text parameter of PDF_create_bookmark()

Name strings. Name strings: these are used for external file names, font names, block
names, etc., and are marked as Name string in the function descriptions. They slightly
differ from Hypertext strings, but only in language bindings which are not Unicode-
aware.
Examples:

filename parameters of PDF_begin_document() and PDF_create_pvf()
fontname parameter of PDF_load_font()
profilename parameter of PDF_load_iccprofile()

File names are a special case: the option filenamehandling specifies how PDFlib converts
filenames supplied to the API to something which can be used with the local file system.

4.4 String Handling in PDFlib 103

4.4.2 Strings in Unicode-aware Language Bindings
If a development environment supports the string data type and uses Unicode internal-
ly we call the binding Unicode-aware. The following PDFlib language bindings are Uni-
code-aware:

> C++
> COM
> .NET
> Java
> Objective-C
> Python
> REALbasic
> RPG
> Tcl

String handling in these environments is straightforward: all strings will automatically
be provided to the PDFlib kernel as Unicode strings in native UTF-16 format. The lan-
guage wrappers will correctly deal with Unicode strings provided by the client, and au-
tomatically set certain PDFlib parameters. This has the following consequences:

> The PDFlib language wrapper applies all required conversions so that client-supplied
strings will always arrive in PDFlib in utf16 format and unicode encoding.

> Since the language environment always passes strings in UTF-16 to PDFlib, UTF-8 can
not be used with Unicode-aware languages. It must be converted to UTF-16 before.

> Using unicode encoding for the contents of a page is the easiest way to deal with en-
codings in Unicode-aware languages, but 8-bit encodings and single-byte text for
symbol fonts can also be used if so desired.

> Non-Unicode CMaps for Chinese, Japanese, and Korean text (see Section 4.3, »Chi-
nese, Japanese, and Korean Encodings«, page 99) must be avoided since the wrapper
will always supply Unicode to the PDFlib core; only Unicode CMaps can be used.

The overall effect is that clients can provide plain Unicode strings to PDFlib functions
without any additional configuration or parameter settings. The distinction between
the string types in the function descriptions is not relevant for Unicode-aware language
bindings.

Unicode conversion functions. If you must deal with strings in other encodings than
Unicode, you must convert them to Unicode before passing them to PDFlib. The lan-
guage-specific sections in Chapter 2, »PDFlib Language Bindings«, page 27, provide more
details regarding useful Unicode string conversion methods provided by common lan-
guage environments.

4.4.3 Strings in non-Unicode-aware Language Bindings
The following PDFlib language bindings are not Unicode-aware:

> C (no native string data type available)
> legacy C++ binding for compatibility with PDFlib 7 (see Section 2.5, »C++ Binding«,

page 33, for configuration information)
> Cobol (no native string data type available)
> Perl
> PHP
> Ruby

104 Chapter 4: Unicode and Legacy Encodings

In language bindings which do not support a native string data type (i.e. C, Cobol) the
length of UTF-16 strings must be supplied in a separate length parameter. Although Uni-
code text can be used in these languages, handling of the various string types is a bit
more complicated:

Content strings. Content strings are strings used to create page content. Interpreta-
tion of these strings is controlled by the textformat parameter (detailed below) and the
encoding parameter of PDF_load_font(). If textformat=auto (which is the default) utf16
format will be used for the unicode and glyphid encodings as well as UCS-2 and UTF-16
CMaps. For all other encodings the format will be bytes. In languages without a native
string data type (see list above) the length of UTF-16 strings must be supplied in a sepa-
rate length parameter.

Hypertext strings. String interpretation is controlled by the hypertextformat and
hypertextencoding parameters (detailed below). If hypertextformat=auto (which is the de-
fault) utf16 format will be used if hypertextencoding=unicode, and bytes otherwise. In lan-
guages without a native string data type (see list above) the length of UTF-16 strings
must be supplied in a separate length parameter.

Name strings. Name strings are interpreted slightly differently from page description
strings. By default, name strings are interpreted in host encoding. However, if it starts
with an UTF-8 BOM it will be interpreted as UTF-8 (or as EBCDIC UTF-8 if it starts with an
EBCDIC UTF-8 BOM). If the usehypertextencoding parameter is true, the encoding speci-
fied in hypertextencoding will be applied to name strings as well. This can be used, for ex-
ample, to specify font or file names in Shift-JIS. If hypertextencoding=unicode PDFlib ex-
pects a UTF-16 string which must be terminated by two null bytes.

In C the length parameter must be 0 for UTF-8 strings. If it is different from 0 the
string will be interpreted as UTF-16. In all other non-Unicode-aware language bindings
there is no length parameter available in the API functions, and name strings must al-
ways be supplied in UTF-8 format. In order to create Unicode name strings in this case
you can use the PDF_utf16_to_utf8() utility function to create UTF-8 (see below).

Unicode conversion functions. In non-Unicode-aware language bindings PDFlib offers
the PDF_utf16_to_utf8(), PDF_utf8_to_utf16() and related conversion functions which
can be used to convert between UTF-8, UTF-16, and UTF-32 strings.

The language-specific sections in Chapter 2, »PDFlib Language Bindings«, page 27,
provide more details regarding useful Unicode string conversion methods provided by
common language environments.

Text format for content and hypertext strings. Unicode strings in PDFlib can be sup-
plied in the UTF-8, UTF-16, or UTF-32 formats with any byte ordering. The choice of for-
mat can be controlled with the textformat parameter for all text on page descriptions,
and the hypertextformat parameter for interactive elements. Table 4.5 lists the values
which are supported for both of these parameters. The default for the [hyper]textformat
parameter is auto. Use the usehypertextencoding parameter to enforce the same behavior
for name strings. The default for the hypertextencoding parameter is auto.

Although the textformat setting is in effect for all encodings, it will be most useful for
unicode encoding. Table 4.6 details the interpretation of text strings for various combi-
nations of encodings and textformat settings. If a code or Unicode value in a content

4.4 String Handling in PDFlib 105

string cannot be represented with a suitable glyph in the selected font, the option
glyphcheck controls the behavior of PDFlib (see »Glyph replacement«, page 119).

Strings in option lists. Strings within option lists require special attention since in
non-Unicode-aware language bindings they cannot be expressed as Unicode strings in
UTF-16 format, but only as byte strings. For this reason UTF-8 is used for Unicode op-

Table 4.5 Values for the textformat and hypertextformat parameters

[hyper]textformat explanation

bytes One byte in the string corresponds to one character. This is mainly useful for 8-bit encodings and
symbolic fonts. A UTF-8 BOM at the start of the string will be evaluated and then removed.

utf8 Strings are expected in UTF-8 format. Invalid UTF-8 sequences will trigger an exception if
glyphcheck=error, or will be deleted otherwise.

ebcdicutf8 Strings are expected in EBCDIC-coded UTF-8 format (only on iSeries and zSeries).

utf16 Strings are expected in UTF-16 format. A Unicode Byte Order Mark (BOM) at the start of the string
will be evaluated and then removed. If no BOM is present the string is expected in the machine’s
native byte ordering (on Intel x86 architectures the native byte order is little-endian, while on
Sparc and PowerPC systems it is big-endian).

utf16be Strings are expected in UTF-16 format in big-endian byte ordering. There is no special treatment
for Byte Order Marks.

utf16le Strings are expected in UTF-16 format in little-endian byte ordering. There is no special treatment
for Byte Order Marks.

auto Content strings: equivalent to bytes for 8-bit encodings and non-Unicode CMaps, and utf16 for
wide-character addressing (unicode, glyphid, or a UCS2 or UTF16 CMap).
Hypertext strings: UTF-8 and UTF-16 strings with BOM will be detected (in C UTF-16 strings must
be terminated with a double-null). If the string does not start with a BOM, it will be interpreted
as an 8-bit encoded string according to the hypertextencoding parameter.
This setting will provide proper text interpretation in most environments which do not use Uni-
code natively.

Table 4.6 Relationship of encodings and text format

[hypertext]encoding textformat=bytes textformat=utf8, utf16, utf16be, or utf16le

All string types:

auto see section »Automatic encoding«, page 96

unicode and UCS2-
or UTF16 CMaps

8-bit codes are Unicode values from
U+0000 to U+00FF

any Unicode value, encoded according to the cho-
sen text format1

any other CMap
(not Unicode-based)

any single- or multibyte codes according to
the selected CMap

PDFlib will throw an exception

Only content strings:

8-bit and builtin 8-bit codes Convert Unicode values to 8-bit codes according to
the chosen encoding1.

1. If the Unicode character is not available in the font, PDFlib will throw an exception or replace it subject to the glyphcheck option.

glyphid 8-bit codes are glyph ids from 0 to 255 Unicode values will be interpreted as glyph ids2.
Surrogate pairs will not be interpreted.

2. If the glyph id is not available in the font, PDFlib will throw an exception or replace it with glyph id 0 subject to the glyphcheck setting.

106 Chapter 4: Unicode and Legacy Encodings

tions. By looking for a BOM at the beginning of an option, PDFlib decides how to inter-
pret it. The BOM will be used to determine the format of the string, and the string type
(content string, hypertext string, or name string as defined above) will be used to deter-
mine the appropriate encoding. More precisely, interpreting a string option works as
follows:

> If the option starts with a UTF-8 BOM (0xEF 0xBB 0xBF) it will be interpreted as UTF-8.
On EBCDIC-based systems: if the option starts with an EBCDIC UTF-8 BOM (0x57 0x8B
0xAB) it will be interpreted as EBCDIC UTF-8. If no BOM is found, string interpreta-
tion depends on the type of string:

> Content strings will be interpreted according to the applicable encoding option or the
encoding of the corresponding font (whichever is present).

> Hypertext strings will be interpreted according to the hypertextencoding parameter
or option.

> Name strings will be interpreted according to the hypertext settings if usehypertext-
encoding=true, and host encoding otherwise.

Note that the characters { and } require special handling within strings in option lists,
and must be preceded by a \ character if they are used within a string option. This re-
quirement remains for legacy encodings such as Shift-JIS: all occurrences of the byte
values 0x7B and 0x7D must be preceded with 0x5C. For this reason the use of UTF-8 for
options is recommended (instead of Shift-JIS and other legacy encodings).

4.5 Addressing Characters 107

4.5 Addressing Characters
Some environments require the programmer to write source code in 8-bit encodings
(such as winansi, macroman, or ebcdic). This makes it cumbersome to include isolated
Unicode characters in 8-bit encoded text without changing all characters in the text to
multi-byte encoding. In order to aid developers in this situation, PDFlib supports sever-
al auxiliary methods for expressing text.

4.5.1 Escape Sequences
PDFlib supports a method for easily incorporating arbitrary values within text strings
via a mechanism called escape sequences (this is actually a misnomer; backslash substi-
tution might be a better term.). For example, the \t sequence in the default text of a text
block can be used to include tab characters which may not be possible by direct key-
board input. Similarly, escape sequences are useful for expressing codes for symbolic
fonts, or in literal strings for language bindings where escape sequences are not avail-
able.

An escape sequence is an instruction to replace a sequence with a single byte value.
The sequence starts with the code for the backslash character ’\’ in the current encoding
of the string. The byte values resulting from substituting escape sequences are listed in
Table 4.7; some differ between ASCII and EBCDIC platforms. Only byte values in the
range 0-255 can be expressed with escape sequences.

Unlike some programming languages, escape sequences in PDFlib always have fixed
length depending on their type. Therefore no terminating character is required for the
sequence.

Escape sequences will not be substituted by default; you must explicitly set the
escapesequence parameter or option to true if you want to use escape sequences for
strings:

p.set_parameter("escapesequence", "true");

Cookbook A full code sample can be found in the Cookbook topic fonts/escape_sequences.

Escape sequences will be evaluated in all content strings, hypertext strings, and name
strings after BOM detection, but before converting to the target format. If textformat=

Table 4.7 Escape sequences for byte values

sequence length Mac, Windows, Unix EBCDIC platforms common interpretation

\f 2 0C 0C form feed

\n 2 0A 15/25 line feed

\r 2 0D 0D carriage return

\t 2 09 05 horizontal tabulation

\v 2 0B 0B line tabulation

\\ 2 5C E0 backslash

\xNN 4 two hexadecimal digits specifying a byte value, e.g. \xFF

\NNN 4 three octal digits specifying a byte value, e.g. \377

http://www.pdflib.com/pdflib-cookbook/fonts/escape-sequences

108 Chapter 4: Unicode and Legacy Encodings

utf16, utf16le or utf16be escape sequences must be expressed as two byte values accord-
ing to the selected format. Each character in the escape sequence will be represented by
two bytes, where one byte has the value zero. If textformat=utf8 the resulting code will
not be converted to UTF-8.

If an escape sequence cannot be resolved (e.g. \x followed by invalid hex digits) an
exception will be thrown. For content strings the behavior is controlled by the glyph-
check and errorpolicy settings.

Be careful with Windows path names containing backslash characters when escape
sequence are enabled.

4.5.2 Character References
Cookbook A full code sample can be found in the Cookbook topic fonts/character_references.

A character reference is an instruction to replace the reference sequence with a Unicode
value. The reference sequence starts with the code of the ampersand character ’&’ in the
current encoding, and ends with the code of the semicolon character ’;’. There are sever-
al methods available for expressing the target Unicode values:

HTML character references. PDFlib supports all character entity references defined in
HTML 4.0. Numeric character references can be supplied in decimal or hexadecimal no-
tation. The full list of HTML character references can be found at the following location:

www.w3.org/TR/REC-html40/charset.html#h-5.3

Examples:

­ U+00AD soft hyphen
€ U+20AC Euro glyph (entity name)
< U+003C less than sign
> U+003E greater than sign
& U+0026 ampersand sign
Α U+0391 Greek Alpha

Numerical character references. Numerical character references for Unicode charac-
ters are also defined in HTML 4.0. They require the hash character ’#’ and a decimal or
hexadecimal number, where hexadecimal numbers are introduced with a lower- or up-
percase ’X’ character. Examples:

­ U+00AD soft hyphen
­ U+00AD soft hyphen
å U+0229 letter a with small circle above (decimal)
å U+00E5 letter a with small circle above (hexadecimal)
å U+00E5 letter a with small circle above (hexadecimal)
€ U+20AC Euro glyph (hexadecimal)
€ U+20AC Euro glyph (decimal)

Note Code points 128-159 (decimal) or 0x80-0x9F (hexadecimal) do not reference winansi code
points. In Unicode they do not refer to printable characters, but control characters.

PDFlib-specific entity names. PDFlib supports custom character entity references for
the following groups of Unicode control characters:

> Control characters for overriding the default shaping behavior listed in Table 6.4.
> Control characters for overriding the default bidi formatting listed in Table 6.5.

http://www.pdflib.com/pdflib-cookbook/fonts/character-references

http://www.w3.org/TR/REC-html40/charset.html#h-5.3

4.5 Addressing Characters 109

> Control characters for Textflow line breaking and formatting listed in Table 8.1.

Examples:

&linefeed; U+000A linefeed control character
&hortab; U+0009 horizontal tab
&ZWNJ; U+200C ZERO WIDTH NON-JOINER

Glyph name references. Glyph names are drawn from the following sources:
> Common glyph names will be searched in an internal list
> Font-specific glyph names are searched in the current font. Character references of

this class work only with content strings since they always require a font.

In order to identify glyph name references the actual name requires a period character
’.’ after the ampersand character ’&’. Examples:

&.three; U+0033 common glyph name for the digit 3
&.mapleleaf; (PUA unicode value) custom glyph name from Carta font
&.T.swash; (PUA unicode value) second period character is part of the glyph name

Character references with glyph names are useful in the following scenarios:
> Character references with font-specific glyph names are useful in contents strings to

select alternate character forms (e.g. swash characters) and glyphs without any spe-
cific Unicode semantics (symbols, icons, and ornaments). Note that tabular figures
and many other features are more easily implemented with OpenType features (see
Section 6.3, »OpenType Layout Features«, page 152).

> Names from the Adobe Glyph List (including the uniXXXX and u1XXXX forms) plus
certain common »misnamed« glyph names will always be accepted for content
strings and hypertext strings.

Byte value references. Numerical values can also be supplied in character references
which may be useful for addressing the glyphs in a symbol font. This variant requires
an additional hash character ’#’ and a decimal or hexadecimal number, where hexadec-
imal numbers are introduced with a lower- or uppercase ’X’ character. Example (assum-
ing the Wingdings font):

&.#x9F; bullet symbol in Wingdings font
&.#159; bullet symbol in Wingdings font

Using character references. Character references will not be substituted by default;
you must explicitly set the charref parameter or option to true in order to use character
references in content strings, for example:

p.set_parameter("charref", "true");
font = p.load_font("Helvetica", "winansi", "");
if (font == -1) { ... }
p.setfont(font, 24);
p.show_xy("Price: 500€", 50, 500);

Additional notes on using character references:
> Character references can be used in all content strings, hypertext strings, and name

strings. As an exception, font-specific glyph name references work only with con-
tents strings as noted above.

110 Chapter 4: Unicode and Legacy Encodings

> Character references are not substituted in text with builtin encoding. However, you
can use character references for symbolic fonts by using unicode encoding.

> Character references are not substituted in option lists, but they will be recognized
in options with the Unichar data type; in this case the ’&’ and ’;’ decoration must be
omitted. This recognition is always enabled; it is not subject to the charref parameter
or option.

> In non-Unicode-aware language bindings character references must be expressed as
two-byte values if textformat=utf16, utf16be, or utf16le. If encoding=unicode and text-
format=bytes the character references must be expressed in ASCII (even on EBCDIC-
based platforms).

> If a character reference cannot be resolved (e.g. &# followed by invalid decimal dig-
its, or & followed by an unknown entity name) an exception will be thrown. For con-
tent strings the behavior is controlled by the glyphcheck and errorpolicy settings. With
glyphcheck=none the reference sequence itself will appear in the generated output.

5.1 Font Formats 111

5 Font Handling
5.1 Font Formats

5.1.1 TrueType Fonts

TrueType file formats. PDFlib supports vector-based TrueType fonts, but
not fonts based on bitmaps. TrueType font files are self-contained: they con-
tain all required information in a single file. PDFlib supports the following
file formats for TrueType fonts:

> Windows TrueType fonts (*.ttf), including Western, symbolic, and CJK
fonts;

> TrueType collections (*.ttc) with multiple fonts in a single file. TTC files are
typically used for grouping CJK fonts, but Apple also uses them to package
multiple members of a Western font family in a single file.

> End-user defined character (EUDC) fonts (*.tte) created with Microsoft’s
eudcedit.exe tool;

> On the Mac any TrueType font installed on the system (including .dfont) can also be
used in PDFlib.

TrueType font names. If you are working with font files you can use arbitrary alias
names (see »Sources of Font Data«, page 126). In the generated PDF the name of a True-
Type font may differ from the name used in PDFlib (or Windows). This is normal, and re-
sults from the fact that PDF uses the PostScript name of a TrueType font, which differs
from its genuine TrueType name (e.g., TimesNewRomanPSMT vs. Times New Roman).

5.1.2 OpenType Fonts
The OpenType font format combines PostScript and TrueType technology. It
is implemented as an extension of the TrueType file format and offers a uni-
fied format. OpenType fonts may contain optional tables which can be used
to enhance text output, e.g. ligatures and swash characters (see Section 6.3,
»OpenType Layout Features«, page 152), as well as tables for complex script
shaping (see Section 6.4, »Complex Script Output«, page 158).

While OpenType fonts offer a single container format which works on all platforms,
it may be useful to understand the following OpenType flavors which sometimes lead
to confusion:

> Outline format: OpenType fonts may contain glyph descriptions which are based on
TrueType or PostScript. The PostScript flavor is also called Compact Font Format
(CFF) or Type 2, and is usually used with the *.otf suffix. The Windows Explorer al-
ways displays OpenType fonts with the »O« logo.

> TrueType fonts and OpenType fonts with TrueType outlines are not easily distin-
guished since both may use the *.ttf suffix. Because of this blurry distinction the
Windows Explorer works with the following criterion: if a .ttf font contains a digital
signature it is displayed with the »O« logo; otherwise it is displayed with the »TT«
logo. However, since a digital signature is not required in OpenType fonts this can-

112 Chapter 5: Font Handling

not be used a reliable criterion for distinguishing plain old TrueType fonts and
OpenType fonts.

> The CID (Character ID) architecture is used for CJK fonts. Modern CID fonts are pack-
aged as OpenType *.otf fonts with PostScript outlines. From a practical standpoint
they are indistinguishable from plain OpenType fonts. The Windows Explorer al-
ways displays OpenType CID fonts with the »O« logo.

Note that neither the file name suffix nor the logo displayed by the Windows Explorer
says anything about the presence or absence of OpenType layout features in a font. See
Section 6.3, »OpenType Layout Features«, page 152, for more information.

5.1.3 PostScript Type 1 Fonts

PostScript outline and metrics file formats. PostScript Type 1 fonts are always
split in two parts: the actual outline data and the metrics information. PDFlib
supports the following file formats for PostScript Type 1 outline and metrics
data on all platforms:

> The platform-independent AFM (Adobe Font Metrics) and the Windows-specific PFM
(Printer Font Metrics) format for metrics information.

> The platform-independent PFA (Printer Font ASCII) and the Windows-specific PFB
(Printer Font Binary) format for font outline information in the PostScript Type 1 for-
mat, (sometimes also called »ATM fonts«).

> On the Mac, resource-based PostScript Type 1 fonts, i.e. LWFN (LaserWriter Font) out-
line fonts, are also supported. These are accompanied by a font suitcase (FOND re-
source, or FFIL) which contains metrics data (plus screen fonts, which will be ignored
by PDFlib).

> When working with PostScript host fonts the LWFN file must be placed in the same
directory as the font suitcase, and must be named according to the 5+3+3 rule.

PostScript font names. If you are working with font files you can use arbitrary alias
names (see section »Sources of Font Data«, page 126). If you want to know the font’s in-
ternal name there are several possibilities to determine it:

> Open the font outline file (*.pfa or *.pfb), and look for the string after the entry
/FontName. Omit the leading / character from this entry, and use the remainder as
the font name.

> On Windows and Mac OS X or above you can double-click the font file and will see a
font sample along with the PostScript name of the font.

> Open the AFM metrics file and look for the string after the entry FontName.

Note The PostScript font name may differ substantially from the Windows font menu name, e.g.
»AvantGarde-Demi« (PostScript name) vs. »AvantGarde, Bold« (Windows font menu name).

5.1.4 SING Fonts (Glyphlets)
SING fonts (Smart Independent Glyphlets) are technically an extension of the OpenType
font format. SING fonts have been developed as a solution to the Gaiji problem with CJK
text, i.e. custom glyphs which are not encoded in Unicode or any of the common CJK
legacy encodings. For more details on the SING architecture you can download the
Adobe Glyphlet Development Kit (GDK) for SING Gaiji Architecture at the following location:

www.adobe.com/devnet/opentype/gdk/topic.html

5.1 Font Formats 113

SING fonts usually contain only a single glyph (they may also contain an additional ver-
tical variant). The Unicode value of this »main« glyph can be retrieved with PDFlib by re-
questing its glyph ID and subsequently the Unicode value for this glyph ID:

maingid = (int) p.info_font(font, "maingid", "");
uv = (int) p.info_font(font, "unicode", "gid=" + maingid);

It is recommended to use SING fonts as fallback font with the gaiji suboption of the
forcechars option of the fallbackfonts option of PDF_load_font(); see Section 6.5.3, »EUDC
and SING Fonts for Gaiji Characters«, page 169, for more information.

Cookbook A full code sample can be found in the Cookbook topic fonts/starter_fallback.

The low-cost FontLab SigMaker tool can be used to generate SING fonts based on an ex-
isting image or glyph from another font:

www.fontlab.com/font-utility/sigmaker/

5.1.5 Type 3 Fonts
Unlike all other font formats, Type 3 fonts are not fetched from a disk file, but must be
defined at runtime with standard PDFlib graphics functions. Type 3 fonts are useful for
the following purposes:

> bitmap fonts
> custom graphics, such as logos can easily be printed using simple text operators
> Japanese gaiji (user-defined characters) which are not available in any predefined

font or encoding.

Since all PDFlib features for vector graphics, raster images, and even text output can be
used in Type 3 font definitions, there are no restrictions regarding the contents of the
characters in a Type 3 font. Combined with the PDF import library PDI you can even im-
port complex drawings as a PDF page, and use those for defining a character in a Type 3
font. However, Type 3 fonts are most often used for bitmapped glyphs since it is the
only font format in PDF which supports raster images for glyphs.

Type 3 fonts must completely be defined outside of any page (more precisely, the
font definition must take place in document scope). The following example demon-
strates the definition of a simple Type 3 font:

p.begin_font("Fuzzyfont", 0.001, 0.0, 0.0, 0.001, 0.0, 0.0, "");

p.begin_glyph("circle", 1000, 0, 0, 1000, 1000);
p.arc(500, 500, 500, 0, 360);
p.fill();
p.end_glyph();

p.begin_glyph("ring", 400, 0, 0, 400, 400);
p.arc(200, 200, 200, 0, 360);
p.stroke();
p.end_glyph();

p.end_font();

Cookbook Full code samples can be found in the Cookbook topics fonts/starter_type3font, fonts/
type3_bitmaptext, fonts/type3_rasterlogo, and fonts/type3_vectorlogo.

http://www.pdflib.com/pdflib-cookbook/fonts/starter-type3font

http://www.pdflib.com/pdflib-cookbook/fonts/type3-bitmaptext

http://www.pdflib.com/pdflib-cookbook/fonts/type3-bitmaptext

http://www.pdflib.com/pdflib-cookbook/fonts/type3-rasterlogo

http://www.pdflib.com/pdflib-cookbook/fonts/type3-vectorlogo

http://www.pdflib.com/pdflib-cookbook/fonts/starter-fallback

http://www.fontlab.com/font-utility/sigmaker/

114 Chapter 5: Font Handling

The font will be registered in PDFlib, and its name can be supplied to PDF_load_font()
along with an encoding which contains the names of the glyphs in the Type 3 font.
Please note the following when working with Type 3 fonts:

> Similar to patterns and templates, images cannot be opened within a glyph descrip-
tion. However, they can be opened before starting a glyph description, and placed
within the glyph description. Alternatively, inline images may be used for small bit-
maps to overcome this restriction.

> Due to restrictions in PDF consumers all characters used in text output must actual-
ly be defined in the font: if character code x is to be displayed with any text output
function, and the encoding contains glyphname at position x, then glyphname must
have been defined via PDF_begin_glyph().

> Some PDF consumers require a glyph named .notdef if codes will be used for which
the corresponding glyph names are not defined in the font. Acrobat 8 may even
crash if a .notdef glyph is not present. The .notdef glyph must be present, but it may
simply contain an empty glyph description.

> When normal bitmap data is used to define characters, unused pixels in the bitmap
will print as white, regardless of the background. In order to avoid this and have the
original background color shine through, use the mask parameter for constructing
the bitmap image.

> The interpolate option for images may be useful for enhancing the screen and print
appearance of Type 3 bitmap fonts.

> Type 3 fonts do not contain any typographic properties such as ascender, descender,
etc. However, these can be set by using the corresponding options in PDF_load_font().

5.2 Unicode Characters and Glyphs 115

5.2 Unicode Characters and Glyphs
5.2.1 Glyph IDs

A font is a collection of glyphs, where each glyph is defined by its geometric outline.
PDFlib assigns a number to each glyph in the font. This number is called the glyph id or
GID. GID 0 (zero) refers to the .notdef glyph in all font formats. The visual appearance of
the .notdef glyph varies among font formats and vendors; typical implementations are
the space glyph or a hollow or crossed-out rectangle. The highest GID is one less than
the number of glyphs in the font which can be queried with the numglyphs keyword of
PDF_info_font().

The assignment of glyph IDs depends on the font format:
> Since TrueType and OpenType fonts already contain internal GIDs, PDFlib uses these

GIDs.
> For CID-keyed OpenType CJK fonts CIDs will be used as GIDs.
> For other font types PDFlib numbers the glyphs according to the order of the corre-

sponding outline descriptions in the font.

PDFlib supports glyph selection via GID as an alternative to Unicode and other encod-
ings (see »Glyphid encoding«, page 123). Direct GID addressing is only useful for special-
ized applications, e.g. printing font overview tables by querying the number of glyphs
and iterating over all glyph IDs.

5.2.2 Unicode Mappings for Glyphs

Unicode mappings. PDFlib assigns a unique Unicode value to each GID. This mapping
process depends on the font format and is detailed in the sections below for the sup-
ported font types. Although a unique Unicode value will be assigned to each GID, the re-
verse is not necessarily true, i.e. a particular glyph can represent multiple Unicode val-
ues. Common examples in many TrueType and OpenType fonts are the empty glyph
which represents U+0020 Space as well as U+00A0 No-Break Space, and a glyph which
represents both U+2126 Ohm Sign and U+03A9 Greek Capital Letter Omega. If multiple
Unicode values point to the same glyph in a font PDFlib will assign the first Unicode val-
ue found in the font.

Unmapped glyphs and the Private Use Area (PUA). In some situations the font may
not provide a Unicode value for a particular glyph. In this case PDFlib assigns a value
from the Unicode Private Use Area (PUA, see Section 4.1, »Important Unicode Concepts«,
page 93) to the glyph. Such glyphs are called unmapped glyphs. The number of un-
mapped glyphs in a font can be queried with the unmappedglyphs keyword of PDF_info_
font(). Unmapped glyphs will be represented by the Unicode replacement character
U+FFFD in the font’s ToUnicode CMap which controls searchability and text extraction.
As a consequence, unmapped glyphs cannot be properly extracted as text from the gen-
erated PDF.

When PDFlib assigns PUA values to unmapped glyphs it uses ascending values from
the following pool:

> The basis is the Unicode PUA range in the Basic Multilingual Plane (BMP), i.e. the
range U+E000 - U+F8FF. Additional PUA values in plane 15 (U+F0000 to U+FFFFD) are
used if required.

116 Chapter 5: Font Handling

> PUA values which have already been assigned by the font internally are not used
when creating new PUA values.

> PUA values in the Adobe range U+F600-F8FF are not used.

The generated PUA values are unique within a font. The assignment of generated PUA
values for the glyphs in a font is independent from other fonts.

Unicode mapping for TrueType, OpenType, and SING fonts. PDFlib keeps the Unicode
mappings found the font’s relevant cmap table (the selection of the cmap depends on
the encoding supplied to PDF_load_font()). If a single glyph is used for multiple Unicode
values PDFlib will use the first Unicode value found in the font.

If the cmap does not provide any Unicode mapping for a glyph PDFlib checks the
glyph names in the post table (if present in the font) and determines Unicode mappings
based on the glyph names as described below for Type 1 fonts).

In some cases neither the cmap nor the post table provide Unicode values for all
glyphs in the font. This is true for variant glyphs (e.g. swash characters), extended liga-
tures, and non-textual symbols outside the Unicode standard. In this case PDFlib as-
signs PUA values to the affected glyphs as described in »Unmapped glyphs and the Pri-
vate Use Area (PUA)«, page 115.

Unicode mapping for Type 1 fonts. Type 1 fonts do not include explicit Unicode map-
pings, but assign a unique name to each glyph. PDFlib tries to assign a Unicode value
based on this glyph name, using an internal mapping table which contains Unicode
mappings for more than 7 000 common glyph names for a variety of languages and
scripts. The mapping table includes ca. 4 200 glyph names from the Adobe Glyph List
(AGL)1. However, Type 1 fonts may contain glyph names which are not included in the
internal mapping table; this is especially true for Symbol fonts. In this case PDFlib as-
signs PUA values to the affected glyphs as described in »Unmapped glyphs and the Pri-
vate Use Area (PUA)«, page 115.

If the metrics for a Type 1 font are loaded from a PFM file and no PFB or PFA outline
file is available, the glyph names of the font are not known to PDFlib. In this case PDFlib
assigns Unicode values based on the encoding (charset) entry in the PFM file.

Unicode mapping for Type 3 fonts. Since Type 3 fonts are also based on glyph names,
they are treated in the same way as Type 1 fonts. An important difference, however, is
that the glyph names for Type 3 fonts are under user control (via the glyphname param-
eter of PDF_begin_glyph()). It is therefore strongly recommended to use appropriate
glyph names from the AGL for user-defined Type 3 fonts. This makes sure that proper
Unicode values will be assigned automatically by PDFlib, resulting in searchable text in
the generated PDF documents.

5.2.3 Unicode Control Characters
Control characters are Unicode values which do not represent any glyph, but are used to
convey some formatting information. PDFlib processes the following groups of Unicode
control characters:

> The control characters for overriding the default shaping behavior (listed in Table
6.4) and those for overriding the default bidi formatting (listed in Table 6.5) control

1. The AGL can be found at partners.adobe.com/public/developer/en/opentype/glyphlist.txt

http://partners.adobe.com/public/developer/en/opentype/glyphlist.txt

5.2 Unicode Characters and Glyphs 117

complex script shaping and OpenType layout feature processing in Textline and
Textflow. After evaluating these control characters they will be removed.

> The formatting control characters for line breaking and Textflow formatting listed
in Table 8.1. After evaluating these control characters they will be removed.

> Other Unicode control characters in the ranges U+0001-U+0019 and U+007F-
U+009F will be replaced with the replacement character.

Even if a font contains a glyph for a control character the glyph will usually not be visi-
ble since PDFlib removes control characters (as an exception to this rule &NBSP; and
&SHY; will not be removed). However, with encoding=glyphid control characters will be
retained in the text and can produce visible output.

118 Chapter 5: Font Handling

5.3 The Text Processing Pipeline
The client application provides text for page output to PDFlib. This text is encoded ac-
cording to some application-specific encoding and format. However, PDFlib’s internal
processing is based on the Unicode standard, and the final text output requires font-
specific glyph IDs. PDFlib therefore treats incoming strings for page contents in a text
processing pipeline with three sections:

> normalize input codes to Unicode values; this process is restricted by the selected en-
coding.

> convert Unicode values to font-specific glyph IDs; this process is restricted by the
available glyphs in the font.

> transform glyph IDs; this process is restricted by the output encoding.

These three sections of the text processing pipeline contain several subprocesses which
can be controlled by options.

5.3.1 Normalizing Input Strings to Unicode
The following steps are performed for all encodings except encoding=glyphid and non-
Unicode CMaps:

> Unicode-aware language bindings: if a single-byte encoding has been specified
UTF-16 text is converted to single-byte text by dropping the high-order bytes.

> Windows: convert multi-byte text (e.g. cp932) to Unicode.
> Replace escape sequences (see Section 4.5.1, »Escape Sequences«, page 107) with the

corresponding numerical values.
> Resolve character references and replace them with the corresponding Unicode val-

ues (see Section 4.5.2, »Character References«, page 108, and next section below).
> Single-byte encodings: convert single-byte text to Unicode according to the specified

encoding.

See also Section 5.2.2, »Unicode Mappings for Glyphs«, page 115, for more details regard-
ing the Unicode assignments for various font formats and types of characters.

Character references with glyph names. A font may contain glyphs which are not di-
rectly accessible because the corresponding Unicode values are not known in advance
(since PDFlib assigns PUA values at runtime). As an alternative for addressing such
glyphs, character references with glyph names can be used; see Section 4.5.2, »Character
References«, page 108, for a syntax description. These references be replaced with the
corresponding Unicode values.

If a character reference is used in a content string, PDFlib tries to find the specified
glyph in the current font, and will replace the reference with the glyph’s Unicode value.
If a glyph with the specified name is not available in the font, PDFlib searches its inter-
nal glyph name table to determine a Unicode value. This Unicode value will be used
again to check whether a suitable glyph is available in the font. If no such glyph can be
found, the behavior is controlled by the glyphcheck and errorpolicy settings. Character
references cannot be used with glyphid or builtin encoding.

5.3 The Text Processing Pipeline 119

5.3.2 Converting Unicode Values to Glyph IDs
The Unicode values determined in the previous section may have to be modified for
several reasons. The steps below are performed for all encodings except encoding=
glyphid and non-Unicode CMaps which are treated as follows:

> For non-Unicode CMaps: invalid code sequences always trigger an exception.
> For encoding=glyphid: invalid glyph IDs are replaced with the replacementchar (if

glyphcheck=replace) or glyph ID 0 (glyphcheck=none). If glyphcheck=error an exception
will be thrown.

Forced characters from fallback fonts. Replace Unicode values according to the force-
chars suboption of the fallbackfonts option, and determine the glyph ID of the corre-
sponding fallback font. For more information see Section 5.4.6, »Fallback Fonts«, page
133.

Convert to glyph IDs. Convert the remaining Unicode values to glyph IDs according to
the mappings determined in Section 5.2.2, »Unicode Mappings for Glyphs«, page 115. If
no corresponding glyph ID for a Unicode value was found in the font, the next steps de-
pend on the glyphcheck option:

> glyphcheck=none: glyph ID 0 will be used. This means that the .notdef glyph will be
used in the text output. If the .notdef glyph contains a visible shape (often a hollow
or crossed-out rectangle) it makes the problematic characters visible on the PDF
page, which may or may not be desired.

> glyphcheck=replace (which is the default): a warning message will be logged and
PDFlib attempts to replace the unmappable Unicode value with the glyph replace-
ment mechanism detailed below.

> glyphcheck=error: PDFlib raises an error. In case of errorpolicy=return this means that
the function call will be terminated without creating any text output; PDF_add/
create_textflow() will return -1 (in PHP: 0). In case of errorpolicy=exception an excep-
tion will be thrown.

Glyph replacement. If glyphcheck=replace, unmappable Unicode values will recursively
be replaced as follows:

> The fallback fonts specified when loading the master font will be searched for glyphs
for the Unicode value. This may involve an arbitrary number of fonts since more
than one fallback font can be specified for each font. If a glyph is found in one of the
fallback fonts it will be used.

> Select a typographically similar glyph according to the Unicode value from PDFlib’s
internal replacement table. The following excerpt from the internal list contains
some of these replacements. If the first character in the list is unavailable in a font, it
will be replaced with the second character:

U+00A0 (NO-BREAK SPACE) U+0020 (SPACE)
U+00AD (SOFT HYPHEN) U+002D (HYPHEN-MINUS)
U+2010 (HYPHEN) U+002D (HYPHEN-MINUS)
U+03BC (GREEK SMALL LETTER MU) U+00C5 (MICRO SIGN)
U+212B (ANGSTROM SIGN) U+00B5 (LATIN CAPITAL LETTER A WITH RING ABOVE Å)
U+220F (N-ARY PRODUCT) U+03A0 (GREEK CAPITAL LETTER PI)
U+2126 (OHM SIGN) U+03A9 (GREEK CAPITAL LETTER OMEGA)

120 Chapter 5: Font Handling

In addition to the internal table, the fullwidth characters U+FF01 to U+FF5E will be re-
placed with the corresponding ISO 8859-1 characters (i.e. U+0021 to U+007E) if the
fullwidth variants are not available in the font.

> Decompose Unicode ligatures into their constituent glyphs (e.g. replace U+FB00
Latin small ligature ff with the sequence U+0066 f, U+0066 f).

> Select glyphs with the same Unicode semantics according to their glyph name. In
particular, all glyph name suffixes separated with a period will be removed if the cor-
responding glyph is not available (e.g. replace A.swash with A; replace g.alt with g).

If none of these methods delivers a glyph for the Unicode value, the character specified
in the replacementchar option will be used. If the corresponding glyph itself is not avail-
able in the font (or the replacementchar option was not specified), U+00A0 (NO-BREAK
SPACE) and U+0020 (SPACE) will be tried. If these are still unavailable, glyph ID 0 (the
missing glyph symbol) will be used.

For PDF/A-1, PDF/X-4 and PDF/X-5 input codes which map to glyph ID 0 will be
skipped.

Cookbook A full code sample can be found in the Cookbook topic fonts/glyph_replacement.

5.3.3 Transforming Glyph IDs
The determined glyph IDs are not yet final since several transformations may have to
be applied before final output can be created. The details of these transformations de-
pend on the font and several options. The steps below will be performed for all encod-
ings except non-Unicode CMaps with keepnative=true.

Vertical glyphs. For fonts in vertical writing mode some glyphs may be replaced by
their vertical counterparts. This substitution requires a vert OpenType layout feature ta-
ble in the font.

OpenType layout features. OpenType features can create ligatures, swash characters,
small caps, and many other typographic variations by replacing one or more glyph IDs
with other values. OpenType features are discussed in Section 6.3, »OpenType Layout
Features«, page 152. OpenType layout features are relevant only for suitable fonts (see
»Requirements for OpenType layout features«, page 154), and are applied according to
the features option.

Complex script shaping. Shaping reorders the text and determines the appropriate
variant glyph according to the position of a character (e.g. initial, middle, final, or isolat-
ed form of Arabic characters). Shaping is discussed in Section 6.4, »Complex Script Out-
put«, page 158. It is relevant only for suitable fonts (see »Requirements for shaping«,
page 160, and is applied according to the shaping option.

http://www.pdflib.com/pdflib-cookbook/fonts/glyph-replacement

5.4 Loading Fonts 121

5.4 Loading Fonts
5.4.1 Selecting an Encoding for Text Fonts

Fonts can be loaded explicitly with the PDF_load_font() function or implicitly by supply-
ing the fontname and encoding options to certain functions such as PDF_add/create_
textflow() or PDF_fill_textblock(). Regardless of the method used for loading a font, a
suitable encoding must be specified. The encoding determines

> in which text formats PDFlib expects the supplied text;
> which glyphs in a font can be used;
> how text on the page and the glyph data in the font will be stored in the PDF output

document.

PDFlib’s text handling is based on the Unicode standard1, almost identical to ISO 10646.
Since most modern development environments support the Unicode standard our goal
is to make it as easy as possible to use Unicode strings for creating PDF output. Howev-
er, developers who don’t work with Unicode are not required to switch their application
to Unicode since legacy encodings can be used as well.

The choice of encoding depends on the font, the available text data, and some pro-
gramming aspects. In the remainder of this section we will provide an overview of the
different classes of encodings as an aid for selecting a suitable encoding.

Unicode encoding. With encoding=unicode you can pass Unicode strings to PDFlib. This
encoding is supported for all font formats. Depending on the language binding in use,
the Unicode string data type provided by the programming language (e.g. Java) can be
used, or byte arrays containing Unicode in one of the UTF-8, UTF-16, or UTF-32 formats
with little- or big-endian byte ordering (e.g. C).

With encoding=unicode all glyphs in a font can be addressed; complex script shaping
and OpenType layout features are supported. PDFlib checks whether the font contains a
glyph for a requested Unicode value. If no glyph is available, a substitute glyph can be
pulled from the same or another font (see Section 5.4.6, »Fallback Fonts«, page 133).

In non-Unicode-aware language bindings PDFlib expects UTF-16 encoded text by de-
fault. However, you can supply single-byte strings by specifying textformat=bytes. In
this case the byte values represent the characters U+0001 - U+00FF, i.e. the first Unicode
block with Basic Latin characters (identical to ISO 8859-1). However, using character ref-
erences Unicode values outside this range can also be specified in single-byte text.

Some font types in PDF (Type 1, Type 3, and OpenType fonts based on glyph names)
support only single-byte text. However, PDFlib takes care of this situation to make sure
that more than 255 different characters can be used even for these font types.

The disadvantage of encoding=unicode is that text in traditional single- or multi-byte
encodings (except ISO 8859-1) cannot be used.

Single-byte encodings. 8-bit encodings (also called single-byte encodings) map each
byte in a text string to a single character, and are thus limited to 255 different characters
at a time (the value 0 is not available). This type of encoding is supported for all font for-
mats. PDFlib checks whether the font contains glyphs which match the selected encod-
ing. If a minimum number of usable glyphs is not reached, PDFlib will log a warning
message. If no usable glyph at all for the selected encoding is available in the font, font

1. See www.unicode.org

http://www.unicode.org

122 Chapter 5: Font Handling

loading will fail with the message font doesn’t support encoding. PDFlib checks whether
the font contains a glyph for a requested input value. If no glyph is available, a substi-
tute glyph can be pulled from the same or another font (see Section 5.4.6, »Fallback
Fonts«, page 133).

In non-Unicode-aware language bindings PDFlib expects single-byte encoded text by
default. However, you can supply UTF-8 or UTF-16 strings by specifying textformat= utf8
or utf16.

8-bit encodings are discussed in detail in Section 4.2, »Single-Byte (8-Bit) Encodings«,
page 95. They can be pulled from various sources:

> A large number of predefined encodings according to Table 4.2. These cover the most
important encodings currently in use on a variety of systems, and in a variety of lo-
cales.

> User-defined encodings which can be supplied in an external file or constructed dy-
namically at runtime with PDF_encoding_set_char(). These encodings can be based on
glyph names or Unicode values.

> Encodings pulled from the operating system, also known as a system encoding. This
feature is available on Windows, IBM iSeries and zSeries.

The disadvantage of single-byte encodings is that only a limited set of characters and
glyphs is available. For this reason complex script shaping and OpenType layout fea-
tures are not supported for single-byte encodings.

Builtin encoding. Among other scenarios, you can specify encoding=builtin to use sin-
gle-byte codes for non-textual glyphs from symbolic fonts. The format of a font’s inter-
nal encoding depends on the font type:

> TrueType: the encoding is created based on the font’s symbolic cmap, i.e. the (3, 0)
entry in the cmap table.

> OpenType fonts can contain an encoding in the CFF table.
> PostScript Type 1 fonts always contain an encoding.
> For Type 3 fonts the encoding is defined by the first 255 glyphs in the font.

If the font does not contain any builtin encoding font loading fails (e.g. OpenType CJK
fonts). You can use the symbolfont key in PDF_info_font() . If it returns false, the font is a
text font which can also be loaded with one of the common single-byte encodings. This
is not possible if the symbolfont key returns true. The glyphs in such symbolic fonts can
only be used if you know the corresponding code for each glyph (see Section 5.4.2, »Se-
lecting an Encoding for symbolic Fonts«, page 123).

In non-Unicode-aware language bindings PDFlib expects single-byte formatted text
by default. This has the advantage that you can use the single-byte values which have
traditionally been used to address some symbolic fonts; this is not possible with other
encodings. However, you can also supply text in a Unicode format, e.g. with text-
format=utf16.

The disadvantage of encoding=builtin is that in single-byte encoded text character
references cannot be used.

Multi-byte encodings. This encoding type is supported for CJK fonts, i.e. TrueType and
OpenType CID fonts with Chinese, Japanese, or Korean characters. A variety of encoding
schemes has been developed for use with these scripts, e.g. Shift-JIS and EUC for Japa-
nese, GB and Big5 for Chinese, and KSC for Korean. Multi-byte encodings are defined by

5.4 Loading Fonts 123

the Adobe CMaps or Windows codepages (see Section 4.3, »Chinese, Japanese, and Kore-
an Encodings«, page 99).

These traditional encodings are only supported in non-Unicode-aware language
bindings with the exception of Unicode CMaps which are equivalent to encoding=
unicode.

In non-Unicode-aware language bindings PDFlib expects multi-byte encoded text by
default (textformat=bytes).

With multi-byte encodings the text will be written to the PDF output exactly as sup-
plied by the user if the keepnative option is true.

The disadvantage of multi-byte encodings is that PDFlib checks the input text only
for valid syntax, but does not check whether a glyph for the supplied text is available in
the font. Also, it is not possible to supply Unicode text since PDFlib cannot convert the
Unicode values to the corresponding multi-byte sequences. Finally, character referenc-
es, OpenType layout features and complex script shaping cannot be used.

Glyphid encoding. PDFlib supports encoding=glyphid for all font formats. With this en-
coding all glyphs in a font can be addressed, using the numbering scheme explained in
Section 5.2.1, »Glyph IDs«, page 115. Numerical glyph IDs run from 0 to a theoretical max-
imum value of 65 565 (but fonts with such a large number of glyphs are not available).
The maximum glyph ID value can be queried with the maxcode key in PDF_info_font().

In non-Unicode-aware language bindings PDFlib expects double-byte encoded text
by default (textformat=utf16).

PDFlib checks whether the supplied glyph ID is valid for the font. Complex script
shaping and OpenType layout features are supported.

Since glyph IDs are specific to a particular font and in some situations are even creat-
ed by PDFlib encoding=glyphid is generally not suited for regular text output. The main
use of this encoding is for printing complete font tables with all glyphs.

5.4.2 Selecting an Encoding for symbolic Fonts
Symbolic fonts are fonts which contain symbols, logos, pictograms or other non-textual
glyphs. They raise several issues which are not relevant for text fonts. The underlying
problem is that by design the Unicode standard does not generally encode symbolic
glyphs (although there are exceptions to this rule, e.g. the glyphs in the common
ZapfDingbats font). In order to make symbolic fonts fit for use in Unicode-oriented
workflows, TrueType and OpenType fonts usually assign Unicode values in the Private
Use Area (PUA) to their glyphs. For lack of Unicode mapping tables, PostScript Type 1
cannot do this, and generally use the codes of Latin characters to select their glyphs. In
all font formats the symbolic glyphs usually have custom glyph names.

This situation has the following consequences regarding the selection of glyphs
from symbolic fonts:

> Symbolic TrueType and OpenType fonts are best loaded with encoding=unicode. If
you know the PUA values assigned to the glyphs you can supply these values in the
text in order to select symbolic glyphs. This requires advance knowledge of the PUA
assignments in the font.

> Since PDFlib assigns PUA values for symbolic PostScript Type 1 fonts internally, these
PUA values are not known in advance.

> If you prefer to work with 8-bit codes for addressing the glyphs in a symbolic font
you can load the font with encoding=builtin and supply the 8-bit codes in the text. For

124 Chapter 5: Font Handling

example, the digit 4 (code 0x34) will select the check mark symbol in the ZapfDing-
bats font.

In order to use symbolic fonts with encoding=unicode suitable Unicode values must be
used for the text:

> The characters in the Symbol font all have proper Unicode values.
> The characters in the ZapfDingbats font have Unicode values in the range U+2007 -

U+27BF.
> Microsoft’s symbolic fonts, e.g. Wingdings and Webdings, use PUA Unicode values in

the range U+F020 - U+F0FF (although the charmap application presents them with
single-byte codes).

> For other fonts the Unicode values for individual glyphs in the font must be known
in advance or must be determined at runtime with PDF_info_font(), e.g. for PostScript
Type 1 fonts by supplying the glyph name.

Control characters. The Unicode control characters in the range U+0001 - U+001F
which are listed in Table 8.1 are supported in Textflow even with encoding=builtin. Codes
< 0x20 will be interpreted as control characters if the symbolic font does not contain
any glyph for the code. This is true for the majority of symbolic fonts.

Since the code for the a linefeed characters differs between ASCII and EBCDIC it is
recommended to avoid the literal character 0x0A on EBCDIC systems, and use the
PDFlib escape sequence \n with the option escapesequence=true instead. Note that the \n
must arrive at the PDFlib API, e.g. in C the sequence \\n is required.

Character references. Character references are supported for symbolic fonts. However,
symbolic fonts generally do not include any glyph for the ampersand character U+0026
’&’ which introduces character references. The code 0x26 cannot be used either since it
could be mapped to an existing glyph in the font. For these reasons symbolic fonts
should be loaded with encoding=unicode if character references must be used. Character
references do not work with encoding=builtin.

5.4.3 Example: Selecting a Glyph from the Wingdings Symbol Font
Since there are many different ways of selecting characters from a symbol font and
some will not result in the desired output, let’s take a look at an example.

Understanding the characters in the font. First let’s collect some information about
the target character in the font, using the Windows charmap application (see Figure 5.1):

> Charmap displays the glyphs in the Wingdings font, but does not provide any Uni-
code access in the Advanced view. This is a result of the fact that the font contains
symbolic glyphs for which no standardized Unicode values are registered. Instead,
the glyphs in the font use dummy Unicode values in the Private Use Area (PUA). The
charmap application does not reveal these values.

> If you look at the lower left corner of the charmap window or hover the mouse over
the smileface character, the Character code: 0x4A is displayed. This is the glyph’s byte
code.
This code corresponds to the uppercase J character in the Winansi encoding. For ex-
ample, if you copy the character to the clipboard the corresponding Unicode value
U+004A, i.e. character J will result from pasting the clipboard contents to a text-only

5.4 Loading Fonts 125

application. Nevertheless, this is not the character’s Unicode value and therefore
U+004A or J can not be used to select it in Unicode workflows.

> The Unicode character used internally in the font is not displayed in charmap. How-
ever, symbolic fonts provided by Microsoft use the following simple rule:

Unicode value = U+F000 + (character code displayed in charmap)

For the smileface glyph this yields the Unicode value U+F04A.
> The corresponding glyph name can be retrieved with a font editor and similar tools.

In our example it is smileface.

You can use PDF_info_font() to query Unicode values, glyph names or codes, see Section
5.6.2, »Font-specific Encoding, Unicode, and Glyph Name Queries«, page 141.

Addressing the symbol character with PDFlib. Depending on the information which is
available about the target character you can select the Wingdings smileface glyph in sev-
eral ways:

> If you know the PUA Unicode value which is assigned to the character in the font you
can use a numerical character reference (see »Numerical character references«, page
108):



If you work with textformat=utf8 you can use the corresponding three-byte UTF-8 se-
quence:

\xEF\x81\x8A

Unicode values can not be used with the combination of encoding=builtin and text-
format=bytes.

Fig. 5.1
Windows character map
with the Wingdings font

126 Chapter 5: Font Handling

> If you know the character code you can use a byte value reference (see »Byte value
references«, page 109):

&.#x4A;

In non-Unicode-aware language bindings the character code can be specified directly
if encoding=builtin and textformat=bytes:

J
\x4A

> If you know the glyph name you can use a glyph name reference (see »Glyph name
references«, page 109):

&.smileface;

Glyph names can not be used with the combination of encoding=builtin and text-
format=bytes.

Table 5.1 lists methods for Unicode-aware language bindings such as Java and .NET.

Table 5.2 lists methods for non-Unicode-aware language bindings such as C.

5.4.4 Searching for Fonts

Sources of Font Data. As mentioned earlier, fonts can be loaded explicitly with the
PDF_load_font() function or implicitly by supplying the fontname and encoding options
to various text output functions. You can use a font’s native name or work with arbi-
trary custom names which will be used to locate the font data. Custom font names must
be unique within a document. In PDF_info_font() this font name can be queried with the
apiname key.

Subsequent calls to PDF_load_font() will return the same font handle if all options
are identical to those provided in the first call to this function (a few options are treated
differently; see PDFlib API Reference for details). Otherwise a new font handle will be
created for the same font name. PDFlib supports the following sources of font data:

> Disk-based or virtual font files
> Fonts pulled from the Windows or Mac operating system (host fonts)

Table 5.1 Addressing the smileface glyph in the Wingdings font with Unicode-aware language bindings (e.g. Java)

encoding additional options input string visible result on the page

unicode

\uF04A 1

1. String syntax for U+F04A in Java and many other Unicode-aware languages

charref 

charref &.#x4A;

charref &.smileface;

J 2

2. Winansi character for the byte code \x4A

(nothing)

escapesequence \x4A (nothing)

builtin (same as above with encoding=unicode)

5.4 Loading Fonts 127

> PDF standard fonts: these are from a small set of Latin and CJK fonts with well-
known names

> Type 3 fonts which have been defined with PDF_begin_font() and related functions.

Cookbook A full code sample can be found in the Cookbook topic fonts/font_resources.

Search order for fonts. The font name supplied to PDFlib is a name string. PDFlib uses
the specified font name to search for fonts of various types in the following order. The
search process stops as soon as one of the steps located a usable font:

> The font name matches the name of a standard CJK font and the specified encoding
is the name of a predefined CMap (see Section 6.5.1, »Standard CJK Fonts«, page 166).

> The font name matches the name of a Type 3 font which has previously been created
in the same document with PDF_begin_font() (see Section 5.1.5, »Type 3 Fonts«, page
113).

> The font name matches the name in a FontOutline resource which connects the font
name with the name of a TrueType or OpenType font file.

Table 5.2 Addressing the smileface glyph in the Wingdings font with non-Unicode-aware language bindings (e.g. C)

encoding textformat additional options input string visible result on the page

unicode

utf16 \xF0\x4A 1

utf8

charref 

charref &.#x4A;

charref &.smileface;

ï•ã
2

escapesequence3 \xEF\x81\x8A 4

J 5 (nothing)

escapesequence \x4A (nothing)

bytes

charref 

bytes &.#x4A;

charref &.smileface;

J (nothing)

escapesequence \x4A (nothing)

builtin

utf16, utf8 (same as above with encoding=unicode)

bytes

charref 

charref &.#x4A;

charref &.smileface;

J

escapesequence \x4A

1. Must be expressed as \xF0\x4A or \x4A\xF0 depending on byte ordering; note that \x designates C escape syntax
2. Winansi characters for the three-byte sequence \xEF \x81 \x8A
3. The escapesequence option is only required if the programming language doesn’t offer any syntax for direct byte values.
4. Three-byte UTF-8 sequence for U+F04A
5. Winansi character for the byte code \x4A

http://www.pdflib.com/pdflib-cookbook/fonts/font-resources

128 Chapter 5: Font Handling

> The font name matches the name in a FontAFM or FontPFM resource which connects
the font name with the name of a PostScript Type 1 font metrics file.

> The font name matches the name in a HostFont resource which connects the font
name with the name of a font installed on the system.

> The font name matches the name of a Latin core font (see »Latin core fonts«, page
129).

> The name matches the name of a host font installed on the system (see Section 5.4.5,
»Host Fonts on Windows and Mac OS X«, page 131).

> The font name matches the base name (i.e. without file name suffix) of a font file.

If no font was found, font loading stops with the following error message:

Font file (AFM, PFM, TTF, OTF etc.) or host font not found

Details regarding the resource categories can be found in Section 3.1.3, »Resource Config-
uration and File Search«, page 56. The following sections discuss font loading for the
various classes of fonts in more detail.

TrueType and OpenType fonts. The font name must be connected
to the name of the desired font file via the FontOutline resource:

p.set_parameter("FontOutline", "Arial=/usr/fonts/Arial.ttf");
font = p.load_font("Arial", "unicode", "embedding");

The alias font name to the left of the equal sign can be chosen arbitrarily:

p.set_parameter("FontOutline", "f1=/usr/fonts/Arial.ttf");
font = p.load_font("f1", "unicode", "embedding");

As an alternative to runtime configuration via PDF_set_parameter(), the FontOutline re-
source can be configured in a UPR file (see Section 3.1.3, »Resource Configuration and
File Search«, page 56). In order to avoid absolute file names you can use the SearchPath
resource category (again, the SearchPath resource category can alternatively be config-
ured in a UPR file), for example:

p.set_parameter("SearchPath", "/usr/fonts");
p.set_parameter("FontOutline", "f1=Arial.ttf");
font = p.load_font("f1", "unicode", "");

TrueType Collections. In order to select a font which is contained in a True-
Type Collection (TTC, see Section 6.5.2, »Custom CJK Fonts«, page 168) file you
directly specify the name of the font:

p.set_parameter("FontOutline", "MS-Gothic=msgothic.ttc");
font = p.load_font("MS-Gothic", "unicode", "embedding");

The font name will be matched against the names of all fonts in the TTC file. Alterna-
tively, to select the n-th font in a TTC file you can specify the number n with a colon af-
ter the font name. In this case the alias font name to the left of the equal sign can be
chosen arbitrarily:

p.set_parameter("FontOutline", "f1=msgothic.ttc");
font = p.load_font("f1:0", "unicode", "");

5.4 Loading Fonts 129

PostScript Type 1 fonts. The font name must be connected to the name of
the desired font metrics file via one of the FontAFM or FontPFM resource cate-
gories according to the type of the metrics file:

p.set_parameter("FontPFM", "lucidux=LuciduxSans.pfm");
font = p.load_font("lucidux", "unicode", "");

If embedding is requested for a PostScript font, its name must be connected to the corre-
sponding font outline file (PFA or PFB) via the FontOutline resource category:

p.set_parameter("FontPFM", "lucidux=LuciduxSans.pfm");
p.set_parameter("FontOutline", "lucidux=LuciduxSans.pfa");
font = p.load_font("lucidux", "unicode", "embedding");

Keep in mind that for PostScript Type 1 fonts the FontOutline resource alone is not suffi-
cient. Since a metrics file is always required an AFM or PFM file must be available in or-
der to load the font.

The directories which will be searched for font metrics and outline files can be speci-
fied via the SearchPath resource category.

Latin core fonts. PDF viewers support a core set of 14 fonts which are assumed to be al-
ways available. Full metrics information for the core fonts is already built into PDFlib so
that no additional data are required (unless the font is to be embedded). The core fonts
have the following names:

Courier, Courier-Bold, Courier-Oblique, Courier-BoldOblique,
Helvetica, Helvetica-Bold, Helvetica-Oblique, Helvetica-BoldOblique,
Times-Roman, Times-Bold, Times-Italic, Times-BoldItalic,
Symbol, ZapfDingbats

If a font name is not connected to any file name via resources, PDFlib will search the
font in the list of Latin core fonts. This step will be skipped if the embedding option is
specified or a FontOutline resource is available for the font name. The following code
fragment requests one of the core fonts without any configuration:

font = p.load_font("Times-Roman", "unicode", "");

Core fonts found in the internal list are never embedded. In order to embed one of these
fonts you must configure a font outline file.

Host fonts. If a font name is not connected to any file name via resources, PDFlib will
search the font in the list of fonts installed on the Windows or Mac system. Fonts in-
stalled on the system are called host fonts. Host font names must be encoded in ASCII.
On Windows Unicode can also be used. See Section 5.4.5, »Host Fonts on Windows and
Mac OS X«, page 131, for more details on host fonts. Example:

font = p.load_font("Verdana", "unicode", "");

On Windows an optional font style can be added to the font name after a comma:

font = p.load_font("Verdana,Bold", "unicode", "");

In order to load a host font with the name of one of the core fonts, the font name must
be connected to the desired host font name via the HostFont resource category. The fol-

130 Chapter 5: Font Handling

lowing fragment makes sure that instead of using the built-in core font data, the Sym-
bol font metrics and outline data will be taken from the host system:

p.set_parameter("HostFont", "Symbol=Symbol");
font = p.load_font("Symbol", "unicode", "embedding");

The alias font name to the left of the equal sign can be chosen arbitrarily; we simply
used the name of the host font.

Extension-based search for font files. All font types except Type 3 fonts can be
searched by using the specified font name as the base name (without any file suffix) of a
font metrics or outline file. If PDFlib couldn’t find any font with the specified name it
will loop over all entries in the SearchPath resource category, and add all known file
name suffixes to the supplied font name in an attempt to locate the font metrics or out-
line data. The details of the extension-based search algorithm are as follows:

> The following suffixes will be added to the font name, and the resulting file names
tried one after the other to locate the font metrics (and outline in the case of True-
Type and OpenType fonts):

.tte .ttf .otf .gai .afm .pfm .ttc

.TTE .TTF .OTF .GAI .AFM .PFM .TTC

> If embedding is requested for a PostScript font, the following suffixes will be added to
the font name and tried one after the other to find the font outline file:

.pfa .pfb

.PFA .PFB

If no font file was found, font loading stops with the following error message:

Font cannot be embedded (PFA or PFB font file not found)

> All candidate file names above will be searched for »as is«, and then by prepending
all directory names configured in the SearchPath resource category.

This means that PDFlib will find a font without any manual configuration provided the
corresponding font file consists of the font name plus the standard file name suffix ac-
cording to the font type, and is located in one of the SearchPath directories.

The following groups of statements will achieve the same effect with respect to lo-
cating the font outline file:

p.set_parameter("FontOutline", "Arial=/usr/fonts/Arial.ttf");
font = p.load_font("Arial", "unicode", "");

and

p.set_parameter("SearchPath", "/usr/fonts");
font = p.load_font("Arial", "unicode", "");

Standard CJK fonts. Acrobat supports various standard fonts for CJK text; see Section
6.5.1, »Standard CJK Fonts«, page 166, for more details and a list of font names. PDFlib
will find a standard CJK font at the very beginning of the font search process if all of the
following requirements are met:

> The specified font name matches the name of a standard CJK font;
> The specified encoding is the name of one of the predefined CMaps;

5.4 Loading Fonts 131

> The embedding option was not specified.

If one or more of these requirements is violated the font search will be continued. Stan-
dard CJK fonts found in the internal list are never embedded. In order to embed one of
these you must configure a font outline file. Example:

font = p.load_font("KozGoPro-Medium", "90msp-RKSJ-H", "");

Type 3 fonts. Type 3 fonts must be defined at runtime by defining the glyphs with
standard PDFlib graphics functions (see Section 5.1.5, »Type 3 Fonts«, page 113). If the font
name supplied to PDF_begin_font() matches the font name requested with PDF_load_
font() the font will be selected at the beginning of the font search (assuming that the
font name didn’t match the name of a standard CJK font). Example:

p.begin_font("PDFlibLogoFont", 0.001, 0.0, 0.0, 0.001, 0.0, 0.0, "");

...
p.end_font();
...
font = p.load_font("PDFlibLogoFont", "logoencoding", "");

5.4.5 Host Fonts on Windows and Mac OS X
On Mac and Windows systems PDFlib can access TrueType, OpenType, and PostScript
fonts which have been installed in the operating system. We refer to such fonts as host
fonts. Instead of manually configuring font files simply install the font in the system
(usually by dropping it into the appropriate directory), and PDFlib will happily use it.

When working with host fonts it is important to use the exact (case-sensitive) font
name. Since font names are crucial we mention some platform-specific methods for de-
termining font names below. More information on font names can be found in Section
5.1.3, »PostScript Type 1 Fonts«, page 112, and Section 5.1.1, »TrueType Fonts«, page 111.

Finding host font names on Windows. You can find the name of an installed font by
double-clicking the font file and taking note of the full font name which is displayed in
the window title (on Windows Vista/7/8) or the first line of the resulting window (on
Windows XP). Some fonts may have parts of their name localized according to the re-
spective Windows version in use. For example, the common font name portion Bold
may appear as the translated word Fett on a German system. In order to retrieve the
host font data from the Windows system you must use the translated form of the font
name in PDFlib (e.g. Arial Fett), or use font style names (see below). However, in order to
retrieve the font data directly from file you must use the generic (non-localized) form of
the font name (e.g. Arial Bold).

Note You can avoid this internationalization problem by appending font style names (e.g. »,Bold«,
see below) to the font name instead of using localized font name variants.

If you want to examine TrueType fonts in more detail take a look at Microsoft’s free
»font properties extension«1 which will display many entries of the font’s TrueType ta-
bles in human-readable form.

1. See www.microsoft.com/typography/TrueTypeProperty21.mspx

http://www.microsoft.com/typography/TrueTypeProperty21.mspx

132 Chapter 5: Font Handling

Windows font style names. When loading host fonts from the Windows operating
system PDFlib users have access to a feature provided by the Windows font selection
machinery: style names can be provided for the weight and slant, for example

font = p.load_font("Verdana,Bold", "unicode", "");

This will instruct Windows to search for a particular bold, italic, or other variation of the
base font. Depending on the available fonts Windows will select a font which most
closely resembles the requested style (it will not create a new font variation). The font
found by Windows may be different from the requested font, and the font name in the
generated PDF may be different from the requested name; PDFlib does not have any
control over Windows’ font selection. Font style names only work with host fonts, but
not for fonts configured via a font file.

The following keywords (separated from the font name with a comma) can be at-
tached to the base font name to specify the font weight:

none, thin, extralight, ultralight, light, normal, regular, medium,
semibold, demibold, bold, extrabold, ultrabold, heavy, black

The keywords are case-insensitive. The italic keyword can be specified alternatively or in
addition to the above. If two style names are used both must be separated with a com-
ma, for example:

font = p.load_font("Verdana,Bold,Italic", "unicode", "");

Numerical font weight values can be used as an equivalent alternative to font style
names:

0 (none), 100 (thin), 200 (extralight), 300 (light), 400 (normal), 500 (medium), 600
(semibold), 700 (bold), 800 (extrabold), 900 (black)

The following example will select the bold variant of a font:

font = p.load_font("Verdana,700", "unicode", "");

Note Windows style names for fonts may be useful if you have to deal with localized font names
since they provide a universal method to access font variations regardless of their localized
names.

Note Do not confuse the Windows style name convention with the fontstyle option which looks
similar, but works on a completely different basis.

Potential problem with host font access on Windows. We’d like to alert users to a po-
tential problem with font installation on Windows. If you install fonts via the File, Install
new font... menu item (as opposed to dragging fonts to the Fonts directory) there’s a
check box Copy fonts to Fonts folder. If this box is unchecked, Windows will only place a
shortcut (link) to the original font file in the fonts folder. In this case the original font
file must live in a directory which is accessible to the application using PDFlib. In partic-
ular, font files outside of the Windows Fonts directory may not be accessible to IIS with
default security settings. Solution: either copy font files to the Fonts directory, or place
the original font file in a directory where IIS has read permission.

Similar problems may arise with Adobe Type Manager (ATM) if the Add without copy-
ing fonts option is checked while installing fonts.

5.4 Loading Fonts 133

Host font names on the Mac. Using the Font Book utility, which is part of Mac OS X,
you can find the names of installed host fonts. In order to programmatically create lists
of host fonts we recommend Apple’s freely available Font Tools1. This suite of com-
mand-line utilities contains a program called ftxinstalledfonts which is useful for deter-
mining the exact names of all installed fonts. PDFlib supports several flavors of host
font names:

> QuickDraw font names: these are old-style font names which have been in use for a
long time on Mac OS systems, but are considered outdated. In order to determine
QuickDraw font names issue the following command in a terminal window:

ftxinstalledfonts -q

> »Unique« font names: these are newer font names (in Mac OS supported by new ATS
font functions) which can be encoded in Unicode, e.g. for East-Asian fonts. In order to
determine unique font names issue the following command in a terminal window
(in some cases the output contains entries with a ’:’ which must be removed):

ftxinstalledfonts -u

> PostScript font names. In order to determine PostScript font names issue the follow-
ing command in a terminal window:

ftxinstalledfonts -p

Note The Leopard builds of PDFlib (for Mac OS X 10.5 and above) support all three kinds of host font
names. Non-Leopard builds accept only QuickDraw font names.

Potential problems with host font access on the Mac. In our testing we found that
newly installed fonts are sometimes not accessible for UI-less applications such as
PDFlib until the user logs out from the console, and logs in again.

On Mac OS X 10.5 (Leopard) host fonts are not available to programs running in a ter-
minal session from a remote computer. This is not a restriction of PDFlib, but also af-
fects other programs such as Font Tools. This problem has been fixed in Mac OS X 10.5.6.

5.4.6 Fallback Fonts
Cookbook A full code sample can be found in the Cookbook topic text_output/starter_fallback.

Fallback fonts provide a powerful mechanism which deals with shortcomings in fonts
and encodings. It can be used in many situations to facilitate text output since neces-
sary font changes will be applied automatically by PDFlib. This mechanism augments a
given font (called the base font) by merging glyphs from one ore more other fonts into
the base font. More precisely: the fonts are not actually modified, but PDFlib applies all
necessary font changes in the PDF page description automatically. Fallback fonts offer
the following features:

> Glyphs which are unavailable in the base font will automatically be searched in one
or more fallback fonts. In other words, you can add glyphs to a font. Since multiple
fallback fonts can be attached to the base font, you can effectively use all Unicode
characters for which at least one of the fonts contains a suitable glyph.

1. See developer.apple.com/textfonts/download

http://www.pdflib.com/pdflib-cookbook/text-output/starter-fallback

http://developer.apple.com/textfonts/download/

134 Chapter 5: Font Handling

> Glyphs from a particular fallback font can be used to override glyphs in the base
font, i.e. you can replace glyphs in a font. You can replace one or more individual
glyphs, or specify one or more ranges of Unicode characters which will be replaced.

The size and vertical position of glyphs from a fallback font can be adjusted to match
the base font. Somewhat surprisingly, the base font itself can also be used as a fallback
font (with the same or a different encoding). This can be used to implement the follow-
ing tricks:

> Using the base font itself as fallback font can be used to adjust the size or position of
some or all glyphs in a font.

> You can add characters outside the actual encoding of the base font.

The fallback font mechanism is controlled by the fallbackfonts font loading option, and
affects all text output functions. As with all font loading options, the fallbackfonts op-
tion can be provided in explicit calls to PDF_load_font(), or in option lists for implicit
font loading. Since more than one fallback font can be specified for a base font, the fall-
backfonts option expects a list of option lists (i.e. an extra set of braces is required).

PDF_info_font() can be used to query the results of the fallback font mechanism (see
Section 5.6.3, »Querying Codepage Coverage and Fallback Fonts«, page 142).

Caveats. Note the following when working with fallback fonts:
> Not all font combinations result in typographically pleasing results. Care should be

taken to use only fallback fonts in which the glyph design matches the glyph design
of the base font.

> Font loading options for the fallback font(s) must be specified separately in the fall-
backfonts option list. For example, if embedding is specified for the base font, the fall-
back fonts will not automatically be embedded.

> Fallback fonts work only if the fonts contain proper Unicode information. The re-
placement glyph(s) must have the same Unicode value as the replaced glyph.

> Script-specific shaping (options shaping, script, locale) and OpenType features (op-
tions features, script, language) will only be applied to glyphs within the same font,
but not across glyphs from the base font and one or more fallback fonts.

> The underline/overline/strikeout features must be used with care when working
with fallback fonts, as well as the ascender and similar typographic values. The un-
derline thickness or position defined in the base font may not match the values in
the fallback font. As a result, the underline position or thickness may jump in un-
pleasant ways. A simple workaround against such artefacts is to specify a unified val-
ue with the underlineposition and underlinewidth options of PDF_fit_textline() and
PDF_add/create_textflow(). This value should be selected so that it works with the
base font and all fallback fonts.

In the sections below we describe several important use cases of fallback fonts and dem-
onstrate the corresponding option lists.

Add mathematical characters to a text font. As a very rough solution in case of miss-
ing mathematical glyphs you can use the following font loading option list for the
fallbackfonts option to add mathematical glyphs from the Symbol font to a text font:

fallbackfonts={{fontname=Symbol encoding=unicode}}

5.4 Loading Fonts 135

Combine fonts for use with multiple scripts. In some situations the script of incoming
text data is not known in advance. For example, a database may contain Latin, Greek,
and Cyrillic text, but the available fonts cover only one of these scripts at a time. Instead
of determining the script and selecting an appropriate font you can construct a font
which chains together several fonts, effectively covering the superset of all scripts. Use
the following font loading option list for the fallbackfonts option to add Greek and Cyril-
lic fonts to a Latin font:

fallbackfonts={
{fontname=Times-Greek encoding=unicode embedding forcechars={U+0391-U+03F5}}
{fontname=Times-Cyrillic encoding=unicode embedding forcechars={U+0401-U+0490}}

}

Extend 8-bit encodings. If your input data is restricted to a legacy 8-bit encoding you
can nevertheless use characters outside this encoding, taking advantage of fallback
fonts (where the base font itself serves as a fallback font) and PDFlib’s character refer-
ence mechanism to address characters outside the encoding. Assuming you loaded the
Helvetica font with encoding=iso8859-1 (this encoding does not include the Euro glyph),
you can use the following font loading option list for the fallbackfonts option to add the
Euro glyph to the font:

fallbackfonts={{fontname=Helvetica encoding=unicode forcechars=euro}}

Since the input encoding does not include the Euro character you cannot address it with
an 8-bit value. In order to work around this restriction use character or glyph name ref-
erences, e.g. € (see Section 4.5.2, »Character References«, page 108).

Use Euro glyph from another font. In a slightly different scenario the base font
doesn’t include a Euro glyph. Use the following font loading option list for the
fallbackfonts option to pull the Euro glyph from another font:

fallbackfonts={{fontname=Helvetica encoding=unicode forcechars=euro textrise=-5%}}}

We used the textrise suboption to slightly move down the Euro glyph.

Enlarge some or all glyphs in a font. Fallback fonts can also be used to enlarge some or
all glyphs in a font without changing the font size. Again, the base font itself will be
used as fallback font. This feature can be useful to make different font designs visually
compatible without adjusting the fontsize in the code. Use the following font loading
option list for the fallbackfonts option to enlarge all glyphs in the specified range to
120%:

fallbackfonts={
{fontname=Times-Italic encoding=unicode forcechars={U+0020-U+00FF} fontsize=120%}

}

Add an enlarged pictogram. Use the following font loading option list for the
fallbackfonts option to pull a symbol from the ZapfDingbats font:

fallbackfonts={
{fontname=ZapfDingbats encoding=unicode forcechars=.a12 fontsize=150% textrise=-15%}

}

136 Chapter 5: Font Handling

Again, we use the fontsize and textrise suboptions to adjust the symbol’s size and posi-
tion to the base font.

Replace glyphs in a CJK font. You can use the following font loading option list for the
fallbackfonts option to replace the Latin characters in the ASCII range with those from
another font:

fallbackfonts={
{fontname=Courier-Bold encoding=unicode forcechars={U+0020-U+007E}}
}

Add Latin characters to an Arabic font. This use case is detailed in Section 6.4.5, »Ara-
bic Text Formatting«, page 164.

Identify missing glyphs. The font Unicode BMP Fallback SIL, which is freely available,
displays the hexadecimal value of each Unicode value instead of the actual glyph. This
font can be very useful for diagnosing font-related problems in the workflow. You can
use the following font loading option list for the fallbackfonts option to augment any
font with this special fallback font to visualize missing characters:

fallbackfonts={{fontname={Unicode BMP Fallback SIL} encoding=unicode}}

Add Gaiji characters to a font. This use case is detailed in Section 6.5.3, »EUDC and
SING Fonts for Gaiji Characters«, page 169.

5.5 Font Embedding and Subsetting 137

5.5 Font Embedding and Subsetting
5.5.1 Font Embedding

PDF font embedding and font substitution in Acrobat. PDF documents can include
font data in various formats to ensure proper text display. Alternatively, a font descrip-
tor containing only the character metrics and some general font information (but not
the actual glyph outlines) can be embedded. If a font is not embedded in a PDF docu-
ment, Acrobat will take it from the target system if available and configured (»Use Local
Fonts«), or try to build a substitute font according to the font descriptor. The use of sub-
stitution fonts results in readable text, but the glyphs may look different from the orig-
inal font. More importantly, Acrobat’s substitution fonts (AdobeSansMM and AdobeSerif-
MM) work only for Latin text, but not any other scripts or symbolic glyphs. Similarly,
substitution fonts don’t work if complex script shaping or OpenType layout features
have been used. For these reasons font embedding is generally recommended unless
you know that the documents are displayed on the target systems acceptably even
without embedded fonts. Such PDF files are inherently nonportable, but may be of use
in controlled environments, such as corporate networks where the required fonts are
known to be available on all workstations.

Embedding fonts with PDFlib. Font embedding is controlled by the embedding option
when loading a font (although in some cases PDFlib enforces font embedding):

font = p.load_font("WarnockPro", "winansi", "embedding");

Table 5.3 lists different situations with respect to font usage, each of which imposes dif-
ferent requirements on the font and metrics files required by PDFlib. In addition to the
requirements listed in Table 5.3 the corresponding CMap files (plus in some cases the
Unicode mapping CMap for the respective character collection, e.g. Adobe-Japan1-UCS2)
must be available in order to use a (standard or custom) CJK font with any of the stan-
dard CMaps.
Font embedding for fonts which are exclusively used for invisible text (mainly useful
for OCR results) can be controlled with the optimizeinvisible option when loading the
font.

Table 5.3 Different font usage situations and required files

font usage font metrics file required? font outline file required?

one of the 14 core fonts no only if embedding=true

TrueType, OpenType, or PostScript Type 1 host font instal-
led on the Mac or Windows system

no no

non-core PostScript fonts yes only if embedding=true

TrueType fonts n/a yes

OpenType and SING fonts n/a yes

standard CJK fonts1

1. See Section 6.5, »Chinese, Japanese, and Korean Text Output«, page 166, for more information on CJK fonts.

no no

138 Chapter 5: Font Handling

Legal aspects of font embedding. It’s important to note that mere possession of a font
file may not justify embedding the font in PDF, even for holders of a legal font license.
Many font vendors restrict embedding of their fonts. Some type foundries completely
forbid PDF font embedding, others offer special online or embedding licenses for their
fonts, while still others allow font embedding provided subsetting is applied to the font.
Please check the legal implications of font embedding before attempting to embed
fonts with PDFlib. PDFlib will honor embedding restrictions which may be specified in a
TrueType or OpenType font. If the embedding flag in a TrueType font is set to no
embedding1, PDFlib will honor the font vendor’s request, and reject any attempt at em-
bedding the font.

5.5.2 Font Subsetting
In order to decrease the size of the PDF output, PDFlib can embed only those glyphs of a
font which are actually used in the document. This process is called font subsetting. It
creates a new font which contains fewer glyphs than the original font, and omits font
information which is not required for PDF viewing. Note, however, that Acrobat’s Tou-
chUp tool will refuse to work with text in subset fonts. Font subsetting is particularly
important for CJK fonts. PDFlib supports subsetting for the following types of fonts:

> TrueType fonts
> OpenType fonts with PostScript or TrueType outlines
> Type 3 fonts (special handling required, see »Type 3 font subsetting«, page 139.)

When a font for which subsetting has been requested is used in a document, PDFlib will
keep track of the characters actually used for text output. There are several controls for
the subsetting behavior (assuming autosubsetting is not specified):

> The default subsetting behavior is controlled by the autosubsetting parameter. If it is
true, subsetting will be enabled for all fonts where subsetting is possible (except
Type 3 fonts which require special handling, see below). The default value is true.

> If autosubsetting=true: The subsetlimit parameter contains a percentage value. If a
document uses more than this percentage of glyphs in a font, subsetting will be dis-
abled for this particular font, and the complete font will be embedded instead. This
saves some processing time at the expense of larger output files:

p.set_value("subsetlimit", 75); /* set subset limit to 75% */

The default value of subsetlimit is 100 percent. In other words, the subsetting option
requested at PDF_load_font() will be honored unless the client explicitly requests a
lower limit than 100 percent.

> If autosubsetting=true: The subsetminsize parameter can be used to completely disable
subsetting for small fonts. If the original font file is smaller than the value of
subsetminsize in KB, font subsetting will be disabled for this font.

Embedding and subsetting TrueType fonts. If a TrueType font is used with an encod-
ing different from winansi and macroman it will be converted to a CID font for PDF out-
put by default. For encodings which contain only characters from the Adobe Glyph List
(AGL) this can be prevented by setting the autocidfont parameter to false.

1. More specifically: if the fsType flag in the OS/2 table of the font has a value of 2.

5.5 Font Embedding and Subsetting 139

Specifying the initial font subset. Font subsets contain outline descriptions for all
glyphs used in the document. This means that the generated font subsets will vary
among documents since a different set of characters (and therefore glyphs) is generally
used in each document. Different font subsets can be problematic when merging many
small documents with embedded font subsets to a larger document: the embedded sub-
sets cannot be removed since they are all different.

For this scenario PDFlib allows you to specify the initial contents of a font subset
with the initialsubset option of PDF_load_font(). While PDFlib starts with an empty sub-
set by default and adds glyphs as required by the generated text output, the initialsubset
option can be used to specify a non-empty subset. For example, if you know that only
Latin-1 text output will be generated and the font contains many more glyphs, you can
specify the first Unicode block as initial subset:

initialsubset={U+0020-U+00FF}

This means that the glyphs for all Unicode characters in the specified range will be in-
cluded in the subset. If this range has been selected so that it covers all text in the gener-
ated documents, the generated font subsets will be identical in all documents. As a re-
sult, when combining such documents later to a single PDF the identical font subsets
can be removed with the optimize option of PDF_begin_document().

Type 3 font subsetting. Type 3 fonts must be defined and therefore embedded before
they can be used in a document (because the glyph widths are required). On the other
hand, subsetting is only possible after creating all pages (since the glyphs used in the
document must be known to determine the proper subset). In order to avoid this con-
flict, PDFlib supports widths-only Type 3 fonts. If you need subsetting for a Type 3 font
you must define the font in two passes:

> The first pass with the widthsonly option of PDF_begin_font() must be done before us-
ing the font. It defines only the font and glyph metrics (widths); the font matrix in
PDF_begin_font() as well as wx and the glyph bounding box in PDF_begin_glyph())
must be supplied and must accurately describe the actual glyph metrics. Only PDF_
begin_glyph() and PDF_end_glyph() are required for each glyph, but not any other
calls for defining the actual glyph shape. If other functions are called between start
and end of a glyph description, they will not have any effect on the PDF output, and
will not raise any exception.

> The second pass must be done after creating all text in this font, and defines the ac-
tual glyph outlines or bitmaps. Font and glyph metrics will be ignored since they are
already known from the first pass. After the last page has been created, PDFlib also
knows which glyphs have been used in the document, and will only embed the re-
quired glyph descriptions to construct the font subset.

The same set of glyphs must be provided in pass 1 and pass 2. A Type 3 font with subset-
ting can only be loaded once with PDF_load_font().

Cookbook A full code sample can be found in the Cookbook topic fonts/type3_subsetting.

http://www.pdflib.com/pdflib-cookbook/fonts/type3-subsetting

140 Chapter 5: Font Handling

5.6 Querying Font Information
PDF_info_font() can be used to query useful information related to fonts, encodings,
Unicode, and glyphs. Depending on the type of query, a valid font handle may be re-
quired as parameter for this function. In all examples below we use the variables de-
scribed in Table 5.4.

If the requested combination of keyword and option(s) is not available, PDF_info_font()
will return -1. This must be checked by the client application and can be used to check
whether or not a required glyph is present in a font.

Each of the sample code lines below can be used in isolation since they do not de-
pend on each other.

5.6.1 Font-independent Encoding, Unicode, and Glyph Name Queries

Encoding queries. Encoding queries do not require any valid font handle, i.e. the value
-1 (in PHP: 0) can be supplied for the font parameter of PDF_info_font(). Only glyph
names known internally to PDFlib can be supplied in gn, but not any font-specific glyph
names.

Query the 8-bit code of a Unicode character or a named glyph an 8-bit encoding:

c = (int) p.info_font(-1, "code", "unicode=" + uv + " encoding=" + enc);
c = (int) p.info_font(-1, "code", "glyphname=" + gn + " encoding=" + enc);

Query the Unicode value of an 8-bit code or a named glyph in an 8-bit encoding:

uv = (int) p.info_font(-1, "unicode", "code=" + c + " encoding=" + enc);
uv = (int) p.info_font(-1, "unicode", "glyphname=" + gn + " encoding=" + enc);

Table 5.4 Variables for use in the examples for PDF_info_font()

variable comments

int uv; Numerical Unicode value; as an alternative glyph name references without the & and ; decora-
tion can be used in the option list, e.g. unicode=euro. For more details see the description of the
Unichar option list data type in the PDFlib API Reference.

int c; 8-bit character code

int gid; glyph id

int cid; CID value

String gn; glyph name

int gn_idx; String index for a glyph name; if gn_idx is different from -1 the corresponding string can be re-
trieved as follows:
gn = p.get_parameter("string", gn_idx);

String enc; encoding name

int font; valid font handle retrieved with PDF_load_font()

5.6 Querying Font Information 141

Query the registered glyph name of an 8-bit code or a Unicode value in an 8-bit encod-
ing:

gn_idx = (int) p.info_font(-1, "glyphname", "code=" + c + " encoding=" + enc);
gn_idx = (int) p.info_font(-1, "glyphname", "unicode=" + uv + " encoding=" + enc);

/* retrieve the actual glyph name using the string index */
gn = p.get_parameter("string", gn_idx);

Unicode and glyph name queries. PDF_info_font() can also be used to perform queries
which are independent from a specific 8-bit encoding, but affect the relationship of Uni-
code values and glyph names known to PDFlib internally. Since these queries are inde-
pendent from any font, a valid font handle is not required.

Query the Unicode value of an internally known glyph name:

uv = (int) p.info_font(-1, "unicode", "glyphname=" + gn + " encoding=unicode");

Query the internal glyph name of a Unicode value:

gn_idx = (int) p.info_font(-1, "glyphname", "unicode=" + uv + " encoding=unicode");

/* retrieve the actual glyph name using the string index */
gn = p.get_parameter("string", gn_idx);

5.6.2 Font-specific Encoding, Unicode, and Glyph Name Queries
The following queries relate to a specific font which must be identified by a valid font
handle. The gn variable can be used to supply internally known glyph names as well as
font-specific glyph names. In all examples below the return value -1 means that the font
does not contain the requested glyph.

Query the 8-bit codes for a Unicode value, glyph ID, named glyph, or CID in a font
which has been loaded with an 8-bit encoding:

c = (int) p.info_font(font, "code", "unicode=" + uv);
c = (int) p.info_font(font, "code", "glyphid=" + gid);
c = (int) p.info_font(font, "code", "glyphname=" + gn);
c = (int) p.info_font(font, "code", "cid=" + cid);

Query the Unicode value for a code, glyph ID, named glyph, or CID in a font:

uv = (int) p.info_font(font, "unicode", "code=" + c);
uv = (int) p.info_font(font, "unicode", "glyphid=" + gid);
uv = (int) p.info_font(font, "unicode", "glyphname=" + gn);
uv = (int) p.info_font(font, "unicode", "cid=" + cid);

Query the glyph id for a code, Unicode value, named glyph, or CID in a font:

gid = (int) p.info_font(font, "glyphid", "code=" + c);
gid = (int) p.info_font(font, "glyphid", "unicode=" + uv);
gid = (int) p.info_font(font, "glyphid", "glyphname=" + gn);
gid = (int) p.info_font(font, "glyphid", "cid=" + cid);

142 Chapter 5: Font Handling

Query the glyph id for a code, Unicode value, or named glyph in a font with respect to
an arbitrary 8-bit encoding:

gid = (int) p.info_font(font, "glyphid", "code=" + c + " encoding" + enc);
gid = (int) p.info_font(font, "glyphid", "unicode=" + uv + " encoding=" + enc);
gid = (int) p.info_font(font, "glyphid", "glyphname=" + gn + " encoding=" + enc);

Query the font-specific name of a glyph specified by code, Unicode value, glyph ID, or
CID:

gn_idx = (int) p.info_font(font, "glyphname", "code=" + c);
gn_idx = (int) p.info_font(font, "glyphname", "unicode=" + uv);
gn_idx = (int) p.info_font(font, "glyphname", "glyphid=" + gid);
gn_idx = (int) p.info_font(font, "glyphname", "cid=" + cid);

/* retrieve the actual glyph name using the string index */
gn = p.get_parameter("string", gn_idx);

Checking glyph availability. Using PDF_info_font() you can check whether a particular
font contains the glyphs you need for your application. As an example, the following
code checks whether the Euro glyph is contained in a font:

/* We could also use "unicode=U+20AC" below */
if (p.info_font(font, "code", "unicode=euro") == -1)
{

/* no glyph for Euro sign available in the font */
}

Cookbook A full code sample can be found in the Cookbook topic fonts/glyph_availability.

Alternatively, you can call PDF_info_textline() to check the number of unmapped charac-
ters for a given text string, i.e. the number of characters in the string for which no ap-
propriate glyph is available in the font. The following code fragment queries results for
a string containing a single Euro character (which is expressed with a glyph name refer-
ence). If one unmapped character is found this means that the font does not contain
any glyph for the Euro sign:

String optlist = "font=" + font + " charref";

if (p.info_textline("€", "unmappedchars", optlist) == 1)
{

/* no glyph for Euro sign available in the font */
}

5.6.3 Querying Codepage Coverage and Fallback Fonts
PDF_info_font() can also be used to check whether a font is suited for creating text out-
put in a certain language or script, provided the codepage is known which is required
for the text. Codepage coverage is encoded in the OS/2 table of the font. Note that it is
up to the font designer to decide what exactly it means that a font support a particular
codepage. Even if a font claims to support a specific codepage this does not necessarily
mean that it contains glyphs for all characters in this codepage. If more precise coverage
information is required you can query the availability of all required characters as dem-
onstrated in Section 5.6.2, »Font-specific Encoding, Unicode, and Glyph Name Queries«,
page 141.

http://www.pdflib.com/pdflib-cookbook/fonts/glyph-availability

5.6 Querying Font Information 143

Checking whether a font supports a codepage. The following fragment checks wheth-
er a font supports a particular codepage:

String cp="cp1254";

result = (int) p.info_font(font, "codepage", "name=" + cp);

if (result == -1)
System.err.println("Codepage coverage unknown");

else if (result == 0)
System.err.println("Codepage not supported by this font");

else
System.err.println("Codepage supported by this font");

Retrieving a list of all supported codepages. The following fragment queries a list of
all codepages supported by a TrueType or OpenType font:

cp_idx = (int) p.info_font(font, "codepagelist", "");

if (cp_idx == -1)
System.err.println("Codepage list unknown");

else
{

System.err.println("Codepage list:");
System.err.println(p.get_parameter("string", cp_idx));

}

This will create the following list for the common Arial font:

cp1252 cp1250 cp1251 cp1253 cp1254 cp1255 cp1256 cp1257 cp1258 cp874 cp932 cp936 cp949
cp950 cp1361

Query fallback glyphs. You can use PDF_info_font() to query the results of the fallback
font mechanism (see Section 5.4.6, »Fallback Fonts«, page 133, for details on fallback
fonts). The following fragment determines the name of the base or fallback font which
is used to represent the specified Unicode character:

result = p.info_font(basefont, "fallbackfont", "unicode=U+03A3");
/* if result==basefont the base font was used, and no fallback font was required */
if (result == -1)
{

/* character cannot be displayed with neither base font nor fallback fonts */
}
else
{

idx = p.info_font(result, "fontname", "api");
fontname = p.get_parameter("string", idx);

}

144 Chapter 5: Font Handling

6.1 Text Output Methods 145

6 Text Output
6.1 Text Output Methods

PDFlib supports text output on several levels:
> Low-level text output with PDF_show() and similar functions;
> Single-line formatted text output with PDF_fit_textline(); This function also supports

text on a path.
> Multi-line text formatted output with Textflow (PDF_fit_textflow() and related func-

tions); The Textflow formatter can also wrap text inside or outside of vector-based
shapes.

> Text in tables; the table formatter supports Textline and Textflow contents in table
cells.

Low-level text output. functions like PDF_show() can be used to place text at a specific
location on the page, without using any formatting aids. This is recommended only for
applications with very basic text output requirements (e.g. convert plain text files to
PDF), or for applications which already have full text placement information (e.g. a driv-
er which converts a page in another format to PDF).

The following fragment creates text output with low-level functions:

font = p.load_font("Helvetica", "unicode", "");

p.setfont(font, 12);
p.set_text_pos(50, 700);
p.show("Hello world!");
p.continue_text("(says Java)");

Formatted single-line text output with Textlines. PDF_fit_textline() creates text out-
put which consists of single lines and offers a variety of formatting features. However,
the position of individual Textlines must be determined by the client application.

The following fragment creates text output with a Textline. Since font, encoding,
and fontsize can be specified as options, a preceding call to PDF_load_font() is not re-
quired:

p.fit_textline(text, x, y, "fontname=Helvetica encoding=unicode fontsize=12");

See Section 8.1, »Placing and Fitting Textlines«, page 193, for more information about
Textlines.

Multi-line text output with Textflow. PDF_fit_textflow() creates text output with an
arbitrary number of lines and can distribute the text across multiple columns or pages.
The Textflow formatter supports a wealth of formatting functions.

The following fragment creates text output with Textflow:

tf = p.add_textflow(tf, text, optlist);
result = p.fit_textflow(tf, llx, lly, urx, ury, optlist);
p.delete_textflow(tf);

See Section 8.2, »Multi-Line Textflows«, page 201, for more information about Textflow.

146 Chapter 6: Text Output

Text in tables. Textlines and Textflows can also be used to place text in table cells. See
Section 8.3, »Table Formatting«, page 221, for more information about table features.

6.2 Font Metrics and Text Variations 147

6.2 Font Metrics and Text Variations
6.2.1 Font and Glyph Metrics

Text position. PDFlib maintains the text position independently from the current
point for drawing graphics. While the former can be queried via the textx/texty parame-
ters, the latter can be queried via currentx/currenty.

Glyph metrics. PDFlib uses the glyph and font metrics system used by PostScript and
PDF which shall be briefly discussed here.

The font size which must be specified by PDFlib users is the minimum distance be-
tween adjacent text lines which is required to avoid overlapping character parts. The
font size is generally larger than individual characters in a font, since it spans ascender
and descender, plus possibly additional space between lines.

The leading (line spacing) specifies the vertical distance between the baselines of ad-
jacent lines of text. By default it is set to the value of the font size. The capheight is the
height of capital letters such as T or H in most Latin fonts. The xheight is the height of
lowercase letters such as x in most Latin fonts. The ascender is the height of lowercase
letters such as f or d in most Latin fonts. The descender is the distance from the baseline
to the bottom of lowercase letters such as j or p in most Latin fonts. The descender is
usually negative. The values of xheight, capheight, ascender, and descender are measured
as a fraction of the font size, and must be multiplied with the required font size before
being used.

The gaplen property is only available in TrueType and OpenType fonts (it will be esti-
mated for other font formats). The gaplen value is read from the font file, and specifies
the difference between the recommended distance between baselines and the sum of
ascender and descender.

PDFlib may have to estimate one or more of these values since they are not guaran-
teed to be present in the font or metrics file. In order to find out whether real or estimat-
ed values are used you can call PDF_info_font() to query the xheight with the option
faked. The character metrics for a specific font can be queried from PDFlib as follows:

font = p.load_font("Times-Roman", "unicode", "");

capheight = p.info_font(font, "capheight", "");
ascender = p.info_font(font, "ascender", "");

font size

baseline

capheight

descender

ascender

Fig. 6.1 Font and character metrics

148 Chapter 6: Text Output

descender = p.info_font(font, "descender", "");
xheight = p.info_font(font, "xheight", "");

Note The position and size of superscript and subscript cannot be queried from PDFlib.

Cookbook A full code sample can be found in the Cookbook topic fonts/font_metrics_info.

CPI calculations. While most fonts have varying character widths, so-called mono-
spaced fonts use the same widths for all characters. In order to relate PDF font metrics to
the characters per inch (CPI) measurements often used in high-speed print environ-
ments, some calculation examples for the mono-spaced Courier font may be helpful. In
Courier, all characters have a width of 600 units with respect to the full character cell of
1000 units per point (this value can be retrieved from the corresponding AFM metrics
file). For example, with 12 point text all characters will have an absolute width of

12 points * 600/1000 = 7.2 points

with an optimal line spacing of 12 points. Since there are 72 points to an inch, exactly 10
characters of Courier 12 point will fit in an inch. In other words, 12 point Courier is a 10
cpi font. For 10 point text, the character width is 6 points, resulting in a 72/6 = 12 cpi
font. Similarly, 8 point Courier results in 15 cpi.

6.2.2 Kerning
Some character combinations can lead to unpleasant appearance. For example, two
characters V next to each other can look like a W, and the distance between T and e must
be reduced in order to avoid ugly white space. This compensation is referred to as kern-
ing. Many fonts contain comprehensive kerning information which specifies spacing
adjustments for critical letter combinations. PDFlib uses kerning data from the follow-
ing sources:

> TrueType and OpenType fonts: kerning pairs specified in the kern table;
> OpenType fonts: pair-based and class-based kerning data specified via the kern fea-

ture and the GPOS table;
> PostScript Type 1 fonts: kerning pairs specified in AFM and PFM files;
> kerning pairs for the PDF core fonts are provided by PDFlib internally.

No kerning

Kerning applied

Character movement caused by kerning

Fig. 6.2 Kerning

http://www.pdflib.com/pdflib-cookbook/fonts/font-metrics-info

6.2 Font Metrics and Text Variations 149

There are two PDFlib controls for the kerning behavior:
> By default, kerning information in a font will be read when loading the font. If kern-

ing is not required the readkerning option can be set to false in PDF_load_font().
> Kerning for text output must be enabled with the kerning text appearance option

which is supported by the text output functions.

Temporarily disabling kerning may be useful, for example, for tabular figures when the
kerning data contains pairs of figures, since kerned figures wouldn’t line up in a table.
Note that modern TrueType and OpenType fonts include special figures for this pur-
pose which can be used with the Tabular Figures layout feature and the option
features={tnum}.

Kerning will be applied in addition to any character spacing, word spacing, and hori-
zontal scaling which may be active. PDFlib does not impose any limit for the number of
kerning pairs in a font.

6.2.3 Text Variations

Artificial font styles. Bold and italic variations of a font should normally be created by
choosing an appropriate font. In addition, PDFlib also supports artificial font styles:
based on a regular font Acrobat will simulate bold, italic, or bold-italic styles by embold-
ening or slanting the base font. The aesthetic quality of artificial font styles does not
match that of real bold or italic fonts which have been fine-tuned by the font designer.
However, in situations where a particular font style is not available directly, artificial
styles can be used as a workaround. In particular, artificial font styles are useful for the
standard CJK fonts which support only normal fonts, but not any bold or italic variants.

Note Using the fontstyle option for fonts other than the standard CJK fonts is not recommended.
Also note that the fontstyle option may not work in PDF viewers other than Adobe Acrobat.

Due to restrictions in Adobe Acrobat, artificial font styles work only if all of the follow-
ing conditions are met:

> The base font is a TrueType or OpenType font, including standard and custom CJK
fonts. The base font must not be one of the PDF core fonts (see »Latin core fonts«,
page 129). Font styles can not be applied to TrueType Collections (TTC).

> The encoding is winansi or macroman for TrueType fonts, or one of the predefined
CJK CMaps listed in Table 4.3 (since otherwise PDFlib will force font embedding).

> The embedding option must be set to false.
> The base font must be installed on the target system where the PDF will be viewed.

While PDFlib will check the first three conditions, it is the user’s responsibility to ensure
the last one.

Artificial font styles can be requested by using one of the normal (no change of the
base font), bold, italic, or bolditalic keywords for the fontstyle option of PDF_load_font():

font = p.load_font("HeiseiKakuGo-W5", "UniJIS-UCS2-H", "fontstyle bold");

The fontstyle feature should not be confused with the similar concept of Windows font
style names. While fontstyle only works under the conditions above and relies on Acro-
bat for simulating the artificial font style, the Windows style names are entirely based
on the Windows font selection engine and cannot be used to simulate non-existent
styles.

150 Chapter 6: Text Output

Cookbook A full code sample can be found in the Cookbook topic fonts/artificial_fontstyles.

Simulated bold fonts. While fontstyle feature operates on a font, PDFlib supports an al-
ternate mechanism for creating artificial bold text for individual text strings. This is
controlled by the fakebold parameter or option.

Cookbook A full code sample can be found in the Cookbook topic fonts/simulated_fontstyles.

Simulated italic fonts. As an alternative to the fontstyle feature the italicangle parame-
ter or option can be used to simulate italic fonts when only a regular font is available.
This method creates a fake italic font by skewing the regular font by a user-provided an-
gle, and does not suffer from the fontstyle restrictions mentioned above. Negative val-
ues will slant the text clockwise. Be warned that using a real italic or oblique font will re-
sult in much more pleasing output. However, if an italic font is not available the
italicangle parameter or option can be used to easily simulate one. This feature may be
especially useful for CJK fonts. Typical values for the italicangle parameter or option are
in the range -12 to -15 degrees.

Note The italicangle parameter or option is not supported for vertical writing mode.

Note PDFlib does not adjust the glyph width to the new bounding box of the slanted glyph. For ex-
ample, when generated justified text the italicized glyphs may exceed beyond the fitbox.

Shadow text. PDFlib can create a shadow effect which will generate multiple instances
of text where each instance is placed at a slightly different location. Shadow text can be
created with the shadow option of PDF_fit_textline(). The color of the shadow, its posi-
tion relative to the main text and graphics state parameters can be specified in subop-
tions.

Underline, overline, and strikeout text. PDFlib can be instructed to put lines below,
above, or in the middle of text. The stroke width of the bar and its distance from the
baseline are calculated based on the font’s metrics information. In addition, the current
values of the horizontal scaling factor and the text matrix are taken into account when
calculating the width of the bar. The respective parameter names for PDF_set_
parameter() can be used to switch the underline, overline, and strikeout feature on or
off, as well as the corresponding options in the text output functions. The underline-
position and underlinewidth parameters and options can be used for fine-tuning.

The current stroke color is used for drawing the bars. The current linecap parameter
are ignored. The decorationabove option controls whether or not the line will be drawn
on top of or below the text. Aesthetics alert: in most fonts underlining will touch de-
scenders, and overlining will touch diacritical marks atop ascenders.

Cookbook A full code sample can be found in the Cookbook topic text_output/starter_textline.

Text rendering modes. PDFlib supports several rendering modes which affect the ap-
pearance of text. This includes outline text and the ability to use text as a clipping path.
Text can also be rendered invisibly which may be useful for placing text on scanned im-
ages in order to make the text accessible to searching and indexing, while at the same
time assuring it will not be visible directly. The rendering modes are described in the
PDFlib API Reference, and can be set with the textrendering parameter or option.

http://www.pdflib.com/pdflib-cookbook/fonts/artificial-fontstyles

http://www.pdflib.com/pdflib-cookbook/fonts/simulated-fontstyles

http://www.pdflib.com/pdflib-cookbook/text-output/starter-textline

6.2 Font Metrics and Text Variations 151

When stroking text, graphics state parameters such as linewidth and color will be ap-
plied to the glyph outline. The rendering mode has no effect on text displayed using a
Type 3 font.

Cookbook Full code samples can be found in the Cookbook topics text_output/text_as_clipping_path
and text_output/invisible_text.

Text color. Text will usually be display in the current fill color, which can be set using
PDF_setcolor(). However, if a rendering mode other than 0 has been selected, both stroke
and fill color may affect the text depending on the selected rendering mode.

Cookbook A full code sample can be found in the Cookbook topic text_output/starter_textline.

http://www.pdflib.com/pdflib-cookbook/text-output/text-as-clipping-path

http://www.pdflib.com/pdflib-cookbook/text-output/text-as-clipping-path

http://www.pdflib.com/pdflib-cookbook/text-output/invisible-text

http://www.pdflib.com/pdflib-cookbook/text-output/starter-textline

152 Chapter 6: Text Output

6.3 OpenType Layout Features
Cookbook Full code samples can be found in the Cookbook topics text_output/starter_opentype and

font/opentype_feature_tester.

6.3.1 Supported OpenType Layout Features
PDFlib supports enhanced text output according to additional information in some
fonts. These font extensions are called OpenType layout features. For example, a font
may contain a liga feature which includes the information that the f, f, and i glyphs can
be combined to form a ligature. Other common examples are small caps in the smcp fea-
ture, i.e. uppercase characters which are smaller than the regular uppercase characters,
and old-style figures in the onum feature with ascenders and descenders (as opposed to
lining figures which are all placed on the baseline). Although ligatures are a very com-
mon OpenType feature, they are only one of many dozen possible features. An over-
view of the OpenType format and OpenType feature tables can be found at

www.microsoft.com/typography/developers/opentype/default.htm

PDFlib supports the following groups of OpenType features:
> OpenType features for Western typography listed in Table 6.1; these are controlled

by the features option.
> OpenType features for Chinese, Japanese, and Korean text output listed in Table 6.7;

these are also controlled by the features option, and are discussed in more detail in
Section 6.5.4, »OpenType Layout Features for advanced CJK Text Output«, page 170.

> OpenType features for complex script shaping and vertical text output; these are au-
tomatically evaluated subject to the shaping and script options (see Section 6.4,
»Complex Script Output«, page 158). The vert feature is controlled by the vertical font
option.

> OpenType feature tables for kerning; however, PDFlib doesn’t treat kerning as Open-
Type feature because kerning data may also be represented with other means than
OpenType feature tables. Use the readkerning font option and the kerning text option
instead to control kerning (see Section 6.2.2, »Kerning«, page 148).

More detailed descriptions of OpenType layout features can be found at

www.microsoft.com/typography/otspec/featuretags.htm

Identifying OpenType features. You can identify OpenType feature tables with the fol-
lowing tools:

> The FontLab font editor is a an application for creating and editing fonts. The free
demo version (www.fontlab.com) displays and previews OpenType features

> DTL OTMaster Light (www.fonttools.org) is a free application for viewing and analyz-
ing fonts, including their OpenType feature tables.

> Microsoft’s free »font properties extension«1 displays a list of OpenType features
available in a font (see Figure 6.3).

> PDFlib’s PDF_info_font() interface can also be used to query supported OpenType fea-
tures (see »Querying OpenType features programmatically«, page 156).

1. See www.microsoft.com/typography/TrueTypeProperty21.mspx

http://www.pdflib.com/pdflib-cookbook/text-output/starter-opentype

http://www.microsoft.com/typography/otspec/featuretags.htm

http://www.microsoft.com/typography/TrueTypeProperty21.mspx

http://www.microsoft.com/typography/developers/opentype/default.htm

http://www.pdflib.com/pdflib-cookbook/text-output/opentype-feature-tester

6.3 OpenType Layout Features 153

Table 6.1 Supported OpenType features for Western typography (Table 6.7 lists OpenType features for CJK text)

key-
word name description

_none all features disabled Deactivate all OpenType features listed in Table 6.1 and Table 6.7.

afrc alternative fractions Replace figures separated by a slash with an alternative form.

c2pc petite capitals from
capitals

Turn capital characters into petite capitals.

c2sc small capitals from
capitals

Turn capital characters into small capitals.

case case-sensitive forms Shift various punctuation marks up to a position that works better with all-capital se-
quences or sets of lining figures; also changes oldstyle figures to lining figures.

dlig discretionary
ligatures

Replace a sequence of glyphs with a single glyph which is preferred for typographic pur-
poses.

dnom denominators Replace figures which follow a slash with denominator figures.

frac fractions Replace figures separated by a slash with 'common' (diagonal) fractions.

hist historical forms Replace the default (current) forms with the historical alternates. Some letter forms were
in common use in the past, but appear anachronistic today.

hlig historical ligatures This feature replaces the default (current) ligatures with the historical alternates.

liga standard ligatures Replace a sequence of glyphs with a single glyph which is preferred for typographic pur-
poses.

lnum lining figures Change figures from oldstyle to the default lining form.

locl localized forms Enable localized forms of glyphs to be substituted for default forms. This feature requires
the script and language options.

mgrk mathematical Greek Replace standard typographic forms of Greek glyphs with corresponding forms common-
ly used in mathematical notation.

numr numerators Replace figures which precede a slash with numerator figures and replace the typograph-
ic slash with the fraction slash.

onum oldstyle figures Change figures from the default lining style to oldstyle form.

ordn ordinals Replace default alphabetic glyphs with the corresponding ordinal forms for use after fig-
ures; commonly also creates the Numero (U+2116) character.

ornm ornaments Replace the bullet character and ASCII characters with ornaments.

pcap petite capitals Turn lowercase characters into petite capitals, i.e. capital letters which are shorter than
regular small caps.

pnum proportional figures Replace monospaced (tabular) figures with figures which have proportional widths.

salt stylistic alternates Replace the default forms with stylistic alternates. These alternates don’t always fit into a
clear category like swash or historical.

sinf scientific inferiors Replace lining or oldstyle figures with inferior figures (smaller glyphs), primarily for chem-
ical or mathematical notation).

smcp small capitals Turn lowercase characters into small capitals.

ss01
...
ss20

stylistic set 1-20 In addition to, or instead of, stylistic alternatives of individual glyphs (see salt feature),
some fonts may contain sets of stylistic variant glyphs corresponding to portions of the
character set, e.g. multiple variants for lowercase letters in a Latin font.

154 Chapter 6: Text Output

6.3.2 OpenType Layout Features with Textlines and Textflows
PDFlib supports OpenType layout features in the Textline and Textflow functions, but
not in the low-level text output functions (PDF_show() etc.).

Requirements for OpenType layout features. A font for use with OpenType layout fea-
tures must meet the following requirements:

> The font must be a TrueType (*.ttf), OpenType (*.otf) or TrueType Collection (*.ttc)
font. For standard CJK fonts the corresponding font file must be available.

> The font file must contain a GSUB table with supported lookups for the OpenType
feature(s) to be used in the text (see below).

> The font must be loaded with encoding=unicode or glyphid, or a Unicode CMap.
> The readfeatures option of PDF_load_font() must not be set to false.
> If the fallbackfonts option of PDF_load_font() was used, text in a single text run must

not contain glyphs from the base font and a fallback font (or glyphs from different
fallback fonts) at the same time.

Note PDFlib supports OpenType features with GSUB lookup types 1 (one-to-one substitution), 3
(alternate substitution table) and 4 (many-to-one substitution). Except for kerning PDFlib does
not support OpenType features based on the GPOS table.

Caveats. Note the following when working with OpenType features:
> OpenType features (options features, script, language) will only be applied to glyphs

within the same font, but not across glyphs from the base font and one or more fall-
back fonts if fallback fonts have been specified.

> Make sure to enable and disable features as you need them. Accidentally leaving
OpenType features activated for all of the text may lead to unexpected results.

Enabling and disabling OpenType features. You can enable and disable OpenType fea-
tures for pieces of text as required. Use the features text option to enable features by
supplying their name, and enable them by prepending no to the feature name. For ex-
ample, with inline option lists for Textflow feature control works as follows:

<features={liga}>ffi<features={noliga}

subs subscript Replace a default glyph with a subscript glyph.

sups superscript Replace lining or oldstyle figures with superior figures (primarily for footnote indication),
and replace lowercase letters with superior letters (primarily for abbreviated French titles)

swsh swash Replace default glyphs with corresponding swash glyphs.

titl titling Replace default glyphs with corresponding forms designed for titling.

tnum tabular figures Replace proportional figures with monospaced (tabular) figures.

unic unicase Map upper- and lowercase letters to a mixed set of lowercase and small capital forms, re-
sulting in a single case alphabet.

zero slashed zero Replace the glyph for the figure zero with an alternative form which uses a diagonal slash
through the counter.

Table 6.1 Supported OpenType features for Western typography (Table 6.7 lists OpenType features for CJK text)

key-
word name description

6.3 OpenType Layout Features 155

For Textlines you can enable OpenType features as follows:

p.fit_textline("ffi", x, y, "features={liga}");

OpenType features can also be enabled as Block properties for use with the PDFlib Per-
sonalization Server (PPS).

More than one feature can be applied to the same text, but the feature tables in the
font must be prepared for this situation and must contain the corresponding feature
lookups in the proper order. For example, consider the word office, and the ligature (liga)
and small cap (smcp) features. If both features are enabled (assuming the font contains
corresponding feature entries) you’d expect the small cap feature to be applied, but not
the ligature feature. If this is correctly implemented in the font tables, PDFlib will gener-
ate the expected output, i.e. small caps without any ligature.

Disabling ligatures with control characters. Some languages disallow the use of lan-
guages in certain situations. Typographic rules for German and other languages prohib-
it the use of ligatures across composition boundaries. For example, the f+i combination
in the word Schilfinsel must not be replaced with a ligature since it spans the boundaries
between two combined words.

As described above, you can enable and disable ligatures and other OpenType fea-
ture processing with the features option. Disabling ligatures via options can be cumber-
some in exceptional cases like the one described above. In order to offer simple ligature
control you can disable ligatures with control characters in the text, avoiding the need
for enabling/disabling features with multiple options. Inserting the character Zero-
width non-joiner (U+200C, ‌ see also Table 6.4) between the constituent characters

Fig. 6.3
Microsoft’s font property extension displays

the list of OpenType features in a font

156 Chapter 6: Text Output

will prevent them from being replaced by a ligature even if ligatures are enabled in the
features option. For example, the following sequence will not create any f+i ligature:

<features={liga charref=true}>Schilf‌insel

Script- and language-specific OpenType layout features. OpenType features may ap-
ply in all situations, or can be implemented for a particular script or even a particular
script and language combination. For this reason the script and language text options
can optionally be supplied along with the features option. They will have a noticeable ef-
fect only if the feature is implement in a script- or language-specific manner in the font.

As an example, the ligature for the f and i glyphs is not available in some fonts if the
Turkish language is selected (since the ligated form of i could be confused with the dot-
less i which is very common in Turkish). Using such a font the following Textflow op-
tion will create a ligature since no script/language is specified:

<features={liga}>fi

However, the following Textflow option list will not create any ligature due to the Turk-
ish language option:

<script=latn language=TRK features={liga}>fi

The locl feature explicitly selects language-specific character forms. The liga feature con-
tains language-specific ligatures. Some examples for language-specific features:

Variant character for Serbian:
<features={locl} script=cyrl language=SRB charref>б

Variant figures for Urdu:
<features={locl} script=arab language=URD charref>٢٣٤٥

See Section 6.4.2, »Script and Language«, page 160, for supported script and language
keywords.

Combining OpenType features and shaping. Shaping for complex scripts (see Section
6.4, »Complex Script Output«, page 158) heavily relies on OpenType font features which
will be selected automatically. However, for some fonts it may make sense to combine
OpenType features selected automatically for shaping with OpenType features which
have been selected by the client application. PDFlib will first apply user-selected Open-
Type features (option features) before applying shaping-related features automatically
(options shaping, script and language).

Querying OpenType features programmatically. You can query OpenType features in
a font programmatically with PDF_info_font(). The following statement retrieves a
space-separated list with all OpenType features which are available in the font and are
supported by PDFlib:

result = (int) p.info_font(font, "featurelist", "");
if (result != -1)
{

/* retrieve string containing space-separated feature list */
featurelist = p.get_parameter("string", result);

}
else

6.3 OpenType Layout Features 157

{
/* no supported features found */

}

Use the following statement to check whether PDFlib and the test font support a partic-
ular feature, e.g. ligatures (liga):

result = (int) p.info_font(font, "feature", "name=liga");
if (result == 1)
{

/* feature supported by font and PDFlib */
}

158 Chapter 6: Text Output

6.4 Complex Script Output
Cookbook A full code sample can be found in the Cookbook topic complex_scripts/starter_shaping.

6.4.1 Complex Scripts
The Latin script basically places one character after the other in left-to-right order. Oth-
er writing systems have additional requirements for correct text output. We refer to
such writing systems as complex scripts. PDFlib performs text processing for complex
scripts for a variety of scripts including those listed in Table 6.2.
In this section we will discuss shaping for complex scripts in more detail. While most
Western languages can be written by simply placing one character after the other from
left to right, some writing systems (scripts) require additional processing:

> The Arabic and Hebrew scripts place text from right to left. Mixed text (e.g. Arabic
with a Latin insert) contains both right-to-left and left-to-right segments. These seg-
ments must be reordered, which is referred to as the Bidi (bidirectional) problem.

> Some scripts, especially Arabic, use different character shapes depending on the po-
sition of the character (isolated, beginning/middle/end of a word).

> Mandatory ligatures replace sequences of characters.
> The position of glyphs must be adjusted horizontally and vertically.
> Indic scripts require reordering of some characters, i.e. characters may change their

position in the text.
> Special word break and justification rules apply to some scripts.

Scripts which require one or more of these processing steps are called complex scripts.
The process of preparing incoming logical text for proper presentation is called shaping
(this term also includes reordering and Bidi processing). The user always supplies text
in unshaped form and in logical order, while PDFlib performs the necessary shaping be-
fore producing PDF output.

Complex script shaping can be enabled with the shaping text option, which in turn
requires the script option and optionally allows the language option. The following op-
tion list enables Arabic shaping (and Bidi processing):

shaping script=arab

Caveats. Note the following when working with complex script shaping:
> PDFlib does not automatically set the shaping and script options, but expects them to

be supplied by the user.
> Script-specific shaping (options shaping, script, language) will only be applied to

glyphs within the same font, but not across glyphs from different fonts. If fallback
fonts are used, shaping will only be applied within text runs which contain text in
the same (master or fallback) font.

> Since shaping may reorder characters in the text, care must be taken regarding at-
tribute changes within a word. For example, if you use inline options in Textflow to
colorize the second character in a word – what should happen when shaping swaps
the first and second characters? For this reason, formatting changes should only be
applied at word boundaries, but not within words.

http://www.pdflib.com/pdflib-cookbook/complex-scripts/starter-shaping

6.4 Complex Script Output 159

Table 6.2 Complex scripts and keywords for the script option

writing system script name language/region (incomplete list) script keyword

unspecified script – _none

automatic script
detection

– This keyword selects the script to which the majori-
ty of characters in the text belong, where _latn
and _none are ignored.

_auto

European Alphabetic Latin many European and other languages latn

Greek Greek grek

Cyrillic Russian and many other Slavic languages cyrl

Middle Eastern Arabic Arabic, Persian (Farsi), Urdu, Pashto and others arab

Hebrew Hebrew, Yiddish and others hebr

Syriac Syrian Orthodox, Maronite, Assyrian syrc

Thaana Dhivehi/Maldives thaa

South Asian (India) Devanagari Hindi and classical Sanskrit deva

Bengali Bengali, Assamese beng

Gurmukhi Punjabi guru

Gujarati Gujarati gujr

Oriya Oriya/Orissa orya

Tamil Tamil/Tamil Nadu, Sri Lanka taml

Telugu Telugu/Andrha Pradesh telu

Kannada Kannada/Karnataka knda

Malayalam Malayalam/Kerala mlym

Southeast Asian Thai Thai thai

Lao Lao »lao «1

Khmer Khmer (Cambodian) khmr

East Asian Han Chinese, Japanese, Korean hani

Hiragana Japanese hira

Katakana Japanese kana

Hangul Korean hang

others Other four-character codes according to the OpenType specification also work, but are not sup-
ported. The full list can be found at the following location:
www.microsoft.com/typography/developers/OpenType/scripttags.aspx

1. Note the trailing space character.

http://www.microsoft.com/typography/developers/OpenType/scripttags.aspx

160 Chapter 6: Text Output

Requirements for shaping. A font for use with complex script shaping must meet the
following requirements in addition to containing glyphs for the target script:

> It must be a TrueType or OpenType font with GDEF, GSUB, and GPOS feature tables
and correct Unicode mappings appropriate for the target script. As an alternative to
the OpenType tables, for the Arabic and Hebrew scripts, the font may contain glyphs
for the Unicode presentation forms (e.g. Arabic Apple fonts are constructed this
way). In this case internal tables will be used for the shaping process. For Thai text
the font must contain contextual forms according to Microsoft, Apple, or Monotype
Worldtype (e.g. used in some IBM products) conventions for Thai.

> If standard CJK fonts are to be used, the corresponding font file must be available.
> The font must be loaded with encoding=unicode or glyphid.
> The monospace and vertical options of PDF_load_font() must not be used, and the

readshaping option must not be set to false.
> If the fallbackfonts option of PDF_load_font() was used, text in a single text run must

not contain glyphs from a fallback font.

6.4.2 Script and Language
Script and language settings play a role the functional aspects listed below. They can be
controlled with the following options:

> The script text option identifies the target script (writing system). It supports the
four-letter keywords listed in Table 6.2. Examples:

script=latn
script=cyrl
script=arab
script=hebr
script=deva
script={lao }

With script=_auto PDFlib automatically assigns that script to which the majority of
characters in the text belong. Since Latin text doesn’t require shaping it will not be
counted when determining the script automatically.
You can query the scripts used for some text with the scriptlist keyword of PDF_info_
textline().

> The language option specifies the natural language in which the text is written. It
supports the three-character keywords listed in Table 6.3. Examples:

language=ARA
language=URD
language=ZHS
language=HIN

Complex script processing. Complex script processing (option shaping) requires the
script option. The language option can additionally be supplied. It controls language-
specific aspects of shaping, e.g. different figures for Arabic vs. Urdu. However, only few
fonts contain language-specific script shaping tables, so in most cases specifying the
script option will be sufficient, and shaping cannot be improved with the language op-
tion.

OpenType layout features. Fonts can implement OpenType layout features in a lan-
guage-specific manner (see »Script- and language-specific OpenType layout features«,

6.4 Complex Script Output 161

page 156). While a few features may differ in behavior subject to the script and language
options but can also be used without these options (e.g. liga), the locl feature only makes
sense in combination with the script and language options.

Note While advanced line breaking for Textflow (see Section 8.2.9, »Advanced script-specific Line
Breaking«, page 216) also applies language-specific processing, it is not controlled by the
language option, but by the locale option which identifies not only languages, but also coun-
tries and regions.

Table 6.3 Keywords for the language option

key-
word language

key-
word language

key-
word language

_none unspecified language FIN Finnish NEP Nepali

AFK Afrikaans FRA French ORI Oriya

SQI Albanian GAE Gaelic PAS Pashto

ARA Arabic DEU German PLK Polish

HYE Armenian ELL Greek PTG Portuguese

ASM Assamese GUJ Gujarati ROM Romanian

EUQ Basque HAU Hausa RUS Russian

BEL Belarussian IWR Hebrew SAN Sanskrit

BEN Bengali HIN Hindi SRB Serbian

BGR Bulgarian HUN Hungarian SND Sindhi

CAT Catalan IND Indonesian SNH Sinhalese

CHE Chechen ITA Italian SKY Slovak

ZHP Chinese phonetic JAN Japanese SLV Slovenian

ZHS Chinese simplified KAN Kannada ESP Spanish

ZHT Chinese traditional KSH Kashmiri SVE Swedish

COP Coptic KHM Khmer SYR Syriac

HRV Croatian KOK Konkani TAM Tamil

CSY Czech KOR Korean TEL Telugu

DAN Danish MLR Malayalam reformed THA Thai

NLD Dutch MAL Malayalam traditional TIB Tibetan

DZN Dzongkha MTS Maltese TRK Turkish1

1. Some fonts wrongly use TUR for Turkish; PDFlib treats this tag as equivalent to TRK.

ENG English MNI Manipuri URD Urdu

ETI Estonian MAR Marathi WEL Welsh

FAR Farsi MNG Mongolian JII Yiddish

162 Chapter 6: Text Output

6.4.3 Complex Script Shaping
The shaping process selects appropriate glyph forms depending on whether a character
is located at the start, middle, or end of a word, or in a standalone position. Shaping is a
crucial component of Arabic and Hindi text formatting. Shaping may also replace a se-
quence of two or more characters with a suitable ligature. Since the shaping process de-
termines the appropriate character forms automatically, explicit ligatures and Unicode
presentation forms (e.g. Arabic Presentation Forms-A U+FB50) must not be used as in-
put characters.

Since complex scripts require multiple different glyph forms per character and addi-
tional rules for selecting and placing these glyphs, shaping for complex scripts does not
work with all kinds of fonts, but requires suitable fonts which contain the necessary in-
formation. Shaping works for TrueType and OpenType fonts which contain the re-
quired feature tables (see »Requirements for shaping«, page 160, for detailed require-
ments).

Shaping can only be done for characters in the same font because the shaping infor-
mation is specific to a particular font. As it doesn’t make sense, for example, to form lig-
atures across different fonts, complex script shaping cannot be applied to a word which
contains characters from different fonts.

Override shaping behavior. In some cases users may want to override the default
shaping behavior. PDFlib supports several Unicode formatting characters for this pur-
pose. For convenience, these formatting characters can also be specified with entity
names (see Table 6.4).

6.4.4 Bidirectional Formatting
Cookbook A full code sample can be found in the Cookbook topic complex_scripts/bidi_formatting.

For right-to-left text (especially Arabic and Hebrew, but also some other scripts) it is
very common to have nested sequences of left-to-right Latin text, e.g. an address or a
quote in another language. These mixed sequences of text require bidirectional (Bidi)
formatting. Since numerals are always written from left to right, the Bidi problem af-
fects even text which is completely written in Arabic or Hebrew. PDFlib implements bi-
directional text reordering according to the Unicode Bidi algorithm as specified in Uni-
code Standard Annex #91. Bidi processing does not have to be enabled with an option,
but will automatically be applied as part of the shaping process if text in a right-to-left
script with an appropriate script option is encountered.

Table 6.4 Unicode control characters for overriding the default shaping behavior

formatting
character entity name Unicode name function

U+200C ZWNJ ZERO WIDTH NON-JOINER prevent the two adjacent characters from
forming a cursive connection

U+200D ZWJ ZERO WIDTH JOINER force the two adjacent characters to form a
cursive connection

1. See www.unicode.org/unicode/reports/tr9/

http://www.pdflib.com/pdflib-cookbook/complex-scripts/bidi-formatting

http://www.unicode.org/unicode/reports/tr9/

6.4 Complex Script Output 163

Note Bidi processing is not currently supported for multi-line Textflows, but only for Textlines (i.e.
single-line text output).

Overriding the Bidi algorithm. While automatic Bidi processing will provide proper re-
sults in common cases, there are situations which require explicit user control. PDFlib
supports several directional formatting codes for this purpose. For convenience, these
formatting characters can also be specified with entity names (see Table 6.5). The bidi-
rectional formatting codes are useful to override the default Bidi algorithm in the fol-
lowing situations:

> a right-to-left paragraph begins with left-to-right characters;
> there are nested segments with mixed text;
> there are weak characters, e.g. punctuation, at the boundary between left-to-right

and right-to-left text;
> part numbers and similar entities containing mixed text.

Options for improved right-to-left document handling. The default settings of various
formatting options and Acrobat behavior are targeted at left-to-right text output. Use
the following options for right-to-left text formatting and document display:

> Place a Textline right-aligned with the following fitting option:

position={right center}

> Create a leader between the text and the left border:

leader={alignment=left text=.}

> Use the following option of PDF_begin/end_document() to activate better right-to-left
document and page display in Acrobat:

viewerpreferences={direction=r2l}

Dealing with Bidi text in your code. The following may also be useful when dealing
with bidirectional text:

> You can use the startx/starty and endx/endy keywords of PDF_info_textline() to deter-
mine the coordinates of the logical start and end characters, respectively.

Table 6.5 Directional formatting codes for overriding the bidirectional algorithm

formatting
code entity name Unicode name function

U+202A LRE LEFT-TO-RIGHT EMBEDDING (LRE) start an embedded left-to-right sequence

U+202B RLE RIGHT-TO-LEFT EMBEDDING (RLE) start an embedded right-to-left sequence

U+200E LRM LEFT-TO-RIGHT MARK (LRM) left-to-right zero-width character

U+200F RLM RIGHT-TO-LEFT MARK (RLM) right-to-left zero-width character

U+202D LRO LEFT-TO-RIGHT OVERRIDE (LRO) force characters to be treated as strong left-
to-right characters

U+202E RLO RIGHT-TO-LEFT OVERRIDE (RLO) force characters to be treated as strong
right-to-left characters

U+202C PDF POP DIRECTIONAL FORMATTING (PDF) restore the bidirectional state to what it
was before the last LRE, RLE, RLO, or LRO

164 Chapter 6: Text Output

> You can use the writingdirx keyword of PDF_info_textline() to determine the domi-
nant writing direction of text. This direction will be inferred from the initial charac-
ters of the text or from directional formatting codes according to Table 6.5 (if present
in the text).

> You can use the auto keyword for the position option of PDF_info_textline() to auto-
matically align Arabic or Hebrew text at the right border and Latin text at the left
border. For example, the following Textline option list aligns right- or left-aligns the
text on the baseline:

boxsize={width 0} position={auto bottom}

6.4.5 Arabic Text Formatting
Cookbook A full code sample can be found in the Cookbook topic complex_scripts/arabic_formatting.

In addition to Bidirectional formatting and text shaping as discussed above there are
several other formatting aspects related to generating text output in the Arabic script.

Arabic ligatures. The Arabic script makes extensive use of ligatures. Many Arabic fonts
contain two kinds of ligatures which are treated differently in PDFlib:

> Required ligatures (rlig feature) must always be applied, e.g. the Lam-Alef ligature
and variants thereof. Required ligatures will be used if the shaping option is enabled
with script=arab.

> Optional Arabic ligatures (liga and dlig features) are not used automatically, but can
be enabled like other user-controlled OpenType features, i.e. features={liga}. Optional
Arabic ligatures will be applied after complex script processing and shaping.

Latin ligatures in Arabic text. In Textlines the script-specific processing of OpenType
features may produce unexpected results. For example, Latin ligatures don’t work in
combination with Arabic text within the same Textline. The reason is that the script op-
tion can be supplied only once for the contents of a Textline and affects both the
shaping and feature options:

shaping script=arab features={liga} WRONG, does not work with common fonts!

However, Arabic fonts typically don’t contain Latin ligatures with an Arabic script desig-
nation, but only for the default or Latin script – but the script option cannot be changed
within a single Textline. Because of this PDFlib will not find any Latin ligatures and will
emit plain characters instead.

Avoiding ligatures. In some cases joining adjacent characters is not desired, e.g. for
certain abbreviations. In such cases you can use the formatting characters listed in Ta-
ble 6.4 to force or prevent characters from being joined. For example, the zero-width
non-joiner character in the following example will prevent the characters from being
joined in order to form a proper abbreviation:

أي&ZWNJ;بي&ZWNJ;إم

Tatweel formatting for Arabic text. You can stretch Arabic words by inserting one or
more instances of the tatweel character U+0640 (also called kashida). While PDFlib does
not automatically justify text by inserting tatweel characters, you can insert this char-
acter in the input text to stretch words.

http://www.pdflib.com/pdflib-cookbook/complex-scripts/arabic-formatting

6.4 Complex Script Output 165

Adding Latin characters to an Arabic font. Some Arabic fonts do not contain any
glyphs for Latin characters, e.g. the Arabic fonts bundled with Apple Mac OS X. In this
situation you can use the fallbackfonts option to merge Latin characters into an Arabic
font. PDFlib will automatically switch between both fonts depending on the Latin or Ar-
abic text input, i.e. you don’t have to switch fonts in your application but can supply the
mixed Latin/Arabic text with a single font specification.

You can use the following font loading option list for the fallbackfonts option to add
Latin characters from the Helvetica font to the loaded Arabic font:

fallbackfonts={
{fontname=Helvetica encoding=unicode forcechars={U+0021-U+00FF}}

}

166 Chapter 6: Text Output

6.5 Chinese, Japanese, and Korean Text Output
6.5.1 Standard CJK Fonts

Acrobat supports various standard fonts for CJK text. These fonts are supplied with the
Acrobat installation (or the Asian FontPack), and therefore don’t have to be embedded
in the PDF file. These fonts contain all characters required for common encodings, and
support both horizontal and vertical writing modes. The standard fonts are listed in Ta-
ble 6.6 along with applicable CMaps (see Section 4.3, »Chinese, Japanese, and Korean En-
codings«, page 99, for more details on CJK CMaps).

Note Instead of Unicode CMaps (UCS2 or UTF16) the use of encoding=unicode is recommended for
custom CJK fonts.

Note Acrobat’s standard CJK fonts do not support bold and italic variations. However, these can be
simulated with the artificial font style feature (see Section 6.2.3, »Text Variations«, page 149).

Keeping native CJK legacy codes. If keepnative=true, native legacy character codes (e.g.
Shift-JIS) according to the selected CMap will be written to the PDF output; otherwise
the text will be converted to Unicode. The advantage of keepnative=true is that such
fonts can be used for form fields without embedding (see description of the keepnative
font loading option for in the PDFlib API Reference). If keepnative=false legacy codes will
be converted to CID values which will subsequently be written to the PDF output. The
advantage is that OpenType features can be used and that the Textflow formatter can
be used. The visual appearance will be identical in both cases.

Table 6.6 Acrobat’s standard fonts and CMaps (encodings) for Japanese, Chinese, and Korean text

locale font name sample supported CMaps (encodings)

Simplified
Chinese

AdobeSongStd-Light2 GB-EUC-H, GB-EUC-V, GBpc-EUC-H, GBpc-EUC-V,
GBK-EUC-H, GBK-EUC-V, GBKp-EUC-H, GBKp-EUC-
V, GBK2K-H, GBK2K-V, UniGB-UCS2-H, UniGB-
UCS2-V, UniGB-UTF16-H1, UniGB-UTF16-V1

1. Only available when generating PDF 1.5 or above

Traditional
Chinese

AdobeMingStd-Light2 B5pc-H, B5pc-V, HKscs-B5-H, HKscs-B5-V, ETen-B5-
H, ETen-B5-V, ETenms-B5-H, ETenms-B5-V, CNS-
EUC-H, CNS-EUC-V, UniCNS-UCS2-H, UniCNS-UCS2-
V, UniCNS-UTF16-H1, UniCNS-UTF16-V1

Japanese KozMinPro-Regular-Acro3

KozGoPro-Medium2

KozMinProVI-Regular2

2. Only available when generating PDF 1.6 or above

83pv-RKSJ-H, 90ms-RKSJ-H, 90ms-RKSJ-V, 90msp-
RKSJ-H, 90msp-RKSJ-V, 90pv-RKSJ-H, Add-RKSJ-H,
Add-RKSJ-V, EUC-H, EUC-V, Ext-RKSJ-H, Ext-RKSJ-V,
H, V, UniJIS-UCS2-H, UniJIS-UCS2-V, UniJIS-UCS2-
HW-H3, UniJIS-UCS2-HW-V3, UniJIS-UTF16-H1,
UniJIS-UTF16-V1

3. The HW CMaps are not allowed for the KozMinPro-Regular-Acro and KozGoPro-Medium-Acro fonts because these fonts contain only
proportional ASCII characters, but not any halfwidth forms.

Korean AdobeMyungjoStd-Medium2 KSC-EUC-H, KSC-EUC-V, KSCms-UHC-H, KSCms-
UHC-V, KSCms-UHC-HW-H, KSCms-UHC-HW-V,
KSCpc-EUC-H, UniKS-UCS2-H, UniKS-UCS2-V,
UniKS-UTF16-H1, UniKS-UTF16-V1

6.5 Chinese, Japanese, and Korean Text Output 167

Horizontal and vertical writing mode. PDFlib supports both horizontal and vertical
writing modes. Vertical writing mode can be requested in different ways (note that ver-
tical writing mode is not supported for Type 1 fonts):

> For standard CJK fonts and CMaps the writing mode is selected along with the encod-
ing by choosing the appropriate CMap name. CMaps with names ending in -H select
horizontal writing mode, while the -V suffix selects vertical writing mode.

> Fonts with encodings other than a CMap can be used for vertical writing mode by
supplying the vertical font option.

> Font names starting with an ’@’ character will always be processed in vertical mode.

Note The character spacing must be negative in order to spread characters apart in vertical writing
mode.

Standard CJK font example. Standard CJK fonts can be selected with the PDF_load_
font() interface, supplying the CMap name as the encoding parameter. However, you
must take into account that a given CJK font supports only a certain set of CMaps (see
Table 6.6), and that Unicode-aware language bindings support only UCS2-compatible
CMaps. The KozMinPro-Regular-Acro sample in Table 6.6 can been generated with the fol-
lowing code:

font = p.load_font("KozMinPro-Regular-Acro", "UniJIS-UCS2-H", "");
if (font == -1) { ... }
p.setfont(font, 24);
p.set_text_pos(50, 500);
p.show("\u65E5\u672C\u8A9E");

These statements locate one of the Japanese standard fonts, choosing a Unicode CMap
(UniJIS-UCS2-H) with horizontal writing mode (H). The fontname parameter must be the
exact name of the font without any encoding or writing mode suffixes. The encoding pa-
rameter is the name of one of the supported CMaps (the choice depends on the font)
and will also indicate the writing mode (see above). PDFlib supports all of Acrobat’s de-
fault CMaps, and will complain when it detects a mismatch between the requested font
and the CMap. For example, PDFlib will reject a request to use a Korean font with a Japa-
nese encoding.

Forcing monospaced fonts. Some applications are not prepared to deal with propor-
tional CJK fonts, and calculate the extent of text based on a constant glyph width and
the number of glyphs. PDFlib can be instructed to force monospaced glyphs even for
fonts that usually have glyphs with varying widths. Use the monospace option of PDF_
load_font() to specify the desired width for all glyphs. For standard CJK fonts the value
1000 will result in pleasing results:

font = p.load_font("KozMinPro-Regular-Acro", "UniJIS-UCS2-H", "monospace=1000");

The monospace option is only recommended for standard CJK fonts.

168 Chapter 6: Text Output

6.5.2 Custom CJK Fonts
Note PDFlib GmbH offers the MS Gothic and MS Mincho fonts for free download at www.pd-

flib.com. PDFlib licensees are entitled to use these fonts without having to obtain a separate
font license.

In addition to Acrobat’s standard CJK fonts PDFlib supports custom CJK fonts (fonts out-
side the list in Table 6.6) in the TrueType (including TrueType Collections, TTC) and
OpenType formats. Custom CJK fonts will be processed as follows:

> If the embedding option is true, the font will be converted to a CID font and embed-
ded in the PDF output.

> CJK host font names on Windows can be supplied to PDF_load_font() as UTF-8 with
initial BOM, or UTF-16. Non-Latin host font names are not supported on the Mac,
though.

> The keepnative option is false by default. In order to avoid subtle problems in Acrobat
we recommend to set keepnative=false if no font embedding is desired, and to set
embedding=true if keepnative=true is desired.

Custom CJK font example with Japanese Shift-JIS text. The following C example uses
the MS Mincho font to display some Japanese text which is supplied in Shift-JIS format
according to Windows code page 932:

font = PDF_load_font(p, "MS Mincho", 0, "cp932", "");
if (font == -1) { ... }
PDF_setfont(p, font, 24);
PDF_set_text_pos(p, 50, 500);

PDF_show2(p, "\x82\xA9\x82\xC8\x8A\xBF\x8E\x9A", 8);

Note that legacy encodings such as Shift-JIS are not supported in Unicode-aware lan-
guage bindings.

Custom CJK font example with Chinese Unicode text. The following example uses the
ArialUnicodeMS font to display some Chinese text. The font must either be installed on
the system or must be configured according to Section 5.4.4, »Searching for Fonts«, page
126):

font = p.load_font("Arial Unicode MS", "unicode", "");

p.setfont(font, 24);
p.set_text_pos(50, 500);

p.show("\u4e00\u500b\u4eba");

Accessing individual fonts in a TrueType Collection (TTC). TTC files contain
multiple separate fonts. You can access each font by supplying its proper
name. However, if you don’t know which fonts are contained in a TTC file you
can numerically address each font by appending a colon character and the
number of the font within the TTC file (starting with 0). If the index is 0 it can
be omitted. For example, the TTC file msgothic.ttc contains multiple fonts which can be
addressed as follows in PDF_load_font() (each line contains equivalent font names):

6.5 Chinese, Japanese, and Korean Text Output 169

msgothic:0 MS Gothic msgothic:
msgothic:1 MS PGothic
msgothic:2 MS UI Gothic

Note that msgothic (without any suffix) will not work as a font name since it does not
uniquely identify a font. Font name aliases (see »Sources of Font Data«, page 126) can be
used in combination with TTC indexing. If a font with the specified index cannot be
found, the function call will fail.

It is only required to configure the TTC font file once; all indexed fonts in the TTC file
will be found automatically. The following code is sufficient to configure all indexed
fonts in msgothic.ttc (see Section 5.4.4, »Searching for Fonts«, page 126):

p.set_parameter("FontOutline", "msgothic=msgothic.ttc");

6.5.3 EUDC and SING Fonts for Gaiji Characters
PDFlib supports Windows EUDC (end-user defined characters, *.tte) and SING fonts
(*.gai) which can be used to access custom Gaiji characters for CJK text. Most convenient-
ly fonts with custom characters are integrated into other fonts with the fallback font
mechanism. Gaiji characters will commonly be provided in EUDC or SING fonts. Alter-
natively, Gaiji characters can also be supplied as Type 3 fonts, but this requires more
programming effort.

Using fallback fonts for Gaiji characters. Typically, Gaiji characters will be pulled from
Windows EUDC fonts or SING glyphlets, but the fallbackfonts option accepts any kind of
font. Therefore this approach is not limited to Gaiji characters, but can be used for any
kind of symbol (e.g. a company logo in a separate font). You can use the following font
loading option list for the fallbackfonts option to add a user-defined (gaiji) character
from an EUDC font to the loaded font:

fallbackfonts={
{fontname=EUDC encoding=unicode forcechars=U+E000 fontsize=140% textrise=-20%}

}

Once a base font has been loaded with this fallback font configuration, the EUDC charac-
ter can be used within the text without any need to change the font.

With SING fonts the Unicode value doesn’t have to be supplied since it will automat-
ically be determined by PDFlib:

fallbackfonts={
{fontname=PDFlibWing encoding=unicode forcechars=gaiji}

}

Preparing EUDC fonts. You can use the EUDC editor available in Windows to create
custom characters for use with PDFlib. Proceed as follows:

> Use the eudcedit.exe to create one or more custom characters at the desired Unicode
position(s).

> Locate the EUDC.TTE file in the directory \Windows\fonts and copy it to some other di-
rectory. Since this file is invisible in Windows Explorer use the dir and copy com-
mands in a DOS box to find the file. Now configure the font for use with PDFlib, us-
ing one of the methods discussed in (see Section 5.4.4, »Searching for Fonts«, page
126):

170 Chapter 6: Text Output

p.set_parameter("FontOutline", "EUDC=EUDC.TTE");

p.set_parameter("SearchPath", "...directory name...");

or place EUDC.TTE in the current directory.
As an alternative to this explicit font file configuration you can use the following
function call to configure the font file directly from the Windows directory. This way
you will always access the current EUDC font used in Windows:

p.set_parameter("FontOutline", "EUDC=C:\Windows\fonts\EUDC.TTE");

> Integrate the EUDC font into any base font using the fallbackfonts option as de-
scribed above. If you want to access the font directly, use the following call to load
the font in PDFlib:

font = p.load_font("EUDC", "unicode", "");

as usual and supply the Unicode value(s) chosen in the first step to output the char-
acters.

6.5.4 OpenType Layout Features for advanced CJK Text Output
As detailed in Section 6.3, »OpenType Layout Features«, page 152, PDFlib supports ad-
vanced typographic layout tables in OpenType and TrueType fonts. For example, Open-
Type features can be used to select alternative forms of the Latin glyphs with propor-
tional widths or half widths, or to select alternate character forms. Table 6.7 lists
OpenType features which are targeted at CJK text output.

The vert feature (vertical writing) will be automatically enabled for fonts with verti-
cal writing mode (i.e. the vertical option has been supplied to PDF_load_font()), and dis-
abled for fonts with horizontal writing mode.

Table 6.7 Supported OpenType layout features for Chinese, Japanese, and Korean text (Table 6.1 lists additional
supported OpenType layout features for general use)

key-
word name description

expt expert forms Like the JIS78 forms this feature replaces standard Japanese forms with corresponding
forms preferred by typographers.

fwid full widths Replace glyphs set on other widths with glyphs set on full (usually em) widths.This may
include Latin characters and various symbols.

hkna horizontal Kana al-
ternates

Replace standard Kana with forms that have been specially designed for only horizontal
writing.

hngl Hangul Replace hanja (Chinese-style) Korean characters with the corresponding Hangul (syllabic)
characters.

hojo Hojo Kanji forms (JIS
X 0212-1990)

Access the JIS X 0212-1990 glyphs (also called »Hojo Kanji«) if the JIS X 0213:2004 form is
encoded as default.

hwid half widths Replace glyphs on proportional widths, or fixed widths other than half an em, with
glyphs on half-em (en) widths.

ital italics Replace the Roman glyphs with the corresponding Italic glyphs.

jp04 JIS2004 forms (Subset of the nlck feature) Access the JIS X 0213:2004 glyphs.

jp78 JIS78 forms Replace default (JIS90) Japanese glyphs with the corresponding forms from JIS C 6226-
1978 (JIS78).

6.5 Chinese, Japanese, and Korean Text Output 171

jp83 JIS83 forms Replace default (JIS90) Japanese glyphs with the corresponding forms from JIS X 0208-
1983 (JIS83).

jp90 JIS90 forms Replace Japanese glyphs from JIS78 or JIS83 with the corresponding forms from JIS X
0208-1990 (JIS90).

locl localized forms Enable localized forms of glyphs to be substituted for default forms. This feature requires
the script and language options.

nalt alternate annota-
tion forms

Replace default glyphs with various notational forms (e.g. glyphs placed in open or solid
circles, squares, parentheses, diamonds or rounded boxes).

nlck NLC Kanji forms Access the new glyph shapes defined in 2000 by the National Language Council (NLC) of
Japan for a number of JIS characters.

pkna proportional Kana Replace glyphs, Kana and Kana-related, set on uniform widths (half or full-width) with
proportional glyphs.

pwid proportional widths Replace glyphs set on uniform widths (typically full or half-em) with proportionally
spaced glyphs.

qwid quarter widths Replace glyphs on other widths with glyphs set on widths of one quarter of an em (half
an en).

ruby Ruby notation forms Replace default Kana glyphs with smaller glyphs designed for use as (usually superscript-
ed) Ruby.

smpl simplified forms Replace traditional Chinese or Japanese forms with the corresponding simplified forms.

tnam traditional name
forms

Replace simplified Japanese Kanji forms with the corresponding traditional forms. This is
equivalent to the trad feature, but limited to the traditional forms considered proper for
use in personal names.

trad traditional forms Replace simplified Chinese Hanzi or Japanese Kanji forms with the corresponding tradi-
tional forms.

twid third widths Replace glyphs on other widths with glyphs set on widths of one third of an em.

vert vertical writing Replace default forms with variants adjusted for vertical writing.

vkna vertical Kana alter-
nates

Replace standard Kana with forms that have been specially designed for only vertical
writing.

vrt2 vertical alternates
and rotation

(Overrides the vert feature which is a subset of the vrt2 feature) Replace some fixed-
width (half-, third- or quarter-width) or proportional-width glyphs (mostly Latin or Kata-
kana) with forms suitable for vertical writing (that is, rotated 90° clockwise).

Table 6.7 Supported OpenType layout features for Chinese, Japanese, and Korean text (Table 6.1 lists additional
supported OpenType layout features for general use)

key-
word name description

172 Chapter 6: Text Output

7.1 Importing Raster Images 173

7 Importing Images and PDF Pages
PDFlib offers a variety of features for importing raster images and pages from existing
PDF documents, and placing them on the page. This chapter covers the details of deal-
ing with raster images and importing pages from existing PDF documents. Placing im-
ages and PDF pages on an output page is discussed in Section 7.3, »Placing Images and
imported PDF Pages«, page 186.

Cookbook Code samples regarding image issues can be found in the images category of the PDFlib Cook-
book.

7.1 Importing Raster Images
7.1.1 Basic Image Handling

Embedding raster images with PDFlib is easy to accomplish. First, the image file has to
be opened with a PDFlib function which does a brief analysis of the image parameters.
The PDF_load_image() function returns a handle which serves as an image descriptor.
This handle can be used in a call to PDF_fit_image(), along with positioning and scaling
parameters:

image = p.load_image("auto", "image.jpg", "");
if (image == -1)

throw new Exception("Error: " + p.get_errmsg());

p.fit_image(image, 0.0, 0.0, "");
p.close_image(image);

The last parameter of PDF_fit_image() function is an option list which supports a variety
of options for positioning, scaling, and rotating the image. Details regarding these op-
tions are discussed in Section 7.3, »Placing Images and imported PDF Pages«, page 186.

Cookbook A full code sample can be found in the Cookbook topic images/starter_image.

Re-using image data. PDFlib supports an important PDF optimization technique for
using repeated raster images. Consider a layout with a constant logo or background on
multiple pages. In this situation it is possible to include the actual image data only once
in the PDF, and generate only a reference on each of the pages where the image is used.
Simply load the image file once, and call PDF_fit_image() every time you want to place
the logo or background on a particular page. You can place the image on multiple pages,
or use different scaling factors for different occurrences of the same image (as long as
the image hasn’t been closed). Depending on the image’s size and the number of occur-
rences, this technique can result in enormous space savings.

Scaling and dpi calculations. PDFlib never changes the number of pixels in an import-
ed image. Scaling either blows up or shrinks image pixels, but doesn’t do any downsam-
pling (the number of pixels in an image will always remain the same). A scaling factor of
1 results in a pixel size of 1 unit in user coordinates. In other words, the image will be im-
ported with its native resolution (or 72 dpi if it doesn’t contain any resolution informa-

http://www.pdflib.com/pdflib-cookbook/images

http://www.pdflib.com/pdflib-cookbook/images/starter-image

174 Chapter 7: Importing Images and PDF Pages

tion) if the user coordinate system hasn’t been scaled (since there are 72 default units to
an inch).

Cookbook A full code sample can be found in the Cookbook topic images/image_dimensions. It shows how
to get the dimensions of an image and how to place it with various sizes.

Color space of imported images. Except for adding or removing ICC profiles and ap-
plying a spot color according to the options provided in PDF_load_image(), PDFlib will
generally try to preserve the native color space of an imported image. However, this is
not possible for certain rare combinations, such as YCbCr in TIFF which will be convert-
ed to RGB.

PDFlib does not perform any conversion between RGB and CMYK. If such a conver-
sion is required it must be applied to the image data before loading the image in PDFlib.

Multi-page images. PDFlib supports GIF, TIFF and JBIG2 images with more than one
image, also known as multi-page image files. In order to use multi-page images use the
page option in PDF_load_image():

image = p.load_image("tiff", filename, "page=2");

The page option indicates that a multi-image file is to be used, and specifies the number
of the image to use. The first image is numbered 1. This option may be increased until
PDF_load_image() returns -1, signalling that no more images are available in the file.

Cookbook A full code sample for converting all images in a multi-image TIFF file to a multi-page PDF file
can be found in the Cookbook topic images/multi_page_tiff.

Inline images. As opposed to reusable images, which are written to the PDF output as
image XObjects, inline images are written directly into the respective content stream
(page, pattern, template, or glyph description). This results in some space savings, but
should only be used for small amounts of image data (up to 4 KB). The primary use of
inline images is for bitmap glyph descriptions in Type 3 fonts; inline images are not rec-
ommended for other situations.

Inline images can be generated with the PDF_load_image() interface by supplying the
inline option. Inline images cannot be reused, i.e., the corresponding handle must not be
supplied to any call which accepts image handles. For this reason if the inline option has
been provided PDF_load_image() internally performs the equivalent of the following
code:

p.fit_image(image, 0, 0, "");
p.close_image(image);

Inline images are only supported for imagetype=ccitt, jpeg, and raw. For other image
types the inline option will silently be ignored.

OPI support. When loading an image additional information according to OPI (Open
Prepress Interface) version 1.3 or 2.0 can be supplied in the call to PDF_load_image().
PDFlib accepts all standard OPI 1.3 or 2.0 PostScript comments as options (not the corre-
sponding PDF keywords!), and will pass through the supplied OPI information to the
generated PDF output without any modification. The following example attaches OPI
information to an image:

http://www.pdflib.com/pdflib-cookbook/images/image-dimensions

http://www.pdflib.com/pdflib-cookbook/images/multi-page-tiff

7.1 Importing Raster Images 175

String optlist13 =
"OPI-1.3 { ALDImageFilename bigfile.tif " +
"ALDImageDimensions {400 561} " +
"ALDImageCropRect {10 10 390 550} " +
"ALDImagePosition {10 10 10 540 390 540 390 10} }";

image = p.load_image("tiff", filename, optlist13);

Note Some OPI servers, such as the one included in Helios EtherShare, do not properly implement OPI
processing for PDF Image XObjects, which PDFlib generates by default. In such cases genera-
tion of Form XObjects can be forced by supplying the template option to PDF_load_image().

XMP metadata in images. Image files may contain XMP metadata. By default PDFlib
ignores image metadata for images in the TIFF, JPEG, and JPEG 2000 image formats to
reduce the output file size. However, the XMP metadata can be attached to the generat-
ed image in the output PDF document with the following option of PDF_load_image():

metadata={keepxmp=true}

7.1.2 Supported Image File Formats
PDFlib deals with the image file formats described below. By default, PDFlib passes the
compressed image data unchanged to the PDF output if possible since PDF internally
supports most compression schemes used in common image file formats. This tech-
nique (called pass-through mode in the descriptions below) results in very fast image im-
port, since decompressing the image data and subsequent recompression are not neces-
sary. However, PDFlib cannot check the integrity of the compressed image data in this
mode. Incomplete or corrupt image data may result in error or warning messages when
using the PDF document in Acrobat (e.g., Read less image data than expected). Pass-
through mode can be controlled with the passthrough option of PDF_load_image().

If an image file can’t be imported successfully PDF_load_image() will return an error
code. If you need to know more details about the image failure, call PDF_get_errmsg() to
retrieve a detailed error message.

PNG images. PDFlib supports all flavors of PNG images (ISO 15948). PNG images are
handled in pass-through mode in most cases. If a PNG image contains transparency in-
formation, the transparency is retained in the generated PDF (see Section 7.1.4, »Image
Masks and Transparency«, page 178).

JPEG images. JPEG images (ISO 10918-1) are never decompressed, but some flavors may
require transcoding for proper display in Acrobat. PDFlib automatically applies trans-
coding to certain types of JPEG images, but transcoding can also be controlled via the
passthrough option of PDF_load_image(). Transcoding does not change the pixel count
or color of an image, and does not introduce any visible compression/decompression
artifacts. PDFlib supports the following JPEG image flavors:

> Grayscale, RGB (usually encoded as YCbCr), and CMYK color
> Baseline JPEG compression which accounts for the vast majority of JPEG images.
> Progressive JPEG compression.

JPEG images can be packaged in several different file formats. PDFlib supports all com-
mon JPEG file formats, and will read resolution information from the following flavors:

> JFIF, which is generated by a wide variety of imaging applications.

176 Chapter 7: Importing Images and PDF Pages

> JPEG files written by Adobe Photoshop and other Adobe applications. PDFlib applies
a workaround which is necessary to correctly process Photoshop-generated CMYK
JPEG files. PDFlib will also read clipping paths from JPEG images created with Adobe
Photoshop.

JPEG images in the EXIF format as created by many digital cameras are treated as sRGB
images; an sRGB ICC profile will be attached to the image unless the honoriccprofile op-
tion is false or another ICC profile has been assigned to the image with the iccprofile op-
tion.

JPEG 2000 images. JPEG 2000 images (ISO 15444-2) require PDF 1.5 or above, and are al-
ways handled in pass-through mode. PDFlib supports JPEG 2000 images as follows:

> JP2 and JPX baseline images (usually *.jp2 or *.jpf) are supported, subject to the color
space conditions below. All valid color depth values are supported.
The following color spaces are supported: sRGB, sRGB-grey, ROMM-RGB, sYCC,
e-sRGB, e-sYCC, CIELab, ICC-based color spaces (restricted and full ICC profile), and
CMYK. PDFlib will not alter the original color space in the JPEG 2000 image file.

> Images containing a soft mask can be used with the mask option to prepare a mask
which can be applied to other images.

> External ICC profiles can not be applied to a JPEG 2000 image, i.e. the iccprofile option
must not be used. ICC profiles contained in the JPEG 2000 image file will always be
kept, i.e. the honoriccprofile option is always true.

Note JPM compound image files according to ISO 15444-6 (usually *.jpm) are not supported.

JBIG2 images. PDFlib supports single- and multi-page flavors of JBIG2 images
(ISO 14492). JBIG2 images always contain black/white pixel data and require PDF 1.4 or
above.

Due to the nature of JBIG2 compression, several pages in a multi-page JBIG2 stream
may refer to the same global segments. If more than one page of a multi-page JBIG2
stream is converted the global segments can be shared among the generated PDF imag-
es. Since the calls to PDF_load_image() are independent from each other you must in-
form PDFlib in advance that multiple pages from the same JBIG2 stream will be convert-
ed. This works as follows:

> When loading the first page all global segments are copied to the PDF. Use the follow-
ing option list for PDF_load_image():

page=1 copyglobals=all

> When loading subsequent pages from the same JBIG2 stream the image handle<N>
for page 1 must be provided so that PDFlib can create references to the global seg-
ments which have been copied with page 1. Use the following option list for PDF_
load_image():

page=2 imagehandle=<N>

The client application must make sure that the copyglobals/imagehandle mechanism is
only applied to multiple pages which are extracted from the same JBIG2 image stream.
Without the copyglobals options PDFlib will automatically copy all required data for the
current page.

7.1 Importing Raster Images 177

GIF images. PDFlib supports all GIF flavors (specifically GIF 87a and 89a) with inter-
laced and non-interlaced pixel data and all palette sizes. GIF images will always be re-
compressed with Flate compression.

TIFF images. PDFlib imports almost all flavors of TIFF images:
> Compression schemes: uncompressed, CCITT (group 3, group 4, and RLE), ZIP (=Flate),

PackBits (=RunLength), LZW, old-style and new-style JPEG, as well as some other rare
compression schemes;

> Color space: black and white, grayscale, RGB, CMYK, CIELab, and YCbCr images;
> Color depth must be 1, 2, 4, 8, or 16 bits per color component. 16-bit images require

PDF 1.5.

The following TIFF features will be processed when importing an image:
> TIFF files containing more than one image (see »Multi-page images«, page 174); use

the page option to select an image within a TIFF file.
> Alpha channels or masks (see Section 7.1.4, »Image Masks and Transparency«, page

178) will be honored unless the ignoremask option is set. You can explicitly select an
alpha channel with the alphachannelname option.

> PDFlib honors clipping paths in TIFF images created with Adobe Photoshop and com-
patible programs unless the ignoreclippingpath option is set.

> PDFlib honors ICC profiles in TIFF images unless the honoriccprofile option is set to
false.

> The orientation tag which specifies the desired image orientation will be honored. It
can be ignored (as many applications do) with the ignoreorientation option.

Some TIFF features (e.g., spot color) and combinations of features are not supported.

BMP images. BMP images cannot be handled in pass-through mode. PDFlib supports
the following flavors of BMP images:

> BMP versions 2 and 3;
> color depth 1, 4, and 8 bits per component, including 3 x 8 = 24 bit TrueColor. 16-bit

images will be treated as 5+5+5 plus 1 unused bit. 32-bit images will be treated as 3 x 8
bit images (the remaining 8 bits will be ignored).

> black and white or RGB color (indexed and direct);
> uncompressed as well as 4-bit and 8-bit RLE compression;
> PDFlib will not mirror images if the pixels are stored in bottom-up order (this is a

rarely used feature in BMP which is interpreted differently in applications).

CCITT images. Group 3 or Group 4 fax compressed image data are always handled in
pass-through mode. Note that this format actually means raw CCITT-compressed image
data, not TIFF files using CCITT compression. Raw CCITT compressed image files are usu-
ally not supported in end-user applications, but can only be generated with fax-related
software. Since PDFlib is unable to analyze CCITT images, all relevant image parameters
have to be passed to PDF_load_image() by the client.

Raw data. Uncompressed (raw) image data may be useful for some special applica-
tions. The nature of the image is deduced from the number of color components: 1 com-
ponent implies a grayscale image, 3 components an RGB image, and 4 components a
CMYK image.

178 Chapter 7: Importing Images and PDF Pages

7.1.3 Clipping Paths
PDFlib supports clipping paths in TIFF and JPEG images created with Adobe Photoshop.
An image file may contain multiple named paths. Using the clippingpathname option of
PDF_load_image() one of the named paths can be selected and will be used as a clipping
path: only those parts of the image inside the clipping path will be visible, other parts
will remain invisible. This is useful to separate background and foreground, eliminate
unwanted portions of an image, etc.

Alternatively, an image file may specify a default clipping path. If PDFlib finds a de-
fault clipping path in an image file it will automatically apply it to an image (see Figure
7.1). In order to prevent the default clipping path from being applied set the honor-
clippingpath option in PDF_load_image() to false. If you have several instances of the
same image and only some instances shall have the clipping path applied, you can sup-
ply the ignoreclippingpath option in PDF_fit_image() in order to disable the clipping path.
When a clipping path is applied, the bounding box of the clipped image will be used as
the basis for all calculations related to placing or fitting the image.

Cookbook A full code sample can be found in the Cookbook topic images/integrated_clipping_path.

7.1.4 Image Masks and Transparency
PDFlib supports three kinds of transparency information in images: implicit transpar-
ency with alpha channels, explicit transparency, and image masks.

Implicit transparency with alpha channels. Raster images may be partially transpar-
ent, i.e. the background shines through the image. This is useful, for example, to ignore
the background of an image and display only the person or object in the foreground.
Transparency information can be stored in a separate alpha channel or (in palette-
based images) as a transparent palette entry. Transparent images are not allowed in
PDF/A-1, PDF/X-1 and PDF/X-3. PDFlib processes transparency information in the follow-
ing image formats:

> GIF image files may contain a single transparent color value (palette entry) which is
respected by PDFlib.

> TIFF images may contain a single associated alpha channel which will be honored by
PDFlib. Alternatively, a TIFF image may contain an arbitrary number of unassociated

Fig. 7.1
Using a clipping path to separate
foreground and background

http://www.pdflib.com/pdflib-cookbook/images/integrated-clipping-path

7.1 Importing Raster Images 179

channels which are identified by name. These channels may be used to convey trans-
parency or other information. When unassociated channels are found in a TIFF im-
age PDFlib will by default use the first channel as alpha channel. However, you can
explicitly select an unassociated alpha channel by supplying its name:

image = p.load_image("tiff", filename, "alphachannelname={apple}");

> PNG images may contain an associated alpha channel which will automatically be
used by PDFlib.

> As an alternative to a full alpha channel, PNG images may contain single transparent
color values which will be honored by PDFlib. If multiple color values with an at-
tached alpha value are given, only the first one with an alpha value below 50 percent
is used.

Note In addition to a full alpha channel Photoshop can create transparent backgrounds in a propri-
etary format which is not understood by PDFlib. In order to use such transparent images with
PDFlib you must save them in Photoshop in the TIFF file format and select Save Transparency
in the TIFF options dialog box.

Sometimes it is desirable to ignore any implicit transparency which may be contained
in an image file. PDFlib’s transparency support can be disabled with the ignoremask op-
tion when loading the image:

image = p.load_image("tiff", filename, "ignoremask");

Explicit transparency. The explicit case requires two steps, both of which involve im-
age operations. First, a grayscale image must be prepared for later use as a mask. This is
accomplished by loading the mask image. The following kinds of images can be used for
constructing a mask:

> PNG images
> TIFF images: the nopassthrough option for PDF_load_image() is recommended to

avoid multi-strip images.
> raw image data

Pixel values of 0 (zero) in the mask will result in the corresponding area of the masked
image being painted, while high pixel values result in the background shining through.
If the pixel has more than 1 bit per pixel, intermediate values will blend the foreground
image against the background, providing a transparency effect.

In the second step the mask is applied to another image with the masked option:

mask = p.load_image("png", maskfilename, "");
if (mask == -1)

throw new Exception("Error: " + p.get_errmsg());

String optlist = "masked=" + mask;
image = p.load_image(type, filename, optlist)
if (image == -1)

throw new Exception("Error: " + p.get_errmsg());

p.fit_image(image, x, y, "");

The image and the mask may have different pixel dimensions; the mask will auto-
matically be scaled to the image’s size.

180 Chapter 7: Importing Images and PDF Pages

Note In some situations PDFlib converts multi-strip TIFF images to multiple PDF images which would
be masked individually. Since this is usually not intended, this kind of images will be rejected
both as a mask as well as a masked target image. Also, it is important to not mix the implicit
and explicit cases, i.e., don’t use images with transparent color values as mask.

Note The mask must have the same orientation as the underlying image; otherwise it will be reject-
ed. Since the orientation depends on the image file format and other factors it is difficult to de-
tect. For this reason it is recommended to use the same file format and creation software for
both mask and image.

Cookbook A full code sample can be found in the Cookbook topic images/image_mask.

Image masks and soft masks. Image masks are images with a bit depth of 1 (bitmaps)
in which zero bits are treated as transparent: whatever contents already exist on the
page will shine through the transparent parts of the image. 1-bit pixels are colorized
with the current fill color.

Soft masks generalize the concept of image masks to masks with more than 1 bit.
They blend the image against some existing background. PDFlib accepts all kinds of sin-
gle-channel (grayscale) images as soft mask. Note that only real gray-scale images are
suitable as a mask, but not images with indexed (palette-based) color. They can be used
the same way as image masks. The following kinds of images can be used as image
masks:

> PNG images
> JBIG2 images
> TIFF images (single- or multi-strip)
> JPEG images (only as soft mask, see below)
> BMP; note that BMP images are oriented differently than other image types. For this

reason BMP images must be mirrored along the x axis before they can be used as a
mask.

> raw image data

Image masks are simply opened with the mask option, and placed on the page after the
desired fill color has been set:

mask = p.load_image("tiff", maskfilename, "mask");
p.setcolor("fill", "rgb", 1.0, 0.0, 0.0, 0.0);
if (mask != -1)
{

p.fit_image(mask, x, y, "");
}

If you want to apply a color to an image without the zero bit pixels being transparent
you must use the colorize option (see Section 7.1.5, »Colorizing Images«, page 180).

7.1.5 Colorizing Images
Similarly to image masks, where a color is applied to the non-transparent parts of an
image, PDFlib supports colorizing an image with a spot color. This feature works for
black and white or grayscale images.

For images with an RGB palette, colorizing is only reasonable when the palette con-
tains only gray values, and the palette index is identical to the gray value.

http://www.pdflib.com/pdflib-cookbook/images/image-mask

7.1 Importing Raster Images 181

In order to colorize an image with a spot color you must supply the colorize option
when loading the image, and supply the respective spot color handle which must have
been retrieved with PDF_makespotcolor():

p.setcolor("fillstroke", "cmyk", 1, .79, 0, 0);
spot = p.makespotcolor("PANTONE Reflex Blue CV");

String optlist = "colorize=" + spot;
image = p.load_image("tiff", "image.tif", optlist);
if (image != -1)
{

p.fit_image(image, x, y, "");
}

182 Chapter 7: Importing Images and PDF Pages

7.2 Importing PDF Pages with PDI
Note All functions described in this section require PDFlib+PDI. The PDF import library (PDI) is not

contained in the PDFlib base product. Although PDI is integrated in all precompiled editions of
PDFlib, a license key for PDI (or PPS, which includes PDI) is required to use it.

7.2.1 PDI Features and Applications
When the optional PDI (PDF import) library is attached to PDFlib, pages from existing
PDF documents can be imported. PDI contains a parser for the PDF file format, and pre-
pares pages from existing PDF documents for easy use with PDFlib. Conceptually, im-
ported PDF pages are treated similarly to imported raster images such as TIFF or PNG:
you open a PDF document, choose a page to import, and place it on an output page, ap-
plying any of PDFlib’s transformation functions for translating, scaling, rotating, or
skewing the imported page. Imported pages can easily be combined with new content
by using any of PDFlib’s text or graphics functions after placing the imported PDF page
on the output page (think of the imported page as the background for new content). Us-
ing PDFlib and PDI you can easily accomplish the following tasks:

> overlay two or more pages from multiple PDF documents (e.g., add stationary to ex-
isting documents in order to simulate preprinted paper stock);

> place PDF ads in existing documents;
> clip the visible area of a PDF page in order to get rid of unwanted elements (e.g., crop

marks), or scale pages;
> impose multiple pages on a single sheet for printing;
> process multiple PDF/X or PDF/A documents to create a new PDF/X or PDF/A file;
> copy the PDF/X or PDF/A output intent of a file;
> add some text (e.g., headers, footers, stamps, page numbers) or images (e.g., company

logo) to existing PDF pages;
> copy all pages from an input document to the output document, and place barcodes

on the pages;
> use the pCOS interface to query arbitrary properties of a PDF document (see pCOS

Path Reference for details).

In order to place a PDF background page and populate it with dynamic data (e.g., mail
merge, personalized PDF documents on the Web, form filling) we recommend using PDI
along with PDFlib blocks (see Chapter 11, »PPS and the PDFlib Block Plugin«, page 271).

7.2.2 Using PDI Functions with PDFlib
Cookbook Code samples regarding PDF import issues can be found in the pdf_import category of the

PDFlib Cookbook.

General considerations. It is important to understand that PDI will only import the ac-
tual page contents, but not any interactive features (such as sound, movies, embedded
files, hypertext links, form fields, JavaScript, bookmarks, thumbnails, and notes) which
may be present in the imported PDF document. These interactive features can be gener-
ated with the corresponding PDFlib functions. PDFlib blocks will also be ignored when
importing a page. Document structure from Tagged PDF will also be lost when import-
ing a document.

http://www.pdflib.com/pdflib-cookbook/pdf-import

7.2 Importing PDF Pages with PDI 183

You can not re-use individual elements of imported pages with other PDFlib func-
tions. For example, re-using fonts from imported documents for some other content is
not possible. Instead, all required fonts must be configured in PDFlib. If multiple im-
ported documents contain embedded font data for the same font, PDI will not remove
any duplicate font data. On the other hand, if fonts are missing from some imported
PDF, they will also be missing from the generated PDF output file. As an optimization
you should keep the imported document open as long as possible in order to avoid the
same fonts to be embedded multiple times in the output document.

PDFlib+PDI does not change the color of imported PDF documents in any way. For
example, if a PDF contains ICC color profiles these will be retained in the output docu-
ment.

PDFlib+PDI uses the template feature (Form XObjects) for placing imported PDF pag-
es on the output page. Documents which contain imported pages from other PDF docu-
ments can be processed with PDFlib+PDI again.

Code fragments for importing PDF pages. Dealing with pages from existing PDF docu-
ments is possible with a very simple code structure. The following code snippet opens a
page from an existing document, and copies the page contents to a new page in the out-
put PDF document (which must have been opened before):

int doc, page, pageno = 1;
String filename = "input.pdf";

if (p.begin_document(outfilename, "") == -1) {...}
...

doc = p.open_pdi_document(infilename, "");
if (doc == -1)

throw new Exception("Error: " + p.get_errmsg());

page = p.open_pdi_page(doc, pageno, "");
if (page == -1)

throw new Exception("Error: " + p.get_errmsg());

/* dummy page size, will be modified by the adjustpage option */
p.begin_page_ext(20, 20, "");
p.fit_pdi_page(page, 0, 0, "adjustpage");
p.close_pdi_page(page);
...add more content to the page using PDFlib functions...
p.end_page_ext("");
p.close_pdi_document(doc);

The last parameter to PDF_fit_pdi_page() is an option list which supports a variety of op-
tions for positioning, scaling, and rotating the imported page. Details regarding these
options are discussed in Section 7.3, »Placing Images and imported PDF Pages«, page 186.

Dimensions of imported PDF pages. Imported PDF pages are handled similarly to im-
ported raster images, and can be placed on the output page using PDF_fit_pdi_page(). By
default, PDI will import the page exactly as it is displayed in Acrobat, in particular:

> cropping will be retained (in technical terms: if a CropBox is present, PDI favors the
CropBox over the MediaBox; see Section 3.2.2, »Page Size«, page 66);

> rotation which has been applied to the page will be retained.

184 Chapter 7: Importing Images and PDF Pages

The cloneboxes option instructs PDFlib+PDI to copy all page boxes of the imported page
to the generated output page, effectively cloning all page size aspects.

Alternatively, you can use the pdiusebox option to explicitly instruct PDI to use any
of the MediaBox, CropBox, BleedBox, TrimBox or ArtBox entries of a page (if present) for
determining the size of the imported page.

Imported PDF pages with layers. Acrobat 6 (PDF 1.5) introduced the layer functionality
(technically known as optional content). PDI will ignore any layer information which
may be present in a file. All layers in the imported page, including invisible layers, will
be visible in the generated output.

Importing georeferenced PDF with PDI. When importing georeferenced PDF with PDI
the geospatial information will be kept if it has been created with one of the following
methods (image-based geospatial reference):

> with PDFlib and the georeference option of PDF_load_image()
> by importing an image with geospatial information in Acrobat.

The geospatial information will be lost after importing a page if it has been created with
one of the following methods (page-based geospatial reference):

> with PDFlib and the viewports option of PDF_begin/end_page_ext()
> by manually geo-registering a PDF page in Acrobat.

Imported PDF with OPI information. OPI information present in the input PDF will be
retained in the output unmodified.

Optimization across multiple imported documents. While PDFlib itself creates highly
optimized PDF output, imported PDF may contain redundant data structures which can
be optimized. In addition, importing multiple PDFs may bloat the output file size if
multiple files contain identical resources, e.g. fonts. In this situation you can use the
optimize option of PDF_begin_document(). It will detect redundant objects in imported
files, and remove them without affecting the visual appearance or quality of the gener-
ated output.

7.2.3 Acceptable PDF Documents
Generally, PDI will happily process all kinds of PDF documents which can be opened
with Acrobat, regardless of PDF version number or features used within the file. In order
to import pages from encrypted documents (i.e., files with permission settings or pass-
word) the corresponding master password must be supplied.

PDI implements a repair mode for damaged PDFs so that even certain kinds of dam-
aged documents can be opened. However, in rare cases a PDF document or a particular
page of a document may be rejected by PDI.

If a PDF document or page can’t be imported successfully PDF_open_pdi_document()
and PDF_open_pdi_page() return an error code. If you need to know more details about
the failure you can query the reason with PDF_get_errmsg(). Alternatively, you can set
the errorpolicy option or parameter to true, which will result in an exception if the docu-
ment cannot be opened.

The following kinds of PDF documents will be rejected by default; however, they can
be opened for querying information with pCOS (as opposed to importing pages) by set-
ting the infomode option to true:

7.2 Importing PDF Pages with PDI 185

> Encrypted PDF documents without the corresponding password (exception to the
infomode rule: PDF 1.6 documents created with the Distiller setting Object Level
Compression: Maximum; these cannot be opened even in info mode).

> Tagged PDF when the tagged option in PDF_begin_document() is true.
> PDF/A or PDF/X documents which are incompatible to the PDF/A or PDF/X level of

the current output document (e.g. trying to import PDF/A-1a into a PDF/A-1b docu-
ment). See Section 10.3.4, »Importing PDF/X Documents with PDI«, page 252, and Sec-
tion 10.4.3, »Importing PDF/A Documents with PDI«, page 258, for more information.

The following additional checks are done in PDF_open_pdi_page():
> PDF documents which use a higher PDF version number than the PDF output docu-

ment that is currently being generated can not be imported with PDI. The reason is
that PDFlib can no longer make sure that the output will actually conform to the re-
quested PDF version after a PDF with a higher version number has been imported.
Solution: set the version of the output PDF to the required level using the compatibi-
lity option in PDF_begin_document().
PDF 1.7ext 3 (Acrobat 9) and PDF 1.7ext8 (Acrobat X) documents are compatible with
PDF 1.7 output as far as PDI is concerned (note that Acrobat X encryption is not yet
supported).
In PDF/A mode the input PDF version number will be ignored since PDF version
headers must be ignored in PDF/A.

186 Chapter 7: Importing Images and PDF Pages

7.3 Placing Images and imported PDF Pages
The function PDF_fit_image() for placing raster images and templates as well as PDF_fit_
pdi_page() for placing imported PDF pages offer a wealth of options for controlling the
placement on the page. This section demonstrates the most important options by look-
ing at some common application tasks. A complete list and descriptions of all options
can be found in the PDFlib API Reference.

Embedding raster images is easy to accomplish with PDFlib. The image file must first
be loaded with PDF_load_image(). This function returns an image handle which can be
used along with positioning and scaling options in PDF_fit_image().

Embedding imported PDF pages works along the same line. The PDF page must be
opened with PDF_open_pdi_page() to retrieve a page handle for use in PDF_fit_pdi_
page(). The same positioning and scaling options can be used as for raster images.

All samples in this section work the same for raster images, templates, and imported
PDF pages. Although code samples are only presented for raster images we talk about
placing objects in general. Before calling any of the fit functions a call to PDF_load_
image() or PDF_open_pdi_document() and PDF_open_pdi_page() must be issued. For the
sake of simplicity these calls are not reproduced here.

Cookbook Code samples regarding images and imported PDF pages can be found in the images and pdf_
import categories of the PDFlib Cookbook.

7.3.1 Simple Object Placement

Positioning an image at the reference point. By default, an object will be placed in its
original size with the lower left corner at the reference point. In this example we will
place an image with the bottom centered at the reference point. The following code
fragment places the image with the bottom centered at the reference point (0, 0).

p.fit_image(image, 0, 0, "position={center bottom}");

Similarly, you can use the position option with another combination of the keywords
left, right, center, top, and bottom to place the object at the reference point.

Placing an image with scaling. The following variation will place the image while
modifying its size:

p.fit_image(image, 0, 0, "scale=0.5");

This code fragment places the object with its lower left corner at the point (0, 0) in the
user coordinate system. In addition, the object will be scaled in x and y direction by a
scaling factor of 0.5, which makes it appear at 50 percent of its original size.

Cookbook A full code sample can be found in the Cookbook topic images/starter_image.

7.3.2 Placing an Object in a Box
In order to position an object an additional box with specified width and height can be
used. Figure 7.2 shows the output of the examples described below. Note that the gray
box or line is depicted for visualizing the box size only ; it is not part of the actual out-
put.

http://www.pdflib.com/pdflib-cookbook/images

http://www.pdflib.com/pdflib-cookbook/pdf-import

http://www.pdflib.com/pdflib-cookbook/pdf-import

http://www.pdflib.com/pdflib-cookbook/images/starter-image

7.3 Placing Images and imported PDF Pages 187

Positioning an image in the box. We define a box and place an image within the box
on the top right. The box has a width of 70 units and a height of 45 units and is placed at
the reference point (0, 0). The image is placed on the top right of the box (see Figure
7.2a). Similarly, we can place the image at the center of the bottom. This case is depicted
in Figure 7.2b. Note that the image will extend beyond the box if it is larger.

Fig. 7.2 Placing an image in a box subject to various positioning options

Using suitable fitting methods. Next, we will fit the object into the box by using vari-
ous fitting methods. Let’s start with the default case, where the default fitting method is
used and no clipping or scaling will be applied. The image will be placed at the center of
the box, 70 units wide and 45 high. The box will be placed at reference point (0, 0). Figure
7.3a illustrates this simple case.

Decreasing the box width from 70 to 35 units doesn’t have any effect on the output.
The image will remain in its original size and will exceed the box (see Figure 7.3b).

Fitting an image in the center of a box. In order to center an image within a pre-
defined rectangle you don’t have to do any calculations, but can achieve this with suit-
able options. With position=center we place the image in the center of the box, 70 units
wide and 45 high (boxsize={70 45}). Using fitmethod=meet, the image is proportionally re-
sized until its height completely fits into the box (see Figure 7.3c).

Decreasing the box width from 70 to 35 units forces PDFlib to scale down the image
until its width completely fits into the box (see Figure 7.3d).

This is the most common method of placing images. With fitmethod=meet it is guar-
anteed that the image will not be distorted, and that it will always be placed in the box
as large as possible.

Completely fitting the image into a box. We can further fit the image so that it com-
pletely fills the box. This is accomplished with fitmethod=entire. However, this combina-
tion will rarely be useful since the image will most probably be distorted (see Figure
7.3e).

Clipping an image when fitting it into the box. Using another fit method
(fitmethod=clip) we can clip the object if it exceeds the target box. We decrease the box
size to a width and height of 30 units and position the image in its original size at the
center of the box (see Figure 7.3f).

By positioning the image at the center of the box, the image will be cropped evenly
on all sides. Similary, to completely show the upper right part of the image you can po-
sition it with position={right top} (see Figure 7.3g).

Generated output Option list for PDF_fit_image

a) boxsize={70 45} position={right top}

b) boxsize={70 45} position={center bottom}

188 Chapter 7: Importing Images and PDF Pages

Fig. 7.3 Fitting an image into a box subject to various fit methods

Adjusting an object to the page. Adjusting an object to a given page size can easily be
accomplished by choosing the page as target box for placing the object. The following
statement uses an A4-sized page with dimensions 595 x 842:

p.fit_image(image, 0, 0, "boxsize={595 842} position={left bottom} fitmethod=slice");

In this code fragment a box is placed at the lower left corner of the page. The size of the
box equals the size of an A4 page. The object is placed in the lower left corner of the box
and scaled proportionally until it fully covers the box and therefore the page. If the ob-
ject exceeds the box it will be cropped. Note that fitmethod=slice results in the object be-
ing scaled (as opposed to fitmethod=clip which doesn’t scale the object). Of course the
position and fitmethod options could also be varied in this example.

7.3.3 Orientating an Object

Placing an image with orientation. In our next example we orientate an image to-
wards western direction (orientate=west). This means that the image is rotated by 90˚
counterclockwise and then the lower left corner of the rotated object is translated to the
reference point (0, 0). The object will be rotated in itself (see Figure 7.6a). Since we have

Generated output Option list for PDF_fit_image()

a) boxsize={70 45} position=center

b) boxsize={35 45} position=center

c) boxsize={70 45} position=center fitmethod=meet

d) boxsize={35 45} position=center fitmethod=meet

e) boxsize={70 45} position=center fitmethod=entire

f) boxsize={30 30} position=center fitmethod=clip

g) boxsize={30 30} position={right top} fitmethod=clip

7.3 Placing Images and imported PDF Pages 189

not specified any fit method the image will be output in its original size and will exceed
the box.

Fitting an image proportionally into a box with orientation. Our next goal is to orien-
tate the image to the west with a predefined size. We define a box of the desired size and
fit the image into the box with the image’s proportions being unchanged
(fitmethod=meet). The orientation is specified as orientate=west. By default, the image
will be placed in the lower left corner of the box (see Figure 7.6b). Figure 7.6c shows the
image orientated to the east, and Figure 7.6d the orientation to the south.

The orientate option supports the direction keywords north, east, west, and south as
demonstrated in Figure 7.5.

Note that the orientate option has no influence on the whole coordinate system but
only on the placed object.

Fig. 7.6 Orientating an image

Generated output Option list for PDF_fit_image()

a) boxsize={70 45} orientate=west

b) boxsize={70 45} orientate=west fitmethod=meet

c) boxsize={70 45} orientate=east fitmethod=meet

d) boxsize={70 45} orientate=south fitmethod=meet

e)
boxsize={70 45} position={center bottom} orientate=east
fitmethod=clip

Fig. 7.4
The rotate option

Fig. 7.5
The orientate option

190 Chapter 7: Importing Images and PDF Pages

Fitting an oriented image into a box with clipping. We orientate the image to the east
(orientate=east) and position it centered at the bottom of the box (position={center
bottom}). In addition, we place the image in its original size and clip it if it exceeds the
box (fitmethod=clip) (see Figure 7.6e).

7.3.4 Rotating an Object
Rotating an object works similarly to orientation. However, it does not only affect the
placed object but the whole coordinate system.

Placing an image with rotation. Our first goal is to rotate an image by 90˚ counter-
clockwise. Before placing the object the coordinate system will be rotated at the refer-
ence point (50, 0) by 90˚ counterclockwise. The rotated object’s lower right corner
(which is the unrotated object’s lower left corner) will end up at the reference point. This
case is shown in Figure 7.7a.

Since the rotation affects the whole coordinate system, the box will be rotated as
well. Similarly, we can rotate the image by 30˚ counterclockwise (see Figure 7.7b). Figure
7.4 demonstrates the general behaviour of the rotate option.

Fitting an image with rotation. Our next goal is to fit the image rotated by 90˚ coun-
terclockwise into the box while maintaining its proportions. This is accomplished using
fitmethod=meet (see Figure 7.7c). Similarly, we can rotate the image by 30˚ counterclock-
wise and proportionally fit the image into the box (see Figure 7.7d).

Fig. 7.7 Rotating an image

Generated output Option list for PDF_fit_image()

a) boxsize={70 45} rotate=90

b) boxsize={70 45} rotate=30

c) boxsize={70 45} rotate=90 fitmethod=meet

d) boxsize={70 45} rotate=30 fitmethod=meet

(x, y)

(x, y)

(x, y)

(x, y)

7.3 Placing Images and imported PDF Pages 191

7.3.5 Adjusting the Page Size

Adjusting the page size to an image. In the next example we will automatically adjust
the page size to the object’s size. This can be useful, for example, for archiving images in
the PDF format. The reference point (x, y) can be used to specify whether the page will
have exactly the object’s size, or somewhat larger or smaller. When enlarging the page
size (see Figure 7.8) some border will be kept around the image. If the page size is smaller
than the image some parts of the image will be clipped. Let’s start with exactly match-
ing the page size to the object’s size:

p.fit_image(image, 0, 0, "adjustpage");

The next code fragment increases the page size by 40 units in x and y direction, creating
a white border around the object:

p.fit_image(image, 40, 40, "adjustpage");

The next code fragment decreases the page size by 40 units in x and y direction. The ob-
ject will be clipped at the page borders, and some area within the object (with a width of
40 units) will be invisible:

p.fit_image(image, -40, -40, "adjustpage");

In addition to placing by means of x and y coordinates (which specify the object’s dis-
tance from the page edges, or the coordinate axes in the general case) you can also spec-
ify a target box. This is a rectangular area in which the object will be placed subject to
various formatting rules. These can be controlled with the boxsize, fitmethod and
position options.

Cloning the page boxes of an imported PDF page. You can copy all relevant page box-
es (MediaBox, CropBox) etc. of an imported PDF page to the current output page. The
cloneboxes option must be supplied to PDF_open_pdi_page() to read all relevant box val-
ues, and again in PDF_fit_pdi_page() to apply the box values to the current page:

/* Open the page and clone the page box entries */
inpage = p.open_pdi_page(indoc, 1, "cloneboxes");
...
/* Start the output page with a dummy page size */
p.begin_page_ext(10, 10, "");
...
/*
* Place the imported page on the output page, and clone all
* page boxes which are present in the input page; this will
* override the dummy size used in begin_page_ext().
*/
p.fit_pdi_page(inpage, 0, 0, "cloneboxes");

Fig. 7.8
Adjusting the page

size. Left to right:
exact, enlarge,

shrink

192 Chapter 7: Importing Images and PDF Pages

Using this technique you can make sure that the pages in the generated PDF will have
the exact same page size, cropping are etc. as the pages of the imported document. This
is especially important for prepress applications.

7.3.6 Querying Information about placed Images and PDF Pages

Information about placed images. The PDF_info_image() function can be used to query
image information. The supported keywords for this function cover general image in-
formation (e.g. width and height in pixels) as well as geometry information related to
placing the image on the output page (e.g. width and height in absolute values after per-
forming the fitting calculations).

The following code fragment retrieves both the pixel size and the absolute size after
placing an image with certain fitting options:

String optlist = "boxsize={300 400} fitmethod=meet orientate=west";
p.fit_image(image, 0.0, 0.0, optlist);

imagewidth = (int) p.info_image(image, "imagewidth", optlist);
imageheight = (int) p.info_image(image, "imageheight", optlist);
System.err.println("image size in pixels: " + imagewidth + " x " + imageheight);

width = p.info_image(image, "width", optlist);
height = p.info_image(image, "height", optlist);
System.err.println("image size in points: " + width + " x " + height);

Information about placed PDF pages. The PDF_info_pdi_page() function can be used to
query information about placed PDF pages. The supported keywords for this function
cover information about the original page (e.g. its width and height) as well as geometry
information related to placing the imported PDF on the output page (e.g. width and
height after performing the fitting calculations).

The following code fragment retrieves both the original size of the imported page
and the size after placing the page with certain fitting options:

String optlist = "boxsize={400 500} fitmethod=meet";
p.fit_pdi_page(page, 0, 0, optlist);

pagewidth = p.info_pdi_page(page, "pagewidth", optlist);
pageheight = p.info_pdi_page(page, "pageheight", optlist);
System.err.println("original page size: " + pagewidth + " x " + pageheight);

width = p.info_pdi_page(page, "width", optlist);
height = p.info_pdi_page(page, "height", optlist);
System.err.println("size of placed page: " + width + " x " + height);

8.1 Placing and Fitting Textlines 193

8 Text and Table Formatting
8.1 Placing and Fitting Textlines

The function PDF_fit_textline() for placing a single line of text on a page offers a wealth
of formatting options. The most important options will be discussed in this section us-
ing some common application examples. A complete description of these options can
be found in the PDFlib API Reference. Most options for PDF_fit_textline() are identical to
those of PDF_fit_image(). Therefore we will only use text-related examples here; it is rec-
ommended to take a look at the examples in Section 7.3, »Placing Images and imported
PDF Pages«, page 186, for an introduction to image formatting.

The examples below demonstrate only the relevant call of PDF_fit_textline(), assum-
ing that the required font has already been loaded and set in the desired font size.

PDF_fit_textline() uses a hypothetical text box to determine the positioning of the
text: the width of the text box is identical to the width of the text, and the box height is
identical to the height of capital letters in the font. The text box can be modified by the
matchbox option which defines the text box.

In the examples below, the coordinates of the reference point are supplied as x, y pa-
rameters of PDF_fit_textline(). The fitbox for text lines is the area where text will be
placed. It is defined as the rectangular area specified with the x, y parameters of PDF_fit_
textline() and appropriate options (boxsize, position, rotate). The fitbox can be reduced to
the left/right or top/bottom with the margin option.

Cookbook Code samples regarding text output issues can be found in the text_output category of the
PDFlib Cookbook.

8.1.1 Simple Textline Placement

Positioning text at the reference point. By default, the text will be placed with the low-
er left corner at the reference point. However, in this example we want to place the text
with the bottom centered at the reference point. The following code fragment places
the text box with the bottom centered at the reference point (30, 20).

p.fit_textline(text, 30, 20, "position={center bottom}");

Figure 8.1 illustrates centered text placement. Similarly, you can use the position option
with another combination of the keywords left, right, center, top, and bottom to place
text at the reference point.

x

Kraxiy Kr
ax

i

x

y

Fig. 8.2
Simple text with
orientation west

Fig. 8.1
Centered text

http://www.pdflib.com/pdflib-cookbook/text-output

194 Chapter 8: Text and Table Formatting

Placing text with orientation. Our next goal is to rotate text while placing its lower
left corner (after the rotation) at the reference point. The following code fragment ori-
entates the text to the west (90˚ counterclockwise) and then translates the lower left
corner of the rotated text to the reference point (0, 0).

p.fit_textline(text, 0, 0, "orientate=west");

Figure 8.2 illustrates simple text placement with orientation.

8.1.2 Positioning Text in a Box
In order to position the text, an additional box with predefined width and height can be
used, and the text can be positioned relative to this box. Figure 8.3 illustrates the gener-
al behaviour.

Positioning text in the box. We define a rectangular box and place the text within this
box on the top right. The following code fragment defines a box with a width of 50 units
and a height of 22 units at reference point (30, 20). In Figure 8.4a, the text is placed on
the top right of the box.

Similarly, we can place the text at the center of the bottom. This case is illustrated in
Figure 8.4b.

To achieve some distance between the text and the box we can add the margin option
(see Figure 8.4c).

Note that the blue box or line depicted for visualizing the box size in the figures is
not part of the actual output.

Fig. 8.4 Placing text in a box subject to various positioning options

Generated output Option list for PDF_fit_textline()

a) boxsize={50 22} position={right top}

b) boxsize={50 22} position={center bottom}

c) boxsize={50 22} position={center bottom} margin={0 3}

d) boxsize={50 0} position={center bottom}

20

20 Kraxi box 50 wide, 0 high
text at bottom center of the box

30

20
Kraxi box 50 wide, 22 high

text on top right of the box

Fig. 8.3 Positioning text in a box

Kraxi

Kraxi

Kraxi

Kraxi

8.1 Placing and Fitting Textlines 195

Aligning text at a horizontal or vertical line. Positioning text along a horizontal or
vertical line (i.e. a box with zero height or width) is a somewhat extreme case which may
be useful nevertheless. In Figure 8.4d the text is placed with the bottom centered at the
box. With a width of 50 and a height of 0, the box resembles to a horizontal line.

To align the text centered along a vertical line we will orientate it to the west and po-
sition it at the left center of the box. This case is shown in Figure 8.4e.

8.1.3 Fitting Text into a Box
In this section we use various fit methods to fit the text into the box. The current font
and font size are assumed to be the same in all examples so that we can see how the font
size and other properties will implicitly be changed by the different fit methods.

Let’s start with the default case: no fit method will be used so that no clipping or scal-
ing occurs. The text will be placed in the center of the box which is 100 units wide and 35
units high (see Figure 8.5a).

Decreasing the box width from 100 to 50 units doesn’t have any effect on the output.
The text will remain in its original font size and will exceed beyond the box (see Figure
8.5b).

Proportionally fitting text into a small box. Now we will completely fit the text into
the box while maintaining its proportions. This can be achieved with the
fitmethod=auto option. In Figure 8.5c the box is wide enough to keep the text in its origi-
nal size completely so that the text will be fit into the box unchanged.

When scaling down the width of the box from 100 to 58, the text is too long to fit
completely. The auto fit method will try to condense the text horizontally, subject to the
shrinklimit option (default: 0.75). Figure 8.5d shows the text being shrunk down to 75 per-
cent of its original length.

When decreasing the box width further down to 30 units the text will not fit even if
shrinking is applied. Then the meet method will be applied. The meet method will de-
crease the font size until the text fits completely into the box. This case is shown in Fig-
ure 8.5e.

Fitting the text into the box with increased font size. You might want to fit the text so
that it covers the whole width (or height) of the box but maintains its proportions. Us-
ing fitmethod=meet with a box larger than the text, the text will be increased until its
width matches the box width. This case is illustrated in Figure 8.5f.

Completely fitting text into a box. We can further fit the text so that it completely fills
the box. In this case, fitmethod=entire is used. However, this combination will rarely be
used since the text will most probably be distorted (see Figure 8.5g).

Fitting text into a box with clipping. In another rare case you might want to fit the
text in its original size and clip the text if it exceeds the box. In this case, fitmethod=clip

e) boxsize={0 35} position={left center} orientate=west

Generated output Option list for PDF_fit_textline()

K
ra

xi

196 Chapter 8: Text and Table Formatting

can be used. In Figure 8.5h the text is placed at the bottom left of a box which is not
broad enough. The text will be clipped on the right.

Fig. 8.5 Fitting text into a box on the page subject to various options

Vertically centering text. The text height in PDF_fit_textline() is the capheight, i.e. the
height of the capital letter H, by default. If the text is positioned in the center of a box it
will be vertically centered according to its capheight (see Figure 8.6a).

To specify another height for the text box we can use the Matchbox feature (see also
Section 8.4, »Matchboxes«, page 237). The matchbox option of PDF_fit_textline() define
the height of a Textline which is the capheight of the given font size, by default. The
height of the matchbox is calculated according to its boxheight suboption. The boxheight
suboption determines the extent of the text above and below the baseline.
matchbox={boxheight={capheight none}} is the default setting, i.e. the top border of the
matchbox will touch the capheight above the baseline, and the bottom border of the
matchbox will not extend below the baseline.

Generated output Option list for PDF_fit_textline()

a) boxsize={100 35} position=center fontsize=12

b) boxsize={50 35} position=center fontsize=12

c)
boxsize={100 35} position=center fontsize=12
fitmethod=auto

d)
boxsize={58 35} position=center fontsize=12
fitmethod=auto

e)
boxsize={30 35} position=center fontsize=12
fitmethod=auto

f)
boxsize={100 35} position=center fontsize=12
fitmethod=meet

g)
boxsize={100 35} position=center fontsize=12
fitmethod=entire

h)
boxsize={50 35} position={left center}
fontsize=12 fitmethod=clip

Kraxi Systems

Kraxi Systems

Kraxi Systems

Kraxi Systems

Kraxi Systems

Kraxi Systems

Kraxi Systems
Kraxi Sys

8.1 Placing and Fitting Textlines 197

To illustrate the size of the matchbox we will fill it with red color (see Figure 8.6b).
Figure 8.6c vertically centers the text according to the xheight by defining a matchbox
with a corresponding box height.

Figure 8.6d–f shows the matchbox (red) with various useful boxheight settings to de-
termine the height of the text to be centered in the box (blue).

Fig. 8.6 Fitting text proportionally into a box according to different box heights

8.1.4 Aligning Text at a Character
You might want to align text at a certain character, e.g. at the decimal point in a num-
ber. As shown in Figure 8.7a, the text is positioned at the center of the fitbox. Using PDF_
fit_textline() with the alignchar=. option the numbers are aligned at the dot character.

You can omit the position option which places the dots in the center of the box. In
this case, the default position={left bottom} will be used which places the dots at the ref-
erence point (see Figure 8.7b). In general, the alignment character will be placed with the
lower right corner at the reference point.

Fig. 8.7 Aligning a Textline to the dot character

Generated output Option list for PDF_fit_textline()

a) boxsize={80 20} position=center fitmethod=auto

b)
boxsize={80 20} position=center fitmethod=auto
matchbox={boxheight={capheight none}
fillcolor={rgb 1 0.8 0.8}}

c)
boxsize={80 20} position=center fitmethod=auto
matchbox={boxheight={xheight none}
fillcolor={rgb 1 0.8 0.8}}

d)
boxsize={80 20} position=center fitmethod=auto
matchbox={boxheight={ascender none}
fillcolor={rgb 1 0.8 0.8}}

e)
boxsize={80 20} position=center fitmethod=auto
matchbox={boxheight={ascender descender}
fillcolor={rgb 1 0.8 0.8}}

f)
boxsize={80 20} position=center fitmethod=auto
matchbox={boxheight={fontsize none}
fillcolor={rgb 1 0.8 0.8}}

Generated output Option list for PDF_fit_textline()

a) boxsize={70 8} position={center bottom} alignchar=.

b) boxsize={70 8} position={left bottom} alignchar=.

Kraxi Systems

Kraxi Systems

Kraxi Systems

Kraxi Systems

Kraxi Systems

Kraxi Systems

127.123
12.01

123.0
4025.20

127.123
12.01

123.0
4025.20

198 Chapter 8: Text and Table Formatting

8.1.5 Placing a Stamp
Cookbook A full code sample can be found in the Cookbook topic text_output/simple_stamp.

As an alternative to rotated text, the stamp feature offers a convenient method for plac-
ing text diagonally in a box. The stamp function will automatically perform some so-
phisticated calculations to determine a suitable font size and rotation so that the text
covers the box. To place a diagonal stamp, e.g. in the page background, use PDF_fit_
textline() with the stamp option. With stamp=ll2ur the text will be placed from the lower
left to the upper right corner of the fitbox. However, with stamp=ul2lr the text will be
placed from the upper left to the lower right corner of the fitbox. As shown in Figure 8.8,
showborder=true is used to illustrate the fitbox and the bounding box of the stamp.

Fig. 8.8 Fitting a text line like a stamp from the lower left to the upper right

8.1.6 Using Leaders
Leaders can be used to fill the space between the borders of the fitbox and the text. For
example, dot leaders are often used as a visual aid between the entries in a table of con-
tents and the corresponding page numbers.

Leaders in a table of contents. Using PDF_fit_textline() with the leader option and the
alignment={none right} suboption, leaders are appended to the right of the text line, and
repeated until the right border of the text box. There will be an equal distance between
the rightmost leader and the right border, while the distance between the text and the
leftmost leader may differ (see Figure 8.9a).

Cookbook A full code sample demonstrating the usage of dot leaders in a text line can be found in the
Cookbook topic text_output/leaders_in_textline.

Cookbook A full code sample demonstrating the usage of dot leaders in a Textflow can be found in the
Cookbook topic text_output/dot_leaders_with_tabs.

Leaders in a news ticker. In another use case you might want to create a news ticker ef-
fect. In this case we use a plus and a space character »+ « as leaders. The text line is
placed in the center, and the leaders are printed before and after the text line
(alignment={left right}). The left and right leaders are aligned to the left and right border,
and might have a varying distance to the text (see Figure 8.9b).

Generated output Option list for PDF_fit_textline()

fontsize=8 boxsize={160 50} stamp=ll2ur showborder=trueGiant Wing

http://www.pdflib.com/pdflib-cookbook/text-output/simple-stamp

http://www.pdflib.com/pdflib-cookbook/text-output/dot-leaders-with-tabs

http://www.pdflib.com/pdflib-cookbook/text-output/leaders-in-textline

8.1 Placing and Fitting Textlines 199

Fig. 8.9 Fitting a text line using leaders

8.1.7 Text on a Path
Instead of placing text on a straight line you can also place text on an arbitrary path.
PDFlib will place the individual characters along the path so that the text follows the
curvature of the path. Use the textpath option of PDF_fit_textline() to create text on a
path. The path must have been created earlier and is represented by a path handle. Path
handles can be created by explicitly constructing a path with PDF_add_path_point() and
related path object functions, or by retrieving a handle for the clipping path in an exist-
ing raster image. The following code fragment creates a simple path and places text on
the path (see Figure 8.10):

/* Define the path in the origin */
path = p.add_path_point(-1, 0, 0, "move", "");
path = p.add_path_point(path, 100, 100, "control", "");
path = p.add_path_point(path, 200, 0, "circular", "");

/* Place text on the path */
p.fit_textline("Long Distance Glider with sensational range!", x, y,
 "textpath={path=" + path + "} position={center bottom}");

/* We also draw the path for demonstration purposes */
p.draw_path(path, x, y, "stroke");

Cookbook A full code sample can be found in the Cookbook topic text_output/text_on_a_path.

Generated output Option list for PDF_fit_textline()

a)
boxsize={200 10}
leader={alignment={none right}}

b)

boxsize={200 10}
position={center bottom}
leader={alignment={left right}
text={+ }}

Features of Giant Wing ..

Description of Long Distance Glider.................................

Benefits of Cone Head Rocket ...

Giant Wing in purple!+ + + + + + + + + + + + + + + + + +

Long Distance Glider with sensational range!+ + + +

Cone Head Rocket incredibly fast!+ + + + + + + + + +

Lo
ng

 D
is

ta

nc
e Glider with sensational range!

Fig. 8.10
Text on a path

http://www.pdflib.com/pdflib-cookbook/text-output/text-on-a-path

200 Chapter 8: Text and Table Formatting

Using an image clipping path for placing text. As an alternative to manually con-
structing a path object with the path functions you can extract the clipping path from
an image and place text on the resulting path. The image must have been loaded with
the honorclippingpath option, and the clippingpathname option must also be supplied to
PDF_load_image() if the target path is not the image’s default clipping path:

image = p.load_image("auto", "image.tif", "clippingpathname={path 1}");

/* create a path object from the image’s clipping path */
path = (int) p.info_image(image, "clippingpath", "");
if (path == -1)

throw new Exception("Error: clipping path not found!");

/* Place text on the path */
p.fit_textline("Long Distance Glider with sensational range!", x, y,
 "textpath={path=" + path + "} position={center bottom}");

Creating a gap between path and text. By default, PDFlib will place individual charac-
ters on the path, which means that there will no space between the glyphs and the path.
If you want to create a gap between path and text you can simply increase the character
boxes. This can easily be achieved with boxheight suboption of the matchbox option
which specifies the vertical extension of the character boxes. The following option list
takes the descenders into account (see Figure 8.10):

p.fit_textline("Long Distance Glider with sensational range!", x, y,
 "textpath={path=" + path + "} position={center bottom} " +

"matchbox={boxheight={capheight descender}}");

Lo
ng

 D
is

ta

nce
 Glider with sensational range!

Fig. 8.11
Text on a path with an additional
gap between text and path

8.2 Multi-Line Textflows 201

8.2 Multi-Line Textflows
In addition to placing single lines of text on the page, PDFlib supports a feature called
Textflow which can be used to place arbitrarily long text portions. The text may extend
across any number of lines, columns, or pages, and its appearance can be controlled
with a variety of options. Character properties such as font, size, and color can be ap-
plied to any part of the text. Textflow properties such as justified or ragged text, para-
graph indentation and tab stops can be specified; line breaking opportunities designat-
ed by soft hyphens in the text will be taken into account. Figure 8.12 and Figure 8.13
demonstrate how various parts of an invoice can be placed on the page using the Text-
flow feature. We will discuss the options for controlling the output in more detail in the
following sections.

leading
= 140%

parindent
= 7%

leftindent
= 55

alignment
= left

rightindent
= 60

alignment
= justify

minlinecount
= 2

17, Aviation Road
Paperfield

Phone 7079-4301
Fax 7079-4302

www.kraxi.com
info@kraxi.com

Kraxi Systems, Inc.

Paper Planes

Kraxi Systems, Inc. 17, Aviation Road Paperfield

John Q. Doe
255 Customer Lane
Suite B
12345 User Town
Everland

INVOICE 14.03.2004

ITEM DESCRIPTION QUANTITY PRICE AMOUNT
1 Super Kite 2 20,00 40,00
2 Turbo Flyer 5 40,00 200,00
3 Giga Trash 1 180,00 180,00
4 Bare Bone Kit 3 50,00 150,00
5 Nitty Gritty 10 20,00 200,00
6 Pretty Dark Flyer 1 75,00 75,00
7 Free Gift 1 0,00 0,00

845,00

Terms of payment: 30 days net. 30 days warranty starting at the day of sale. This
warranty covers defects in workmanship only. Kraxi Systems, Inc., at its option, repairs or
replaces the product under warranty. This warranty is not transferable. Returns or
exchanges are not possible for wet products.

Have a look at our new paper plane models!
Our paper planes are the ideal way of passing the time. We offer revolutionary

new developments of the traditional common paper planes. If your lesson,
conference, or lecture turn out to be deadly boring, you can have a wonderful time
with our planes. All our models are folded from one paper sheet.

They are exclusively folded without using any adhesive. Several models are
equipped with a folded landing gear enabling a safe landing on the intended location
provided that you have aimed well. Other models are able to fly loops or cover long
distances. Let them start from a vista point in the mountains and see where they
touch the ground.

1. Long Distance Glider
With this paper rocket you can send all your messages even when
sitting in a hall or in the cinema pretty near the back.

2. Giant Wing
An unbelievable sailplane! It is amazingly robust and can even do

hortabmethod ruler
tabalignment left rightright right right

ruler 30 45 475375275

leftindent = 75

leftindent = 105

Fig. 8.12
Formatting
Textflows

202 Chapter 8: Text and Table Formatting

A multi-line Textflow can be placed into one or more rectangles (so-called fitboxes)
on one or more pages. The following steps are required for placing a Textflow on the
page:

> The function PDF_add_textflow() accepts portions of text and corresponding format-
ting options, creates a Textflow object, and returns a handle. As an alternative, the
function PDF_create_textflow() analyzes the complete text in a single call, where the
text may contain inline options for formatting control. These functions do not place
any text on the page.

> The function PDF_fit_textflow() places all or parts of the Textflow in the supplied fit-
box. To completely place the text, this step must possibly be repeated several times
where each of the function calls provides a new fitbox which may be located on the
same or another page.

> The function PDF_delete_textflow() deletes the Textflow object after it has been
placed in the document.

The functions PDF_add/create_textflow() for creating Textflows support a variety of op-
tions for controlling the formatting process. These options can be provided in the func-
tion’s option list, or embedded as inline options in the text when using PDF_create_
textflow(). PDF_info_textflow() can be used to query formatting results and many other
Textflow details. We will discuss Textflow placement using some common application
examples. A complete list of Textflow options can be found in the PDFlib API Reference.

Many of the options supported by PDF_add/create_textflow() are identical to those of
PDF_fit_textline(). It is therefore recommended to familiarize yourself with the exam-
ples in Section 8.1, »Placing and Fitting Textlines«, page 193. In the below sections we
will focus on options related to multi-line text.

Cookbook Code samples regarding text output issues can be found in the text_output category of the
PDFlib Cookbook.

8.2.1 Placing Textflows in the Fitbox
The fitbox for Textflow is the area where text will be placed. It is defined as the rectan-
gular area specified with the llx, lly, urx, ury parameters of PDF_fit_textflow().

Placing text in a single fitbox. Let’s start with an easy example. The following code
fragment uses two calls to PDF_add_textflow() to assemble a piece of bold text and a

aerobatics. But it is best suited to gliding.

3. Cone Head Rocket
This paper arrow can be thrown with big swing. We launched it from
the roof of a hotel. It stayed in the air a long time and covered a
considerable distance.

4. Super Dart
The super dart can fly giant loops with a radius of 4 or 5 meters and
cover very long distances. Its heavy cone point is slightly bowed
upwards to get the lift required for loops.

5. German Bi-Plane
Brand-new and ready for take-off. If you have lessons in the history of
aviation you can show your interest by letting it land on your teacher's
desk.

fillcolor, charspacing,
fontsize, fontname

Fig. 8.13
Formatting
Textflows

http://www.pdflib.com/pdflib-cookbook/text-output

8.2 Multi-Line Textflows 203

piece of normal text. Font, font size, and encoding are specified explicitly. In the first
call to PDF_add_textflow(), -1 is supplied, and the Textflow handle will be returned to be
used in subsequent calls to PDF_add_textflow(), if required. text1 and text2 are assumed
to contain the actual text to be printed.

With PDF_fit_textflow(), the resulting Textflow is placed in a fitbox on the page using
default formatting options.

/* Add text with bold font */
tf = p.add_textflow(-1, text1, "fontname=Helvetica-Bold fontsize=9 encoding=unicode");
if (tf == -1)

throw new Exception("Error: " + p.get_errmsg());

/* Add text with normal font */
tf = p.add_textflow(tf, text2, "fontname=Helvetica fontsize=9 encoding=unicode");
if (tf == -1)

throw new Exception("Error: " + p.get_errmsg());

/* Place all text */
result = p.fit_textflow(tf, left_x, left_y, right_x, right_y, "");
if (!result.equals("_stop"))

{ /* ... */}

p.delete_textflow(tf);

Placing text in two fitboxes on multiple pages. If the text placed with PDF_fit_
textflow() doesn’t completely fit into the fitbox, the output will be interrupted and the
function will return the string _boxfull. PDFlib will remember the amount of text al-
ready placed, and will continue with the remainder of the text when the function is
called again. In addition, it may be necessary to create a new page. The following code
fragment demonstrates how to place a Textflow in two fitboxes per page on one or
more pages until the text has been placed completely (see Figure 8.14).

Cookbook A full code sample can be found in the Cookbook topic text_output/starter_textflow.

/* Loop until all of the text is placed; create new pages as long as more text needs
* to be placed. Two columns will be created on all pages.

*/

1 Lorem ipsum dolor sit amet, consectetur
adipisicing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua.
Ut enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip ex
ea commodo consequat. Duis aute irure
dolor in reprehenderit in voluptate velit esse
cillum dolore eu fugiat nulla pariatur. Excep-
teur sint occaecat cupidatat non proident,
sunt in culpa qui officia deserunt mollit anim
id est laborum. 2 Lorem ipsum dolor sit
amet, consectetur adipisicing elit, sed do
eiusmod tempor incididunt ut labore et
dolore magna aliqua. Ut enim ad minim
veniam, quis nostrud exercitation ullamco
laboris nisi ut aliquip ex ea commodo con-
sequat. Duis aute irure dolor in reprehenderit
in voluptate velit esse cillum dolore eu fugiat
nulla pariatur. Excepteur sint occaecat
cupidatat non proident, sunt in culpa qui
officia deserunt mollit anim id est laborum.
3 Lorem ipsum dolor sit amet, consectetur
adipisicing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua.
Ut enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip ex
ea commodo consequat. Duis aute irure
dolor in reprehenderit in voluptate velit esse
cillum dolore eu fugiat nulla pariatur. Excep-
teur sint occaecat cupidatat non proident,
sunt in culpa qui officia deserunt mollit anim
id est laborum. 4 Lorem ipsum dolor sit
amet, consectetur adipisicing elit, sed do
eiusmod tempor incididunt ut labore et
dolore magna aliqua. Ut enim ad minim
veniam, quis nostrud exercitation ullamco
laboris nisi ut aliquip ex ea commodo con-
sequat. Duis aute irure dolor in reprehenderit
in voluptate velit esse cillum dolore eu fugiat
nulla pariatur. Excepteur sint occaecat
cupidatat non proident, sunt in culpa qui
officia deserunt mollit anim id est laborum.
5 Lorem ipsum dolor sit amet, consectetur
adipisicing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua.
Ut enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip ex
ea commodo consequat. Duis aute irure
dolor in reprehenderit in voluptate velit esse
cillum dolore eu fugiat nulla pariatur. Excep-
teur sint occaecat cupidatat non proident,
sunt in culpa qui officia deserunt mollit anim
id est laborum. 6 Lorem ipsum dolor sit
amet, consectetur adipisicing elit, sed do
eiusmod tempor incididunt ut labore et
dolore magna aliqua. Ut enim ad minim
veniam, quis nostrud exercitation ullamco
laboris nisi ut aliquip ex ea commodo con-
sequat. Duis aute irure dolor in reprehenderit
in voluptate velit esse cillum dolore eu fugiat
nulla pariatur. Excepteur sint occaecat
cupidatat non proident, sunt in culpa qui
officia deserunt mollit anim id est laborum.
7 Lorem ipsum dolor sit amet, consectetur
adipisicing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua.
Ut enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip ex
ea commodo consequat. Duis aute irure

dolor in reprehenderit in voluptate velit esse
cillum dolore eu fugiat nulla pariatur. Excep-
teur sint occaecat cupidatat non proident,
sunt in culpa qui officia deserunt mollit anim
id est laborum. 8 Lorem ipsum dolor sit
amet, consectetur adipisicing elit, sed do
eiusmod tempor incididunt ut labore et
dolore magna aliqua. Ut enim ad minim
veniam, quis nostrud exercitation ullamco
laboris nisi ut aliquip ex ea commodo con-
sequat. Duis aute irure dolor in reprehenderit
in voluptate velit esse cillum dolore eu fugiat
nulla pariatur. Excepteur sint occaecat
cupidatat non proident, sunt in culpa qui
officia deserunt mollit anim id est laborum.
9 Lorem ipsum dolor sit amet, consectetur
adipisicing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua.
Ut enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip ex
ea commodo consequat. Duis aute irure
dolor in reprehenderit in voluptate velit esse
cillum dolore eu fugiat nulla pariatur. Excep-
teur sint occaecat cupidatat non proident,
sunt in culpa qui officia deserunt mollit anim
id est laborum. 10 Lorem ipsum dolor sit
amet, consectetur adipisicing elit, sed do
eiusmod tempor incididunt ut labore et
dolore magna aliqua. Ut enim ad minim
veniam, quis nostrud exercitation ullamco
laboris nisi ut aliquip ex ea commodo con-
sequat. Duis aute irure dolor in reprehenderit
in voluptate velit esse cillum dolore eu fugiat
nulla pariatur. Excepteur sint occaecat
cupidatat non proident, sunt in culpa qui
officia deserunt mollit anim id est laborum.
11 Lorem ipsum dolor sit amet, consectetur
adipisicing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua.
Ut enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip ex
ea commodo consequat. Duis aute irure
dolor in reprehenderit in voluptate velit esse
cillum dolore eu fugiat nulla pariatur. Excep-
teur sint occaecat cupidatat non proident,
sunt in culpa qui officia deserunt mollit anim
id est laborum. 12 Lorem ipsum dolor sit
amet, consectetur adipisicing elit, sed do
eiusmod tempor incididunt ut labore et
dolore magna aliqua. Ut enim ad minim
veniam, quis nostrud exercitation ullamco
laboris nisi ut aliquip ex ea commodo con-
sequat. Duis aute irure dolor in reprehenderit
in voluptate velit esse cillum dolore eu fugiat
nulla pariatur. Excepteur sint occaecat
cupidatat non proident, sunt in culpa qui
officia deserunt mollit anim id est laborum.
13 Lorem ipsum dolor sit amet, consectetur
adipisicing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua.
Ut enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip ex
ea commodo consequat. Duis aute irure
dolor in reprehenderit in voluptate velit esse
cillum dolore eu fugiat nulla pariatur. Excep-
teur sint occaecat cupidatat non proident,
sunt in culpa qui officia deserunt mollit anim
id est laborum. 14 Lorem ipsum dolor sit
amet, consectetur adipisicing elit, sed do

eiusmod tempor incididunt ut labore et
dolore magna aliqua. Ut enim ad minim
veniam, quis nostrud exercitation ullamco
laboris nisi ut aliquip ex ea commodo con-
sequat. Duis aute irure dolor in reprehenderit
in voluptate velit esse cillum dolore eu fugiat
nulla pariatur. Excepteur sint occaecat
cupidatat non proident, sunt in culpa qui
officia deserunt mollit anim id est laborum.
15 Lorem ipsum dolor sit amet, consectetur
adipisicing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua.
Ut enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip ex
ea commodo consequat. Duis aute irure
dolor in reprehenderit in voluptate velit esse
cillum dolore eu fugiat nulla pariatur. Excep-
teur sint occaecat cupidatat non proident,
sunt in culpa qui officia deserunt mollit anim
id est laborum. 16 Lorem ipsum dolor sit
amet, consectetur adipisicing elit, sed do
eiusmod tempor incididunt ut labore et
dolore magna aliqua. Ut enim ad minim
veniam, quis nostrud exercitation ullamco
laboris nisi ut aliquip ex ea commodo con-
sequat. Duis aute irure dolor in reprehenderit
in voluptate velit esse cillum dolore eu fugiat
nulla pariatur. Excepteur sint occaecat
cupidatat non proident, sunt in culpa qui
officia deserunt mollit anim id est laborum.
17 Lorem ipsum dolor sit amet, consectetur
adipisicing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua.
Ut enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip ex
ea commodo consequat. Duis aute irure
dolor in reprehenderit in voluptate velit esse
cillum dolore eu fugiat nulla pariatur. Excep-
teur sint occaecat cupidatat non proident,
sunt in culpa qui officia deserunt mollit anim
id est laborum. 18 Lorem ipsum dolor sit
amet, consectetur adipisicing elit, sed do
eiusmod tempor incididunt ut labore et
dolore magna aliqua. Ut enim ad minim
veniam, quis nostrud exercitation ullamco
laboris nisi ut aliquip ex ea commodo con-
sequat. Duis aute irure dolor in reprehenderit
in voluptate velit esse cillum dolore eu fugiat
nulla pariatur. Excepteur sint occaecat
cupidatat non proident, sunt in culpa qui
officia deserunt mollit anim id est laborum.
19 Lorem ipsum dolor sit amet, consectetur
adipisicing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua.
Ut enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip ex
ea commodo consequat. Duis aute irure
dolor in reprehenderit in voluptate velit esse
cillum dolore eu fugiat nulla pariatur. Excep-
teur sint occaecat cupidatat non proident,
sunt in culpa qui officia deserunt mollit anim
id est laborum. 20 Lorem ipsum dolor sit
amet, consectetur adipisicing elit, sed do
eiusmod tempor incididunt ut labore et
dolore magna aliqua. Ut enim ad minim
veniam, quis nostrud exercitation ullamco
laboris nisi ut aliquip ex ea commodo con-
sequat. Duis aute irure dolor in reprehenderit
in voluptate velit esse cillum dolore eu fugiat

nulla pariatur. Excepteur sint occaecat
cupidatat non proident, sunt in culpa qui
officia deserunt mollit anim id est laborum.
21 Lorem ipsum dolor sit amet, consectetur
adipisicing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua.
Ut enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip ex
ea commodo consequat. Duis aute irure
dolor in reprehenderit in voluptate velit esse
cillum dolore eu fugiat nulla pariatur. Excep-
teur sint occaecat cupidatat non proident,
sunt in culpa qui officia deserunt mollit anim
id est laborum. 22 Lorem ipsum dolor sit
amet, consectetur adipisicing elit, sed do
eiusmod tempor incididunt ut labore et
dolore magna aliqua. Ut enim ad minim
veniam, quis nostrud exercitation ullamco
laboris nisi ut aliquip ex ea commodo con-
sequat. Duis aute irure dolor in reprehenderit
in voluptate velit esse cillum dolore eu fugiat
nulla pariatur. Excepteur sint occaecat
cupidatat non proident, sunt in culpa qui
officia deserunt mollit anim id est laborum.
23 Lorem ipsum dolor sit amet, consectetur
adipisicing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua.
Ut enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip ex
ea commodo consequat. Duis aute irure
dolor in reprehenderit in voluptate velit esse
cillum dolore eu fugiat nulla pariatur. Excep-
teur sint occaecat cupidatat non proident,
sunt in culpa qui officia deserunt mollit anim
id est laborum. 24 Lorem ipsum dolor sit
amet, consectetur adipisicing elit, sed do
eiusmod tempor incididunt ut labore et
dolore magna aliqua. Ut enim ad minim
veniam, quis nostrud exercitation ullamco
laboris nisi ut aliquip ex ea commodo con-
sequat. Duis aute irure dolor in reprehenderit
in voluptate velit esse cillum dolore eu fugiat
nulla pariatur. Excepteur sint occaecat
cupidatat non proident, sunt in culpa qui
officia deserunt mollit anim id est laborum.
25 Lorem ipsum dolor sit amet, consectetur
adipisicing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua.
Ut enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip ex
ea commodo consequat. Duis aute irure
dolor in reprehenderit in voluptate velit esse
cillum dolore eu fugiat nulla pariatur. Excep-
teur sint occaecat cupidatat non proident,
sunt in culpa qui officia deserunt mollit anim
id est laborum. 26 Lorem ipsum dolor sit
amet, consectetur adipisicing elit, sed do
eiusmod tempor incididunt ut labore et
dolore magna aliqua. Ut enim ad minim
veniam, quis nostrud exercitation ullamco
laboris nisi ut aliquip ex ea commodo con-
sequat. Duis aute irure dolor in reprehenderit
in voluptate velit esse cillum dolore eu fugiat
nulla pariatur. Excepteur sint occaecat
cupidatat non proident, sunt in culpa qui
officia deserunt mollit anim id est laborum.
27 Lorem ipsum dolor sit amet, consectetur
adipisicing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua.

fitbox 1

Fig. 8.14
Placing a Textflow
in two fitboxes

fitbox 2 fitbox 3 fitbox 4
page 1 page 2

http://www.pdflib.com/pdflib-cookbook/text-output/starter-textflow

204 Chapter 8: Text and Table Formatting

do
{

String optlist = "verticalalign=justify linespreadlimit=120%";

p.begin_page_ext(0, 0, "width=a4.width height=a4.height");

/* Fill the first column */
result = p.fit_textflow(tf, llx1, lly1, urx1, ury1, optlist);

/* Fill the second column if we have more text*/
if (!result.equals("_stop"))

result = p.fit_textflow(tf, llx2, lly2, urx2, ury2, optlist);

p.end_page_ext("");

/* "_boxfull" means we must continue because there is more text;
 * "_nextpage" is interpreted as "start new column"
 */

} while (result.equals("_boxfull") || result.equals("_nextpage"));

/* Check for errors */
if (!result.equals("_stop"))
{

/* "_boxempty" happens if the box is very small and doesn't hold any text at all.
*/
if (result.equals("_boxempty"))

throw new Exception("Error: " + p.get_errmsg());
else
{

/* Any other return value is a user exit caused by the "return" option;
 * this requires dedicated code to deal with.
*/

}
}
p.delete_textflow(tf);

8.2.2 Paragraph Formatting Options
In the previous example we used default settings for the paragraphs. For example, the
default alignment is left-justified, and the leading is 100% (which equals the font size).

In order to fine-tune the paragraph formatting we can feed more options to PDF_
add_textflow(). For example, we can indent the text 15 units from the left and 10 units
from the right margin. The first line of each paragraph should be indented by an addi-
tional 20 units. The text should be justified against both margins, and the leading in-
creased to 140%. Finally, we’ll reduce the font size to 8 points. To achieve this, extend
the option list for PDF_add_textflow() as follows (see Figure 8.15):

String optlist =
"leftindent=15 rightindent=10 parindent=20 alignment=justify " +
"leading=140% fontname=Helvetica fontsize=8 encoding=unicode";

8.2.3 Inline Option Lists and Macros
The text in Figure 8.15 is not yet perfect. The headline »Have a look at our new paper
plane models!« should sit on a line of its own, should use a larger font, and should be
centered. There are several ways to achieve this.

8.2 Multi-Line Textflows 205

Inline option lists for PDF_create_textflow(). Up to now we provided formatting op-
tions in an option list supplied directly to the function. In order to continue the same
way we would have to split the text, and place it in two separate calls, one for the head-
line and another one for the remaining text. However, in certain situations, e.g. with
lots of formatting changes, this method might be pretty cumbersome.

For this reason, PDF_create_textflow() can be used instead of PDF_add_texflow(). PDF_
create_textflow() interprets text and so-called inline options which are embedded di-
rectly in the text. Inline option lists are provided as part of the body text. By default,
they are delimited by »<« and »>« characters. We will therefore integrate the options for
formatting the heading and the remaining paragraphs into our body text as follows.

Note Inline option lists are colorized in all subsequent samples; end-of-paragraph characters are vi-
sualized with arrows.

<leftindent=15 rightindent=10 alignment=center fontname=Helvetica fontsize=12
encoding=winansi>Have a look at our new paper plane models!
<alignment=justify fontname=Helvetica leading=140% fontsize=8 encoding=winansi>
Our paper planes are the ideal way of passing the time. We offer
revolutionary new developments of the traditional common paper planes.
<parindent=20>If your lesson, conference, or lecture
turn out to be deadly boring, you can have a wonderful time
with our planes. All our models are folded from one paper sheet.
They are exclusively folded without using any adhesive. Several
models are equipped with a folded landing gear enabling a safe

Have a look at our new paper plane models! Our paper planes
are the ideal way of passing the time. We offer revolutionary new
developments of the traditional common paper planes.

If your lesson, conference, or lecture turn out to be deadly boring,
you can have a wonderful time with our planes. All our models are
folded from one paper sheet.

They are exclusively folded without using any adhesive. Several
models are equipped with a folded landing gear enabling a safe landing
on the intended location provided that you have aimed well. Other
models are able to fly loops or cover long distances. Let them start
from a vista point in the mountains and see where they touch the
ground.

leading = 140%

parindent = 20

leftindent = 15
rightindent = 10

alignment =
justify

Fig. 8.15
Placing a Textflow

with options

Have a look at our new paper plane models!
Our paper planes are the ideal way of passing the time. We offer
revolutionary new developments of the traditional common paper
planes.

If your lesson, conference, or lecture turn out to be deadly boring,
you can have a wonderful time with our planes. All our models are
folded from one paper sheet.

They are exclusively folded without using any adhesive. Several
models are equipped with a folded landing gear enabling a safe landing
on the intended location provided that you have aimed well. Other
models are able to fly loops or cover long distances. Let them start
from a vista point in the mountains and see where they touch the
ground.

H1
Body

Body_indented

Fig. 8.16
Combining inline

options with macros

206 Chapter 8: Text and Table Formatting

landing on the intended location provided that you have aimed well.
Other models are able to fly loops or cover long distances. Let them
start from a vista point in the mountains and see
where they touch the ground.

The characters for bracketing option lists can be redefined with the begoptlistchar and
endoptlistchar options. Supplying the keyword none for the begoptlistchar option com-
pletely disables the search for option lists. This is useful if the text doesn’t contain any
inline option lists, and you want to make sure that »<« and »>« will be processed as reg-
ular characters.

Symbol characters and inline option lists. Symbolic characters can be used for Text-
flow even in combination with inline options lists. The code for the character which in-
troduces an inline option list (by default: ’<’ U+003C) will not be interpreted as a symbol
code within text for a font with encoding=builtin. In order to select the symbol glyph
with the same code, the same workarounds can be used which are available for text
fonts, i.e. by redefining the start character with the begoptlistchar option or by using the
textlen option to specify the number of symbolic glyphs. Note that character references
(e.g. <) can not be used as a workaround for the reasons discussed above.

Macros. The text above contains several different types of paragraphs, such as head-
ing or body text with or without indentation. Each of these paragraph types is format-
ted differently and occurs multiply in longer Textflows. In order to avoid starting each
paragraph with the corresponding inline options, we can combine these in macros, and
refer to the macros in the text via their names. As shown in Figure 8.16 we define three
macros called H1 for the heading, Body for main paragraphs, and Body_indented for in-
dented paragraphs. In order to use a macro we place the & character in front of its name
and put it into an option list. The following code fragment defines three macros accord-
ing to the previously used inline options and uses them in the text:

<macro {
H1 {leftindent=15 rightindent=10 alignment=center
fontname=Helvetica fontsize=12 encoding=winansi}

Body {leftindent=15 rightindent=10 alignment=justify leading=140%
fontname=Helvetica fontsize=8 encoding=winansi}

Body_indented {parindent=20 leftindent=15 rightindent=10 alignment=justify
leading=140% fontname=Helvetica fontsize=8 encoding=winansi}
}>
<&H1>Have a look at our new paper plane models!
<&Body>Our paper planes are the ideal way of passing the time. We offer
revolutionary new developments of the traditional common paper planes.
<&Body_indented>If your lesson, conference, or lecture
turn out to be deadly boring, you can have a wonderful time
with our planes. All our models are folded from one paper sheet.
They are exclusively folded without using any adhesive. Several
models are equipped with a folded landing gear enabling a safe
landing on the intended location provided that you have aimed well.
Other models are able to fly loops or cover long distances. Let them
start from a vista point in the mountains and see
where they touch the ground.

8.2 Multi-Line Textflows 207

Explicitly setting options. Note that all options which are not set in macros will retain
their previous values. In order to avoid side effects caused by unwanted »inheritance«
of options you should explicitly specify all settings required for a particular macro. This
way you can ensure that the macros will behave consistently regardless of their order-
ing or combination with other option lists.

On the other hand, you can take advantage of this behavior for deliberately retaining
certain settings from the context instead of supplying them explicitly. For example, a
macro could specify the font name without supplying the fontsize option. As a result,
the font size will always match that of the preceding text.

Inline options or options passed as function parameters? When using Textflows it
makes an important difference whether the text is contained literally in the program
code or comes from some external source, and whether the formatting instructions are
separate from the text or part of it. In most applications the actual text will come from
some external source such as a database. In practise there are two main scenarios:

> Text contents from external source, formatting options in the program: An external
source delivers small text fragments which are assembled within the program, and
combined with formatting options (in the function call) at runtime.

> Text contents and formatting options from external source: Large amounts of text
including formatting options come from an external source. The formatting is pro-
vided by inline options in the text, represented as simple options or macros. When it
comes to macros a distinction must be made between macro definition and macro
call. This allows an interesting intermediate form: the text content comes from an
external source and contains macro calls for formatting. However, the macro defini-
tions are only blended in at runtime. This has the advantage that the formatting can
easily be changed without having to modify the external text. For example, when
generating greeting cards one could define different styles via macros to give the
card a romantic, technical, or other touch.

8.2.4 Tab Stops
In the next example we will place a simple table with left- and right-aligned columns
using tab characters. The table contains the following lines of text, where individual en-
tries are separated from each other with a tab character (indicated by arrows):

ITEM DESCRIPTION QUANTITY PRICE AMOUNT
1 Super Kite 2 20.00 40.00
2 Turbo Flyer 5 40.00 200.00
3 Giga Trash 1 180.00 180.00

 TOTAL 420.00

To place that simple table use the following option list in PDF_add/create_textflow(). The
ruler option defines the tab positions, tabalignment specifies the alignment of tab stops,
and hortabmethod specifies the method used to process tab stops (the result can be seen
in Figure 8.17):

String optlist =
"ruler ={30 150 250 350} " +
"tabalignment={left right right right} " +
"hortabmethod=ruler leading=120% fontname=Helvetica fontsize=9 encoding=winansi";

208 Chapter 8: Text and Table Formatting

Cookbook A full code sample can be found in the Cookbook topic text_output/tabstops_in_textflow.

Note PDFlib’s table feature is recommended for creating complex tables (see Section 8.3, »Table For-
matting«, page 221).

8.2.5 Numbered Lists and Paragraph Spacing
The following example demonstrates how to format a numbered list using the inline
option leftindent (see Figure 8.18):

1.<leftindent 10>Long Distance Glider: With this paper rocket you can send all
your messages even when sitting in a hall or in the cinema pretty near the back.
<leftindent 0>2.<leftindent 10>Giant Wing: An unbelievable sailplane! It is amazingly
robust and can even do aerobatics. But it is best suited to gliding.
<leftindent 0>3.<leftindent 10>Cone Head Rocket: This paper arrow can be thrown with big
swing. We launched it from the roof of a hotel. It stayed in the air a long time and
covered a considerable distance.

Cookbook Full code samples for bulleted and numbered lists can be found in the Cookbook topics
text_output/bulleted_list and text_output/numbered_list.

Setting and resetting the indentation value is cumbersome, especially since it is re-
quired for each paragraph. A more elegant solution defines a macro called list. For con-
venience it defines a macro indent which is used as a constant. The macro definitions are
as follows:

<macro {
indent {25}

list {parindent=-&indent leftindent=&indent hortabsize=&indent
hortabmethod=ruler ruler={&indent}}
}>
<&list>1. Long Distance Glider: With this paper rocket you can send all your messages
even when sitting in a hall or in the cinema pretty near the back.
2. Giant Wing: An unbelievable sailplane! It is amazingly robust and can even do
aerobatics. But it is best suited to gliding.

hortabmethod ruler
tabalignment left right right right

ruler 30 350250150

ITEM DESCRIPTION QUANTITY PRICE AMOUNT
1 Super Kite 2 20.00 40.00
2 Turbo Flyer 5 40.00 200.00
3 Giga Trash 1 180.00 180.00

TOTAL 420.00

Fig. 8.17
Placing text

as a table

1. Long Distance Glider: With this paper rocket you can send all your
messages even when sitting in a hall or in the cinema pretty near the
back.

2. Giant Wing: An unbelievable sailplane! It is amazingly robust and can
even do aerobatics. But it is best suited to gliding.

3. Cone Head Rocket: This paper arrow can be thrown with big swing. We
launched it from the roof of a hotel. It stayed in the air a long time and
covered a considerable distance.

Fig. 8.18
Numbered list

http://www.pdflib.com/pdflib-cookbook/text-output/bulleted-list

http://www.pdflib.com/pdflib-cookbook/text-output/tabstops-in-textflow

http://www.pdflib.com/pdflib-cookbook/text-output/numbered-list

8.2 Multi-Line Textflows 209

3. Cone Head Rocket: This paper arrow can be thrown with big swing. We launched
it from the roof of a hotel. It stayed in the air a long time and covered a
considerable distance.

The leftindent option specifies the distance from the left margin. The parindent option,
which is set to the negative of leftindent, cancels the indentation for the first line of each
paragraph. The options hortabsize, hortabmethod, and ruler specify a tab stop which cor-
responds to leftindent. It makes the text after the number to be indented with the
amount specified in leftindent. Figure 8.19 shows the parindent and leftindent options at
work.

Setting the distance between two paragraphs. In many cases more distance between
adjacent paragraphs is desired than between the lines within a paragraph. This can be
achieved by inserting an extra empty line (which can be created with the nextline op-
tion), and specifying a suitable leading value for this empty line. This value is the dis-
tance between the baseline of the last line of the previous paragraph and the baseline of
the empty line. The following example will create 80% additional space between the
two paragraphs (where 100% equals the most recently set value of the font size):

1. Long Distance Glider: With this paper rocket you can send all your messages
even when sitting in a hall or in the cinema pretty near the back.
<nextline leading=80%><nextparagraph leading=100%>2. Giant Wing: An unbelievable
sailplane! It is amazingly robust and can even do aerobatics. But it is best suited to
gliding.

Cookbook A full code sample can be found in the Cookbook topic text_output/distance_between_
paragraphs.

8.2.6 Control Characters and Character Mapping

Control characters in Textflows. Various characters are given special treatment in
Textflows. PDFlib supports symbolic character names which can be used instead of the
corresponding character codes in the charmapping option (which replaces characters in
the text before processing it, see below). Table 8.1 lists all control characters which are
evaluated by the Textflow functions along with their symbolic names, and explains
their meaning. An option must only be used once per option list, but multiple option
lists can be provided one after the other. For example, the following sequence will cre-
ate an empty line:

<nextline><nextline>

leftindent = &indent
parindent = – &indent 1. Long Distance Glider: With this paper rocket you can send all your

messages even when sitting in a hall or in the cinema pretty near
the back.

2. Giant Wing: An unbelievable sailplane! It is amazingly robust and
can even do aerobatics. But it is best suited to gliding.

3. Cone Head Rocket: This paper arrow can be thrown with big swing.
We launched it from the roof of a hotel. It stayed in the air a long
time and covered a considerable distance.

Fig. 8.19
Numbered list

with macros

http://www.pdflib.com/pdflib-cookbook/text-output/distance-between-paragraphs

http://www.pdflib.com/pdflib-cookbook/text-output/distance-between-paragraphs

210 Chapter 8: Text and Table Formatting

Mapping/removing characters or sequences of characters. The charmapping option
can be used to map or remove some characters in the text to others. Let’s start with an
easy case where we will map all tabs in the text to space characters. The charmapping op-
tion to achieve this looks as follows:

charmapping={hortab space}

This command uses the symbolic character names hortab and space. You can find a list
of all known character names in the PDFlib API Reference. To achieve multiple mappings
at once you can use the following command which will replace all tabs and line break
combinations with space characters:

charmapping={hortab space CRLF space LF space CR space}

The following command removes all soft hyphens:

charmapping={shy {shy 0}}

Each tab character will be replaced with four space characters:

charmapping={hortab {space 4}}

Each arbitrary long sequence of linefeed characters will be reduced to a single linefeed
character:

charmapping={linefeed {linefeed -1}}

Table 8.1 Control characters and their meaning in Textflows

Unicode character entity name
equiv. Text-
flow option meaning within Textflows

U+0020 SP, space space align words and break lines

U+00A0 NBSP, nbsp (none) (no-break space) space character which will not break lines, and
may change its width according to formatting options such as jus-
tification.

U+202F NNBSP,
nnbsp

(none) (narrow no-break space) fixed-width space character which will
not break lines, and will not change its width according to format-
ting options

U+0009 HT, hortab (none) horizontal tab: will be processed according to the ruler,
tabalignchar, and tabalignment options

U+002D HY, hyphen (none) separator character for hyphenated words

U+00AD SHY, shy (none) (soft hyphen) hyphenation opportunity, only visible at line breaks

U+000B
U+2028

VT, verttab
LS, linesep

nextline (next line) forces a new line

U+000A
U+000D
U+000D and
U+000A
U+0085
U+2029

LF, linefeed
CR, return
CRLF

NEL, newline
PS, parasep

next-
paragraph

(next paragraph) Same effect as nextline; in addition, the
parindent option will affect the next line.

U+000C FF, formfeed return PDF_fit_textflow() will stop, and return the string _nextpage.

8.2 Multi-Line Textflows 211

Each sequence of CRLF combinations will be replaced with a single space:

charmapping={CRLF {space -1}}

We will take a closer look at the last example. Let’s assume you receive text where the
lines have been separated with fixed line breaks by some other software, and therefore
cannot be properly formatted. You want to replace the linebreaks with space characters
in order to achieve proper formatting within the fitbox. To achieve this we replace arbi-
trarily long sequences of linebreaks with a single space character. The initial text looks
as follows:

To fold the famous rocket looper proceed as follows:
Take a sheet of paper. Fold it
lengthwise in the middle.
Then, fold down the upper corners. Fold the
long sides inwards
that the points A and B meet on the central fold.

The following code fragment demonstrates how to replace the redundant linebreak
characters and format the resulting text:

/* assemble option list */
String optlist =

"fontname=Helvetica fontsize=9 encoding=winansi alignment=justify " +
"charmapping {CRLF {space -1}}"

/* place textflow in fitbox */
textflow = p.add_textflow(-1, text, optlist);
if (textflow == -1)

throw new Exception("Error: " + p.get_errmsg());

result = p.fit_textflow(textflow, left_x, left_y, right_x, right_y, "");
if (!result.equals("_stop"))

{ /* ... */ }

p.delete_textflow(textflow);

Figure 8.20 shows Textflow output with the unmodified text and the improved version
with the charmapping option.

To fold the famous rocket looper proceed as follows:

Take a sheet of paper. Fold it
lengthwise in the middle.
Then, fold down the upper corners. Fold the
long sides inwards
that the points A and B meet on the central fold.

To fold the famous rocket looper proceed as follows: Take a sheet of
paper. Fold it lengthwise in the middle. Then, fold down the upper
corners. Fold the long sides inwards that the points A and B meet on
the central fold.

Fig. 8.20
Top: text with redundant line
breaks

Bottom: replacing the linebreaks
with the charmapping option

212 Chapter 8: Text and Table Formatting

8.2.7 Hyphenation
PDFlib does not automatically hyphenate text, but can break words at hyphenation op-
portunities which are explicitly marked in the text by soft hyphen characters. The soft
hyphen character is at position U+00AD in Unicode, but several methods are available
for specifying the soft hyphen in non-Unicode environments:

> In all cp1250 – cp1258 (including winansi) and iso8859-1 – iso8859-16 encodings the soft
hyphen is at decimal 173, octal 255, or hexadecimal 0xAD.

> In ebcdic encoding the soft hyphen is at decimal 202, octal 312, or hexadecimal 0xCA.
> A character entity reference can be used if an encoding does not contain the soft hy-

phen character (e.g. macroman): ­

U+002D will be used as hyphenation character. In addition to breaking opportunities
designated by soft hyphens, words can be forcefully hyphenated in extreme cases when
other methods of adjustment, such as changing the word spacing or shrinking text, are
not possible.

Justified text with or without hyphen characters. In the following example we will
print the following text with justified alignment. The text contains soft hyphen charac-
ters (visualized here as dashes):

Our paper planes are the ideal way of pas sing the time. We offer revolu tionary
brand new dev elop ments of the tradi tional common paper planes. If your lesson,
confe rence, or lecture turn out to be deadly boring, you can have a wonder ful time
with our planes. All our models are folded from one paper sheet. They are exclu sively
folded without using any adhe sive. Several models are equip ped with a folded
landing gear enab ling a safe landing on the intended loca tion provided that you
have aimed well. Other models are able to fly loops or cover long dist ances. Let them
start from a vista point in the mount ains and see where they touch the ground.

Figure 8.21 shows the generated text output with default settings for justified text. It
looks perfect since the conditions are optimal: the fitbox is wide enough, and there are
explicit break opportunities specified by the soft hyphen characters. As you can see in
Figure 8.22, the output looks okay even without explicit soft hyphens. The option list in
both cases looks as follows:

fontname=Helvetica fontsize=9 encoding=winansi alignment=justify

8.2.8 Controlling the standard Linebreak Algorithm
PDFlib implements a sophisticated line-breaking algorithm. Table 8.2 lists Textflow op-
tions which control the line-breaking algorithm.

Line-breaking rules. When a word or other sequence of text surrounded by space char-
acters doesn’t fully fit into a line, it must be moved to the next line. In this situation the
line-breaking algorithm decides after which characters a line break is possible.

For example, a formula such as -12+235/8*45 will never be broken, while the string
PDF-345+LIBRARY may be broken to the next line at the minus character. If the text

contains soft hyphen characters it can also be broken after such a character.
For parentheses and quotation marks it depends on whether we have an opening or

closing character: opening parentheses and quotations marks do not offer any break

8.2 Multi-Line Textflows 213

opportunity. In order to find out whether a quotation mark starts or ends a sequence,
pairs of quotation marks are examined.

Table 8.2 Options for controlling the line-breaking algorithm

option explanation

adjust-
method

(Keyword) The method used to adjust a line when a text portion doesn’t fit into a line after compressing
or expanding the distance between words subject to the limits specified by the minspacing and max-
spacing options. Default: auto
auto The following methods are applied in order: shrink, spread, nofit, split.
clip Same as nofit (see below), except that the long part at the right edge of the fitbox (taking

into account the rightindent option) will be clipped.
nofit The last word will be moved to the next line provided the remaining (short) line will not be

shorter than the percentage specified in the nofitlimit option. Even justified paragraphs
will look slightly ragged in this case.

shrink If a word doesn’t fit in the line the text will be compressed subject to the shrinklimit option
until the word fits. If it still doesn’t fit the nofit method will be applied.

split The last word will not be moved to the next line, but will forcefully be hyphenated. For text
fonts a hyphen character will be inserted, but not for symbol fonts.

spread The last word will be moved to the next line and the remaining (short) line will be justified by
increasing the distance between characters in a word, subject to the spreadlimit option. If
justification still cannot be achieved the nofit method will be applied.

advanced-
linebreak

(Boolean) Enable the advanced line breaking algorithm which is required for complex scripts. This is re-
quired for linebreaking in scripts which do not use space characters for designating word boundaries, e.g.
Thai. The options locale and script will be honored. Default: false

avoidbreak (Boolean) If true, avoid any line breaks until avoidbreak is reset to false. Default: false

charclass (List of pairs, where the first element in each pair is a keyword, and the second element is either a unichar
or a list of unichars) The specified unichars will be classified by the specified keyword to determine the
line breaking behaviour of those character(s):
letter behave like a letter (e.g. a B)
punct behave like a punctuation character (e.g. + / ; :)
open behave like an open parenthesis (e.g. [)
close behave like a close parenthesis (e.g.])
default reset all character classes to PDFlib’s builtin defaults
Example: charclass={ close » open « letter {/ : =} punct & }

Our paper planes are the ideal way of
passing the time. We offer revolu-
tionary brand new developments of the
traditional common paper planes. If
your lesson, conference, or lecture turn
out to be deadly boring, you can have
a wonderful time with our planes. All
our models are folded from one paper
sheet. They are exclusively folded
without using any adhesive. Several
models are equipped with a folded
landing gear enabling a safe landing
on the intended location provided that
you have aimed well. Other models are
able to fly loops or cover long dist-
ances. Let them start from a vista point
in the mountains and see where they
touch the ground.

Our paper planes are the ideal way of
passing the time. We offer revolutionary
brand new developments of the
traditional common paper planes. If
your lesson, conference, or lecture turn
out to be deadly boring, you can have
a wonderful time with our planes. All
our models are folded from one paper
sheet. They are exclusively folded
without using any adhesive. Several
models are equipped with a folded
landing gear enabling a safe landing
on the intended location provided that
you have aimed well. Other models are
able to fly loops or cover long
distances. Let them start from a vista
point in the mountains and see where
they touch the ground.

Fig. 8.21
Justified text with soft hyphen characters,
using default settings and a wide fitbox

Fig. 8.22
Justified text without soft hyphens, using
default settings and a wide fitbox.

214 Chapter 8: Text and Table Formatting

An inline option list generally does not create a line break opportunity in order to al-
low option changes within words. However, when an option list is surrounded by space
characters there is a line break opportunity at the beginning of the option list. If a line
break occurs at the option list and alignment=justify, the spaces preceding the option list
will be discarded. The spaces after the option list will be retained, and will appear at the
beginning of the next line.

Preventing linebreaks. You can use the charclass option to prevent Textflow from
breaking a line after specific characters. For example, the following option will prevent
line breaks immediately after the / character:

charclass={letter /}

In order to prevent a sequence of text from being broken across lines you can bracket it
with avoidbreak...noavoidbreak.

Cookbook A full code sample can be found in the Cookbook topic text_output/avoid_linebreaking.

hyphenchar (Unichar or keyword) Unicode value of the character which replaces a soft hyphen at line breaks. The val-
ue 0 and the keyword none completely suppress hyphens. Default: U+00AD (SOFT HYPHEN) if available
in the font, U+002D (HYPHEN-MINUS) otherwise

locale (Keyword) The locale which will be used for localized linebreaking methods if advancedlinebreak=
true. The keywords consists of one or more components, where the optional components are separated
by an underscore character ’_’ (the syntax slightly differs from NLS/POSIX locale IDs):
> A required two- or three-letter lowercase language code according to ISO 639-2 (see www.loc.gov/

standards/iso639-2), e.g. en, (English), de (German), ja (Japanese). This differs from the language op-
tion.

> An optional four-letter script code according to ISO 15924 (see www.unicode.org/iso15924/iso15924-
codes.html), e.g. Hira (Hiragana), Hebr (Hebrew), Arab (Arabic), Thai (Thai).

> An optional two-letter uppercase country code according to ISO 3166 (see www.iso.org/iso/country_
codes/iso_3166_code_lists), e.g. DE (Germany), CH (Switzerland), GB (United Kingdom)

The keyword _none specifies that no locale-specific processing will be done.
Specifying a locale is required for advanced line breaking for some scripts, e.g. Thai. Default: _none
Examples: Thai, de_DE, en_US, en_GB

maxspacing
minspacing

(Float or percentage) Specifies the maximum or minimum distance between words (in user coordinates,
or as a percentage of the width of the space character). The calculated word spacing is limited by the pro-
vided values (but the wordspacing option will still be added). Defaults: minspacing=50%,
maxspacing=500%

nofitlimit (Float or percentage) Lower limit for the length of a line with the nofit method (in user coordinates or as
a percentage of the width of the fitbox). Default: 75%.

shrinklimit (Percentage) Lower limit for compressing text with the shrink method; the calculated shrinking factor is
limited by the provided value, but will be multiplied with the value of the horizscaling option. Default:
85%

spreadlimit (Float or percentage) Upper limit for the distance between two characters for the spread method (in user
coordinates or as a percentage of the font size); the calculated character distance will be added to the
value of the charspacing option. Default: 0

Table 8.2 Options for controlling the line-breaking algorithm

option explanation

http://www.pdflib.com/pdflib-cookbook/text-output/avoid-linebreaking

8.2 Multi-Line Textflows 215

Formatting CJK text. The textflow engine is prepared to deal with CJK text, and prop-
erly treats CJK characters as ideographic glyphs as per the Unicode standard. As a result,
CJK text will never be hyphenated. For improved formatting the following options are
recommended when using Textflow with CJK text; they will disable hyphenation for in-
serted Latin text and create evenly spaced text output:

hyphenchar=none
alignment=justify
shrinklimit=100%
spreadlimit=100%

Vertical writing mode is not supported in Textflow.

Justified text in a narrow fitbox. The narrower the fitbox, the more important are the
options for controlling justified text. Figure 8.23 demonstrates the results of the various
methods for justifying text in a narrow fitbox. The option settings in Figure 8.23 are ba-
sically okay, with the exception of maxspacing which provides a rather large distance be-
tween words. However, it is recommended to keep this for narrow fitboxes since other-
wise the ugly forced hyphenation caused by the split method will occur more often.

If the fitbox is so narrow that occasionally forced hyphenations occur, you should
consider inserting soft hyphens, or modify the options which control justified text.

Option shrinklimit for justified text. The most visually pleasing solution is to reduce
the shrinklimit option which specifies a lower limit for the shrinking factor applied by
the shrink method. Figure 8.24a shows how to avoid forced hyphenation by compressing
text down to shrinklimit=50%.

Our paper planes
are the ideal way of
passing the time.We
offer revolutionary
brand new develop-
ments of the traditional
common paper planes.
If your lesson, conf-
erence, or lecture
turn out to be deadly
boring, you can have
a wonderful time
with our planes. All

decrease the distance between words (minspacing option)

compress the line (shrink method, shrinklimit option)

force hyphenation (split method)

increase the distance between words (spread method, maxspacing option)

Fig. 8.23 Justified text in a narrow fitbox with default settings

216 Chapter 8: Text and Table Formatting

Fig. 8.24 Options for justified text in a narrow fitbox

Option spreadlimit for justified text. Expanding text, which is achieved by the spread
method and controlled by the spreadlimit option, is another method for controlling line
breaks. This unpleasing method should be rarely used, however. Figure 8.24b demon-
strates a very large maximum character distance of 5 units using spreadlimit=5.

Option nofitlimit for justified text. The nofitlimit option controls how small a line can
get when the nofit method is applied. Reducing the default value of 75% is preferable to
forced hyphenation when the fitbox is very narrow. Figure 8.24c shows the generated
text output with a minimum text width of 50%.

8.2.9 Advanced script-specific Line Breaking
PDFlib implements an additional line breaking algorithm on top of the standard line
breaking algorithm. This advanced line breaking algorithm is required for some scripts,
and improves line breaking behavior for some other script/locale combinations even if
it is not required. It can be enabled with the advancedlinebreak option. Since line break-
ing depends on the language of the text, the advanced line breaking algorithm honors
the script option (see Table 6.2) and the locale option (see PDFlib API Reference). Ad-
vanced line breaking determines proper line break opportunities in the following situa-
tions:

> For scripts in which line breaking does not rely on the presence of space characters in
the text, e.g. Thai. The following Textflow option list enables advanced line breaking
for Thai:

<advancedlinebreak script=thai locale=tha>

> In script/locale combinations which require specific treatment of certain punctua-
tion characters, e.g. the « and » guillemet characters used as quotation marks in
French text. The following Textflow option list enables advanced line breaking for

Generated output Option list for PDF_fit_textflow()

a)

alignment=justify shrinklimit=50%

b)

alignment=justify spreadlimit=5

c)

alignment=justify nofitlimit=50

passing the time.We
offer revolutionary
brand new developments
of the traditional
common paper planes.
If your lesson, conference,
or lecture turn out to

Our paper planes
are the ideal way of
passing the time.We
offer revolutionary
b r a n d n e w
developments of the

ments of the traditional
common paper planes.
If your lesson,
conference, or lecture
turn out to be deadly
boring, you can have

8.2 Multi-Line Textflows 217

French text. As a result, the guillemet characters surrounding a word will not be split
apart from the word at the end of a line:

<advancedlinebreak script=latn locale=fr>

Note that the locale Textflow option is different from the language text option (see Table
6.3): although the locale option can start with the same three-letter language identifier,
it can optionally contain one or two additional parts. However, these will rarely be re-
quired for PDFlib.

8.2.10 Wrapping Text around Paths and Images
The wrapping feature can be used to fill arbitrary shapes with text or wrap text around a
path. By means of matchboxes, explicit rectangles/polygons/circles/curves or path ob-
jects you can specify wrapping areas for the Textflow. If an image contains an integrat-
ed clipping path you can wrap text around the image clipping path automatically.

Wrapping text around an image with matchbox. In the first example we will place an
image within the Textflow and run the text around the whole image. First the image is
loaded and placed in the box at the desired position. To refer to the image by name later,
define a matchbox called img when fitting the image, and specify a margin of 5 units
with the option list matchbox={name=img margin=-5} as follows:

result = p.fit_image(image, 50, 35,
"boxsize={80 46} fitmethod=meet position=center matchbox={name=img margin=-5}");

The Textflow is added. Then we place it using the wrap option with the image’s match-
box img as the area to run around as follows (see Figure 8.25):

result = p.fit_textflow(textflow, left_x, left_y, right_x, right_y,
"wrap={usematchboxes={{img}}}");

Before placing the text you can fit more images using the same matchbox name. In this
case the text will run around all images.

Cookbook A full code sample can be found in the Cookbook topic text_output/wrap_text_around_images.

Wrapping text around arbitrary paths. You can create a path object (see Section 3.2.3,
»Direct Paths and Path Objects«, page 67) and use it as a wrap shape. The following frag-
ment constructs a path object with a simple shape (a circle) and supplies it to the wrap
option of PDF_fit_textflow(). The reference point for placing the path is expressed as
percentage of the fitbox’s width and height:

Have a look at our new paper plane models! Our
paper planes are the ideal way of passing the time.
We offer revolutionary new
developme- nts of the traditi-
onal com- mon paper planes.
If your les- son, conference,
or lecture turn out to be
deadly bor- ing, you can
have a wonderful time with our planes. All our
models are folded from one paper sheet. They are
exclusively folded without using any adhesive.

Fig. 8.26
Wrapping text around a triangular shape

Fig. 8.25
Wrapping text around an image with matchbox

Our paper planes are the ideal way of passing the time.
We offer a lot of revolutionary brand-new developments
of the traditional common paper planes. If your
lesson, conference, or lecture turn out to be
deadly boring, you can have a wonderful
time with our planes. All our models are
folded from one paper sheet. They
are exclusively folded without
using any adhesive.
Several models are equipped with a folded landing gear.
enabling a safe landing on the intended location provided
that you have aimed well. Other models are able to fly
loops or cover long distances.

50% 80%

20% 30% 80% 30%

http://www.pdflib.com/pdflib-cookbook/text-output/wrap-text-around-images

218 Chapter 8: Text and Table Formatting

path = p.add_path_point(-1, 0, 100, "move", "");
path = p.add_path_point(path, 200, 100, "control", "");
path = p.add_path_point(path, 0, 100, "circular", "");

/* Visualize the path if desired */
p.draw_path(path, x, y, "stroke");

result = p.fit_textflow(tf, llx1, lly1, urx1, ury1,
"wrap={paths={" +

"{path=" + path + " refpoint={100% 50%} }" +
"}}");

p.delete_path(path);

Use the inversefill option to wrap text inside the path instead of wrapping the text
around the path (i.e. the path serves as text container instead of creating a hole in the
Textflow):

result = p.fit_textflow(tf, llx1, lly1, urx1, ury1,
"wrap={inversefill paths={" +

"{path=" + path + " refpoint={100% 50%} }" +
"}}");

Wrapping text around an image clipping path. TIFF and JPEG images can contain an
integrated clipping path. The path must have been created in an image processing
application and will be evaluated by PDFlib. If a default clipping path is found in the im-
age it will be used, but you can specify any other clipping path in the image with the
clippingpathname option of PDF_load_image(). If the image has been loaded with a clip-
ping path you can extract the path and supply it to the wrap option PDF_fit_textflow() as
above. We also supply the scale option to enlarge the imported image clipping path:

image = p.load_image("auto", "image.tif", "clippingpathname={path 1}");

/* Create a path object from the image’s clipping path */
path = (int) p.info_image(image, "clippingpath", "");
if (path == -1)

throw new Exception("Error: clipping path not found!");

result = p.fit_textflow(tf, llx1, lly1, urx1, ury1,
"wrap={paths={{path=" + path + " refpoint={50% 50%} scale=2}}}");

p.delete_path(path);

Placing an image and wrapping text around it. While the previous section used only
the clipping path of an image (but not the image itself), let’s now place the image inside
the fitbox of the Textflow and wrap the text around it. In order to achieve this we must
again load the image with the clippingpathname option and place it on the page with
PDF_fit_image(). In order to create the proper path object for wrapping the Textflow we
call PDF_info_image() with the same option list as PDF_fit_image(). Finally, the reference
point (the x/y parameters of PDF_fit_image()) must be supplied to the refpoint suboption
of the paths suboption of the wrap option:

image = p.load_image("auto", "image.tif", "clippingpathname={path 1}");

/* Place the image on the page with some fitting options */

8.2 Multi-Line Textflows 219

String imageoptlist = "scale=2";
p.fit_image(image, x, y, imageoptlist);

/* Create a path object from the image’s clipping path, using the same option list */
path = (int) p.info_image(image, "clippingpath", imageoptlist);
if (path == -1)

throw new Exception("Error: clipping path not found!");

result = p.fit_textflow(tf, llx1, lly1, urx1, ury1,
"wrap={paths={{path=" + path + " refpoint={" + x + " " + y + "} }}}");

p.delete_path(path);

You can supply the same wrap option in multiple calls to PDF_fit_textflow(). This is use-
ful if the placed image overlaps multiple Textflow fitboxes, e.g. for multi-column text.

Wrapping text around non-rectangular shapes. As an alternative to creating a path
object as wrap shape you can specify path elements directly in Textflow options.

In addition to wrapping text around a rectangle specified by a matchbox you can de-
fine arbitrary graphical elements as wrapping shapes. For example, the following op-
tion list will wrap the text around a triangular shape (see Figure 8.26):

wrap={ polygons={ {50% 80% 20% 30% 80% 30% 50% 80%} } }

Note that the showborder=true option has been used to illustrate the margins of the
shapes. The wrap option can contain multiple shapes. The following option list will
wrap the text around two triangle shapes:

wrap={ polygons={ {50% 80% 20% 30% 80% 30% 50% 80%}
{20% 90% 10% 70% 30% 70% 20% 90%} } }

Instead of percentages (relative coordinates within the fitbox) absolute coordinates on
the page can be used.

Note It is recommended to set fixedleading=true when using shapes with segments which are nei-
ther horizontally nor vertically oriented.

Cookbook A full code sample can be found in the Cookbook topic text_output/wrap_text_around_
polygons.

Filling non-rectangular shapes. The wrap feature can also be used to place the con-
tents of a Textflow in arbitrarily shaped areas. This is achieved with the addfitbox or
inversefill suboptions of the wrap option. Instead of wrapping the text around the speci-
fied shapes the text will be placed within one or more shapes. The following option list
can be used to flow text into a rhombus shape, where the coordinates are provided as
percentages of the fitbox rectangle (see Figure 8.27):

wrap={ addfitbox polygons={ {50% 100% 10% 50% 50% 0% 90% 50% 50% 100%} } }

Note that the showborder=true option has been again used to illustrate the margins of
the shape. Without the addfitbox option the rhombus shape will remain empty and the
text will be wrapped around it.

http://www.pdflib.com/pdflib-cookbook/text-output/wrap-text-around-polygons

http://www.pdflib.com/pdflib-cookbook/text-output/wrap-text-around-polygons

220 Chapter 8: Text and Table Formatting

Filling overlapping shapes. In the next example we will fill a shape comprising two
overlapping polygons, namely a hexagon with a rectangle inside. Using the addfitbox
option the fitbox itself will be excluded from being filled, and the polygons in the sub-
sequent list will be filled except in the overlapping area (see Figure 8.28):

wrap={ addfitbox polygons=
{ {20% 10% 80% 10% 100% 50% 80% 90% 20% 90% 0% 50% 20% 10%}

{35% 35% 65% 35% 65% 65% 35% 65% 35% 35%} } }

Without the addfitbox option you will get the opposite effect: the previously filled area
will remain empty, and the previously empty areas will be filled with text.

Cookbook A full code sample can be found in the Cookbook topic text_output/fill_polygons_with_text.

Our
paper

planes are
the ideal way
of passing the

time. We offer a lot
of revolutionary brand-

new developments of the
traditional common paper

planes. If your lesson, con-
ference, or lecture turn
out to be deadly bor-

ing, you can have
a wonderful

time with
our pla-

nes.

Our paper planes are
the ideal way of pas-

sing the time. We offer
revolutionary new develop-

ments of the tradi-
tional co- mmon pa-

per planes. If your les-
son, conf- erence, or
lecture turn out to be
deadly boring,
you can have a wonderful
time with our planes. All
our models are folded
from one paper sheet.

Fig. 8.28
Filling overlapping shapesFig. 8.27

Filling a rhombus
shape with text

90% 50%10% 50%

50% 100%

50% 0%

http://www.pdflib.com/pdflib-cookbook/text-output/fill-polygons-with-text

8.3 Table Formatting 221

8.3 Table Formatting
The table formatting feature can be used to automatically format complex tables. Table
cells may contain single- or multi-line text, images or PDF graphics. Tables are not re-
stricted to a single fitbox, but can span multiple pages.

Cookbook Code samples regarding table issues can be found in the tables category of the PDFlib Cook-
book.

General aspects of a table. The description of the table formatter is based on the fol-
lowing concepts and terms (see Figure 8.29):

> A table is a virtual object with a rectangular outline. It is comprised of horizontal
rows and vertical columns.

> A simple cell is a rectangular area within a table, defined as the intersection of a row
and a column. A spanning cell spans more than one column, more than one row, or
both. The term cell will be used to designate both simple and spanning cells.

> The complete table may fit into one fitbox, or several fitboxes may be required. The
rows of the table which are placed in one fitbox constitute a table instance. Each call
to PDF_fit_table() will place one table instance in one fitbox (see Section 8.3.5, »Table
Instances«, page 231).

> The header or footer is a group of one or more rows at the beginning or end of the ta-
ble which are repeated at the top or bottom of each table instance. Rows which are
neither part of the header nor footer are called body rows.

As an example, all aspects of creating the table in Figure 8.29 will be explained. A com-
plete description of the table formatting options can be found in the PDFlib API
Reference. Creating a table starts by defining the contents and visual properties of each
table cell with PDF_add_table_cell(). Then you place the table using one or more calls to
PDF_fit_table().

Our Paper Plane Models

2 Long Distance Glider

Material

Benefit

Drawing paper 180g/sqm

With this paper rocket you
can send all your messages
even when sitting in the
cinema pretty near the back.

1 Giant Wing

Material

Benefit

Offset print paper 220g/sqm

It is amazingly robust and
can even do aerobatics. But
it is best suited to gliding.

Amazingly robust!

3 Cone Head Rocket

Material

Benefit

Kent paper 200g/sqm

This paper arrow can be
thrown with big swing. It
stays in the air a long time.

With big swing!

Fig. 8.29
Sample table

Header

Cell containing
image and text line

Cell spanning
three rows

Cell spanning
three columns

Simple cell

Footer

Cell containing
Textflow

http://www.pdflib.com/pdflib-cookbook/tables

222 Chapter 8: Text and Table Formatting

When placing the table the size of its fitbox and the ruling and shading of table rows
or columns can be specified. Use the Matchbox feature for details such as cell-specific
shading (see Section 8.4, »Matchboxes«, page 237, for more information).

In this section the most important options for defining the table cells and fitting the
table will be discussed. All examples demonstrate the relevant calls of PDF_add_table_
cell() and PDF_fit_table() only, assuming that the required font has already been loaded.

Note Table processing is independent from the current graphics state. Table cells can be defined in
document scope while the actual table placement must be done in page scope.

Cookbook A full code sample can be found in the Cookbook topic tables/starter_table.

8.3.1 Placing a Simple Table
Before we describe the table concepts in more detail, we will demonstrate a simple ex-
ample for creating a table. The table contains six cells which are arranged in three rows
and two columns. Four cells contain text lines, and one cell contains a multi-line Text-
flow. All cell contents are horizontally aligned to the left, and vertically aligned to the
center with a margin of 4 points.

To create the table we first prepare the option list for the text line cells by defining
the required options font and fontsize and a position of {left center} in the fittextline sub-
option list. In addition, we define cell margins of 4 points. Then we add the text line cells
one after the other in their respective column and row, with the actual text supplied di-
rectly in the call to PDF_add_table_cell().

In the next step we create a Textflow, use the Textflow handle to assemble the option
list for the Textflow table cell, and add that cell to the table.

Finally we place the table with PDF_fit_table() while visualizing the table frame and
cell borders with black lines. Since we didn’t supply any column widths, they will be cal-
culated automatically from the supplied text lines plus the margins.

Cookbook A full code sample can be found in the Cookbook topic tables/vertical_text_alignment.

The following code fragment shows how to create the simple table. The result is shown
in Figure 8.30a.

/* Text for filling a table cell with multi-line Textflow */
String tf_text = "It is amazingly robust and can even do aerobatics. " +

"But it is best suited to gliding.";

/* Define the column widths of the first and the second column */
int c1 = 80, c2 = 120;

/* Define the lower left and upper right corners of the table instance (fitbox) */
double llx=100, lly=500, urx=300, ury=600;

/* Load the font */
font = p.load_font("Helvetica", "unicode", "");
if (font == -1)

throw new Exception("Error: " + p.get_errmsg());

/* Define the option list for the text line cells placed in the first column */
optlist = "fittextline={position={left center} font=" + font + " fontsize=8} margin=4" +

colwidth=" + c1;

/* Add a text line cell in column 1 row 1 */

http://www.pdflib.com/pdflib-cookbook/tables/vertical-text-alignment

http://www.pdflib.com/pdflib-cookbook/tables/starter-table

8.3 Table Formatting 223

tbl = p.add_table_cell(tbl, 1, 1, "Our Paper Planes", optlist);
if (tbl == -1)

throw new Exception("Error: " + p.get_errmsg());

/* Add a text line cell in column 1 row 2 */
tbl = p.add_table_cell(tbl, 1, 2, "Material", optlist);
if (tbl == -1)

throw new Exception("Error: " + p.get_errmsg());

/* Add a text line cell in column 1 row 3 */
tbl = p.add_table_cell(tbl, 1, 3, "Benefit", optlist);
if (tbl == -1)

throw new Exception("Error: " + p.get_errmsg());

/* Define the option list for a text line placed in the second column */
optlist = "fittextline={position={left center} font=" + font + " fontsize=8} " +

"colwidth=" + c2 + " margin=4";

/* Add a text line cell in column 2 row 2 */
tbl = p.add_table_cell(tbl, 2, 2, "Offset print paper 220g/sqm", optlist);
if (tbl == -1)

throw new Exception("Error: " + p.get_errmsg());

/* Add a Textflow */
optlist = "font=" + font + " fontsize=8 leading=110%";
tf = p.add_textflow(-1, tf_text, optlist);

/* Define the option list for the Textflow cell using the handle retrieved above */
optlist = "textflow=" + tf + " margin=4 colwidth=" + c2;

/* Add the Textflow table cell in column 2 row 3 */
tbl = p.add_table_cell(tbl, 2, 3, "", optlist);
if (tbl == -1)

throw new Exception("Error: " + p.get_errmsg());

p.begin_page_ext(0, 0, "width=200 height=100");

/* Define the option list for fitting the table with table frame and cell ruling */
optlist = "stroke={{line=frame linewidth=0.8} {line=other linewidth=0.3}}";

/* Place the table instance */
result = p.fit_table(tbl, llx, lly, urx, ury, optlist);

/* Check the result; "_stop" means all is ok. */
if (!result.equals("_stop")) {

if (result.equals("_error"))
throw new Exception("Error: " + p.get_errmsg());

else {
/* Any other return value requires dedicated code to deal with */

}
}
p.end_page_ext("");

/* This will also delete Textflow handles used in the table */
p.delete_table(tbl, "");

224 Chapter 8: Text and Table Formatting

Fine-tuning the vertical alignment of cell contents. When we vertically center con-
tents of various types in the table cells, they will be positioned with varying distance
from the borders. In Figure 8.30a, the four text line cells have been placed with the fol-
lowing option list:

optlist = "fittextline={position={left center} font=" + font +
" fontsize=8} colwidth=80 margin=4";

The Textflow cell is added without any special options. Since we vertically centered the
text lines, the Benefit line will move down with the height of the Textflow.

Fig. 8.30 Aligning text lines and Textflow in table cells

As shown in Figure 8.30b, we want all cell contents to have the same vertical distance
from the cell borders regardless of whether they are Textflows or text lines. To accom-
plish this we first prepare the option list for the text lines. We define a fixed row height
of 14 points, and the position of the text line to be on the top left with a margin of 4
points.

The fontsize=8 option which we supplied before doesn’t exactly represent the letter
height but adds some space below and above. However, the height of an uppercase let-
ter is exactly represented by the capheight value of the font. For this reason we use
fontsize={capheight=6} which will approximately result in a font size of 8 points and
(along with margin=4), will sum up to an overall height of 14 points corresponding to the
rowheight option. The complete option list of PDF_add_table_cell() for our text line cells
looks as follows:

/* option list for the text line cells */
optlist = "fittextline={position={left top} font=" + font +

" fontsize={capheight=6}} rowheight=14 colwidth=80 margin=4";

To add the Textflow we use fontsize={capheight=6} which will approximately result in a
font size of 8 points and (along with margin=4), will sum up to an overall height of 14
points as for the text lines above.

/* option list for adding the Textflow */
optlist = "font=" + font + " fontsize={capheight=6} leading=110%";

Generated output

a)

b)

Our Paper Planes

Material

Benefit

Offset print paper 220g/sqm

It is amazingly robust and can
even do aerobatics. But it is
best suited to gliding.

Our Paper Planes

Material

Benefit

Offset print paper 220g/sqm

It is amazingly robust and can
even do aerobatics. But it is
best suited to gliding.

8.3 Table Formatting 225

In addition, we want the baseline of the Benefit text aligned with the first line of the
Textflow. At the same time, the Benefit text should have the same distance from the top
cell border as the Material text. To avoid any space from the top we add the Textflow cell
using fittextflow={firstlinedist=capheight}. Then we add a margin of 4 points, the same as
for the text lines:

/* option list for adding the Textflow cell */
optlist = "textflow=" + tf + " fittextflow={firstlinedist=capheight} "

"colwidth=120 margin=4";

Cookbook A full code sample can be found in the Cookbook topic tables/vertical_text_alignment.

8.3.2 Contents of a Table Cell
When adding cells to a table with PDF_add_table_cell(), you can specify various kinds of
cell contents. Table cells can contain one or more content types at the same time. Addi-
tional ruling and shading is available, as well as matchboxes which can be used for plac-
ing additional content in a table cell.

For example, the cells of the paper plane table contain the elements illustrated in
Figure 8.31.

Single-line text with Textlines. The text is supplied in the text parameter of PDF_add_
table_cell(). In the fittextline option all formatting options of PDF_fit_textline() can be
specified. The default fit method is fitmethod=nofit. The cell will be enlarged if the text
doesn’t completely fit into the cell. To avoid this, use fitmethod=auto to shrink the text
subject to the shrinklimit option. If no row height is specified the formatter assumes
twice the text size as height of the table cell (more precisely: twice the boxheight, which
has the default value {capheight none} unless specified otherwise). The same applies to
the row width for rotated text.

Multi-line text with Textflow. The Textflow must have been prepared outside the ta-
ble functions and created with PDF_create_textflow() or PDF_add_textflow() before call-
ing PDF_add_table_cell(). The Textflow handle is supplied in the textflow option. In the
fittextflow option all formatting options of PDF_fit_textflow() can be specified.

The default fit method is fitmethod=clip. This means: First it is attempted to com-
pletely fit the text into the cell. If the cell is not large enough its height will be increased.
If the text do not fit anyway it will be clipped at the bottom. To avoid this, use
fitmethod=auto to shrink the text subject to the minfontsize option.

When the cell is too narrow the Textflow could be forced to split single words at un-
desired positions. If the checkwordsplitting option is true the cell width will be enlarged
until no word splitting occurs any more.

Text line
Text line

Text line

Text line

Text line

Textflow
..
..

Text line
Fig. 8.31
Contents of the
table cells

http://www.pdflib.com/pdflib-cookbook/tables/vertical-text-alignment

226 Chapter 8: Text and Table Formatting

Images and templates. Images must be loaded with PDF_load_image() before calling
PDF_add_table_cell(). Templates must be created with PDF_begin_template_ext(). The im-
age or template handle is supplied in the image option. In the fitimage option all format-
ting options of PDF_fit_image() can be specified. The default fit method is
fitmethod=meet. This means that the image/template will be placed completely inside
the cell without distorting its aspect ratio. The cell size will not be changed due to the
size of the image/template.

Pages from an imported PDF document. The PDI page must have been opened with
PDF_open_pdi_page() before calling PDF_add_table_cell(). The PDI page handle is sup-
plied in the pdipage option. In the fitpdipage option all formatting options of PDF_fit_
pdi_page() can be specified. The default fit method is fitmethod=meet. This means that
the PDI page will be placed completely inside the cell without distorting its aspect ratio.
The cell size will not be changed due to the size of the PDI page.

Path objects. Path objects must have been created with PDF_add_path_point() before
calling PDF_add_table_cell(). The path handle is supplied in the path option. In the fitpath
option all formatting options of PDF_draw_path() can be specified. The bounding box of
the path will be placed in the table cell. The lower left corner of the inner cell box will be
used as reference point for placing the path.

Annotations. Annotations in table cells can be created with the annotationtype option
of PDF_add_table_cell() which corresponds to the type parameter of PDF_create_
annotation() (but this function does not have to be called). In the fitannotation option all
options of PDF_create_annotation() can be specified. The cell box will be used as annota-
tion rectangle.

Form fields. Form fields in table cells can be created with the fieldname and fieldtype
options of PDF_add_table_cell() which correspond to the name and type parameters of
PDF_create_field() (but this function does not have to be called). In the fitfield option all
options of PDF_create_field() can be specified. The cell box will be used as field rectangle.

Positioning cell contents in the inner cell box. By default, cell contents are positioned
with respect to the cell box. The margin options of PDF_add_table_cell() can be used to
specify some distance from the cell borders. The resulting rectangle is called the inner
cell box. If any margin is defined the cell contents will be placed with respect to the inner
cell box (see Figure 8.32). If no margins are defined, the inner cell box is identical to the
cell box.

8.3 Table Formatting 227

In addition, cell contents may be subject to further options supplied in the content-spe-
cific fit options, as described in section Section 8.3.4, »Mixed Table Contents«, page 228.

8.3.3 Table and Column Widths
When adding a cell to the table, you define the number of columns and/or rows
spanned by the cell with the colspan and rowspan options. By default, a cell spans one
column and one row. The total number of columns and rows in the table is implicitly in-
creased by the respective values when adding a cell. Figure 8.33 shows an example of a
table containing three columns and four rows.

Furthermore you can explicitly supply the width of the first column spanned by the cell
with the colwidth option. By supplying each cell with a defined first column width all
those width values will implicitly add up to the total table width. Figure 8.34 shows an
example.

Alternatively, you can specify the column widths as percentages if appropriate. In this
case the percentages refer to the width of the table’s fitbox. Either none or all column
widths must be supplied as percentages.

inner cell box

cell box

left margin

top margin

bottom margin

right margin

Fig. 8.32
Fitting contents in
the inner cell box

cell spanning three columns

cell spanning two columns
2

4

33

4

2

11

1

1

1

2

2

3

simple cellsimple cell

simple cell simple cell

row 1

row 2

row 3

row 4

column 1 column 2 column 3

cell

.... spanning

.... three rows

Fig. 8.33
Simple cells and cells spanning
several rows or columns

2

4

33

4

2

11

1

1

1

2

2

3

colspan=1
colwidth=100

colspan=1
colwidth=50

colspan=1
colwidth=50

colspan=1
colwidth=100

50 100 90

colspan=2
colwidth=50

rowspan=3
colwidth=90

colspan=3
colwidth=50

total table width of 240

Fig. 8.34
Column widths define
the total table width.

228 Chapter 8: Text and Table Formatting

If some columns are combined to a column scaling group with the colscalegroup op-
tion of PDF_add_table_cell(), their widths will be adjusted to the widest column in the
group (see Figure 8.35),

If absolute coordinates are used (as opposed to percentages) and there are cells left
without any column width defined, the missing widths are calculated as follows: First,
for each cell containing a text line the actual width is calculated based on the column
width or the text width (or the text height in case of rotated text). Then, the remaining
table width is evenly distributed among the column widths which are still missing.

8.3.4 Mixed Table Contents
In the following sections we will create the sample table containing various kinds of
contents as shown in Figure 8.36 step by step.

Cookbook A full code sample can be found in the Cookbook topic tables/mixed_table_contents.

As a prerequisite we need to load two fonts. We define the dimensions of the table’s fit-
box in terms of the coordinates of the lower left and upper right corners and specify the
widths of the three table columns. Then, we start a new page with A4 size:

double llx = 100, lly = 500, urx = 360, ury = 600; // coordinates of the table

int c1 = 50, c2 = 120, c3 = 90; // widths of the three table columns

boldfont = p.load_font("Helvetica-Bold", "unicode", "");
normalfont = p.load_font("Helvetica", "unicode", "");

p.begin_page_ext(0, 0, "width=a4.width height=a4.height");

Step 1: Adding the first cell. We start with the first cell of our table. The cell will be
placed in the first column of the first row and will span three columns. The first column
has a width of 50 points. The text line is centered vertically and horizontally, with a
margin of 4 points from all borders. The following code fragment shows how to add the
first cell:

optlist = "fittextline={font=" + boldfont + " fontsize=12 position=center} " +
"margin=4 colspan=3 colwidth=" + c1;

tbl = p.add_table_cell(tbl, 1, 1, "Our Paper Plane Models", optlist);
if (tbl == -1)

throw new Exception("Error: " + p.get_errmsg());

Long Distance Glider

Giant Wing

Cone Head Rocket

M
ax

. L
oa

d

R
an

ge

12g

W
ei

gh
t

14g

11.2g

12.4g

5g

7g

30m

7m

18m

S
pe

ed

8m/s

5m/s

6m/s

column scaling group

Fig. 8.35
The last four cells in the first row are in the
same column scaling group. They will have
the same widths.

http://www.pdflib.com/pdflib-cookbook/tables/mixed-table-contents

8.3 Table Formatting 229

Step 2: Adding one cell spanning two columns. In the next step we add the cell con-
taining the text line 1 Giant Wing. It will be placed in the first column of the second row
and spans two columns. The first column has a width of 50 points. The row height is 14
points. The text line is positioned on the top left, with a margin of 4 points from all bor-
ders. We use fontsize={capheight=6} to get a unique vertical text alignment as described
in »Fine-tuning the vertical alignment of cell contents«, page 224.

Since the Giant Wing heading cell doesn’t cover a complete row but only two of three
columns it cannot be filled with color using on of the row-based shading options. We
apply the Matchbox feature instead to fill the rectangle covered by the cell with a gray
background color. (The Matchbox feature is discussed in detail in Section 8.4, »Match-
boxes«, page 237.) The following code fragment demonstrates how to add the Giant Wing
heading cell:

optlist = "fittextline={position={left top} font=" + boldfont +
" fontsize={capheight=6}} rowheight=14 colwidth=" + c1 +
" margin=4 colspan=2 matchbox={fillcolor={gray .92}}";

tbl = p.add_table_cell(tbl, 1, 2, "1 Giant Wing", optlist);
if (tbl == -1)

throw new Exception("Error: " + p.get_errmsg());

Fig. 8.36 Adding table cells with various contents step by step

Step 3: Add three more Textline cells. The following code fragment adds the Material,
Benefit and Offset print paper... cells. The Offset print paper... cell will start in the second
column defining a column width of 120 points. The cell contents is positioned on the
top left, with a margin of 4 points from all borders.

optlist = "fittextline={position={left top} font=" + normalfont +
" fontsize={capheight=6}} rowheight=14 colwidth=" + c1 + " margin=4";

tbl = p.add_table_cell(tbl, 1, 3, "Material", optlist);
if (tbl == -1)

throw new Exception("Error: " + p.get_errmsg());

tbl = p.add_table_cell(tbl, 1, 4, "Benefit", optlist);
if (tbl == -1)

throw new Exception("Error: " + p.get_errmsg());

optlist = "fittextline={position={left top} font=" + normalfont +
" fontsize={capheight=6}} rowheight=14 colwidth=" + c2 + " margin=4";

tbl = p.add_table_cell(tbl, 2, 3, "Offset print paper 220g/sqm", optlist);
if (tbl == -1)

throw new Exception("Error: " + p.get_errmsg());

Generated table Generation steps

Step 1: Add a cell spanning 3 columns
Step 2: Add a cell spanning 2 columns
Step 3: Add 3 more text line cells
Step 4: Add the Textflow cell
Step 5: Add the image cell with a text line
Step 6: Fitting the table

Our Paper Plane Models

1 Giant Wing

Material

Benefit

Offset print paper 220g/sqm

It is amazingly robust and can
even do aerobatics. But it is
best suited to gliding.

Amazingly robust!

230 Chapter 8: Text and Table Formatting

Step 4: Add the Textflow cell. The following code fragment adds the It is amazingly...
Textflow cell. To add a table cell containing a Textflow we first add the Textflow. We use
fontsize={capheight=6} which will approximately result in a font size of 8 points and
(along with margin=4), will sum up to an overall height of 14 points as for the text lines
above.

tftext = "It is amazingly robust and can even do aerobatics. " +
"But it is best suited to gliding.";

optlist = "font=" + normalfont + " fontsize={capheight=6} leading=110%";

tf = p.add_textflow(-1, tftext, optlist);
if (tf == -1)

throw new Exception("Error: " + p.get_errmsg());

The retrieved Textflow handle will be used when adding the table cell. The first line of
the Textflow should be aligned with the baseline of the Benefit text line. At the same
time, the Benefit text should have the same distance from the top cell border as the
Material text. Add the Textflow cell using fittextflow={firstlinedist=capheight} to avoid
any space from the top. Then add a margin of 4 points, the same as for the text lines.

optlist = "textflow=" + tf + " fittextflow={firstlinedist=capheight} " +
"colwidth=" + c2 + " margin=4";

tbl = p.add_table_cell(tbl, 2, 4, "", optlist);
if (tbl == -1)

throw new Exception("Error: " + p.get_errmsg());

Step 5: Add the image cell with a text line. In the fifth step we add a cell containing an
image of the Giant Wing paper plane as well as the Amazingly robust! text line. The cell
will start in the third column of the second row and spans three rows. The column width
is 90 points. The cell margins are set to 4 points. For a first variant we place a TIFF image
in the cell:

image = p.load_image("auto", "kraxi_logo.tif", "");
if (image == -1)

throw new Exception("Error: " + p.get_errmsg());

optlist = "fittextline={font=" + boldfont + " fontsize=9} image=" + image +
" colwidth=" + c3 + " rowspan=3 margin=4";

tbl = p.add_table_cell(tbl, 3, 2, "Amazingly robust!", optlist);
if (tbl == -1)

throw new Exception("Error: " + p.get_errmsg());

Alternatively, you could import the image as a PDF page. Make sure that the PDI page is
closed only after the call to PDF_fit_table().

int doc = p.open_pdi("kraxi_logo.pdf", "", 0);
if (tbl == -1)

throw new Exception("Error: " + p.get_errmsg());

page = p.open_pdi_page(doc, pageno, "");
if (tbl == -1)

throw new Exception("Error: " + p.get_errmsg());

8.3 Table Formatting 231

optlist = "fittextline={font=" + boldfont + " fontsize=9} pdipage=" + page +
" colwidth=" + c3 + " rowspan=3 margin=4";

tbl = p.add_table_cell(tbl, 3, 2, "Amazingly robust!", optlist);
if (tbl == -1)

throw new Exception("Error: " + p.get_errmsg());

Step 6: Fit the table. In the last step we place the table with PDF_fit_table(). Using
header=1 the table header will include the first line. The fill option and the suboptions
area=header and fillcolor={rgb 0.8 0.8 0.87} specify the header row(s) to be filled with the
supplied color. Using the stroke option and the suboptions line=frame linewidth=0.8 we
define a ruling of the table frame with a line width of 0.8. Using line=other linewidth=0.3
a ruling of all cells is specified with a line width of 0.3.

optlist = "header=1 fill={{area=header fillcolor={rgb 0.8 0.8 0.87}}} " +
"stroke={{line=frame linewidth=0.8} {line=other linewidth=0.3}}";

result = p.fit_table(tbl, llx, lly, urx, ury, optlist);

if (result.equals("_error"))
throw new Exception("Error: " + p.get_errmsg());

p.end_page_ext("");

8.3.5 Table Instances
The rows of the table which are placed in one fitbox comprise a table instance. One or
more table instances may be required to represent the full table. Each call to PDF_fit_
table() will place one table instance in one fitbox. The fitboxes can be placed on the
same page, e.g. with a multi-column layout, or on several pages.

The table in Figure 8.37 is spread over three pages. Each table instance is placed in
one fitbox on one page. For each call to PDF_fit_table() the first row is defined as header
and the last row is defined as footer.

3 Cone Head Rocket

Material

Benefit

Kent paper 200g/sqm

This paper arrow can be
thrown with big swing. It
stays in the air a long time.

With big swing!

Our Paper Plane Models

Page 3

header

footer

row join
group

ta
bl

e
in

st
an

ce

2 Long Distance Glider

Drawing paper 180g/sqm

With this paper rocket you
can send all your messages
even when sitting in the
cinema pretty near the back.

Material

Benefit

Our Paper Plane Models

Page 2

Our Paper Plane Models

Material

Benefit

1 Giant Wing

Offset print paper 220g/sqm

It is amazingly robust and
can even do aerobatics. But
it is best suited to gliding.

Amazingly robust!

table’s fitbox

Page 1

Fig. 8.37
Table broken into several
table instances placed in
one fitbox each.

232 Chapter 8: Text and Table Formatting

The following code fragment shows the general loop for fitting table instances until the
table has been placed completely. New pages are created as long as more table instances
need to be placed.

do {
/* Create a new page */
p.begin_page_ext(0, 0, "width=a4.width height=a4.height");

/* Use the first row as header and draw lines for all table cells */
optlist = "header=1 stroke={{line=other}}";

/* Place the table instance */
result = p.fit_table(tbl, llx, lly, urx, ury, optlist);
if (result.equals("_error"))

throw new Exception("Error: " + p.get_errmsg());

p.end_page_ext("");

} while (result.equals("_boxfull"));

/* Check the result; "_stop" means all is ok. */
if (!result.equals("_stop")) {

if (result.equals("_error"))
throw new Exception("Error: " + p.get_errmsg());

else {
/* Any other return value is a user exit caused by the "return" option;
 * this requires dedicated code to deal with. */
throw new Exception ("User return found in Textflow");

}
}
/* This will also delete Textflow handles used in the table */
p.delete_table(tbl, "");

Headers and footers. With the header and footer options of PDF_fit_table() you can de-
fine the number of initial or final table rows which will be placed at the top or bottom of
a table instance. Using the fill option with area=header or area=footer, headers and foot-
ers can be individually filled with color. Header rows consist of the first n rows of the ta-
ble definition and footer rows of the last m rows.

Headers and footers are specified per table instance in PDF_fit_table(). Consequently,
they can differ among table instances: while some table instances include headers/foot-
ers, others can omit them, e.g. to specify a special row in the last table instance.

Joining rows. In order to ensure that a set of rows will be kept together in the same ta-
ble instance, they can be assigned to the same row join group using the rowjoingroup op-
tion. The row join group contains multiple consecutive rows. All rows in the group will
be prevented from being separated into multiple table instances.

The rows of a cell spanning these rows don’t constitute a join group automatically.

Fitbox too low. If the fitbox is too low to hold the required header and footer rows, and
at least one body row or row join group the row heights will be decreased uniformly un-
til the table fits into the fitbox. However, if the required shrinking factor is smaller than
the limit set in vertshrinklimit, no shrinking will be performed and PDF_fit_table() will re-
turn the string _error instead, or the respective error message. In order to avoid any
shrinking use vertshrinklimit=100%.

8.3 Table Formatting 233

Fitbox too narrow. The coordinates of the table’s fitbox are explicitly supplied in the
call to PDF_fit_table(). If the actual table width as calculated from the sum of the sup-
plied column widths exceeds the table’s fitbox, all columns will be reduced until the ta-
ble fits into the fitbox. However, if the required shrinking factor is smaller than the lim-
it set in horshrinklimit, no shrinking will be performed and PDF_fit_table() will return the
string _error instead, or the respective error message. In order to avoid any shrinking
use horshrinklimit=100%.

Splitting a cell. If the last rows spanned by a cell doesn’t fit in the fitbox the cell will be
split. In case of an image, PDI page or text line cell, the cell contents will be repeated in
the next table instance. In case of a Textflow cell, the cell contents will continue in the
remaining rows of the cell.

Figure 8.38 shows how the Textflow cell will be split while the Textflow continues in
the next row. In Figure 8.39, an image cell is shown which will be repeated in the first
row of the next table instance.

Splitting a row. If the last body row doesn’t completely fit into the table’s fitbox, it will
usually not be split. This behaviour is controlled by the minrowheight option of PDF_fit_
table() with a default value of 100%. With this default setting the row will not be split
but will completely be placed in the next table instance.

You can decrease the minrowheight value to split the last body row with the given
percentage of contents in the first instance, and place the remaining parts of the row in
the next instance.

Figure 8.39 illustrates how the Textflow It’s amazingly robust... is split and the Text-
flow is continued in the first body row of the next table instance. The image cell span-
ning several rows will be split and the image will be repeated. The Benefit text line will
be repeated as well.

Material

1 Giant Wing

Offset print paper 220g/sqmtable
instance 1

table
instance 2

Benefit
It is amazingly robust and
can even do aerobatics. But
it is best suited to gliding.

Our paper planes are the
ideal way of passing the
time. We offer revolutionary

new developments of the
traditional common paper
planes.

Fig. 8.38
Splitting a cell

Material

Benefit

1 Giant Wing

Offset print paper 220g/sqm

It is amazingly robust and
can even do aerobatics. But

table
instance 1

table
instance 2 Benefit it is best suited to gliding.

Fig. 8.39
Splitting a row

234 Chapter 8: Text and Table Formatting

8.3.6 Table Formatting Algorithm
This section details the steps performed by the table formatter when placing a table.
The description below applies to horizontal text. However, if you swap the terms »row
height« and »column width« it also applies to vertical or rotated text.

In the first call to PDF_fit_table() the options colwidth, rowheight, fittextline, and
fittextflow are examined for all cells, and the width and height of the full table is calcula-
ted based on column widths, row heights and text contents.

Calculate the height and width of table cells with Textlines. The table formatter ini-
tially determines the size of all those table cells with Textlines which span table col-
umns or rows without colwidth or rowheight. In order to achieve this it calculates the
width of the Textline and therefore the table cell according to the fittextline option. It as-
sumes twice the text size as height of the table cell (more precisely: twice the boxheight,
which has the default value {capheight none} unless specified otherwise). For vertical
text the width of the widest character will be used as cell width. For text orientated to
west or east twice the text height will be used as cell width.

The resulting width and height of the table cell is then distributed evenly among all
those columns and rows spanned by the cell for which colwidth or rowheight hasn’t been
specified.

Calculate a tentative table size. In the next step the formatter calculates a tentative
table width and height as the sum of all column widths and row heights, respectively.
Column widths and row heights specified as percentages are converted to absolute val-
ues based on the width and height of the first fitbox. If there are still columns or rows
without colwidth or rowheight the remaining space is evenly distributed until the tenta-
tive table size equals the first fitbox.

The rowheightdefault option can be used to completely fill the height of the fitbox
(keywords auto and distribute) or save space (keyword minimum). Explicitly specifying
the height of a row with the rowheight option always overrides the rowheightdefault set-
ting.

Enlarge cells which are too small. Now the formatter determines all inner cell boxes
(see Figure 8.32). If the combined margins are larger than the cell’s width or height, the
cell box is suitably enlarged by evenly enlarging all columns and rows which belong to
the cell.

Fit Textlines horizontally. The formatter attempts to increase the width of all cells
with Textlines so that the Textline fits into the cell without reducing the font size. If this
is not possible, the Textline is automatically placed with fitmethod=auto. This guaran-
tees that the Textline will not extend beyond the inner cell box. You can prevent the cell
width from being increased by setting fitmethod=auto in the fittextline option.

You can use the colscalegroup option to make sure that all columns which belon to
the same column scaling group will be scaled to equal widths, i.e. there widths will be
unified and adjusted to the widest column in the group (see Figure 8.35).

Avoid forced hyphenation. If the calculated table width is smaller than the fitbox the
formatter tries to increase the width of a Textflow cell so that the text fits without
forced hyphenation. This can be avoided with the option checkwordsplitting=false. The

8.3 Table Formatting 235

widths of such cells will be increased until the table width equals the width of the fit-
box.

You can query the difference between table width and fitbox width with the horbox-
gap key of PDF_info_table().

Fit text vertically. The formatter attempts to increase the height of all Textline and
Textflow cells so that the Textline or Textflow fits into the inner cell box without reduc-
ing the font size. However, the cell height will not be increased if for a Textline or Text-
flow the suboption fitmethod=auto is set, or a Textflow is continued in another cell with
the continuetextflow option.

This process of increasing the cell height applies only to cells containing a Textline
or Textflow, but not for other types of cell contents, i.e. images, PDI pages, path objects,
annotations, and fields.

You can use the rowscalegroup option to make sure that all rows which belong to the
same row scaling group will be scaled to equal heights.

Continue the table in the next fitbox. If the table’s resulting total height is larger than
the fitbox (i.e. not all table cells fit into the fitbox), the formatter stops placing rows in
the fitbox before it encounters the first row which doesn’t fit into the fitbox.

If a cell spans multiple lines and not all of those lines fit into the fitbox, this cell will
be split. If the cell contains an image, PDI page, path object, annotation, form field, or
Textline, the cell contents will be repeated in the next fitbox unless repeatcontent=false
has been specified. Textflows, however, will be continued in the subsequent rows span-
ned by the cell (see Figure 8.38).

You can use the rowjoingroup option to make sure that all rows belonging to a row
joining group will always appear together in a fitbox. All rows which belong to the hea-
der or footer plus one body line automatically form a row joining group. The formatter
may therefore stop placing table rows before it encounters the first line which doesn’t
fit into the fitbox (see Figure 8.37).

You can use the return option to make sure that now more rows will be placed in the
table instance after placing the affected line.

Split a row. A row may be split if it is very high or if there is only a single body line. If
the last body line doesn’t fully fit into the table’s fitbox, it will completely be moved to
the next fitbox. This behavior is controlled by the minrowheight option of PDF_fit_
table(), which has a default value of 100%. If you reduce the minrowheight value the
specified percentage of the content of the last body line will be placed in the current fit-
box and the rest of the line in the next fitbox (see Figure 8.39).

You can check whether a row has been split with the rowsplit key of PDF_info_table().

Adjust the calculated table width. The calculated table width may be larger than the
fitbox width after one of the determination steps, e.g. after fitting a Textline horizontal-
ly. In this case all column widths will be evenly reduced until the table width equals the
width of the fitbox. This shrinking process is limited by the horshrinklimit option.

You can query the horizontal shrinking factor with the horshrinking key of PDF_info_
table().

If the horshrinklimit threshold is exceeded the following error message appears:

Calculated table width $1 is too large (> $2, shrinking $3)")

236 Chapter 8: Text and Table Formatting

Here $1 designates the calculated table width, $2 the maximum possible width and $3
the horshrinklimit value.

Adjust the table size to a small fitbox. If the table width which has been calculated for
the previous fitbox it too large for the current fitbox, the formatter evenly reduces all
columns until the table width equals the width of the current fitbox. The cell contents
will not be adjusted, however. In order to calculate the table width anew, call PDF_fit_
table() with rewind=1.

8.4 Matchboxes 237

8.4 Matchboxes
Matchboxes provide access to coordinates calculated by PDFlib as a result of placing
some content on the page. Matchboxes are not defined with a dedicated function, but
with the matchbox option in the function call which places the actual element, for ex-
ample PDF_fit_textline() and PDF_fit_image(). Matchboxes can be used for various pur-
poses:

> Matchboxes can be decorated, e.g. filled with color or surrounded by a frame.
> Matchboxes can be used to automatically create one or more annotations with PDF_

create_annotation().
> Matchboxes define the height of a text line which will be fit into a box with PDF_fit_

textline() or the height of a text fragment in a Textflow which will be decorated
(boxheight option).

> Matchboxes define the clipping for an image.
> The coordinates of the matchbox and other properties can be queried with PDF_info_

matchbox() to perform some other task, e.g. insert an image.

For each element PDFlib will calculate the matchbox as a rectangle corresponding to the
bounding box which describes the position of the element on the page (as specified by
all relevant options). For Textflows and table cells a matchbox may consist of multiple
rectangles because of line or row breaking.

The rectangle(s) of a matchbox will be drawn before drawing the element to be
placed. As a result, the element may obscure the effect of the matchbox border or filling,
but not vice versa. In particular, those parts of the matchbox which overlap the area
covered by an image are hidden by the image. If the image is placed with fitmethod=slice
or fitmethod=clip the matchbox borders outside the image fitbox will be clipped as well.
To avoid this effect the matchbox rectangle can be drawn using the basic drawing func-
tions, e.g. PDF_rect(), after the PDF_fit_image() call. The coordinates of the matchbox
rectangle can be retrieved using PDF_info_matchbox() as far as the matchbox has been
provided with a name in the PDF_fit_image() call.

In the following sections some examples for using matchboxes are shown. For de-
tails about the functions which support the matchbox option list, see the PDFlib API
Reference.

8.4.1 Decorating a Textline
Let’s start with a discussion of matchboxes in text lines. In PDF_fit_textline() the match-
box is the textbox of the supplied text. The width of the textbox is the text width, and
the height is the capheight of the given font size, by default. To illustrate the matchbox
size the following code fragment will fill the matchbox with blue background color (see
Figure 8.40a).

String optlist =
"font=" + normalfont + " fontsize=8 position={left top} " +
"matchbox={fillcolor={rgb 0.8 0.8 0.87} boxheight={capheight none}}";

p.fit_textline("Giant Wing Paper Plane", 2, 20, optlist);

You can omit the boxheight option since boxheight={capheight none} is the default set-
ting. It will look better if we increase the box height so that it also covers the descenders
using the boxheight option (see Figure 8.40b).

238 Chapter 8: Text and Table Formatting

To increase the box height to match the font size we can use boxheight={fontsize
descender} (see Figure 8.40c).

In the next step we extend the matchbox by some offsets to the left, right and bot-
tom to make the distance between text and box margins the same. In addition, we draw
a rectangle around the matchbox by specifying the border width (see Figure 8.40d).

Cookbook A full code sample can be found in the Cookbook topic text_output/text_on_color.

Fig. 8.40 Decorating a text line using a matchbox with various suboptions

8.4.2 Using Matchboxes in a Textflow

Decorating parts of a Textflow. In this section we will decorate some text within a
Textflow: The words very dangerous will be emphasized similar to a marker pen. To ac-
complish this the words are enclosed in the matchbox and matchbox=end inline options
(see Figure 8.41).

Fig. 8.41 Textflow with matchbox inline option

Adding a Web link to the Textflow matchbox. Now we will add a Web link to parts of a
Textflow. In the first step we create the Textflow with a matchbox called kraxi indicating
the text part to be linked. Second, we will create the action for opening a URL. Third, we
create an annotation of type Link with an invisible frame. In its option list we reference
the kraxi matchbox to be used as the link’s rectangle (the rectangle coordinates in PDF_
create_textflow() will be ignored).

Cookbook A full code sample can be found in the Cookbook topic text_output/weblink_in_text.

/* create and fit Textflow with matchbox "kraxi" */
String tftext =

"For more information about the Giant Wing Paper Plane see the Web site of " +
"<underline=true matchbox={name=kraxi boxheight={fontsize descender}}>" +
"Kraxi Systems, Inc.<matchbox=end underline=false>";

String optlist = "font=" + normalfont + " fontsize=8 leading=110%";
tflow = p.create_textflow(tftext, optlist);
if (tflow == -1)

throw new Exception("Error: " + p.get_errmsg());

Generated output Suboptions of the matchbox option of PDF_fit_textline()

a) boxheight={capheight none}

b) boxheight={ascender descender}

c) boxheight={fontsize descender}

d)
boxheight={fontsize descender} borderwidth=0.3
offsetleft=-2 offsetright=2 offsetbottom=-2

Generated output Text and inline options for PDF_create_textflow()

It is <matchbox={fillcolor={rgb 1 0 0}
boxheight={ascender descender}}>very dangerous
<matchbox=end> to fly the Giant Wing in a thunderstorm.

Giant Wing Paper Plane

Giant Wing Paper Plane

Giant Wing Paper Plane

Giant Wing Paper Plane

It is very dangerous to fly
the Giant Wing in a
thunderstorm.

http://www.pdflib.com/pdflib-cookbook/text-output/weblink-in-textflow

http://www.pdflib.com/pdflib-cookbook/text-output/text-on-color

8.4 Matchboxes 239

result = p.fit_textflow(tflow, 0, 0, 50, 70, "fitmethod=auto");
if (!result.equals("_stop"))

{ /* ... */ }

/* create URI action */
optlist = "url={http://www.kraxi.com}";
act = p.create_action("URI", optlist);

/* create Link annotation on matchbox "kraxi" */
optlist = "action={activate " + act + "} linewidth=0 usematchbox={kraxi}";
p.create_annotation(0, 0, 0, 0, "Link", optlist);

Even if the text Kraxi Systems, Inc. spans several lines the appropriate number of link an-
notations will be created automatically with a single call to PDF_create_annotation().
The result in shown in Figure 8.42.

8.4.3 Matchboxes and Images

Adding a Web link to an image. To add a Web link to the area covered by an image the
image matchbox can be used. The code is similar to »Adding a Web link to the Textflow
matchbox«, page 238, above. However, instead of placing the Textflow, fit the image us-
ing the following option list:

String optlist = "boxsize={130 130} fitmethod=meet matchbox={name=kraxi}";
p.fit_image(image, 10, 10, optlist);

Cookbook A full code sample can be found in the Cookbook topic interactive/link_annotations.

Drawing a frame around an image. In this example we want to use the image match-
box to draw a frame around the image. We completely fit the image into the supplied
box while maintaining its proportions using fitmethod=meet. We use the matchbox op-
tion with the borderwidth suboption to draw a thick border around the image. The
strokecolor suboption determines the border color, and the linecap and linejoin subop-
tions are used to round the corners.

Cookbook A full code sample can be found in the Cookbook topic images/frame_around_image.

The matchbox is always drawn before the image which means it would be partially hid-
den by the image. To avoid this we use the offset suboptions with 50 percent of the bor-
der width to enlarge the frame beyond the area covered by the image. Alternatively, we
could increase the border width accordingly. Figure 8.43 shows the option list used with
PDF_fit_image() to draw the frame.

For information about
Giant Wing Paper
Planes see the Web
site of Kraxi Systems,
Inc.

Fig. 8.42
Add Weblinks to parts of a Textflow

http://www.pdflib.com/pdflib-cookbook/interactive-elements/link-annotations

http://www.pdflib.com/pdflib-cookbook/images/frame-around-image

240 Chapter 8: Text and Table Formatting

Fig. 8.43 Using the image matchbox to draw a frame around the image

Align text at an image. The following code fragment shows how to align vertical text
at the right margin of an image. The image is proportionally fit into the supplied box
with a fit method of meet. The actual coordinates of the fitbox are retrieved with PDF_
info_matchbox() and a vertical text line is placed relative to the lower right (x2, y2) cor-
ner of the fitbox. The border of the matchbox is stroked (see Figure 8.44).

Cookbook A full code sample can be found in the Cookbook topic images/align_text_at_image.

/* use this option list to load and fit the image */
String optlist = "boxsize={300 200} position={center} fitmethod=meet " +

"matchbox={name=giantwing borderwidth=3 strokecolor={rgb 0.85 0.83 0.85}}";

/* load and fit the image */
...

/* retrieve the coordinates of the lower right (second) matchbox corner */
if ((int) p.info_matchbox("giantwing", 1, "exists") == 1)
{

x1 = p.info_matchbox("giantwing", 1, "x2");
y1 = p.info_matchbox("giantwing", 1, "y2");

}
/* start the text line at that corner with a small distance of 2 */
p.fit_textline("Foto: Kraxi", x2+2, y2+2, "font=" + font + " fontsize=8 orientate=west");

Fig. 8.44 Use the coordinates of the image matchbox to fit a text line

Generated output Option list for PDF_fit_image()

boxsize={60 60} position={center} fitmethod=meet
matchbox={name=kraxi borderwidth=4 offsetleft=-2 offsetright=2
offsetbottom=-2 offsettop=2 linecap=round linejoin=round
strokecolor {rgb 0.0 0.3 0.3}}

Generated output Generation steps

Step 1: Fit image with matchbox
Step 2: Retrieve matchbox info for coordinates (x2, y2)
Step 3: Fit text line starting at retrieved coordinates (x2, y2) with option
orientate=west

(x2, y2)

F
o
to

:
K

ra
x
i

http://www.pdflib.com/pdflib-cookbook/images/align-text-at-image

241

9 The pCOS Interface
The pCOS (PDFlib Comprehensive Object Syntax) interface provides a simple and elegant
facility for retrieving arbitrary information from all sections of a PDF document which
do not describe page contents, such as page dimensions, metadata, interactive ele-
ments, etc. Examples for using the pCOS interface and a description of the pCOS path
syntax are contained in the pCOS Path Reference which is available as a separate docu-
ment. Additional examples can be found in the pCOS Cookbook at
www.pdflib.com/pcos-cookbook/

http://www.pdflib.com/pcos-cookbook/

242 Chapter 9: The pCOS Interface

10.1 Acrobat and PDF Versions 243

10 PDF Versions and Standards
10.1 Acrobat and PDF Versions

At the user’s option PDFlib generates output according to the following PDF versions:
> PDF 1.3 (Acrobat 4)
> PDF 1.4 (Acrobat 5)
> PDF 1.5 (Acrobat 6)
> PDF 1.6 (Acrobat 7)
> PDF 1.7 (Acrobat 8), technically identical to ISO 32000-1
> PDF 1.7 Adobe extension level 3 (Acrobat 9)
> PDF 1.7 Adobe extension level 8 (Acrobat X)

The PDF output version can be controlled with the compatibility option in PDF_begin_
document(). In each PDF compatibility mode the PDFlib features for higher levels are not
available (see Table 10.1). Trying to use such features will result in an exception.

PDF version of documents imported with PDI. In all compatibility modes only PDF
documents with a lower or the same PDF version can be imported with PDI. If you must
import a PDF with a newer PDF version you must set the compatibility option according-
ly (see Section 7.2.3, »Acceptable PDF Documents«, page 184). As an exception to the can-
not-import-higher-PDF-version rule, documents according to PDF 1.7 extension level 3
(Acrobat 9) and PDF 1.7 extension level 8 (Acrobat X) can also be imported into PDF 1.7
documents.

Changing the PDF version of a document. If you must create output according to a
particular PDF version, but need to import PDFs which use a higher PDF version you
must convert the documents to the desired lower PDF version before you can import
them with PDI. You can use the menu item Advanced, PDF Optimizer, Make compatible
with in Acrobat 7/8/9 Professional or File, Save As..., Optimized PDF... in Acrobat X to
change the PDF version as follows:

> Acrobat 7: PDF 1.3 - PDF 1.6
> Acrobat 8: PDF 1.3 - PDF 1.7
> Acrobat 9: PDF 1.3 - PDF 1.7 extension level 3
> Acrobat X: PDF 1.3 - PDF 1.7 extension level 8

Table 10.1 PDFlib features which require a specific PDF compatibility mode

Feature PDFlib API functions and options

Features which require PDF 1.7 extension level 8 (Acrobat X)

direct use of layers for PDF/X-4:2010
(without layer variants)

PDF_set_layer_dependency(): option createorderlist

Features which require PDF 1.7 extension level 3 (Acrobat 9)

Geospatial PDF PDF_begin_document(): option viewports
PDF_load_image(): option georeference

PDF portfolios with folders PDF_add_portfolio_folder()

244 Chapter 10: PDF Versions and Standards

AES encryption with 256-bit keys PDF_begin_document(): AES encryption with 256-bit will automatically be used
with compatibility=1.7ext3 when the masterpassword, userpassword,
attachmentpassword, or permissions option is supplied

Layer variants PDF_set_layer_dependency(): dependency type Variant
(This feature does not require PDF 1.7 ext 3, but works only in Acrobat 9)

Referenced PDF reference option in PDF_open_pdi_page() and PDF_begin_template_ext()
(This feature does not require PDF 1.7 ext 3, but works only in Acrobat 9)

embed 3D models in PRC format PDF_load_3ddata(): option type=PRC

barcode fields PDF_create_field() and PDF_create_fieldgroup(): option barcode

Features which require PDF 1.7 (Acrobat 8)

PDF portfolios PDF_begin_document(): option portfolio
PDF_add_portfolio_file()

Unicode file names for attachments PDF_begin/end_document(): option attachments, suboption filename

Features which require PDF 1.6 (Acrobat 7)

user units PDF_begin/end_document(): option userunit

print scaling PDF_begin/end_document(): suboption printscaling for viewerpreferences
option

document open mode PDF_begin/end_document(): option openmode=attachments

AES encryption with 128-bit keys PDF_begin_document(): AES encryption will automatically be used with
compatibility=1.6 or 1.7 when the masterpassword, userpassword,
attachmentpassword, or permissions option is supplied

encrypt file attachments only PDF_begin/end_document(): option attachmentpassword

attachment description PDF_begin/end_document(): suboption description for option attachments

embed 3D models in U3D format PDF_load_3ddata(), PDF_create_3dview(); PDF_create_annotation(): type=3D

Features which require PDF 1.5 (Acrobat 6)

various field options PDF_create_field() and PDF_create_fieldgroup()

page layout PDF_begin/end_document(): option pagelayout=twopageleft/right

various annotation options PDF_create_annotation()

extended permission settings permissions=plainmetadata in PDF_begin_document(), see Table 3.3

various CMaps for CJK fonts PDF_load_font(), see Table 4.3

Tagged PDF various options for PDF_begin_item();
PDF_begin/end_page_ext(): option taborder

Layers PDF_define_layer(), PDF_begin_layer(), PDF_end_layer(), PDF_layer_
dependency()

JPEG2000 images imagetype=jpeg2000 in PDF_load_image()

compressed object streams compressed object streams will automatically be generated with
compatibility=1.5 or above unless objectstreams=none has been set in PDF_
begin_document()

Table 10.1 PDFlib features which require a specific PDF compatibility mode

Feature PDFlib API functions and options

10.1 Acrobat and PDF Versions 245

Features which require PDF 1.4 (Acrobat 5)

smooth shadings (color blends) PDF_shading_pattern(), PDF_shfill(), PDF_shading()

soft masks PDF_load_image() with the masked option referring to an image with more than
1 bit pixel depth

JBIG2 images imagetype=jbig2 in PDF_load_image()

128-bit encryption PDF_begin_document() with the userpassword, masterpassword, permissions
options

extended permission settings PDF_begin_document() with permissions option, see Table 3.3

various CMaps for CJK fonts PDF_load_font(), see Table 4.3

transparency and other graphics
state options

PDF_create_gstate() with options alphaisshape, blendmode, opacityfill,
opacitystroke, textknockout

various options for actions PDF_create_action()

various options for annotations PDF_create_annotation()

various field options PDF_create_field() and PDF_create_fieldgroup()

Tagged PDF tagged option in PDF_begin_document()

Referenced PDF reference option in PDF_open_pdi_page() and PDF_begin_template_ext()
(however, note that this feature requires Acrobat 9 for proper display/printing)

Table 10.1 PDFlib features which require a specific PDF compatibility mode

Feature PDFlib API functions and options

246 Chapter 10: PDF Versions and Standards

10.2 ISO 32 000
PDF 1.7 has been standardized as ISO 32000-1. The technical contents of this internation-
al standard are identical to Adobe’s PDF 1.7, the file format of Acrobat 8. PDFlib adheres
to Adobe’s PDF Reference and therefore ISO 32000-1. To the best of our knowledge the
PDF output created with PDFlib fully conforms to ISO 32000-1. However, currently no
validation software is available for checking ISO 32000-1 conformance.

At the time of writing the next version of the ISO standard is being prepared under
the title ISO 32000-2. This standard will incorporate Acrobat 9 features which are cur-
rently supported in PDFlib withthe compatibility=pdf1.7ext3 setting, e.g. georeferenced
PDF, hierarchical Portfolios, and AES-256 encryption (see Table 10.1 for a detailed list).

10.3 PDF/X for Print Production 247

10.3 PDF/X for Print Production
10.3.1 The PDF/X Family of Standards

The PDF/X formats specified in the ISO 15930 standards family strive to provide a con-
sistent and robust subset of PDF which can be used to deliver data suitable for commer-
cial printing. PDFlib can generate output and process input conforming to the PDF/X
flavors described below.

PDF/X-1a:2001 as defined in ISO 15930-1. This standard for »blind exchange« (ex-
change of print data without the requirement for any prior technical discussions) is
based on PDF 1.3 and supports CMYK and spot color data. RGB and device-independent
colors (ICC-based, Lab) are explicitly prohibited. PDF/X-1a:2001 is widely used (especially
in North America) for the exchange of publication ads and other applications.

PDF/X-1a:2003 as defined in ISO 15930-4. This standard is the successor to PDF/X-
1a:2001. It is based on PDF 1.4, with some features (e.g. transparency) prohibited. PDF/X-
1a:2003 is a strict subset of PDF/X-3:2003, and supports CMYK and spot color, and CMYK
output devices.

Note PANTONE® colors are not supported in PDF/X-1a mode.

PDF/X-3:2002 as defined in ISO 15930-3. This standard is based on PDF 1.3, and sup-
ports modern workflows based on device-independent color in addition to grayscale,
CMYK, and spot colors. It is especially popular in European countries. Output devices
can be monochrome, RGB, or CMYK.

PDF/X-3:2003 as defined in ISO 15930-6. This standard is the successor to PDF/X-
3:2002. It is based on PDF 1.4, with some features (e.g. transparency) prohibited.

PDF/X-4 as defined in ISO 15930-7. This standard can be regarded as the successor of
PDF/X-1a and PDF/X-3. It is based on PDF 1.6 and consists of the following flavors:

> In PDF/X-4 transparency and layers are allowed (with some restrictions), but some
other PDF 1.6 features are still prohibited.

> PDF/X-4p allows output intent ICC profiles to be kept external from the PDF docu-
ment to save space.

PDFlib implements the 15930-7:2010 version of the PDF/X-4 standard. The 2010 version
introduces some changes regarding treatment of layers. The 2010 functionality can be
addressed with the createorderlist option of PDF_set_layer_dependency(). This option
should not be used for PDF/X-4:2008.

PDF/X-5 as defined in ISO 15930-8. This standard is targeted at »partial exchange«
which requires prior discussion between supplier and receiver of a file. It can be regard-
ed as an extension of PDF/X-4 and PDF/X-4p (i.e. based on PDF 1.6), and consists of the
following flavors:

> PDF/X-5g allows graphical content external from the PDF document; this requires
some communication between sender and receiver of the documents.

> PDF/X-5pg allows external graphical content and external output intent ICC profiles;

248 Chapter 10: PDF Versions and Standards

> PDF/X-5n supports external output intent ICC profiles for n-colorant print character-
izations. This flavor is not supported in PDFlib.

If none of the specific features of PDF/X-5 is required the document should instead be
prepared according to PDF/X-4 or PDF/X-4p since this is the more general standard.

ISO 15930-8:2008 contains several errors related to XMP identification entries for ex-
ternally referenced graphics. The revised version ISO 15930-8:2010 of the standard re-
places the 2008 version. PDFlib implements PDF/X-5:2010 including corrigendum 1
which has been published in 2011.

Note PDF/X-5g validation fails in Acrobat 9 Preflight if external pages are referenced. This problem
has been fixed in Acrobat X.

10.3.2 Generating PDF/X-conforming Output
Cookbook Code samples for generating PDF/X can be found in the and pdfx category of the PDFlib Cook-

book.

Creating PDF/X-conforming output with PDFlib is achieved by the following means:
> PDFlib will automatically take care of several formal settings for PDF/X, such as PDF

version number and PDF/X conformance keys.
> The PDFlib client must explicitly use certain function calls or options as detailed in

Table 10.2.
> The PDFlib client must refrain from using certain function calls and options as de-

tailed in Table 10.3.
> Additional rules apply when importing pages from existing PDF/X-conforming doc-

uments (see Section 10.3.4, »Importing PDF/X Documents with PDI«, page 252).

Required operations. Table 10.2 lists all operations required to generate PDF/X-con-
forming output. The items apply to all PDF/X conformance levels unless otherwise not-
ed. Not calling one of the required functions while in PDF/X mode will trigger an excep-
tion.

Table 10.2 Operations which must be applied for PDF/X compatibility

item PDFlib function and option requirements for PDF/X compatibility

conformance level The pdfx option in PDF_begin_document() must be set to the desired PDF/X conformance level.

output condition
(output intent)

PDF_load_iccprofile() with usage=outputintent or PDF_process_pdi() with action=copy-
outputintent (but not both methods) must be called immediately after PDF_begin_document().
If HKS or Pantone spot colors, ICC-based colors, or Lab colors are used, an output device ICC profile
must be embedded; using a standard output condition is not allowed in this case.
PDF/X-1a: the output device must be a monochrome or CMYK device;
PDF/X-3/4/5: the output device must be a monochrome, RGB, or CMYK device.

font embedding Set the embedding option of PDF_load_font() (and other functions which accept this option) to
true to enable font embedding. Note that embedding is also required for the PDF core fonts.

page boxes The page boxes, which are settable via the cropbox, bleedbox, trimbox, and artbox options,
must satisfy all of the following requirements:
> The TrimBox or ArtBox must be set, but not both of these box entries. If both TrimBox and Art-

Box are missing PDFlib will take the CropBox (if present) as the TrimBox, and the MediaBox if
the CropBox is also missing.

> The BleedBox, if present, must fully contain the ArtBox and TrimBox.
> The CropBox, if present, must fully contain the ArtBox and TrimBox.

http://www.pdflib.com/pdflib-cookbook/pdfx

10.3 PDF/X for Print Production 249

Prohibited operations. Table 10.3 lists all operations which are prohibited when gener-
ating PDF/X-conforming output. The items apply to all PDF/X conformance levels un-
less otherwise noted. Calling one of the prohibited functions while in PDF/X mode will
trigger an exception. Similarly, if an imported PDF page doesn’t match the current PDF/
X conformance level, the corresponding PDI call will fail.

grayscale color PDF/X-3/4/5: Grayscale images and PDF_setcolor() with a gray color space can only be used if the
output condition is a grayscale or CMYK device, or if the defaultgray option in PDF_begin_page_
ext() has been set.

RGB color PDF/X-3/4/5: RGB images and PDF_setcolor() with an RGB color space can only be used if the out-
put condition is an RGB device, or the defaultrgb option in PDF_begin_page_ext() has been set.

CMYK color PDF/X-3/4/5: CMYK images and PDF_setcolor() with a CMYK color space can only be used if the
output condition is a CMYK device, or the defaultcmyk option in PDF_begin_page_ext() has
been set.

document info keys The Creator and Title info keys must be set to a non-empty value with PDF_set_info() or (in
PDF/X-4 and PDF/X-5) with the xmp:CreatorTool and dc:title XMP properties in the metadata
option of PDF_begin/end_document()

Table 10.3 Operations which must be avoided or are restricted to achieve PDF/X compatibility

item Prohibited or restricted PDFlib functions and options for PDF/X compatibility

grayscale color PDF/X-1a: the defaultgray option in PDF_begin_page_ext() must be avoided.

RGB color PDF/X-1a: RGB images and the defaultrgb option in PDF_begin_page_ext() must be avoided.

CMYK color PDF/X-1a: the defaultcmyk option in PDF_begin_page_ext() must be avoided.

ICC-based color PDF/X-1a: the iccbasedgray/rgb/cmyk color space in PDF_setcolor() and the setcolor:icc-
profilegray/rgb/cmyk parameters must be avoided.

Lab color PDF/X-1a: the Lab color space in PDF_setcolor() must be avoided.

annotations and
form fields

Annotations inside the BleedBox (or TrimBox/ArtBox if no BleedBox is present) must be avoided:
PDF_create_annotation(), PDF_create_field().

file attachments PDF/X-1a/3: PDF_begin/end_document(): option attachments must be avoided; PDF_create_
annotation() with type=FileAttachment must be avoided

actions and
JavaScript

All actions including JavaScript must be avoided: PDF_create_action()

images PDF/X-1a: images with RGB, ICC-based, YCbCr, or Lab color must be avoided. For colorized images
the alternate color of the spot color used must satisfy the same conditions.
PDF/X-1 and PDF/X-3: JBIG2 images must be avoided.
The OPI-1.3 and OPI-2.0 options in PDF_load_image() must be avoided.

transparent images
and graphics

PDF/X-1 and PDF/X-3: Soft masks for images must be avoided: the masked option for PDF_load_
image() must be avoided unless the mask refers to a 1-bit image. Images with implicit transpar-
ency (alpha channel) are not allowed; they must be loaded with the ignoremask option of PDF_
load_image(). The opacityfill and opacitystroke options for PDF_create_gstate() must be
avoided unless they have a value of 1; if blendmode is used it must be Normal.
Transparent images and graphics are allowed in PDF/X-4 and PDF/X-5.

Table 10.2 Operations which must be applied for PDF/X compatibility

item PDFlib function and option requirements for PDF/X compatibility

250 Chapter 10: PDF Versions and Standards

transparency groups The transparencygroup option of PDF_begin/end_page_ext(), PDF_begin_template_ext(), and
PDF_open_pdi_page() is not allowed in PDF/X-1 and PDF/X-3, but only in PDF/X-4 and PDF/X-5.
If transparencygroup is used, the value of the colorspace suboption is subject to the following
requirements:
> DeviceGray: the PDF/X output condition must be a grayscale or CMYK device. For the generat-

ed page (but not for templates and imported pages) the defaultgray option in PDF_begin_
page_ext() can be set as an alternative.

> DeviceRGB: the PDF/X output condition must be an RGB device. For the generated page (but
not for templates and imported pages) the defaultrgb option in PDF_begin_page_ext() can
be set as an alternative.

> DeviceCMYK: the PDF/X output condition must be a CMYK device. For the generated page (but
not for templates and imported pages) the defaultcmyk option in PDF_begin_page_ext() can
be set as an alternative.

viewer preferences /
view and print areas

When the viewarea, viewclip, printarea, and printclip suboptions for the viewer-
preferences option in PDF_begin/end_document() are used values other than media or bleed
are not allowed.

document info keys Values other than True or False for the Trapped info key or the corresponding XMP property
pdf:Trapped PDF_set_info() must be avoided.

security The userpassword, masterpassword, and permissions options in PDF_begin_document() must
be avoided.

PDF version /
compatibility

PDF/X-1a:2001 and PDF/X-3:2002 are based on PDF 1.3. Operations that require PDF 1.4 or above
(such as transparency or soft masks) must be avoided.
PDF/X-1a:2003 and PDF/X-3:2003 are based on PDF 1.4. Operations that require PDF 1.5 or above
must be avoided.
PDF/X-4 and PDF/X-5 are based on PDF 1.6. Operations that require PDF 1.7 or above must be
avoided.

PDF import (PDI) Imported documents must conform to a compatible PDF/X level according to Table 10.5, and
must have been prepared according to the same output intent.

external graphical
content (references)

PDF/X-1/3/4: The reference option in PDF_begin_template_ext() and PDF_open_pdi_page()
must be avoided.
PDF/X-5g and PDF/X-5pg: the target provided in the reference option in PDF_begin_template_
ext() and PDF_open_pdi_page() must conform to one of the following standards: PDF/X-
1a:2003, PDF/X-3:2003, PDF/X-4, PDF/X-4p, PDF/X-5g, or PDF/X-5pg, and must have been pre-
pared for the same output intent. Since certain XMP metadata entries are required in the target,
not all PDF/X documents are acceptable as target. PDF/X documents generated with PDFlib 8 can
be used as target.
See Section 3.2.5, »Referenced Pages from an external PDF Document«, page 70, for more details
on the reference option and the required Acrobat configuration.

layers PDF/X-1 and PDF/X-3: layers require PDF 1.5 and can therefore not be used.
PDF/X-4 and PDF/X-5: layers can be used but certain rules must be obeyed:
> Some options of PDF_define_layer() and PDF_set_layer_dependency() must be avoided.
> PDF/X-4:2010: the createorderlist option of PDF_set_layer_dependency() is allowed. It is re-

quired to display the list of layers in Acrobat X.

file size PDF/X-4 and PDF/X-5: The file size of the generated PDF document must not exceed 2 GB, and the
number of PDF objects must be smaller than 8.388.607. See Section 3.1.5, »Large PDF Documents«,
page 62, for more details about these limits.

Table 10.3 Operations which must be avoided or are restricted to achieve PDF/X compatibility

item Prohibited or restricted PDFlib functions and options for PDF/X compatibility

10.3 PDF/X for Print Production 251

10.3.3 Output Intent and Standard Output Conditions
The output intent (also called output condition) defines the intended target device,
which is mainly useful for reliable proofing. The output intent can be specified as a
name (called standard output intent) or with an ICC color profile. The details vary
among the PDF/X flavors:

> PDF/X-1a/3/4 and PDF/X-5g: by embedding an ICC profile for the output intent.
> PDF/X-1a and PDF/X-3: by supplying the name of a standard output intent. The stan-

dard output intents are known internally to PDFlib; see PDFlib API Reference for a
complete list of the standard output intent names and a description of the corre-
sponding printing conditions. ICC profiles for these output intents are not required
to be available locally. Additional standard output intents can be defined using the
StandardOutputIntent resource category (see Section 3.1.3, »Resource Configuration
and File Search«, page 56). It is the user’s responsibility to add only those names as
standard output intents which will be recognized by PDF/X-processing software.
Standard output intents can be referenced as follows:

if (p.load_iccprofile("CGATS TR 001", "usage=outputintent") == -1)
{

/* Error */
}

When creating PDF/X-3 output and using any of HKS, PANTONE, ICC-based, or Lab
colors referencing the name of standard output intents is not sufficient, but an ICC
profile of the output device must be embedded.

> PDF/X-4p and PDF/X-5pg: by referencing an external ICC profile for the output in-
tent (the p in the name of the standard means that an external profile is referenced).
Unlike standard output intents, the output intent ICC profile is not only referenced
by name, but a strong reference is created which requires the ICC profile to be locally
available when the document is generated. Although the ICC profile will not be em-
bedded in the PDF output, it must nevertheless be available at PDF creation time to
create a strong reference. The urls option must be provided with one or more valid
URLs where the ICC profile can be found:

if (p.load_iccprofile("CGATS TR 001",
"usage=outputintent urls={http://www.color.org}") == -1)

{
/* Error */

}

A special rule applies to PDF/X-4/5: a CMYK output intent profile (i.e. loaded with usage=
outputintent) can not be used for an ICCBased color space (i.e. loaded with usage=
iccbased) in the same document. This requirement is mandated by the PDF/X standard,
and applies only to CMYK profiles, but not to grayscale or RGB profiles. A similar condi-
tion applies to imported PDF/X-1/3 documents: if an imported page uses the same
CMYK ICC profile as the generated document’s output intent, it is rejected by PDF_open_
pdi_page().

252 Chapter 10: PDF Versions and Standards

Choosing a suitable PDF/X output intent. The PDF/X output intent is usually selected
as a result of discussions between you and your print service provider who will take care
of print production. If your printer cannot provide any information regarding the
choice of output intent, you can use the standard output intents listed in Table 10.4 as a
starting point (taken from the PDF/X FAQ).

10.3.4 Importing PDF/X Documents with PDI
Special rules apply when pages from an existing PDF document will be imported into a
PDF/X-conforming output document (see Section 7.2, »Importing PDF Pages with PDI«,
page 182, for details). All imported documents must conform to a compatible PDF/X
conformance level according to Table 10.5. As a general rule, input documents conform-
ing to the same PDF/X conformance level as the generated output document, or to an
older version of the same level, are acceptable. In addition, certain other combinations
are also acceptable. For all allowed combinations with PDF/X-4/5 output the following
additional rule must be observed: if an imported page uses the same CMYK ICC profile
as the generated document’s output intent, it is rejected by PDF_open_pdi_page() since
this would violate the PDF/X-4/5 standard.

If a particular PDF/X conformance level is configured in PDFlib and the imported
documents adhere to one of the compatible levels, the generated output is guaranteed
to conform to the selected PDF/X conformance level. Imported documents which do not
adhere to one of the acceptable PDF/X levels will be rejected.
If multiple PDF/X documents are imported, they must all have been prepared for the
same output condition. For example, only documents with a CMYK output intent can
be imported into a document which uses the same CMYK output intent.

While PDFlib can correct certain items, it is not intended to work as a full PDF/X vali-
dator or to enforce full PDF/X compatibility for imported documents. For example,
PDFlib will not embed fonts which are missing from imported PDF pages, and does not
apply any color correction to imported pages.

If you want to combine imported pages such that the resulting PDF output docu-
ment conforms to the same PDF/X conformance level and output condition as the in-
put document(s), you can query the PDF/X status of the imported PDF as follows:

pdfxlevel = p.pcos_get_string(doc, "pdfx");

Table 10.4 Suitable PDF/X output intents for common printing situations

Europe North America

Magazine ads FOGRA28 CGATS TR 001

Newsprint ads IFRA26 IFRA30

Sheet-fed offset Dependent on paper stock:
Types 1 & 2 (coated): FOGRA39
Type 3 (LWC): FOGRA45
Type 4 (uncoated): FOGRA47

Dependent on paper stock:
Grades 1 and 2 (premium coated): FOGRA39
Grade 5: CGATS TR 001
Uncoated: FOGRA47

Web-fed offset Dependent on paper stock:
Type 1 & 2 (coated): FOGRA45
Type 4 (uncoated, white): FOGRA47
Type 5 (uncoated, yellowish): FOGRA30

Dependent on paper stock:
Grade 5: CGATS TR 001
Uncoated (white): FOGRA47
Uncoated (yellowish): FOGRA30

10.3 PDF/X for Print Production 253

This statement will retrieve a string designating the PDF/X conformance level of the im-
ported document if it conforms to an ISO PDF/X level, or none otherwise. The returned
string can be used to set the PDF/X conformance level of the output document appro-
priately, using the pdfx option in PDF_begin_document().

Copying the PDF/X output intent from an imported document. In addition to query-
ing the PDF/X conformance level you can also copy the output intent from an imported
document:

ret = p.process_pdi(doc, -1, "action=copyoutputintent");

This can be used as an alternative to setting the output intent via PDF_load_iccprofile(),
and will copy the imported document’s output intent to the generated output docu-
ment, regardless of whether it is defined by a standard name or an ICC profile. Copying
the output intent works for imported PDF/A and PDF/X documents.

The output intent of the generated output document must be set exactly once, ei-
ther by copying an imported document’s output intent, or by setting it explicitly using
PDF_load_iccprofile() with usage=outputintent.

Table 10.5 Compatible PDF/X input levels for various PDF/X output levels

PDF/X level of the imported document

PDF/X output level PD
F/

X-
1a

:20
01

PD
F/

X-
1a

:20
03

PD
F/

X-
3:2

00
2

PD
F/

X-
3:2

00
3

PD
F/

X-
4

PD
F/

X-
4p

PD
F/

X-
5g

PD
F/

X-
5p

g

PDF/X-1a:2001 allowed

PDF/X-1a:2003 allowed allowed

PDF/X-3:2002 allowed allowed

PDF/X-3:2003 allowed allowed allowed allowed

PDF/X-4 allowed allowed allowed allowed allowed allowed

PDF/X-4p allowed allowed allowed allowed allowed allowed1

PDF/X-5g allowed allowed allowed allowed allowed allowed allowed2 allowed2

PDF/X-5pg allowed allowed allowed allowed allowed allowed1 allowed2 allowed1,2

1. PDF_process_pdi() with action=copyoutputintent will copy the reference to the external output intent ICC profile.
2. If the imported page contains referenced XObjects, PDF_open_pdi_page() will copy both proxy and reference to the target.

254 Chapter 10: PDF Versions and Standards

10.4 PDF/A for Archiving
10.4.1 The PDF/A Standards

The PDF/A formats specified in the ISO 19005 standard strive to provide a consistent
and robust subset of PDF which can safely be archived over a long period of time, or
used for reliable data exchange in enterprise and government environments.

PDF/A Competence Center. PDFlib GmbH is a founding
member of the PDF Association which hosts the PDF/A
Competence Center as one of its activities. The aim of this
organization is to promote the exchange of information
and experience in the area of long-term archiving in accor-
dance with ISO 19005. The members of the PDF/A Compe-
tence Center actively exchange information related to the
PDF/A standard and its implementations, and conduct
seminars and conferences on the subject. For more infor-
mation refer to the PDF/A Competence Center section on
the PDF Association’s Web site at www.pdfa.org.

PDF/A-1a:2005 and PDF/A-1b:2005 as defined in ISO 19005-1. PDF/A is targeted at reli-
able long-time preservation of digital documents. The standard is based on PDF 1.4, and
imposes some restrictions regarding the use of color, fonts, annotations, and other ele-
ments. There are two flavors of PDF/A-1, both of which can be created and processed
with PDFlib:

> ISO 19005-1 Level B conformance (PDF/A-1b) ensures that the visual appearance of a
document is preservable over the long term. Simply put, PDF/A-1b ensures that the
document will look the same when it is processed some time in the future.

> ISO 19005-1 Level A conformance (PDF/A-1a) is based on level B, but adds properties
which are known from the »Tagged PDF« flavor: it adds structure information and
reliable text semantics in order to preserve the document's logical structure and nat-
ural reading order. Simply put, PDF/A-1a not only ensures that the document will
look the same when it is processed some time in the future, but also that its contents
(semantics) can be reliably interpreted and will be accessible to physically impaired
users. PDFlib’s support for PDF/A-1a is based on the features for producing Tagged
PDF (see Section 10.5, »Tagged PDF«, page 262).

When PDF/A-1 (without any conformance level) is mentioned below, both conformance
levels are meant.

Implementation basis. The following standards and documents form the basis for
PDFlib’s implementation of PDF/A-1:

> The PDF/A standard (ISO 19005-1:2005)
> Technical Corrigendum 1 (ISO 19005-1:2005/Cor 1:2007)
> Technical Corrigendum 2 (ISO 19005-1:2005/Cor.2:2011)
> All relevant TechNotes published by the PDF/A Competence Center.

http://www.pdfa.org

10.4 PDF/A for Archiving 255

10.4.2 Generating PDF/A-conforming Output
Cookbook Code samples for generating PDF/A can be found in the pdfa category of the PDFlib Cookbook.

Creating PDF/A-conforming output with PDFlib is achieved by the following means:
> PDFlib will automatically take care of several formal settings for PDF/A, such as PDF

version number and PDF/A conformance keys.
> The PDFlib client program must explicitly use certain function calls and options as

detailed in Table 10.6.
> The PDFlib client program must refrain from using certain function calls and option

settings as detailed in Table 10.7.
> Additional rules apply when importing pages from existing PDF/A-conforming doc-

uments (see Section 10.4.3, »Importing PDF/A Documents with PDI«, page 258).

If the PDFlib client program obeys to these rules, valid PDF/A output is guaranteed. If
PDFlib detects a violation of the PDF/A creation rules it will throw an exception which
must be handled by the application. No PDF output will be created in case of an error.

Required operations for PDF/A-1b. Table 10.6 lists all operations required to generate
PDF/A-conforming output. The items apply to both PDF/A conformance levels unless
otherwise noted. Not calling one of the required functions while in PDF/A mode will
trigger an exception.

Prohibited and restricted operations. Table 10.7 lists all operations which are prohibit-
ed when generating PDF/A-conforming output. The items apply to both PDF/A con-
formance levels unless otherwise noted. Calling one of the prohibited functions while
in PDF/A mode will trigger an exception. Similarly, if an imported PDF document does
not comform to the current PDF/A output level, the corresponding PDI call will fail.

Table 10.6 Operations which must be applied for PDF/A-1 level A and B conformance

item PDFlib function and option requirements for PDF/A conformance

conformance level The pdfa option in PDF_begin_document() must be set to the required PDF/A conformance level,
i.e. one of PDF/A-1a:2005 or PDF/A-1b:2005.

output condition
(output intent)

PDF_load_iccprofile() with usage=outputintent or PDF_process_pdi() with action=copy-
outputintent (but not both methods) must be called immediately after PDF_begin_document()
if any of the device-dependent colors spaces Gray, RGB, or CMYK is used in the document. If an
output intent is used, an ICC profile must be embedded (unlike PDF/X, unembedded standard
output conditions are not sufficient in PDF/A). Use the embedprofile option of PDF_load_
iccprofile() to embed a profile for a standard output condition.

fonts The embedding option of PDF_load_font() (and other functions which accept this option) must be
true. Note that embedding is also required for the PDF core fonts. The only exception to the em-
bedding requirements applies to fonts which are exclusively used for invisible text (mainly useful
for OCR results. This can be controlled with the optimizeinvisible option.

grayscale color Grayscale images and PDF_setcolor() with a gray color space can only be used if the output con-
dition is a grayscale, RGB, or CMYK device, or if the defaultgray option in PDF_begin_page_ext()
has been set.

RGB color RGB images and PDF_setcolor() with an RGB color space can only be used if the output condition
is an RGB device, or the defaultrgb option in PDF_begin_page_ext() has been set.

CMYK color CMYK images and PDF_setcolor() with a CMYK color space can only be used if the output condi-
tion is a CMYK device, or the defaultcmyk option in PDF_begin_page_ext() has been set.

http://www.pdflib.com/pdflib-cookbook/pdfa

256 Chapter 10: PDF Versions and Standards

Table 10.7 Operations which must be avoided or are restricted to achieve PDF/A conformance

item Prohibited or restricted PDFlib functions and options for PDF/A conformance

annotations PDF_create_annotation(): annotations with type=FileAttachment and Movie must be avoided;
for text annotations the zoom and rotate options must not be set to true. The annotcolor and
interiorcolor options must only be used if an RGB output intent has been specified. The
fillcolor option must only be used if an RGB or CMYK output intent has been specified, and a
corresponding rgb or cmyk color space must be used. The opacity option must not be used.

attachments PDF_begin/end_document(): the attachments option must be avoided.

form fields PDF_create_field() and PDF_create_fieldgroup() for creating form fields must be avoided.

actions and
JavaScript

PDF_create_action(): actions with type=Hide, Launch, Movie, ResetForm, ImportData,
JavaScript must be avoided; for type=name only NextPage, PrevPage, FirstPage, and LastPage
are allowed.

images The OPI-1.3 and OPI-2.0 options and interpolate=true option in PDF_load_image() must be
avoided.

ICC profiles ICC profiles loaded explicitly with PDF_load_iccprofile() or implicitly with PDF_load_image() and
ICC-tagged images must comply to ICC specification ICC.1:1998-09 and its addendum
ICC.1A:1999-04 (internal profile version 2.x).

page sizes There are no strict page size limits in PDF/A. However, it is recommended to keep the page size
(width and height, and all box entries) in the range 3...14400 points (508 cm) to avoid problems
with Acrobat.

templates The OPI-1.3 and OPI-2.0 options in PDF_begin_template_ext() must be avoided.

transparency Soft masks for images must be avoided: the masked option for PDF_load_image() must be avoid-
ed unless the mask refers to a 1-bit image. Images with implicit transparency (alpha channel) are
not allowed; they must be loaded with the ignoremask option of PDF_load_image().
The opacityfill and opacitystroke options for PDF_create_gstate() must be avoided unless
they have a value of 1; if blendmode is used it must be Normal.
The opacity option in PDF_create_annotation() must be avoided.

transparency groups The transparencygroup option of PDF_begin/end_page_ext(), PDF_begin_template_ext(), and
PDF_open_pdi_page() is not allowed.

security The userpassword, masterpassword, and permissions options in PDF_begin_document() must
be avoided.

PDF version /
compatibility

PDF/A is based on PDF 1.4. Operations that require PDF 1.5 or above (such as layers) must be avoid-
ed.

PDF import (PDI) Imported documents must conform to a PDF/A level which is compatible to the output docu-
ment, and must have been prepared according to a compatible output intent (see Table 10.10).

metadata All predefined XMP schemas (see PDFlib API Reference) can be used. In order to use other schemas
(extension schemas) the corresponding description must be embedded using the PDF/A extension
schema container schema.

external content The reference option in PDF_begin_template_ext() and PDF_open_pdi_page() must be avoid-
ed.

file size The file size of the generated PDF document must not exceed 2 GB, and the number of PDF ob-
jects must be smaller than 8.388.607. See Section 3.1.5, »Large PDF Documents«, page 62, for more
details about these limits.

10.4 PDF/A for Archiving 257

Additional requirements and restrictions for PDF/A-1a. When creating PDF/A-1a, all re-
quirements for creating Tagged PDF output as discussed in Section 10.5, »Tagged PDF«,
page 262, must be met. In addition, some operations are not allowed or restricted as de-
tailed in Table 10.8.

The user is responsible for creating suitable structure information; PDFlib does nei-
ther check nor enforce any semantic restrictions. A document which contains all of its
text in a single structure element is technically correct PDF/A-1a, but violates the goal of
faithful semantic reproduction, and therefore the spirit of PDF/A-1a.

Output intents. The output condition defines the intended target device, which is im-
portant for consistent color rendering. Unlike PDF/X, which strictly requires an output
intent, PDF/A allows the specification of an output intent, but does not require it. An
output intent is only required if device-dependent colors are used in the document. The
output intent can be specified with an ICC profile. Output intents can be specified as
follows:

icc = p.load_iccprofile("sRGB", "usage=outputintent");

As an alternative to loading an ICC profile, the output intent can also be copied from an
imported PDF/A document using PDF_process_pdi() with the option action=copyoutput-
intent.

Table 10.8 Additional requirements for PDF/A-1a conformance

item PDFlib function and option equirements for PDF/A-1a conformance

Tagged PDF All requirements for Tagged PDF must be met (see Section 10.5, »Tagged PDF«, page 262).
The following are strongly recommended:
> The Lang option should be supplied in PDF_begin/end_document() to specify the default docu-

ment language.
> The Lang option should be specified properly in PDF_begin_item() for all content items which

differ from the default document language.
> Non-textual content items, e.g. images, should supply an alternate text description using the
Alt option of PDF_begin_item().

> Non-Unicode text, e.g. logos and symbols should have appropriate replacement text specified
in the ActualText option of PDF_begin_item() for the enclosing content item.

> Abbreviations and acronyms should have appropriate expansion text specified in the E option
of PDF_begin_item() for the enclosing content item.

annotations PDF_create_annotation(): the contents option is recommended.

Table 10.9 Additional operations which must be avoided or are restricted for PDF/A-1a conformance

item Prohibited or restricted PDFlib functions and options or PDF/A-1a conformance

fonts The monospace option, unicodemap=false, and autocidfont=false in PDF_load_font() (and
other functions which accept these options) must be avoided.

PDF import (PDI) Imported documents must conform to a PDF/A level which is compatible to the output document
(see Table 10.10), and must have been prepared according to the same output intent.

258 Chapter 10: PDF Versions and Standards

Creating PDF/A and PDF/X at the same time. A PDF/A-1 document can at the same
time conform to PDF/X-1a:2003, PDF/X-3:2003, or PDF/X-4 (but not to PDF/X-4p or
PDF/X-5). In order to create such a combo file supply appropriate values for the pdfa

and pdfx options of PDF_begin_document(), e.g.:

ret = p.begin_document("combo.pdf", "pdfx=PDF/X-4 pdfa=PDF/A-1b:2005");

The output intent must be the same for PDF/A and PDF/X, and must be specified as an
output device ICC profile. PDF/X standard output conditions can only be used in combi-
nation with the embedprofile option.

10.4.3 Importing PDF/A Documents with PDI
Special rules apply when pages from an existing PDF document will be imported into a
PDF/A-conforming output document (see Section 7.2, »Importing PDF Pages with PDI«,
page 182, for details on PDI). All imported documents must conform to a PDF/A con-
formance level which is compatible to the current PDF/A mode according to Table 10.10.

Note PDFlib does not validate PDF input documents for PDF/A compliance, nor can it create valid
PDF/A from arbitrary input PDFs.

If a certain PDF/A conformance level is configured in PDFlib and the imported docu-
ments adhere to a compatible level, the generated output is guaranteed to comply with
the selected PDF/A conformance level. Documents which are incompatible to the cur-
rent PDF/A level will be rejected in PDF_open_pdi_document().

Cookbook A full code sample can be found in the Cookbook topic pdfa/import_pdfa.

If one or more PDF/A documents are imported, they must all have been prepared for a
compatible output condition according to Table 10.11. The output intents in all import-
ed documents must be identical or compatible; it is the user’s responsibility to make
sure that this condition is met.

Table 10.10 Compatible PDF/A input levels for various PDF/A output levels

PDF/A level of the imported document

PDF/A output level PDF/A-1a:2005 PDF/A-1b:2005

PDF/A-1a:2005 – –

PDF/A-1b:2005 allowed allowed

Table 10.11 Output intent compatibility when importing PDF/A documents

output intent of imported document

output intent of generated document none Grayscale RGB CMYK

none yes – – –

Grayscale ICC profile yes yes1

1. Output intent of the imported document and output intent of the generated document must be identical

– –

RGB ICC profile yes – yes1 –

CMYK ICC profile yes – – yes1

http://www.pdflib.com/pdflib-cookbook/pdfa/import-pdfa

10.4 PDF/A for Archiving 259

While PDFlib can correct certain items, it is not intended to work as a full PDF/A valida-
tor or to enforce full PDF/A conformance for imported documents. For example, PDFlib
will not embed fonts which are missing from imported PDF pages.

If you want to combine imported pages such that the resulting PDF output docu-
ment conforms to the same PDF/A conformance level and output condition as the in-
put document(s), you can query the PDF/A status of the imported PDF as follows:

pdfalevel = p.pcos_get_string(doc, "pdfa");

This statement will retrieve a string designating the PDF/A conformance level of the im-
ported document if it conforms to a PDF/A level, or none otherwise. The returned string
can be used to set the PDF/A conformance level of the output document appropriately,
using the pdfa option in PDF_begin_document().

Copying the PDF/A output intent from an imported document. In addition to query-
ing the PDF/A conformance level you can also copy the PDF/A output intent from an
imported document. Since PDF/A documents do not necessarily contain any output in-
tent (unlike PDF/X which requires an output intent) you must first use pCOS to check
for the existence of an output intent before attempting to copy it.

Cookbook A full code sample can be found in the Cookbook topic pdfa/import_pdfa.

This can be used as an alternative to setting the output intent via PDF_load_iccprofile(),
and will copy the imported document’s output intent to the generated output docu-
ment. Copying the output intent works for imported PDF/A and PDF/X documents.

The output intent of the generated output document must be set exactly once, ei-
ther by copying an imported document’s output intent, or by setting it explicitly using
PDF_load_iccprofile() with the usage option set to outputintent. The output intent should
be set immediately after PDF_begin_document().

10.4.4 Color Strategies for creating PDF/A
The PDF/A requirements related to color handling may be confusing. The summary of
color strategies in Table 10.12 can be helpful for planning PDF/A applications. The easi-
est approach which will work in many situations is to use the sRGB output intent pro-
file, since it supports most common color spaces except CMYK. In addition, sRGB is
known to PDFlib internally and thus doesn’t require any external profile data or config-
uration. Color spaces may come from the following sources:

> Images loaded with PDF_load_image()
> Explicit color specifications using PDF_setcolor()
> Color specifications through option lists, e.g. in Textflows
> Interactive elements may specify border colors

In order to create black text output without the need for any output intent profile the
CIELab color space can be used. The Lab color value (0, 0, 0) specifies pure black in a de-
vice-independent manner, and is PDF/A-conforming without any output intent profile
(unlike DeviceGray, which requires an output intent profile). PDFlib will automatically
initialize the current color to black at the beginning of each page. Depending on wheth-
er or not an ICC output intent has been specified, it will use the DeviceGray or Lab color
space for selecting black. Use the following call to manually set Lab black color:

p.setcolor("fillstroke", "lab", 0, 0, 0, 0);

http://www.pdflib.com/pdflib-cookbook/pdfa/import-pdfa/

260 Chapter 10: PDF Versions and Standards

In addition to the color spaces listed in Table 10.12, spot colors can be used subject to the
corresponding alternate color space. Since PDFlib uses CIELab as the alternate color
space for the builtin HKS and PANTONE spot colors, these can always be used with PDF/
A. For custom spot colors the alternate color space must be chosen so that it is compati-
ble with the PDF/A output intent.

Note More information on PDF/A and color spaces can be found in Technical Note 0002 of the PDF/A
Competence Center at www.pdfa.org.

10.4.5 XMP Document Metadata for PDF/A
PDF/A-1 heavily relies on the XMP format for embedding metadata in PDF documents.
ISO 19005-1 refers to the XMP 2004 specification1; older or newer versions of the XMP
specification are not supported. PDF/A-1 supports two kinds of document-level meta-
data: a set of well-known metadata schemas called predefined schemas, and custom ex-
tension schemas. PDFlib will automatically create the required PDF/A conformance en-
tries in the XMP as well as several common entries (e.g. CreationDate).

User-generated document metadata can be supplied with the metadata option of
PDF_begin/end_document(). In PDF/A mode PDFlib verifies whether user-supplied XMP
document metadata conforms to the PDF/A requirements. There are no PDF/A require-
ments for component-level metadata (e.g. page or image).

XMP metadata from imported PDF documents can be fetched from the input PDF via
the pCOS path /Root/Metadata.

Cookbook A full code sample can be found in the Cookbook topic interchange/import_xmp_from_pdf.

Predefined XMP schemas. PDF/A-1 supports all schemas in XMP 2004. These are called
predefined schemas, and are listed in Table 10.13 along with their namespace URI and
the preferred namespace prefix. Only those properties of predefined schemas must be
used which are listed in XMP 2004. A full list of all properties in the predefined XMP
schemas for PDF/A-1 is available from the PDF/A Competence Center.

XMP extension schemas. If your metadata requirements are not covered by the pre-
defined schemas you can define an XMP extension schema. PDF/A-1 describes an exten-
sion mechanism which must be used when custom schemas are to be embedded in a
PDF/A document. Table 10.14 summarizes the schemas which must be used for describ-
ing one or more extension schemas, along with their namespace URI and the required

Table 10.12 PDF/A color strategies

output intent

color spaces which can be used in the document

CIELab1 ICCBased Grayscale2 RGB2 CMYK2

none yes yes – – –

Grayscale ICC profile yes yes yes – –

RGB ICC profile, e.g. sRGB yes yes yes yes –

CMYK ICC profile yes yes yes – yes

1. LZW-compressed TIFF images with CIELab color will be converted to RGB.
2. Device color space without any ICC profile

1. See www.aiim.org/documents/standards/xmpspecification.pdf

http://www.pdfa.org

http://www.aiim.org/documents/standards/xmpspecification.pdf

http://www.pdflib.com/pdflib-cookbook/document-interchange/import-xmp-from-pdf

10.4 PDF/A for Archiving 261

namespace prefix. Note that the namespace prefixes are required (unlike the preferred
namespace prefixes for predefined schemas).

The details of constructing an XMP extension schema for PDF/A-1 are beyond the
scope of this manual. Detailed instructions are available from the PDF/A Competence
Center.

XMP document metadata packages can be supplied to the metadata options of PDF_
begin_document(), PDF_end_document(), or both.

Cookbook Full code and XMP samples can be found in the Cookbook topics pdfa/pdfa_extension_schema
and pdfa/pdfa_extension_schema_with_type.

Table 10.13 Predefined XMP schemas for PDF/A-1

Schema name and description
(see XMP 2004 for details) namespace URI

preferred
namespace prefix

Adobe PDF schema http://ns.adobe.com/pdf/1.3/ pdf

Dublin Core schema http://purl.org/dc/elements/1.1/ dc

EXIF schema for EXIF-specific properties http://ns.adobe.com/exif/1.0/ exif

EXIF schema for TIFF properties http://ns.adobe.com/tiff/1.0/ tiff

Photoshop schema http://ns.adobe.com/photoshop/1.0/ photoshop

XMP Basic Job Ticket schema http://ns.adobe.com/xap/1.0/bj xmpBJ

XMP Basic schema http://ns.adobe.com/xap/1.0/ xmp

XMP Media Management schema http://ns.adobe.com/xap/1.0/mm/ xmpMM

XMP Paged-Text schema http://ns.adobe.com/xap/1.0/t/pg/ xmpTPg

XMP Rights Management schema http://ns.adobe.com/xap/1.0/rights/ xmpRights

Table 10.14 PDF/A-1 extension schema container schema and auxiliary schemas

Schema name and description namespace URI1

1. Note that the namespace URIs are incorrectly listed in ISO 19005-1, and have been corrected in Technical Corrigendum 1.

required
namespace prefix

PDF/A extension schema container schema:
container for all embedded extension sche-
ma descriptions

http://www.aiim.org/pdfa/ns/extension/ pdfaExtension

PDF/A schema value type: describes a single
extension schema with an arbitrary num-
ber of properties

http://www.aiim.org/pdfa/ns/schema# pdfaSchema

PDF/A property value type: describes a sin-
gle property

http://www.aiim.org/pdfa/ns/property# pdfaProperty

PDF/A ValueType value type: describes a
custom value type used in extension sche-
ma properties; only required if types be-
yond the XMP 2004 list of types are used.

http://www.aiim.org/pdfa/ns/type# pdfaType

PDF/A field type schema: describes a field in
a structured type

http://www.aiim.org/pdfa/ns/field# pdfaField

http://www.pdflib.com/pdflib-cookbook/pdfa/pdfa-extension-schema

http://www.pdflib.com/pdflib-cookbook/pdfa/pdfa-extension-schema-with-type

262 Chapter 10: PDF Versions and Standards

10.5 Tagged PDF
Tagged PDF is a certain kind of enhanced PDF which enables additional features in PDF
viewers, such as accessibility support, text reflow, reliable text extraction and conver-
sion to other document formats such as RTF or XML.

PDFlib supports Tagged PDF generation. However, Tagged PDF can only be created if
the client provides information about the document’s internal structure, and obeys cer-
tain rules when generating PDF output. PDFlib supports standard tag names (a list of
standard tags can be found in the PDFlib API Reference) as well as custom tags. Custom
tags require a role map which maps each custom tag to one of the standard tag names.

Cookbook Code samples regarding Tagged PDF issues can be found in the document_interchange category
of the PDFlib Cookbook.

10.5.1 Generating Tagged PDF with PDFlib
Cookbook A full code sample can be found in the Cookbook topic document_interchange/starter_tagged.

Required operations. Table 10.15 lists all operations required to generate Tagged PDF
output. Not calling one of the required functions while in Tagged PDF mode will trigger
an exception.

Unicode mappings. All text contents in Tagged PDF should have proper Unicode map-
pings to make sure that the document is accessible (e.g. can be read aloud by Software)
and the text can be searched and extracted. Since PDFlib internally creates Unicode
mappings for almost all font/encoding combinations, the PDF output will technically
have Unicode mappings. However, the PUA values created for some symbols will not re-
sult in reusable text. In order to improve the searchability of text it is recommended to
provide alternate text for the content via the ActualText or Alt options in PDF_begin_
item(). In non-Tagged PDF mode this can be achieved with the ActualText option of PDF_
begin_mc().

Page content ordering. The ordering of text, graphics, and image operators which de-
fine the contents of the page is referred to as the content stream ordering; the content
ordering defined by the logical structure tree is referred to as logical ordering. Tagged
PDF generation requires that the client obeys certain rules regarding content ordering.

The natural and recommended method is to sequentially generate all constituent
parts of a structure element, and then move on to the next element. In technical terms,
the structure tree should be created during a single depth-first traversal.

Table 10.15 Operations which must be applied for generating Tagged PDF

item PDFlib function and option requirements for Tagged PDF compatibility

Tagged PDF output The tagged option in PDF_begin_document() must be set to true.

document language The lang option in PDF_begin_document() should be set to specify the natural language of the
document. It should initially be set for the document as a whole, but can later be overridden for
individual items on an arbitrary structure level.

structure
information

Structure information and artifacts must be identified as such. All content-generating API func-
tions should be enclosed by PDF_begin_item() / PDF_end_item() pairs.

http://www.pdflib.com/pdflib-cookbook/document-interchange

http://www.pdflib.com/pdflib-cookbook/document-interchange/starter-tagged

10.5 Tagged PDF 263

A different method which should be avoided is to output parts of the first element,
switch to parts of the next element, return to the first, etc. In this method the structure
tree is created in multiple traversals, where each traversal generates only parts of an el-
ement.

Importing pages with PDI. Pages from Tagged PDF documents or other PDF docu-
ments containing structure information cannot be imported in Tagged PDF mode since
the imported document structure would interfere with the generated structure.

Pages from unstructured documents can be imported, however. Note that they will
be treated »as is« by Acrobat’s accessibility features unless they are tagged with appro-
priate ActualText.

Artifacts. Graphic or text objects which are not part of the author’s original content
are called artifacts. Artifacts should be identified as such using the Artifact pseudo tag,
and classified according to one of the following categories:

> Pagination: features such as running heads and page numbers
> Layout: typographic or design elements such as rules and table shadings
> Page: production aids, such as trim marks and color bars.

Although artifact identification is not strictly required, it is strongly recommended to
aid text reflow and accessibility.

Inline items. PDF defines block-level structure elements (BLSE) and inline-level struc-
ture elements (ILSE) (see the PDFlib API Reference for a precise definition). BLSEs may con-
tain other BLSEs or actual content, while ILSEs always directly contain content. In addi-
tion, PDFlib makes the following distinction:

The regular vs. inline decision for ASpan items is under client control via the inline op-
tion of PDF_begin_item(). Forcing an accessibility span to be regular (inline=false) is rec-
ommended, for example, when a paragraph which is split across several pages contains
multiple languages. Alternatively, the item could be closed, and a new item started on
the next page. Inline items must be closed on the page where they have been opened.

Table 10.16 Regular and inline items

regular items inline items

affected items all grouping elements and
BLSEs

all ILSEs and non-structural
tags (pseudo tags)

regular/inline status can be changed no only for ASpan items

part of the document’s structure tree yes no

can cross page boundaries yes no

can be interrupted by other items yes no

can be suspended and activated yes no

can be nested to an arbitrary depth yes only with other inline items

264 Chapter 10: PDF Versions and Standards

Recommended operations. Table 10.17 lists all operations which are optional, but rec-
ommended when generating Tagged PDF output. These features are not strictly re-
quired, but will enhance the quality of the generated Tagged PDF output and are there-
fore recommended.

10.5.2 Creating Tagged PDF with direct Text Output and Textflows

Minimal Tagged PDF sample. The following sample code creates a very simplistic
Tagged PDF document. Its structure tree contains only a single P element. The code uses
the autospace feature to automatically generate space characters between fragments of
text:

if (p.begin_document("hello-tagged.pdf", "tagged=true") == -1)
throw new Exception("Error: " + p.get_errmsg());

/* automatically create spaces between chunks of text */
p.set_parameter("autospace", "true");

/* open the first structure element as a child of the document structure root (=0) */
id = p.begin_item("P", "Title={Simple Paragraph}");

p.begin_page_ext(0, 0, "width=a4.width height=a4.height");
font = p.load_font("Helvetica-Bold", "unicode", "");

p.setfont(font, 24);
p.show_xy("Hello, Tagged PDF!", 50, 700);
p.continue_text("This PDF has a very simple");
p.continue_text("document structure.");

p.end_page_ext("");
p.end_item(id);
p.end_document("");

Table 10.17 Operations which are recommended for generating Tagged PDF

item Recommended PDFlib functions and options for Tagged PDF compatibility

Unicode mappings Provide alternate text for symbols via the ActualText or Alt options of PDF_begin_item().

hyphenation Word breaks (separating words in two parts at the end of a line) should be presented using a soft
hyphen character (U+00AD) as opposed to a hard hyphen (U+002D)

word boundaries Words should be separated by space characters (U+0020) even if this would not strictly be re-
quired for positioning. The autospace parameter can be used for automatically generating space
characters after each call to one of the show functions.

artifacts In order to distinguish real content from page artifacts, artifacts should be identified as such us-
ing PDF_begin_item() with tag=Artifact.

Type 3 font
properties

The familyname, stretch, and weight options of PDF_begin_font() should be supplied with rea-
sonable values for all Type 3 fonts used in a Tagged PDF document.

interactive elements Interactive elements, e.g. links, should be included in the document structure and made accessi-
ble if required, e.g. by supplying alternate text. The tab order for interactive elements can be
specified with the taborder option of PDF_begin/end_document() (this is not necessary if the in-
teractive elements are properly included in the document structure).

10.5 Tagged PDF 265

Generating Tagged PDF with Textflow. The Textflow feature (see Section 8.2, »Multi-
Line Textflows«, page 201) offers powerful features for text formatting. Since individual
text fragments are no longer under client control, but will be formatted automatically
by PDFlib, special care must be taken when generating Tagged PDF with textflows:

> Textflows can not contain individual structure elements, but the complete contents
of a single Textflow fitbox can be contained in a structure element.

> All parts of a Textflow (all calls to PDF_fit_textflow() with a specific Textflow handle)
should be contained in a single structure element.

> Since the parts of a Textflow could be spread over several pages which could contain
other structure items, attention should be paid to choosing the proper parent item
(rather than using a parent parameter of -1, which may point to the wrong parent el-
ement).

> If you use the matchbox feature for creating links or other annotations in a Textflow
it is difficult to maintain control over the annotation’s position in the structure tree.

10.5.3 Activating Items for complex Layouts
In order to facilitate the creation of structure information with complex non-linear
page layouts PDFlib supports a feature called item activation. It can be used to activate a
previously created structure element in situations where the developer must keep track
of multiple structure branches, where each branch could span one or more pages. Typi-
cal situations which will benefit from this technique are the following:

> multiple columns on a page
> insertions which interrupt the main text, such as summaries or inserts
> tables and illustrations which are placed between columns.

The activation feature allows an improved method of generating page content in such
situations by switching back and forth between logical branches. This is much more ef-
ficient than completing each branch one after the other. Let’s illustrate the activation
feature using the page layout shown in Figure 10.1. It contains two main text columns,
interrupted by a table and an inserted annotation in a box (with dark background) as
well as header and footer.

Generating page contents in logical order. From the logical structure point of view the
page content should be created in the following order: left column, right column (on the
lower right part of the page), table, insert, header and footer. The following pseudo code
implements this ordering:

/* create page layout in logical structure order */

id_art = p.begin_item("Art", "Title=Article");

id_sect1 = p.begin_item("Sect", "Title={First Section}");
/* 1 create top part of left column */
p.set_text_pos(x1_left, y1_left_top);
...
/* 2 create bottom part of left column */
p.set_text_pos(x1_left, y1_left_bottom);
...
/* 3 create top part of right column */
p.set_text_pos(x1_right, y1_right_top);

266 Chapter 10: PDF Versions and Standards

...
p.end_item(id_sect1);

id_sect2 = p.begin_item("Sect", "Title={Second Section}");
/* 4 create bottom part of right column */
p.set_text_pos(x2_right, y2_right);
...
/* second section may be continued on next page(s) */

p.end_item(id_sect2);

String optlist = "Title=Table parent=" + id_art;
id_table = p.begin_item("Table", optlist);

/* 5 create table structure and content */
p.set_text_pos(x_start_table, y_start_table);
...

p.end_item(id_table);

optlist = "Title=Insert parent=" + id_art;
id_insert = p.begin_item("P", optlist);

/* 6 create insert structure and content */
p.set_text_pos(x_start_table, y_start_table);
...

p.end_item(id_insert);

id_artifact = p.begin_item("Artifact", "");
/* 7+8 create header and footer */
p.set_text_pos(x_header, y_header);
...
p.set_text_pos(x_footer, y_footer);
...

p.end_item(id_artifact);

/* article may be continued on next page(s) */
...
p.end_item(id_art);

Fig. 10.1
Creating a complex

page layout in logical
structure order (left)

and in visual order
(right). The right vari-
ant uses item activa-
tion for the first sec-

tion before continuing
fragments 4 and 6.

1

2 3
4

5
6

7

2

4 6
7

3
5

1

88

10.5 Tagged PDF 267

Generating page contents in visual order. The »logical order« approach forces the cre-
ator to construct the page contents in logical order even if it might be easier to create it
in visual order: header, left column upper part, table, left column lower part, insert,
right column, footer. Using PDF_activate_item() this ordering can be implemented as
follows:

/* create page layout in visual order */

id_header = p.begin_item("Artifact", "");
/* 1 create header */
p.set_text_pos(x_header, y_header);
...

p.end_item(id_header);

id_art = p.begin_item("Art", "Title=Article");

id_sect1 = p.begin_item("Sect", "Title = {First Section}");
/* 2 create top part of left column */
p.set_text_pos(x1_left, y1_left_top);
...

String optlist = "Title=Table parent=" + id_art;
id_table = p.begin_item("Table", optlist);

/* 3 create table structure and content */
p.set_text_pos(x_start_table, y_start_table);
...

p.end_item(id_table);

/* continue with first section */
p.activate_item(id_sect1);

/* 4 create bottom part of left column */
p.set_text_pos(x1_left, y1_left_bottom);
...

optlist = "Title=Insert parent=" + id_art;
id_insert = p.begin_item("P", optlist);

/* 5 create insert structure and content */
p.set_text_pos(x_start_table, y_start_table);
...

p.end_item(id_insert);

/* still more contents for the first section */
p.activate_item(id_sect1);

/* 6 create top part of right column */
p.set_text_pos(x1_right, y1_right_top);
...

p.end_item(id_sect1);

id_sect2 = p.begin_item("Sect", "Title={Second Section}");
/* 7 create bottom part of right column */
p.set_text_pos(x2_right, y2_right);
...
/* second section may be continued on next page(s) */

p.end_item(id_sect2);

id_footer = p.begin_item("Artifact", "");
/* 8 create footer */
p.set_text_pos(x_footer, y_footer);

268 Chapter 10: PDF Versions and Standards

...
p.end_item(id_footer);

/* article may be continued on next page(s) */
...
p.end_item(id_art);

With this ordering of structure elements the main text (which spans one and a half col-
umns) is interrupted twice for the table and the insert. Therefore it must also be activat-
ed twice using PDF_activate_item().

The same technique can be applied if the content spans multiple pages. For example,
the header or other inserts could be created first, and then the main page content ele-
ment is activated again.

10.5.4 Using Tagged PDF in Acrobat
This section mentions observations which we made while testing Tagged PDF output in
Adobe Acrobat 8/9/X. The observations below are mostly related to bugs or inconsistent
behavior in Acrobat. Unless mentioned otherwise the observations relate to Acrobat 8 ,
9, and X. A workaround is provided in cases where we found one.

Acrobat’s Reflow Feature. Acrobat allows Tagged PDF documents to reflow, i.e. to ad-
just the page contents to the current window size. While testing Tagged PDF we made
several observations regarding the reflow feature in Acrobat:

> The order of content on the page should follow the desired reflow order.
> Symbol (non-Unicode fonts) can cause Reflow in Acrobat 8 to crash, and can disable

Reflow in Acrobat 9. For this reason it is recommended to put the text in a Figure ele-
ment. This problem is fixed in Acrobat X.

> BLSEs may contain both structure children and direct content elements. In order for
the Reflow feature (as well as Accessibility checker and Read Aloud) to work, it is rec-
ommended to put the direct elements before the first child elements.
Structure items with mixed types of children (i.e., both page content sequences and
non-inline structure elements) should be avoided since otherwise Reflow may fail.

> The BBox option should be provided for tables and illustrations. The BBox should be
exact; however, for tables only the lower left corner has to be set exactly. As an alter-
native to supplying a BBox entry, graphics could also be created within a BLSE tag,
such as P, H, etc. However, vector graphics will not be displayed when Reflow is ac-
tive. If the client does not provide the BBox option (and relies on automatic BBox gen-
eration instead) all table graphics, such as cell borders, should be drawn outside the
table element.

> Table elements should only contain table-related elements (TR, TD, TH, THead, TBody,
etc.) as child elements, but not any others. For example, using a Caption element
within a table could result in reflow problems, although it would be correct Tagged
PDF.

> Acrobat 8 and 9: Content covered by the Private tag will not be exported to other for-
mats. However, they are subject to Reflow and Read Aloud, and illustrations within
the Private tag must therefore have alternate text.

> Reflow seems to have problems with PDF documents generated with the topdown
option.

10.5 Tagged PDF 269

> If an activated item contains only content, but no structure children, Reflow may
fail, especially if the item is activated on another page. This problem can be avoided
by wrapping the activated item with a non-inline Span tag.

> Acrobat cannot reflow pages with form fields (including digital signature fields), and
will display a warning in this case.

> Acrobat 8: every reflow problem disables the Reflow feature and disables its menu
item.

Acrobat’s Accessibility Checker. Acrobat’s accessibility checker can be used to deter-
mine the suitability of Tagged PDF documents for consumption with assisting technol-
ogy such as a screenreader. Some hints:

> Most importantly, all page content should be tagged. Content outside the tag struc-
ture will not be accessible, and will therefore be flagged by Acrobat’s accessibility
checker.

> In order to make form fields accessible, use the tooltip option of PDF_create_field()
and PDF_create_fieldgroup().

> If a page contains annotations, Acrobat reports that »tab order may be inconsistent
with the structure order«.

> The Alt tag is ignored for Figure tags.

Export to other formats with Acrobat. Tagged PDF can significantly improve the re-
sult of saving PDF documents in formats such as XML or RTF with Acrobat.

> Acrobat 8/9: If an imported PDF page has the Form tag, the text provided with the
ActualText option will be exported to other formats in Acrobat, while the text provid-
ed with the Alt tag will be ignored. However, the Read Aloud feature works for both
options.

> Acrobat X extracts the content «as is«: the Alt and ActualText options are ignored, as
well as Private and NonStruct tags.

> Acrobat 8/9 only: the contents of a NonStruct tag will not be exported to HTML 4.01
CSS 1.0 (but it will be used for HTML 3.2 export).

> Alternate text should be supplied for ILSEs (such as Code, Quote, or Reference). If the
Alt option is used, Read Aloud will read the provided text, but the real content will be
exported to other formats. If the ActualText option is used, the provided text will be
used both for reading and exporting.

Acrobat’s Read Aloud Feature. Tagged PDF will enhance Acrobat’s capability to read
text aloud.

> When supplying Alt or ActualText it is useful to include a space character at the begin-
ning. This allows the Read Aloud feature to distinguish the text from the preceding
sentence. For the same reason, including a period character ’.’ at the end may also be
useful. Otherwise Read Aloud will try to read the last word of the preceding sentence
in combination with the first word of the alternate text.

270 Chapter 10: PDF Versions and Standards

11.1 Installing the PDFlib Block Plugin 271

11 PPS and the PDFlib Block Plugin
The PDFlib Personalization Server (PPS) supports a template-driven PDF workflow for
variable data processing. Using the Block concept, imported pages can be populated
with variable amounts of single- or multi-line text, images, or PDF graphics. This can be
used to easily implement applications which require customized PDF documents, for
example:

> mail merge
> flexible direct mailings
> transactional and statement processing
> business card personalization

You can create and edit Blocks interactively with the PDFlib Block Plugin, convert exist-
ing PDF form fields to PDFlib Blocks with the form field conversion Plugin. Blocks can be
filled with PPS. The results of Block filling with PPS can be previewed in Acrobat since
the Block Plugin contains an integrated version of PPS.

Note Block processing requires the PDFlib Personalization Server (PPS). Although PPS is contained in
all PDFlib packages, you must purchase a license key for PPS; a PDFlib or PDFlib+PDI license key
is not sufficient. The PDFlib Block Plugin for Adobe Acrobat is required for creating Blocks in
PDF templates interactively.

Cookbook Code samples regarding variable data and Blocks can be found in the blocks category of the
PDFlib Cookbook.

11.1 Installing the PDFlib Block Plugin
The Block Plugin works with the following Acrobat versions:

> Acrobat 8/9/X/XI Standard, Professional, and Pro Extended on Windows
> Acrobat 8/9/X/XI Professional on the Mac.

The Plugin doesn’t work with Acrobat Elements or any version of Adobe Reader.

Installing the PDFlib Block Plugin for Acrobat 8/9/X/XI on Windows. To install the
PDFlib Block Plugin and the PDF form field conversion plugin in Acrobat, the plugin
files must be placed in a subdirectory of the Acrobat plugin folder. This is done auto-
matically by the plugin installer, but can also be done manually. The plugin files are
called Block.api and AcroFormConversion.api. A typical location of the plugin folder looks
as follows:

C:\Program Files\Adobe\Acrobat 11.0\Acrobat\plug_ins\PDFlib Block Plugin

Installing the PDFlib Block Plugin for Acrobat 8/9/X/XI on the Mac. With Acrobat on
the Mac the plugin folder is not directly visible in the Finder. Instead of dragging the
plugin files to the plugin folder use the following steps (make sure that Acrobat is not
running):

> Extract the plugin files to a folder by double-clicking the disk image.
> Locate the Adobe Acrobat application icon in the Finder. It is usually located in a fold-

er which has a name similar to the following:

http://www.pdflib.com/pdflib-cookbook/block-handling-and-pps

272 Chapter 11: PPS and the PDFlib Block Plugin

/Applications/Adobe Acrobat 11.0

> Single-click on the Acrobat application icon, open the context icon, and select Show
Package Contents.

> In the Finder window that pops up navigate to the Contents/Plug-ins folder and copy
the PDFlib Block Plugin folder which has been created in the first step into this folder.

Multi-lingual Interface. The PDFlib Block Plugin supports multiple languages in the
user interface. Depending on the application language of Acrobat, the Block Plugin will
choose its interface language automatically. Currently English, German and Japanese
interfaces are available. If Acrobat runs in any other language mode, the Block Plugin
will use the English interface.

Troubleshooting. If the PDFlib Block Plugin doesn’t seem to work check the following:
> Make sure that in Edit, Preferences, [General...], General the box Use only certified plug-

ins is unchecked. The plugins will not be loaded if Acrobat is running in Certified
Mode.

> Some PDF forms created with Adobe Designer may prevent the Block Plugin as well
as other Acrobat plugins from working properly since they interfere with Acrobat’s
internal security model. For this reason we suggest to avoid Designer’s static PDF
forms, and only use dynamic PDF forms as input for the Block Plugin.

11.2 Overview of the Block Concept 273

11.2 Overview of the Block Concept
11.2.1 Separation of Document Design and Program Code

PDFlib Blocks make it easy to place variable text, images, or graphics on imported pages.
In contrast to simple PDF pages, pages with Blocks intrinsically carry information about
the required processing which will be performed later on the server side. The Block con-
cept separates the following tasks:

> The designer creates the page layout and specifies the location of variable page ele-
ments along with relevant properties such as font size, color, or image scaling. After
creating the layout as a PDF document, the designer uses the PDFlib Block Plugin for
Acrobat to specify variable data Blocks and their associated properties.

> The programmer writes code to connect the information contained in PDFlib Blocks
on imported PDF pages with dynamic information, e.g., database fields. The pro-
grammer doesn’t need to know any details about a Block (whether it contains a
name or a ZIP code, the exact location on the page, its formatting, etc.) and is there-
fore independent from any layout changes. PPS will take care of all Block-related de-
tails based on the Block properties found in the file.

In other words, the code written by the programmer is »data-blind« – it is generic and
does not depend on the particulars of any Block. For example, the designer can move
the Block with name of the addressee in a mailing to a different location on the page, or
change the font size. The generic Block handling code doesn’t need to be changed, and
will generate correct output once the designer changed the Block properties with the
Acrobat plugin to use the first name instead of the last name.

As an intermediate step Block filling can be previewed in Acrobat to accelerate the
development and test cycles. Block previews are based on default data (e.g. a string or an
image file name) which is specified in the Block definitions.

11.2.2 Block Properties
The behavior of Blocks can be controlled with Block properties. Properties are assigned
to a Block with the Block Plugin.

Standard Block properties. Blocks are defined as rectangles on the page which are as-
signed a name, a type, and an open set of properties which will later be processed by
PPS. The name is an arbitrary string which identifies the Block, such as firstname,
lastname, or zipcode. PPS supports different kinds of Blocks:

> Textline Blocks hold a single line of textual data which will be processed with the Text-
line output method in PPS.

> Textflow Blocks hold one or more lines of textual data. Multi-line text will be format-
ted with the Textflow formatter in PPS. Textflow Blocks can be linked so that one
Block holds the overflow text of the previous Block (see »Linking Textflow Blocks«,
page 291).

> Image Blocks hold a raster image. This is similar to placing a TIFF or JPEG file in a DTP
application.

> PDF Blocks hold arbitrary PDF graphics imported from a page in another PDF docu-
ment. This is similar to placing a PDF page in a DTP application.

274 Chapter 11: PPS and the PDFlib Block Plugin

Blocks can carry a number of standard properties depending on their type. Properties
can be created and modified with the Block Plugin (see Section 11.3.2, »Editing Block
Properties«, page 280). A full list of standard Block properties can be found in Section
11.6, »Block Properties«, page 294. For example, a text Block can specify the font and size
of the text, an image or PDF Block can specify the scaling factor or rotation PPS offers
dedicated functions for processing the Block types, e.g. PDF_fill_textblock(). These func-
tions search a placed PDF page for a Block by its name, analyze its properties, and place
client-supplied data (single- or multi-line text, raster image, or PDF page) on the new
page according to the specified Block properties. The programmer can override Block
properties by specifying the corresponding options to the Block filling functions.

Properties for default contents. Special Block properties can be defined which hold
the default contents of a Block, i.e. the text, image or PDF contents which will be placed
in the Block if no variable data has been supplied to the Block filling functions, or in sit-
uations where the Block contents are currently constant, but may change in the next
print run.

Default properties are also used by the Preview feature of the Block Plugin (see Sec-
tion 11.4, »Previewing Blocks in Acrobat«, page 286).

Custom Block properties. Standard Block properties make it possible to quickly imple-
ment variable data processing applications, but they are restricted to the set of proper-
ties which are internally known to PPS and can automatically be processed. In order to
provide more flexibility, the designer can also assign custom properties to a Block.
These can be used to extend the Block concept in order to match the requirements of
more advanced variable data processing applications.

There are no rules for custom properties since PPS will not process custom proper-
ties in any way, except making them available to the client. The client code can retrieve
the value of custom properties and process it as appropriate. Based on a custom proper-
ty of a Block the application may make layout-related or data-gathering decisions. For
example, a custom property for a scientific application could specify the number of dig-
its for numerical output, or a database field name may be defined as a custom Block
property for retrieving the data corresponding to this Block.

11.2.3 Why not use PDF Form Fields?
Experienced Acrobat users may ask why we implemented a new Block concept instead
of relying on the existing form field mechanism available in PDF. The primary distinc-
tion is that PDF form fields are optimized for interactive filling, while PDFlib Blocks are
targeted at automated filling. Applications which need both interactive and automated
filling can combine PDF forms and PDFlib Blocks with the form field conversion plugin
(see Section 11.3.4, »Converting PDF Form Fields to PDFlib Blocks«, page 282).

Although there are many parallels between both concepts, PDFlib Blocks offer sever-
al advantages over PDF form fields as detailed in Table 11.1.

11.2 Overview of the Block Concept 275

Table 11.1 Comparison of PDF form fields and PDFlib Blocks

feature PDF form fields PDFlib Blocks

design objective for interactive use for automated filling

typographic features (beyond
choice of font and font size)

– kerning, word and character spacing, underline/
overline/strikeout

OpenType layout features – dozens of OpenType layout features, e.g. ligatures,
swash characters, oldstyle figures

complex script support limited shaping and bidirectional formatting, e.g. for Ara-
bic and Devanagari

font control font embedding font embedding and subsetting, encoding

text formatting controls left-, center-, right-aligned left-, center-, right-aligned, justified; various for-
matting algorithms and controls; inline options
can be used to control the appearance of text

change font or other text attributes
within text

– yes

merged result is integral part of PDF
page description

– yes

users can edit merged field contents yes no

extensible set of properties – yes (custom Block properties)

use image files for filling – BMP, CCITT, GIF, PNG, JPEG, JBIG2, JPEG 2000, TIFF

color support RGB grayscale, RGB, CMYK, Lab, spot color (HKS and
Pantone spot colors integrated in the Block Plugin)

PDF/X and PDF/A PDF/X: no
PDF/A: restricted

yes (both Block container and merged results)

graphics and text properties can be
overridden upon filling

– yes

transparent contents – yes

Text Blocks can be linked – yes

276 Chapter 11: PPS and the PDFlib Block Plugin

11.3 Editing Blocks with the Block Plugin
11.3.1 Creating Blocks

Activating the Block tool. The Block Plugin for creating PDFlib Blocks is similar to the
form tool in Acrobat. All Blocks on the page will be visible when the Block tool is active.
When another Acrobat tool is selected the Blocks will be hidden, but they are still
present. You can activate the Block tool in the following ways:

> By clicking the Block icon in the Tools, Advanced Editing pane (Acrobat X/XI) or
the Advanced Editing toolbar (Acrobat 9). If Acrobat does not display this toolbar you
can enable it via View, Tools, Plug-In Advanced Editing (Acrobat X) or View, Toolbars,
Advanced Editing (Acrobat 9).

> Via the menu item PDFlib Blocks, PDFlib Block Tool.

Creating and modifying Blocks. When the Block tool is active you can drag the cross-
hair pointer to create a Block at the desired position on the page and with the desired
size. Blocks are always rectangular with edges parallel to the page edges (use the rotate
property for Block contents which are not parallel to the page edges). After dragging a
Block rectangle the Block properties dialog appears where you can edit the properties of
the Block (see Section 11.3.2, »Editing Block Properties«, page 280). The Block tool auto-
matically creates a synthetic Block name which can be changed in the properties dialog.
Block names must be unique on a page, but can be repeated on another page.

You can change the Block type in the top area to one of Textline, Textflow, Image, or
PDF. Different colors are used for representing the Block types (see Figure 11.1). The Block
Properties dialog hierarchically organizes the properties in groups and subgroups de-
pending on the Block type.

Note After you added Blocks or made changes to existing Blocks in a PDF, use Acrobat’s »Save as...«
Command (as opposed to »Save«) to achieve smaller file sizes.

Note When using the Acrobat plugin Enfocus PitStop to edit documents which contain PDFlib Blocks
you may see the message »This document contains PieceInfo from PDFlib. Press OK to continue
editing or Cancel to abort.« This message can be ignored; it is safe to click OK in this situation.

Selecting Blocks. Several Block operations, such as copying, moving, deleting, or edit-
ing Properties, work with one or more selected Blocks. You can select Blocks with the
Block tool as follows:

> To select a single Block simply click on it.
> To select multiple Blocks hold down the Shift key while clicking on the second and

subsequent Block.
> Press Ctrl-A (on Windows) or Cmd-A (on the Mac) or Edit, Select All to select all Blocks

on a page.

The context menu. When one or more Blocks are selected you can open the context
menu to quickly access Block-related functions (which are also available in the PDFlib
Blocks menu). To open the context menu, click on the selected Block(s) with the right
mouse button on Windows, or Ctrl-click the Block(s) on the Mac. For example, to delete a
Block, select it with the Block tool and press the Delete key, or use Edit, Delete in the con-
text menu.

11.3 Editing Blocks with the Block Plugin 277

If you right-click (or Ctrl-click on the Mac) an area on the page where no Block is lo-
cated the context menu contains entries for creating a Block Preview and for configur-
ing the Preview feature.

Block size and position. Using the Block tool you can move one or more selected
Blocks to a different position. Hold down the Shift key while dragging a Block to restrain
the positioning to horizontal and vertical movements. This may be useful for exactly
aligning Blocks. When the pointer is located near a Block corner, the pointer will change
to an arrow and you can resize the Block. To adjust the position or size of multiple
Blocks, select two or more Blocks and use the Align, Center, Distribute, or Size commands
from the PDFlib Blocks menu or the context menu. The position of one or more Blocks
can also be changed in small increments by using the arrow keys.

Alternatively, you can enter numerical Block coordinates in the properties dialog.
The origin of the coordinate system is in the upper left corner of the page. The coordi-
nates will be displayed in the unit which is currently selected in Acrobat:

> To change the display units in Acrobat 9/X/XI proceed as follows: go to Edit, Prefer-
ences, [General...], Units & Guides, Page & Ruler Units and choose one of Points, Inches,
Millimeters, Picas, Centimeters.

> To display cursor coordinates use View, Show/Hide, Cursor Coordinates (Acrobat X/XI)
or View, Cursor Coordinates (Acrobat 9).

Note that the selected unit will only affect the Rect property, but not any other numeri-
cal properties (e.g. fontsize).

Fig. 11.1
Visualization of Blocks

278 Chapter 11: PPS and the PDFlib Block Plugin

Using a grid to position Blocks. You can take advantage of Acrobat’s grid feature for
precisely positioning and resizing Blocks:

> Display the grid: View, Show/Hide, Rulers & Grids, Grid (Acrobat X/XI) or View, Grid (Ac-
robat 9);

> Enable grid snapping: View, Show/Hide, Rulers & Grids, Snap to Grid (Acrobat X/XI) or
View, Snap to Grid (Acrobat 9);

> Change the grid (see Figure 11.3): go to Edit, Preferences, [General...], Units & Guides. Here
you can change the spacing and position of the grid as well as the color of the grid
lines.

If Snap to Grid is enabled the size and position of Blocks will be aligned with the config-
ured grid. Snap to Grid affects newly generated Blocks as well as existing Blocks which
are moved or resized with the Block tool.

Fig. 11.2
The Block properties dialog

11.3 Editing Blocks with the Block Plugin 279

Creating Blocks by selecting an image or graphic. As an alternative to manually drag-
ging Block rectangles you can use existing page contents to define the Block size. First,
make sure that the menu item PDFlib Blocks, Click Object to define Block is enabled. Now
you can use the Block tool to click on an image on the page in order to create a Block
with the same size and location as the image. You can also click on other graphical ob-
jects, and the Block tool will try to select the surrounding graphic (e.g., a logo). The Click
Object feature is intended as an aid for defining Blocks. If you want to reposition or re-
size the Block you can do so afterwards without any restriction. The Block will not be
locked to the image or graphics object which was used as a positioning aid.

The Click Object feature will try to recognize which vector graphics and images form a
logical element on the page. When some page content is clicked, its bounding box (the
surrounding rectangle) will be selected unless the object is white or very large. In the
next step other objects which are partially contained in the detected rectangle will be
added to the selected area, and so on. The final area will be used as the basis for the gen-
erated Block rectangle. The end result is that the Click Object feature will try to select
complete graphics, not only individual lines.

Automatically detect font properties. The Block Plugin can analyze the underlying
font which is present at the location where a Textline or Textflow Block is positioned,
and can automatically fill in the corresponding properties of the Block:

fontname, fontsize, fillcolor, charspacing, horizscaling, wordspacing,
textrendering, textrise

Since automatic detection of font properties can result in undesired behavior if the
background shall be ignored, it can be activated or deactivated using PDFlib Blocks, Detect
underlying font and color. By default this feature is turned off.

Fig. 11.3
Grid preferences
in Acrobat

280 Chapter 11: PPS and the PDFlib Block Plugin

Locking Blocks. Blocks can be locked to protect them against accidentally moving, re-
sizing, or deleting. With the Block tool active, select the Block and choose Lock from its
context menu. While a Block is locked you cannot move, resize, or delete it, nor edit its
properties.

11.3.2 Editing Block Properties
When you create a new Block, double-click an existing one, or choose Properties from a
Block’s context menu, the properties dialog will appear where you can edit all settings
related to the selected Block (see Figure 11.2). As detailed in Section 11.6, »Block Proper-
ties«, page 294, there are several groups of properties available, subject to the Block
type.
The Apply button will only be enabled if you changed one or more properties in the dia-
log. The Apply button will be inactive for locked Blocks.

Note Some properties may be inactive depending on the Block type and certain property settings.
For example, the property subgroup Ruler tabs for hortabmethod=ruler where you can edit
tabulator settings is enabled only if the hortabmethod property in the Textflow group is set to
ruler.

To change a property’s value enter the desired number or string in the property’s input
area (e.g. linewidth), choose a value from a drop-down list (e.g. fitmethod, orientate), or se-
lect a font, color value or file name by clicking the »...« button at the right-hand side of
the dialog (e.g. backgroundcolor, defaultimage). For the fontname property you can either
choose from the list of fonts installed on the system or type a custom font name. Re-
gardless of the method for entering a font name, the font must be available on the sys-
tem where the Blocks will be filled with PPS.

Modified properties will in be displayed in bold face in the Block Properties dialog. If
any of the properties in a Block has been modified, the suffix (*) will be appended to the
displayed Block name. When you are done editing properties click the Apply button to
update the Block. The properties just defined will be stored in the PDF file as part of the
Block definition.

Stacked Blocks. Overlapping Blocks can be difficult to select since clicking an area will
always select the topmost Block. In this situation the Choose Block entry in the context
menu can be used to select one of the Blocks by name. As soon as a Block has been se-
lected this way, the next action within its area will not affect other Blocks, but only the
selected one. For example, press Enter to edit the selected Block’s properties. This way
Block properties can easily be edited even for Blocks which are partially or completely
covered by other Blocks.

Using and restoring repeated values of Block properties. In order to save some
amount of typing and clicking, the Block tool remembers the property values which
have been entered into the previous Block’s properties dialog. These values will be re-
used when you create a new Block. Of course you can override these values with differ-
ent ones at any time.

Pressing the Reset all button in the properties dialog resets most Block properties to
their respective default values. The following items remain unmodified:

> the Name, Type, Rect, and Description properties;
> all custom properties.

11.3 Editing Blocks with the Block Plugin 281

Note Do not confuse the default values of standard Block properties with the defaulttext, default-
image, and defaultpdf properties which hold placeholder data for generating previews (see
»Default Block contents«, page 286).

Editing multiple Blocks at once. Editing the properties of multiple Blocks at once is a
big time saver. You can select multiple Blocks as follows:

> Activate the Block tool via the menu item PDFlib Blocks, PDFlib Block Tool.
> Click on the first Block to select it. The first selected Block will be the master Block.

Shift-click other Blocks to add them to the set of selected Blocks. Alternatively, click
Edit, Select All to select all Blocks on the current page.

> Double-click on any of the Blocks to open the Block Properties dialog. The Block
where you double-click will be the new master Block.

> Alternatively, you can click on a single Block to designate it as master Block, and then
press the Enter key to open the Block Properties dialog.

The Properties dialog displays only the subset of properties which apply to all selected
Blocks. The dialog will be populated with property values taken from the master Block.
Closing the dialog with Apply copies its current contents to all selected Blocks, i.e. the
values of the master Block with possible manual changes applied in the dialog. This be-
havior can be used to copy Block properties from a particular Block to one or more other
Blocks.

The following standard properties can not be shared, i.e. they can not be edited for
multiple Blocks at once:

Name, Description, Subtype, Type, Rect, Status

Custom properties also cannot be shared among Blocks.

11.3.3 Copying Blocks between Pages and Documents
The Block Plugin offers several methods for moving and copying Blocks within the cur-
rent page, the current document, or between documents:

> move or copy Blocks by dragging them with the mouse, or pasting Blocks to another
page or open document

> duplicate Blocks on one or more pages of the same document using standard copy/
paste operations

> export Blocks to a new file (with empty pages) or to an existing document (apply the
Blocks to existing pages)

> import Blocks from another document

In order to update the page contents while maintaining Block definitions you can re-
place the underlying page(s) while keeping the Blocks. Use Document, Replace Pages... in
Acrobat for this purpose.

Moving and copying Blocks. You can relocate Blocks or create copies of Blocks by se-
lecting one or more Blocks and dragging them to a new location while pressing the Ctrl
key (on Windows) or Alt key (on the Mac). The mouse cursor will change while this key is
pressed. A copied Block has the same properties as the original Block, with the exception
of its name and position which will automatically be adjusted in the new Block.

282 Chapter 11: PPS and the PDFlib Block Plugin

You can also use copy/paste to copy Blocks to another location on the same page, to
another page in the same document, or to another document which is currently open in
Acrobat:

> Activate the Block tool and select the Blocks you want to copy.
> Use Ctrl-C (on Windows) or Cmd-C (on the Mac) or Edit, Copy to copy the selected

Blocks to the clipboard.
> Navigate to the target page (if necessary).
> Use Ctrl-V (on Windows) or Cmd-V (on the Mac) or Edit, Paste to paste the Blocks from

the clipboard to the current page.

Duplicating Blocks on other pages. You can create duplicates of one or more Blocks on
an arbitrary number of pages in the current document simultaneously:

> Activate the Block tool and select the Blocks you want to duplicate.
> Choose Import and Export, Duplicate... from the PDFlib Blocks menu or the context

menu.
> Choose which Blocks to duplicate (Selected Blocks or All Blocks on this Page) and the

range of target pages to which you want to duplicate the selected Blocks.

Exporting and importing Blocks. Using the export/import feature for Blocks it is possi-
ble to share the Block definitions on a single page or all Blocks in a document among
multiple PDF files. This is useful for updating the page contents while maintaining ex-
isting Block definitions. To export Block definitions to a separate file proceed as follows:

> Activate the Block tool and select the Blocks you want to export.
> Choose Import and Export, Export... from the PDFlib Blocks menu or the context menu.

Enter the page range and a file name of the new PDF with the Block definitions.

You can import Block definitions via PDFlib Blocks, Import and Export, Import... . Upon im-
porting Blocks you can choose whether to apply the imported Blocks to all pages in the
document or only to a page range. If more than one page is selected the Block defini-
tions will be copied unmodified to the pages. If there are more pages in the target range
than in the imported Block definition file you can use the Repeate Template checkbox. If
it is enabled the sequence of Blocks in the imported file will be repeated in the current
document until the end of the document is reached.

Copying Blocks to another document upon export. When exporting Blocks you can
immediately apply them to the pages in another document, thereby propagating the
Blocks from one document to another. In order to do so choose an existing document to
export the Blocks to. If you activate the checkbox Delete existing Blocks all Blocks which
may be present in the target document will be deleted before copying the new Blocks
into the document.

11.3.4 Converting PDF Form Fields to PDFlib Blocks
As an alternative to creating PDFlib Blocks manually, you can automatically convert
PDF form fields to Blocks. This is especially convenient if you have complex PDF forms
which you want to fill automatically with PPS or need to convert a large number of ex-
isting PDF forms for automated filling. In order to convert all form fields on a page to

11.3 Editing Blocks with the Block Plugin 283

PDFlib Blocks choose PDFlib Blocks, Convert Form Fields, Current Page. To convert all form
fields in a document choose All Pages instead. Finally, you can convert only selected
form fields (choose Acrobat’s Form Tool or the Select Object Tool to select one or more
form fields) with Selected Form Fields.

Form field conversion details. Automatic form field conversion will convert form
fields of the types selected in the PDFlib Blocks, Convert Form Fields, Conversion Options...
dialog to Blocks of type Textline or Textflow. By default all form field types will be con-
verted. Attributes of the converted fields will be transformed to the corresponding
Block properties according to Table 11.3.

Multiple form fields with the same name. Multiple form fields on the same page are
allowed to have the same name, while Block names must be unique on a page. When
converting form fields to Blocks a numerical suffix will therefore be added to the name
of generated Blocks in order to create unique Block names (see also »Associating form
fields with corresponding Blocks«, page 283).

Note that due to a problem in Acrobat the field attributes of form fields with the
same names are not reported correctly. If multiple fields have the same name, but dif-
ferent attributes these differences will not be reflected in the generated Blocks. The Con-
version process will issue a warning in this case and provide the names of affected form
fields. In this case you should carefully check the properties of the generated Blocks.

Associating form fields with corresponding Blocks. Since the form field names will be
modified when converting multiple fields with the same name (e.g. radio buttons) it is
difficult to reliably identify the Block which corresponds to a particular form field. This
is especially important when using an FDF or XFDF file as the source for filling Blocks
such that the final result resembles the filled form.

In order to solve this problem the AcroFormConversion plugin records details about
the original form field as custom properties when creating the corresponding Block. Ta-
ble 11.2 lists the custom properties which can be used to reliably identify the Blocks; all
properties have type string.

Binding Blocks to the corresponding form fields. In order to keep PDF form fields and
the generated PDFlib Blocks synchronized, the generated Blocks can be bound to the
corresponding form fields. This means that the plugin will internally maintain the rela-
tionship of form fields and Blocks. When the conversion process is activated again,
bound Blocks will be updated to reflect the attributes of the corresponding PDF form
fields. Bound Blocks are useful to avoid duplicate work: when a form is updated for in-
teractive use, the corresponding Blocks can automatically be updated, too.

Table 11.2 Custom properties for identifying the original form field corresponding to the Block

custom property meaning

PDFlib:field:name Fully qualified name of the form field

PDFlib:field:pagenumber Page number (as a string) in the original document where the form field was located

PDFlib:field:type Type of the form field; one of pushbutton, checkbox, radiobutton, listbox, combobox,
textfield, signature

PDFlib:field:value (Only for type=checkbox) Export value of the form field

284 Chapter 11: PPS and the PDFlib Block Plugin

Table 11.3 Conversion of PDF form fields to PDFlib Blocks

PDF form field attribute... ...will be converted to the PDFlib Block property

all fields

Position Rect

Name Name

Tooltip Description

Appearance, Text, Font fontname

Appearance, Text, Font Size fontsize; auto font size will be converted to a fixed font size of 2/3 of the Block
height, and fitmethod will be set to auto. For multi-line fields/Blocks this combi-
nation will automatically result in a suitable font size which may be smaller than
the initial value of 2/3 of the Block height.

Appearance, Text, Text Color strokecolor and fillcolor

Appearance, Border, Border Color bordercolor

Appearance, Border, Fill Color backgroundcolor

Appearance, Border, Line Thickness linewidth: Thin=1, Medium=2, Thick=3

General, Common Properties, Form
Field

Status:
Visible=active
Hidden=ignore
Visible but doesn’t print=ignore
Hidden but printable=active

General, Common Properties, Orien-
tation

orientate: 0=north, 90=west, 180=south, 270=east

text fields

Options, Default Value defaulttext

Options, Alignment position:
Left={left center}
Center={center center}
Right={right center}

Options, Multi-line checked creates Textflow Block
unchecked creates a Textline Block

radio buttons and check boxes

If »Check box/Button is checked by
default« is selected: Options, Check
Box Style or Options, Button Style

defaulttext:
Check=4
Circle=l
Cross=8
Diamond=u
Square=n
Star=H
(these characters represent the respective symbols in the ZapfDingbats font)

list boxes and combo boxes

Options, Selected (default) item defaulttext

buttons

Options, Icon and Label, Label defaulttext

11.3 Editing Blocks with the Block Plugin 285

If you do not want to keep the converted form fields after Blocks have been generat-
ed you can choose the option Delete converted Form Fields in the PDFlib Blocks, Convert
Form Fields, Conversion Options... dialog. This option will permanently remove the form
fields after the conversion process. Any actions (e.g., JavaScript) associated with the af-
fected fields will also be removed from the document.

Batch conversion. If you have many PDF documents with form fields that you want to
convert to PDFlib Blocks you can automatically process an arbitrary number of docu-
ments using the batch conversion feature. The batch processing dialog is available via
PDFlib Blocks, Convert Form Fields, Batch conversion...:

> The input files can be selected individually; alternatively the full contents of a folder
can be processed.

> The output files can be written to the same folder where the input files are, or to a
different folder. The output files can receive a prefix to their name in order to distin-
guish them from the input files.

> When processing a large number of documents it is recommended to specify a log
file. After the conversion it will contain a full list of processed files as well as details
regarding the result of each conversion along with possible error messages.

During the conversion process the converted PDF documents will be visible in Acrobat,
but you cannot use any of Acrobat’s menu functions or tools until the conversion is fin-
ished.

11.3.5 Customizing the Block Plugin User Interface with XML
The following aspects of the Block Plugin user interface can be controlled via the XML
configuration file. The XML file must be located in the Block Plugin directory. The de-
fault configuration file default.PPSoptions is loaded at startup. Please refer to the default
configuration file which is installed with the PDFlib Block Plugin:

> The element /Block_Plugin/MainDialog/CloseOnApply controls the initial status of the
Close dialog on apply checkbox in the Block properties dialog. This checkbox deter-
mines whether the Block Properties dialog will be kept open after creating a Block or
modifying Block properties.

> The element /Block_Plugin/FontDialog/ShowBaseFonts controls whether the base 14
fonts will be displayed in the font list of the Block Properties dialog (property group
Appearance, property fontname) in addition to the fonts installed on the system.

> The element /Block_Plugin/Command/ControlByClick controls the initial status of the
menu item PDFlib Blocks, Click object to define Block.

> The element /Block_Plugin/Command/DetectFonts controls the initial status of the
menu item PDFlib Blocks, Detect underlying font and color.

> (Unsupported) The element /Block_Plugin/Command/KeyAccelerator with the possible
values control (which designates the Ctrl key on Windows and the Cmd key on the
Mac), control+shift or none controls the accelerator key for the following keyboard
shortcuts:

C (copy), I (Block Properties dialog), V (paste), X (cut)

This elements has an effect only in the default configuration file default.PPSoptions
since keyboard shortcuts cannot be changed at runtime. If this entry is absent, no ac-
celerators will be available. The default is control.

286 Chapter 11: PPS and the PDFlib Block Plugin

11.4 Previewing Blocks in Acrobat
Note You can try the Preview feature with the block_template.pdf document in the PDFlib distribu-

tion. The required resources (e.g. font and image) are also included in the distribution.

PDFlib Blocks will be processed by PPS where the Block filling process can be customized
regarding the data sources (e.g. text from a database, image files on disk) as well as visu-
al and interactive aspects of the generated documents. This process is detailed in Sec-
tion 11.5, »Filling Blocks with PPS«, page 290.

However, the Block Plugin contains an integrated version of PPS which can be used
to generate Preview versions of the filled Blocks interactively in Acrobat without any
programming. Although this Preview feature cannot offer the same flexibility as cus-
tom programming, it provides a quick overview of Block filling results. The Block Pre-
view can be used for improving the position and size of Blocks as well as for checking
the Block properties (e.g. font name and size). You can change the Blocks and create a
new Preview until you are satisfied with the results shown in the Preview. Previews can
be generated for the current page or the whole document.

The Preview will always be shown in a new PDF document. The original document
(which contains the Blocks) will not be modified by generating a Preview. You can save
or discard the generated Preview documents according to your requirements. The origi-
nal Block container document is not affected by the Preview.

Default Block contents. Since the server-side data sources (e.g. a database) for the text,
image, or PDF contents of a Block is not available in the plugin, the Preview feature will
always use the Block’s default contents, i.e. the data specified in the defaulttext, default-
image, or defaultpdf properties. Usually, a sample data set will be used as default data
which is representative for the real Block contents used with PPS. Blocks without any
default contents will be ignored when generating the Preview, as well as Blocks with
Status=ignoredefault.

The default properties are empty for new Blocks. Before using the Preview feature
you must fill the defaulttext, defaultimage, or defaultpdf properties (depending on the
Block type) in the Default contents property group.

Note Entering default text for symbolic fonts can be a bit tricky; see »Using symbolic fonts for de-
fault text«, page 289, for details.

Generating Block Previews. You can create Block Previews with one of the following
methods:

> Via the menu item PDFlib Blocks, Preview, Generate Preview.
> By clicking the PDFlib Block Preview icon in the Tools, Advanced Editing pane

(Acrobat X/XI) or the Advanced Editing toolbar (Acrobat 9). If Acrobat does not display
this toolbar you can enable it via View, Tools, Advanced Editing (Acrobat X/XI) or View,
Toolbars, Advanced Editing (Acrobat 9).

> If the Block tool is active you can right-click outside of any Block to bring up a con-
text menu with the entries Generate Preview and Preview Configuration.

The Previews will be created based on the PDF file on disk. Any changes that you may
have applied in Acrobat will only be reflected in the Preview if the Block PDF has been
saved to disk using File, Save or File, Save As... . You can identify modified Blocks by the as-

11.4 Previewing Blocks in Acrobat 287

terisk after the Block name. The Preview feature can be configured to save the Block PDF
automatically before creating a Preview. This way you can make sure that interactive
changes will immediately be reflected in the plugin.

Configuring the Preview. Several aspects of Block Preview creation and the underlying
PPS operation can be configured via PDFlib Blocks, Preview, Preview Configuration...:

> Preview for the current page or the full document;
> Output directory for the generated Preview documents;
> Automatically save the Block PDF before creating the Preview;
> Add Block info layers and annotations;
> Clone PDF/A-1b or PDF/X status; since these standards restrict the use of layers and

annotations the Block info layers and annotations option is mutually exclusive with
this option.

> The Advanced PPS options dialog can be used to specify additional option lists for PPS
functions according to the PPS API. For example, the searchpath option for PDF_set_
option() can be used to specify a directory where fonts or images for Block filling are
located. It is recommended to specify advanced options in cooperation with the pro-
grammer who writes the PPS code.

The Preview configuration can be saved to a disk file and later be reloaded.

Fig. 11.4
Preview PDF for the container
document shown in Figure 11.1.
It contains Block info layers and
annotations

288 Chapter 11: PPS and the PDFlib Block Plugin

Information provided with the Preview. The generated Preview documents contain
the original page contents (the background), the filled Blocks, and optionally various
other pieces of information. This information can be useful for checking and improving
Blocks and PPS configuration. The following items will be created for each active Block
with default contents:

> Error markers: Blocks which could not be filled successfully are visualized by a
crossed-out rectangle so that they can easily be identified. Error markers will always
be created if a Block couldn’t be processed.

> Bookmarks: The processed Blocks will be summarized in bookmarks which are struc-
tured according to the page number, the Block type, and possible errors. Bookmarks
can be displayed via View, Navigation Panels, Bookmarks. Bookmarks will always be
created.

> Annotations: For each processed Block an annotation will be created on the page in
addition to the actual Block contents. The annotation rectangle visualizes the origi-
nal Block boundary (depending on the default contents and filling mode this may
differ from the boundary of the Block contents). The annotation contains the name
of the Block and an error message if the Block couldn’t be filled. Annotations are gen-
erated by default, but can be disabled in the Preview configuration. Since the use of
annotations is restricted in the PDF/A-1 and PDF/X standards, annotations are not
created if the Clone PDF/A-1b or PDF/X status of Block PDF option is enabled.

> Layers: The page contents will be placed on layers to facilitate analysis and debug-
ging. A separate layer will be created for the page background (i.e. the contents of the
original page), each Block type, error Blocks which couldn’t be filled, and the annota-
tions with Block information. If a layer remains empty (e.g. no errors occurred) it will
not be created. The layer list can be displayed via View, Navigation Panels, Layers. By
default, all layers on the page will be displayed. In order to hide the contents of a lay-
er click on the eye symbol to the left of the layer name. Layer creation can be disabled
in the Preview configuration. Since the use of layers is restricted in the PDF/A-1 and
PDF/X standards, layers are not created if the Clone PDF/A-1b or PDF/X status of Block
PDF option is enabled.

Cloning the PDF/A or PDF/X status. The Clone PDF/A-1b or PDF/X status of Block PDF con-
figuration is useful when PDF output according to one of the PDF/A or PDF/X standards
must be created. Clone mode can be enabled if the input conforms to one of the follow-
ing standards:

PDF/A-1b:2005
PDF/X-1a:2001, PDF/X-1a:2003

Fig. 11.5
Block Preview
configuration

11.4 Previewing Blocks in Acrobat 289

PDF/X-3:2002, PDF/X-3:2003
PDF/X-4, PDF/X-4p
PDF/X-5g, PDF/X-5pg

When Previews are created in clone mode, PPS will duplicate the following aspects of the
Block PDF in the generated Preview:

> the PDF standard identification;
> output intent condition;
> page sizes including all page boxes;
> XMP document metadata.

When cloning standard-conforming PDF documents all Block filling operations must
conform to the respective standard. For example, if no output intent is present RGB im-
ages without ICC profile can not be used. Similarly, all used fonts must be embedded.
The full list of requirements can be found in Section 10.3, »PDF/X for Print Production«,
page 247, and Section 10.4, »PDF/A for Archiving«, page 254. If a Block filling operation in
PDF/A or PDF/X cloning mode would violate the selected standard (e.g. because a de-
fault image uses RGB color space, but the document does not contain a suitable output
intent) an error message pops up and no Preview will be generated. This way users can
catch potential standard violations very early in the workflow.

Using symbolic fonts for default text. Two methods are available to supply default
text for Blocks with symbolic fonts:

> Working with 8-bit legacy codes, e.g. as shown in the Windows character map appli-
cation: supply the 8-bit codes for the defaulttext either by entering the correspond-
ing 8-bit character literally (e.g. by copy/pasting from the Windows character map)
or as a numerical escape sequence. In this case you must keep the default value of
the charref property in the Text preparation property group as false and can not work
with character references. For example, the following default text will produce the
»smiley« glyph from the symbolic Wingdings font if charref=false:

J
\x4A
\112

> Working with the Unicode values or glyph names used in the font: set the charref
property in the Text preparation property group to true and supply character refer-
ences or glyph name references for the symbols (see Section 4.5.2, »Character Refer-
ences«, page 108). For example, the following default text will produce the »smiley«
glyph from the symbolic Wingdings font if charref=true:


&.smileface;

Keep in mind that with both methods an alternate representation will be visible instead
of the actual symbolic glyphs in the Block properties dialog.

290 Chapter 11: PPS and the PDFlib Block Plugin

11.5 Filling Blocks with PPS
In order to fill Blocks with PPS you must first place the page containing the Blocks on
the output page with the PDF_fit_pdi_page() function. After placing the page its Blocks
can be filled with the PDF_fill_*block() functions.

Simple example: add variable text to a template. Adding dynamic text to a PDF tem-
plate is a very common task. The following code fragment opens a page in an input PDF
document (the template or Block container), places it on the output page, and fills some
variable text into a text Block called firstname:

doc = p.open_pdi_document(filename, "");
if (doc == -1)

throw new Exception("Error: " + p.get_errmsg());

page = p.open_pdi_page(doc, pageno, "");
if (page == -1)

throw new Exception("Error: " + p.get_errmsg());

p.begin_page_ext(width, height, "");
/* Place the imported page */
p.fit_pdi_page(page, 0.0, 0.0, "");

/* Fill a single Block on the placed page */
p.fill_textblock(page, "firstname", "Serge", "encoding=winansi");

p.close_pdi_page(page);
p.end_page_ext("");
p.close_pdi_document(doc);

Cookbook A full code sample can be found in the Cookbook topic blocks/starter_block.

Overriding Block properties. In certain situations the programmer wants to use only
some of the properties provided in a Block definition, but override other properties
with custom values. This can be useful in various situations:

> Business logic may decide to enforce certain overrides.
> The scaling factor for an image or PDF page will be calculated by the application in-

stead of taken from the Block definition.
> Change the Block coordinates programmatically, for example when generating an

invoice with a variable number of data items.
> Individual spot color names could be supplied in order to match customer require-

ments in a print shop application.

Property overrides can be achieved by supplying property names and the correspond-
ing values in the option list of the PDF_fill_*block() functions, e.g.

p.fill_textblock(page, "firstname", "Serge", "fontsize=12");

This will override the Block’s internal fontsize property with the supplied value 12. Al-
most all property names can be used as options.

Property overrides apply only to the respective function calls; they will not be stored
in the Block definition.

http://www.pdflib.com/pdflib-cookbook/block-handling-and-pps/starter-block

11.5 Filling Blocks with PPS 291

Placing the imported page on top of the filled Blocks. The imported page must have
been placed on the output page before using any of the Block filling functions. This
means that the original page will usually be placed below the Block contents. However,
in some situations it may be desirable to place the original page on top of the filled
Blocks. This can be achieved by placing the page once with the blind option of PDF_fit_
pdi_page() in order to make its Blocks and their position known to PPS, and place it
again after filling the Blocks in order to actually show the page contents:

/* Place the page in blind mode to prepare the Blocks, without the page being visible */
p.fit_pdi_page(page, 0.0, 0.0, "blind");

/* Fill the Blocks */
p.fill_textblock(page, "firstname", "Serge", "encoding=winansi");
/* ... fill more Blocks ... */

/* Place the page again, this time visible */
p.fit_pdi_page(page, 0.0, 0.0, "");

Cookbook A full code sample can be found in the Cookbook topic blocks/block_below_contents.

Ignoring the container page when filling Blocks. Imported Blocks can also be useful as
placeholders without any reference to the underlying contents of the Block’s page. You
can import a container page with Blocks in blind mode on one or more pages, i.e. with
the blind option of PDF_fit_pdi_page(), and subsequently fill its Blocks. This way you can
take advantage of the Block and its properties without placing the container page on
the output page, and can duplicate Blocks on multiple pages (or even on the same out-
put page).

Cookbook A full code sample can be found in the Cookbook topic blocks/duplicate_block.

Linking Textflow Blocks. Textflow Blocks can be linked so that one Block holds the
overflow text of a previous Block. For example, if you have long variable text which may
need to be continued on another page you can link two Blocks and fill the remaining
text of the first Block into the second Block.

PPS internally creates a Textflow from the text provided to PDF_fill_textblock() and
the Block properties. For unlinked Blocks this Textflow will be placed in the Block and
the corresponding Textflow handle will be deleted at the end of the call; overflow text
will be lost in this case.

With linked Textflow Blocks the overflow text of the first Block can be filled into the
next Block. The remainder of the first Textflow will be used as Block contents instead of
creating a new Textflow. Linking Textflow Blocks works as follows:

> In the first call to PDF_fill_textblock() within a chain of linked Textflow Blocks the val-
ue -1 (in PHP: 0) must be supplied for the textflowhandle option. The Textflow handle
created internally will be returned by PDF_fill_textblock(), and must be stored by the
application.

> In the next call to PDF_fill_textblock() the Textflow handle returned in the previous
step can be supplied to the textflowhandle option (the text supplied in the text pa-
rameter will be ignored in this case, and should be empty). The Block will be filled
with the remainder of the Textflow.

> This process can be repeated with more Textflow Blocks.

http://www.pdflib.com/pdflib-cookbook/block-handling-and-pps/block-below-contents

http://www.pdflib.com/pdflib-cookbook/block-handling-and-pps/duplicate-block

292 Chapter 11: PPS and the PDFlib Block Plugin

> The returned Textflow handle can be supplied to PDF_info_textflow() in order to de-
termine the results of Block filling, e.g. the end condition or the end position of the
text.

Note that the fitmethod property should be set to clip (this is the default anyway if text-
flowhandle is supplied). The basic code fragment for linking Textflow Blocks looks as fol-
lows:

p.fit_pdi_page(page, 0.0, 0.0, "");
tf = -1;

for (i = 0; i < blockcount; i++)
{

String optlist = "encoding=winansi textflowhandle=" + tf;
tf = p.fill_textblock(page, blocknames[i], text, optlist);
text = null;

if (tf == -1)
break;

/* check result of most recent call to fit_textflow() */
reason = (int) p.info_textflow(tf, "returnreason");
result = p.get_parameter("string", (float) reason);

/* end loop if all text was placed */
if (result.equals("_stop"))
{

p.delete_textflow(tf);
break;

}
}

Cookbook A full code sample can be found in the Cookbook topic blocks/linked_textblocks.

Block filling order. The Block functions PDF_fill_*block() process properties and Block
contents in the following order:

> Background: if the backgroundcolor property is present and contains a color space
keyword different from None, the Block area will be filled with the specified color.

> Border: if the bordercolor property is present and contains a color space keyword dif-
ferent from None, the Block border will be stroked with the specified color and line-
width.

> Contents: the supplied Block contents and all other properties except bordercolor and
linewidth will be processed.

> Textline and Textflow Blocks: if neither text nor default text has been supplied,
there won’t be any output at all, not even background color or Block border.

Nested Blocks. Before Blocks can be filled the page containing the Blocks must have
been placed on the output page before (since otherwise PPS wouldn’t know the location
of the Blocks after scaling, rotating, and translating the page). If the page only serves as
a Block container without bringing static content to the new page you can place the im-
ported page with the blind option.

For successful Block filling it doesn’t matter how the imported page was placed on
the output page:

> The page can be placed directly with PDF_fit_pdi_page().

http://www.pdflib.com/pdflib-cookbook/block-handling-and-pps/linked-textblocks

11.5 Filling Blocks with PPS 293

> The page can be placed indirectly in a table cell with PDF_fit_table().
> The page can be placed as contents of a another PDF Block with PDF_fill_pdfblock().

The third method, i.e. filling a PDF Block with another page containing Blocks, allows
nested Block containers. This allows simple implementations of interesting use cases.
For example, you can implement both imposition and personalization with a two-step
Block filling process:

> The first-level Block container page contains several large PDF Blocks which indicate
the major areas on the paper to be printed on. The arrangement of PDF Blocks re-
flects the intended postprocessing of the paper (e.g. folding or cutting).

> Each of the first-level PDF Blocks is then filled with a second-level container PDF
page which contains Text, Image, or PDF Blocks to be filled with variable text for per-
sonalization.

With this method Block containers can be nested. Although Block nesting works to an
arbitrary level, a nesting level of three or more will only rarely be required.

The second-level Block containers may be identical or different for each imposed
page. If they are identical all second-level Blocks must be filled before filling the next
first-level Block since the information about placing the previous set of second-level
Blocks on the page would be no longer available once the next instance of the second-
level container page is placed.

Cookbook A full code sample can be found in the Cookbook topic blocks/nested_blocks.

Block coordinates. The Rectangle coordinates of a Block refer to the PDF default coor-
dinate system. When the page containing the Block is placed on the output page with
PPS, several positioning and scaling options can be supplied to PDF_fit_pdi_page().
These options are taken into account when the Block is being processed. This makes it
possible to place a template page on the output page multiply, every time filling its
Blocks with data. For example, a business card template may be placed four times on an
imposition sheet. The Block functions will take care of the coordinate system transfor-
mations, and correctly place the text for all Blocks in all invocations of the page. The
only requirement is that the client must place the page and then process all Blocks on
the placed page. Then the page can be placed again at a different location on the output
page, followed by more Block processing operations referring to the new position, and
so on.

The Block Plugin displays the Block coordinates differently from what is stored in
the PDF file. The plugin uses Acrobat’s convention which has the coordinate origin in
the upper left corner of the page, while the internal coordinates (those stored in the
Block) use PDF’s convention of having the origin at the lower left corner of the page. The
coordinate display in the Properties dialog is also subject to the units specified in Acro-
bat (see »Block size and position«, page 277).

Spot colors in Block properties. To use a separation (spot) color in a Block property you
can click the »...« button which will present a list of all HKS and PANTONE spot colors.
These color names are built into PPS (see Section 3.5.2, »Pantone, HKS, and custom Spot
Colors«, page 77) and can be used without further preparations. For custom spot colors
an alternate color can be defined in the Block Plugin. If no alternate color is specified in
the Block properties, the custom spot color must have been defined earlier in the PPS
application using PDF_makespotcolor(). Otherwise Block filling will fail.

http://www.pdflib.com/pdflib-cookbook/block-handling-and-pps/nested-blocks

294 Chapter 11: PPS and the PDFlib Block Plugin

11.6 Block Properties
PPS and the Block Plugin support general properties which can be assigned to any type
of Block. In addition there are properties which are specific to the Block types Textline,
Textflow, Image, and PDF.

Properties support the same data types as option lists except handles and action
lists. The names of Block properties are generally identical to options for PDF_fit_
image() (e.g., fitmethod, charspacing). In these cases the behavior is exactly the same as
the one documented for the respective option.

11.6.1 Administrative Properties
Administrative properties apply to all Block types. Required entries will automatically
be generated by the Block Plugin. Table 11.4 lists the administrative Block properties.

Table 11.4 Administrative properties

keyword possible values and explanation

Description (String) Human-readable description of the Block’s function, coded in PDFDocEncoding or Unicode (in the
latter case starting with a BOM). This property is for user information only, and will be ignored by PPS.

Locked (Boolean) If true, the Block and its properties can not be edited with the Block Plugin. This property will
be ignored by PPS. Default: false

Name (String; required) Name of the Block. Block names must be unique within a page, but not within a docu-
ment. The three characters [] / are not allowed in Block names. Block names are restricted to a maxi-
mum of 125 characters.

Subtype (Keyword; required) Depending on the Block type, one of Text, Image, or PDF. Note that Textline and
Textflow Blocks both have Subtype Text, but are distinguished by the textflow property.

textflow (Boolean) Controls single- or multiline processing. This property is not available explicitly in the user in-
terface of the Block Plugin, but will be mapped to Textline or Textflow Blocks, respectively (Default:
false):

false Textline Block: text spans a single line and will be processed with PDF_fit_textline().
true Textflow Block: text can span multiple lines and will be processed with PDF_fit_textflow(). In

addition to the standard text properties Textflow-related properties can be specified (see
Table 11.9).

Type (Keyword; required) Always Block

11.6 Block Properties 295

11.6.2 Rectangle Properties
Rectangle properties apply to all Block types. They describe the appearance of the Block
rectangle itself. Required entries will automatically be generated by the Block Plugin.
Table 11.5 lists the rectangle properties.

Table 11.5 Rectangle properties

keyword possible values and explanation

background-
color

(Color) If this property is present and contains a color space keyword different from None, a rectangle will
be drawn and filled with the supplied color. This may be useful to cover existing page contents. Default:
None

bordercolor (Color) If this property is present and contains a color space keyword different from None, a rectangle will
be drawn and stroked with the supplied color. Default: None

linewidth (Float; must be greater than 0) Stroke width of the line used to draw the Block rectangle; only used if
bordercolor is set. Default: 1

Rect (Rectangle; required) The Block coordinates. The origin of the coordinate system is in the lower left corner
of the page. However, the Block Plugin displays the coordinates in Acrobat’s notation, i.e., with the origin
in the upper left corner of the page. The coordinates will be displayed in the unit which is currently select-
ed in Acrobat, but will always be stored in points in the PDF file.

Status (Keyword) Describes how the Block will be processed by PPS and the Preview feature (default: active):
active The Block will be fully processed according to its properties.
ignore The Block will be ignored.
ignoredefault

Like active, except that the defaulttext/image/pdf properties will be ignored, i.e. the Block
remains empty if no variable contents are available (especially in the Preview). This may be
useful to make sure that the Block’s default contents will not be used for filling Blocks on the
server side although the Block may contain default contents for generating Previews. It can
also be used to disable the default contents for previewing a Block without removing the
default contents from the Block properties.

static No variable contents will be placed; instead, the Block’s default text, image, or PDF contents
will be used if available.

296 Chapter 11: PPS and the PDFlib Block Plugin

11.6.3 Appearance Properties
Appearance properties specify formatting details:

> Table 11.6 lists transparency appearance properties for all Block types.
> Table 11.7 lists text appearance properties for Textline and Textflow Blocks.

Table 11.6 Transparency appearance properties for all Block types

keyword possible values and explanation

blendmode (Keyword list; PDF 1.4; if used in PDF/A mode it must have the value Normal) Name of the blend mode:
None, Color, ColorDodge, ColorBurn, Darken, Difference, Exclusion, HardLight, Hue, Lighten,
Luminosity, Multiply, None, Normal, Overlay, Saturation, Screen, SoftLight. Default: None

opacityfill (Float; PDF 1.4; if used in PDF/A mode it must have the value 1) Opacity for fill operations in the range 0..1.
The value 0 means fully transparent; 1 means fully opaque.

opacitystroke (Float; PDF 1.4; if used in PDF/A mode it must have the value 1) Opacity for stroke operations in the range
0..1. The value 0 means fully transparent; 1 means fully opaque.

11.6 Block Properties 297

Table 11.7 Text appearance properties for Textline and Textflow Blocks

keyword possible values and explanation

charspacing (Float or percentage) Character spacing. Percentages are based on fontsize. Default: 0

decoration-
above

(Boolean) If true, the text decoration enabled with the underline, strikeout, and overline options will
be drawn above the text, otherwise below the text. Changing the drawing order affects visibility of the
decoration lines. Default: false

fillcolor (Color) Fill color of the text. Default: gray 0 (=black)

fontname1 (String) Name of the font as required by PDF_load_font(). The Block Plugin will present a list of fonts
available in the system. However, these font names may not be portable between Mac, Windows, and
Unix systems. If fontname starts with an ’@’ character the font will be applied in vertical writing mode.
The encoding for the text must be specified as an option for PDF_fill_textblock() when filling the Block
unless the font option has been supplied.

fontsize2 (Float) Size of the font in points

fontstyle (Keyword) Font style, must be one of normal, bold, italic, or bolditalic

horizscaling (Float or percentage) Horizontal text scaling. Default: 100%

italicangle (Float) Italic angle of text in degrees. Default: 0

kerning (Boolean) Kerning behavior. Default: false

monospace (Integer: 1...2048) Forces the same width for all characters in the font. Default: absent (metrics from the
font will be used)

overline (Boolean) Overline mode. Default: false

strikeout (Boolean) Strikeout mode. Default: false

strokecolor (Color) Stroke color of the text. Default: gray 0 (=black)

strokewidth (Float, percentage, or keyword; only effective if textrendering is set to outline text) Line width for out-
line text (in user coordinates or as a percentage of the fontsize). The keyword auto or the value 0 uses a
built-in default. Default: auto

textrendering (Integer) Text rendering mode. Only the value 3 has an effect on Type 3 fonts (default: 0):

0 fill text 4 fill text and add it to the clipping path

1 stroke text (outline) 5 stroke text and add it to the clipping path

2 fill and stroke text 6 fill and stroke text and add it to the clipping path

3 invisible text 7 add text to the clipping path (not for Blocks)

textrise (Float pr percentage) Text rise parameter. Percentages are based on fontsize. Default: 0

underline (Boolean) Underline mode. Default: false

underline-
position

(Float, percentage, or keyword) Position of the stroked line for underlined text relative to the baseline.
Percentages are based on fontsize. Default: auto

underline-
width

(Float, percentage, or keyword) Line width for underlined text. Percentages are based on fontsize. De-
fault: auto

wordspacing (Float or percentage) Word spacing. Percentages are based on fontsize. Default: 0

1. This property is required in Textline and Textflow Blocks; it will be enforced by the Block Plugin.

P
P

298 Chapter 11: PPS and the PDFlib Block Plugin

11.6.4 Text Preparation Properties
Text preparation properties specify preprocessing steps for Textline and Textflow
Blocks. Table 11.8 lists text preparation properties for Textline and Textflow Blocks.

Table 11.8 Text preparation properties for Textline and Textflow Blocks

keyword possible values and explanation

charref (Boolean) If true, enable substitution of numeric and character entity references and glyph name refer-
ences. Default: the global charref parameter

escape-
sequence

(Boolean) If true, enable substitution of escape sequences in content strings, hypertext strings, and
name strings. Default: the global escapesequence parameter

features (List of keywords) Specifies which typographic features of an OpenType font will be applied to the text,
subject to the script and language options. Keywords for features which are not present in the font will
silently be ignored. The following keywords can be supplied:
_none Apply none of the features in the font. As an exception, the vert feature must explicitly be

disabled with the novert keyword.
<name> Enable a feature by supplying its four-character OpenType tag name. Some common feature

names are liga, ital, tnum, smcp, swsh, zero. The full list with the names and descriptions of
all supported features can be found in Section 6.3.1, »Supported OpenType Layout Features«,
page 152.

no<name> The prefix no in front of a feature name (e.g. noliga) disables this feature.
Default: _none for horizontal writing mode. In vertical writing mode vert will automatically be applied.
The readfeatures option in PDF_load_font() is required for OpenType feature support.

language (Keyword; only relevant if script is supplied) The text will be processed according to the specified lan-
guage, which is relevant for the features and shaping options. A full list of keywords can be found in
Section 6.4.2, »Script and Language«, page 160, e.g. ARA (Arabic), JAN (Japanese), HIN (Hindi). Default:
_none (undefined language)

script (Keyword; required if shaping=true) The text will be processed according to the specified script, which is
relevant for the features, shaping, and advancedlinebreaking options. The most common keywords
for scripts are the following: _none (undefined script), latn, grek, cyrl, armn, hebr, arab, deva, beng,
guru, gujr, orya, taml, thai, laoo, tibt, hang, kana, han. The keyword _auto selects the script to which
the majority of characters in the text belong, where _latn and _none are ignored. A full list of keywords
can be found in Section 6.4.2, »Script and Language«, page 160. Default: _none

shaping (Boolean) If true, the text will be formatted (shaped) according to the script and language options. The
script option must have a value different from _none and the required shaping tables must be available
in the font. Default: false

11.6 Block Properties 299

11.6.5 Text Formatting Properties
Table 11.9 lists properties which can only be used for Textflow Blocks, with the exception
of the stamp property which can also be used for Textline Blocks. They will be used to
construct the initial option list for processing the Textflow (corresponding to the optlist
parameter of PDF_create_textflow()). Inline option lists for Textflows can not be speci-
fied with the plugin, but they can be supplied on the server as part of the text contents
when filling the Block with PDF_fill_textblock(), or in the Block’s defaulttext property.

Table 11.9 Text formatting properties (mostly for Textflow Blocks)

keyword possible values and explanation

adjust-
method

(Keyword) Method used to adjust a line when a text portion doesn’t fit into a line after compressing or
expanding the distance between words subject to the limits specified by the minspacing and maxspacing
options (default: auto):
auto The following methods are applied in order: shrink, spread, nofit, split.
clip Same as nofit, except that the long part at the right edge of the fit box (taking into account

the rightindent option) will be clipped.
nofit The last word will be moved to the next line provided the remaining (short) line will not be

shorter than the percentage specified in the nofitlimit option. Even justified paragraphs
may look slightly ragged.

shrink If a word doesn’t fit in the line the text will be compressed subject to shrinklimit. If it still
doesn’t fit the nofit method will be applied.

split The last word will not be moved to the next line, but will forcefully be hyphenated. For text
fonts a hyphen character will be inserted, but not for symbol fonts.

spread The last word will be moved to the next line and the remaining (short) line will be justified by
increasing the distance between characters in a word, subject to spreadlimit. If justification
still cannot be achieved the nofit method will be applied.

advanced-
linebreak

(Boolean) Enable the advanced line breaking algorithm which is required for complex scripts. This is re-
quired for linebreaking in scripts which do not use space characters for designating word boundaries, e.g.
Thai. The options locale and script will be honored. Default: false

alignment (Keyword) Specifies formatting for lines in a paragraph. Default: left.
left left-aligned, starting at leftindent
center centered between leftindent and rightindent
right right-aligned, ending at rightindent
justify left- and right-aligned

avoid-
emptybegin

(Boolean) If true, empty lines at the beginning of a fitbox will be deleted. Default: false

fixedleading (Boolean) If true, the first leading value found in each line will be used. Otherwise the maximum of all
leading values in the line will be used. Default: false

hortab-
method

(Keyword) Treatment of horizontal tabs in the text. If the calculated position is to the left of the current
text position, the tab will be ignored (default: relative):
relative The position will be advanced by the amount specified in hortabsize.
typewriter The position will be advanced to the next multiple of hortabsize.
ruler The position will be advanced to the n-th tab value in the ruler option, where n is the number

of tabs found in the line so far. If n is larger than the number of tab positions the relative
method will be applied.

hortabsize (Float or percentage) Width of a horizontal tab1. The interpretation depends on the hortabmethod op-
tion. Default: 7.5%

300 Chapter 11: PPS and the PDFlib Block Plugin

lastalignment (Keyword) Formatting for the last line in a paragraph. All keywords of the alignment option are support-
ed, plus the following (default: auto):
auto Use the value of the alignment option unless it is justify. In the latter case left will be used.

leading (Float or percentage) Distance between adjacent text baselines in user coordinates, or as a percentage of
the font size. Default: 100%

locale (Keyword) The locale which will be used for localized linebreaking methods if advancedlinebreak=
true. The keywords consists of one or more components, where the optional components are separated
by an underscore character ’_’ (the syntax slightly differs from NLS/POSIX locale IDs):
> A required two- or three-letter lowercase language code according to ISO 639-2 (see www.loc.gov/

standards/iso639-2), e.g. en, (English), de (German), ja (Japanese). This differs from the language op-
tion.

> An optional four-letter script code according to ISO 15924 (see www.unicode.org/iso15924/iso15924-
codes.html), e.g. Hira (Hiragana), Hebr (Hebrew), Arab (Arabic), Thai (Thai).

> An optional two-letter uppercase country code according to ISO 3166 (see www.iso.org/iso/country_
codes/iso_3166_code_lists), e.g. DE (Germany), CH (Switzerland), GB (United Kingdom)

Specifying a locale is not required for advanced line breaking: the keyword _none specifies that no locale-
specific processing will be done. Default: _none
Examples: de_DE, en_US, en_GB

maxspacing
minspacing

(Float or percentage) The maximum or minimum distance between words (in user coordinates, or as a
percentage of the width of the space character). The calculated word spacing is limited by the provided
values (but the wordspacing option will still be added). Defaults: minspacing=50%, maxspacing=500%

minlinecount (Integer) Minimum number of lines in the last paragraph of the fitbox. If there are fewer lines they will
be placed in the next fitbox. The value 2 can be used to prevent single lines of a paragraph at the end of a
fitbox (»orphans«). Default: 1

nofitlimit (Float or percentage) Lower limit for the length of a line with the nofit method (in user coordinates or as
a percentage of the width of the fitbox). Default: 75%

parindent (Float or percentage) Left indent of the first line of a paragraph1. The amount will be added to
leftindent. Specifying this option within a line will act like a tab. Default: 0

rightindent
leftindent

(Float or percentage) Right or left indent of all text lines1. If leftindent is specified within a line and the
determined position is to the left of the current text position, this option will be ignored for the current
line. Default: 0

ruler2 (List of floats or percentages) List of absolute tab positions for hortabmethod=ruler1. The list may con-
tain up to 32 non-negative entries in ascending order. Default: integer multiples of hortabsize

shrinklimit (Percentage) Lower limit for compressing text with the shrink method; the calculated shrinking factor is
limited by the provided value, but will be multiplied with the value of the horizscaling option. Default:
85%

spreadlimit (Float or percentage) Upper limit for the distance between two characters for the spread method (in user
coordinates or as a percentage of the font size); the calculated character distance will be added to the
value of the charspacing option. Default: 0

stamp (Keyword; Textline and Textflow Blocks) This option can be used to create a diagonal stamp within the
Block rectangle. The text comprising the stamp will be as large as possible. The options position,
fitmethod, and orientate (only north and south) will be honored when placing the stamp text in the
box. Default: none.
ll2ur The stamp will run diagonally from the lower left corner to the upper right corner.
ul2lr The stamp will run diagonally from the upper left corner to the lower right corner.
none No stamp will be created.

Table 11.9 Text formatting properties (mostly for Textflow Blocks)

keyword possible values and explanation

11.6 Block Properties 301

tabalignchar (Unichar) Unicode value of the character at which decimal tabs will be aligned. Default: the period char-
acter ’.’ (U+002E)

tabalignment2 (List of keywords) Alignment for tab stops. Each entry in the list defines the alignment for the corre-
sponding entry in the ruler option (default: left):
center Text will be centered at the tab position.
decimal The first instance of tabalignchar will be left-aligned at the tab position. If no tabalignchar

is found, right alignment will be used instead.
left Text will be left-aligned at the tab position.
right Text will be right-aligned at the tab position.

1. In user coordinates, or as a percentage of the width of the fit box
2. Tab settings can be edited in the property subgroup Ruler Tabs for hortabmethod=ruler in the Block properties dialog.

Table 11.9 Text formatting properties (mostly for Textflow Blocks)

keyword possible values and explanation

302 Chapter 11: PPS and the PDFlib Block Plugin

11.6.6 Object Fitting Properties
Fitting properties are available for all Block types, although some properties are specific
to a certain Block type. They manage how the contents will be placed in the Block:

> Table 11.10 lists fitting properties for Textline, Image, and PDF Blocks
> Table 11.11 lists fitting properties for Textflow Blocks (mostly related to aspects of ver-

tical fitting).

The object fitting algorithm uses the Block rectangle as fitbox. Except for fitmethod=clip
there will be no clipping; if you want to make sure that the Block contents do not exceed
the Block rectangle avoid fitmethod=nofit.

Table 11.10 Fitting properties for Textline, Image, and PDF Blocks

keyword possible values and explanation

alignchar (Unichar or keyword; only for Textline Blocks) If the specified character is found in the text, its lower left
corner will be aligned at the lower left corner of the Block rectangle. For horizontal text with
orientate=north or south the first value supplied in the position option defines the position. For hori-
zontal text with orientate=west or east the second value supplied in the position option defines the
position. This option will be ignored if the specified alignment character is not present in the text. The
value 0 and the keyword none suppress alignment characters. The specified fitmethod will be applied, al-
though the text cannot be placed within the Block rectangle because of the forced positioning of
alignchar. Default: none

dpi (Float list; only for image Blocks) One or two values specifying the desired image resolution in pixels per
inch in horizontal and vertical direction. With the value o the image’s internal resolution will be used if
available, or 72 dpi otherwise. This property will be ignored if the fitmethod property has been supplied
with one of the keywords auto, meet, slice, or entire. Default: 0

fitmethod (Keyword) Strategy to use if the supplied content doesn’t fit into the Block rectangle. Possible values are
auto, nofit, clip, meet, slice, and entire. For Textline Blocks, image, and PDF Blocks this property will
be interpreted according to the standard interpretation. Default: auto. For Textflow Blocks where the
Block is too small for the text the interpretation is as follows:
auto fontsize and leading will be decreased until the text fits.
nofit Text will run beyond the bottom margin of the Block.
clip Text will be clipped at the Block margin.

margin (Float list; only for Textline Blocks) One or two float values describing additional horizontal and vertical
reduction of the Block rectangle. Default: 0

orientate (Keyword) Specifies the desired orientation of the content when it is placed. Possible values are north,
east, south, west. Default: north

position (Float list) One or two values specifying the position of the reference point within the content. The posi-
tion is specified as a percentage within the Block. Only for Textline Blocks: the keyword auto can be used
for the first value in the list. It indicates right if the writing direction of the text is from right to left (e.g.
for Arabic and Hebrew text), and left otherwise (e.g. for Latin text).
Default: {0 0}, i.e. the lower left corner

rotate (Float) Rotation angle in degrees by which the Block will be rotated counter-clockwise before processing
begins. The reference point is center of the rotation. Default: 0

scale (Float list) One or two values specifying the desired scaling factor(s) in horizontal and vertical direction.
This option will be ignored if the fitmethod property has been supplied with one of the keywords auto,
meet, slice, or entire. Default: 1

shrinklimit (Float or percentage; only for Textline Blocks) The lower limit of the shrinkage factor which will be ap-
plied to fit text with fitmethod=auto. Default: 0.75

11.6 Block Properties 303

Table 11.11 Fitting properties for Textflow Blocks

keyword possible values and explanation

firstlinedist (Float, percentage, or keyword) The distance between the top of the Block rectangle and the baseline for
the first line of text, specified in user coordinates, as a percentage of the relevant font size (the first font
size in the line if fixedleading=true, and the maximum of all font sizes in the line otherwise), or as a
keyword. Default: leading.
leading The leading value determined for the first line; typical diacritical characters such as À will

touch the top of the fitbox.
ascender The ascender value determined for the first line; typical characters with larger ascenders, such

as d and h will touch the top of the fitbox.
capheight The capheight value determined for the first line; typical capital uppercase characters such as

H will touch the top of the fitbox.
xheight The xheight value determined for the first line; typical lowercase characters such as x will

touch the top of the fitbox.
If fixedleading=false the maximum of all leading, ascender, xheight, or capheight values found in
the first line will be used.

fitmethod (Keyword) Strategy to use if the supplied content doesn’t fit into the box. Possible values are auto, nofit,
clip. Default: auto. For Textflow Blocks where the Block is too small for the text the interpretation is as
follows:
auto fontsize and leading will be decreased until the text fits.
nofit Text will run beyond the bottom margin of the Block.
clip Text will be clipped at the Block margin.

lastlinedist (Float, percentage, or keyword) Will be ignored for fitmethod=nofit) The minimum distance between
the baseline for the last line of text and the bottom of the fitbox, specified in user coordinates, as a per-
centage of the font size (the first font size in the line if fixedleading= true, and the maximum of all
font sizes in the line otherwise), or as a keyword. Default: 0, i.e. the bottom of the fitbox will be used as
baseline, and typical descenders will extend below the Block rectangle.
descender The descender value determined for the last line; typical characters with descenders, such as g

and j will touch the bottom of the fitbox.
If fixedleading=false the maximum of all descender values found in the last line will be used.

linespread-
limit

(Float or percentage; only for verticalalign=justify) Maximum amount in user coordinates or as per-
centage of the leading for increasing the leading for vertical justification. Default: 200%

maxlines (Integer or keyword) The maximum number of lines in the fitbox, or the keyword auto which means that
as many lines as possible will be placed in the fitbox. When the maximum number of lines has been
placed PDF_fit_textflow() will return the string _boxfull.

minfontsize (Float or percentage) Minimum allowed font size when text is scaled down to fit into the Block rectangle
with fitmethod=auto when shrinklimit is exceeded. The limit is specified in user coordinates or as a
percentage of the height of the Block. If the limit is reached the text will be created with the specified
minfontsize as fontsize. Default: 0.1%

orientate (Keyword) Specifies the desired orientation of the text when it is placed. Possible values are north, east,
south, west. Default: north

rotate (Float) Rotate the coordinate system, using the lower left corner of the fitbox as center and the specified
value as rotation angle in degrees. This results in the box and the text being rotated. The rotation will be
reset when the text has been placed. Default: 0

304 Chapter 11: PPS and the PDFlib Block Plugin

verticalalign (Keyword) Vertical alignment of the text in the fitbox. Default: top.
top Formatting will start at the first line, and continue downwards. If the text doesn’t fill the

fitbox there may be whitespace below the text.
center The text will be vertically centered in the fitbox. If the text doesn’t fill the fitbox there may be

whitespace both above and below the text.
bottom Formatting will start at the last line, and continue upwards. If the text doesn’t fill the fitbox

there may be whitespace above the text.
justify The text will be aligned with top and bottom of the fitbox. In order to achieve this the leading

will be increased up to the limit specified by linespreadlimit. The height of the first line will
only be increased if firstlinedist=leading.

Table 11.11 Fitting properties for Textflow Blocks

keyword possible values and explanation

11.6 Block Properties 305

11.6.7 Properties for default Contents
Properties for default contents specify how to fill the Block if no specific contents are
provided. They are especially useful for the Preview feature since it will fill the Blocks
with their default contents. Table 11.12 lists properties for default contents.

11.6.8 Custom Properties
Custom properties apply to Blocks of any type of Block, and will be ignored by PPS and
the Preview feature. Table 11.13 lists the naming rules for custom properties.

Table 11.12 Properties for default contents

keyword possible values and explanation

defaultimage (String; only for image Blocks) Path name of an image which will be used if no image is supplied by the
client application. It is recommended to use file names without absolute paths, and use the SearchPath
feature in the PPS client application. This makes Block processing independent from platform and file
system details.

defaultpdf (String; only for PDF Blocks) Path name of a PDF document which will be used if no substitution PDF is
supplied by the client application. It is recommended to use file names without absolute paths, and use
the SearchPath feature in the PPS client application. This makes Block processing independent from plat-
form and file system details.

default-
pdfpage

(Integer; only for PDF Blocks) Page number of the page in the default PDF document. Default: 1

defaulttext (String; only for Textline and Textflow Blocks) Text which will be used if no variable text is supplied by
the client application1

1. The text will be interpreted in winansi encoding or Unicode.

Table 11.13 Custom Block properties for all Block types

keyword possible values and explanation

any name not containing
the three characters [] /

(String, name, float, or float list) The interpretation of the values of custom properties is
completely up to the client application; they will be ignored by PPS.

306 Chapter 11: PPS and the PDFlib Block Plugin

11.7 Querying Block Names and Properties with pCOS
In addition to automatic Block processing with PPS, the integrated pCOS facility can be
used to enumerate Block names and query standard or custom properties.

Cookbook A full code sample for querying the properties of Blocks contained in an imported PDF can be
found in the Cookbook topic blocks/query_block_properties.

Finding the number and names of Blocks. The client code must not even know the
names or number of Blocks on an imported page since these can also be queried. The
following statement returns the number of Blocks on page with number pagenum:

blockcount = (int) p.pcos_get_number(doc, "length:pages[" + pagenum + "]/blocks");

The following statement returns the name of Block number blocknum on page pagenum
(Block and page counting start at 0):

blockname = p.pcos_get_string(doc,
"pages[" + pagenum + "]/blocks[" + blocknum + "]/Name");

The returned Block name can subsequently be used to query the Block’s properties or
fill the Block with text, image, or PDF content. If the specified Block doesn’t exist an ex-
ception will be thrown. You can avoid this by using the length prefix to determine the
number of Blocks and therefore the maximum index in the blocks array (keep in mind
that the Block count will be one higher than the highest possible index since array in-
dexing starts at 0).

In the path syntax for addressing Block properties the following expressions are
equivalent, assuming that the Block with the sequential <number> has its Name proper-
ty set to <blockname>:

pages[...]/blocks[<number>]
pages[...]/blocks/<blockname>

Finding Block coordinates. The two coordinate pairs (llx, lly) and (urx, ury) describing
the lower left and upper right corner of a Block named foo can be queried as follows:

llx = p.pcos_get_number(doc, "pages[" + pagenum + "]/blocks/foo/Rect[0]");
lly = p.pcos_get_number(doc, "pages[" + pagenum + "]/blocks/foo/Rect[1]");
urx = p.pcos_get_number(doc, "pages[" + pagenum + "]/blocks/foo/Rect[2]");
ury = p.pcos_get_number(doc, "pages[" + pagenum + "]/blocks/foo/Rect[3]");

Note that these coordinates are provided in the default user coordinate system (with
the origin in the bottom left corner, possibly modified by the page’s CropBox), while the
Block Plugin displays the coordinates according to Acrobat’s user interface coordinate
system with an origin in the upper left corner of the page. Since the Rect option for over-
riding Block coordinates does not take into account any modifications applied by the
CropBox entry, the coordinates queried from the original Block cannot be directly used
as new coordinates if a CropBox is present. As a workaround you can use the refpoint
and boxsize options.

Also note that the topdown parameter is not taken into account when querying Block
coordinates.

http://www.pdflib.com/pdflib-cookbook/block-handling-and-pps/query-block-properties

11.7 Querying Block Names and Properties with pCOS 307

Querying custom properties. Custom properties can be queried as in the following ex-
ample, where the property zipcode is queried from a Block named b1 on page pagenum:

zip = p.pcos_get_string(doc, "pages[" + pagenum + "]/blocks/b1/Custom/zipcode");

If you don’t know which custom properties are actually present in a Block, you can de-
termine the names at runtime. In order to find the name of the first custom property in
a Block named b1 use the following:

propname = p.pcos_get_string(doc, "pages[" + pagenum + "]/blocks/b1/Custom[0].key");

Use increasing indexes instead of 0 in order to determine the names of all custom prop-
erties. Use the length prefix to determine the number of custom properties.

Non-existing Block properties and default values. Use the type prefix to determine
whether a Block or property is actually present. If the type for a path is 0 or null the re-
spective object is not present in the PDF document. Note that for standard properties
this means that the default value of the property will be used.

Name space for custom properties. In order to avoid confusion when PDF documents
from different sources are exchanged, it is recommended to use an Internet domain
name as a company-specific prefix in all custom property names, followed by a colon ’:’
and the actual property name. For example, ACME corporation would use the following
property names:

acme.com:digits
acme.com:refnumber

Since standard and custom properties are stored differently in the Block, standard PPS
property names (as defined in Section 11.6, »Block Properties«, page 294) will never con-
flict with custom property names.

308 Chapter 11: PPS and the PDFlib Block Plugin

11.8 PDFlib Block Specification
The Block syntax fully conforms to the PDF Reference which specifies an extension
mechanism that allows applications to store private data attached to the data struc-
tures comprising a PDF page. A detailed description of the PDFlib Block syntax is provid-
ed here for the benefit of users who wish to create Blocks by other means than the Block
Plugin. Plugin users can safely skip this section.

11.8.1 PDF Object Structure for PDFlib Blocks
The page dictionary contains a PieceInfo entry, which has another dictionary as value.
This dictionary contains the key PDFlib with an application data dictionary as value. The
application data dictionary contains two standard keys listed in Table 11.14.

A Block list is a dictionary containing general information about Block processing, plus
a list of all Blocks on the page. Table 11.15 lists the keys in a Block list dictionary.

Table 11.14 Entries in a PDFlib application data dictionary

key value

LastModified (Data string; required) The date and time when the Blocks on the page were created or most recently
modified.

Private (Dictionary; required) A Block list (see Table 11.15)

Table 11.15 Entries in a Block list dictionary

key value

Version (Number; required) The version number of the Block specification to which the file complies. This docu-
ment describes version 9 of the Block specification.

Blocks (Dictionary; required) Each key is a name object containing the name of a Block; the corresponding value
is the Block dictionary for this Block (see Table 11.17). The value of the Name key in the Block dictionary
must be identical to the Block’s name in this dictionary.

PluginVersion (String; required unless the pdfmark key is present1) A string containing a version identification of the
Block Plugin which has been used to create the Blocks.

1. Exactly one of the PluginVersion and pdfmark keys must be present.

pdfmark (Boolean; required unless the PluginVersion key is present1) Must be true if the Block list has been gen-
erated by use of pdfmarks.

11.8 PDFlib Block Specification 309

Data types for Block properties. Properties support the same data types as option lists
except handles and specialized lists such as action lists. Table 11.16 details how these
types are mapped to PDF data types.

Table 11.16 Data types for Block properties

Data type PDF type and remarks

boolean (Boolean)

string (String)

keyword
(name)

(Name) It is an error to provide keywords outside the list of keywords supported by a particular property.

float, integer (Number) While option lists support both point and comma as decimal separators, PDF numbers support
only point.

percentage (Array with two elements) The first element in the array is the number, the second element is a string con-
taining a percent character.

list (Array)

color (Array with two or three elements) The first element in the array specifies a color space, and the second el-
ement specifies a color value as follows. The following entries are supported for the first element in the
array:
/DeviceGray

The second element is a single gray value.
/DeviceRGB

The second element is an array of three RGB values.
/DeviceCMYK

The second element is an array of four CMYK values.
[/Separation/spotname]

The first element is an array containing the keyword /Separation and a spot color name. The
second element is a tint value.
The optional third element in the array specifies an alternate color for the spot color, which is
itself a color array in one of the /DeviceGray, /DeviceRGB, /DeviceCMYK, or /Lab color spaces.
If the alternate color is missing, the spot color name must either refer to a color which is
known internally to PPS, or which has been defined by the application at runtime.

[/Lab] The first element is an array containing the keyword /Lab. The second element is an array of
three Lab values.

To specify the absence of color the respective property must be omitted.

unichar (Text string) Unicode string in utf16be format, starting with the BOM U+FEFF

310 Chapter 11: PPS and the PDFlib Block Plugin

11.8.2 Block Dictionary Keys
Block dictionaries may contain the keys in Table 11.17.

Example. The following fragment shows the PDF code for two Blocks, a text Block
called job_title and an image Block called logo. The text Block contains a custom proper-
ty called format:

<<
/Contents 12 0 R
/Type /Page
/Parent 1 0 R
/MediaBox [0 0 595 842]
/PieceInfo << /PDFlib 13 0 R >>

>>

13 0 obj
<<

/Private <<
/Blocks <<

/job_title 14 0 R
/logo 15 0 R

>>
/Version 9
/pdfmark true

>>
/LastModified (D:20120813200730)

>>
endobj

14 0 obj
<<

/Type /Block
/Rect [70 740 200 800]

Table 11.17 Entries in a Block dictionary

property group values

administrative prop-
erties

(Some keys are required) Administrative properties according to Table 11.4

rectangle properties (Some keys are required) Rectangle properties according to Table 11.5

appearance proper-
ties

(Some keys are required) Appearance properties for all Block types according to Table 11.6 and
text appearance properties according to Table 11.7 for Textline and Textline Blocks

text preparation
properties

(Optional) Text preparation properties for Textline and Textflow Blocks according to Table 11.8

text formatting
properties

(Optional) Text formatting properties for Textline and Textflow Blocks according to Table 11.9

object fitting proper-
ties

(Optional) Object fitting properties for Textline, Image, and PDF Blocks according to Table 11.10,
and fitting properties for Textflow Blocks according to Table 11.11

properties for de-
fault contents

(Optional) Properties for default contents according to Table 11.12

Custom (Dictionary; optional) A dictionary containing key/value pairs for custom properties according to
Table 11.13.

11.8 PDFlib Block Specification 311

/Name /job_title
/Subtype /Text
/fitmethod /auto
/fontname (Helvetica)
/fontsize 12
/Custom << /format 5 >>

>>
endobj

15 0 obj
<<

/Type /Block
/Rect [250 700 400 800]
/Name /logo
/Subtype /Image
/fitmethod /auto

>>

11.8.3 Generating PDFlib Blocks with pdfmarks
As an alternative to creating Blocks with the Plugin, Blocks can be created by inserting
appropriate pdfmark commands into a PostScript stream, and distilling it to PDF. Details
of the pdfmark operator are discussed in the Acrobat documentation. The following
fragment shows pdfmark operators which can be used to generate the Block definition
in the preceding section:

% ---------- Setup for the Blocks on a page ----------
[/_objdef {B1} /type /dict /OBJ pdfmark % Blocks dict

[{ThisPage} <<
/PieceInfo <<

/PDFlib <<
/LastModified (D:20120813200730)
/Private <<

/Version 9
/pdfmark true
/Blocks {B1}

>>
>>

>>
>> /PUT pdfmark

% ---------- text Block ----------
[{B1} <<

/job_title <<
/Type /Block
/Name /job_title
/Subtype /Text
/Rect [70 740 200 800]
/fitmethod /auto
/fontsize 12
/fontname (Helvetica)
/Custom << /format 5 >>

>>
>> /PUT pdfmark

% ---------- image Block ----------
[{B1} <<

312 Chapter 11: PPS and the PDFlib Block Plugin

/logo <<
/Type /Block
/Name /logo
/Subtype /Image
/Rect [250 700 400 800]
/fitmethod /auto

>>
>> /PUT pdfmark

A Revision History 313

A Revision History
Date Changes

June 11, 2013 > Various updates and corrections for PDFlib 8.0.6

October 23, 2012 > Various updates and corrections for PDFlib 8.0.5

December 23, 2011 > Various updates and corrections for PDFlib 8.0.4

July 11, 2011 > Various updates and corrections for PDFlib 8.0.3

December 09, 2010 > Various updates and corrections for PDFlib 8.0.2

September 22, 2010 > Various updates and corrections for PDFlib 8.0.1p7

April 13, 2010 > Various updates and corrections for PDFlib 8.0.1

December 07, 2009 > Updates for PDFlib 8.0.0

April 20, 2010 > Minor corrections for PDFlib 7.0.5

March 13, 2009 > Various updates and corrections for PDFlib 7.0.4

February 13, 2008 > Various updates and corrections for PDFlib 7.0.3

August 08, 2007 > Various updates and corrections for PDFlib 7.0.2

February 19, 2007 > Various updates and corrections for PDFlib 7.0.1

October 03, 2006 > Updates and restructuring for PDFlib 7.0.0

February 15, 2007 > Various updates and corrections for PDFlib 6.0.4

February 21, 2006 > Various updates and corrections for PDFlib 6.0.3; added Ruby section

August 09, 2005 > Various updates and corrections for PDFlib 6.0.2

November 17, 2004 > Minor updates and corrections for PDFlib 6.0.1
> introduced new format for language-specific function prototypes in chapter 8
> added hypertext examples in chapter 3

June 18, 2004 > Major changes for PDFlib 6

January 21, 2004 > Minor additions and corrections for PDFlib 5.0.3

September 15, 2003 > Minor additions and corrections for PDFlib 5.0.2; added block specification

May 26, 2003 > Minor updates and corrections for PDFlib 5.0.1

March 26, 2003 > Major changes and rewrite for PDFlib 5.0.0

June 14, 2002 > Minor changes for PDFlib 4.0.3 and extensions for the .NET binding

January 26, 2002 > Minor changes for PDFlib 4.0.2 and extensions for the IBM eServer edition

May 17, 2001 > Minor changes for PDFlib 4.0.1

April 1, 2001 > Documents PDI and other features of PDFlib 4.0.0

February 5, 2001 > Documents the template and CMYK features in PDFlib 3.5.0

December 22, 2000 > ColdFusion documentation and additions for PDFlib 3.03; separate COM edition of the manual

August 8, 2000 > Delphi documentation and minor additions for PDFlib 3.02

July 1, 2000 > Additions and clarifications for PDFlib 3.01

Feb. 20, 2000 > Changes for PDFlib 3.0

Aug. 2, 1999 > Minor changes and additions for PDFlib 2.01

June 29, 1999 > Separate sections for the individual language bindings
> Extensions for PDFlib 2.0

Feb. 1, 1999 > Minor changes for PDFlib 1.0 (not publicly released)

Aug. 10, 1998 > Extensions for PDFlib 0.7 (only for a single customer)

July 8, 1998 > First attempt at describing PDFlib scripting support in PDFlib 0.6

Feb. 25, 1998 > Slightly expanded the manual to cover PDFlib 0.5

Sept. 22, 1997 > First public release of PDFlib 0.4 and this manual

Date Changes

Index 315

Index

A
Acrobat plugin for creating Blocks 271
Adobe Font Metrics (AFM) 112
advanced linebreaking 216
AES (Advanced Encryption Standard) 73
AFM (Adobe Font Metrics) 112
ArtBox 67
artificial font styles 149
AS/400 62
ascender 147
asciifile parameter 63
auto: see hypertextformat
autocidfont parameter 138
autosubsetting parameter 138

B
backslash substitution 107
baseline compression 175
Basic Multilingual Plane 93
Big Five 101
bindings 27
BleedBox 67
Blocks 271

plugin 271
properties 273

BMP 93, 177
Byte Order Mark (BOM) 94, 105
bytes: see hypertextformat
byteserving 75

C
C binding 30
C++ binding 33
capheight 147
categories of resources 57
CCITT 177
CCSID 96
character metrics 147
character references 107, 108
characters and glyphs 93
characters per inch 148
Chinese 100, 101, 166
CIE L*a*b* color space 80
CJK (Chinese, Japanese, Korean)

configuration 99
custom fonts 168
standard fonts 99
Windows code pages 101

clip 67

clone page boxes 191
CMaps 99, 100
Cobol binding 28
code page: Microsoft Windows 1250-1258 95
COM (Component Object Model) binding 29
commercial license 12
content strings 102
content strings in non-Unicode capable

languages 104
coordinate system 64

metric 64
top-down 66

copyoutputintent option 253
core fonts 129
CPI (characters per inch) 148
CropBox 67
current point 68
currentx and currenty parameter 147
custom encoding 97

D
default coordinate system 64
defaultgray/rgb/cmyk color space 82
descender 147
downsampling 173
dpi calculations 173

E
EBCDIC 62
ebcdic encoding 95
ebcdicutf8: see hypertextformat
embedding fonts 137
encoding

CJK 99
custom 97
fetching from the system 96

encryption 72
environment variable PDFLIBRESOURCE 60
error handling 53
errorpolicy parameter 184
escape sequences 107
EUDC (end-user defined characters) 111, 169
evaluation version 9
exceptions 53
EXIF JPEG images 176
explicit transparency 179

F
features of PDFlib 21, 24

316 Index

file search 58
fill 67
font metrics 147
font style names for Windows 132
font styles 149
fonts

AFM files 112
embedding 137
legal aspects of embedding 138
monospaced 148
OpenType 111
PDF core set 129
PFA files 112
PFB files 112
PFM files 112
PostScript Type 1 112
resource configuration 56
subsetting 138
TrueType 111
Type 3 (user-defined) fonts 113

form fields: converting to blocks 282
form XObjects 69

G
gaiji characters 113
GBK 101
GIF 177
glyph availability 142
glyph id addressing 115
glyph replacement 119
glyphlets 112
glyphs 93
gradients 76
grid.pdf 65
Groovy 38

H
HKS colors 79
horizontal writing mode 167
host encoding 96
host fonts 131
HTML character references 107
hypertext strings 102

in non-Unicode capable languages 104
hypertextformat parameter 104

I
IBM zSeries and iSeries 62
ignoremask 179
image data, re-using 173
image file formats 175
image mask 178, 180
image scaling 173
image:iccprofile parameter 81
inch 64
in-core PDF generation 61

inline images 174
invisible text 297
iSeries 62
ISO 10646 121
ISO 15930 247
ISO 19005 254
ISO 32000 246
ISO 8859-2 to -15 95

J
Japanese 100, 101, 166
Java binding 36
Javadoc 38
JBIG2 176
JFIF 175
Johab 101
JPEG 175
JPEG 2000 176
JPEG images in EXIF format 176

K
kerning 148
Korean 100, 101, 166

L
language bindings: see bindings
layers and PDI 184
leading 147
line spacing 147
linearized PDF 75
LWFN (LaserWriter Font) 112

M
macroman encoding 95
makepsres utility 56
masked 179
masking images 178
masterpassword 73
MediaBox 67
memory, generating PDF documents in 61
metric coordinates 64
metrics 147
millimeters 64
monospaced fonts 148
multi-page image files 174

N
name strings 102

in non-Unicode capable languages 104
nesting exceptions 31
.NET binding 39

O
Objective-C binding 40

Index 317

OpenType fonts 111
optimized PDF 75
outline text 297
output intent

for PDF/A 255
for PDF/X 248

output intents
for PDF/A 257
for PDF/X 251

overline parameter 150

P
page 174
page descriptions 64
page formats 66
page size

limitations in Acrobat 67
page-at-a-time download 75
PANTONE colors 77
passwords 72
path 67
path objects 68
patterns 76
pCOS 241
pCOS interface 241
PDF import library (PDI) 182
PDF/A 254
PDF/X 247
PDF_EXIT_TRY() 32
PDF_get_buffer() 61
PDFlib Blocks 271
PDFlib features 21, 24
PDFlib Personalization Server (PPS) 271
pdflib.upr 60
PDFLIBRESOURCE environment variable 60
PDI (PDF Import) 182
pdiusebox 184
Perl binding 42
permissions 72, 73
PFA (Printer Font ASCII) 112
PFB (Printer Font Binary) 112
PFM (Printer Font Metrics) 112
PHP binding 44
plugin for creating Blocks 271
PNG 175, 179
PostScript Type 1 fonts 112
PPS (PDFlib Personalization Server) 271
Printer Font ASCII (PFA) 112
Printer Font Binary (PFB) 112
Printer Font Metrics (PFM) 112
Private Use Area 93
PUA 93
Python binding 46

R
raw image data 177
REALbasic binding 47

rendering intents 80
renderingintent option 80
resource category 57
resourcefile parameter 60
rotating objects 65
RPG binding 48
Ruby binding 50

S
S/390 62
scaling images 173
script-specific linebreaking 216
SearchPath parameter 58
security 72
setcolor:iccprofilegray/rgb/cmyk parameters 82
shadings 76
Shift-JIS 101
SING fonts 112
smooth blends 76
spot color (separation color space) 77
sRGB color space 81
standard output conditions for PDF/X 251
strikeout parameter 150
strings in option lists 105
stroke 67
style names for Windows 132
subpath 67
subscript 148
subsetminsize parameter 138
subsetting 138
superscript 148
system encoding support 96

T
Tcl binding 52
templates 69
temporary disk space requirements 75
text metrics 147
text position 147
text variations 147
textformat parameter 104
textrendering parameter 150
textx and texty parameter 147
TIFF 177
top-down coordinates 66
transparency 178
TrimBox 67
TrueType fonts 111
TTC (TrueType Collection) 111, 168
Type 1 fonts 112
Type 3 (user-defined) fonts 113

U
UHC 101
underline parameter 150
units 64

318 Index

UPR (Unix PostScript Resource) 56
usehypertextencoding parameter 104
user space 64
usercoordinates parameter 64
user-defined (Type 3) fonts 113
userpassword 73
UTF formats 94
utf16: see hypertextformat
utf16be: see hypertextformat
utf16le: see hypertextformat
utf8: see hypertextformat

V
vertical writing mode 167

W
web-optimized PDF 75
winansi encoding 95
writing modes 167

X
xheight 147
XObjects 69

Z
zSeries 62

ABC

PDFlib GmbH
Franziska-Bilek-Weg 9
80339 München, Germany
www.pdflib.com
phone +49 • 89 • 452 33 84-0
fax +49 • 89 • 452 33 84-99

If you have questions check the PDFlib mailing list
and archive at tech.groups.yahoo.com/group/pdflib

Licensing contact
sales@pdflib.com

Support
support@pdflib.com (please include your license number)

http://tech.groups.yahoo.com/group/pdflib

			Contents

			0 Applying the PDFlib License Key

			1 Introduction

			1.1 Roadmap to Documentation and Samples

			1.2 PDFlib Programming

			1.3 What’s new in PDFlib/PDFlib+PDI/PPS 8?

			1.3.1 PDF Features for Acrobat 9

			1.3.2 Font Handling and Text Output

			1.3.3 PDFlib Block Plugin and PDFlib Personalization Server (PPS)

			1.3.4 Other important Features

			1.4 Features in PDFlib

			1.5 Additional Features in PDFlib+PDI

			1.6 Additional Features in PPS

			1.7 Availability of Features in different Products

			2 PDFlib Language Bindings

			2.1 Data Types for Language Bindings

			2.2 Cobol Binding

			2.3 COM Binding

			2.4 C Binding

			2.5 C++ Binding

			2.6 Java Binding

			2.7 .NET Binding

			2.8 Objective-C Binding

			2.9 Perl Binding

			2.10 PHP Binding

			2.11 Python Binding

			2.12 REALbasic Binding

			2.13 RPG Binding

			2.14 Ruby Binding

			2.15 Tcl Binding

			3 Creating PDF Documents

			3.1 General PDFlib Programming Aspects

			3.1.1 Exception Handling

			3.1.2 The PDFlib Virtual File System (PVF)

			3.1.3 Resource Configuration and File Search

			3.1.4 Generating PDF Documents in Memory

			3.1.5 Large PDF Documents

			3.1.6 Using PDFlib on EBCDIC-based Platforms

			3.2 Page Descriptions

			3.2.1 Coordinate Systems

			3.2.2 Page Size

			3.2.3 Direct Paths and Path Objects

			3.2.4 Templates

			3.2.5 Referenced Pages from an external PDF Document

			3.3 Encrypted PDF

			3.3.1 PDF Security Features

			3.3.2 Protecting Documents with PDFlib

			3.4 Web-Optimized (Linearized) PDF

			3.5 Working with Color

			3.5.1 Patterns and Smooth Shadings

			3.5.2 Pantone, HKS, and custom Spot Colors

			3.5.3 Color Management and ICC Profiles

			3.6 Interactive Elements

			3.6.1 Links, Bookmarks, and Annotations

			3.6.2 Form Fields and JavaScript

			3.7 Georeferenced PDF

			3.7.1 Using Georeferenced PDF in Acrobat

			3.7.2 Geographic and projected Coordinate Systems

			3.7.3 Coordinate System Examples

			3.7.4 Georeferenced PDF restrictions in Acrobat

			4 Unicode and Legacy Encodings

			4.1 Important Unicode Concepts

			4.2 Single-Byte (8-Bit) Encodings

			4.3 Chinese, Japanese, and Korean Encodings

			4.4 String Handling in PDFlib

			4.4.1 Content Strings, Hypertext Strings, and Name Strings

			4.4.2 Strings in Unicode-aware Language Bindings

			4.4.3 Strings in non-Unicode-aware Language Bindings

			4.5 Addressing Characters

			4.5.1 Escape Sequences

			4.5.2 Character References

			5 Font Handling

			5.1 Font Formats

			5.1.1 TrueType Fonts

			5.1.2 OpenType Fonts

			5.1.3 PostScript Type 1 Fonts

			5.1.4 SING Fonts (Glyphlets)

			5.1.5 Type 3 Fonts

			5.2 Unicode Characters and Glyphs

			5.2.1 Glyph IDs

			5.2.2 Unicode Mappings for Glyphs

			5.2.3 Unicode Control Characters

			5.3 The Text Processing Pipeline

			5.3.1 Normalizing Input Strings to Unicode

			5.3.2 Converting Unicode Values to Glyph IDs

			5.3.3 Transforming Glyph IDs

			5.4 Loading Fonts

			5.4.1 Selecting an Encoding for Text Fonts

			5.4.2 Selecting an Encoding for symbolic Fonts

			5.4.3 Example: Selecting a Glyph from the Wingdings Symbol Font

			5.4.4 Searching for Fonts

			5.4.5 Host Fonts on Windows and Mac OS X

			5.4.6 Fallback Fonts

			5.5 Font Embedding and Subsetting

			5.5.1 Font Embedding

			5.5.2 Font Subsetting

			5.6 Querying Font Information

			5.6.1 Font-independent Encoding, Unicode, and Glyph Name Queries

			5.6.2 Font-specific Encoding, Unicode, and Glyph Name Queries

			5.6.3 Querying Codepage Coverage and Fallback Fonts

			6 Text Output

			6.1 Text Output Methods

			6.2 Font Metrics and Text Variations

			6.2.1 Font and Glyph Metrics

			6.2.2 Kerning

			6.2.3 Text Variations

			6.3 OpenType Layout Features

			6.3.1 Supported OpenType Layout Features

			6.3.2 OpenType Layout Features with Textlines and Textflows

			6.4 Complex Script Output

			6.4.1 Complex Scripts

			6.4.2 Script and Language

			6.4.3 Complex Script Shaping

			6.4.4 Bidirectional Formatting

			6.4.5 Arabic Text Formatting

			6.5 Chinese, Japanese, and Korean Text Output

			6.5.1 Standard CJK Fonts

			6.5.2 Custom CJK Fonts

			6.5.3 EUDC and SING Fonts for Gaiji Characters

			6.5.4 OpenType Layout Features for advanced CJK Text Output

			7 Importing Images and PDF Pages

			7.1 Importing Raster Images

			7.1.1 Basic Image Handling

			7.1.2 Supported Image File Formats

			7.1.3 Clipping Paths

			7.1.4 Image Masks and Transparency

			7.1.5 Colorizing Images

			7.2 Importing PDF Pages with PDI

			7.2.1 PDI Features and Applications

			7.2.2 Using PDI Functions with PDFlib

			7.2.3 Acceptable PDF Documents

			7.3 Placing Images and imported PDF Pages

			7.3.1 Simple Object Placement

			7.3.2 Placing an Object in a Box

			7.3.3 Orientating an Object

			7.3.4 Rotating an Object

			7.3.5 Adjusting the Page Size

			7.3.6 Querying Information about placed Images and PDF Pages

			8 Text and Table Formatting

			8.1 Placing and Fitting Textlines

			8.1.1 Simple Textline Placement

			8.1.2 Positioning Text in a Box

			8.1.3 Fitting Text into a Box

			8.1.4 Aligning Text at a Character

			8.1.5 Placing a Stamp

			8.1.6 Using Leaders

			8.1.7 Text on a Path

			8.2 Multi-Line Textflows

			8.2.1 Placing Textflows in the Fitbox

			8.2.2 Paragraph Formatting Options

			8.2.3 Inline Option Lists and Macros

			8.2.4 Tab Stops

			8.2.5 Numbered Lists and Paragraph Spacing

			8.2.6 Control Characters and Character Mapping

			8.2.7 Hyphenation

			8.2.8 Controlling the standard Linebreak Algorithm

			8.2.9 Advanced script-specific Line Breaking

			8.2.10 Wrapping Text around Paths and Images

			8.3 Table Formatting

			8.3.1 Placing a Simple Table

			8.3.2 Contents of a Table Cell

			8.3.3 Table and Column Widths

			8.3.4 Mixed Table Contents

			8.3.5 Table Instances

			8.3.6 Table Formatting Algorithm

			8.4 Matchboxes

			8.4.1 Decorating a Textline

			8.4.2 Using Matchboxes in a Textflow

			8.4.3 Matchboxes and Images

			9 The pCOS Interface

			10 PDF Versions and Standards

			10.1 Acrobat and PDF Versions

			10.2 ISO 32 000

			10.3 PDF/X for Print Production

			10.3.1 The PDF/X Family of Standards

			10.3.2 Generating PDF/X-conforming Output

			10.3.3 Output Intent and Standard Output Conditions

			10.3.4 Importing PDF/X Documents with PDI

			10.4 PDF/A for Archiving

			10.4.1 The PDF/A Standards

			10.4.2 Generating PDF/A-conforming Output

			10.4.3 Importing PDF/A Documents with PDI

			10.4.4 Color Strategies for creating PDF/A

			10.4.5 XMP Document Metadata for PDF/A

			10.5 Tagged PDF

			10.5.1 Generating Tagged PDF with PDFlib

			10.5.2 Creating Tagged PDF with direct Text Output and Textflows

			10.5.3 Activating Items for complex Layouts

			10.5.4 Using Tagged PDF in Acrobat

			11 PPS and the PDFlib Block Plugin

			11.1 Installing the PDFlib Block Plugin

			11.2 Overview of the Block Concept

			11.2.1 Separation of Document Design and Program Code

			11.2.2 Block Properties

			11.2.3 Why not use PDF Form Fields?

			11.3 Editing Blocks with the Block Plugin

			11.3.1 Creating Blocks

			11.3.2 Editing Block Properties

			11.3.3 Copying Blocks between Pages and Documents

			11.3.4 Converting PDF Form Fields to PDFlib Blocks

			11.3.5 Customizing the Block Plugin User Interface with XML

			11.4 Previewing Blocks in Acrobat

			11.5 Filling Blocks with PPS

			11.6 Block Properties

			11.6.1 Administrative Properties

			11.6.2 Rectangle Properties

			11.6.3 Appearance Properties

			11.6.4 Text Preparation Properties

			11.6.5 Text Formatting Properties

			11.6.6 Object Fitting Properties

			11.6.7 Properties for default Contents

			11.6.8 Custom Properties

			11.7 Querying Block Names and Properties with pCOS

			11.8 PDFlib Block Specification

			11.8.1 PDF Object Structure for PDFlib Blocks

			11.8.2 Block Dictionary Keys

			11.8.3 Generating PDFlib Blocks with pdfmarks

			A Revision History

			Index

PDFlib-8.0.6-SunOS-sparc64-perl/doc/PDFlib-purchase-order.pdf

Product, Platform, and Quantity
Please enter desired quantities below. Prices are for a single computer
regardless of CPU count. US-$ prices are for customers in the Ameri-
cas, Australia, and Japan; Euro prices for all other regions. Volume dis-
counts are available for 5 or more licenses (see next page).

Support
Technical support plus all minor and major updates within one
year: add 20% of the license fee (see next page for details)
(Only if the box above is checked) Automatically renew the
support every year unless it is expressly terminated by customer.

Credit Card Information

Card number:

Expiration date (month/year):

Name on card:

Corporate purchase orders are accepted from large international cor-

porations. PO number:

Signature

Windows/OS X/Linux/FreeBSD

PDFlib 8
Euro 875
US-$ 1150

PDFlib+PDI 8
Euro 1750
US-$ 2350

PPS 8
Euro 2650
US-$ 3500

Windows Server x86/x64
OS X Server x86/x64
Linux x86/Intel 64
FreeBSD x86/Intel 64

Oracle/HP/IBM

PDFlib 8
Euro 1775
US-$ 2350

PDFlib+PDI 8
Euro 3550
US-$ 4700

PPS 8
Euro 5300
US-$ 7000

Oracle Solaris x86/x64/sparc
HP-UX PA-RISC/IA-64
IBM AIX
IBM i5/iSeries

Desktop systems

PDFlib 8
Euro 325
US-$ 440

PDFlib+PDI 8
Euro 650
US-$ 880

PPS 8
Euro 975
US-$ 1300

Windows XP/Vista/7/8 x86/x64
OS X desktop x86/x64

 EuroCard/MasterCard Visa American Express

Title
Printed

Name

Date

Signature

/

Purchase Order
8

All sales are governed by our General License and Support Conditions (available at www.pdflib.com). You will not receive any physical media,
but must download the software from our Web site. We will send you an invoice with the license key. This form is valid until February 28, 2015.

PDFlib GmbH München, Germany • Managing Directors: Thomas Merz, Petra Porst • Incorporation: München HRB 129 497PD
Fl

ib
 8

.0
.6

, J
un

e
20

13

Please fill out this form and send to the address below, or fax it to
+49 • 89 • 452 33 84-99. Inquiries: sales@pdflib.com.

PDFlib GmbH
Licensing Department
Franziska-Bilek-Weg 9
80339 München, Germany

Customer

Customers in Germany must add 19% VAT (MwSt.). Customers from
other EU countries must provide their VAT identification number
here. If no valid VAT ID is supplied with your order we must charge
VAT.

Updates and Upgrades
See next page for details on update and upgrade conditions.

This is an update of a version 6 or 7 license to version 8.
This is an upgrade from PDFlib 8 to PDFlib+PDI 8 or PPS 8,
or from PDFlib+PDI 8 to PPS 8.

Company

Department

Address

Country

Phone

Fax

Customer or
reseller no.

Name and e-mail address of administrative contact:

Name and e-mail address of technical contact:

Old license number for updates and upgrades, invoice no. etc.:

Availability of PDFlib 8
PDFlib 8 licenses are still available after the release of PDFlib 9. The
exact availability conditions depend on whether or not the customer
has an active support agreement as detailed in the following table:

PDFlib 8 licenses purchased after March 31, 2013 are not eligible for
free updates to PDFlib 9 (even with active support).

Products
The PDFlib product family comprises three separate products:
> PDFlib includes a variety of functions for generating PDF output.
> PDFlib+PDI includes all PDFlib functions, plus the PDF Import

Library (PDI) for including existing PDF pages in the generated out-
put. It also includes the pCOS interface for querying PDF objects.

> PDFlib Personalization Server (PPS) includes PDFlib+PDI plus func-
tions for automatically filling PDFlib Blocks. A PPS license also cov-
ers the PDFlib Block Plugin for creating Blocks interactively with
Adobe Acrobat on OS X and Windows.

A detailed feature comparison is available in the product documenta-
tion and on our Web site. PDFlib, PDFlib+PDI, and PPS are distributed
as a combined binary which is fully functional, but displays a demo
stamp across all generated pages unless a valid license key is applied.
The pCOS interface for querying PDF objects is contained in the evalu-
ation versions, but it is limited to small documents. According to your
order the license key will activate PDFlib, PDFlib+PDI, or PPS.

Value added Tax (VAT)
PDFlib GmbH’s invoicing and VAT handling are governed by EU law:
> Customers from non-EU countries will not be charged VAT.
> Customers from Germany will be charged 19% VAT (MwSt.).
> Customers from all other EU countries must provide their VAT iden-

tification number to avoid VAT being added to the invoice.

Support
We offer optional support contracts in combination with a new pro-
duct license or to renew an existing support contract. An active sup-
port contract includes the following advantages:
> technical support with short response times
> all minor (maintenance) and major (functional) updates included
> early availability of bug fixes
> maintenance releases and technical support available until the end

of a product’s lifetime
> additional licenses can be purchased until the end of the lifetime

For a detailed description of support benefits refer to our General Li-
cense and Support Conditions which are available on our Web site.
The support fee is 20% of the license fee per year.
Support contracts can optionally be renewed automatically every 12
months until the support is expressly terminated by the customer. In
order to terminate a support agreement with automatic renewal
please inform us one month before the support expires.

Customer has... PDFlib 8 is available until...

...no PDFlib 8 licenses March 2013

...PDFlib 8 licenses without support March 2014

...PDFlib 8 licenses with active
support

February 2015
(end of lifetime of PDFlib 8)

Scope of a License
One license covers a single computer running on the selected operat-
ing system platform. Development licenses for machines which are
not used for production purposes and run under the same operating
system are free with each purchase. Redundant (backup) machines
do not require a separate license, provided they are never used con-
currently with the actual production machines. Groups of load-bal-
ancing servers require a license for every server in the group. A license
covers all virtual machines (VMs) and logical partitions (LPARs) on a
computer.

Operating System Platform
Supplying the name of the target operating system platform is a
strict requirement since the license is bound to a specific platform.
Refer to the corresponding system requirements document for de-
ployment details. The license is valid for all supported language bind-
ings (programming languages) on the selected platform.
A separate price list is available for IBM zSeries systems.

Volume Discounts
Volume discounts are available for multiple licenses of the same pro-
duct according to the table below, provided all licenses are ordered
with a single combined order. Please contact us for larger numbers of
licenses.

Updates of older Versions
An update changes an older license to a license for a newer version
on the same platform, thereby invalidating the old license. A valid li-
cense key must be supplied with each update order. Licenses for
PDFlib 6 and 7 products can be updated to PDFlib 8 at a reduced li-
cense fee. Each license entitles to an update to a version 8 license.

Customers without a support contract can add support when up-
dating to PDFlib 8. In this case the support fee is based on the full li-
cense fee of the product (not the reduced update fee).
The discount percentage for updating PDFlib, PDFlib+PDI, or PPS 6 or
7 to version 8 is the same for all combinations.

Upgrades to a higher Product
An upgrade changes an existing license for a PDFlib 8 product to a li-
cense for a more advanced product on the same platform, thereby in-
validating the old license. All licenses can be upgraded at a reduced
fee. A valid license key must be supplied with each upgrade order. The
following table indicates the fees for various upgrade combinations
as a percentage of the target product’s list price:

number of licenses discount off the list price
5 10%

10 15%
20 40%

Update from
To PDFlib 6 or 7 PDFlib+PDI 6 or 7 PPS 6 or 7
PDFlib 8

60% of the target product’s
list price for all combinationsPDFlib+PDI 8

PPS 8

Upgrade from
To PDFlib 8 PDFlib+PDI 8
PDFlib+PDI 8 50% –
PPS 8 70% 35%

Licensing Notes
8

PDFlib-8.0.6-SunOS-sparc64-perl/doc/PDFlib-terms-and-conditions.pdf

Page E-1 of 6PDFlib GmbH General License and Support Conditions, Last amended November 2009

General License and Support Conditions
PDFlib GmbH, Franziska-Bilek-Weg 9, 80339 München, Germany
Telephone +49 • 89 • 452 33 84-0 Fax +49 • 89 • 452 33 84-99
sales@pdflib.com, support@pdflib.com, www.pdflib.com

1 General
The terms defined in Appendix 1: Definitions shall apply for these General License and Support Condi-
tions. These License and Support Conditions shall apply for all PDFlib GmbH software products.
The present agreement concerns solely executable object code and does not include any rights of any
nature to the products’ source code. Within this agreement, the specific products licensed by the cus-
tomer shall be referred to as a whole as »the Program«. The Program shall be supplied with a manual
in electronic format describing the Program characteristics and its use (»the Documentation«).
PDFlib GmbH sells its products and services solely to companies, but not to consumers.
The following provisions in Clauses 2 to 5 relate to licenses for the Program purchased by the custom-
er, Clause 6 to any additional support services (software maintenance) for the Program, and Clauses 7
to 9 relate to both alike.

2 Scope of the License
2.1 Remunerated Licenses
Purchase of a remunerated license from PDFlib GmbH shall entitle Licensee to the non-exclusive, per-
petual right to use Program on the agreed number of Licensee’s computers run on the agreed plat-
form; free licenses shall be governed by the provisions in Clause 2.3 and Clause 2.4. The remunerated
license can be transferred to a third party in so far as and as soon as the license transfer form which
can be requested from PDFlib GmbH is properly completed by Licensee and the third party and is re-
ceived by PDFlib GmbH.
2.2 License for Backup and Development Systems
The following provisions in Clause 2.2 shall apply for executable object code of the software products
offered by PDFlib GmbH on all platforms except IBM eServer iSeries, IBM eServer zSeries and compati-
ble systems.
Every properly remunerated licensed Program may be used by the customer not only on the computer
it is first installed on but also on another computer running on the same operating system (»backup
system«), as long as both computers with the same license right (for one computer) are not used at
the same time.
Licensee shall also be entitled to use the Program on an unlimited number of development computers
as long as they are not used for production purposes at the same time (development license). The nec-
essary preconditions for such a development license are that access to the development computer via
a network is only possible for developers working on products in which a licensed copy of the Program
is or will be integrated, and that the development computer is run on the same platform for which a li-
cense was purchased.
2.3 Free Products
For the products PDFlib FontReporter Plugin, PDFlib TET Plugin and PDFlib TET PDF IFilter (here only the
desktop version and only non-commercial use), Licensee shall be granted a non-exclusive, free, non-
transferable and perpetual license to use the Program on any number of Licensee’s computers. These
licenses shall not be governed by the provisions in Clause 5 (Warranty) and 7 (Liability), the statutory
provisions for gifts shall apply instead.
2.4 Free use of Evaluation Versions of the Program
For certain products, PDFlib GmbH offers freely available versions which can be run without purchas-
ing a license key (evaluation versions), albeit with restrictions compared with the purchased license of
the same product as described in the pertinent product documentation. For evaluation versions, Lic-
ensee shall be granted a non-exclusive, free, non-transferable and perpetual license to evaluate the
Program on any number of Licensee’s computers. Evaluation in this sense is the consideration by

Page E-2 of 6PDFlib GmbH General License and Support Conditions, Last amended November 2009

Licensee whether to purchase the Program for productive use (productive use is use of the Program di-
rectly, indirectly or as support for profit-making activities or other activities according to its articles of
incorporation by Licensee or a third party), and the development of products by Licensee in which a
(subsequently purchased) remunerated licensed copy of the Program or an evaluation version is or will
be integrated and whose intended use materially exceeds the integration of the PDFlib GmbH Pro-
gram. If Licensee integrates the evaluation version in one of his own products of the aforementioned
type, he shall also be entitled to transfer the license to the integrated evaluation version when passing
on his product to a third party.
2.5 PDFlib Block Plugin
For the PDFlib Block Plugin, which is a component of the PDFlib Personalization Server, Licensee of the
PDFlib Personalization Server shall be granted – above and beyond the license granted in Clause 2.1 –
the right to pass the PDFlib Block Plugin on to any number of third parties and to grant them the right
to use the PDFlib Block Plugin solely to create data for their own purposes which are then transmitted
to and processed by Licensee subject to the condition that Licensee secures from the third parties an
undertaking to use the PDFlib Block Plugin only in the aforementioned manner and not to pass it on to
any further persons themselves.

3 Restrictions
3.1 Intellectual Property
The Program and the Documentation are the copyrighted intellectual property of PDFlib GmbH.
When processing existing PDF documents with the Program Licensee must respect the access permis-
sions and permission controls which have been applied by the document’s author in order to grant or
deny certain rights to the users of the document.
3.2 Reverse Engineering and Confidentiality
Licensee undertakes not to translate, disassemble, or reverse-engineer the Program, in so far as this is
not permitted under Section 69e German Copyright Act.
Licensee undertakes not to redistribute or make publicly available any license key received from PDFlib
GmbH.
3.3 Updates and Upgrades
If Licensee receives the Program as a new main version or maintenance release to an earlier version of
the same or other product (Update) or if a product license is converted into a license for another prod-
uct which contains the originally licensed product (Upgrade), the new license shall be provided on a li-
cense exchange basis. Installing and using an updated or upgraded version shall terminate the license
for the earlier version.

4 Delivery
The Program and the Documentation shall be delivered in digital format only. The Program, Documen-
tation and all pertinent maintenance updates shall be retrieved from the PDFlib GmbH website at
www.pdflib.com. PDFlib GmbH shall not provide Licensee with either digital storage media or printed
Documentation.

5 Warranty
5.1 Warranty for Customers with registered Offices in the Federal Republic of Germany
If the customer has registered offices in the Federal Republic of Germany, the following provisions
shall apply:
Subject to Clause 9, the statutory provisions for warranties shall apply with the condition that the
warranty period (time bar for warranty claims, Section 438 Subs. 1 German Civil Code) shall be one
year. This shall not apply, however, for fault-related claims for damages under compensation for bodily
harm or impairment of health due to a fault for which PDFlib GmbH is liable or under gross negligence
by PDFlib GmbH or its agents, nor for cases of deceit by PDFlib GmbH; these cases shall be governed by
statutory provisions.

Page E-3 of 6PDFlib GmbH General License and Support Conditions, Last amended November 2009

5.2 Warranty for Customers with registered Offices outside the Federal Republic of Germany
If the customer does not have registered offices in the Federal Republic of Germany, the following pro-
visions shall apply:
If the Program unmodified by the customer does not meet the owed characteristics within a period of
30 days after conclusion of the license agreement, PDFlib GmbH shall promptly at its own expense
and in its own discretion (i) provide a correction of or a workaround for any reproducible faults report-
ed by Licensee and supply an updated version of the Program or (ii) refund any fees paid under this li-
cense agreement. In the latter case, Licensee shall immediately terminate any use and distribution of
the Program and destroy any license keys issued by PDFlib GmbH. All further liability on the part of PD-
Flib GmbH is hereby expressly excluded.

6 Support Agreement / Support Services
In addition to purchasing the license, the customer can request support services from PDFlib GmbH
(support agreement) against payment of an annual fee. This shall be agreed by the customer choosing
the support service for the purchased licenses and PDFlib GmbH accepting the choice.
If the customer has selected the automatic renewal option for the term of the support agreement, the
support agreement shall be prolonged after each term of one year by the same period unless termi-
nated by the customer with up to one month’s notice to the end of the pertinent term sent by letter or
fax. In this case of automatic prolongation, the support agreement shall also end without separate
declaration by the parties being required if and when the end of the pertinent product’s lifetime is
reached.
This shall be without prejudice to the possibility of termination without notice for good cause.
Under the support agreement PDFlib GmbH shall render the services listed under the »Contractual
Support« column in Appendix 2: Support Services.

7 Liability
7.1 Liability for Customers with registered Offices in the Federal Republic of Germany
If the customer has registered offices in the Federal Republic of Germany, the following provisions
shall apply:
PDFlib GmbH’s liability for simple negligent breaches of cardinal duties (in other words duties whose
fulfillment renders the proper execution of the agreement possible and on whose compliance the con-
tractual partner may generally rely) is limited to the typical losses foreseeable when the agreement
was concluded. PDFlib GmbH accepts no liability for simple negligent breaches of non-cardinal duties.
7.2 Liability for Customers with registered Offices outside the Federal Republic of Germany
If the customer does not have registered offices in the Federal Republic of Germany, the following pro-
visions shall apply:
Neither party shall be liable for any losses, interruptions of business or indirect, special, incidental
losses or consequential losses of any kind (including foregone profit) arising from use regardless of the
form of action whether in contract, tort (including negligence), strict product liability or otherwise. Re-
gardless of the legal grounds, PDFlib GmbH’s liability shall be limited (a) under and in conjunction
with the license agreement to fivefold the license fee and (b) under and in conjunction with the sup-
port agreement to the annual support fee.

8 Data Protection
PDFlib GmbH collects, processes, uses and transmits personal data solely in so far as this is necessary
for executing and fulfilling the contractual relationship with the customer.

9 Applicable Law
This agreement shall be governed by the law of the country in which the customer has his registered
offices, however to the exclusion of the UN Convention Relating to a Uniform Law on the International
Sale of Goods and the conflict of law provisions of international private law.

Page E-4 of 6PDFlib GmbH General License and Support Conditions, Last amended November 2009

10 Legal Forum
The exclusive legal forum for all disputes under and in conjunction with the purchase, license and/or
support agreement(s) shall be PDFlib GmbH’s registered offices for the customer’s claims, for PDFlib
GmbH’s claims the registered offices of the customers or of PDFlib GmbH. This shall be without preju-
dice, however, to any statutory provisions for filing counterclaims by the other party in the forum of
the original action.

Page E-5 of 6
PD

Flib G
m

bH
 G

eneral License and Support Conditions, Last am
ended N

ovem
ber 2009

Appendix 1: Definitions
Term Definition Example
Platform Combination of operating system and one or more hardware architectures. Fully compatible versions of

operating system and/or hardware shall be deemed one platform, for Mac OS X and Windows server and
desktop versions shall, however, be deemed different platforms.

Windows XP/Vista/7 (without Windows Server
2003/2008) is one platform;
Solaris on x86 or Sparc is a platform

Product PDFlib GmbH software offering for a certain platform PDFlib 8 for Windows Server 2003/2008;
PDFlib+PDI 8 for Linux on x86

Major release New version of a product with significantly extended functionality PDFlib 8;
TET 3

Maintenance re-
lease

A maintenance release (also called minor release) is a new version of a product that rectifies faults, modi-
fies the product to new versions of an operating system or a language binding etc. Maintenance releases
do not contain any significant extensions in functionality, however. A maintenance release is explicitly
marked as such.

PLOP 4.1 is a maintenance release of PLOP 4.

Update An Update converts an existing product license into a license for a newer major release of the same prod-
uct for the same platform.

Updating from PDFlib 7 for Windows XP/Vista/7 to
PDFlib 8 for Windows XP/Vista/7

Upgrade An Upgrade converts an existing license for a product into a license for the same major release of a
higher-quality product, which constitutes a functional expansion of the first product.

Upgrading from PDFlib 8 to PDFlib+PDI 8 or from
PDFlib+PDI 8 to PPS 8

Fault A fault (Bug) is any variance from the documented behavior, PDF output rejected by Adobe Acrobat as
faulty, or software crash, subject to the condition that suitable input data were used and all documented
conditions were complied with.

PDFlib does not correctly convert a JPEG image to
PDF, although this should be possible according to
the Documentation.

Language
binding

Executable version of a product for use with a platform-specific version of a programming language or
programming environment.

PHP 5.1.1 on Linux; Java 1.4 on Windows;
.NET 3.0 on Windows

Lifetime The lifetime of a product defines how long support cases to this product will be accepted (given a valid
support agreement). The lifetime shall be defined for each major release of a product. It is stated in the
pertinent Documentation and also posted at www.pdflib.com.

The lifetime of PDFlib 7 will end in 10/2011.

Page E-6 of 6
PD

Flib G
m

bH
 G

eneral License and Support Conditions, Last am
ended N

ovem
ber 2009

Appendix 2: Support Services

Service Example
Warranty
(free)

Contractual support
(fee-based)

Response time for a support case (actual fault rectification may take longer) undefined 2 business days
End of support: Support for a product is no longer available Germany: 1 year

otherwise: 30 days
lifetime of the prod-
uct

Correction1 or workaround for a fault

1. Implemented by a maintenance release for all licensed platforms and the pertinent language binding used.

in so far as required by
law

yes

Modifications for a newer version of an operating system platform not fully com-
patible with the previous one1.

Windows Vista requires modifications to
programs running under Windows XP.

voluntary yes

Modifications for a newer version of a language binding not fully compatible with
the previous one1.

PHP 5 requires modification of the PDFlib
language binding for PHP 4

voluntary yes

Modifications for the corrected version of a language binding that is not the cur-
rent version but was supported in the past and the corrected version of the lan-
guage is not fully compatible with the previous one1.

PHP 5.1.1 requires modification of the PDFlib
language binding for PHP 5.1.0, although
PHP 5.2 is already supported.

voluntary yes

License to use the current maintenance release of the licensed product Migration from PDFlib 7.0.3 to PDFlib 7.0.4 voluntary free
Availability (download) of the licensed product up to availability of the

next major release
lifetime of the
product

Availability (download) of the latest maintenance release of the licensed product up to availability of the
next major release

lifetime of the
product

Update to the current main version of the licensed product Migration from PDFlib 7 to PDFlib 8 at the update list price free
Information on availability of new maintenance or major releases – by email
Upgrade to current maintenance release of a higher-quality product of the same
major release at the upgrade list price

Migration from PDFlib 8 to PDFlib+PDI 8 1 year after availability
of the next major release

lifetime of the
product

Purchase of additional licenses of the licensed product at the list price Customer uses PDFlib 7 and requires further
licenses for this version, although PDFlib 8 is
already available.

1 year after availability
of the next major release

lifetime of the
product

Seite D-1 von 6PDFlib GmbH Allgemeine Lizenz- und Supportbedingungen, Stand November 2009

Allgemeine Lizenz- und Supportbedingungen
PDFlib GmbH, Franziska-Bilek-Weg 9, D-80339 München

Telefon +49 • 89 • 452 33 84-0 Fax +49 • 89 • 452 33 84-99
sales@pdflib.com, support@pdflib.com, www.pdflib.com

1 Allgemeines
Für diese Allgemeinen Lizenz- und Supportbedingungen finden die in Anlage 1: Definitionen angege-
benen Definitionen bestimmter Begriffe Anwendung. Diese Lizenz- und Supportbedingungen gelten
für sämtliche Software-Produkte der PDFlib GmbH.
Der vorliegende Vertrag bezieht sich ausschließlich auf ausführbaren Objektcode und umfasst keiner-
lei Rechte am Quellcode der Produkte. Auf das bzw. die vom Kunden konkret lizenzierten Produkte
wird im Rahmen dieses Vertrags insgesamt als »das Programm« Bezug genommen. Das Programm
wird mit einem Handbuch in elektronischer Form geliefert, in dem die Programmeigenschaften und
deren Anwendung beschrieben sind (»die Dokumentation«).
PDFlib GmbH erbringt ihre Lieferungen und Leistungen ausschließlich gegenüber Unternehmern,
nicht aber gegenüber Verbrauchern.
Die nachfolgenden Regelungen der Ziffern 2 bis 5 beziehen sich auf vom Kunden käuflich erworbene
Lizenzen in Bezug auf das Programm, der Ziffer 6 auf ein etwaiges zusätzliches Supportverhältnis
(Softwarepflege) in Bezug auf das Programm, und die Ziffern 7 bis 9 beziehen sich einheitlich auf bei-
de Verhältnisse.

2 Lizenzumfang
2.1 Entgeltliche Lizenzen
Dem Lizenznehmer wird durch den Erwerb einer entgeltlichen Lizenz der PDFlib GmbH das nicht-aus-
schließliche, auf Dauer eingeräumte Recht auf Anwendung des Programms auf der vereinbarten An-
zahl von Computern des Lizenznehmers gewährt, die auf der vereinbarten Plattform betrieben wer-
den; für unentgeltliche Lizenzen gelten die Bestimmungen in Ziffer 2.3 und Ziffer 2.4. Die entgeltliche
Lizenz ist auf einen Dritten übertragbar, sofern und sobald das von PDFlib GmbH erhältliche Lizenz-
übertragungsformular vom Lizenznehmer und vom Dritten ordnungsgemäß ausgefüllt wird und der
PDFlib GmbH zugeht.
2.2 Lizenz für Backup- und Entwicklungssysteme
Die nachfolgenden Regelungen von Ziffer 2.2 gelten für ausführbaren Objektcode der Software-Pro-
dukte der PDFlib GmbH auf allen Plattformen mit Ausnahme der Plattformen IBM eServer iSeries, IBM
eServer zSeries sowie dazu kompatibler Systeme.
Jedes ordnungsgemäß entgeltlich lizenzierte Programmexemplar darf durch den Kunden neben dem
Computer, auf dem es zuerst installiert wird, auch auf einem anderen, mit dem gleichen Betriebssys-
tem arbeitenden Computer (»Backup-System«) eingesetzt werden, sofern nicht beide Computer
gleichzeitig zum Einsatz kommen, die beide dasselbe Lizenzrecht (für einen Computer) nutzen.
Der Lizenznehmer ist daneben berechtigt, das Programm auf einer unbegrenzten Anzahl von Entwick-
lungscomputern zu benutzen, sofern diese Geräte nicht gleichzeitig für Produktionszwecke einge-
setzt werden (Entwicklungslizenz). Notwendige Voraussetzung für eine solche Entwicklungslizenz ist,
dass der Zugriff auf die Entwicklungscomputer über ein Netzwerk nur für Entwickler möglich ist, die
an Produkten arbeiten, in denen eine lizenzierte Kopie des Programms integriert ist oder wird, und
dass die Entwicklungscomputer auf derselben Plattform betrieben werden, für die eine Lizenz erwor-
ben wurde.
2.3 Kostenlose Produkte
Für die Produkte PDFlib FontReporter Plugin, PDFlib TET Plugin und PDFlib TET PDF IFilter (hier nur die
Desktop-Version und nur nichtkommerzielle Nutzung) wird dem Lizenznehmer eine nicht-ausschließ-
liche, unentgeltliche, nicht-übertragbare Lizenz auf Dauer zur Anwendung des Programms auf belie-
big vielen Computern des Lizenznehmers eingeräumt. Für diese Lizenzen finden die Regelungen in Zif-
fer 5 (Gewährleistung) und 7 (Haftung) keine Anwendung, sondern es gelten die gesetzlichen
Vorschriften zur Schenkung.

Seite D-2 von 6PDFlib GmbH Allgemeine Lizenz- und Supportbedingungen, Stand November 2009

2.4 Unentgeltliche Anwendung von Evaluierungsversionen des Programms
Für bestimmte Produkte bietet die PDFlib GmbH frei verfügbare Versionen an, die ohne Erwerb eines
Lizenzschlüssels betrieben werden können (Evaluierungsversionen), jedoch Restriktionen gegenüber
der entgeltlich erworbenen Lizenz desselben Produkts aufweisen, welche jeweils aus der zugehörigen
Produktdokumentation ersichtlich sind. Für Evaluierungsversionen wird dem Lizenznehmer eine
nicht-ausschließliche, unentgeltliche, nicht-übertragbare Lizenz auf Dauer zur Evaluierung des Pro-
gramms auf beliebig vielen Computern des Lizenznehmers eingeräumt. Evaluierung in diesem Sinne
ist die Prüfung durch den Lizenznehmer, ob er das Programm zur produktiven Nutzung erwerben will
(produktive Nutzung ist die Nutzung des Programms direkt, indirekt oder unterstützend zu Gewinner-
zielungs- oder Satzungszwecken des Lizenznehmers oder eines Dritten), sowie die Entwicklung von
Produkten durch den Lizenznehmer, in denen eine (später erworbene) entgeltlich lizenzierte Kopie
des Programms oder eine Evaluierungsversion integriert ist oder wird, und deren Einsatzzweck über
die Integration des Programms der PDFlib GmbH wesentlich hinausgeht. Integriert der Lizenznehmer
die Evaluierungsversion in ein eigenes Produkt der vorbeschriebenen Art, so ist er bei Weitergabe sei-
nes Produkts an einen Dritten auch zur Übertragung der Lizenz an der integrierten Evaluierungsversi-
on berechtigt.
2.5 PDFlib Block Plugin
Für das PDFlib Block Plugin, welches Bestandteil des PDFlib Personalization Server ist, wird dem Li-
zenznehmer des PDFlib Personalization Server über die in Ziffer 2.1 eingeräumte Lizenz hinaus das
Recht eingeräumt, dieses an eine beliebige Zahl von Dritten weiterzugeben und diesen dabei das
Recht einzuräumen, das PDFlib Block Plugin ausschließlich für deren eigene Zwecke zur Erzeugung
von Daten, die dann an den Lizenznehmer übermittelt und dort weiterverarbeitet werden, zu nutzen,
vorausgesetzt, die Dritten werden bei Weitergabe vom Lizenznehmer verpflichtet, das PDFlib Block
Plugin nur in der vorbeschriebenen Weise zu verwenden und nicht ihrerseits an weitere Personen wei-
terzugeben.

3 Beschränkungen
3.1 Geistiges Eigentum
Das Programm und die Dokumentation sind urheberrechtlich geschütztes geistiges Eigentum der
PDFlib GmbH.
Der Lizenznehmer hat bei der Verarbeitung eines bestehenden PDF-Dokuments mit dem Programm
die vom jeweiligen Autor des PDF-Dokuments vergebenen Rechte bzw. gewünschten Sperren für den
Umgang mit diesem Dokument zu beachten.
3.2 Reverse Engineering und Geheimhaltung
Der Lizenznehmer verpflichtet sich, in Bezug auf das Programm keine Übersetzung, keine Disassemb-
lierung sowie kein Reverse Engineering vorzunehmen, soweit dies nicht nach § 69e deutsches UrhG
zulässig ist.
Der Lizenznehmer verpflichtet sich, ihm von PDFlib GmbH zugeteilte Lizenzschlüssel nicht weiterzu-
geben oder allgemein zugänglich zu machen.
3.3 Aktualisierte Programmversionen (Updates) und Lizenzerweiterungen (Upgrades)
Erhält der Lizenznehmer das Programm als neue Hauptversion oder als Korrekturversion zu einer frü-
heren Version desselben oder eines anderen Produkts (Update) oder wird eine Produktlizenz in eine Li-
zenz für ein anderes Produkt umgewandelt, welches das ursprünglich lizenzierte Produkt enthält (Up-
grade), so wird die neue Lizenz im Tausch gegen die frühere Lizenz erteilt. Durch Installation und
Benutzung einer solchen neuen Version endet die Lizenz für die ältere Version.

4 Lieferung
Das Programm und die Dokumentation werden ausschließlich in digitalem Format geliefert. Das Pro-
gramm, die Dokumentation sowie alle einschlägigen Korrekturversionen sind von den Webseiten der
PDFlib GmbH unter der Adresse www.pdflib.com abzurufen. Dem Lizenznehmer werden von PDFlib
GmbH weder digitale Speichermedien noch eine gedruckte Dokumentation zur Verfügung gestellt.

Seite D-3 von 6PDFlib GmbH Allgemeine Lizenz- und Supportbedingungen, Stand November 2009

5 Gewährleistung
5.1 Gewährleistung für Kunden mit Sitz in der Bundesrepublik Deutschland
Hat der Kunde seinen Sitz in der Bundesrepublik Deutschland, so gelten folgende Regelungen:
Vorbehaltlich Ziffer 9 gelten die gesetzlichen Bestimmungen für die Mängelgewährleistung mit der
Maßgabe, dass die Gewährleistungsfrist (Verjährung der Mängelansprüche, § 438 Abs. 1 BGB) ein Jahr
beträgt. Dies gilt jedoch nicht für mängelbedingte Schadensersatzansprüche, die auf Ersatz eines Kör-
per- oder Gesundheitsschadens wegen eines von PDFlib GmbH zu vertretenden Mangels gerichtet
oder auf grobes Verschulden der PDFlib GmbH oder ihrer Erfüllungsgehilfen gestützt sind, sowie nicht
im Falle von Arglist der PDFlib GmbH; in diesen Fällen verbleibt es bei den gesetzlichen Regelungen.
5.2 Gewährleistung für Kunden mit Sitz außerhalb der Bundesrepublik Deutschland
Hat der Kunde seinen Sitz nicht in der Bundesrepublik Deutschland, so gelten folgende Regelungen:
Sollte das nicht vom Kunden modifizierte Programm innerhalb einer Frist von 30 Tagen nach Ab-
schluss des Lizenzvertrages den geschuldeten Eigenschaften nicht genügen, so hat PDFlib GmbH un-
verzüglich auf eigene Kosten und nach eigenem Ermessen (i) eine Korrektur oder einen Workaround
etwaiger vom Lizenznehmer gemeldeter reproduzierbarer Fehler vorzunehmen und eine aktualisierte
Version des Programms zur Verfügung zu stellen oder (ii) gemäß diesem Vertrag gezahlte Lizenzge-
bühren zurückzuerstatten. In diesem letztgenannten Fall hat der Lizenznehmer Anwendung und Ver-
teilung des Programms umgehend einzustellen und ihm von PDFlib GmbH zugeteilte Lizenzschlüssel
zu vernichten. Eine weitergehende Haftung der PDFlib GmbH ist ausdrücklich ausgeschlossen.

6 Supportvertrag / Supportleistungen
Der Kunde kann neben dem Erwerb der Lizenz zusätzlich gegen Zahlung einer jährlichen Vergütung
Supportleistungen von PDFlib GmbH in Anspruch nehmen (Supportvertrag). Dies wird vereinbart, in-
dem der Kunde die Supportleistung zu den von ihm bezogenen Lizenzen hinzuwählt und dies von
PDFlib GmbH angenommen wird.
Hat der Kunde in Bezug auf die Laufzeit des Supportvertrages die Option zur automatischen Vertrags-
verlängerung gewählt, so verlängert sich der Supportvertrag jeweils nach einer Laufzeit von einem
Jahr um denselben Zeitraum, sofern er nicht durch den Kunden bis einen Monat vor Ende der jeweili-
gen Laufzeit durch Erklärung per Brief oder Telefax gekündigt wird. Auch in diesem Fall der automati-
schen Vertragsverlängerung endet der Supportvertrag jedoch, ohne dass es einer gesonderten Erklä-
rung der Parteien bedarf, jedenfalls dann, wenn das Ende der Lebensdauer des betreffenden Produkts
erreicht ist.
Die Möglichkeit zur außerordentlichen Kündigung aus wichtigem Grund bleibt in jedem Fall unbe-
rührt.
Im Rahmen des Supportvertrages erbringt PDFlib GmbH die in der Spalte »Vertragssupport« in Anlage
2: Supportleistungen aufgeführten Leistungen.

7 Haftung
7.1 Haftungsregelung für Kunden mit Sitz in der Bundesrepublik Deutschland
Hat der Kunde seinen Sitz in der Bundesrepublik Deutschland, so gelten folgende Regelungen:
Die Haftung der PDFlib GmbH für einfach fahrlässige Verletzungen von vertragswesentlichen Pflich-
ten (das heißt Pflichten, deren Erfüllung die ordnungsgemäße Durchführung des Vertrages überhaupt
erst ermöglicht und auf deren Einhaltung der Vertragspartner regelmäßig vertrauen darf) ist auf den
typischen und bei Vertragsschluss vorhersehbaren Schaden beschränkt. Die Haftung der PDFlib GmbH
für einfach fahrlässige Verletzungen von nicht vertragswesentlichen Pflichten ist ausgeschlossen.
7.2 Haftungsregelung für Kunden mit Sitz außerhalb der Bundesrepublik Deutschland
Hat der Kunde seinen Sitz nicht in der Bundesrepublik Deutschland, so gelten folgende Regelungen:
Keine der Parteien haftet für sich durch die Anwendung eventuell ergebende Verluste, Betriebsunter-
brechungen oder indirekte, spezielle, nebensächliche Verluste oder Folgeschäden gleich welcher Art
(einschließlich entgangenen Gewinns) unabhängig von der Art einer Maßnahme, sei sie vertraglicher
Art, durch unerlaubte Handlungen (einschließlich Fahrlässigkeit), strenge Produkthaftung oder auf
sonstige Weise bedingt. Die Haftung der PDFlib GmbH ist, gleich aus welchem Rechtsgrund, (a) aus

Seite D-4 von 6PDFlib GmbH Allgemeine Lizenz- und Supportbedingungen, Stand November 2009

und im Zusammenhang mit dem Lizenzvertrag auf das Fünffache der Lizenzgebühr und (b) aus und
im Zusammenhang mit dem Supportvertrag auf die Jahresgebühr des Supports begrenzt.

8 Datenschutz
PDFlib GmbH erhebt, verarbeitet, nutzt und übermittelt personenbezogene Daten ausschließlich, so-
weit dies zum Zweck der Abwicklung und Erfüllung der Vertragsbeziehung mit dem Kunden notwen-
dig ist.

9 Geltendes Recht
Für diesen Vertrag gilt das Recht des Staates, in dem der Kunde seinen Sitz hat, jedoch unter Aus-
schluss des UN-Kaufrechts sowie unter Ausschluss der Kollisionsvorschriften des Internationalen Pri-
vatrechts.

10 Gerichtsstand
Ausschließlicher Gerichtsstand für sämtliche Streitigkeiten aus und im Zusammenhang mit dem
Kauf-, Lizenz- und/oder Supportvertrag ist für Ansprüche des Kunden der Sitz der PDFlib GmbH, für
Ansprüche der PDFlib GmbH der Sitz des Kunden oder der Sitz der PDFlib GmbH. Etwaige gesetzliche
Regelungen zur Erhebung von Widerklagen der anderen Partei am Ort der ursprünglichen Klage blei-
ben jedoch unberührt.

Seite D
-5 von 6

PD
Flib G

m
bH

 Allgem
eine Lizenz- und Supportbedingungen, Stand N

ovem
ber 2009

Anlage 1: Definitionen
Begriff Definition Beispiel
Plattform Kombination aus Betriebssystem und einer oder mehreren Hardware-Architekturen. Vollständig kompa-

tible Versionen von Betriebssystem und/oder Hardware werden als eine Plattform aufgefasst, bei
Mac OS X und Windows stellen Server- und Desktop-Versionen jedoch unterschiedliche Plattformen dar.

Windows XP/Vista/7 (ohne Windows Server 2003/
2008) ist eine Plattform;
Solaris auf x86 oder Sparc ist eine Plattform

Produkt Software-Angebot der PDFlib GmbH für eine bestimmte Plattform. PDFlib 8 für Windows Server 2003/2008;
PDFlib+PDI 8 für Linux auf x86

Hauptversion Eine Hauptversion (major release) ist eine neue Version eines Produkts mit signifikant erweiterter Funkti-
onalität.

PDFlib 8;
TET 3

Korrekturversion Eine Korrekturversion (minor release oder maintenance release) ist eine neue Version eines Produkts, die
Fehler behebt, das Produkt an neue Versionen eines Betriebssystems oder einer Sprachbindung anpasst
etc. Korrekturversionen enthalten jedoch keine signifikanten Erweiterungen der Funktionalität. Eine Kor-
rekturversion ist explizit als solche gekennzeichnet.

PLOP 4.1 ist eine Korrekturversion von PLOP 4.

Update Ein Update wandelt eine bestehende Produktlizenz in eine Lizenz für eine neuere Hauptversion des glei-
chen Produkts für die gleiche Plattform um.

Wechsel von PDFlib 7 für Windows XP/Vista/7 nach
PDFlib 8 für Windows XP/Vista/7

Upgrade Ein Upgrade wandelt eine bestehende Lizenz für ein Produkt in eine Lizenz für die gleiche Hauptversion ei-
nes höherwertigen Produkts um, das funktional eine Erweiterung des ersten Produkts darstellt.

Wechsel von PDFlib 8 zu PDFlib+PDI 8 oder von
PDFlib+PDI 8 zu PPS 8

Fehler Ein Fehler (Bug) ist jede Abweichung vom dokumentierten Verhalten, PDF-Ausgabe, die von Adobe Acro-
bat als fehlerhaft abgewiesen wird, oder der Absturz der Software, vorausgesetzt, es wurden geeignete
Eingabedaten benutzt und alle dokumentierten Randbedingungen beachtet.

PDFlib konvertiert ein JPEG-Bild nicht korrekt nach
PDF, obwohl dies laut Dokumentation möglich sein
sollte.

Sprachbindung Ausführbare Version eines Produkts für den Einsatz mit einer plattform-spezifischen Version einer Pro-
grammiersprache oder Programmierumgebung.

PHP 5.1.1 auf Linux; Java 1.4 auf Windows;
.NET 3.0 auf Windows

Lebensdauer Die Lebensdauer eines Produkts legt fest, wie lang (bei gültigem Supportvertrag) Supportfälle zu diesem
Produkt angenommen werden. Die Lebensdauer wird für jede Hauptversion eines Produkts festgelegt. Sie
ist in der zugehörigen Dokumentation angegeben und wird zusätzlich auf www.pdflib.com veröffent-
licht.

Die Lebensdauer von PDFlib 7 endet 10/2011.

Seite D
-6 von 6

PD
Flib G

m
bH

 Allgem
eine Lizenz- und Supportbedingungen, Stand N

ovem
ber 2009

Anlage 2: Supportleistungen

Leistungsmerkmal Beispiel
Gewährleistung
(kostenlos)

Vertragssupport
(gegen Gebühr)

Reaktionszeit bei einem Supportfall (die tatsächliche Fehlerbehebung kann länger
dauern)

undefiniert 2 Arbeitstage

Supportende: die Unterstützung für ein Produkt wird eingestellt. Deutschland: 1 Jahr
sonst: 30 Tage

Lebensdauer des
Produkts

Korrektur1 oder Workaround für einen Fehler

1. Realisiert durch eine Korrekturversion für alle lizenzierten Plattformen und die jeweils benutzte Sprachbindung.

soweit gesetzlich
vorgeschrieben

ja

Anpassungen für eine neuere Version einer Betriebssystemplattform, die zur vor-
hergehenden nicht vollständig kompatibel ist1.

Windows Vista erfordert Anpassungen an
Programmen, die unter Windows XP liefen.

freiwillig ja

Anpassungen für eine neue Hauptversion einer Sprachbindung, die zur vorherge-
henden nicht vollständig kompatibel ist1.

PHP 5 erfordert die Anpassung der PDFlib-
Sprachbindung für PHP 4

freiwillig ja

Anpassungen für die Korrekturversion einer Sprachbindung, die nicht die aktuelle
Version ist, bisher aber unterstützt wurde und die Korrekturversion der Sprache
nicht vollständig kompatibel zur vorhergehenden ist1.

PHP 5.1.1 erfordert die Anpassung der
PDFlib-Sprachbindung für PHP 5.1.0, obwohl
bereits PHP 5.2 unterstützt wird.

freiwillig ja

Lizenz zur Nutzung der aktuellen Korrekturversion des lizenzierten Produkts Wechsel von PDFlib 7.0.3 auf PDFlib 7.0.4 freiwillig kostenlos
Verfügbarkeit (Download) des lizenzierten Produkts bis zur Freigabe der

nächsten Hauptversion
Lebensdauer des
Produkts

Verfügbarkeit (Download) der aktuellsten Korrekturversion des lizenzierten Pro-
dukts

bis zur Freigabe der
nächsten Hauptversion

Lebensdauer des
Produkts

Update auf die aktuelle Hauptversion des lizenzierten Produkts Wechsel von PDFlib 7 auf PDFlib 8 zum Listenpreis für
Updates

kostenlos

Informationen zur Veröffentlichung neuer Haupt- oder Korrekturversionen – per E-Mail
Upgrade zur aktuellen Korrekturversion eines höherwertigen Produkts der gleichen
Hauptversion zum Listenpreis für Upgrades

Wechsel von PDFlib 8 auf PDFlib+PDI 8 1 Jahr nach Freigabe der
nächsten Hauptversion

Lebensdauer des
Produkts

Nachkauf weiterer Lizenzen des lizenzierten Produkts zum Listenpreis Kunde setzt PDFlib 7 ein und benötigt wei-
tere Lizenzen dieser Version, obwohl bereits
PDFlib 8 verfügbar ist.

1 Jahr nach Freigabe der
nächsten Hauptversion

Lebensdauer des
Produkts

Page FR-1 de 6Conditions générales de licence et de support de PDFlib GmbH, mise à jour novembre 2009

Conditions générales de Licence et de Support
PDFlib GmbH, Franziska-Bilek-Weg 9, D-80339 Munich, Allemagne

Tél. +49 • 89 • 452 33 84-0 Fax +49 • 89 • 452 33 84-99
sales@pdflib.com, support@pdflib.com, www.pdflib.com

1 Généralités
Certains termes employés dans les présentes conditions de licence et de support auront la significa-
tion qui leur sont données dans l'Annexe 1 : Définitions. Les présentes conditions de licence et de sup-
port sont valables pour la totalité des produits logiciels de PDFlib GmbH.
Le présent contrat concerne exclusivement le code objet et ne confère aucun droit sur le code source
des produits. Dans le présent contrat, le ou les produits sous licence accordés au client sont ci-après
nommé »le Programme«. Le Programme est livré sous forme informatique avec un manuel dans le-
quel vous trouverez la description des caractéristiques du produit et le mode d'utilisation (»la Docu-
mentation«).
PDFlib GmbH livre ses produits et fournit ses prestations exclusivement aux usagers professionnels et
non aux consommateurs.
Les dispositions prévues ci-dessous aux paragraphes 2 à 5 concernent les licences du Programme ache-
tées par le client, celles du paragraphe 6 se rapportent au contrat de support du Programme (mainte-
nance de logiciel) qui peut être éventuellement conclu en supplément et celles prévues aux paragra-
phes 7 à 9 concernent des conditions communes au contrat de licence et au contrat de support.

2 Licences
2.1 Licences payantes
L'achat d'une licence confère au licencié le droit non-exclusive pour une durée illimitée d'utiliser le
Programme sur un nombre d'ordinateurs appartenant au licencié, nombre convenu entre les parties,
et d'utiliser la plate-forme convenue entre les parties ; en ce qui concerne les licences à titre gratuit
sont applicables les dispositions prévues aux paragraphes 2.3 et 2.4. La licence achetée peut être céder
à un tiers si et dès que le formulaire de cession mis à disposition par PDFlib GmbH est dûment rempli
et que PDFlib GmbH l'a réceptionné.
2.2 Licences de systèmes de développement et de sauvegarde
Les dispositions prévues ci-dessous au paragraphe 2.2 sont applicables au code objet des produits logi-
ciels de PDFlib GmbH exécutable sur toute les plates-formes à l'exception de IBM eServer iSeries et de
IBM eServer zSeries et des systèmes qui leur sont compatibles.
Outre l'installation effectuée initialement sur un ordinateur, le client est en droit d'installer tout Pro-
gramme acquis régulièrement par l'achat d'une licence sur un deuxième ordinateur équipé du même
système d'exploitation (»système de sauvegarde«), à condition que les deux ordinateurs équipés de la
même licence (un poste de travail) ne fonctionnent pas simultanément.
De plus, le licencié est autorisé à utiliser le Programme sur un nombre illimité d'ordinateurs de déve-
loppement à condition que les appareils ne soient pas utilisés simultanément à des fins de production
(licence de développement). Pour satisfaire aux conditions nécessaires d'une telle licence, il faut que
seuls les développeurs aient accès aux ordinateurs de développement via réseau et qu'ils ne tra-
vaillent que sur des produits pour lesquels une copie sous licence du Programme est ou sera intégrée
et que les ordinateurs de développement soient utilisés sur une même plate-forme pour laquelle une
licence a été acquise régulièrement.
2.3 Produits à titre gratuit
Pour les PDFlib FontReporter Plugin, PDFlib TET Plugin et PDFlib TET PDF IFilter (uniquement en version
de bureau et pour une utilisation non commerciale), il est conféré au licencié une licence à titre gratuit
non-cessible et non-exclusif pour une durée illimitée aux fins d'une utilisation du Programme sur un
nombre illimité d'ordinateurs appartenant au licencié. Les dispositions prévues au paragraphe 5
(Garantie) et au paragraphe 7 (Responsabilité) ne sont pas valables pour ces licences ; dans ce cas, les
lois en vigueur sur la donation s'appliquent.

Page FR-2 de 6Conditions générales de licence et de support de PDFlib GmbH, mise à jour novembre 2009

2.4 Utilisation à titre gratuit des versions d'évaluation d'un Programme
Pour certains produits, PDFlib GmbH met à votre disposition des versions gratuites qui peuvent être
utilisées sans code d'accès (versions d'évaluation) mais qui néanmoins présentent des restrictions par
rapport à la version d'un même produit acquise à titre onéreux, restrictions mentionnées dans la Do-
cumentation de chacun des produits. Pour les versions d'évaluation, il est conféré au licencié une li-
cence à titre gratuit, non-cessible et non-exclusive pour une durée illimitée aux fins d'une évaluation
du Programme sur un nombre illimité d'ordinateurs appartenant au licencié. Evaluation signifie que le
licencié peut essayer le Programme et déterminer s'il souhaite acquérir celui-ci pour une utilisation
professionnelle (utilisation professionnelle signifie une utilisation directe, indirecte ou supplémentai-
re du Programme à des fins lucratives et statutaires ou par un tiers) et qu'il peut développer des pro-
duits dans lesquels une copie sous licence du Programme (acquise ultérieurement) ou une version
d'évaluation sont ou seront intégrées dont le but d'utilisation excède fondamentalement l'intégration
du Programme de PDFlib GmbH. Si le licencié intègre la version d'évaluation dans l'un de ses propres
produits aux qualités précitées, il est autorisé à céder la licence de la version d'évaluation intégrée
lorsqu'il transmet son produit à une tierce personne.
2.5 PDFlib Block Plugin
Pour PDFlib Block Plugin qui est un composant de PDFlib Personalization Server, il est accordé au licen-
cié du PDFlib Personalization Server, outre les droits de licence conférés par les dispositions prévues au
paragraphe 2.1, le droit de transmettre le programme à un nombre illimité de tiers à qui il pourra con-
féré le droit d'utiliser le programme PDFlib Block Plugin à leur propre usage afin de créer des données
qu'ils renverront au licencié pour être traitées de nouveau à condition que le licencié engage les tiers,
lorsqu'il transmet les données à n'utiliser PDFlib Block Plugin uniquement selon ce qui a été mention-
né ci-dessus et à ne pas transmettre le programme à autrui.

3 Limitations
3.1 Propriété intellectuelle
Le Programme et la Documentation sont protégés par les droits de la propriété intellectuelle de
PDFlib GmbH.
Lorsque le licencié traite avec le Programme un document au format PDF déjà existant, il doit respec-
ter les droits accordés et les restrictions souhaitées par chacun des auteurs du document au format
PDF pour l'utilisation de ce document.
3.2 Ingénierie inverse et confidentialité
Le licencié s'engage à n'effectuer ni traduction ni désassemblage et ni d'ingénierie inverse du pro-
gramme sauf si les clauses du § 69e UrhG allemande (loi sur le droit d'auteur) n'y autorisent.
Le licencié s'engage à ne pas transmettre ni rendre accessible le code d'accès attribué par
PDFlib GmbH.
3.3 Versions actualisées du programme (mise à jour) et développement des licences

(niveau supérieur)
Si le licencié reçoit le Programme en nouvelle version majeure ou en version mineure d'une version an-
térieure du même produit ou d'un produit différent (mise à jour) ou si la licence d'un produit est modi-
fiée en une licence d'un autre produit qui comprend le produit licencié d'origine (niveau supérieur), la
nouvelle licence est délivrée en échange de l'ancienne. L'installation et l’utilisation d'une nouvelle ver-
sion implique que la licence de l'ancienne version expire.

4 Livraison
Le Programme et la Documentation sont livrés exclusivement sous forme électronique. Le Program-
me, la Documentation et toutes les versions mineures s'y rapportant se télechargent sur le site inter-
net de PDFlib GmbH à l'adresse www.pdflib.com. PDFlib GmbH ne met à la disposition du licencié ni
support d'enregistrement ni documentation sur papier.

Page FR-3 de 6Conditions générales de licence et de support de PDFlib GmbH, mise à jour novembre 2009

5 Garantie
5.1 Garantie pour les clients domiciliés en République Fédérale d'Allemagne
Si le client est domicilié en République Fédérale d'Allemagne, les dispositions suivantes sont
applicables :
Sous réserve de la clause au paragraphe 9, les dispositions légales sur la garantie des vices sont appli-
cables (délai de prescription du droit pour défaut de la chose, § 438 Section 1 BGB, Code civil allemand)
sous réserve d'un délai de garantie d'un an. Néanmoins, ceci ne s'applique pas en cas de demandes de
dommages-intérêts dues à des vices de la chose et qui impliquent un dédommagement suite à un
préjudice corporel ou une atteinte à la santé causés par un défaut dont PDFlib GmbH est responsable,
par une faute lourde de PDFlib GmbH ou ses auxiliaires d'exécution ou dans le cas d'un dol commis par
PDFlib GmbH; dans ces cas, les lois en vigueur sont applicables.
5.2 Garantie pour les clients domiciliés hors de République Fédérale d'Allemagne
Si le client est domicilié en République Fédérale d'Allemagne, les dispositions suivantes sont
applicables :
Dans le cas où, dans un délai de 30 jours à compter de la conclusion du contrat, le programme, sous
réserve de non-modification de la part du client, ne devait pas satisfaire les qualitées exigées,
PDFlib GmbH se doit, sans délai, à ses frais et à sa discrétion, (i) d'effectuer une correction ou de propo-
ser une solution de rechange de toutes erreurs reproductibles signalées par le licencié et de mettre à
disposition une version actualisée du programme ou (ii) conformément au présent contrat, de rem-
bourser le montant de la somme perçue pour la licence. Dans ce dernier cas, le client se doit sans délai
de ne plus utiliser ni distribuer le Programme et de détruire le code d'accès attribué par PDFlib GmbH.
PDFlib GmbH exclut expressément toute autre responsabilité.

6 Contrat de support / Services du support technique
Outre l'acquisition de la licence, le client peut profiter des services du support technique de PDFlib
GmbH contre paiement d'un abonnement annuel (contrat de support). Lorsque le client aura opté
pour le service de support de la licence achetée et PDFlib GmbH aura accepté sa décision, le contrat est
conclu.
Si, pour la durée du contrat de support, le client choisit un renouvellement annuel automatique, le
contrat de support est renouvelée à chaque fois au terme d'un an pour une nouvelle durée d'un an, à
moins que le client n'ait résilié son contrat par courrier ou par fax au plus tard un mois avant l'expira-
tion de la durée de validité. Dans le cas d'un renouvellement automatique, le contrat de support expi-
re également, dans tous les cas, sans résiliation de la part des parties, à la fin de la durée de vie du
produit.
La possibilité de résilier pour des motifs importants reste acquise.
Dans le cadre d'un contrat de support, PDFlib GmbH fournit les prestations de service mentionnées
dans la colonne »support contractuel« de l'Annexe 2 : Services du suppport.

7 Responsabilité
7.1 Responsabilité des clients domiciliés en République Fédérale d'Allemagne
Si le client est domicilié en République Fédérale d'Allemagne, les dispositions suivantes sont
applicables :
En qui concerne les manquements par simple négligence aux obligations contractuelles (à savoir, les
obligations dont l'accomplissement est la condition préalable à la bonne exécution du contrat et en
respect desquelles le client est en droit d'avoir confiance, la responsabilité de PDFlib GmbH est limitée
aux dommages caractéristiques et prévisibles à la conclusion du contrat. PDFlib GmbH décline toute
responsabilité pour les manquements par simple négligence qui ne sont pas essentiellement contrac-
tuelles.
7.2 Responsabilité des clients domiciliés hors de la République Fédérale d'Allemagne
Si le client est domicilié hors de la République Fédérale d'Allemagne, les dispositions suivantes sont
applicables :

Page FR-4 de 6Conditions générales de licence et de support de PDFlib GmbH, mise à jour novembre 2009

Aucune des parties n'est responsable de pertes, d'interruptions du système ou de pertes accessoires,
spécifiques ou indirectes ou de dommages indirects de toute sorte (y compris les pertes de gains) cau-
sés éventuellement par l'utilisation, indépendamment des mesures prises par rapport au contrat, qu'il
s'agisse d'actes illicites (négligence inclue), de la responsabilité absolue du produit ou autres. La res-
ponsabilité de PDFlib GmbH est limitée, quel qu'en soit le fondement juridique, (a) conformément et
en rapport avec le contrat de licence, à cinq fois le montant de la licence et (b) conformément et en
rapport avec le contrat de support au montant de l'abonnement annuel.

8 Protection des données
PDFlib GmbH ne collecte, ne traite, n'exploite et ne transmet les données à caractère personnel uni-
quement dans la mesure où cela s'avère nécessaire à l'exécution et à l'accomplissement du contrat.

9 Droit prévu par la législation en vigueur
En ce qui concerne ce contrat, le droit applicable est celui de l'Etat dans lequel le client est domicilié,
néanmoins à l'exclusion de la Convention des Nations-Unies sur la vente internationale des marchan-
dises et des conflits de lois du droit privé international.

10 Juridiction compétente
Pour tous litiges conformément et en rapport avec les contrats de vente, de licence et/ou de support,
seuls les tribunaux du domicile du client de PDFlib GmbH sont compétents en ce qui concerne les
droits du client ; en ce qui concerne les droits de PDFlib GmbH seront compétents les tribunaux du do-
micile du client ou de celui de PDFlib GmbH. Toutes dispositions légales concernant l'introduction
d'une demande reconventionnelle de la partie adverse à la juridiction compétente où a été déposée la
requête d'origine persistent.

Page FR-5 de 6
Conditions générales de licence et de support de PDFlib G

m
bH

, m
ise à jour novem

bre 2009

Annexe 1 : Définitions
Terme Définition Exemple
Plate-forme Ensemble formé par le système d'exploitation et le matériel informatique. Les versions entièrement com-

patibles du système d'exploitation et/ou du matériel informatique sont appréhendés comme une plate-
forme. Néanmoins, les versions de bureau et les serveurs de MAC OS X et de Windows représentent des
plates-formes différentes.

Windows XP/Vista/7 (à l'exclusion de Windows Ser-
ver 2003/2008) sont une plate-forme ;
Solaris x86 ou Sparc sont une plate-forme

Produit Logiciels de PDFlib GmbH pour une plate-forme définie. PDFlib 8 pour Windows Server 2003/2008;
PDFlib+PDI 8 pour Linux x86

Version majeure Une version majeure signifie qu'il s'agit de la nouvelle version d'un produit dont la fonctionnalité a été
développée.

PDFlib 8 ;
TET 3

Version mineure Une version mineure (version de maintenance) est la nouvelle version d'un produit dans laquelle les bo-
gues ont été corrigés et qui adapte le produit à une nouvelle version du système d'exploitation ou à un
binding, etc. Les versions mineures ne présentent cependant pas de développement manifeste de la fonc-
tionnalité. Une telle version est expressément mentionnée.

PLOP 4.1 est la version mineure de PLOP 4.

Mise à jour Une mise à jour convertit une licence du produit existant en une licence pour la nouvelle version majeure
d'un produit identique destiné à une plate-forme identique.

Remplacement de PDFlib 7 pour Windows XP/Vista/
7 par PDFlib 8 pour Windows XP/Vista/7

Niveau
supérieur

Un niveau supérieur convertit une licence existante pour un produit donné en une licence pour la version
majeure correspondante d'un produit de meilleure qualité ce qui implique que la fonctionnalité du pro-
duit d'origine a été développée.

Remplacement de PDFlib 8 par PDFlib+PDI 8 ou de
PDFlib+PDI 8 par PPS 8

Erreur Une erreur (bogue) est une anomalie du comportement, une sortie PDF que Adobe Acrobat refuse comme
défectueuse ou le blocage du logiciel, sous réserve que des données d'entrée adéquates ont été utilisées et
que toutes les conditions de compatibilité ont été respectées.

PDFlib ne convertit pas correctement une image
JPEG en PDF bien que selon la Documentation, cela
soit possible.

Binding Version d'un produit utilisée en rapport avec une version de plate-forme spécifique d'un langage de pro-
grammation ou d'un environnement de développement intégré.

PHP 5.1.1 sur Linux; Java 1.4 sur Windows;
.NET 3.0 sur Windows

Durée de vie La durée de vie d'un produit définit la durée pour laquelle nous garantissons un support de ce produit
(dans le cas d'un support valable). La durée de vie est définie pour chaque version majeure d'un produit.
Cette durée est mentionnée dans la documentation du produit et est, en outre, publiée sur le site
www.pdflib.com.

La durée de vie de PDFlib 7 expire au 10/2011.

Page FR-6 de 6
Conditions générales de licence et de support de PDFlib G

m
bH

, m
ise à jour novem

bre 2009

Annexe 2 : Services du suppport

Services Exemple
Garantie
(gratuite)

Contrat de support
(contre paiement)

Réponse dans le cas d'une maintenance (le temps réel imparti à la correction peut
être plus long)

illimité deux jours ouvrés

Fin des services : La maintenance d'un produit cesse. Allemagne : un an
sinon : 30 jours

Durée de vie du
produit

Correction1 ou solution de rechange en cas d'erreur

1. Réalisée au moyen d'une version mineure pour toutes les plates-formes sous licence et pour chaque binding utilisé.

selon les dispositions léga-
les

oui

Mise à jour de la nouvelle version d'une plate-forme de système d'exploitation qui
n'est pas entièrement compatible avec la version antérieure1.

Windows Vista nécessite une mise à jour des
programmes utilisés sur Windows XP.

facultatif oui

Mise à jour du binding d'une version majeure qui n'est pas entièrement compatible
avec la version antérieure1.

PHP 5 nécessite une mise à jour du binding
de PHP 4

facultatif oui

Mise à jour de la version mineure d'un binding, qui n'est pas la version actuelle mais
jusqu'à présent a été supportée et qui n'est pas entièrement compatible avec la ver-
sion antérieure1.

PHP 5.1.1 nécessite une mise à jour du bin-
ding PDFlib de PHP 5.1.0, alors que PHP 5.2
est déjà supporté.

facultatif oui

Licence afin d'utiliser la version mineure du produit sous licence Remplacement de PDFlib 7.0.3 en
PDFlib 7.0.4

facultatif gratuit

Mise à disposition (Download) du produit sous licence jusqu'à la mise à disposi-
tion de la nouvelle ver-
sion majeure

Durée de vie du
produit

Mise à disposition (Download) de l'actuelle version mineure du produit sous licence jusqu'à la mise à disposi-
tion de la nouvelle ver-
sion majeure

Durée de vie du
produit

Mise à jour de l'actuelle version majeure du produit sous licence Remplacement de PDFlib 7 par PDFlib 8 au prix catalogue des mi-
ses à jour

gratuit

Informations sur la sortie de nouvelles versions majeures et mineures – par E-Mail
Niveau supérieur de l'actuelle version mineure d'un produit de qualité supérieure
d'une version majeure identique au prix catalogue des niveaux supérieurs

Remplacement de PDFlib 8 en PDFlib+PDI 8 1 an après la mise à dispo-
sition de la nouvelle ver-
sion majeure

Durée de vie du
produit

Achat ultérieur de licences supplémentaires d'un produit sous licence au prix cata-
logue

Le client utilise PDFlib 7 et nécessite des li-
cences supplémentaires bien que PDFlib 8
est disponible.

1 an après la mise à dispo-
sition de la nouvelle ver-
sion majeure

Durée de vie du
produit

Pagina IT-1 di 6PDFlib GmbH - Condizioni generali di licenza e di assistenza, Edizione novembre 2009

Condizioni generali di Licenza e di Assistenza
PDFlib GmbH, Franziska-Bilek-Weg 9, D-80339 Monaco, Germania

Telefono +49 • 89 • 452 33 84-0 Fax +49 • 89 • 452 33 84-99
sales@pdflib.com, support@pdflib.com, www.pdflib.com

1 Generalità
Per le presenti Condizioni generali di licenza e di assistenza trovano applicazione le definizioni termi-
nologiche specificate in Allegato 1: Definizioni. Le presenti Condizioni di licenza e di assistenza si appli-
cano a tutti i prodotti software della società PDFlib GmbH.
Il presente contratto si riferisce esclusivamente al codice oggetto eseguibile e non contempla alcun di-
ritto sul codice sorgente dei prodotti. Al prodotto o ai prodotti oggettivamente concessi in licenza al
Cliente viene fatto riferimento nel presente contratto con la denominazione generica di «il program-
ma». Il programma viene fornito con un manuale in formato elettronico in cui sono descritte le carat-
teristiche del programma e le modalità d'uso («la documentazione»).
PDFlib GmbH fornisce le proprie forniture e prestazioni esclusivamente ad altre società e non ai consu-
matori.
Le seguenti disposizioni di cui ai punti da 2 a 5 si riferiscono a licenze relative al programma acquistate
dal Cliente, quelle di cui al punto 6 a un eventuale rapporto di assistenza (manutenzione del software)
relativo al programma, i punti da 7 a 9 si riferiscono unitariamente a entrambi i rapporti.

2 Tipi di licenza
2.1 Licenze a titolo oneroso
Attraverso l'acquisizione di una licenza a titolo oneroso della società PDFlib GmbH, al licenziatario
viene concesso a tempo determinato il diritto non esclusivo all'uso del programma sul numero concor-
dato di computer del licenziatario utilizzati sulla piattaforma concordata; alle licenze a titolo gratuito
si applicano le disposizioni di cui al punto 2.3 e al punto 2.4. La licenza a titolo oneroso può essere ce-
duta a terzi a condizione e non prima che il licenziatario e il terzo abbiano regolarmente compilato il
modulo di cessione licenza richiedibile a PDFlib GmbH e che tale modulo compilato sia pervenuto a
PDFlib GmbH.
2.2 Licenza per sistemi di backup e sviluppo
Le disposizioni di cui al punto 2.2 seguente si applicano al codice oggetto eseguibile dei prodotti
software della società PDFlib GmbH su tutte le piattaforme, fatta eccezione per le piattaforme
IBM eServer iSeries, IBM eServer zSeries e i sistemi compatibili.
Ogni copia del programma di cui sia stata regolarmente acquisita la licenza a titolo oneroso può esse-
re utilizzata dal Cliente, oltre che sul computer sul quale è stata effettuata la prima installazione, an-
che su un altro computer sul quale venga utilizzato lo stesso sistema operativo («sistema di backup»),
a condizione che non vengano usati contemporaneamente due computer che utilizzano entrambi la
stessa licenza (per un solo computer).
Il licenziatario è inoltre autorizzato a utilizzare il programma su un numero illimitato di computer
destinati ad attività di sviluppo, a condizione che tali computer non vengano contemporaneamente
utilizzati per scopi produttivi (licenza di sviluppo). Il presupposto necessario per la concessione di tale
licenza di sviluppo è che al computer di sviluppo possano accedere tramite una rete soltanto sviluppa-
tori che lavorano a prodotti in cui sia o venga integrata una copia con licenza del programma e che i
computer destinati all'attività di sviluppo siano utilizzati sulla stessa piattaforma per la quale è stata
acquisita una licenza.
2.3 Prodotti gratuiti
Per i prodotti PDFlib FontReporter Plugin, PDFlib TET Plugin e PDFlib TET PDF IFilter (solo in versione
Desktop e solo per uso non commerciale) viene concessa al licenziatario una licenza a tempo determi-
nato non esclusiva, gratuita e non cedutile per l'utilizzo del programma su un numero a piacere di
computer del licenziatario. A tali licenze non si applicano le disposizioni di cui al punto 5 (Garanzia) e 7
(Responsabilità), bensì le norme di legge che disciplinano le donazioni.

Pagina IT-2 di 6PDFlib GmbH - Condizioni generali di licenza e di assistenza, Edizione novembre 2009

2.4 Utilizzo gratuito di versioni di valutazione del programma
Per determinati prodotti la società PDFlib GmbH offre versioni libere che possono essere utilizzate
senza l'acquisizione di una chiave di licenza (versioni di valutazione), le quali tuttavia presentano
rispetto alla licenza acquisita a titolo oneroso per lo stesso prodotto alcune restrizioni che possono
essere desunte dalla documentazione del prodotto interessato. Per le versioni di valutazione viene
concessa al licenziatario una licenza a tempo determinato non esclusiva, gratuita e non cedibile per la
valutazione del programma su un numero a piacere di computer del licenziatario. Si intende valuta-
zione la verifica da parte del licenziatario della sua intenzione di acquistare il programma per uso pro-
duttivo (l'uso produttivo è l'utilizzo del programma in forma diretta, indiretta o come supporto per la
realizzazione di utili o per scopi statutari del licenziatario o di un terzo) nonché lo sviluppo di prodotti
da parte del licenziatario nei quali sia o venga integrata una copia del programma a titolo oneroso (ac-
quisita in un secondo tempo) e la cui destinazione d'uso vada sostanzialmente oltre l'integrazione del
programma della società PDFlib GmbH. Se il licenziatario integra la versione di valutazione in un pro-
prio prodotto della natura succitata, è autorizzato, in caso di cessione del suo prodotto a un terzo, a
cedere anche la licenza della versione di valutazione in esso integrata.
2.5 PDFlib Block Plugin
Per il PDFlib Block Plugin, il quale è parte integrante del PDFlib Personalization Server, al licenziatario
del PDFlib Personalization Server viene concesso, oltre alla licenza di cui al punto 2.1, il diritto di cedere
tale prodotto a terzi senza limitazioni di numero e di riconoscere a questi ultimi il diritto di utilizzare il
PDFlib Block Plugin esclusivamente a scopo personale per la generazione di dati che dovranno poi es-
sere trasmessi al licenziatario per la loro successiva elaborazione a opera del licenziatario stesso, a
condizione che all'atto della cessione a terzi questi ultimi si impegnino nei confronti del licenziatario a
utilizzare il PDFlib Block Plugin esclusivamente come prescritto e a non cederlo da parte loro ad altre
persone.

3 Limitazioni
3.1 Proprietà intellettuale
Il programma e la documentazione sono proprietà intellettuale protetta da copyright della
PDFlib GmbH.
Per l'elaborazione con il programma di un documento PDF già esistente il licenziatario è tenuto a
osservare i diritti concessi dall'autore del documento PDF e le limitazioni imposte per l'uso di tale
documento.
3.2 Reverse Engineering e segretezza
Il licenziatario si impegna, relativamente al programma, a non eseguire alcuna traduzione, alcun
disassemblaggio né alcuna operazione di Reverse Engineering se tali azioni non sono consentite
dall'art. 69e UrhG (legge tedesca sui diritti d'autore).
Il licenziatario si impegna a non cedere a terzi o a rendere in generale accessibili le chiavi di licenza a
lui assegnate da PDFlib GmbH.
3.3 Versioni aggiornate del programma (update) ed estensioni della licenza (upgrade)
Qualora il licenziatario riceva una nuova versione principale del programma o una versione corretta di
una precedente versione dello stesso programma o di un altro prodotto (update) o qualora la licenza
di un prodotto venga convertita in una licenza di un altro prodotto che contenga il prodotto per il qua-
le era stata originariamente concessa la licenza (upgrade), la nuova licenza verrà concessa a titolo so-
stitutivo della precedente. Con l'installazione e l'uso di tale nuova versione ha termine la licenza per la
versione precedente.

4 Fornitura
Il programma e la documentazione vengono forniti esclusivamente in formato digitale. Il programma,
la documentazione e tutte le versioni corrette pertinenti devono essere scaricati dalle pagine web di
PDFlib GmbH all'indirizzo www.pdflib.com. PDFlib GmbH non mette a disposizione del licenziatario né
supporti di memoria digitali né una documentazione in formato cartaceo.

Pagina IT-3 di 6PDFlib GmbH - Condizioni generali di licenza e di assistenza, Edizione novembre 2009

5 Garanzia
5.1 Garanzia per i Clienti con sede nella Repubblica federale tedesca
Per i Clienti con sede nella Repubblica federale tedesca valgono le seguenti disposizioni:
Fatto salvo il punto 9, si applicano le norme di legge che regolamentano la garanzia per i vizi della
cosa con un periodo di garanzia (prescrizione dei diritti di garanzia, art. 438 comma 1 BGB (c.c. tede-
sco)) della durata di un anno. Quanto sopra non vale tuttavia per i diritti al risarcimento di danni per
vizi della cosa esercitati a seguito di un danno corporale o alla salute subito a causa di un vizio di cui
sia responsabile PDFlib GmbH o in forza di colpa grave della PDFlib GmbH o dei suoi collaboratori né in
caso di dolo da parte di PDFlib GmbH; in tali casi si applicano le norme di legge.
5.2 Garanzia per i Clienti con sede al di fuori della Repubblica federale tedesca
Per i Clienti che non hanno sede nella Repubblica federale tedesca valgono le seguenti disposizioni:
Qualora entro il termine di 30 giorni dalla stipula del contratto di licenza risulti che il programma, non
sottoposto a modifiche da parte del Cliente, non soddisfa le dovute caratteristiche, PDFlib GmbH è te-
nuta a eseguire tempestivamente a proprie spese e a propria discrezione (i) una correzione o un
workaround degli errori riproducibili segnalati dal licenziatario e a mettere a disposizione di quest'ul-
timo una versione aggiornata del programma oppure (ii) a risarcire i diritti di licenza corrisposti secon-
do quanto previsto dal presente contratto. In quest'ultimo caso il licenziatario è tenuto a sospendere
immediatamente l'uso e la distribuzione del programma e a distruggere le chiavi di licenza a lui asse-
gnate da PDFlib GmbH. Si esclude espressamente qualsiasi altra responsabilità di PDFlib GmbH.

6 Contratto di assistenza / servizi di assistenza
Oltre ad acquisire la licenza, il Cliente può avvalersi, dietro pagamento di un canone annuo, dei servizi
di assistenza di PDFlib GmbH (contratto di assistenza). A tale accordo si perviene se il Cliente opta an-
che per il servizio di assistenza relativo alle licenze da lui acquisite e se tale scelta viene accettata da
PDFlib GmbH.
Se, in relazione alla durata del contratto di assistenza, il Cliente ha selezionato l'opzione per il rinnovo
automatico del contratto, allo scadere del periodo di validità di un anno il contratto di assistenza viene
rinnovato per lo stesso periodo di tempo, a condizione che esso non sia stato rescisso dal Cliente entro
un mese dalla fine del periodo di validità mediante dichiarazione scritta inviata a mezzo posta o fax.
Anche in caso di rinnovo automatico, tuttavia, il contratto di assistenza termina comunque, senza la
necessità di un'apposita dichiarazione delle parti, quando il prodotto interessato giunge alla fine della
propria vita.
È fatta salva in ogni caso la possibilità di rescissione straordinaria per giusta causa.
Nel contesto del contratto di assistenza, PDFlib GmbH fornisce le prestazioni elencate nella colonna
«Assistenza contrattuale» in Allegato 2: Servizi di assistenza.

7 Responsabilità
7.1 Regime di responsabilità per i Clienti con sede nella Repubblica federale tedesca
Per i Clienti con sede nella Repubblica federale tedesca valgono le seguenti disposizioni:
La responsabilità di PDFlib GmbH per violazioni colpose di obblighi contrattuali essenziali (vale a dire
di obblighi il cui adempimento è indispensabile ai fini della regolare esecuzione del contratto e sulla
cui osservanza la parte contraente può fare regolarmente affidamento) è limitata ai danni tipici e pre-
vedibili all'atto della stipula del contratto. Si esclude ogni responsabilità di PDFlib GmbH per violazioni
colpose di obblighi contrattuali non essenziali.
7.2 Regime di responsabilità per i Clienti con sede al di fuori della Repubblica federale tedesca
Per i Clienti che non hanno sede nella Repubblica federale tedesca valgono le seguenti disposizioni:
Nessuna parte contraente risponde delle perdite che dovessero eventualmente risultare dall'utilizzo,
né di interruzioni dell'esercizio o di perdite indirette, specifiche, accessorie o di danni indiretti di qual-
sivoglia natura (incluso il lucro cessante) indipendentemente dal tipo di provvedimento, sia esso di
natura contrattuale o determinato da atti illeciti (inclusa la colpa), severa responsabilità civile o in al-
tro modo. La responsabilità di PDFlib GmbH è limitata, indipendentemente dal motivo giuridico, (a)

Pagina IT-4 di 6PDFlib GmbH - Condizioni generali di licenza e di assistenza, Edizione novembre 2009

per e in relazione al contratto di licenza al quintuplo dei diritti di licenza e (b) per e in relazione al con-
tratto di assistenza al canone annuale del servizio di assistenza.

8 Protezione dei dati
PDFlib GmbH raccoglie, elabora, utilizza e trasmette dati personali esclusivamente nella misura in cui
tali attività risultano necessarie ai fini dello svolgimento e dell'adempimento del rapporto contrattua-
le con il Cliente.

9 Diritto vigente
Il presente contratto è sottoposto al diritto dello Stato in cui ha sede il Cliente, con esclusione tuttavia
della Convenzione delle Nazioni Unite sui contratti di compravendita internazionale di merci e delle
norme sui conflitti di legge del diritto privato internazionale.

10 Foro competente
Il foro competente per qualsiasi controversia derivante da e connessa con il contratto di compravendi-
ta, di licenza e/o di assistenza è la sede di PDFlib GmbH per le rivendicazioni del Cliente, la sede del
Cliente o la sede di PDFlib GmbH per le rivendicazioni di PDFlib GmbH. Sono fatte salve le norme di
legge che disciplinano il promovimento di domande riconvenzionali dell'altra parte contraente nel
luogo in cui è stata presentata la domanda giudiziale originaria.

Pagina IT-5 di 6
PDFlib G

m
bH

 - Condizioni generali di licenza e di assistenza, Edizione novem
bre 2009

Allegato 1: Definizioni
Termine Definizione Esempio
Piattaforma L'unione di un sistema operativo e di una o più architetture hardware. Le versioni completamente compa-

tibili del sistema operativo e/o dell'hardware vengono considerate una piattaforma; nel caso di Mac OS X
e di Windows, tuttavia, le versioni Server e Desktop sono piattaforme diverse.

Windows XP/Vista/7 (senza Windows Server 2003/
2008) è una piattaforma;
Solaris su x86 o Sparc è una piattaforma

Prodotto Software offerto da PDFlib GmbH per una determinata piattaforma. PDFlib 8 per Windows Server 2003/2008;
PDFlib+PDI 8 per Linux su x86

Versione
principale

Una versione principale (major release) è una versione nuova di un prodotto con estensione significativa
delle funzionalità.

PDFlib 8;
TET 3

Versione
corretta

Una versione corretta (minor release o maintenance release) è una nuova versione di un prodotto che eli-
mina gli errori, rende il prodotto compatibile con nuove versioni di un sistema operativo o di un language
binding e così via. Le versioni corrette non contengono tuttavia alcuna estensione significativa delle fun-
zionalità. Una versione corretta è esplicitamente contrassegnata come tale.

PLOP 4.1 è una versione corretta di PLOP 4.

Update Un update converte una licenza in essere per un prodotto in una licenza per una versione principale più
recente dello stesso prodotto destinato alla stessa piattaforma.

Passaggio da PDFlib 7 per Windows XP/Vista/7 a
PDFlib 8 per Windows XP/Vista/7

Upgrade Un upgrade trasforma una licenza già in essere per un prodotto in una licenza concessa per la stessa ver-
sione principale di un prodotto di valore superiore, il quale dal punto di vista funzionale rappresenta
un'estensione del primo prodotto.

Passaggio da PDFlib 8 a PDFlib+PDI 8 o da
PDFlib+PDI 8 a PPS 8

Errore Un errore (bug) è uno scostamento rispetto al comportamento documentato, un'edizione PDF che viene
rifiutata da Adobe Acrobat in quanto difettosa o un crash del software, a condizione che siano stati utiliz-
zati dati di immissione appropriati e che siano state rispettate tutte le condizioni al contorno documen-
tate.

PDFlib non effettua correttamente la conversione di
un'immagine JPEG in formato PDF, sebbene se-
condo la documentazione tale operazione dovrebbe
essere possibile.

Language
binding

Versione eseguibile di un prodotto per l'impiego con una versione di un linguaggio di programmazione o
di un ambiente di programmazione specifica per una determinata piattaforma.

PHP 5.1.1 su Linux; Java 1.4 su Windows;
.NET 3.0 su Windows

Vita La vita di un prodotto definisce il periodo per il quale vengono forniti interventi di assistenza per il pro-
dotto interessato (a fronte di un contratto di assistenza valido). La vita viene stabilita per ciascuna ver-
sione principale di un prodotto. Essa è indicata nella documentazione del prodotto e viene inoltre
pubblicata su www.pdflib.com.

La data di fine vita di PDFlib 7 è 10/2011.

Pagina IT-6 di 6
PDFlib G

m
bH

 - Condizioni generali di licenza e di assistenza, Edizione novem
bre 2009

Allegato 2: Servizi di assistenza

Prestazione Esempio
Garanzia
(gratis)

Contratto di
assistenza
(canone)

Tempo di reazione al verificarsi di un caso di assistenza (la rimozione vera e propria
dell'errore può richiedere più tempo)

non definito 2 giorni lavorativi

Fine assistenza: cessazione del servizio di assistenza per un prodotto. Germania: 1 anno, altri
Paesi: 30 giorni

Vita del prodotto

Correzione1 o workaround di un errore

1. Realizzato mediante una versione corretta per tutte le piattaforme coperte da licenza e per il language binding in uso.

secondo quanto previsto
dalle norme di legge

sì

Adeguamento a una nuova versione della piattaforma di un sistema operativo non
completamente compatibile con la versione precedente1.

Windows Vista richiede l'adeguamento dei
programmi che giravano sotto Windows
XP.

a richiesta sì

Adeguamento a una nuova versione principale di un language binding non com-
pletamente compatibile con la versione precedente1.

PHP 5 richiede l'adeguamento del PDFlib
language binding per PHP 4

a richiesta sì

Adeguamenti per la versione corretta di un language binding che non costituisce la
versione corrente, ma che finora veniva supportata, mentre la versione corretta del
linguaggio non è completamente compatibile con la precedente1.

PHP 5.1.1 richiede l'adeguamento del PDFlib
language binding per PHP 5.1.0, sebbene
supporti già PHP 5.2.

a richiesta sì

Licenza per l'utilizzo della versione corretta corrente del prodotto concesso in
licenza

Passaggio da PDFlib 7.0.3 a PDFlib 7.0.4 a richiesta gratis

Disponibilità (download) del prodotto concesso in licenza fino al rilascio della ver-
sione principale successiva

Vita del prodotto

Disponibilità (download) della versione corretta più recente del prodotto concesso
in licenza

fino al rilascio della ver-
sione principale successiva

Vita del prodotto

Update alla versione principale corrente del prodotto concesso in licenza Passaggio da PDFlib 7 a PDFlib 8 al prezzo di listino fissato
per gli update

gratis

Informazioni sulla pubblicazione di nuove versioni principali o corrette – via e-mail
Upgrade alla versione corretta corrente di un prodotto di valore superiore della
stessa versione principale al prezzo di listino fissato per gli upgrade

Passaggio da PDFlib 8 a PDFlib+PDI 8 1 anno dopo il rilascio
della successiva versione
principale

Vita del prodotto

Acquisto al prezzo di listino di altre licenze per il prodotto concesso in licenza Il Cliente utilizza PDFlib 7 e necessita di altre
licenze di questa versione, sebbene sia già
disponibile PDFlib 8.

1 anno dopo il rilascio
della successiva versione
principale

Vita del prodotto

Página ES-1 de 6PDFlib GmbH Condiciones generales de licencia y soporte, versión noviembre 2009

Condiciones generales de Licencia y Soporte
PDFlib GmbH, Franziska-Bilek-Weg 9, D-80339 Múnich, Alemania

Teléfono: +49 • 89 • 452 33 84-0 Fax: +49 • 89 • 452 33 84-99
sales@pdflib.com, support@pdflib.com, www.pdflib.com

1 Generalidades
En estas Condiciones generales de licencia y soporte se utilizan las definiciones de determinados tér-
minos indicadas en Anexo 1: Definiciones. Estas Condiciones de licencia y soporte son aplicables para
todos los productos de software de PDFlib GmbH.
El presente contrato hace referencia exclusiva al código objeto ejecutable y no abarca en ningún caso
derecho alguno sobre el código fuente de los productos. Dentro del marco de este contrato, al referirse
a los productos licenciados por el cliente se emplea de forma genérica el término "programa". El pro-
grama se suministra junto con un manual en formato electrónico en el que se describen las caracterís-
ticas del programa, así como su aplicación ("la documentación").
PDFlib GmbH realiza sus suministros y prestaciones exclusivamente a empresas y no a consumidores.
Las siguientes regulaciones de los puntos 2 a 5 hacen referencia a las licencias adquiridas por el cliente
relativas al programa, el punto 6 se refiere a una posible relación de soporte (mantenimiento de soft-
ware) relativa al programa y los puntos 7 a 9 hacen referencia conjunta a ambas relaciones.

2 Envergadura de las licencias
2.1 Licencias de pago
Mediante la adquisición de una licencia de pago de PDFlib GmbH, se otorga al licenciatario el derecho
no exclusivo y limitado temporalmente a usar el programa en el número de equipos informáticos
acordado propiedad del licenciatario, utilizados en la plataforma consensuada. En el caso de licencias
gratuitas son de aplicación las disposiciones del punto 2.3 y del punto 2.4. La licencia de pago es trans-
ferible a terceros siempre y cuando tanto el licenciatario con la tercera persona hayan cumplimentado
debidamente el formulario de transferencia de licencia recibido de PDFlib GmbH y éste haya sido re-
mitido a PDFlib GmbH.
2.2 Licencia para sistemas de copias de seguridad y sistemas de desarrollo
Las siguientes regulaciones del punto 2.2 son aplicables al código objeto ejecutable de los productos
de software de PDFlib GmbH en todas las plataformas exceptuando las plataformas IBM eServer
iSeries, IBM eServer zSeries, así como sistemas compatibles con ellas.
El cliente puede utilizar cada ejemplar del programa licenciado correctamente mediante pago además
de en el equipo informático en el que se instale por vez primera, también en otro equipo informático
que trabaje con el mismo sistema operativo ("sistema de copia de seguridad"), siempre que los dos
equipos informáticos que utilicen el mismo derecho de licencia (para un equipo informático) no se
usen simultáneamente.
El licenciatario está además autorizado a utilizar el programa en un número ilimitado de equipos de
desarrollo, siempre y cuando estos equipos no se utilicen simultáneamente para fines productivos
(licencia de desarrollo). Para una licencia de desarrollo de este tipo es imprescindible que el acceso al
equipo de desarrollo a través de una red esté limitado exclusivamente a los programadores que traba-
jen en los productos en los que esté instalada o se vaya a instalar una copia licenciada del programa y
que el equipo de desarrollo funcione en la misma plataforma para la que se adquirió la licencia.
2.3 Productos gratuitos
Para los productos PDFlib FontReporter Plugin, PDFlib TET Plugin y PDFlib TET PDF IFilter (en este caso
sólo la versión de escritorio y sólo uso no comercial), se concede al licenciatario una licencia no exclusi-
va, gratuita y no transferible permanente para el uso del programa en un número ilimitado de equi-
pos informáticos de su propiedad. En el caso de estas licencias no son de aplicación las regulaciones
del punto 5 (Garantía) y 7 (Responsabilidad), sino que se aplican las normativas legales sobre obse-
quios.

Página ES-2 de 6PDFlib GmbH Condiciones generales de licencia y soporte, versión noviembre 2009

2.4 Uso gratuito de versiones de evaluación del programa
Para determinados productos, PDFlib GmbH ofrece versiones gratuitas que pueden utilizarse sin la ne-
cesidad de adquirir una clave de licencia (versiones de evaluación) pero que, no obstante, presentan
restricciones con respecto a la licencia de pago del mismo producto que pueden consultarse en la do-
cumentación del producto correspondiente. Para las versiones de evaluación, se otorga al licenciatario
una licencia no exclusiva, gratuita, no transferible y permanente para la evaluación del programa en
un número ilimitado de equipos informáticos de su propiedad. Una evaluación en este contexto signi-
fica una comprobación del producto por parte del licenciatario para determinar si desea adquirir el
programa para su uso productivo (un uso productivo equivale a la utilización del programa directa o
indirectamente o a modo de apoyo con fines lucrativos por parte del licenciatario o de terceros), así
como el desarrollo de productos por el licenciatario en los que esté integrada o vaya a integrarse una
copia del programa de pago licenciada (adquirida posteriormente) o una versión de evaluación y cuyo
fin de uso exceda la mera integración del programa PDFlib. Si el licenciatario integrara la versión de
evaluación en un producto propio del tipo descrito previamente, estará autorizado a transferir la licen-
cia de la versión de evaluación integrada en caso de transferir su producto a terceros.
2.5 PDFlib Block Plugin
Para el PDFlib Block Plugin, parte integrante del PDFlib Personalization Server, se otorga al licenciata-
rio del PDFlib Personalization Server, además de la licencia concedida según el punto 2.1, el derecho a
transferirlo a un número ilimitado de terceras personas, otorgándoles a su vez el derecho a utilizar el
PDFlib Block Plugin exclusivamente para fines propios con el propósito de generar datos que se trans-
ferirán posteriormente al licenciatario para su procesamiento, presuponiendo en todo caso que, en
esta transferencia, las terceras personas implicadas estén obligadas por el licenciatario a utilizar el
PDFlib Block Plugin exclusivamente en la forma descrita y que, por su parte, no lo transfieran a otras
personas.

3 Limitaciones
3.1 Propiedad intelectual
El programa y la documentación es propiedad intelectual protegida de PDFlib GmbH.
Al editar uno de los documentos PDF disponibles con el programa, el licenciatario deberá observar los
derechos otorgados o limitaciones establecidas por el autor correspondiente del documento para el
uso de dicho documento.
3.2 Ingeniería inversa y confidencialidad
El licenciatario se compromete a no realizar traducción, descomposición o ingeniería inversa alguna
del programa, siempre que esto no esté amparado por el artículo 69e de la Ley alemana de propiedad
intelectual.
A su vez, el licenciatario se compromete a no transferir la clave de licencia concedida por PDFlib GmbH
y a no hacerla accesible de forma general.
3.3 Versiones actualizadas del programa (actualizaciones) y ampliaciones de licencia
Si el licenciatario recibe el programa como nueva versión superior o como versión de mantenimiento
de una versión previa del mismo producto o de otro producto (actualización) o si una licencia de un
producto se transforma en una licencia para otro producto que incluye el producto licenciado original-
mente, se otorgará una licencia nueva que sustituye a la licencia anterior. Mediante la instalación y el
uso de una versión nueva de este tipo expira la licencia de la versión previa.

4 Suministro
Tanto el programa como la documentación se suministran exclusivamente en formato digital. El pro-
grama, la documentación y todas las versiones de mantenimiento pertinentes deberán descargarse
de la página web de PDFlib GmbH www.pdflib.com. PDFlib GmbH no pondrá a disposición del licencia-
tario soportes de almacenamiento digitales no documentación impresa.

Página ES-3 de 6PDFlib GmbH Condiciones generales de licencia y soporte, versión noviembre 2009

5 Garantía
5.1 Garantía para clientes con sede social en la República Federal de Alemania
Si la sede social del cliente estuviera en la República Federal de Alemania, se aplicarán las siguientes
regulaciones:
Con reserva del punto 9 son aplicables las disposiciones legales para los casos de garantía teniendo en
cuenta que el período de vigencia de la garantía (prescripción de los derechos por deficiencias, art. 438
apart. 1 del Código Civil alemán) es de un año. No obstante, esto no es aplicable para derechos de
compensación por lesiones corporales o para la salud que aleguen una deficiencia originada por
PDFlib GmbH o fundamentados en una negligencia grave por parte de PDFlib GmbH o de sus emplea-
dos, así como tampoco para el caso de actuación dolosa por parte de PDFlib GmbH. En estos casos con-
tinúan vigentes las disposiciones legales.
5.2 Garantía para clientes con sede social fuera de la República Federal de Alemania
Si la sede social del cliente no estuviera en la República Federal de Alemania, se aplicarán las siguien-
tes regulaciones:
Si el programa, no modificado por el cliente, no cumpliera las características aseguradas antes de un
plazo de 30 días tras la celebración del contrato de licencia, PDFlib GmbH deberá llevar a cabo de in-
mediato, por cuenta propia y según arbitrio propio, (i) una corrección o solución alternativa a todos los
fallos reproducibles y notificados por el licenciatario, así como poner a disposición un versión actuali-
zada del programa o (ii) reembolsar las cuotas de licencia abonadas según el presente contrato. En el
último caso mencionado, el licenciatario deberá cesar de inmediato el uso y distribución del programa
y destruir la clave de licencia otorgada por PDFlib GmbH. Queda excluida expresamente una responsa-
bilidad más amplia por parte de PDFlib.

6 Contrato de soporte / prestaciones de soporte
Además de la adquisición de la licencia, el cliente puede disfrutar, previo pago, de servicios de soporte
anuales por parte de PDFlib GmbH (contrato de soporte). Para acordar este tipo de prestaciones, el
cliente puede añadir a las licencias por él adquiridas los servicios de soporte, lo que PDFlib GmbH
deberá aceptar.
Si el cliente se hubiera decantado por una prolongación automática del contrato de soporte en rela-
ción a la duración del mismo, dicho contrato de soporte se prolongará tras un período de un año otro
año más, siempre y cuando el cliente no lo rescinda por carta o fax un mes antes de su expiración.
No obstante, también en el caso de prolongación automática del contrato de soporte éste expirará, sin
necesidad de rescisión extraordinaria por las partes implicadas, si se hubiera alcanzado el final de la
vigencia del producto correspondiente.
En todo caso permanece inalterable la posibilidad de rescisión extraordinaria por motivos de
relevancia.
Dentro del marco del contrato de soporte, PDFlib GmbH presta los servicios indicados en la columna
"Soporte contractual" de Anexo 2: Servicios de soporte.

7 Responsabilidad
7.1 Regulaciones relativas a la responsabilidad para clientes con sede social en la República Federal

de Alemania
Si la sede social del cliente estuviera en la República Federal de Alemania, se aplicarán las siguientes
regulaciones:
La responsabilidad de PDFlib GmbH en caso de violaciones negligentes leves de las obligaciones con-
tractuales fundamentales (esto es, obligaciones cuyo cumplimiento permiten la ejecución correcta del
contrato y en cuyo cumplimiento puede confiar la parte contratante de forma regular) está limitada a
los daños comunes previsibles en la celebración del contrato. Queda excluida la responsabilidad de
PDFlib GmbH en caso de violaciones negligentes leves de obligaciones no estipuladas en el contrato.

Página ES-4 de 6PDFlib GmbH Condiciones generales de licencia y soporte, versión noviembre 2009

7.2 Regulaciones relativas a la responsabilidad para clientes con sede social fuera de la República
Federal de Alemania

Si la sede social del cliente no estuviera en la República Federal de Alemania, se aplicarán las siguien-
tes regulaciones:
Ninguna de la partes se responsabilizará de posibles pérdidas derivadas del uso, paradas de produc-
ción o pérdidas indirectas, especiales o secundarias, así como de daños consecuentes de cualquier na-
turaleza (incluyendo beneficios no obtenidos) independientemente del tipo de medida, sea de carác-
ter contractual condicionada por actualizaciones no autorizadas (incluyendo negligencia),
responsabilidad por productos defectuosos o de cualquier otro tipo. La responsabilidad de
PDFlib GmbH se limita, independientemente del fundamento jurídico, (a) al quíntuplo de la cuota de
licencia en lo relativo al contrato de licencia y (b) a la tarifa anual de soporte en lo relativo al contrato
de soporte.

8 Protección de datos
PDFlib GmbH guarda, procesa, utiliza y transfiere datos personales exclusivamente si esto fuera nece-
sario para el desarrollo y cumplimiento de la relación contractual existente con el cliente.

9 Legislación aplicable
Para este contrato se aplica la legislación del país en el que el cliente tiene su sede social, excluyendo
la Convención de las Naciones Unidas sobre los Contratos de Compraventa Internacional de Mercade-
rías y las normas de conflicto del Derecho Internacional Privado.

10 Jurisdicción
La jurisdicción exclusiva para todo tipo de litigios relativos al contrato de compraventa, de licencia y/o
soporte corresponde a la sede social de PDFlib GmbH para las reclamaciones del cliente y a la sede so-
cial de PDFlib GmbH o del cliente para las reclamaciones de PDFlib GmbH. No obstante permanece in-
alterable toda regulación legal para la contrademanda de la parte contraria en el lugar de la demanda
original.

Página ES-5 de 6
PD

Flib G
m

bH
 Condiciones generales de licencia y soporte, versión noviem

bre 2009

Anexo 1: Definiciones
Término Definición Ejemplo
Plataforma Combinación de un sistema operativo y de una o más arquitecturas de hardware. Las versiones total-

mente compatibles del sistema operativo y/o hardware se consideran una plataforma. No obstante, en el
caso de Mac OS X y Windows, las versiones de servidor y escritorio constituyen diferentes plataformas.

Windows XP/Vista/7 (excluyendo Windows Server
2003/2008) es una plataforma;
Solaris sobre x86 o Sparc se considera también una
plataforma.

Producto Oferta de software de PDFlib GmbH para una determinada plataforma. PDFlib 8 para Windows Server 2003/2008;
PDFlib+PDI 8 para Linux sobre x86

Versión superior Una versión superior (major release) es una nueva versión de un producto con una funcionalidad conside-
rablemente aumentada.

PDFlib 8;
TET 3

Versión de
mantenimiento

Una versión de mantenimiento (minor release o maintenance release) es una nueva versión de un pro-
ducto que soluciona errores, adapta el producto a nuevas versiones de un sistema operativo o a una de-
pendencia de lenguaje, etc. Sin embargo, las versiones de mantenimiento no incluyen ampliaciones de
relevancia de la funcionalidad. Una versión de mantenimiento se designa explícitamente como tal.

PLOP 4.1 es una versión de mantenimiento de
PLOP 4.

Actualización Una actualización sustituye una licencia existente para un producto por una licencia de una versión supe-
rior más actual del mismo producto para la misma plataforma.

Cambio de PDFlib 7 para Windows XP/Vista/7 a
PDFlib 8 para Windows XP/Vista/7

Cambio de
versión

Un cambio de versión sustituye una licencia existente para un producto por una licencia para la misma
versión superior de un producto de mayor valor que constituye una ampliación funcional del primer pro-
ducto.

Cambio de PDFlib 8 a PDFlib+PDI 8 o de PDFlib+PDI
8 a PPS 8

Error Un error (bug) es cualquier desviación del comportamiento documentado, una salida a PDF rechazada
como errónea por Adobe Acrobat o el colapso del software presuponiendo que se han utilizado los datos
de entrada adecuados y que se han respetado todas las condiciones marco documentadas.

PDFlib no convierte a PDF correctamente una ima-
gen JPEG, a pesar de que debería ser posible según
la documentación.

Dependencia de
lenguaje

Versión ejecutable de un producto para su uso en una versión específica de plataforma de un lenguaje de
programación o en un entorno de programación.

PHP 5.1.1 sobre Linux; Java 1.4 sobre Windows;
.NET 3.0 sobre Windows

Vigencia La vigencia de un producto determina durante cuánto tiempo se aceptarán casos de soporte para el pro-
ducto (con el contrato de soporte vigente). La vigencia se establece para cada versión superior de un pro-
ducto. Está indicada en la documentación correspondiente y, además, se publica en www.pdflib.com.

La vigencia de PDFlib 7 expira el 10/2011.

Página ES-6 de 6
PD

Flib G
m

bH
 Condiciones generales de licencia y soporte, versión noviem

bre 2009

Anexo 2: Servicios de soporte

Características del servicio Ejemplo
Garantía
(gratuita)

Soporte
contractual
(previo pago)

Tiempo de respuesta en caso de solicitud de soporte (la propia subsanación del
error puede tomar más tiempo)

Sin definir 2 días hábiles

Conclusión del soporte: cesa el soporte para un producto. Alemania: 1 año
De lo contrario: 30 días

Vigencia del
producto

Corrección 1 o solución alternativa para un fallo

1. Mediante una versión de mantenimiento para todas las plataformas licenciadas y la dependencia de lenguaje correspondiente utilizada.

Siempre que esté pres-
crito por ley

Sí

Adaptaciones para una versión más actual de una plataforma de sistema operativo
que no sea totalmente compatible con la versión previa1.

Windows Vista requiere adaptaciones
de programas que funcionaban con
Windows XP.

Voluntario Sí

Adaptaciones para una nueva versión superior de una dependencia de lenguaje
que no sea totalmente compatible con la versión previa1.

PHP 5 requiere la adaptación de la
dependencia de lenguaje PDFlib para PHP 4

Voluntario Sí

Adaptaciones para la versión de mantenimiento de una dependencia de lenguaje
que no corresponde con la versión actual pero que hasta la fecha era compatible y
cuando la versión de mantenimiento del lenguaje no es totalmente compatible con
la versión previa1.

PHP 5.1.1 requiere la adaptación de la
dependencia de lenguaje PDFlib para
PHP 5.1.0 a pesar de que PHP 5.2 es
compatible.

Voluntario Sí

Licencia para el uso de la versión de mantenimiento actual del producto licenciado Cambio de PDFlib 7.0.3 a PDFlib 7.0.4 Voluntario Gratuito
Disponibilidad (descarga) del producto licenciado Hasta la habilitación de la

próxima versión superior
Vigencia del
producto

Disponibilidad (descarga) de la versión de mantenimiento más actual del producto
licenciado

Hasta la habilitación de la
próxima versión superior

Vigencia del
producto

Actualización a la versión superior actual del producto licenciado Cambio de PDFlib 7 a PDFlib 8 Al precio de lista para
actualizaciones

Gratuito

Información sobre la publicación de nuevas versiones superiores o de manteni-
miento

– Por correo
electrónico

Cambio a la versión de mantenimiento actual de un producto de mayor valor de la
misma versión superior al precio de lista para aumentos de versión

Cambio de PDFlib 8 a PDFlib+PDI 8 1 año tras la habilitación
de la próxima versión
superior

Vigencia del
producto

Compra posterior de otras licencias para el producto licenciado al precio de lista El cliente utiliza PDFlib 7 y precisa de más
licencias de esta versión a pesar de que
PDFlib 8 ya está disponible.

1 año tras la habilitación
de la próxima versión
superior

Vigencia del
producto

JA-1 ページ /6PDFlib GmbH 一般ライセンス及びサポート条件、11 ２００９版

一般ライセンス及びサポート条件
PDFlib GmbH, Franziska-Bilek-Weg 9, D-80339 München, Germany

Tel +49 • 89 • 452 33 84-0 Fax +49 • 89 • 452 33 84-99
sales@pdflib.com, support@pdflib.com, www.pdflib.com

1 一般事項

この一般ライセンス及びサポート条件では、特定の用語に対して添付資料 1：定義に定義された
用語が使用されています。この一般ライセンス及びサポート条件は、PDFlib GmbH 社のすべての
ソフトウェア製品に有効です。

本契約は実行可能なオブジェクトコードにのみ適用され、製品のソースコードに関するいかなる
権利も含まれません。お客様に実際にライセンス供与される製品は、本契約の範囲ではすべてを
合わせて「当該プログラム」と呼んでいます。当該プログラムは、プログラム特性とその使用に
ついて記載された電子形式のハンドブックとともに納品されます（「当該文書」）。

PDFlib GmbH は、納品とサービスを企業に対してのみ行い、消費者に対しては行いません。

次に続く、2 項から 5項までの規則は、お客様によって購入された当該プログラムに関するライセ
ンスに関わるものであり、6 項は当該プログラムに関して場合によって起こりうる追加のサポー
ト状況（ソフトウェア保守）に関わるものであり、7 項から 9 項まではその両方の状況に総合的に
関わるものです。

2 ライセンスの範囲

2.1 有償ライセンス

ライセンス取得者は、PDFlib GmbH の有償ライセンスの取得によって、非独占的、恒久的に与え
られた当該プログラム使用権を、合意した台数のライセンス取得者のコンピューターにおいて、
合意したプラットフォーム上で保証するものです。無償ライセンスに関しては、2.3 項及び 2.4 項
の規定が有効となります。有償ライセンスは、PDFlib GmbH が提供するライセン 譲渡書式をライ
センス取得者及び第三者が記入して PDFlib GmbH へ送付する限りにおいて、送付後直ちに第三者
への譲渡が可能です。

2.2 バックアップシステム及び開発システムのためのライセンス

2.2 項の以下の規則は、IBM eServer iSeries、IBM eServer zSeries の各プラットフォーム並びにその互
換システムを除くすべてのプラットフォーム上での PDFlib GmbH のソフトウェア製品の実行可能
なオブジェクトコードに適用されます。

規則に従ってライセンス供与された各プログラム単位を、最初にインストールされたコンピュー
ターとは別に、お客様が同じオペレーションシステムで動く他のコンピューター（「バックアップ
システム」）で使用することは、同じライセンス権（1 台のコンピューター用）を使用する 2 台の
コンピューターを同時に使用するのでない限り、許可されます。

ライセンス取得者はそのほかに、開発コンピューターが同時に製造目的で使用されない限りにお
いて、当該プログラムを開発コンピューター上で台数無制限で使用する権利を有します（開発ラ
イセンス）。そのような開発ライセンスに必要な前提条件は、ネットワークを経由した開発コン
ピューターへのアクセスが可能であるのが、ライセンス供与された当該プログラムのコピーが統
合されているかされることになっている製品で作業をする開発者のみであること、及び開発コン
ピューターがライセンスを取得したプラットフォームと同じプラットフォームで動くことです。

2.3 無償製品

PDFlib FontReporter プラグイン、PDFlib TET プラグイン、PDFlib TET PDF IFilter（ここではデスク
トップバージョンのみ、かつ非営利使用のみ）については、ライセンス取得者に対して、ライセ
ンス取得者の任意の台数のコンピューターにおける当該プログラム使用のための非独占的、無償、
譲渡不可のライセンスが、恒久的に認められます。このライセンスには、5 項（保証）及び 7 項

（法的責任）の規則は適用されず、贈与に関する法律による規定が適用されます。

JA-2 ページ /6PDFlib GmbH 一般ライセンス及びサポート条件、11 ２００９版

2.4 当該プログラムの評価版の無償使用

PDFlib GmbH は、特定の製品のために、ライセンスキーを取得しなくとも無償で使用できるバー
ジョン（評価版）を提供していますが、同じ製品の有償ライセンスと比べて制限があり、この制
限については付属する各製品文書で確認することができます。評価版については、ライセンス取
得者に対して、ライセンス取得者の任意の台数のコンピューターにおける当該プログラム評価の
ための非独占的、無償、譲渡不可のライセンスが、恒久的に認められます。ここにおける評価と
は、当該プログラムを生産的使用のために購入するかどうかを決めるライセンス取得者による試
験（生産的使用とは、ライセンス取得者又は第三者の収益の実現目的又は法的目的のための当該
プログラムの直接間接使用又は支援的使用を指す）、並びに（のちに購入する）当該プログラムの
有償ライセンス供与されたコピー又は評価版が統合されているか統合されることになっており、
かつその導入目的が PDFlib GmbH の当該プログラムの統合を本質的に超えているような、ライセ
ンス取得者による製品開発を意味します。ライセンス取得者は、評価版を所定の種類の自社製品
に統合した場合、その製品を第三者に譲渡する際に、統合された評価版にライセンスを移譲する
権利を有します。

2.5 PDFlib Block プラグイン

PDFlib Personalization Server の構成要素である PDFlib Block プラグインについては、PDFlib
Personalization Server のライセンス取得者は 2.1 項で与えられたライセンスを超えて、これを任意
の数の第三者に譲渡する権利、及びその際に PDFlib Block プラグインをもっぱら第三者自身のデー
タ生成の目的のために使用する権利が与えられます。このデータはその後ライセンス取得者に送
られそこでさらに加工されるものです。その場合、第三者がライセンス取得者からの譲渡に際し、
PDFlib Block プラグインを所定の方法でのみ使用し、第三者からさらに他者に譲渡しない義務を負
うことが前提条件となります。

3 制限

3.1 知的財産権

当該プログラム及び当該文書は、著作権で保護された PDFlib GmbH の知的財産です。

ライセンス取得者は当該プログラムを使用して既存の PDF 文書を加工する際に、PDF 文書の各著
者に与えられた権利、又はその文書を取り扱う際に希望されているロックを考慮する必要があり
ます。

3.2 リバースエンジニアリング及び機密保持

ライセンス取得者は、当該プログラムに関して、ドイツ著作権法第 69e 条で許可されていない限
りにおいて、翻訳、逆アセンブラ、リバースエンジニアリングを行わない義務を負います。

ライセンス取得者は、PDFlib GmbH から割り当てられたライセンスキーを譲渡しない、又は一般
の人々からアクセスできるようにしないようする義務を負います。

3.3 更新プログラムバージョン（アップデート）及びライセンス拡張（アップグレード）

ライセンス取得者が、新メインバージョンとして、又は同じないしは他の製品の旧バージョンの
修正バージョンとして当該プログラムを受領する場合（アップデート）、又はある製品ライセンス
を、もともとライセンス供与されている製品を含む他の製品のライセンスに変換する場合（アッ
プグレード）は、新ライセンスは旧バージョンのライセンスと交換で供給されます。これらの新
バージョンをインストールし、使用すると、旧バージョンのライセンスは終了します。

4 納品

当該プログラム及び当該文書は、デジタルフォーマットでのみ納品されます。当該プログラム、
当該文書、及びすべての当該修正バージョンは、PDFlib GmbH のウェブサイト（アドレス：
www.pdflib.com）からダウンロードできます。ライセンス取得者には、PDFlib GmbH からデジタ
ル保存メディアも印刷した文書も供給されません。

JA-3 ページ /6PDFlib GmbH 一般ライセンス及びサポート条件、11 ２００９版

5 保証

5.1 ドイツ連邦共和国に本拠を置くお客様への保証

お客様がその本拠をドイツ連邦共和国に置いている場合は、以下の規則が適用されます。

9 項を除き、瑕疵保証の法規は、瑕疵担保期間（瑕疵請求権の時効、ドイツ民法典第 438 条 1 項）を
1 年とする条件下で適用されます。しかしながらこれは、PDFlib GmbH が差配できる瑕疵によって、
又は PDFlib GmbH あるいはその代理人による重大な過ちによって、並びに PDFlib GmbH の悪意に
よらない場合に生じた、人体又は健康への被害を保証する、瑕疵を条件とする損害賠償請求には
有効ではありません。このような場合は法的規則が有効となります。

5.2 ドイツ連邦共和国以外に本拠を置くお客様への保証

お客様がその本拠をドイツ連邦共和国以外に置いている場合は、以下の規則が適用されます。

お客様によって変更されていない当該プログラムが、ライセンス契約の完了後 30 日の期間内に義
務を負っている特性を満たさない場合、PDFlib GmbH は遅延なく自社の費用により自社の判断で、

（i）修正又は回避法を、場合によってはライセンス取得者によって報告される再現可能なエラー
に対して実施し、当該プログラムの更新バージョンを提供するか、又は（ii）その契約に支払わ
れたライセンス費用に応じて弁済します。後者の場合、ライセンス取得者は当該プログラムの使
用と販売を即座に停止し、PDFlib GmbH によって配布されたライセンスキーを廃棄しなければな
りません。PDFlib GmbH は、それ以上の法的責任は明確に負いかねます。

6 サポート契約／サポートサービス

お客様はライセンスの購入と並んで、有償で年ごとのサポートサービスを PDFlib GmbH に要求す
ることができます（サポート契約）。この契約は、お客様が購入したライセンスに対してサポート
サービスを選び、これを PDFlib GmbH が受け入れることで成立します。

お客様がサポート契約の有効期間に関してオプションの自動契約延長を選択した場合は、お客様
が契約期間終了 1 か月前までに手紙又はファックスによって解約を通告しない限り、サポート契
約はその 1 年間の期間満了後に同期間延長されます。この自動契約延長の場合も、当該製品のラ
イフサイクルが経過した場合には少なくとも、当事者個々への通告なしに、サポート契約は終了
します。

いかなる場合でも、重大な理由による例外的な解約通告の可能性はあります。

サポート契約の範囲で、PDFlib GmbH は添付資料 2： サポートサービスの「契約サポート」欄に
記載されているサービスを実施します。

7 法的責任

7.1 ドイツ連邦共和国に本拠を置くお客様への責任規定

お客様がその本拠をドイツ連邦共和国に置いている場合は、以下の規則が適用されます。

単に過失によって契約の基本的な義務（つまり、一般にその義務の履行によって契約の適切な遂
行が初めて可能になり、また、その義務が順守されていることを契約パートナーが常に信じてよ
いような義務）を履行しなかったことに対する PDFlib GmbH の法的責任は、契約締結時に予想可
能な典型的損害に限定されます。単に過失によって契約の基本的でない義務を履行しなかった場
合は、PDFlib GmbH は法的責任を負いかねます。

7.2 ドイツ連邦共和国以外に本拠を置くお客様への責任規定

お客様がその本拠をドイツ連邦共和国以外に置いている場合は、以下の規則が適用されます。

使用によって場合により生じる損失、営業停止、又は間接的な特殊な副次的損失又は同等の種類
の二次損失（失った利益も含む）は、対策の種類に無関係に当事者のどちらも責任を負うことは
なく、契約の種類により、許可されていない行為（過失も含む）、厳密な製造物責任又はその他の
方法によって制限されます。PDFlib GmbH の法的責任は、いかなる法的根拠においても、（a）ラ
イセンス契約に関してはライセンス料の 5 倍、及び（b）サポート契約に関してはサポートの年間
料金に制限されます。

JA-4 ページ /6PDFlib GmbH 一般ライセンス及びサポート条件、11 ２００９版

8 データ保護

PDFlib GmbH は、お客様との契約関係を遂行し履行するために必要な個人データのみを収集、加
工、使用、伝達します。

9 適用法

本契約には、お客様が本拠を置いている国の法律が適用されますが、イギリスの売買法及び国際
私法の抵触規定は除外されます。

10 裁判管轄地

購入契約、ライセンス契約及び／又はサポート契約に関連するすべての係争の唯一の裁判管轄地
は、顧客の権利のためには PDFlib GmbH の本拠地、PDFlib GmbH の権利のためには顧客の本拠地
又は PDFlib GmbH の本拠地とします。しかしながら場合によっては、他方の当事者が最初の訴え
があった場所で反訴の申し立てをするべきだとする法的規則がある可能性があります。

JA
-5

ペ
ー

ジ
/6

PD
Flib G

m
bH

一

般
ラ

イ
セ

ン
ス

及
び

サ
ポ

ー
ト

条
件

、
1
1

２

０
０

９
版

添付資料 1：定義

概念 定義 例

プラットフォー
ム

オペレーティングシステムと 1 つ又は複数のハードウェアアーキテクチャのコンビネーション。オ
ペレーティングシステム及び／又はハードウェアの完全に互換性のあるバージョンは、1 つのプ
ラットフォームとして理解されるが、Mac OS X 及び Windows では、サーバーバージョン及びデス
クトップバージョンは異なるプラットフォームを意味する。

Windows XP/Vista/7（Windows Server 2003/2008
を除く）は 1 つのプラットフォーム；
x86上のSolaris又はSparcは1つのプラットフォー
ム

製品 特定のプラットフォームのために PDFlib GmbH が提供するソフトウェア。 Windows Server 2003/2008 用 PDFlib 8；x86 上の
Linux 用 PDFlib+PDI 8

メインバージョ
ン

メインバージョン（メジャーリリース）は、機能性が大きく向上した製品の新バージョンである。 PDFlib 8；
TET 3

修正バージョン 修正バージョン（マイナーリリース又はメンテナンスリリース）は、ある製品の新バージョンで、
エラー除去が施されており、製品にはオペレーションシステム又は対応言語の新バージョンへの適
合などがなされている。しかし、修正バージョンでは機能性は大きく向上していない。修正バー
ジョンは明確にはそのように特徴づけられる。

PLOP 4.1 は PLOP 4 の修正バージョン。

アップデート アップデートは、既存の製品ライセンスを同プラットフォームの同じ製品の新しいメインバージョ
ンのライセンスへ変えること。

Windows XP/Vista/7 用 PDFlib 7 から Windows XP/
Vista/7 用 PDFlib 8 への変更

アップグレード アップグレードは、既存の製品ライセンスを同じメインバージョンのよりハイグレードの製品のラ
イセンスに変えること。機能的には最初の製品より拡張される。

PDFlib 8から PDFlib+PDI 8 へ、又は PDFlib+PDI 8か
ら PPS 8 への変更

エラー エラー（バグ）は、文書に記述された挙動からの逸脱で、Adobe Acrobat によってエラーがあると
して拒否された PDF 版か又はソフトウェアのクラッシュであり、適切な入力データの使用及び文
書に記述されたすべての周辺条件が考慮されることが前提条件とされる。

文書では可能となっているにもかかわらず、
PDFlibが JPEGイメージを正しくPDFに変換できな
い。

対応言語 プログラム言語又はプログラミング環境のプラットフォーム固有のバージョンを使用するための、
製品の実行可能なバージョン。

Linux 上の PHP 5.1.1；Windows 上の Java 1.4；
Windows 上の .NET 3.0。

ライフサイクル 製品のライフサイクルは、（有効なサポート契約がある状態で）何年間この製品のサポート事例が
受け入れられるかを設定したもの。ライフサイクルは、製品の各メインバージョンごとに定められ
ている。ライフサイクルは付属する文書に記述されており、さらには www.pdflib.com で公開され
ている。

PDFlib 7のライフサイクルは 2011年 10月で終了す
る。

JA
-6

ペ
ー

ジ
/6

PD
Flib G

m
bH

一

般
ラ

イ
セ

ン
ス

及
び

サ
ポ

ー
ト

条
件

、
1
1

２

０
０

９
版

添付資料 2： サポートサービス

サービスの特徴 例
保証

（無償）
契約サポート
（有償）

サポートの場合の対応時間（実際のトラブルシューティングはもっと長くか
かる場合がある）

定義されていない 2 営業日

サポート終了：製品に対するサポートが終了する。 ドイツ：1 年
その他：30 日

製品のライフサイ
クル

エラーが発生した場合の修正1 又は回避方法

1. ライセンス供与されたすべてのプラットフォーム及びそれぞれ使用される対応言語のための修正バージョンによって実施。

法律で定められた範囲内
で

あり

旧バージョンと完全には互換性のない、オペレーションシステムプラット
フォームの新バージョンのための適合 1。

Windows Vista では、Windows XP のため
に供給されたプログラムの適合が必要で
ある。

任意 あり

旧バージョンと完全には互換性のない、対応言語の新メインバージョンのた
めの適合 1。

PHP 5 は、PHP 4用PDFlib対応言語の適合を
必要とする。

任意 あり

最新ではないがこれまでサポートされ、言語の修正バージョンが旧バージョ
ンと完全には互換性のない、対応言語の修正バージョンのための適合 1。

すでに PHP 5.2 がサポートされているに
もかかわらず、 PHP 5.1.1 は PHP 5.1.0 のた
めの PDFlib対応言語の適合が必要である。

任意 あり

ライセンス供与された製品の最新修正バージョンの使用のためのライセンス PDFlib 7.0.3 から PDFlib 7.0.4 への変更 任意 無償

ライセンス供与された製品の入手可能性（ダウンロード） 次 のメインバージョン
のリリースまで

製品のライフサイ
クル

ライセンス供与された製品の最新の修正バージョンの入手可能性（ダウン
ロード）

次 のメインバージョン
のリリースまで

製品のライフサイ
クル

ライセンス供与された製品の最新のメインバージョンへのアップデート PDFlib 7 から PDFlib 8 へ変更 アップデート表価格で 無償

新しいメインバージョン又は修正バージョンの公開情報 ﾐ E メールで

アップデート表価格での、同じメインバージョンのよりハイグレードな製品
の最新の修正バージョンへのアップグレード

PDFlib 8 から PDFlib+PDI 8 へ変更 次のメインバージョンの
リリース後 1 年

製品のライフサイ
クル

ライセンス供与された製品の、表価格での追加ライセンス購入 お客様が PDFlib 7 を導入し、すでに
PDFlib 8 が入手可能にもかかわらず、この
バージョンの追加ライセンスを必要とし
ている。

次のメインバージョンの
リリース後 1 年

製品のライフサイ
クル

			General License and Support Conditions

			Allgemeine Lizenz- und Supportbedingungen

			Conditions générales de Licence et de Support

			Condizioni generali di Licenza e di Assistenza

			Condiciones generales de Licencia y Soporte

			一般ライセンス及びサポート条件

PDFlib-8.0.6-SunOS-sparc64-perl/doc/common/PDFlib-in-PHP-HowTo.pdf

Chapter 1: Scope of this Document 1

How to use PDFlib products
with PHP
Last change: June 17, 2013
Latest PDFlib version covered in this document: 9.0.1
Latest version of this document available at:
www.pdflib.com/developer/technical-documentation

Contact:
PDFlib GmbH
Franziska-Bilek-Weg 9
80339 München, Germany
phone +49 • 89 • 452 33 84-0
support@pdflib.com
www.pdflib.com

1 Scope of this Document
This document explains various possibilities for successfully deploying PDFlib products
as a PHP extension. The generic term PDFlib is used to designate one of the following
distinct products:

> The commercial PDFlib product
> PDFlib+PDI, a commercial superset of PDFlib which also contains the PDF Import

Library (PDI)
> PDFlib Personalization Server (PPS), a superset of PDFlib+PDI with advanced Block

filling features for personalizing PDF documents.

Most of the PDFlib information applies to other PDFlib GmbH products analogously.
Notes for the following products are included where applicable:

> PDFlib TET (Text Extraction Toolkit)
> PDFlib PLOP (Linearization, Optimization, Protection) and PLOP DS (Digital Signa-

ture)
> PDFlib pCOS (PDF Information Retrieval Tool)

The methods for deploying any of these products as a PHP extension are the same in all
cases. Multiple versions of these products cannot be deployed at the same time. Differ-
ent products can coexist within one PHP installation, however. Note that the evaluation
versions of commercial PDFlib products will be fully functional, but will display a demo
stamp across all generated PDF pages unless a valid license key is applied. Other PDFlib
GmbH products have other restrictions in evaluation mode (see documentation).

This document applies to the following versions of PDFlib GmbH products:
> PDFlib 8.0.6 and PDFlib 9.0.1 (use appropriate version number 8 or 9 in path names)
> TET 4.2
> PLOP and PLOP DS 4.1
> pCOS 3.0

Where applicable, version-specific information is provided separately.

http://www.pdflib.com/developer/technical-documentation

mailto:support@pdflib.com

http://www.pdflib.com

2 The PDFlib-in-PHP HowTo June 17, 2013

2 Supported Platforms and PHP Versions
Loadable PHP extension modules implemented as DSOs (dynamic shared objects, also
called dynamic link library DLL) are the recommended method of using PDFlib with
PHP. PHP supports dynamic loading of extensions from DSOs on the following plat-
forms (only platforms supported by PDFlib GmbH are mentioned here):

> Windows Server on x86 and Windows XP/Vista/7/8 on x86
> OS X and OS X Server 10.6/10.7/10.8
> Linux on x86 and Intel 64
> Linux on zSeries
> FreeBSD 7/8/9 on x86
> Oracle Solaris 10 on x86 and Sparc
> HP-UX
> AIX 32-bit (the AIX binary can also be used on IBM i5/iSeries)
> IBM i5/iSeries (see Section 6.4, »Installing and Using the PDFlib DSO on i5/iSeries«)

The PDFlib 9 distribution packages shipped by PDFlib GmbH contain PDFlib DSOs for a
number of PHP versions. These are grouped into several directories as follows (not all
PHP versions are supported on all platforms, though):

> bind/php/php-530 for PHP 5.3.0 – 5.3.26
> bind/php/php-540 for PHP 5.4.0 – 5.4.16
> bind/php/php-550 for PHP 5.5.0 (not available in PDFlib 8)

Depending on the compatibility properties of the PHP distribution PDFlib may also
work with newer versions of PHP, but we have only tested the combinations above.

Using commercial PDFlib packages with PHP on platforms with DSO support. PDFlib
GmbH makes available packages with precompiled binary PDFlib DSOs for several plat-
forms and PHP versions. If such a package is available for your combination of platform
and PHP proceed with Section 6, »Deploying the PDFlib DSO«.

Chapter 3: Required Skill Levels 3

3 Required Skill Levels
Making PDFlib work with PHP requires various skill levels depending on your operating
system platform. We will classify tasks according to the following skill sets:

> A PHP Web programmer knows how to write code for PHP, but doesn’t have experi-
ence with other languages or general system administration tasks. The PHP pro-
grammer usually has access to other people who are responsible for performing con-
figuration tasks.

> A sysadmin feels comfortable working with PEAR and other command-line tools, hap-
pily edits php.ini and does not hesitate to restart the Web server (i.e. Apache or IIS) if
required for installation or configuration purposes. Appropriate permissions (access
rights) to do all this are also part of the sysadmin profile.

> A C developer has access to a C development environment (header files, compiler,
linker, associated system libraries) and can work with configure scripts and Make-
files or corresponding IDE features.

It may help to classify yourself according to these types of developers. The remainder of
this document describes tasks which require at least sysadmin or C developer skills. PHP
developers without additional knowledge or assistance will not be able to perform the
required steps without assistance.

4 The PDFlib-in-PHP HowTo June 17, 2013

4 Testing your Installation
After you installed your PDFlib product extension for PHP using any of the methods
discussed in this document you may want to test your installation in order to see
whether everything works as expected.

The PHP info page. You can test the success of your PDFlib product installation and
configuration with the following mini PHP script:

<?phpinfo()?>

Check the output created by phpinfo() for one of the following:
> If the output contains the line

PDFlib GmbH Binary Version

you are using a precompiled PDFlib DSO provided by PDFlib GmbH.
> If you see the line

PDFlib GmbH Version

you are using your own PDFlib DSO or custom PHP with a statically linked PDFlib.
The version number of the PECL module which has been used to build the PDFlib ex-
tension will also be shown.

> If you don't find any PDFlib section check your log files to determine the reason.

The PDFlib product examples. The distribution package of your PDFlib product in-
cludes two flavors of examples which you can use to test your installation. In the bind/
php directory you can find PDFlib programming examples. To use the examples proceed
as follows:

> Copy the PHP samples and data files to your htdocs directory:

$ cp bind/php/*.php .../htdocs
$ cp bind/data/* .../htdocs/data

> point your browser to the URLs of the examples
> enjoy the generated PDFs

Chapter 5: PDFlib in Hosting Environments 5

5 PDFlib in Hosting Environments
You are running a site at a Web hosting provider. In this case there are various consid-
erations (we can ignore the case where a PDFlib extension for PHP is already installed
since there’s nothing more to do):

> Some providers do not allow custom PHP extensions; in this case you are out of luck.
> With some providers you can maintain your own copy of php.ini, while others don’t

allow this. If you can’t edit php.ini and this file contains enable_dl=Off you are out of
luck.

You are a Web hosting provider. As a provider you should be aware of the following:
> Although PDFlib Lite source code is freely available, and many Linux and PHP distri-

butions contain PDFlib Lite, the PDFlib Lite license does not cover free use of PDFlib
Lite on a Web hoster’s systems.

> You can install commercial PDFlib DSOs even without obtaining a license. In this sit-
uation you can install one of the precompiled PDFlib DSOs supplied by PDFlib GmbH
without a license key (i.e. a demo stamp will be created). Those among your custom-
ers who wish to commercially use it can obtain a commercial license to disable the
demo stamp. In other words, you can offer PDFlib without the need for obtaining a li-
cense for all of your servers. The recommended method is to install the PDFlib DSO
in some globally accessible directory, and set the extension= line in php.ini appropri-
ately.

> Alternatively, if (like an increasing number of providers) you believe in PDFlib avail-
ability as a competitive advantage, you can obtain a site license which covers all your
servers and customers. Individual users will no longer be required to obtain a license
on their own in this case. Please contact PDFlib GmbH if you are interested in more
details.

6 The PDFlib-in-PHP HowTo June 17, 2013

6 Deploying the PDFlib DSO
Note In addition to the PDFlib product family, this section also applies to PDFlib TET, PDFlib PLOP, and

PDFlib pCOS if you replace the string »php_pdflib« with »php_tet«, »php_plop«, or »libpcos_
php«, respectively.

Requirements:
> Skill level: sysadmin
> The PDFlib DSO, either built on your own or (preferably) from a binary package pro-

vided by PDFlib GmbH at www.pdflib.com/download/pdflib-family/pdflib-9
> Working PHP binary

This section applies to the prebuilt DSOs distributed by PDFlib GmbH, as well as to DSOs
which you have built yourself.

6.1 Installing the PDFlib DSO on Windows
The PDFlib DSOs for Windows (actually DLLs) have been tested with the binary PHP dis-
tribution which is available from www.php.net. You will find PDFlib DSOs for various
versions of PHP on Windows in the uncompressed package.

The PDFlib DSO in the following directory has been built for a multithreaded version
of PHP:

bind/php/php-<version>/libpdf_php.dll (PDFlib 8)
bind/php/php-<version>/php_pdflib.dll (PDFlib 9)

We also offer Windows binaries of the PDFlib PHP binding which have been built with-
out support for thread safety. These binaries are named as follows (ZTS refers to Zend
Thread Safety, a threading abstraction layer):

bind/php/php-<version>-nozts/libpdf_php.dll (PDFlib 8)
bind/php/php-<version>-nozts/php_pdflib.dll (PDFlib 9)

The PDFlib binding for PHP has been built for the Visual Studio 2008 (also called VS9)
version.

For the PHP installation process please follow the documentation of your PHP distri-
bution and copy the PDFlib DSO to the directory which is specified in the extension_dir
line in php.ini.

Using PDFlib with Zend Server. In order to use PDFlib 9 with Zend Server you must in-
stall the DLL php_pdflib.dll from the php-<version>-nozts_VS9 directory. Copy this DLL to
the extension directory and restart PHP.

For PDFlib 8 you must rename libpdf_php.dll to php_pdf.dll to make sure that the ex-
tension will automatically be recognized by PHP.

http://www.pdflib.com/download/pdflib-family/pdflib-8

http://www.php.net

Chapter 6: Deploying the PDFlib DSO 7

6.2 Installing the PDFlib DSO on Unix
The PDFlib DSOs for various Unix platforms are available for different versions of PHP.
You will find PDFlib DSOs in the following location of the uncompressed package (ad-
just the shared library suffix as necessary for your platform):

bind/php/php-<version>/libpdf_php.so (PDFlib 8)
bind/php/php-<version>/php_pdflib.so (PDFlib 9)

Copy the PDFlib DSO to the directory which is specified in the extension_dir line in
php.ini.

The standard Unix versions of the PDFlib DSO have been built without multithread
support. However, the binaries

bind/php/php-<version>mt/libpdf_php.so (PDFlib 8)
bind/php/php-<version>mt/php_pdflib.so (PDFlib 9)

which are available for some platforms are PDFlib DSOs for use with versions of PHP
which include Zend Thread Safety (ZTS) support.

Using PDFlib with Zend Server. In order to use PDFlib 9 with Zend Server you must in-
stall the DSO php_pdflib.so from the php-<version> directory. Copy this DSO to the exten-
sion directory and restart PHP.

For PDFlib 8 you must rename libpdf_php.so to php_pdf.so to make sure that the ex-
tension will automatically be recognized by PHP.

6.3 Using the PDFlib DSO
Loading the PDFlib DSO in php.ini. If you decide to load PDFlib every time PHP starts,
insert the following line in php.ini (adjust the shared library suffix .dll as necessary for
your platform, e.g. .so):

extension=libpdf_php.dll (PDFlib 8)
extension=php_pdflib.dll (PDFlib 9)

and restart your Web server so that the changes are recognized.

Loading the PDFlib DSO explicitly in your PHP script. Without the extension line in
php.ini you must include the following line in your PHP scripts (adjust the shared library
suffix .dll as necessary for your platform, e.g. .so):

dl("libpdf_php.dll"); (PDFlib 8)
dl("php_pdflib.dll"); (PDFlib 9)

In this case your php.ini must contain the following lines:

safe_mode=Off
enable_dl=On

The line extension_dir is not relevant in this case. Note that for security reasons this
method is no longer recommended and many Web hosters don’t allow it.

8 The PDFlib-in-PHP HowTo June 17, 2013

Using PDFlib with Zend Server. Zend automatically recognizes correctly named exten-
sions when PHP is restarted.

6.4 Installing and Using the PDFlib DSO on i5/iSeries
Note In order to deploy PDFlib with Zend Server for IBM i you must order a PDFlib license key for AIX,

not a license for i5/iSeries. See below for more information.

The third-party product Zend Server for IBM i allows you to »leverage the power of the
IBM i platform and the strength and flexibility of PHP to run business-critical applica-
tions on IBM i«, see

www.zend.com/en/products/server/zend-server-ibm-i

The requirements for using PDFlib with PHP on i5/iSeries are as follows:
> Zend Server for IBM i or Zend Server Community Edition (CE) for IBM i
> PHP 5.3

Zend Server for IBM i is based on the Portable Application Solutions Environment (PASE
for i), an »integrated runtime for porting selected applications from AIX systems«. PASE
is not an emulation: since i5/iSeries and AIX are based on the same POWER processor ar-
chitecture, PASE uses the processor directly. There are no performance disadvantages
when using PASE. More details about PASE can be found on the following IBM Web site:

www.ibm.com/partnerworld/wps/servlet/ContentHandler/pw_com_porting_ibmi_pase

Perform the following steps to use PDFlib with Zend Server for IBM i:
> Since Zend Server and the underlying Apache Web server are based on the PASE envi-

ronment, you must use the PDFlib package for AIX, not the PDFlib package for i5/
iSeries. Download the following package from the PDFlib Web site:

PDFlib-8.0.x-AIX-php.tar.gz (PDFlib 8)
PDFlib-9.0.x-AIX-php.tar.gz (PDFlib 9)

> Unpack the PDFlib package for AIX, using any of the available tools for unpacking
.tar.gz packages.

> Locate libpdf_php.so (PDFlib 8) or php_pdflib.so (PDFlib 9) and copy it to the extension_
dir of Zend Server. The output of phpinfo() shows the exact location of this directory.

> PDFlib 8 only: rename the copy of libpdf_php.so to php_pdf.so to match the naming
conventions used in Zend Server.

> As an alternative to the previous step you can also load the PDFlib DSO directly from
your script without configuring it in php.ini (note that for security reasons this meth-
od is no longer recommended):

dl("php_pdflib.so");

In this case your php.ini must contain the following lines:

safe_mode=Off
enable_dl=On

Now you can create PDF from PHP scripts on i5/iSeries.

http://www.zend.com/en/products/server/zend-server-ibm-i

http://www.ibm.com/partnerworld/wps/servlet/ContentHandler/pw_com_porting_ibmi_pase

Chapter 6: Deploying the PDFlib DSO 9

6.5 Common Problems with PDFlib DSOs

6.5.1 All Platforms

Binary characteristics of PHP and PDFlib DSO must match. Several properties of your
PHP binary must match those of the PDFlib DSO. These properties are determined when
building PHP, and cannot be changed afterwards. The precompiled DSOs for PDFlib have
been built as follows:

> non-debug version
> thread-safety as described in Section 6.1, »Installing the PDFlib DSO on Windows«

and Section 6.2, »Installing the PDFlib DSO on Unix«
> the API version: choose the matching version from bind/php/php-<version>

If you see an error message similar to the following when trying to load the PDFlib DSO,
your PHP build number does not match that of the PDFlib module:

Warning: pdf: Unable to initialize module
Module compiled with debug=0, thread-safety=0 module API=20020429
PHP compiled with debug=0, thread-safety=1 module API=20020429

All of these options must match.

Older version of PDFlib built into the PHP binary. PDFlib Lite support must not already
have been compiled into your PHP version. If your PHP already includes PDFlib Lite sup-
port (this is the case for versions of PHP distributed with some Linux distributions) but
you need a newer PDFlib version you must first obtain a PHP binary without builtin
PDFlib support (either by locating the appropriate binary, or rebuilding it yourself).

Maintainers of Linux and PHP distributions should include PDFlib support for PHP
as DSO because this facilitates updates.

6.5.2 Linux x86 and Intel 64

PDFlib with XAMPP on Linux x86. Some versions of system libraries bundled with the
XAMPP package may trigger the following error message:

Warning: PHP Startup: Unable to load dynamic library '/opt/lampp/htdocs/test/pdf/pdflib/
bind/php/php-530/libpdf_php.so' - /opt/lampp/lib/libgcc_s.so.1: version `GCC_4.2.0' not
found (required by /usr/lib/libstdc++.so.6) in Unknown on line 0

In this case you must disable the following two lines in the file bin/envvars, e.g. by add-
ing a comment character at the start of the line:

#binbuild LD_LIBRARY_PATH="/opt/lampp/lib/:$LD_LIBRARY_PATH"
#binbuild export LD_LIBRARY_PATH

PDFlib with XAMPP on Linux Intel 64. Since XAMPP is only available as a 32-bit edition
you must use the 32-bit edition of PDFlib for this combination. However, you may see
the following error message:

Warning: PHP Startup: Unable to load dynamic library
'/opt/lampp/htdocs/test/pdf/PDFlib-8.0.4-Linux-php/bind/php/php-530/libpdf_php.so'
- libstdc++.so.6: wrong ELF class: ELFCLASS64 in Unknown on line 0

10 The PDFlib-in-PHP HowTo June 17, 2013

The reason for this error is that while XAMPP includes some of the 32-bit runtime librar-
ies required for PDFlib, one important runtime library is still missing. You must install
the 32-bit version of libstdc++.so.6 on the system. For example, on Debian systems this
can be achieved with the following command:

apt-get install ia32-libs

6.5.3 OS X

PDFlib with XAMPP or MAMP on OS X 10.6 and older. If you add the PDFlib PHP exten-
sion to your php.ini on an OS X Intel machine which has XAMPP installed, the following
error message appears:

dyld: NSLinkModule() error
dyld: Symbol not found: __cg_jpeg_resync_to_restart
Referenced from: /System/Library/Frameworks/ApplicationServices.framework/Versions/A/
Frameworks/ImageIO.framework/Versions/A/ImageIO
Expected in: /Applications/xampp/xamppfiles/lib/libjpeg.62.dylib

The PDFlib extension is linked against the ApplicationServices Framework, and XAMPP
changes the DYLD_LIBRARY_PATH. This combination confuses the dynamic link editor.
We found that commenting out DYLD_LIBRARY_PATH in xamppfiles/bin/envvars cures this
problem.

If you have MAMP installed, the following error message may appear in the log file:

PHP Warning: PHP Startup: Unable to load dynamic library '/Applications/MAMP/bin/php5.3/
lib/php/extensions/no-debug-non-zts-20090626/libpdf_php.so' - dlopen(/Applications/MAMP/
bin/php5.3/lib/php/extensions/no-debug-non-zts-20090626/libpdf_php.so, 9): Symbol not
found: __cg_jpeg_resync_to_restart
Referenced from: /System/Library/Frameworks/ApplicationServices.framework/Versions/A/
Frameworks/ImageIO.framework/Versions/A/Resources/libTIFF.dylib
Expected in: /Applications/MAMP/Library/lib/libjpeg.8.dylib
in /System/Library/Frameworks/ApplicationServices.framework/Versions/A/Frameworks/
ImageIO.framework/Versions/A/Resources/libTIFF.dylib in Unknown on line 0

To cure the problem with MAMP comment out DYLD_LIBRARY_PATH in Library/bin/
envvars.

Chapter 7: Additional Web Links 11

7 Additional Web Links
> The public PDFlib mailing list for general discussion:

tech.groups.yahoo.com/group/pdflib
> PDFlib support for commercial licensees:

support@pdflib.com
> General information on installing PHP:

www.php.net/install
> PEAR and PECL support:

pear.php.net/support.php and pecl.php.net/support.php
> Instructions on getting the latest version of PEAR:

pear.php.net/manual/en/installation.getting.php
> Comprehensive list of PHP-related links:

www.php.net/links.php

http://www.php.net/install

http://tech.groups.yahoo.com/group/pdflib

mailto:support@pdflib.com

http://pear.php.net/support.php

http://pear.php.net/manual/en/installation.getting.php

http://pecl.php.net/support.php

http://www.php.net/links.php

			1 Scope of this Document

			2 Supported Platforms and PHP Versions

			3 Required Skill Levels

			4 Testing your Installation

			5 PDFlib in Hosting Environments

			6 Deploying the PDFlib DSO

			6.1 Installing the PDFlib DSO on Windows

			6.2 Installing the PDFlib DSO on Unix

			6.3 Using the PDFlib DSO

			6.4 Installing and Using the PDFlib DSO on i5/iSeries

			6.5 Common Problems with PDFlib DSOs

			6.5.1 All Platforms

			6.5.2 Linux x86 and Intel 64

			6.5.3 OS X

			7 Additional Web Links

PDFlib-8.0.6-SunOS-sparc64-perl/doc/common/PDFlib-in-.NET-HowTo.pdf

Chapter 1: Scope of this Document 1

How to use PDFlib Products
with the .NET Framework
Last change: June 17, 2013
Latest PDFlib version covered in this document: 9.0.1
Latest version of this document available at:
www.pdflib.com/developer/technical-documentation

Contact:
PDFlib GmbH
Franziska-Bilek-Weg 9
80339 München, Germany
phone +49 • 89 • 452 33 84-0
support@pdflib.com
www.pdflib.com

1 Scope of this Document
This document explains various possibilities for successfully deploying PDFlib products
with .NET. The generic term PDFlib is used to designate one of the following distinct
products:

> the commercial PDFlib product;
> PDFlib+PDI, a commercial superset of PDFlib which also contains the PDF Import

Library (PDI);
> PDFlib Personalization Server (PPS), a superset of PDFlib+PDI with advanced Block

filling features for personalizing PDF documents.

Most of the PDFlib information applies to other PDFlib GmbH products analogously.
Notes for the .NET editions of the following products are included where applicable:

> PDFlib TET (Text Extraction Toolkit)
> PDFlib PLOP (Linearization, Optimization, Protection) and PDFlib PLOP DS (Digital

Signature)
> PDFlib pCOS (PDF Information Retrieval Tool)

The methods for deploying any of these products with .NET are the same in all cases.
Only a single version of each product at a time can be stored in the Global Assembly
Cache (GAC). Different products can coexist within one installation, however. Note that
the evaluation versions of commercial PDFlib products will be fully functional, but will
display a demo stamp across all generated PDF pages unless a valid license key is ap-
plied. Other PDFlib GmbH products have other restrictions in evaluation mode (see doc-
umentation).

This document applies to the following PDFlib GmbH software versions:
> PDFlib 8.0.6 and 9.0.1 (use appropriate version number 8 or 9 in path names)
> TET 4.2
> PLOP and PLOP DS 4.1
> pCOS 3.0

http://www.pdflib.com/developer/technical-documentation

mailto:support@pdflib.com

http://www.pdflib.com

2 The PDFlib in .NET HowTo June 17, 2013

Where applicable, version-specific information is provided separately.
The .NET editions of PDFlib supports all relevant .NET concepts. In technical terms, the
PDFlib .NET edition is a C++ class (with a managed wrapper for the unmanaged PDFlib
core library) which runs under control of the .NET Framework. It is packaged as a static
assembly with a strong name. The PDFlib assembly (pdflib_dotnet.dll) contains the actual
library plus meta information.

Chapter 2: Requirements 3

2 Requirements
In order to use PDFlib products with .NET you must select and install the appropriate
product version. In some situations you must additionally install some redistributable
Microsoft libraries.

.NET Framework versions and PDFlib editions for .NET. The .NET editions of PDFlib
products are available in the following four combinations:

> 32-bit and 64-bit packages are available in separate installers with the following
names:

PDFlib-9.0.x-MSWin32-dotNET.msi
PDFlib-9.0.x-MSWin64-dotNET.msi

> Editions for different versions of the .NET Framework are available in the following
directories (or similar, depending on the selected installation directory) after run-
ning the installer:

C:\Program Files\PDFlib\PDFlib 9.0.x 32-bit\.NET Framework 2.0
C:\Program Files\PDFlib\PDFlib 9.0.x 32-bit\.NET Framework 4.0

You must select the matching version of pdflib_dotnet.dll as follows:
> The two editions in the 32-bit package can be used with:

> Microsoft .NET Framework 2.0 - 3.5 (x86)
> Microsoft .NET Framework 4.0 - 4.5 (x86)

> The two editions in the 64-bit package can be used with:
> Microsoft .NET Framework 2.0 - 3.5 (x64)
> Microsoft .NET Framework 4.0 - 4.5 (x64)

32-bit and 64-bit combinations. Combinations of 32-bit and 64-bit software must be
configured carefully according to the table below. The choice of 32-bit or 64-bit Frame-
work on 64-bit Windows depends on the software components in use. For example,
with IIS it depends on the selected .NET Framework version for the application pool.

Programming restrictions. Keep the following in mind when using PDFlib with .NET:
> Since PDFlib contains unmanaged code it cannot be used with serialization. This

may affect switching to another AppDomain.
> Refer to Chapter 4, »Using PDFlib with ASP.NET«, page 5, for additional notes on ASP.

Table 2.1 Usability of .NET versions with 32-bit and 64-bit Windows

.NET Framework architecture and version 32-bit Windows 64-bit Windows
32-bit .NET Framework 2.0 - 3.5 (x86) yes yes
32-bit .NET Framework 4.0 - 4.5 (x86) yes yes
64-bit .NET Framework 2.0 - 3.5 (x64) – yes
64-bit .NET Framework 4.0 - 4.5 (x64) – yes

4 The PDFlib in .NET HowTo June 17, 2013

3 Basic Installation
Installing the PDFlib .NET Edition. Install PDFlib with the supplied Windows MSI In-
staller. The PDFlib.NET MSI installer installs the PDFlib assembly plus auxiliary data
files, documentation and samples on the machine interactively.

Silent Install. The MSI installer also supports silent installation. For example, you can
install PDFlib from the command line without any user intervention with the following
command (replace MSWin32 with MSWin64 if appropriate):

msiexec.exe /I PDFlib-9.0.x-MSWin32-dotNET.msi /qn

Please review the Microsoft Windows Installer documentation for a complete list of
command line options.

A process called xcopy deployment is also supported. You can simply copy the PDFlib
assembly (pdflib_dotnet.dll) to the server using the xcopy command or FTP transfer.

The auxiliary file pdflib_dotnet.xml contains XML documentation with a brief sum-
mary of PDFlib API functions which may be useful for IntelliSense tooltips in Visual Stu-
dio. For development purposes ou can copy it to the same location as the DLL, but the
XML file is not required for deployment.

Testing your installation. After you installed your PDFlib component for .NET you can
test your installation in order to see whether everything works as expected. The distri-
bution package of your PDFlib product includes various examples which you can use to
test your installation. You can find PDFlib programming samples in the product instal-
lation directory, e.g. (replace 32-bit with 64-bit if appropriate):

C:\Program Files\PDFlib\PDFlib 9.0.x 32-bit\.NET Framework 2.0\examples
C:\Program Files\PDFlib\PDFlib 9.0.x 32-bit\.NET Framework 4.0\examples

Sample code is provided for VB.NET for use with ASP.NET, C#, VB.NET, and C++ for use
with CLI. See next chapter for details regarding the use of PDFlib.NET with ASP.NET.

Chapter 4: Using PDFlib with ASP.NET 5

4 Using PDFlib with ASP.NET
Using PDFlib with ASP.NET. In order to use PDFlib.NET in your ASP.NET scripts you
must make the PDFlib.NET assembly available to ASP. This can be achieved by placing
PDFlib_dotnet.dll in the bin subdirectory of your IIS installation (if it doesn’t exist you
must manually create it), or the bin directory of your Web application, e.g.

\Inetpub\wwwroot\bin\pdflib_dotnet.dll or
\Inetpub\wwwroot\WebApplicationX\bin\pdflib_dotnet.dll

When using external files (such as image files) ASP’s MapPath facility must be used in or-
der to map path names on the local disk to paths which can be used within ASP.NET
scripts. Take a look at the ASP.NET samples supplied with PDFlib, and the ASP.NET docu-
mentation if you are not familiar with MapPath. Don’t use absolute path names in
ASP.NET scripts since these may not work without MapPath.

The directory containing your ASP.NET scripts must have execute permission, and
also write permission unless the in-memory method for generating PDF is used (the
supplied ASP samples use in-memory PDF generation).

Using the installed samples with ASP.NET. To use the examples in the package with
ASP.NET proceed as follows (in addition to the steps mentioned above):

> copy the <installdir>\resource directory (which contains the required input files for
the samples) to the directory \inetpub\wwwroot

> copy the directory <installdir>\.NET Framework x.0\examples\asp.net\ExamplesWebsite
to the wwwroot directory

> copy the PDFlib assembly <installdir>\.NET Framework x.0\bin\pdflib_dotnet.dll to
inetpub\wwwroot\ExamplesWebsite\Bin

> in IIS Manager right-click on the ExamplesWebsite node under Default Web Site and
click Convert to Application

> point your browser to the URLs of the examples and enjoy the generated PDFs, e.g.

http://servername/ExamplesWebsite/

If the Web page does not produce a PDF document, note any error messages or num-
bers in the generated HTML output.

Using the installed ASP.NET samples with Visual Studio. As an alternative to running
the installed samples in ASP.NET you can execute them in Visual Studio directly:

> copy the PDFlib assembly <installdir>\.NET Framework x.0\bin\pdflib_dotnet.dll to
<installdir>\.NET Framework x.0\examples\asp.net\ExamplesWebsite\Bin
Keep in mind that Visual Studio is a 32-bit application (see Section 5, »Troubleshoot-
ing«, page 7) and therefore requires the 32-bit edition of PDFlib.NET, even when run-
ning on a 64-bit system.

> copy the <installdir>\resource directory (which contains the required input files for
the samples) to the directory
<installdir>\.NET Framework x.0\examples\asp.net\ExamplesWebsite\

> open <installdir>\.NET Framework x.0\examples\asp.net\Examples.sln in Visual Studio,
and click Debug, Start Without Debugging. In the summary HTML page which appears
in the browser you can click on individual samples to create PDF output.

6 The PDFlib in .NET HowTo June 17, 2013

Trust levels in ASP.NET 2.0 or above. ASP.NET 2.0 introduced some restrictions regard-
ing the allowed operations in various trust levels for Web applications. Since PDFlib.NET
contains unmanaged code, it requires Full Trust level. PDFlib.NET applications cannot be
deployed in ASP.NET applications with any other trust level, including High or Medium
Trust.

32-bit Visual Studio with IIS on 64-bit Windows. If you develop on 64-bit Windows us-
ing Visual Studio with IIS integration you need the 32-bit .NET Framework because Visu-
al Studio and the integrated IIS are 32-bit applications. However, once you deploy your
application to IIS you may need the 64-bit .NET Framework depending on the configu-
ration of the Application Pool.

Chapter 5: Troubleshooting 7

5 Troubleshooting
Note In addition to the PDFlib product family, this section also applies to PDFlib TET, PDFlib PLOP, and

PDFlib pCOS if you replace the string »pdflib_dotnet« with »TET_dotnet«, »PLOP_dotnet«, or
»pCOS_dotnet«, respectively.

Missing or unreferenced PDFlib assembly. The .NET Framework may issue various er-
ror messages if the PDFlib assembly is not available:

> If one ore more DLLs are missing you may see the following vague error message in
ASP.NET:

Could not load file or assembly 'pdflib_dotnet.dll' or one of its dependencies.
The specified module could not be found.

In this case you must make sure that pdflib_dotnet.dll is installed correctly.
> The HRESULT error code 0x800736B1 indicates that the .NET Framework is too old.
> The .NET error ID BC30002 (The statement has made reference to a type that has not been

defined.) means that PDFlib_dotnet.dll is not referenced. Make sure that PDFlib is cor-
rectly referenced in your project. For details see

msdn.microsoft.com/en-us/library/sy234eat.aspx

.NET Framework 4.0 and missing redistributable Microsoft runtime libraries. After
correctly installing the PDFlib assembly you may still see the following error in some
situations:

Could not load file or assembly 'pdflib_dotnet.dll' or one of its dependencies.
The specified module could not be found.

This message means that a runtime library is missing. The corresponding HRESULT er-
ror code is usually 0x8007007E or 0x80004005. This problem happens only in rare situa-
tions where required Microsoft runtime libraries are missing which are installed as part
of Visual C++ and other Microsoft products. The required runtime libraries are available
for free download from Microsoft and can be installed separately from Visual C++.

The table below lists the names and download locations for the required redistribut-
able runtime packages. These packages must be installed if you get the error message
above. According to our testing no redistributable packages are required for .NET Frame-
work 2.0.

Table 5.1 Required redistributable runtime packages for various .NET Framework 4.0 configurations

configuration required redistributable package
32-bit .NET Framework 4.0 x86
(on 32-bit or 64-bit Windows)

Microsoft Visual C++ 2010 Redistributable Package (x86)
file name: vcredist_x86.exe
www.microsoft.com/download/details.aspx?id=5555

64-bit .NET Framework 4.0 x64
(requires 64-bit Windows)

Microsoft Visual C++ 2010 Redistributable Package (x64)
file name: vcredist_x64.exe
www.microsoft.com/download/details.aspx?id=14632

http://www.microsoft.com/download/details.aspx?id=5555

http://www.microsoft.com/download/details.aspx?id=14632

http://msdn.microsoft.com/en-us/library/sy234eat.aspx

8 The PDFlib in .NET HowTo June 17, 2013

Wrong mixture of 32-bit and 64-bit DLLs. In ASP.NET you may see the following error
message:

Could not load file or assembly 'pdflib_dotnet' or one of its dependencies. An attempt
was made to load a program with an incorrect format.

The HRESULT error 0x800700C1 means that a 64-bit DLL is used in a 32-bit environment
(System.BadImageFormatException: is not a valid Win32 application). You can identify the
32-bit and 64-bit PDFlib assemblies by looking at the file properties of the DLL (right-
click on the DLL in Windows Explorer).

Confusing PDFlib assemblies for .NET Framework 2.0 and 4.0. Using the version of
pdflib_dotnet.dll for .NET Framework 2.0 with .NET 4.0 Framework triggers the following
error message:

Mixed mode assembly is built against version 'v2.0.50727' of the runtime and cannot be
loaded in the 4.0 runtime without additional configuration information.

This should be solved by using the pdflib_dotnet.dll for .NET Framework 4.0. You can
identify PDFlib assemblies for .NET Framework 2.0 and .NET Framework 4.0 by looking
at the file properties of the DLL (right-click on the DLL in Windows Explorer).

As an alternative you can add the following attribute to the <startup> element in the
web.config XML configuration file for the .NET Framework to allow the use of .NET
Framework 2.0 assemblies with .NET Framework 4.0:

useLegacyV2RuntimeActivationPolicy="true"

For more information about the configuration file for the .NET Framework please refer
to the following page:

msdn.microsoft.com/en-us/library/bbx34a2h.aspx

Wrong target architecture in Visual Studio configuration. Since PDFlib.NET contains
native machine-specific code you cannot use the Visual Studio configuration Any CPU,
but must select x86 or x64 as target system and use the corresponding version of
PDFlib.NET if you experience System.BadImageFormatException.

Debugging Tips. Below are some tips for obtaining information which may be helpful
for analyzing .NET deployment problems.

> In ASP.NET you will see the version number of the .NET Framework at the bottom of
the error page.

> In ASP.NET the 64-bit Framework includes Framework64 in the path name.

http://msdn.microsoft.com/en-us/library/bbx34a2h.aspx

Chapter 6: Additional Web Links 9

6 Additional Web Links
> The public PDFlib mailing list for general discussion:

tech.groups.yahoo.com/group/pdflib
> PDFlib support for commercial licensees:

support@pdflib.com

http://tech.groups.yahoo.com/group/pdflib

mailto:support@pdflib.com

			1 Scope of this Document

			2 Requirements

			3 Basic Installation

			4 Using PDFlib with ASP.NET

			5 Troubleshooting

			6 Additional Web Links

PDFlib-8.0.6-SunOS-sparc64-perl/doc/changes.txt

============================
PDFlib 8.0.6 (June 17, 2013)
============================

- 2013-06-13 (bug #4396)
 The documented parameter "userlog" for user-supplied logging entries
 didn't work.

- 2013-06-13 (bug #4425)
 Detect errors in invalid BMP image files related to too few image data.
 Missing image parts will be filled up with white pixels.

- 2013-05-15 (bug #4375)
 PNG files used as a mask could produce incorrect output (transparent areas
 were completely opaque) if the mask image itself included an alpha channel.

- 2013-05-06 (bug #4375)
 The global "usercoordinates" setting was not correctly honored in
 PDF_create_field().

- 2013-04-22 (bug #4352)
 PDF_xshow() and PDF_fit_textline() with the "xadvancelist" option produced
 wrong output, wrong metrics and/or the inappropriate error message
 "Floating point number xtoo large" if the text contained text layout control
 characters of the following list:
 NBSP NNBSP ZWNJ ZWJ LRM RLM LRE RLE PDF LRO RLO

- 2013-04-09 (bug #4330)
 Fixed a crash when loading large TIFF images with
 (width*height*bpc*components)/8 > 4GB.

- 2013-04-09 (bug #4343)
 Fixed problems in the Cobol examples.

- 2013-04-07 (bug #4335)
 Deriving a PHP class from the PDFlib class could result in a crash.

- 2013-04-03 (bug #4333)
 Fixed a memory leak for TIFF images which are handled in raw pixel mode
 and have an orientation tag.

- 2013-03-21 (bug #4325)
 Fixed a problem with the calculation of matchboxes in a Textflow.

- 2013-03-07 (bug #4321)
 PDF_fit_textflow() with a zero-size fitbox, fitmethod=nofit and blind mode
 incorrectly returned "_boxempty" and zero values instead of the
 calculated height and width.

- 2013-03-07 (bug #4302)
 The option tabalignment=decimal in PDF_add_textflow() didn't work correctly:
 The first instance of tabalignchar was right-aligned at the tab position
 instead of left-aligned.

===============================
PDFlib 8.0.5p2 (March 04, 2013)
===============================

- 2013-03-04 (bug #4264)
 The Cobol binary for MVS no longer worked due to a build problem.
 Fixed buglets in the Cobol samples for zSeries.

- 2013-03-04 (bug #4295)
 Instead of throwing an exception for damaged or unacceptable embedded ICC
 profiles they are now rejected with return value -1 in PDF/X and PDF/A mode
 and silently ignored otherwise (per bug #3574).

- 2013-02-20 (bug #4275)
 PNG images with bpc < 8 and a tRNS chunk could cause a crash.

- 2013-02-20 (bug #4274)
 Textflow could create a redundant empty line if a non-alphabetic character
 was placed in front of an inline option list even if the inline option list
 contained a nextline, nextparagraph or nextpage command.

- 2013-02-19 (bug #4273)
 .NET binding: the logging output could contain invalid length entries
 for NULL strings.

- 2013-02-18 (bug #4272)
 PDF_fit_textline() placed annotations before Textflows which contradicts
 the documented ordering of content types. As a result, the "usematchbox"
 option didn't work within "fitannotation" if the matchbox was created in
 a Textflow within the same cell.

- 2013-02-18 (bug #4268)
 Implemented a heuristic for certain mainframe-generated Type 1 fonts
 with numeric glyph names to avoid display problems in Acrobat and some
 other PDF viewers.

- 2013-02-07 (bug #4261)
 The "clipping" option for matchboxes didn't take into account the
 orientation of TIFF images with an orientation tag.

- 2013-01-28 (bug #4237)
 An inappropriate exception "Invalid restore (no matching save level)"
 could be thrown in evaluation mode when an image was placed on a template
 and the template has been created in page scope.

- 2013-01-10 (bug #4206, bug #3793/REOPENED)
 The fix for bug #3793 contained an invalid optimization since
 PDF_open_pdi_document() may be called in object scope or the imported PDF
 document may be used for multiple output documents with different color
 characteristics.

- 2013-01-08 (bug #4186)
 Importing PDF/A or PDF/X documents with inconsistent output intents (e.g.
 RGB ICC profile, but N=4) would trigger the warning
 "Inconsistent output intent in 'X.pdf': ICC profile with 3 components,
 but N=4 (assuming 3)"
 However, PDF_process_pdi() with action=copyoutputintent would copy the
 inconsistent output intent nevertheless. Now the call returns an error
 code.

- 2013-01-08 (bug #4191)
 PDF_pcos_get_string() returned invalid UTF-8 (in C) or threw an exception
 (in other bindings) when the name of a spot color was retrieved (e.g.
 "colorspaces[0]/colorantname" and the PDF name object contained isolated
 8-bit codes instead of UTF-8. Since this case is undefined in the PDF
 Reference pCOS now returns a hex-encoded representation of the bytes in
 the string.

- 2013-01-08 (bug #4189)
 The following functions reported a wrong API name in PDF_get_apiname()
 if an exception was thrown because of incorrect C NULL parameters:
 PDF_get_buffer()
 PDF_setpolydash() (deprecated)
 PDF_convert_to_unicode()
 PDF_utf8_to_utf16() etc. (deprecated)

- 2012-12-18 (bug #4184)
 Null objects in imported documents could trigger the error
 "Token '<<' expected" in some cases if optimize=true was specified.

==================================
PDFlib 8.0.5p1 (December 12, 2012)
==================================

- 2012-12-12 (bug #4173)
 Added 32-bit editions of the PDFlib framework in the Mac OS X 10.6
 package.

- 2012-12-11 (bug #4071/REOPENED)
 Further improved the logic for determining the "textheight" value in
 the case maxlines=1, firstlinedist!=leading, fixedleading=false and
 different font sizes.

- 2012-12-10 (bug #4173)
 Ignore image resolution information in Photoshop resources if it contradict
 the values found in the TIFF resolution tag.

- 2012-12-05 (bug #4167)
 Windows host fonts with a style specification (e.g. "Cambria,400") were
 not found if the target font was located in a TTC file.

- 2012-12-04 (bug #4166)
 Significantly reduced the amount of stack required for the "optimize"
 feature. This is particularly important for avoiding a stack overflow
 with Java and certain document types.

- 2012-11-17 (bug #3935 and bug #4136)
 Enhanced XMP processing as follows to avoid validation problems with
 certain real-world XMP streams:
 - All namespace declarations are propagated from rdf:RDF nodes to the
 rdf:Description nodes.
 - Unused namespace declarations are removed.
 - Empty rdf:Description elements are removed.

- 2012-11-15 (bug #4135)
 Added support for Mac TrueType fonts with a (0, 1) cmap and only ASCII
 entries in the name table.

- 2012-11-14 (bug #4131)
 Ignore resolution values larger than 10000 in JPEG images to work around
 problems caused by invalid dpi entries in image files. This limit was
 already implemented for TIFF images.

- 2012-11-08 (bug #4102, bug #3877 REOPENED)
 Undid the change for bug #3877 to allow Windows font substitution to work
 when Windows host fonts are requested by PDFlib.

===============================
PDFlib 8.0.5 (October 24, 2012)
===============================

- 2012-10-24 (bug #4071)
 PDF_info_textflow() could return a wrong result for the "textheight"
 keyword if the "maxlines" option was present.

- 2012-10-24 (bug #4088)
 The 32-bit and 64-bit MSI installers couldn't be installed in parallel
 on the same system (bug introduced with PDFlib 8.0.4).

- 2012-10-23 (bug #4099)
 Fixed a memory violation problem when reading TrueType fonts with
 corrupt ClassDefinitionTables in the GPOS table of the kern feature.

- 2012-10-22 (bug #4058)
 Spot colors could appear wrong in PHP if the following warning was
 issued:
 "Option 'fillcolor': spot color 'X' has already an alternative color"

- 2012-10-22 (bug #4090)
 PDFlib rejected custom spot colors if the name consisted entirely of
 digits with the inappropriate message "Parameter 'spotname' is empty"
 although there are no restrictions for custom spot color names.

- 2012-10-22 (bug #4047)
 The presence of the required Textflow option "textlen" was not checked
 for fonts loaded with "encoding=cp9xx", which could result in a crash.

- 2012-10-22 (bug #4077)
 The "pagewidth" and "pageheight" have incorrectly been marked as deprecated
 in the logging output.

- 2012-10-18 (bug #4080)
 Added support for Python 3.3.

- 2012-10-18 (bug #4079)
 Added support for Perl 5.16.

- 2012-10-16 (feature #1245 and feature #1445)
 Tested with Windows 8 and Windows Server 2012.

- 2012-10-04 (bug #4068)
 The PDFLIBLICENSEFILE environment variable didn't work on z/OS if no
 API function was called before PDF_begin_page() which triggered a search
 for the UPR resource file.

- 2012-09-14 (bug #4026)
 Fixed an infinite loop in PDF_fit_table() with "blind=true" if the function
 was called repeatedly.

- 2012-09-12 (bug #3995)
 pCOS could fail with "String object expected" because an object reference
 for a destination in Link annotations was not resolved correctly.

- 2012-09-12 (bug #3998)
 If PDF_open_pdi_document() was called in document scope the PDF version
 number was not ignored in PDF/A mode although it should. The version check
 is now done in PDF_open_pdi_page() along with other checks, especially
 standard compatibility.

- 2012-09-10 (bug #3983)
 Using pCOS to enumerate PDFlib Blocks with pCOS paths of the form
 "pages[1]/blocks[1].key" resulted in an internal error if the requested
 Block index was 1 higher than the last valid index.

- 2012-09-03 (bug #4005)
 Added support for CJK TrueType fonts with a (0, 4) cmap; previously PDFlib
 used the (1, 0) Apple 8-bit cmap which doesn't cover CJK characters.

- 2012-09-03 (bug #4002)
 If errorpolicy=return was specified in PDF_fill_*block() the return value
 -1 (instead of an exception) could still be returned in rare cases instead
 of throwing an exception.

================================
PDFlib 8.0.4p7 (August 30, 2012)
================================

- 2012-08-30 (bug #3669)
 Implemented the new option "truncatetrailingwhitespace" of PDF_fit_textflow()
 which controls the treatment of whitespace at the end of a Textflow.

- 2012-08-28 (bug #3994)
 Windows: license keys in the registry were incorrectly rejected with
 "Invalid license key" (bug introduced in PDFlib 8.0.4p6).

================================
PDFlib 8.0.4p6 (August 23, 2012)
================================

- 2012-08-23 (bug #3970)
 Accessing entries in the Windows registry no longer worked; bug introduced
 in PDFlib 8.0.4p3.

- 2012-08-23 (feature #1418)
 Added support for Mac OS X 10.8 (Mountain Lion).

- 2012-08-23 (bug #3941)
 Tagged PDF: the element attributes Scope, RowSpan, and ColSpan were
 incorrectly emitted with owner /Layout instead of /Table.

- 2012-08-23 (bug #3969)
 Invalid calls to PDF_restore() were not detected in certain situations
 in evaluation mode.

- 2012-08-03 (bug #3958)
 Tweaked PDI buffer sizes and floating point output accuracy based on a
 customer request.

- 2012-07-25 (bug #3689/REOPENED)
 The algorithm implemented for improving the output of transparent PNG images
 with the "ignoremask" option could result in missing black content for
 certain images. This has been fixed by using a different color than white
 for the compositing process.

- 2012-07-20 (bug #3933)
 Option "createdate" of PDF_create_annotation(): changed the default to
 "true" for all Markup annotation to work around a bug in Acrobat's
 "Summarize Comments" feature which issues an error message "a.creationDate
 is null" for comments without a date entry although the date is optional
 according to ISO 32000-1.

- 2012-07-17 (bug #3936)
 Add "license" as default license key file name for zSeries/MVS.

- 2012-07-05 (bug #3910)
 RPG binding for i5/iSeries: the get_buffer method did not return any data.

- 2012-07-03 (bug #3914)
 The mechanism for ignoring API calls for content creation during pass 1
 ("widthsonly") of a subset Type 3 font didn't work; instead of silently
 ignoring API calls it threw an exception.

- 2012-07-02 (bug #3911)
 The Objective-C wrapper did not create the required UTF-8 BOM for some
 parameters. As a result, options lists with non-ASCII characters could
 not be used.

- 2012-06-22 (bug #3901)
 Required resources were not emitted (resulting in an Acrobat error message)
 for the following combinations:
 - shadings used on a template, pattern, or Type 3 font glyph description
 - ExtGStates used in a Type 3 font glyph description

==============================
PDFlib 8.0.4p5 (June 22, 2012)
==============================

- 2012-06-22 (bug #3899)
 PDF_add_textflow() didn't honor the "avoidbreak" option if one of the
 text chunks contained space characters at the end.

- 2012-06-22 (bug #3892)
 Modified the fix for bug #3279 to create a /Win dictionary only for UNC
 file names, but not others. This was required to work around problems with
 the "Protected View" of Adobe Reader X in some situations.

- 2012-06-21 (bug #3898)
 Fixed a crash when loading a TIFF image which was assigned image handle 127
 and included a soft mask.

- 2012-06-14 (bug #3886)
 Fixed a crash when a parsing error occurred while loading TIFF images with
 one or more extra channels.

- 2012-06-06 (bug #3880)
 Evaluating the "LANG" environment variable for "filenamehandling" didn't
 work on i5/iSeries because the values may violate the expected syntax. As a
 result the message Codeset 'lib/en_us' in environment variable 'LC_CTYPE'
 not supported was issued. Now "filenamehandling=auto" is set as default on
 iSeries, and "honorlang" is no longer supported on iSeries.
 Note that "filenamehandling=auto" also didn't work due to a secondary bug,
 so this could not be used as a workaround.

- 2012-06-06 (bug #3877)
 The host font feature on Windows incorrectly accepted an "Arial" font
 provided by GDI when "Helvetica" was requested.

- 2012-06-04 (bug #3868)
 Fixed wrong library name in the z/OS package.

- 2012-05-30 (bug #3864)
 The option "fillrule" didn't have any effect in PDF_draw_path() if only
 "clip" was specified (as opposed to "fill" or "stroke").

- 2012-05-23 (bug #3951)
 Fixed a memory leak introduced in PDFlib 8.0.4p3.

=============================
PDFlib 8.0.4p4 (May 14, 2012)
=============================

- 2012-05-14 (bug #3843)
 Error handling for file access did not work correctly with the new USS/zOS
 cross-compiled build. As a result PVF file access and the searchpath
 algorithm were broken.

=============================
PDFlib 8.0.4p3 (May 05, 2012)
=============================

- 2012-05-05 (bug #3764/REOPENED)
 Further enhanced the cross-builds for zOS on USS.

- 2012-05-05 (bug #3826)
 If an imported page contained a /Type key (which is not part of ISO 32000-1)
 this key was copied to the generated Form XObject where it conflicted the
 natural /Type/XObject. In order to avoid this conflict /Type keys are no
 longer copied at the top level.

- 2012-04-30 (bug #3825)
 Reverted the change in the memory allocation strategy for documents with
 a very large number of pages implemented for bug #3520 since it resulted
 in a large memory overhead with certain bad allocators, especially on z/OS.

- 2012-04-29 (bug #3835)
 The "rolemap" option now detects the situation that a custom tag is
 mapped more than once, and rejects the option list with an exception.

- 2012-04-27 (bug #3829)
 An inappropriate exception "Required option 'script' is missing" could be
 thrown when shaping was enabled, but a fallback font did not support
 shaping. In order to avoid the error "noshaping" is now set automatically
 in Textflow for fallback fonts which do not support shaping.

- 2012-04-27 (bug #3834)
 Fixed wrong memory access when reading 16-bit BMP images.

- 2012-04-19 (bug #3820)
 Guard against broken PDFs with loops in the xref chain.

- 2012-04-16 (bug #3817)
 PDF_pcos_get_string() could throw an internal error when a Filter dictionary
 contained indirect objects.

- 2012-04-13 (bug #3815)
 Textflow: the correction of the linespacing factor (feathering) in the case
 of verticalalignment=justify and wrap geometry was wrong, resulting in too
 large linespacing.

- 2012-04-12 (bug #3813)
 Check ICC profiles imported with "action=copyoutputintent" in
 PDF_process_pdi() are now checked earlier to allow recovery instead of
 an exception.

- 2012-04-11 (bug #3812)
 The text state for text output functions with an option list was not
 correctly initialized in PDF/X mode which could result in inappropriate
 messages "'Gray' color requires default color space".

- 2012-04-11 (bug #3809)
 Temporary files were not removed on z/OS.

- 2012-04-05 (bug #3806)
 The textendx/textendy keywords of PDF_info_textflow() did not return the
 correct values if a wrapbox was placed after the last line of text.

- 2012-04-05 (bug #3805)
 Fixed inconsistent treatment of UTF-8 BOM for virtual files and disk files.
 As a consequence of the bug file names starting with a BOM could not be
 found for certain LANG settings.

- 2012-04-04 (bug #3800)
 PHP binding: the value returned by PDF_info_textflow() with the keyword
 "lastfont" was off by 1.

- 2012-04-04 (bug #3799)
 Silently ignore missing property resources in the page parser to allow
 processing of PDF files which triggered an exception "PDF format error"
 when querying "length:fonts" or similar pCOS paths which require page
 parsing.

- 2012-04-03 (bug #3793)
 As a continuation of the fix for bug #3780, PDF_open_pdi_page() checks
 whether an imported page uses the same CMYK ICC profile which is used as
 output intent, and rejects such pages in PDF/X-4/5 mode.

- 2012-03-26 (bug #3795)
 The "dll" linker option was missing when cross-building zOS binaries on USS.

===============================
PDFlib 8.0.4p2 (March 16, 2012)
===============================

- 2012-03-16 (bug #3791)
 Fixed potential memory problems when extracting ICC profiles or Photoshop
 data from JPEG marker segments.

- 2012-03-16 (bug #3784)
 Table formatting: unexpected row heights could occur for empty table cells
 where the sum of the top and bottom margins exceeded the specified rowheight.

- 2012-03-16 (bug #3781)
 The new options "rowheightdefault" and "colwidthdefault" were implemented
 incorrectly; additional keywords "distribute" and "minimum" are now supported.

- 2012-03-16 (bug #3764)
 Modified the build system to support cross-builds for zOS on USS.

- 2012-03-15 (bug #3772)
 Textflow: implemented treatment of U+202F (narrow no-break space) as
 non-breaking space character with fixed width (whereas U+00A0 no-break
 space may vary in width subject to formatting options).

- 2012-03-13 (bug #3780)
 Implemented and documented the PDF/X-4/5 rule that a CMYK ICC profile which
 has already been loaded with "usage=outputintent" cannot be loaded with
 "usage=iccbased" since this is explicitly forbidden by the standard.

- 2012-03-06 (bug #3778)
 The starter_3d sample for Ruby attempted to load a non-existing data file.

- 2012-02-29 (bug #3724)
 The (non-sensical) use of the "pcosid:" prefix with pcos_get_string()
 could result in a crash or garbage output.

- 2012-02-28 (bug #3758)
 The combination of compatibility=1.7ext3, encryption and linearization
 resulted in invalid PDF output.

- 2012-02-28 (bug #3762)
 Textflow: the option "parident" was incorrectly ignored after a formfeed.

- 2012-02-27 (bug #3761)
 Textflow could crash when the text contained more than the allowed number
 of 32 tabs per line.

- 2012-02-27 (bug #3750)
 Improved PDI performance in the case that an input document was kept open
 across multiple output documents, e.g. for the "split by page" use case.
 By keeping general document information in memory, the performance is
 improved in all such cases, but the improvement is especially pronounced
 in pathologic cases where reading the input document is very slow, e.g. for
 documents with a flat Pages array instead of a balanced tree.

- 2012-02-27 (bug #3760)
 The Makefile.in and other files in the source code package for zSeries
 were incorrectly included in ASCII format instead of in EBCDIC.

==================================
PDFlib 8.0.4p1 (February 10, 2012)
==================================

- 2012-02-17 (bug #3684)
 The document options "filemode", "recordsize" and "tempfilenames" are now
 also available on USS in addition to z/OS.

- 2012-02-10 (bug #3689)
 Implemented the following new algorithm for handling Gray and RGB PNG images
 with an alpha channel and the ignoremask option: if a background color
 (bKGD chunk) is found in the file, it will be used for pre-multiplying the
 alpha channel, otherwise white is used as background for blending. This
 improves the output for PNG images with alpha channel when the mask is
 ignored per user option.

- 2012-02-07 (bug #3743)
 Enhanced stream length correction for PDF repair mode to avoid the
 error "Missing or negative /Length entry in stream dict" in certain
 cases of massively damaged PDF input.

- 2012-02-06 (bug #3734)
 The "wordspacing" text option should only affect U+0020. However, if a font
 contained only a single glyph for U+0020 and U+00A0 (no-break space) it
 incorrectly also acted on U+00A0.

- 2012-02-02 (bug #3697)
 16-bit TIFF images are now always routed through the internal TIFF pixel
 reader. This has the following effects:
 - 16-bit are always maintained instead of being converted to 8-bit in some
 cases (requires PDF 1.5).
 - Avoid wrong output for compressed 16-bit CMYK TIFF.
 - Fix a crash for 16-bit TIFF images with separate image planes.

- 2012-02-02 (bug #3697)
 An extra spot color channel in a TIFF image was wrongly interpreted as an
 alpha channel. Now it will be ignored.

- 2012-02-01 (bug #3736)
 Due to a leftover debug flag the ICC profile data found in an imported
 image was accidentally written to a disk file called <imagefilename>.icc.
 Bug introduced in PDFlib 8.0.3p4.

- 2012-01-27 (bug #3706)
 Added the helper module "utf16num_ebcdic.hpp" which aids in using the
 wstring-based C++ wrapper on EBCDIC-based systems.

- 2012-01-27 (bug #3730)
 Floating point output could be wrong in the final digits if 7 or more
 digits were produced.

- 2012-01-26 (bug #3760)
 Source code packages: Makefiles for ICU were missing an EBCDIC conversion.

- 2012-01-24 (bug #3723)
 The support files for the xplink build process on zSeries ended up in the
 packages without the required conversion to EBCDIC.

- 2012-01-24 (bug #3705)
 PDF_info_textflow() could return the wrong result 1 for the "split" keyword
 in situations with a small gap between a wrap shap and the border of the
 fitbox.

- 2012-01-19 (bug #3694)
 If a Type 3 font contained only a single glyph but not the required .notdef
 glyph a confusing message
 "Font 'example' with encoding 'winansi': Font doesn't support encoding"
 was emitted. Now a .notdef glyph will be created automatically in this
 situation.

- 2012-01-18 (bug #3685)
 PDF_fit_textflow() incorrectly returned "_boxempty" instead of "_stop"
 if the supplied text was empty and the fitbox had a height of 0.

- 2012-01-18 (bug #3686)
 PDF_info_textflow() with the "textwidth" keyword incorrectly returned the
 width of the fitbox even if the supplied text was empty.

===============================
PDFlib 8.0.4 (January 09, 2012)
===============================

- 2012-01-09 (bug #3680)
 PDF_get_parameter() did not return strings in the selected string format in
 the C++ binding, but always returned ASCII strings (bug introduced in
 PDFlib 8.0.3p5).

- 2011-12-23 (feature #1208)
 Added a language binding for Objective-C on Mac OS X and iOS.

- 2011-12-15 (bug #3663)
 Reduced the per-page memory requirements of PDI by 35% which significantly
 brings down the required memory for processing very large documents.

- 2011-12-12 (bug #3665)
 A ToUnicode CMap was not emitted for symbolic fonts in some situations.

- 2011-12-07 (feature #1274)
 The pCOS pseudo object "colorspaces" could miss "DeviceGray" if no color
 space was explicitly set on a page.

- 2011-12-07 (bug #3661)
 Fallback fonts did not take the textrise option into account correctly.

- 2011-12-05 (bug #3652)
 Restructured the examples and documentation for Ruby on Rails to make it
 independent from a specific version of Ruby on Rails.

- 2011-12-05 (bug #3644)
 The pCOS path "type:colorspace[...]" could return a wrong type if the
 page or document contained only DeviceGray/RGB/CMYK colors.

- 2011-12-02 (bug #3651)
 Reduced the floating point accuracy of entries in a TJ array to achieve
 more compact output.

- 2011-12-02 (bug #3657)
 The pCOS path "length:pages[0]/fonts" returned the wrong value 0 if
 "length:fonts" has been retrieved before (bug introduced in PDFlib 8.0.3p5).

- 2011-12-02 (bug #3640)
 The pCOS pseudo object "patterns" was not correctly populated.

- 2011-12-01 (bug #3636/REOPENED)
 The recent fix had the incorrect side effect that returned strings were
 no longer converted to the required output format.

- 2011-12-01 (bug #3637)
 The pCOS pseudo object "colorspaces" did not include colorspaces which
 are used on plain patterns, shading patterns, or shadings.

- 2011-11-30 (bug #3649)
 PDF_xshow() did not correctly apply the x advance values for simple fonts
 (Type 1, Type 3 and SID OpenType) with encoding=unicode.

- 2011-11-30 (bug #3648)
 The "startcolor" option of PDF_shading() did not accept spot colors.

- 2011-11-30 (bug #3645)
 Extended the logging output for filesearch=3 to include the file size of
 loaded resources.

- 2011-11-28 (bug #3641)
 PDF_begin_template_ext() no longer rejects the combination of the
 "reference" and "topdown" options.

- 2011-11-24 (bug #3634)
 Different documents could end up with identical /ID entries on fast
 machines.

- 2011-11-24 (bug #3636)
 Implemented support for the "filename" and "type" keys in PDF_info_image()
 in case a template handle was provided instead of an image handle.

==================================
PDFlib 8.0.3p5 (November 21, 2011)
==================================

- 2011-11-21 (bug #3625)
 PDF_fill_textblock() could ignore the following options on Windows:
 gstate, stamp, leader, matchbox.

- 2011-11-21 (bug #3624)
 The "createdate" option of PDF_create_annotation() incorrectly created
 a /ModDate key instead of the required /M key (in addition to /CreationDate).

- 2011-11-21 (feature #1244)
 Adding support for building PDFlib on Mac OS X 10.7 (Lion).

- 2011-11-18 (bug #3622)
 PDF_pcos_get_number() could crash with "length:pages[...]/colorspaces"
 and similar resource queries if a page doesn't have any /Contents entry.

- 2011-11-18 (feature #1262)
 Read the physical file's modification date and use it as ModDate entry
 for file attachements to avoid the "Unknown" display in Acrobat.

- 2011-11-17 (bug #3460)
 The "sort" suboption of the "portfolio" option of PDF_end_document() did
 not check the existence of the field name supplied in the first element of
 each sublist.

- 2011-11-17 (bug #3618)
 Improved Textflow output related to the combination of the following
 factors:
 - input starts with an empty line
 - avoidemptybegin=true verticalalign={justify} firstlinedist={ascender}
 - fontsize is set to a certain value initially and then reset to a smaller
 value after the empty line

- 2011-11-16 (feature #1232)
 Introduced an object-oriented language binding for Python which is also
 demonstrated in the samples.

- 2011-11-16 (bug #3620)
 PDF_fill_textblock() incorrectly limited incoming strings for Textflow
 Blocks to a length of 32763 although there is no limit to the length of
 Textflow contents.

- 2011-11-15 (feature #1233)
 Added various Unicode samples to the starter_basic sample.

- 2011-11-15 (bug #3615)
 A call to PDF_close_image() was missing in the starter_pdfa1b samples.

- 2011-11-14 (feature #1217)
 Implemented a cache for PDI pages which caches object IDs even after
 closing a page. This helps clients which cannot reuse PDI page handles
 for some reason and would have to implement caching in client code to
 avoid duplicated page output.

- 2011-11-11 (feature #1242)
 Implemented the "license" and "licensefile" options of PDF_set_option().

- 2011-11-10 (feature #1219)
 Implemented the "postscript" option of PDF_begin_template_ext().

- 2011-11-07 (bug #3608)
 The "rolemap" option of PDF_begin_document() didn't accept custom element
 type names which contained a space character.

- 2011-11-07 (bug #3606)
 PDF_get_parameter() could cause a crash when called with the "version"
 key and a p parameter of NULL.

- 2011-11-07 (bug #3605)
 PDF_open_pdi_document() incorrectly allowed the import of PDF/A-1b
 documents into PDF/A-1a documents, and incorrectly didn't allow the import
 of PDF/A-1a documents into PDF/A-1b documents.

- 2011-11-07 (feature #1221)
 Implemented an unsupported feature for suppressing variable date entries
 in the PDF output.

- 2011-10-31 (feature #1239)
 Allow PDF/X-4:2010 without any layer variants.

=================================
PDFlib 8.0.3p4 (October 24, 2011)
=================================

- 2011-10-24 (bug #3594)
 Updated PDFlib's internal list of standard output intents to reflect the
 current state of the Characterization Data collection at www.color.org
 (see compatibility.txt for details). Some old printing condition names
 could trigger PDF/X validation errors.

- 2011-10-23 (bug #3590)
 PDF_set_info/info2() did not enforce the documented restriction that custom
 document info keys must not contain any space characters if XMP is created.
 This resulten in invalid XMP output which in turn thwarted PDF/X
 conformance.

- 2011-10-19 (bug #3566)
 PDF_load_image() could crash with 16-bit palette TIFF images.

- 2011-10-19 (bug #3592)
 PDF_begin/end_document() and PDF_create_annotation() did not reject file
 attachments in PDF/X-1a/3 mode.

- 2011-10-18 (bug #3574)
 Damaged ICC profiles found embedded in TIFF, JPEG or PNG images will
 now be ignored, and a warning will be written to the log file.

- 2011-10-18 (bug #3591)
 The "contents" option of PDF_create_annotation() was incorrectly required
 for PDF/A, although it is only recommended for PDF/A-1.

- 2011-10-18 (bug #3588)
 pCOS failed to retrieve page labels or other objects in a number tree if
 an object reference was used in the first entry of a pair in the number tree.

- 2011-10-17 (bug #3584)
 Fixed a performance problem in PDF_load_font() when loading fonts with
 a very large number of kerning pairs. The particular font which triggered
 the bug containe more than one million kerning pairs after resolving
 OpenType feature classes. The bad performance was caused by inefficient
 memory handling, and mainly affected Windows systems.

- 2011-10-17 (bug #3585)
 PDF_create_annotation() accepted CMYK colors for PDF 1.6 instead of for
 PDF 1.7 and above.

- 2011-10-14 (bug #3583)
 PDF_create_bookmark() and PDF_create_annotation() incorrectly accepted
 color specifications with spot or Lab color, and with CMYK color even with
 compatibility < PDF 1.6 (should have been PDF 1.7 anyway, see bug #3585).

- 2011-10-13 (feature #1220)
 Modified the control for float digit output according to a customer
 requirement.

- 2011-10-12 (bug #3579)
 PDF_begin/end_document() incorrectly didn't reject the "attachments"
 option in PDF/A mode.

===================================
PDFlib 8.0.3p3 (September 23, 2011)
===================================

- 2011-09-23 (bug #3549)
 Fixed an infinite loop in the table engine related to multiple large
 Textflows in the same table row where Textflows had be split among table
 instances.

- 2011-09-19 (bug #3547)
 In PDF/X-1 and PDF/X-3 mode PDFlib incorrectly didn't reject gstates
 with a blendmode other than Normal.

- 2011-09-19 (bug #3542)
 PDFlib rejected TrueType fonts with non-ASCII characters in the English
 entry of the name table. Now such fonts are accepted and UTF-16 entries
 are converted to UTF-8.

- 2011-09-19 (bug #3546)
 PNG images with a 16-bit alpha channel resulted in invalid PDF output
 since the mask was scaled down to 8-bit (to work around a bug in Acrobat 9),
 but the resulting /SMask image still incorrectly contained the entry
 /BitsPerComponent 8.

- 2011-09-13 (bug #3541)
 The error message when the PDF output file size exceeded the limit for
 classical xrefs (10 decimal digits, ca. 9.3 GB) was misleading.

- 2011-09-13 (bug #3520)
 Reduced the memory requirements for documents with tens of thousands of
 pages by switching to a more conservative allocation strategy for large
 documents. This makes it possible to create millions of pages with a
 smaller memory footprint.

- 2011-09-13 (bug #3503)
 Slightly optimized output of PDF text operators in content streams by
 avoiding single-element arrays.

- 2011-09-13 (bug #3472)
 PDF documents created for the internal regression test required some
 changes in the ID generation in order to work around a bug in Acrobat's
 search feature. The problem never affected documents created outside
 PDFlib GmbH.

- 2011-09-13 (bug #3534)
 PDF_create_gstate() now emits an exception if the "softmask" option was
 supplied and the "template" suboption points to a transparency template
 which hasn't been created with the "transparencygroup" option.

- 2011-09-07 (bug #3527)
 Textflow could crash when an illegal single-byte character reference
 (e.g. '&.#x4A;') was used with a Text font.

- 2011-09-06 (bug #3506)
 Fixed a configuration problem which thwarted reduced PDFlib builds for use
 in the Block Plugin.

================================
PDFlib 8.0.3p2 (August 25, 2011)
================================

- 2011-08-25 (bug #3462)
 Fixed a crash in documents containing tags, when a table cell contains
 a form field.

- 2011-08-25 (bug #3443)
 Matchboxes may not end correctly if <matchbox=end> is placed directly
 after a nextline character in Textflow.

- 2011-08-25 (bug #3418)
 The previous fix of bug #3418 introduced a new problem in Textflow,
 so that no text was printed in wrapboxes starting with narrow shape.

- 2011-08-11 (bug #3499)
 PDF_create_annotation() did not reject type=Movie in PDF/A mode.

- 2011-08-11 (bug #3497)
 PDF_create_action() no longer rejected type=Hide in PDF/A mode.

- 2011-08-11 (bug #3494)
 Modified the REALbasic binding so that console applications can be built.

- 2011-08-06 (bug #3461)
 Implemented a check to make sure that the "rolemap" option accepts only
 standard element types, but not inline-level and pseudo element types
 (e.g. Artifact) since Acrobat does not support role-mapping for the latter.

- 2011-08-03 (bug #3463)
 PDF_create_annotation() with type=3D created wrong PDF output for the
 dummy appearance stream. As a result, the appearance was not recognized
 and Acrobat displayed a question mark instead. PDFlib now emits an empty
 appearance stream for 3D annotations unless the "template" option was
 provided. This means that the 3D annotation remains invisible if it has
 been created with the "enable=click" option.

==============================
PDFlib 8.0.3p1 (July 21, 2011)
==============================

- 2011-07-21 (bug #3445)
 Depending on factors such as color space, compression, etc. TIFF images
 could end up with top-down or bottom-up pixel row ordering in the PDF,
 suitably compensated by a matrix. However, since matrix compensation is
 not available if the image used as a mask for another image, the mask
 could end up with different pixel row orientation than the masked image.
 While PDFlib detected this situation and rejected the mask with
 "Image 'mask.tif' not suitable as mask for image 'masked.tif'
 (different orientation)"
 it now reorders the pixel rows to avoid the mismatch and correctly apply
 the mask. The reordering even works if the image contains the "orientate"
 TIFF tag.

============================
PDFlib 8.0.3 (July 12, 2011)
============================

- 2011-07-12 (bug #3441)
 Fix invalid XMP input which uses wrong rdf:rdf elements to the correct
 rdf:RDF.

- 2011-07-12 (bug #3438)
 PDF/A extension schemas could be wrongly rejected with
 "PDF/A extension schema 'XY' doesn't have description embedded"
 if all nodes of an extension schema were listed on the same line.
 The schema ordering in the generated XMP output was modified to work
 around an Acrobat bug with parsing PDF/A extension schemas.

- 2011-07-11 (bug #3432)
 Modified the starter_tagged samples to better demonstrate accessibility
 features by adding a document/title/paragraph structure element hierarchy,
 a bookmark, and the "lang" option.

- 2011-07-11 (bug #3347)
 Convert numeric values with an absolute value > 32767 from float to
 integer in the PDF output only if compatibility <= 1.4 since newer PDF
 versions support higher accuracy.

- 2011-07-11 (bug #3437)
 Modified the starter_pdfx4 sample to use "createorderlist" and set the
 Radiobtn dependency for better Acrobat X compatibility.

- 2011-07-11 (bug #3435)
 PDF_set_layer_dependency() with type=Radiobtn or Lock did not have the
 expected effect in the presence of layer variants.

- 2011-07-07 (bug #3436)
 Added a workaround to PDI which allows to import encrypted documents
 which use an invalid combination of encryption parameters since such
 documents can be opened with Acrobat.

- 2011-07-06 (bug #3431)
 Clarified the scoping rules for placing tables with form fields or
 annotations, and implemented suitable scope checks to avoid a crash
 when a table containing form fields was incorrectly placed on a
 template with PDF_fit_table().

- 2011-07-05 (bug #3412)
 Fixed a problem with the ICU configure script on Solaris 64-bit. The
 reason was that 64-bit detection didn't work with newer versions of
 the Solaris compiler, resulting in an unusable 32-bit binary.

- 2011-06-29 (bug #3334)
 Changed the path for the default image in the block_template.pdf sample
 to avoid error messages when the COM/.NET PDFlib package is installed
 since it installs the sample files in the "resources" directory instead
 of "../data".

- 2011-06-29 (bug #3418)
 PDF_fit_textflow() could get stuck in an infinite loop with adjustmethod=
 split and no wrap boxes present.

- 2011-06-28 (bug #3415)
 Importing a PDF/X-3 document with a standard output intent (as opposed to
 an embedded output intent ICC profile) into a new PDF/X-3 document could
 result in the inappropriate error message "No output intent specified for
 PDF/X" even if an output intent had already been set.

- 2011-06-20 (bug #3257)
 Source builds: rewrote the build system to eliminate a dependency on
 cygwin when building on Windows.

- 2011-06-17 (bug #3214)
 The code for dynamically loading the PDFlib shared library at runtime
 on i5 was incorrect.

- 2011-06-08 (bug #3403)
 The shaping option "script=_auto" in combination with a non-empty "features"
 list could lead to a crash on some systems.

- 2011-06-08 (bug #3401)
 PDF_info_textflow() with the keyword "fittext" always added a newline
 character at the start of the text.

- 2011-05-27 (feature #1168)
 Implemented the "barcode" option of PDF_create_field/group() which
 adds support for PDF417, QuickResponse, and DataMatrix barcode fields.

- 2011-05-24 (bug #3373)
 Modified the selection of the initial colorspace on a page in PDF/A and
 PDF/X modes to prefer CMYK over Lab if possible. This avoids unused and
 possibly undesired Lab colorspace entries in pure CMYK workflows with
 CMYK output intent. As another advantage pure CMYK black will be created
 instead of Lab 0/0/0 (which may result in muddy brownish black with
 too much ink coverage if the user doesn't specify any colorspace, but
 relies on the default "black" color at the beginning of each page.

- 2011-05-18 (feature #1164)
 Implemented the "forcebox" and "expandbox" options in PDF_open_pdi_page().
 They can be used to enlarge or reduce the size of imported page, and
 are especially useful for processing broken input pages which have
 relevant content outside the MediaBox and all other box entries.

- 2011-05-18 (bug #3335)
 Fixed a memory leak in tagged PDF mode if an exception happened in
 PDF_end_document().

- 2011-05-16 (bug #3353)
 On EBCDIC systems JavaScript code was incorrectly written in EBCDIC
 encoding if the JavaScript code was longer than 65535 bytes or the
 "script" option of PDF_load_3ddata() was used to supply JavaScript.

- 2011-05-13 (feature #815)
 Added support for 3D models in the PRC format and improved the 3D
 documentation in the API Reference. The starter_3d sample has also been
 updated.

- 2011-05-10 (bug #3329)
 If Textflow Blocks used the "maxlines" property and the Textflow spanned
 multiple linked Blocks only the last instance of the Textflow was placed
 if the text with the maximal number of lines contained more than maxlines
 mandatory lines (e.g. nextline, nextparagraph).

- 2011-05-10 (bug #3336)
 PostScript Type 1 fonts were previously rejected if the corresponding PFM
 file contained a dfCharSet=200 entry. Now they are mapped to encoding
 "builtin" and variant glyph names will be mapped to the corresponding
 base character. This matches the use of dfCharSet=200 in FontLab for
 some common font families.

- 2011-05-09 (bug #3328)
 PDF_process_pdi() with action=copyoutputintent now emits a warning in
 the log file if no output intent ICC profile was copied because the
 generated output neither conforms to PDF/X nor PDF/A.

- 2011-04-29 (bug #3312)
 Clarified the rules for UPR parsing and adjusted the implementation.

===============================
PDFlib 8.0.2p5 (April 27, 2011)
===============================

- 2011-04-27 (bug #3305)
 Fixed a crash on some systems when an unknown keyword or the prefix "no"
 was supplied to the "objectstreams" option of PDF_begin_document().

- 2011-04-26 (bug #3304)
 The "startcolor" option of PDF_shading() was incorrectly implemented as
 "fillcolor".

- 2011-04-26 (bug #3280)
 Implemented a workaround to avoid an Acrobat bug where the text in form
 fields is not displayed correctly for monospaced fonts.

- 2011-04-21 (bug #3281)
 Implemented a workaround to speed up XMP parsing of imported PDF documents
 in the case of multi-megabyte XMP metadata as sometimes created by InDesign.

- 2011-04-18 (bug #3293)
 The value of the "compatibility" option was incorrectly retained from
 one call to PDF_begin_document() to the next(). As a result, using
 "compatibility=1.4" first and "compatibility=1.5 objectstreams={none}"
 in the next call wrongly triggered the error message
 "Option 'objectstreams' is not supported in PDF 1.4".
 As a workaround you can create a dummy document in memory between both
 calls, using "compatibility=1.5".

- 2011-04-01 (bug #3284)
 CMYK JPEG images with ColorTransform=2 could appear inverted in the PDF
 output in combination with certain other APP14 marker contents.

- 2011-03-29 (bug #3279)
 Windows UNC file names didn't work in Launch actions created with
 PDF_create_action() because a wrong file specification was created.

- 2011-03-29 (bug #3282)
 An even number of consecutive backslash characters in option lists was
 not treated correctly: one of the backslashes was missing after optlist
 parsing.

- 2011-03-28 (bug #3277)
 Shaping could result in an error message "Bad floating point number for PDF"
 on Mac OS X due to a missing initialization.

===============================
PDFlib 8.0.2p4 (March 18, 2011)
===============================

- 2011-03-18 (bug #3244)
 Calling PDF_begin_item() to create a Tagged PDF item which had a pseudo
 element type (e.g. "Artifact") as parent could lead to a crash. The crash
 could also happen in content creation functions, such as PDF_fit_image().
 This condition is not allowed in Tagged PDF generation, and now it is
 forbidden per the documentation and checked in the code.

- 2011-03-17 (bug #3200)
 Improved JPEG 2000 image import:
 - A wrong ColorSpace was assigned to some images (bug introduced in PDFlib 8).
 As a result of the bug, some converted images raised error messages in
 Acrobat, while others could be affected from color shifts.
 - Images with an extra channel can now be imported.
 - /SMaskInData assignment was incorrect.

- 2011-03-17 (bug #3254)
 Fixed glitches in the starter_block samples for ASP.NET and VB.NET.

- 2011-03-15 (bug #3243)
 Matchbox coordinates could be wrong in "blind" mode when processing Blocks
 and the "cloneboxes" option was active.

- 2011-03-15 (bug #3254)
 The suboptions normal/rollover/down of the "template" option of
 PDF_create_annotation() did not accept the "viewer" keyword.

- 2011-03-15 (bug #3256)
 Situation: glyphcheck=replace, a font with one or more fallback fonts, a
 Unicode value which could neither be mapped to a glyph in the master font
 nor in a fallback font, and the master font did not contain an approximate
 glyph. In this situation PDFlib did not search for an approximate glyph
 in the fallback fonts.

- 2011-03-15 (bug #3255)
 PDF_fit_textflow() could incorrectly issue an error "Required option 'script'
 is missing" if shaping was enabled and the Textflow contained an unclosed
 matchbox.

- 2011-03-15 (bug #3242)
 PDF_fit_textflow() could get stuck in an infinite loop with verticalalign=
 justify, a single line of text and a wrap box outside the fitbox.

- 2011-03-14 (bug #3225)
 Enhanced the error message
 "Floating point parameter 'width' has bad value 0.000001 (minimum 0.000001)"
 to quote the original input string representation of the offended number
 instead of the rounded version which doesn't make sense as in the example
 above.

- 2011-02-28 (bug #3218)
 Improved the repair mode for damaged PDF with exactly two trailers.

- 2011-02-18 (bug #3211)
 The "transparencygroup" option list which is created automatically in the
 presence of transparent contents always used DeviceRGB color space, although
 this is not allowed in PDF/X-4 or PDF/X-5 with a Gray or CMYK output intent.
 Note that this kind of PDF/X violation is not flagged by Acrobat 9 and X
 Preflight.

- 2011-02-18 (bug #3206)
 When PDF/X with an RGB output intent profile was created in evaluation
 mode, the demo stamp used DeviceGray color although this is not allowed
 in this situation.

==================================
PDFlib 8.0.2p3 (February 17, 2011)
==================================

- 2011-02-17 (feature #1087)
 Included the new "PDFlib in .NET HowTo" document in all relevant packages.

- 2011-02-17 (bug #3216)
 With Windows source builds the command "nmake TARGET=Release_MD" didn't
 work correctly.

- 2011-02-17 (bug #3217)
 Adjusted the Ruby samples since they no longer worked with Ruby 1.9.2.

- 2011-02-16 (bug #3213)
 The "coversheet" suboption of the "portfolio" option didn't work.

- 2011-02-15 (bug #3203)
 Eliminated an unwanted dependency of the .NET edition on Microsoft.VC80.CRT
 version 8.0.50727.4053 which was accidentally created by an updated version
 of Visual Studio. This dependency could cause problems when deploying the
 .NET assembly on systems where this version of the CRT was not available.

- 2011-02-09 (bug #2735/REOPENED)
 Improved handling of certain OJPEG-compressed TIFFs to process them in
 passthrough mode. This dramatically speeds up image conversion and results
 in much smaller output.

- 2011-02-09 (bug #3209)
 PDF_fit_image() did not check whether an image supplied for the "masked"
 option had already been closed.

- 2011-02-02 (bug #3198)
 Added a workaround to PDI to avoid massive file size increase after importing
 documents which contain references to huge shared resource arrays at
 every page.

- 2011-02-01 (bug #3197)
 The controlling logic for the "vert" OpenType feature did not work correctly
 for the low-level text output functions (e.g. PDF_show_xy()). Glyphs were
 incorrectly not rotated for vertical text output if another font with
 vertical=false was used earlier on the same page.

- 2011-01-31 (bug #3194)
 Fixed a crash when loading JPEG images which contain invalid Photoshop
 transparency resource entries.

- 2011-01-31 (bug #3183)
 The fix for bug #3173 was incorrect for the case of dynamically loading
 the C++ binding, and could lead to a crash in this case.

- 2011-01-31 (bug #3192)
 When PDF_fit_table() stopped with "_error" an inappropriate error
 message "Invalid restore (no matching save level)" could appear
 PDF_end_page_ext().

=================================
PDFlib 8.0.2p2 (January 25, 2011)
=================================

- 2011-01-25 (bug #3173)
 The check in the C++ wrapper whether the correct version of the library
 has been dynamically loaded did not emit the appropriate error message,
 and didn't format it correctly according to the configured string type.

- 2011-01-24 (bug #3137)
 Added the strings " (64bit)" or " (32bit)" to the "FileDescription"
 property of the Windows DLL to make it easier to distinguish both
 flavors after unpacking/installing.

- 2011-01-24 (bug #3177)
 Text on a path could have glyphs wrongly positioned in rare cases at
 incontinuities of the curve.

- 2011-01-19 (bug #3169)
 If fallback fonts were used with simple text output functions such as
 PDF_show() and the last glyph in a string was rendered with the fallback
 font, the fallback font was used for subsequent text instead of the
 master font.

- 2011-01-19 (bug #3166)
 PDF_fit_textline() with glyphcheck=error could throw an inappropriate
 error "Character U+0000 for option 'alignchar' not found in font or encoding".

- 2011-01-19 (bug #3161)
 Using encoding=winansi or macroman for Apple TrueType fonts without a
 Microsoft cmap (3,1) could result in lost glyphs.

- 2011-01-17 (bug #3162)
 The "-disable-debug" configure option didn't completely eliminate the
 "-g" switch on HP-UX.

=================================
PDFlib 8.0.2p1 (January 10, 2011)
=================================

- 2011-01-10 (bug #3129)
 Added a workaround for non-conforming ICC profiles where the
 profileDescriptionTag does not include the two required null bytes at the
 end of a Unicode string. Previously such profiles have been rejected with
 "Tag 'desc' not found ('icmTextDescription_read: Unicode string is not
 terminated')".

- 2011-01-10 (bug #3153)
 PDF_fit_table() could incorrectly return "_stop" if the last row of a table
 had to be split and contained a table cell with a Textflow which was
 longer than the table instance.

- 2011-01-07 (bug #3155)
 Ignore duplicate Adobe markers in JPEG images since these may contain
 incorrect information.

- 2011-01-07 (bug #3157)
 Detect and reject JPEG images where multiple image components have the same
 ID in the SOF marker since this violates ISO 10918 and cannot be fixed
 reliably.

- 2011-01-07 (bug #3159)
 Guard against malformed JPEG images which reference non-existing quantization
 tables or have other problems which are detected during early stages of
 the transcoding process.

- 2011-01-05 (bug #2371)
 Implemented the new text state parameter "strokewidth". It is treated like
 "underlinewidth" and does not affect the linewidth for subsequent line
 drawing elements.

- 2011-01-04 (bug #3152)
 The internal glyph name to Unicode mapping tables required adjustments for
 "equivasymptotic" (U+224D) to match common use in TeX fonts.

- 2011-01-04 (bug #3151)
 Logging with stringformat=readable or stringformat=readable0 did not
 correctly escape the backslash character.

- 2011-01-03 (bug #3150)
 Reduced document-wide memory usage for TIFF or PNG images with an internal
 soft mask by closing the image slot for the soft mask automatically when
 the main image is closed.

- 2011-01-03 (bug #3142)
 Fixed a crash when loading 128 PNG images with a transparency or
 palette chunk.

- 2010-12-31 (bug #3147)
 The .NET assembly contained a wrong version number entry in the DLL
 properties.

- 2010-12-20 (bug #3133)
 Added a workaround for invalid PDFs with xref entries where the
 offset of a used entry is 0 or the generation number is >65535.
 Such entries are now silently ignored.

================================
PDFlib 8.0.2 (December 10, 2010)
================================

- 2010-12-10 (bug #3125)
 The "reference" option wrongly rejected PDF/X-1 and PDF/X-3 flavors as
 target when generating PDF/X-5g or PDF/X-5pg output.

- 2010-12-09 (bug #2769)
 Added support for the --host option of configure to allow cross-compilation.
 Currently this is supported only for building 32-bit Linux binaries on a
 64-bit Linux system.

- 2010-12-09 (bug #2769)
 Added the starter_path example for all language bindings.

- 2010-12-07 (bug #3117)
 OpenType CFF fonts which make use of the deprecated endchar/seac
 command within a subroutine could result in missing glyphs.

- 2010-12-07 (bug #3106)
 Added support for xplink builds to z/OS source packages, and added
 xplink binaries to the packages.

- 2010-12-03 (feature #1063)
 New option "rolemap" for PDF_begin_document() to support custom tags in
 PDF_begin_item().

- 2010-12-03 (bug #3112)
 Enhanced the TIFF reader to correctly process 16-bit images with or
 without mask. Previously not all 16-bit flavors were processed correctly,
 e.g. big-endian TIFFs and the rare PlanarConfiguration==2. This also
 eliminates the limitations regarding 16-bit CMYK images, and fixed a crash
 with 16-bit CMYK plus mask.

- 2010-12-02 (bug #2892)
 Build separate .NET binaries for .NET Framework 2.0 and .NET Framework 4.0.
 The 4.0 build avoids the need to set the useLegacyV2RuntimeActivationPolicy
 configuration element to true when working with .NET Framework 4.0.

- 2010-12-01 (feature #1001)
 New options "colwidthdefault" and "rowheightdefault" for PDF_fit_textflow().

- 2010-12-01 (bug #3100)
 When the "reference" option is used for PDF/X-5p or PDF/X-5pg output PDFlib
 now checks the output intent of the referenced document to make sure that
 it matches the output intent of the generated document.

- 2010-12-01 (bug #3114)
 Handling of Type 1 fonts was not safe for Unicode characters outside the BMP:
 if a glyph was mapped to a character beyond U+FFFF due to its glyph name,
 wrong Unicode mappings were generated. As a result that no output was
 generated for this glyph.

- 2010-12-01 (bug #3111)
 The "opacityfill" and "opacitystroke" Block properties triggered the
 error "Option 'opacityfill' has bad number value '0.100006opacitystroke'"
 due to a missing space character in the internally generated option list.

- 2010-12-01 (bug #3072)
 The Java wrapper functions for get_errmsg() and get_apiname() could throw
 exceptions in rare situations on EBCDIC platforms although they shouldn't.

- 2010-11-29 (bug #3108)
 Table formatter: text could end up outside the fit box a row had to be
 split and the second part of the split row was too small for a Textflow
 because of large cell margins.

- 2010-11-29 (bug #3109)
 Windows only: text loaded with a double-byte encoding (cp9xxx) was
 incorrectly treated as two-byte UTF-16 by default. Workaround: explicitly
 set textformat=bytes.

- 2010-10-25 (feature #1048)
 New option "createorderlist" for PDF_set_layer_dependency() for use with
 PDF/X-4:2010.

- 2010-11-24 (bug #3105)
 PNG images != 8 bpc with a trns chunk could result in invalid PDF output for
 the generated soft mask. As a result of the fix trns chunks containing only
 a single transparent entry are now optimized to a simple /Mask array to
 avoid the much larger /SMask Image XObject.

- 2010-11-23 (bug #3088)
 .NET binding: allow null for all API string parameters and treat them like
 empty strings.

- 2010-11-22 (bug #3103)
 Replaced calls to the deprecated API function close_pdi() in several PHP
 samples to the recommended PDF_close_pdi_document().

- 2010-11-22 (bug #3102)
 Fixed an infinite loop in PDF_fit_textflow() if lly == ury.

- 2010-11-22 (bug #3101)
 Several C++ starter samples were missing in the sample Visual Studio
 solutions.

- 2010-11-22 (bug #3099)
 Eliminated the limitation of page dimensions for named destinations.

- 2010-11-15 (bug #3094)
 A wrong error "Calculated table height ... is too large" could happen
 in PDF_fit_table() if a row was split and its parts were distributed
 on more than two table instances.

- 2010-11-15 (bug #2934)
 The calculation of matchboxes in PDF_fit_textline() was wrong for topdown
 coordinates and fitmethod=clip or slice.

- 2010-11-15 (bug #3082)
 Textflow now treats the Japanese characters U+FF9E and U+FF9F as letters
 to avoid wrong linebreaks. Formerly they were incorrectly classified as
 symbols.

- 2010-11-09 (feature #1054)
 New keyword "1.7ext8" for the compatibility option of PDF_begin_document()
 to support PDF 1.7 extension level 8 (Acrobat X) documents. Similarly,
 Acrobat X documents can now be imported with PDI unless they use the new
 encryption algorithm.

- 2010-11-03 (bug #3058)
 Removed the dependency on glibc 2.4 for the 32-bit Linux binaries to avoid
 runtime problems on older Linux systems.

- 2010-10-28 (bug #3077)
 Passwords for output encryption are rejected if they contain one or more
 characters outside of Winansi encoding unless PDF 1.7ext3 or above is
 generated.

- 2010-10-28 (bug #3080)
 The table engine did not correctly expand the cell height if a table cell
 contained a Textflow which in turn contained only a single character.

==================================
PDFlib 8.0.1p10 (October 25, 2010)
==================================

- 2010-10-22 (bug #3065)
 The "pdfversionstring" pCOS object was not available for encrypted
 documents with PDF version > 1.7 although basic document information
 should be provided even in minimum pCOS mode.

- 2010-10-22 (bug #3063)
 Changed the build process for the DLL to avoid "warning LNK4098:
 defaultlib "LIBCMT" conflicts with use of other libs" from the
 Visual Studio linker.

- 2010-10-22 (feature #1041)
 Implemented automatic synchronization between layers and tags to work
 around unexpected behavior in Acrobat.

- 2010-10-22 (bug #3064)
 Creating inline Spans with PDF_begin_item() could result in invalid PDF
 output if an external object (e.g. annotation) was created within such
 a Span.

- 2010-10-22 (bug #2933)
 Textline leaders were wrongly calculated for orientate=west/east in a
 topdown coordinate system.

- 2010-10-20 (bug #3057)
 Textflow didn't take into account no-break spaces if the "advancedlinebreak"
 option was set.

- 2010-10-20 (bug #3051)
 Textflow ignored the "offsetright" option if "matchbox end" was missing
 from the Textflow.

- 2010-10-20 (bug #3050)
 Textflow didn't correctly take into account the width adjustment caused
 by wordspacing for no-break spaces. As a result, text output could extend
 beyond the fitbox.

- 2010-10-19 (bug #3048)
 Significantly improved pCOS performance on Mac OS X and FreeBSD by modifying
 the TRY/CATCH implementation.

- 2010-10-14 (bug #3044, feature #1038)
 Implemented bytewise character references of the form &.#<code>; as an
 input aid for symbolic fonts loaded with encoding=unicode, e.g.
 <fontname=Wingdings encoding=unicode textformat=utf8>&.#x9F;<...>

 Unicode values and glyph names can now be retrieved even for TrueType and
 Type1 symbol fonts with encoding=unicode using the following calls:
 PDF_info_font(p, font, "unicode", "code=xx");
 PDF_info_font(p, font, "glyphname", "code=xx");

- 2010-10-14 (bug #3043)
 PDF_fill_textblock() could incorrectly trigger the exception
 "Bad fixed textformat 'bytes'" when inline option lists are used.

- 2010-10-13 (bug #3038)
 Acrobat's accessibility checker could complain about "word(s) that contain
 characters with no reliable mapping to Unicode." for simple fonts with
 encoding=unicode and autospace=true if the first text chunk did not contain
 any space character.

=================================
PDFlib 8.0.1p9 (October 08, 2010)
=================================

- 2010-10-07 (bug #3036)
 The "tempfilenames" option for MVS incorrectly removed temporary files
 although this is the user's responsibility.

- 2010-10-07 (bug #3013)
 Fixed a crash with with malformed fax-compressed TIFF images.

- 2010-10-05 (bug #3030)
 Acrobat and other PDF viewers suffer from restrictions when rendering
 TrueType fonts with a format 12 cmap and no "post" table if used with
 an 8-bit encoding. In order to work around such restrictrions PDFlib now
 converts the font to a CID font in this case.

===================================
PDFlib 8.0.1p8 (September 29, 2010)
===================================

- 2010-09-29 (bug #3008)
 PDF_fill_textblock() no longer took the "fillcolor" and "strokecolor"
 Block properties into account (bug introduced with the incorrect fix for
 bug #2845 in PDFlib 8.0.1p4)

- 2010-09-28 (bug #3003)
 Fixed a bug in the CFF parser which could result in slightly different
 font subsets on some platforms, sometimes without visible differences in
 Acrobat.

- 2010-09-28
 Replaced the TET datasheet (used as sample input for the starter_pcos
 mini sample) with the current version.

- 2010-09-27 (bug #2988)
 When PDF_create_textflow() was called with empty text, but an option list
 was followed by PDF_add_textflow() the options supplied in the second call
 were ignored for the text.

- 2010-09-24 (bug #3000)
 The font loading option "keepnative" has been forced to false for custom
 CJK fonts with a legacy CMap and embedding=false. This restriction has
 been removed due to the bug #2987 fix, i.e. the text can now be stored
 in its native format.

- 2010-09-22 (bug #2969)
 Fixed several memory leaks and situations where memory increased from
 one document to the next within the same PDFlib object.

===================================
PDFlib 8.0.1p7 (September 22, 2010)
===================================

- 2010-09-22 (bug #2972)
 Improved the build process on i5/iSeries.

- 2010-09-22 (bug #2989)
 Implemented automatic encoding selection ("builtin" vs. "unicode") in
 PDF_fill_textblock() to facilitate the use of symbolic fonts in the
 Block Preview.

- 2010-09-22 (bug #2987)
 The font data in the generated PDF contained wrong widths information for
 the following combination: CJK font with legacy CMap, "keepnative" and
 "noembedding" options. As a result, halfwidth glyphs would be spaced like
 fullwidth glyphs (i.e. too wide) and proportional glyphs would appear
 monospaced.

- 2010-09-21 (bug #2965)
 Composite glyphs for OpenType/CFF subsets could be invisible in the generated
 PDF if the font used a certain rare subroutine construct. Disabling font
 subsetting can be used as a workaround.

- 2010-09-21 (bug #2986)
 Fixed a Windows-specific memory leak in ICU. The option "shutdownstrategy=1"
 can be used as a workaround for this problem.

- 2010-09-21 (bug #2989)
 Changed the handling of the "encoding" option in PDF_fill_textblock() to
 facilitate the use of Symbol fonts in Blocks.

- 2010-09-21 (bug #2982)
 Changed a deprecated pCOS path in the starter_pdfmerge mini sample to
 the recommended pCOS path.

- 2010-09-17 (bug #2982)
 PDFlib could behave erratically (crash or random coordinates) when a polyline
 option list with percentages or relative coordinate specifications contained
 more than 256 entries.

- 2010-09-17 (bug #2959)
 Specifying a spot color with the same alternate color definition repeatedly
 is no longer treated as an error, but will be accepted. This situation
 may often arise with inline color specifications in Textflow.

- 2010-09-14 (bug #2968)
 Glyphs could be invisible in Acrobat for certain symbolic TrueType fonts
 with both a Windows (3, 0) cmap and a sparsely populated Mac (1, 0) cmap.

- 2010-09-14 (bug #2978)
 Under rare circumstances PDFlib could create ToUnicode CMaps which
 exceed certain internal CMap limits when processing CMaps for SID OpenType
 fonts with subsetting.

- 2010-09-14 (bug #2975)
 Added support dynamically loading the PDFlib DLL/SO transparently from
 C++ applications.

- 2010-09-14 (bug #2963)
 Added sample code for demonstrating the use of the PDFlib .NET DLL directly
 from C++/CLI (cpp_cli/hello.cpp).

- 2010-09-03 (bug #2960)
 Fixed a compilation problem when using the C++ wrapper with .NET.

- 2010-09-02 (bug #2956)
 PDF_fill_textblock() could crash if the fontname and encoding were specified
 by name and the resulting font couldn't be loaded.

- 2010-09-01 (bug #2957)
 Added the "fill" and "stroke" options for PDF_add_path_point() to support
 filling and stroking of subpaths (as opposed to the full path object which
 may contain multiple subpaths.

- 2010-09-01 (bug #2950)
 The Tagged PDF code contained some locale-specific formatting if the
 application honored locale settings. In particular, this could happen
 with the Ruby or other language interpreters. As a result,
 the output would no longer be treated as Tagged PDF in Acrobat if the "Table"
 tag or some other tags were used. As a workaround the following can be
 used: PDF_begin_item(p, "Table", "BBox={0 0 0 0}");

- 2010-08-31 (bug #2953)
 On Windows PDF_load_font() and other font-related functions could fail
 with "Unable to create or acquire Windows mutex handle" due to a permission
 problem related to the use of ASP.NET impersonation on IIS.

- 2010-08-27 (bug #2947)
 The "coversheet" suboption of the "portfolio" option of PDF_end_document()
 in some cases did not create a visible coversheet in Acrobat, and couldn't
 distinguish between multiple files with the same names in different folder.
 The new suboption "coversheetfolder" has been implemented for this purpose.

- 2010-08-26 (bug #2945)
 The "coversheet" suboption of the "portfolio" option of PDF_end_document()
 could cause a crash. As a workaround for the crash the "name" option of
 PDF_add_portfolio_file() can be used.

- 2010-08-24 (bug #2942)
 The "zoom" option of PDF_create_annotation() was incorrectly always
 rejected for Text annotations in PDF/A mode, regardless of its value.
 Bug introduced in PDFlib 8.0.1p2 with the fix for bug #2759.

- 2010-08-25 (bug #2273)
 Fixed a memory problem with UTF-8 conversion on iSeries.

- 2010-08-18 (bug #2939)
 PDFlib couldn't be used with Windows mingw32 builds of Ruby (i.e.
 RUBY_PLATFORM=i386-mingw32), especially the prebuild binaries in the
 installer provided on ruby-lang.org. This was caused by differences in
 the standard C libraries compared to Visual Studio (i.e. RUBY_PLATFORM=
 i386-mswin32).

- 2010-08-18 (bug #2928)
 Named matchboxes created with PDF_fit_textline(), PDF_fit_image(),
 PDF_fit_pdi_page() or the corresponding PDF_fill_*block() functions can
 now be queried with PDF_info_matchbox() even if the matchbox has been
 created with the "blind" option.

================================
PDFlib 8.0.1p6 (August 18, 2010)
================================

- 2010-08-17 (bug #2934)
 Matchboxes in PDF_fit_textline() did not take the clipping area for
 fitmethod=clip or fitmethod=slice into account. Fix not yet complete
 for topdown coordinates!

- 2010-08-16 (bug #2930)
 For some rare CFF fonts characters could be missing from the output with
 encoding=winansi (or a subset of winansi). This was caused by non-standard
 glyph names for common WinAnsi characters. PDFlib now emits a /Differences
 array in this case to make sure that Acrobat finds the glyphs in the font.

- 2010-08-12 (bug #2927)
 Clarified implementation and documentation of the "blind" option for the
 fitting functions.

- 2010-08-12 (bug #2926)
 Avoid drawing borders in blind mode in PDF_fill_text_block().

- 2010-08-09 (bug #2922)
 Bookmark handles were limited to a maximum of 65535. The new limit now is
 2147483647.

================================
PDFlib 8.0.1p5 (August 03, 2010)
================================

- 2010-08-03 (bug #2884)
 Fixed a problem with source code builds on Windows (caused by a typo).

- 2010-07-24 (bug #2902)
 Improved logging for vararg parameters in the pCOS functions.

- 2010-07-24 (bug #2901)
 Added support in the build files and a workaround for a compiler bug so
 that the source can be built with VisualStudio 2010.

- 2010-07-24 (bug #2901)
 Fixed an infinite loop in the Type 1 font parser with PFB files containing
 invalid hex sequences.

- 2010-07-24 (bug #2899)
 Added new binaries for Python 2.7 on Windows.

- 2010-07-16 (bug #2889)
 Added a workaround to PDI to import PDF pages which are missing the
 required /MediaBox entry.

- 2010-07-12 (bug #2878)
 CMYK JPEG images with an Adobe marker and a specific combination of flags
 and color transform entries could wrongly appear inverted in the PDF output
 as a result of the recent fix for bug #944.

- 2010-07-12 (bug #2879)
 Improved the logic for identifying host font names on Windows: if no
 ",<weight>" suffix was specified and only a single font matches the
 remaining criteria (face name and italic specification) this font will
 be selected even without an appropriate weight specification.

- 2010-07-09 (bug #2879)
 NO-BREAK SPACE U+00A0 characters could wrongly be treated as SPACE U+0020
 in Textflow, and soft hyphens U+00AD as hyphen-minus U+002D under the
 following conditions:
 - font loaded with 8-bit encoding (e.g. winansi) in Textflow
 - font maps both characters of the affected pair to the lower Unicode value
 - the soft hyphen or no-break space is present as direct character in
 the text, not as a character reference.

- 2010-07-09 (bug #2877)
 The font cache did not catch entries for fonts which are loaded with
 a CMap. Applications which repeatedly load the same font/CMap combination
 (instead of re-using the font handle) required much more memory as a
 result of the missed cache hit. In particular, this problem affected
 PPS applications where the same font/CMap combination was supplied to
 many Block filling operations.

==============================
PDFlib 8.0.1p4 (July 05, 2010)
==============================

- 2010-07-05 (bug #2893)
 The Perl binaries for Windows 64-bit were accidentally damaged.

- 2010-07-05 (bug #2866)
 Source code packages erroneously contained integrated spot color data.

- 2010-06-30 (bug #2865)
 Complex script shaping: Bidi control characters in the input text
 could generate incorrect glyphs (often .null or space) in the PDF output.

- 2010-06-28 (bug #2838)
 Added support for TrueType fonts with cmap format 2 (required for some
 older Chinese fonts).

- 2010-06-22 (bug #2851)
 Improved the error message if a file couldn't be opened because of
 too many open files.

- 2010-06-22 (bug #2852)
 Emit a clear error message for box options describe a degenerate box,
 e.g. "clipping" suboption.

- 2010-06-21 (bug #2843)
 The "letter" suboption of the "charclass" Textflow option was unnecessarily
 restricted to 32 characters.

- 2010-06-21 (bug #2845)
 The "inittextstate" text appearance option (which is implicitly set to true
 in Textline table cells) didn't initialize the graphics state (especially
 the fill and stroke color).

- 2010-06-11 (bug #2842)
 With a plain PDFlib license (as opposed to a license for PDFlib+PDI or PPS)
 PDF documents used in generated Portfolios were not parsed for the
 modification date; no date entry was created in this case.

- 2010-06-11 (bug #2840)
 The "reference" option in PDF_begin_template_ext() didn't work with a
 plain PDFlib license, but required a license for PDFlib+PDI or PPS.

- 2010-06-07 (bug #2834)
 With charref=true sequences of the form "bed &breakfast in london;" were
 treated as invalid character references. Now PDFlib assumes literal use
 (i.e. not character reference) if the sequence contains characters outside
 the following list (space is not included in the list): # _ . 0-9 A-Z a-z.

- 2010-06-01 (bug #2831)
 If the current transformation matrix included a scaling factor, the following
 values returned by PDF_info_textline were wrong (the values were multiplied
 with the scaling factor of the CTM):
 writingdirx/y, perpendiculardirx/y, scalex/y,
 width, height, ascender, capheight, xheight, descender

- 2010-05-26 (bug #2821)
 The "pcosinterface" pseudo object in pCOS returned the wrong interface
 number. Since it was redundant, the PCOS_INTERFACE macro has been removed
 from pdflib.h.

=============================
PDFlib 8.0.1p3 (May 21, 2010)
=============================

- 2010-05-21 (bug #2817)
 The "glyphmapping" Textflow option didn't work.

- 2010-05-21 (bug #2788)
 Extended the passthrough handling of JPEG-compressed TIFF images (per
 (bug #944) to also deal with images which include a separate JPEGTABLES
 tag (but only in the single-strip case).

- 2010-05-20 (bug #2815)
 PDFlib could crash in certain situations when creating Tagged PDF output
 if page content completely outside of all structure elements was supplied.

- 2010-05-19 (bug #2816)
 PDFlib could crash if the required "colorspace" suboption of the
 "transparencygroup" option was missing.

- 2010-05-18 (bug #2810)
 Textflow: vertical alignment could be wrong in the presence of wrap elements
 and inverse filling.

- 2010-05-17 (bug #2806)
 Alternate glyphs for vertical text output were not used when the same
 font was used in horizontal mode between two text chunks in vertical mode.

- 2010-05-13 (bug #2808)
 The mutex-based synchronization code for Windows could leak Windows
 handles if complex script shaping or AES-256 encryption was used.

- 2010-05-11 (bug #2801)
 Fixed alignment problems with HP-UX on Itanium.

=============================
PDFlib 8.0.1p2 (May 06, 2010)
=============================

- 2010-05-06 (bug #2795)
 Loading BMP images with the "mask" option could result in invalid PDF
 output.

- 2010-05-06 (bug #2786)
 PDF/A and PDF/X modes: emit an error message if a Type 1 outline font file
 for one of the core font has been configured without the corresponding
 font metrics file. This is necessary to avoid internal core font metrics
 to be used which may be inconsistent with the actual font widths.

- 2010-05-06 (bug #2795)
 Thread-related error messages on Windows of the form
 "Process X: Thread Y: Mutex "Z":
 Unable to create or acquire Windows mutex handle: Windows error number 5"
 didn't include the correct mutex name.

- 2010-05-04 (bug #2787)
 Increased PDI performance again by modifying buffer sizes.

- 2010-05-03 (bug #2781)
 Increased PDI performance when reading very large documents. This change
 is particularly effective when reading PDF data from a database via the
 PDF_open_pdi_callback() interface.

- 2010-04-23 (bug #2766)
 Host font retrieval on Windows was not thread-safe under certain conditions.

- 2010-04-22 (bug #2379)
 Non-ASCII characters in environment variables could incorrectly trigger
 the error message "Invalid UTF-8 sequence..." on Windows.

- 2010-04-22 (bug #2771)
 PDFlib could crash if the PDFLIBLOGFILE environment variable was specified
 and the "logging" parameter was set.

- 2010-04-22 (bug #2424)
 Implemented a workaround for broken Corel Craw TIFF images with invalid
 values for ExtraSamples.

- 2010-04-21 (bug #2768)
 The PDF output for Portfolios did not include the empty /Name entry for
 the root folder. This doesn't disturb Acrobat, but it is required by
 ISO 32000.

- 2010-04-16 (bug #2760)
 TIFF or JPEG raster images with a clipping path which didn't contain any
 nodes triggered the error message
 "Tried to allocate 0 or negative number of bytes in function pdc_bitarr_new".

- 2010-04-16 (bug #2759)
 PDF_create_annotation() in PDF/A mode restricted the "rotate" and "zoom"
 options for all annotation types although PDF/A restricts these only for
 annotations with type=Text.

- 2010-04-16 (bug #2758)
 The ToUnicode CMap could contain sequences with a redundant additional
 entry 0 for glyph names like "g.lr_low". In some cases PUA values were
 not replaced with U+FFFD in the ToUnicode CMap.

===============================
PDFlib 8.0.1p1 (April 15, 2010)
===============================

- 2010-04-15 (bug #2699)
 Slightly rearranged the source code for a clearer build of source code
 packages.

- 2010-04-15 (bug #2756)
 Fixed a crash when loading fonts which contain glyph names with a certain
 pattern involving suffixes (e.g. "alt") and "_" characters which should
 only be used for ligature glyphs.

- 2010-04-15 (bug #2752)
 Fixed a build problem related to multithreading on Solaris x86.

- 2010-04-15 (bug #2753)
 The "-AA" option was missing in the sample Makefiles for HP-UX LP64.

- 2010-04-14 (bug #2750)
 Fixed a crash with an incorrect option list for the "attachments" option.

=============================
PDFlib 8.0.1 (April 13, 2010)
=============================

- 2010-04-13 (bug #2749)
 The Block API number has been increased because the Block Plugin and
 PPS support the following new features:
 - Support the keyword "auto" for the "position" property in property group
 "object fitting" for Textline Blocks (but not other Block types).
 - Support the keyword "_auto" for the "script" property in property group
 "text preparation".

 Block PDFs created with Plugin 4.1 require PPS 8.0.1. They will be rejected
 by Block Plugin 4.0 and PPS 8.0.0.

- 2010-04-13 (bug #2743)
 Slightly incorrect (but still usable) PDF output could be generated when
 importing AES-encrypted PDF documents.

- 2010-04-12 (feature #875)
 Optimize the shared library builds to export only the public PDFlib API
 functions. This optimization is implemented for GCC 4 and the SunStudio
 compiler; it was already available in the Windows builds.

- 2010-04-12 (bug #2740)
 CCITT-compressed TIFF images which were not handled in passthrough mode
 could contain wrong black pixels on AIX-64.

- 2010-04-12 (bug #2737)
 An inappropriate error message "Option 'font' has bad font handle X"
 was issued when the "fallbackfonts" option was used with PHP.

- 2010-04-12 (bug #2715)
 pCOS incorrectly tried to decrypt XRef streams in encrypted documents
 although these are always unencrypted.

- 2010-04-12 (bug #2714)
 Added a configure option to build PDFlib without threading support.

- 2010-04-12 (bug #2736)
 PDF_load_image could trigger an incomplete error message
 "'?' does not appear to be a ? file" when the wrong image file type "jbig2"
 was supplied instead of the appropriate type or "auto".

- 2010-04-09 (bug #2735)
 Implemented pass-through mode for JPEG-compressed TIFF images with
 YCbCr color space even with pseudo tiling (i.e. one big tile). This results
 in smaller output and much faster processing.

- 2010-04-08 (bug #2733)
 PPS: The "tabalignchar" property was no longer recognized if it had been
 created by a version of the Block Plugin earlier than 4.0.

- 2010-04-07 (bug #2730)
 PDFlib incorrectly set the current color internally for uncolored
 patterns (i.e. painttype=2). This generally resulted in slightly illegal
 PDF output; only in PDF/A or PDF/X mode without any ICC output intent
 profile an exception
 "Color specification not allowed while defining a pattern with painttype 2"
 was thrown.

- 2010-03-31 (bug #2571)
 Eliminated a warning "external symbolic relocation...cannot be processed
 at runtime: relocation ignored related to getopt.c on Solaris 64-bit.

- 2010-03-31 (bug #2712)
 An incorrect error message "Invalid UTF-8 sequence..." could be thrown
 when loading a font where the name was not encoded in UTF-8 (e.g. host-
 encoded font names).

- 2010-03-29 (bug #2711)
 The recent fix for bug #944 makes it possible to also process certain
 grayscale JPEG-compressed TIFF images which previously have been rejected.
 However, those images appeared inverted in the PDF, which is now fixed.

- 2010-03-26 (bug #2710)
 Type 1 font files were no longer found on the Mac; bug introduced with
 the fix for bug #2679 and not visible in any public build.

- 2010-03-26 (bug #944)
 Improved handling of JPEG-compressed TIFF images. As a result, some images
 which previously have been rejected by libjpeg are now converted properly,
 and certain others which were inverted in the PDF output now appear correctly.

- 2010-03-26 (bug #2704)
 Guard the PDF repair mode against invalid large object ids.

- 2010-03-25 (bug #2268)
 Map glyph names /Asmall etc. to uppercase A etc. instead of the corresponding
 lowercase characters. This better matches user expectations and the
 behavior of other software.

- 2010-03-25 (bug #2703)
 Implement a workaround for damaged AFM files which try to encode all
 glyphs to code -1.

- 2010-03-25 (bug #2698)
 PDI was unable to decrypt documents if the /ID entry was longer than the
 common 16 bytes.

- 2010-03-24 (bug #2683)
 Adjusted the default search path on i5/iSeries to the default search path
 on Unix systems.

===============================
PDFlib 8.0.0p7 (March 23, 2010)
===============================

- 2010-03-23 (bug #2695)
 Empty font subsets and glyphcheck=none could result in invalid PDF output.

- 2010-03-23 (bug #2696)
 Relaxed the conditions for fonts which are used in form fields. In
 particular, fonts for form fields must no longer be embedded.

- 2010-03-18 (bug #2671)
 Textflow could insert hyphen characters at a wrong location under rare
 geometric conditions.

- 2010-03-18 (bug #2686)
 Textflow could wrongly place text with verticalalignment=justify and
 lastlinedist=descender if multiple fonts were used on a line and certain
 rare geometric conditions were met.

- 2010-03-17 (bug #2687)
 Optimized page content streams by skipping redundant "TL" operators which
 previous were generated with each call to PDF_setfont().

- 2010-03-17 (bug #2668)
 Invalid PDF output was generated when PDF_begin_template_ext() was called
 in page scope and one or more of the following options were used:
 "metadata", "opi-1.3", "opi-2.0", "reference", "georeference".

- 2010-03-16 (bug #2649)
 Modified the font and text engine so that Unicode CMaps are treated like
 encoding=unicode except for glyph replacement and fallback fonts. This
 provides compatibility with the behavior of PDFlib 7 especially related to
 OpenType features, instead of ignoring all glyphs for which the specified
 CMap does not contain any CID (e.g. rotated forms for the "vert" feature).
 As a side effect, generated documents with embedded TrueType fonts
 and Unicode CMaps are now much smaller. The "keepnative" option will now
 be forced to "false" for TrueType fonts.

- 2010-03-12 (bug #2675)
 Fixed several problems related to internal locking of virtual files:
 - PVF files with TrueType or OpenType fonts supplied to PDF_load_font()
 and to the deprecated function PDF_attach_file() were locked, but never
 unlocked.
 - PVF files supplied as attachment to PDF_create_annotation() and
 PDF_add_portfolio_file() were not locked.

- 2010-03-11 (bug #2676)
 The TrueType engine now ignores GID-to-Unicode mappings in a font if
 the Unicode value is a control character and the GID also maps to a
 higher Unicode value. This works around bugs in certain DTL fonts.

- 2010-03-11 (bug #2679)
 Streamlined handling of the various flavors of PostScript Type 1 fonts.

===============================
PDFlib 8.0.0p6 (March 09, 2010)
===============================

- 2010-03-09 (bug #2670)
 Improved the build system for building with gcc on Solaris (this combination
 is still unsupported nevertheless).

- 2010-03-09 (bug #2563)
 Added support for building Windows binaries with Borland/CodeGear C.

- 2010-03-02 (bug #2660)
 PDF_load_3ddata() could crash if the supplied file name referred to a
 PVF file.

==================================
PDFlib 8.0.0p5 (February 25, 2010)
==================================

- 2010-02-25 (bug #2657)
 PDF_show_boxed() (deprecated since PDFlib 6!) did not take into account
 the current fill and stroke color.

- 2010-02-25 (bug #2642)
 Various improvements for the build process with source code packages on
 Windows, especially for different versions of Visual Studio.

- 2010-02-24 (bug #2643)
 Due to a problem related to builds with Visual Studio 6, some PHP
 versions on Windows (e.g. PHP Zend Community Server 5.3.0) could fail
 with the following message in PDF_load_font():
 "Initialization of shaping engine failed (status: 4)"

- 2010-02-24 (bug #2652)
 When an AFM font metrics file with EncodingScheme=FontSpecific contained
 multiple entries for the same Unicode value and the second glyph was
 not actually present in the font, the character was not visible in the
 output. Now the first glyph will be used.

- 2010-02-24 (bug #2653)
 PDFlib could crash when loading Type 1 fonts for which both a PFM
 metrics file and a PFA outline file was configured.

- 2010-02-18 (bug #2644)
 C++ binding: prevent the copy constructor and assignment operator for the
 PDFlib object since the default operators which copy the PDFlib pointer
 would be invoked. This was uncovered by a typo in the pstring_utf8.cpp
 sample program where a reference to a PDFlib object was missing, which
 means that the copy constructor was invoked.

==================================
PDFlib 8.0.0p4 (February 12, 2010)
==================================

- 2010-02-12 (bug #2636)
 Some functions in the libpng sublibrary didn't get appropriate name
 prefixes. This could lead to clashes in situations where a different
 instance of libpng was linked into the application executable, e.g.
 via GD in PHP. As a result, PNG images could be rejected with strange
 error messages.

- 2010-02-11 (bug #2632)
 PHP 5.2.x changed the behavior of php_check_open_basedir() so that it now
 rejects empty file names. Since this affects in-memory PDF generation with
 PDFlib, the "open_basedir" test is now skipped for empty file names to avoid
 the following PHP error:

 "PDFlib::begin_document(): open_basedir restriction in effect.
 File() is not within the allowed path(s)"

- 2010-02-11 (bug #2631)
 The function for calculating the width of a string ignored the kerning
 value for the first glyph pair in the text. Since text placement did
 take kerning into account tiny alignment errors could happen.

- 2010-02-11 (bug #2630)
 The starter_shaping and starter_fallback for Perl produced incorrect
 output because Perl's \x sequences (instead of character references)
 were used in combination with textformat=bytes (which has been introduced
 in PDFlib 8.0.0p3).

- 2010-02-08 (bug #2625)
 Option list parsing could crash before an appropriate exception was thrown
 when an option list for PDF_add_table_cell() contained field-related options,
 but the option "fitfield" (which is required in this situation) was missing.

- 2010-02-05 (bug #2625)
 Identify JBIG 2 Amd.2 images and reject them since Amd.2 is not supported
 in PDF.

- 2010-02-03 (bug #2616)
 Relaxed the scope of the following functions from "object" to "any":
 PDF_open_pdi*(), PDF_close_pdi*(), PDF_set_info*().

- 2010-02-03 (bug #2616)
 Retrieving attachments with pCOS could fail with "String object expected"
 if the EmbeddedFiles name tree used object references in the /Names array.

- 2010-02-02 (bug #2622)
 Optimized the PDF paths created by PDF_draw_path() when a node of type
 "move" was followed by another node of type "move".

==================================
PDFlib 8.0.0p3 (February 02, 2010)
==================================

- 2010-02-02 (bug #2609)
 Support cross-compilation (x86 vs. x64 vs. Itanium) with Visual Studio.
 This involved replacing the winsetup.bat script with the new configure.js
 script.

- 2010-02-02 (bug #2619)
 Added a workaround to accept nonconforming ICC profiles which triggered
 the following error message:
 "ICC profile 'XXX': Tag 'desc' not found ('icmTextDescription_read:
 ScriptCode string is not terminated')"

- 2010-02-01 (bug #2611)
 Implements a parser for legacy Type 1 PFA fonts with a binary data
 section.

- 2010-01-29 (bug #2612)
 Change the starter_fallback samples for Perl, PHP, and Ruby to use
 textformat=bytes.

- 2010-01-29 (feature #881)
 Implemented the "mingapwidth" option for PDF_fit_textflow().

- 2010-01-29 (bug #2615)
 Wrap contours in Textflow: if fitmethod=auto and verticalalignment!=top
 the text was not completely fit into the target shape although minfontsize
 was not yet reached.

- 2010-01-28 (feature #900)
 Implemented position=auto for PDF_fit/info_textline().

- 2010-01-28 (feature #899)
 Implemented script=_auto for automatic script detection in
 PDF_fit/info_textline().

- 2010-01-28 (feature #898)
 Implemented the "scriptlist" keyword for PDF_info_textline().

- 2010-01-28 (bug #2610)
 JPEG images in the Exif format are now treated as sRGB images, and an
 sRGB profile is attached to the image data.

- 2010-01-28 (bug #2613)
 Comment lines in a Type 1 PostScript font which contained more than 255
 characters were truncated, resulting in unusable output.

=================================
PDFlib 8.0.0p2 (January 22, 2010)
=================================

- 2010-01-22 (bug #2600)
 Fixed a problem with building PDFlib from a source code package on
 Windows 64-bit systems.

- 2010-01-21 (feature #851)
 Redesigned source code structuring with PDF_FEATURE_* macros to improve
 source code packaging and facilitate external builds based on product-
 specific source code packages.

- 2010-01-21 (bug #2588)
 The configure script now supports configuration names supplied on the
 command line.

- 2010-01-19 (bug #2598)
 Textflow: circular wrapboxes with fitmethod=auto could incorrectly be
 rendered as polygons.

- 2010-01-19 (bug #2596)
 Added support for addressing a "temporary work path" via the option
 "clippingpathname" and the pseudo path name "Work Path".

- 2010-01-19 (bug #2586)
 Added support for cross-compilation to the configure script.

- 2010-01-15 (bug #2594)
 Textflow ignored space characters in front of mandatory line breaks
 (nextline, nextparagraph, nextpage) if alignment=center or =right.

- 2010-01-15 (bug #2591)
 Improved the build process for external source code packages.

- 2010-01-14 (bug #2569)
 Link the Linux 32-bit binaries against the current libstdc++.so.6 instead
 of the older libstdc++.so.5 as in the PDFlib 8.0.0 builds. The newer version
 matches the majority of current systems and prevents users from being forced
 to install an older version of libstdc++.

- 2010-01-14 (bug #2435)
 Invalid RGB TIFF images with four components, but extrasamples=0 were
 wrongly processed in passthrough mode which resulted in invalid image data
 in the PDF output.

- 2010-01-13 (bug #2590)
 In some situations related to loading the same font multiply (mostly when
 using PDF_fill_textblock()) font slots could get mixed up in the shaping
 engine. As a result no text output was created when shaping was requested.
 However, this situation is very rare.

- 2010-01-08 (bug #2584)
 PDF_process_pdi() with action=copyoutputintent created an output intent
 entry without any ICC profile if neither PDF/A nor PDF/X was created.
 Now it acts as a no-op in this situation.

- 2010-01-06 (bug #2583)
 XMP processing: replaced the old namespace prefixes "xapS", "xapG" and
 "xapGImg" with the new variants "xmpS", "xmpG" and "xmpGImg" to match the
 behavior of Acrobat.

- 2010-01-04 (bug #2568)
 Textflow could create wrong output if the glyph for the tab character had
 a lower GID than the glyph for the space character in the font. Textflow
 now ignores Unicode values < U+0020 if a higher Unicode value maps to the
 same glyph.

- 2009-12-26 (bug #2527)
 Fixed a potential infinite loop or crash related to XMP where aliased
 lists were merged.

==================================
PDFlib 8.0.0p1 (December 22, 2009)
==================================

- 2009-12-22 (bug #2567)
 Fixed a memory violation with malformed XMP where the namespace prefix
 was missing from element names.

- 2009-12-22 (bug #2546)
 Changed the visibility of ICU symbols to hidden.

- 2009-12-18 (bug #2561)
 Tagged PDF output could trigger the message "Inconsistent ParentTree mapping"
 in the Acrobat 9 Preflight "syntax check" profile.

- 2009-12-17 (bug #2554)
 Tagged PDF output generated with Textflow was wrong and failed Acrobat's
 accessibility checker.

- 2009-12-16 (bug #2545)
 Consistently use the "Plib1" prefix for all C and C++ symbols (including
 data items) in ICU. This fixes a name clash in situations where another
 instance of ICU was already present on the system but was built with
 different data items. In particular, this problem affected Mac OS X 10.6.

- 2009-12-15 (bug #2557)
 Adjusted the sample Makefiles for the C and C++ language samples to
 fix "make" errors on HP-UX.

- 2009-12-15 (bug #2552)
 Added "const" declarations in various places in the C language samples
 to avoid warnings when compiling the C samples with a C++ compiler.

- 2009-12-14
 Added ICCcoated.icc to the data directory for the samples to avoid
 error messages related to missing profiles.

- 2009-12-10 (bug #2542/Reopened)
 Since the BOM was still present at the beginning of exception strings
 client applications would have to remove it. For this reason the BOM is now
 completely removed when working within Unicode-aware languages.

==================================
PDFlib 8.0.0p0 (December 10, 2009)
==================================

- 2009-12-09 (bug #2542)
 Remove UTF-8 BOMs inside exception messages in Unicode-aware language
 bindings before converting to UTF-16. This avoids unwanted BOMs within
 the UTF-16 exception string (e.g. file names), while the BOM is kept
 in non-Unicode aware languages since it may be useful for client
 applications.

================================
PDFlib 8.0.0 (December 09, 2009)
================================
Release of PDFlib 8, PDFlib+PDI 8, PPS 8, and PDFlib Block Plugin 4.0.

=====================================
PDFlib 8.0.0beta2 (November 19, 2009)
=====================================
Second public beta of PDFlib 8.

====================================
PDFlib 8.0.0beta1 (October 01, 2009)
====================================

First public beta of PDFlib 8 with a variety of new features and improvements
in existing features. Please review the documentation for more details.

PDFlib-8.0.6-SunOS-sparc64-perl/doc/compatibility.txt

API changes
===========

This file documents those API changes which affect existing PDFlib client
programs. Although we go to some efforts in maintaining the existing API
functions, it is sometimes necessary to incorporate a few non-backward
compatible changes in order to streamline the API and incorporate new or
extended functions.

PPS, PPS API, Block plugin and Acrobat versions
===

 Acrobat Acrobat
PPS PPS API Block plugin Windows Mac OS X

5.0.0 1 1.0.0 5,6 -
5.0.1 2 1.0.1, 1.1 5,6 5,6
6.0.0 3 2.0.0, 2.0.1 5,6 5,6
6.0.1 4 2.0.2 5,6, 5,6
6.0.2 5 2.1.0 5,6,7 5,6,7
6.0.3 6 2.2 5,6,7 5,6,7
6.0.4 6 2.3 5,6,7,8 5,6,7
7.0.0 7 3.0 5,6,7,8 5,6,7
7.0.1 7 3.1 5,6,7,8 5,6,7,8
7.0.2 7 3.2 5,6,7,8 5,6,7,8
7.0.3 7 3.3 5,6,7,8 5,6,7,8
 3.3p1 5,6,7,8,9 5,6,7,8,9
7.0.4 7 3.4 5,6,7,8,9 5,6,7,8,9
7.0.5 7 3.5 5,6,7,8,9 8,9
8.0.0 8 4.0 7,8,9 8,9
8.0.1 9 4.1 7,8,9 8,9
8.0.2 9 4.2 7,8,9 8,9
8.0.3 9 4.3 8,9,X 8,9,X
 (first build based on wxWidgets)
8.0.4 9 4.4 8,9,X 8,9,X
8.0.5 9 4.5 8,9,X,XI 8,9,X,XI
8.0.6 9 4.6 8,9,X,XI 8,9,X,XI

Identifying deprecated API functions
===================================
Incompatible changes will not be introduced between a particular version
and its successor. Instead, features will first be declared as deprecated.
You can identify deprecated features in your code with the following methods:

- All language bindings (runtime)
 PDFlib will emit a warning in the log file if the "logging" parameter
 is set to "api=1".

- C binding (compile time)
 Visual Studio 2003 and above will emit a compilation warning.

- PHP binding (run time)
 PHP 5.3 and above will emit a warning in the error log.

- Java binding (compile time)
 The pdflib.jar module marks deprecated APIs. Depending on the JDK and
 compiler settings some compilers will warn about the use of deprecated APIs
 when compiling the application source code. For the Sun JDK you can use
 the compiler option "-Xlint:deprecation".

- .NET binding (editing time)
 IntelliSense popups displayed by Visual Studio 2005 and above contain
 a warning for deprecated methods.

PDFlib 8.0.4
============
New features:
- Objective-C language binding for Mac OS X and iOS
- Caching of PDI page handles (even closed ones)
- Support for PostScript XObjects
- object-oriented interface for Python
- emit modification date for file attachments

Deprecated Keywords

PDF_info_image(): targetbox, targetx1/x2/x3/x4, targety1/y2/y3/y4: the
size of templates with the "reference" option will be calculated automatically.

Deprecated Parameters

PDF_set_parameter(): "license", "licensefile", "nodemostamp": use
"license", "licensefile", "avoiddemostamp" of PDF_set_option()

Standard output intent names for PDF/X:

Updated PDFlib's internal list of standard output intents to reflect the
current state of the Characterization Data collection at www.color.org.

- Removed the following printing conditions from the list; if you are using
these you must embed the corresponding ICC profile:
GRACoL2006_Coated1, SWOP2006_Coated3, SWOP2006_Coated5

- Added the following printing conditions which can now be used without
embedding an ICC profile:
FOGRA45, FOGRA46, FOGRA47

- Removed the following printing conditions from the documentation (but not
from the list in the code) since they are no longer recommended by FOGRA:
FOGRA27: use FOGRA39 instead
FOGRA28: use FOGRA45 instead
FOGRA29: use FOGRA47 instead

- Removed old PDFlib 5 and 6 compatibility entries since they would result
in non-conforming PDF/X output:
"OF COM PO P1 F60", "OF COM PO P2 F60", "OF COM PO-P3 F60", "OF COM PO P4 F60",
"OF COM NE P1 F60", "OF COM NE P2 F60", "OF COM NE P3 F60", "OF COM NE P4 F60",
"SC GC2 CO F30", "Ifra_NP_40lcm_neg+CTP_05.00"

PDFlib 8.0.3
============
New features:
- option "barcode" for PDF_create_field/group()
- option "type=prc" for PDF_load_3ddata()
- options "forcebox" and "expandbox" for PDF_open_pdi_page()

PDFlib 8.0.2
============
New features:
- options "colwidthdefault" and "rowheightdefault" for PDF_fit_textflow()
- numeric byte code references for symblic fonts with the "&.#<code>;" syntax
- automatic synchronization of marked content for Tagged PDF and layers
- option "createorderlist" for PDF_set_layer_dependency()
- create and import PDF 1.7 extension level 8 (Acrobat X) documents
- option "rolemap" for PDF_begin_document() to support custom tags in
 PDF_begin_item()

PDFlib 8.0.1
============

Block Plugin 4.1 and PPS 8.0.1

The Block API number has been increased because the Block Plugin and
PPS support the following new features:

- Support the keyword "auto" for the "position" property in property group
 "object fitting" for Textline Blocks (but not other Block types).
- Support the keyword "_auto" for the "script" property in property group
 "text preparation".

This means that Block PDFs created with Plugin 4.1 will be rejected by
Block Plugin 4.0 and PPS 8.0.0!

PDFlib 8.0.0
============

New API functions

PDF_add_path_point()
PDF_add_portfolio_file()
PDF_add_portfolio_folder()
PDF_align()
PDF_begin_mc()
PDF_circular_arc()
PDF_close_font()
PDF_delete_path()
PDF_draw_path()
PDF_ellipse()
PDF_end_mc()
PDF_end_template_ext()
PDF_info_image()
PDF_info_path()
PDF_info_pdi_page()
PDF_mc_point()
PDF_set_option()
PDF_utf8_to_utf32()
PDF_utf32_to_utf8()
PDF_utf16_to_utf32()

Block Plugin and PPS

The "pdiusebox" Block property never worked, and is no longer available. It
will silently be ignored by PDFlib 8.

C binding

Applications which use the PDFlib binding for C must be linked with a
C++ compiler since the PDFlib library includes some parts which are
implemented in C++. Using a C linker may result in unresolved externals
unless the application is explicitly linked against the required C++
support libraries.

C++ binding

The C++ binding now supports a wstring-based interface, but can be
configured to use the plain C++ string type as in PDFlib 7. See
the PDFlib Tutorial for details regarding full source code
compatibility with PDFlib 7 applications. However, the recommended
approach is to switch to the new wstring interface.

Python binding

The non-Unicode aware compatibility binding for Python is no longer
documented (but available in the code nevertheless).

RPG binding

The function name prefix for the Unicode-aware version of the RPG binding
changed from "RPDF_" to "PDF_" since the Unicode-aware binding is now
the default.

Deprecated functions

PDF_end_template(): use PDF_end_template_ext()

The following functions, parameters, and options were already deprecated
in PDFlib 7. They were marked as "deprecated" in the PDFlib 7 manual
and are no longer documented in the PDFlib 8 manual (although they still
work):

Functions:
PDF_open_pdi(): use PDF_open_pdi_document()
PDF_close_pdi(): use PDF_close_pdi_document()
PDF_get_pdi_value(): use PDF_pcos_get_number()
PDF_get_pdi_parameter(): use PDF_pcos_get_string()

Deprecated Parameters

imagewidth, imageheight, image:iccprofile, orientation, resx, resy:
use PDF_info_image()

warning, iccwarning, fontwarning, glyphwarning, imagewarning, pdiwarning:
use errorpolicy

ascenderfaked, capheightfaked, descenderfaked, fontencoding,
fontname, fontstyle, xheightfaked: use PDF_info_font()

autocidfont, autosubsetting, unicodemap: use options in PDF_load_font()

fontmaxcode, capheight, ascender, descender, xheight, monospace:
use PDF_info_font()

subsetlimit, subsetminsize: use options in PDF_load_font()

errorpolicy=legacy

Deprecated Options

PDF_load_font(): fontwarning, kerning
PDF_fit_textline(): locallink, weblink
PDF_info_textline(): unmappedglyphs
PDF_add/create_textflow(): textwarning
PDF_info_textflow(): remainchars
PDF_load_image(): imagewarning
PDF_open_pdi_document(): pdiwarning
PDF_open_pdi_page(): infomode, pdiwarning
PDF_process_pdi(): pdiwarning
PDF_fill_*block(): glyphwarning, fontwarning, imagewarning, pdiwarning
PDF_create_action(): actionwarning
PDF_create_annotation(): annotwarning
PDF_create_field() and PDF_create_fieldgroup(): fieldwarning
many functions: errorpolicy=legacy

Fonts

OpenType fonts loaded with encoding "unicode" are no longer force-embedded.
If embedding is desired you must supply the "embedding" option when
loading the font.

Text strings for use with symbol fonts (e.g. ZapfDingbats) loaded with
encoding=builtin and textformat=ut8 must actually be provided in UTF-8
format. This is different from PDFlib 7 which ignored the textformat in
this situation (the PDFlib 7 behavior was a bug which was leveraged by
some applications).

Images

PDFlib 8 will by default interpret an alpha channel in TIFF and PNG images.
If this is not desired it can be disabled with the "ignoremask" option
of PDF_load_image().

Text output
===========
PDFlib 8 will apply kerning by default; in contrast, PDFlib 7 applied
kerning by default only in Textflow, and only if the font had been loaded
with kerning=true.
In order to avoid kerning for compatibility with older versions, set
readkerning=false when loading the font, or kerning=false when generating
text output.

Performance

PDF_load_font(): unlike earlier versions, PDFlib 8 will read kerning values
from all loaded fonts by default. If kerning is not required font loading
can be accelerated with the "readkerning=false" option.

Form fields

PDF_create_field() with type=checkbox or radiobutton: glyphs from ZapfDingbats
font (e.g. checkmark) are displayed with incorrect spacing in Acrobat 9 and X
due to a bug in Acrobat.
As a workaround the option "unicodemap=false" can be used, but this will
result in the omission of the ToUnicode CMap.

Stricter checks

The output intent for PDF/A and PDF/X must be set before calling any of
the following functions:
PDF_begin_page_ext()
PDF_open_pdi_page()
PDF_setcolor()
PDF_load_image()

This was recommended in earlier versions, but up to PDFlib 7 this rule
was not enforced.

===

PDFlib 7.0.5
============
(No relevant changes)

PDFlib 7.0.4p12
===============
The PHP wrapper now honors the "open_basedir" setting in the php.ini file.
This can be considered an incompatible change, but on the other hand it
was a bug that PDFlib ignored a PHP security control.

PDFlib 7.0.4p6
==============
Setting strokewidth=0 previously used the value of "underlinewidth",
but now refers to a builtin default. This may change the linewidth for
applications which do not specify any value explicitly, but the new
default creates much better results than the old behavior.

PDFlib 7.0.4p5
==============
The long deprecated function PDF_setpolydash() is no longer available
in the PHP 5.3 binding.

PDFlib 7.0.4
============
Changed the default for the suboption "inputformat" of the option "metadata"
(which is supported by various API functions) from "ebcdicutf8" to "utf"
on z/OS (incompatible change). iSeries is not affected.
Clients must either explicitly specify the desired input format of the
XMP file, or submit their XMP in UTF-8.

PDFlib 7.0.3
============
File names in option lists are now treated as hypertext strings. This can
be considered downward incompatible, but fixes problems which resulted in
non-working PDF output when file names (e.g. for GoToR actions) contained
non-ASCII characters which couldn't be mapped to PDFDocEncoding.

PDF_info_textline(): option "unmappedglyphs" is deprecated, use "unmappedchars".

Modifies the behavior in non-Unicode-aware language bindings for the
treatment of name strings in situation "hypertextencoding=unicode" and
"usehypertextencoding=true": depending on the BOM, PDFlib now expects
UTF-16BE or UTF-16LE (terminated with double null).
Previously name strings were treated as host-encoded strings, and UTF-16
strings would trigger an error message.

PDFlib 7.0.2
============

Changes the behavior of repeated calls to PDF_load_font() with the same
font/encoding in a slightly incompatible way: when a font is loaded with
the embedding option, but already has been loaded earlier without this
option, the call will fail (instead of silently ignoring the conflict in
the second call). This is important for filling blocks with embedding=true
if the same font has already been loaded earlier without embedding.

The exact behavior of PDF_load_font() depends on the errorpolicy setting:

errorpolicy=legacy: a warning will be logged
errorpolicy=return: -1 will be returned
errorpolicy=exception: an exception will be thrown.

The new behavior is incompatible for errorpolicy=return or =exception, but
usually points to a problem in the application which needs to be fixed.

PDFlib 7.0.1
============

The codepages cp932, cp936, cp949, and cp950 for CJK text no longer use
Windows system codepages, but the standard CMaps. Therefore the CMaps
must be configured in PDFlib when using one of these codepages on
Windows (on other systems the CMaps were required in 7.0.0 already).

XMP metadata for PDF/A: only the predefined PDF/A schemas are allowed,
plus the four schemas required for defining extension schemas. This is
incompatible with PDFlib 7.0.0 (which accepted arbitrary custom schemas),
but the previous behavior can be considered a bug since it resulted in
output which did not fully conform to the PDF/A standard.

PDFlib 7.0.0
============

Font subsetting: the semantics of the "subsetting", "autosubsetting",
"subsetlimit", and "subsetminsize" options changed.

Text output: the improved font engine in PDFlib 7 checks whether the
glyphs required for creating text output are actually available in a
given font. Characters in a text string for which the selected font
does not contain the appropriate glyph will be replaced (for detailed
control see the glyphchecking and replacementchar options), while the
text strings were simply passed through by PDFlib 6 and earlier versions.
Although this feature improves the accuracy of text output, it may be
considered a small incompatibility (but only in situations which should
be avoided anyway).

Error handling: the new parameter "errorpolicy" allows for more
consistent control of exceptions and error returns. The default setting
is fully compatible with earlier versions, but we strongly recommend
to use the new errorpolicy=return setting, and adjust your application
(e.g. check the return value of PDF_load_font()).

The default PDF version compatibility has been changed to PDF 1.6. If you
need to create documents according to an older PDF version you must set the
"compatibility" option in PDF_begin_document() appropriately.

General functionality:
Clipping paths in TIFF and JPEG images will now be honored, while
up to PDFlib 6 they have been ignored. In order to restore the previous
("ignore path") behavior supply the option "honorclippingpath=false" to
PDF_load_image().

PDF/X-1:2001 is considered deprecated, and no longer supported.
PDF/X-1a:2001 and PDF/X-1a:2003 are still supported, though.

PDF_info_textflow(): The values for the keywords
leftlinex, leftliney, rightlinex, rightliney, minliney, maxliney
are now interpreted in current user coordinates, while in PDFlib 6 they
have been returned in user coordinates of PDF_fit_textflow().

The values for the keywords textendx, textendy
are now interpreted in current user coordinates, while in PDFlib 6 they
have been returned in user coordinates immediately after PDF_fit_textflow().

Required action if you are affected by this change:
Avoid any change of the current transformation matrix (e.g. PDF_scale(),
PDF_rotate(), PDF_translate()) between the calls to PDF_fit_textflow() and
PDF_info_textflow().

Exception handling:
The "warning" parameter is deprecated, and will be ignored. If you are
interested in non-fatal problems which can be fixed by PDFlib internally
enable logging with the "warning" class.

Language bindings:
Python: there is a new version of the Python wrapper with integrated Unicode
support. An old-style Python wrapper without Unicode support is available
for compatibility with existing applications.
A new PDFlibException object is available in the PDFlib Python binding.
Code which caught "except SystemError" (instead of the recommended "except:")
must be changed to "except PDFlibException:".

Deprecated functions:

PDF_open_pdi() and PDF_close_pdi(): use PDF_open_pdi_document() and
PDF_close_pdi_document()
PDF_begin_template(): use PDF_begin_template_ext()
PDF_get_pdi_value(): use PDF_pcos_get_number()
PDF_get_pdi_parameter(): use PDF_pcos_get_string()
(pCOS paths corresponding to the keys of the deprecated functions can be
found in the PDFlib API manual).

Deprecated parameters:

Use PDF_info_font() instead of using the following deprecated parameters:
monospace
fontmaxcode
ascender
capheight
xheight
descender

fontname
fontencoding
fontstyle
ascenderfaked
capheightfaked
xheightfaked
descenderfaked

Use the PDF_load_font() option of the same name instead of the following
deprecated parameters:
autosubsetting
autocidfont
unicodemap
subsetlimit
subsetminsize

Use the "logging" parameter instead of the following deprecated (unsupported)
parameters:
trace
tracefile

Deprecated PDF/X output intents:

The following standard output intent names are deprecated, and should no
longer be used:

OF COM PO P1 F60,
OF COM PO P2 F60,
OF COM PO-P3 F60,
OF COM PO P4 F60,
OF COM NE P1 F60,
OF COM NE P2 F60,
OF COM NE P3 F60,
OF COM NE P4 F60,
SC GC2 CO F30,
Ifra_NP_40lcm_neg+CTP_05.00

Configuration incompatibility:

Using any of the predefined CMaps now requires the actual CMap file due
to extended text processing features. The CMap files are available for
download separately, and must be configured according to the documentation
(e.g. using the SearchPath resource category).

The "prefix" parameter and UPR entry is no longer supported (it had been
declared deprecated in PDFlib 5).

Deprecated options:
PDF_fit_textline(): weblink, locallink; use the matchbox feature instead

PDF_open_pdi_page(): infomode; use pCOS to query page properties without
actually placing the page

PDFlib Lite incompatibility:

Glyph widths for standard CJK fonts with Unicode CMaps are no longer
available due to the transition to external CMaps. PDF_stringwidth()
will return 0 in this case.

The resolution value is no longer read from JPEG images created with
Photoshop.

The following deprecated (as of PDFlib 6) functions have been removed from
the manual:

PDF_add_bookmark()
PDF_add_bookmark2()
PDF_add_note()
PDF_add_note2()
PDF_attach_file()
PDF_attach_file2()
PDF_add_pdflink()
PDF_add_locallink()
PDF_add_launchlink()
PDF_add_weblink()
PDF_set_border_style()
PDF_set_border_color()
PDF_set_border_dash()
PDF_open_mem()
PDF_open_file()
PDF_close()
PDF_begin_page()
PDF_end_page()
PDF_show_boxed()

PDF_boot() and PDF_shutdown(): these have never been functional, and
were only available in the C language binding.

The following deprecated (as of PDFlib 6) parameters have been removed from
the manual:

compatibility
pdfx
flush
openwarning
pagewidth, pageheight (PDF_set_value())
ArtBox/*, BleedBox/*, CropBox/*, TrimBox/*
userpassword
masterpassword
permissions
defaultgray
defaultrgb
defaultcmyk
pdiusebox
openaction
openmode
hidetoolbar
hidemenubar
hidewindowui
fitwindow
centerwindow
displaydoctitle
nonfullscreenpagemode
direction
viewarea, viewclip
printarea, printclip
bookmarkdest
transition
duration
base
launchlink:parameters
launchlink:operation
launchlink:defaultdir

The following unsupported functions have been removed (use PDF_info_font()
instead):

PDF_encoding_get_glyphname()
PDF_encoding_get_unicode()
PDF_get_glyphid()

PHP binding:
Parameter "imagewarning": the default has been "true" for historical reasons;
in PDFlib 7 it has been changed to "false" for compatibility with all other
language bindings.

PDFlib 6.0.3
============

- Textflow: if the box doesn't contain any text at all when processing is
 finished (e.g. because the width of the box is too small to hold any text),
 the return string "_boxfull" is misleading. Textflow will now return
 the string "_boxempty" in such situations.

- New options:
 PDF_begin_item(): Scope attribute for TH items.
 PDF_begin/end_document(): moddate
 PDF_begin/end_document(): search

- New parameters:
 nodemostamp
 xheight
 xheightfaked
 capheightfaked
 ascenderfaked
 descenderfaked

- The block interface version number has been changed to 6; Block plugin 2.2
 or above is required for use with PPS 6.0.3.

- Deprecated options:
 PDF_create_action(), PDF_create_annotation(), PDF_create_bookmark(),
 and PDF_begin/end_document(): "name" option, "nameddest" suboption of the
 "type" option.

PDFlib 6.0.2
============

- New options:
 PDF_fit_textflow(): orientate
 PDF_create_annotation(): opacity, createdate, subject
 PDF_info_textflow(): leftlinex/y, rightlinex/y
 PDF_begin/end_page_ext(): metadata

- In order to work around different behavior in Acrobat 5 and 6 regarding
 several form field options (e.g. the readonly option for radio buttons
 was not honored in Acrobat 6) the following restriction is now implemented:
 options "readonly", "unisonselect", "toggle", and "tooltip" for type=
 radiobutton are only allowed for PDF_create_fieldgroup(), but no longer
 for PDF_create_field().
 Client code which used one of these options for PDF_create_field() created
 bad PDF output. Such code will now raise a warning unless fieldwarning=false,
 and thus should be changed to honor the new restrictions.

- The leading handling in PDF_create_textflow()/PDF_fit_textflow() has
 changed. Previously the behavior for multiple leading instructions on
 a line was undefined, and didn't match the user expectation in certain
 cases. E.g. when leading was specified at the beginning of the text
 and in the optlist parameter of PDF_create_textflow(), the leading
 value from the optlist parameter was used, and not the one from the inline
 option list.
 The new leading behavior is documented in the manual. In some situations
 it may cause different formatting results than with earlier versions, but
 the previous behavior is considered a bug.

PDFlib 6.0.1
============

- No changes which affect compatibility.

PDFlib 6.0.0
============

See the PDFlib manual for information about new functions and parameters
which should be used instead of the deprecated ones.

Deprecated functions:

- PDF_show_boxed(), PDF_show_boxed2()
- PDF_add_bookmark(), PDF_add_bookmark2()
- PDF_attach_file(), PDF_attach_file2()
- PDF_add_note(), PDF_add_note2()
- PDF_add_pdflink()
- PDF_add_locallink()
- PDF_add_launchlink()
- PDF_add_weblink()
- PDF_set_border_style()
- PDF_set_border_color()
- PDF_set_border_dash()

Deprecated options for particular functions:

- reftype in PDF_load_image()

Deprecated parameters:

- userpassword, masterpassword, permissions, compatibility, flush, pdfx
- openaction, base, launchlink:parameters, launchlink:operation,
 launchlink:defaultdir, transition, duration, openmode
- hidetoolbar, hidemenubar, hidewindowui, fitwindow, centerwindow,
 displaydoctitle, nonfullscreenpagemode, direction, viewarea, viewclip,
 printarea, printclip
- bookmarkdest
- pagewidth, pageheight, artbox, bleedbox, cropbox, trimbox
- pdiusebox
- defaultrgb/rgb/cmyk

Removed functions:

The functions PDF_setgray*() and PDF_setrgbcolor*() are no longer available
except in the C language. These functions have been deprecated since PDFlib 4.
Workaround: use setcolor() instead.

Changes in the Java binding:

All float parameters have been changed to double, which may require
appropriate adjustments to the data types used in client code.

Deprecated in the C++ binding:

- The overloaded open() calls are no longer available.

- The unsupported method get_message() in the PDFlibException object has
 been replaced with get_errmsg().

Changes in the PHP binding:

- Stricter parameter checking: detects bad data types

- Optional parameters are no longer supported (all parameters dictated by
 the API must be provided in the PHP script).

Changes related to encodings:

The "host" encoding translates to "iso8859-1" on non-Windows platforms
(except EBCDIC-based mainframes) instead of "winansi". It is still
recommended to explicitly specify the required encoding instead of
using "host".

PDFlib 5.0.2
============
- COM:
 - The functions PDF_setgray*() and PDF_setrgbcolor*() are no longer
 available in the COM wrapper. These functions have been deprecated
 since PDFlib 4. Workaround: use setcolor() instead.

PDFlib 5.0.1
============
- No changes which affect compatibility.

PDFlib 5.0.0
============

Deprecated functions:

- PDF_findfont()
- PDF_setpolydash()
- PDF_open_image_file()
- PDF_open_CCITT()
- PDF_open_image()
- PDF_place_pdi_page()
- PDF_boot_dll() and PDF_shutdown_dll()

Deprecated options for particular functions:

- reftype option in PDF_load_image()

Deprecated parameters:

- prefix

Other changes:

- Several resource configuration mechanism are superseded by improved
 mechanisms. However, the previous configuration scheme is still supported.

- Introduced a dedicated PDFlibException class for Java. This may
 require modifications to existing catch clauses.

- The new C exception handling with PDF_TRY/PDF_CATCH makes old-style
 error handlers obsolete. However, PDF_new2() will still accept error
 handler callbacks.

- The PDF_open_pdi_callback() has been slightly modified; this affects
 only PDFlib customers who used this feature in a preliminary release.

- Changed the default value of the "inheritgstate" parameter to false.

- By default, PDFlib generates PDF 1.4 (Acrobat 5) output. This can be
 modified with

 PDF_set_parameter(p, "compatibility", "1.3");

- The following features have been removed:

 PDF_set_parameter(p, "compatibility", "1.2");

 Careful programming can still produce PDF 1.2 compatible documents,
 albeit with a PDF 1.3 header entry.

- The following functions have been removed:

 PDF_open_pdi_mem() (only implemented in custom versions of PDFlib+PDI)
 Change existing calls to the following sequence:

 PDF_create_pvf(...);
 PDF_open_pdi(...);

- C++ binding:
 Switches to new-style C++ exceptions by default (as opposed to installing
 an old-style client-supplied error handler callback function).

- PHP binding:
 Those very old API functions have been removed from the wrapper which
 stemmed from the prehistoric era before PDFlib GmbH officially supported
 the PHP wrapper. These functions have never been documented in the PDFlib
 manual, but have been kept in the PHP wrapper for compatibility reasons.
 In order to facilitate maintenance we dropped these functions.

 The pdf_open_memory_image() API is not affected since it actually added
 new functionality. Although PDFlib GmbH does not support this function it
 still works.

 The virtual_dir support has also been dropped. This feature is rather
 confusing since it is not supported on all platforms and configurations.
 In addition, it conflicts with the new SearchPatch facility in PDFlib.
 Finally, it didn't work when generating PDF files with PDF_open_file().

PDFlib-8.0.6-SunOS-sparc64-perl/doc/readme-binary.txt

==========================
PDFlib binary distribution
==========================

This is a binary package containing PDFlib, PDFlib+PDI, and
PDFlib Personalization Server (PPS) in a single binary.
It requires a commercial license to use it. However, the
library is fully functional for evaluation purposes.

Unless a valid license key has been applied the generated PDF
output will have a www.pdflib.com demo stamp across all pages.
See the PDFlib tutorial (chapter 0) to learn how to apply the
license key.

Note: operating systems requirements for using PDFlib are detailed in
the document system-requirements.txt.

C and C++ language bindings
===========================

The PDFlib header file pdflib.h plus a PDFlib library is contained in the
distribution. The bind/c and bind/cpp directories contain sample
applications which you can use to test your installation.

Windows

Windows editions are available in the following flavors:

- 32-bit Windows DLL for C/C++
 The DLL pdflib.dll is supplied along with the
 corresponding import library pdflib.lib. In order to build
 and run the supplied C/C++ samples copy these files to the
 bind/pdflib/c or bind/pdflib/cpp directories.

- 64-bit Windows DLL for C/C++

- A static library for 32-bit Windows is available upon request.

The Windows binaries are not compatible with Borland C++ Builder.

Unix

On Unix systems a static library is supplied. The bind/c and bind/cpp
directories contain sample applications and Makefiles which you can use
to test your installation.

Mac OS X

The Mac packages contain a Universal Mach-O binary for some of the following
flavors (depending on the target operating system version) for a specific
language binding:
- PowerPC 32-bit
- PowerPC 64-bit
- Intel 32-bit
- Intel 64-bit

The package for C/C++ contains the following libraries:

- static library
- PDFlib_objc.framework (must be installed manually in /Library/Frameworks)

IBM AIX

PDFlib for AIX has been built with the IBM C compiler (IBM XLC).

Using PDFlib with gcc/g++ on AIX:
If you want to use PDFlib with C or C++ applications
which are built with gcc/g++: the GNU compiler on AIX by default is not fully
binary compatible with IBM XLC. The binary incompatibility affects passing
conventions for floating point function parameters, and may result in
unexpected behavior like crashes or weird PDFlib exceptions. In order to
build C or C++ applications with GCC for linkage with PDFlib you must use
the following GCC compilation option when compiling your application:
-mxl-compat

This will produce code which is compatible with the object code created by
IBM XLC, and therefore enables your application to link against PDFlib.

Other language bindings
=======================

Additional files and sample code for various languages can be found in
the bind directory. Note that not all binary libraries for all language
bindings may be present; see our Web site for additional packages.

=================================
Notes for using PDFlib on zSeries
=================================

Tuning z/OS Language Environment for PDFlib applications

Due to the heavy use of LE's memory allocation routines, some tuning of
the Language Environment storage keywords will provide better application
performance and reduced CPU usage.

Optimized storage and heap initial allocations for the invoice sample:

STORAGE(NONE,NONE,NONE,0K)
HEAP(2600K,4080,ANYWHERE,KEEP,0K,4080)
HEAPP(ON,8,1,32,3,128,5,256,5,1024,45,2048,26)
ANYHEAP(24K,4080,ANYWHERE,FREE)

As the heap, heappool and stack allocations can vary widely by application,
occasional use of the LE Storage Report will provide you with additional
recommendations.

RPTOPTS(ON),RPTSTG(ON)

These options can be specified in your C source file through the use of
#pragma runopts(..).

COBOL and CICS applications can use the CEEUOPT mechanism.

Refer to the "z/OS Language Enviroment Programming Guide"
(http://publibz.boulder.ibm.com/epubs/pdf/ceea2130.pdf)
for further details on the use of these keywords.

PDFlib-8.0.6-SunOS-sparc64-perl/doc/system-requirements.txt

==
System Requirements for PDFlib GmbH Products
==

This document describes the requirements for using PDFlib GmbH binaries on
various platforms. This list covers all platforms on which at least one
product is supported. It should not be construed as a commitment regarding
the availability of product/platform combinations.

To find out whether a PDFlib GmbH product is supported at all on a particular
platform please check the downloadable binary packages which are available
at www.pdflib.com.

================================
Note on 64-bit Intel platforms
================================
Intel uses the term "Intel 64" for a processor architecture which is
known by several other names:
- Intel formerly called it EM64T (after using IA-32e)
- Microsoft and Sun call it x64
- AMD calls it AMD64 (after using x86-64)
- Linux systems often refer to x86_64

PDFlib GmbH binaries for Intel 64 work on all architectures listed above.
They do not work on Intel Itanium (formerly called IA-64), which is
a separate architecture.
Because of the vendor-specific conventions we continue to use the term "x64"
instead of "Intel 64" in the context of Sun and Microsoft operating systems.

================================
Windows
================================

Requirements:
Windows 2000/XP/Vista/7/8 on x86 or x64
Windows Server 2003/2003 R2/2008/2008 R2/2012 on x86 or x64

.NET binding

The following flavors are supported:
- .NET Framework 2.0 - 3.5
- .NET Framework 4.0 - 4.5
- 32-bit (x86) and 64-bit (x64) versions of the above

See PDFlib-in-.NET-HowTo.pdf for details on .NET configuration.

With ASP.NET 2.0 and above the .NET editions of PDFlib GmbH products require
Full Trust level. They do not work with any other trust level, such as
High or Medium Trust.

C and C++ bindings

Project files for the programming samples are available for
Visual Studio 2005. VS2008, VS2010 and VS2012 can convert these automatically.

================================
Linux
================================
Requirements: GLIBC 2.3 (or later) based system on x86
 GLIBC 2.4 (or later) based system on Intel 64

C and C++ bindings

Compiler:
 x86: g++ 3.4 or above (gcc 4.0 or above recommended)
 Intel 64: g++ 4.0 or above
 LDFLAGS: "-pthread"

Java, Perl, PHP, Python, Ruby, Tcl bindings

x86 and Intel 64: libstdc++.so.6

================================
Embedded Linux
================================
Please see separate document readme-embedded-linux.txt.

================================
Mac OS X
================================
Requirements: Mac OS X 10.5 or Mac OS X 10.6/10.7/10.8

Mac OS X 10.8 (Mountain Lion):

Since OS X 10.8 the Gatekeeper protection feature blocks unsigned
applications. This applies to all PDFlib GmbH command line tools.
If you want to use these tools under OS X 10.8 you must tell the system
that it is a safe application. Override Gatekeeper by Control-clicking the
application icon and select "Open" from the top of the contextual menu.
This must be done only once per user account.

C, C++, and Objective-C bindings

Compiler: Xcode 3.1 or above
(The Objective-C example needs Xcode 3.2 or newer)

PHP binding

Mac OS X 10.6 and above: no restrictions
Mac OS X 10.5: see PDFlib-in-PHP-HowTo.pdf for restrictions

================================
FreeBSD
================================
Requirements:
x86: FreeBSD 7/8 and compatible systems
Intel 64: FreeBSD 7/8 and compatible systems

================================
AIX
================================
Requirements: AIX 5.2 and compatible systems; currently AIX 6/7

C and C++ bindings

Compiler: XLC 8.0 or above: you must use a thread-safe variant of the compiler
(such as xlC_r).

g++ is unsupported:
 CFLAGS/CXXFLAGS for g++: "-mxl-compat -pthread"
 LDFLAGS for g++: "-lC -pthread"

================================
HP-UX
================================
Requirements: HP-UX 11 and compatible systems on PA-RISC or IA-64
(currently up to 11.31 and 11i v3)

C and C++ bindings

Compiler: aCC
CFLAGS/CXXFLAGS/LDFLAGS: "-mt" (required for multithreaded applications)

g++ is unsupported:
 CFLAGS/CXXFLAGS/LDFLAGS for g++ on IA-64: "-lCsup -pthread",
 CFLAGS/CXXFLAGS/LDFLAGS for g++ on PA-RISC: "-lCsup_v2 -pthread",

PHP binding

In order to run the PHP binding on HP-UX you must install
operating system patches to fix an issue with shared library
loading and C++.

The following or corresponding superseding patches are required for HP-UX 11.11:

PHSS_33945 (s700_800 11.11 HP aC++ -AA runtime libraries)
PHSS_39749 (s700_800 11.11 ld(1) and linker tools cumulative patch)
PHCO_35743 (s700_800 11.11 libc cumulative patch)

The following or corresponding superseding patches are required for HP-UX 11.0:

PHSS_26945 (s700_800 11.x HP aC++ -AA runtime libraries)
PHSS_24303 (s700_800 11.00 ld(1) and linker tools cumulative patch)
PHCO_28425 (s700_800 11.00 libc cumulative patch)

================================
iOS
================================
Requirements:
- Runtime requirements: iPhone OS 3.0 or later (incl. iOS 5.0)
- development requirements: iOS 4.0 SDK or later
			 Xcode 3.2 or later (incl. Xcode 4.2)
- supported language bindings: Objective C, C, C++

================================
Android
================================
Requirements:
- runtime requirements: Android 2.1 and newer is supported
- development requirements: Android SDK r10 or newer is recommended.
- supported language binding: Java

==
Windows Embedded CE and Windows Embedded Compact
==
Requirements:
- runtime requirements:
 - Windows Embedded CE 6.0, Windows Embedded Compact 7.0
 - CPU architectures: ARMV4I or newer, x86
- development requirements: Platform Builder for Windows Embedded CE 6.0
 or later
- supported language binding: C, C++

================================
Solaris
================================
Requirements: Solaris 8 and above on x86, x64, or sparc

C and C++ bindings

Compiler: Oracle Solaris Studio
CFLAGS/CXXFLAGS/LDFLAGS: "-mt -lpthread"

g++ is unsupported:
 CFLAGS/CXXFLAGS for g++: "-pthread"
 LDFLAGS for g++: "-lCstd -lCrun -pthread"

================================
i5/iSeries
================================
General requirements: OS V5 R2 M0 and compatible systems

Requirements for using PDFlib GmbH products with PHP:
- Zend Server for IBM i or Zend Server Community Edition (CE) for IBM i
 (requires PASE for i, which is a no-charge option of IBM i)
- PHP 5.2 or PHP 5.3
- The binaries from the AIX 32-bit package must be used (not from the
 i5/iSeries package)

================================
zSeries
================================
Requirements:
z/OS 1.6 and compatible systems with USS (32-bit/64-bit) or MVS (32-bit)
(MVS versions of PDFlib GmbH products are not thread-safe)

or

zLinux 32-bit or 64-bit (s390/s390x)
GLIBC 2.3 (or later) based system (e.g. SLES 10 or above, RHEL 5 or above).

C/C++ binding

CFLAGS/CXXFLAGS: -W "c,float(ieee)"

PDFlib-8.0.6-SunOS-sparc64-perl/doc/pdflib/grid.pdf

100 200 300 400 500

100

200

300

400

500

600

700

800

Format info

page size = A4

100 200 300 400 500 600

100

200

300

400

500

600

700

Format info

page size = letter

100 200 300 400 500 600

100

200

300

400

500

600

700

800

900

1000

Format info

page size = legal

100 200 300 400

100

200

300

400

500

Format info

page size = A5

PDFlib-8.0.6-SunOS-sparc64-perl/readme.txt

==
PDFlib - A library for generating PDF on the fly
==

Portable library for dynamically generating PDF documents with support
for many other programming languages and development environments.

PDFlib distribution packages for many platforms are available from
www.pdflib.com.

PDFlib is a library for generating PDF files. It offers an API with
support for text, vector graphics, raster images, and hypertext. Call PDFlib
routines from within your client program and voila: dynamic PDF files!

PDFlib is available on a wide variety of operating system platforms,
and supports many programming languages and development environments:

- C
- C++
- Cobol
- COM (Visual Basic, ASP, Windows Script Host, Delphi, and many others)
- Java via the JNI, including servlets and JSP
- .NET framework (VB.NET, ASP.NET, C# and others).
- Objective-C
- Perl
- PHP
- Python
- REALbasic
- RPG
- Ruby
- Tcl

An overview of PDFlib features can be found in the PDFlib Tutorial and
the PDFlib API Reference. Separate Windows editions of these manuals
cover the COM, .NET, and REALbasic bindings.

PDFlib flavors
==============
The PDFlib product family includes the following products (see the PDFlib
tutorial for a detailed comparison):

- PDFlib includes a variety of functions for generating PDF output.

- PDFlib+PDI includes all PDFlib functions, plus the PDF Import Library (PDI)
 for including existing PDF pages in the generated output. It also includes
 the pCOS interface for querying PDF objects.

- PDFlib Personalization Server (PPS) includes PDFlib+PDI plus functions for
 automatically filling PDFlib Blocks. A PPS license also covers the
 PDFlib Block Plugin for creating Blocks interactively with Adobe Acrobat
 on Mac and Windows.

Binary Packages
===============
PDFlib, PDFlib+PDI, and PPS are available in binary form, and require
a commercial license. All of these products are available in a single
combined library, and can be evaluated without a commercial license. However,
unless a valid license key is applied a demo stamp will be generated
across all pages, and the pCOS facility (included in PDFlib+PDI and PPS)
is restricted to small input documents.

Instructions for using the binary packages for various platforms and
language bindings can be found in the document readme-binary.txt.

Other PDFlib resources
======================
In addition to the PDFlib API Reference and Tutorial the following resources
are available:

- The PDFlib mailing list discusses PDFlib deployment in a variety of
 environments. You can access the mailing list archives over the Web,
 and don't need to subscribe in order to use it:
 http://groups.yahoo.com/group/pdflib

- Commercial PDFlib licensees are eligible to standard product
 support from PDFlib GmbH. Please send your inquiry along with your
 PDFlib license number to support@pdflib.com.

Submitting Bug Reports
======================
We offer support agreements in combination with our product licenses.
They provide many advantages over the lifetime of a purchased product,
see www.pdflib.com/support-policy/ for more details.

If you run into a problem you should first make sure that you are using the
latest maintenance release for the version you licensed. Maintenance
releases are available for free download from the www.pdflib.com Web site.

If the problem persists please observe the notes below.

If you have trouble with a PDFlib product, please send the following
information to support@pdflib.com:

- Your company name and (unless you are still evaluating the product)
 your license key

- A description of your problem

- Exact product version (including maintenance release and possibly
 patchlevel number), the operating system platform and language binding

- Relevant code snippets for reproducing the problem, or a small PDF file
 exhibiting the problem if you can't construct a code snippet easily

- Sample data files if necessary (image files, for example).
 We guarantee full confidentiality within PDFlib GmbH for data supplied
 with support cases.

- In some cases PDFlib logging output may be required. Logging can be
 enabled as follows:

 command-line: export PDFLIBLOGGING="filename=PDFlib.log"
 source code: p.set_parameter("logging", "filename=PDFlib.log");
 (or similar for other shells and language bindings).

- Details of the PDF viewer (if relevant) where the problem occurs

Licensing
=========
Please contact us if you are interested in obtaining a commercial license:

PDFlib GmbH
Licensing Department
Franziska-Bilek-Weg 9, 80339 Munich, Germany
www.pdflib.com
fax +49/89/452 33 84-99

License inquiries: sales@pdflib.com
Support requests: support@pdflib.com

PDFlib-8.0.6-SunOS-sparc64-perl/licensekeys.txt

PDFlib license file 1.0

This is a license file template for PDFlib GmbH products.
Replace the 0 in the third column with your actual license key.

PDFlib		8.0.6		0

PDFlib-8.0.6-SunOS-sparc64-perl/bind/data/boilerplate.pdf

Kraxi Systems, Inc.

Paper Planes

PDFlib-8.0.6-SunOS-sparc64-perl/bind/data/LuciduxSans-Oblique.pfa

PDFlib-8.0.6-SunOS-sparc64-perl/bind/data/LuciduxSans-Oblique.afm

Comments

Copyright (c) 2000 Bigelow & Holmes Inc. and Y&Y, Inc.

Patents pending. All Rights Reserved.

Lucidux is a trademark of Bigelow & Holmes Inc.

CreationDate: 2000 Mar 04 11:21:33

For other Bigelow & Holmes fonts see http://www.YandY.com

UniqueID 5096732

PDFlib-8.0.6-SunOS-sparc64-perl/bind/data/nesrin.jpg

PDFlib-8.0.6-SunOS-sparc64-perl/bind/data/zebra.tif

PDFlib-8.0.6-SunOS-sparc64-perl/bind/data/new.jpg

PDFlib-8.0.6-SunOS-sparc64-perl/bind/data/block_template.pdf

17, Aviation Road
Paperfield
Phone 7079-4301
Fax 7079-4302

www.kraxi.com
info@kraxi.com

Kraxi Systems, Inc.
Paper Planes

Kraxi Systems, Inc. • 17, Aviation Road • Paperfield

PDFlib-8.0.6-SunOS-sparc64-perl/bind/data/riemann.prc

PDFlib-8.0.6-SunOS-sparc64-perl/bind/data/lionel.jpg

PDFlib-8.0.6-SunOS-sparc64-perl/bind/data/pCOS-datasheet.pdf

datasheet DEF

What is PDFlib pCOS?
PDFlib pCOS provides a simple and elegant facility for retrieving
any information from a PDF document which is not part of the
page contents. For example, PDF metadata, interactive elements
(links etc.), or page dimensions can easily be queried with pCOS.

With pCOS you can extract a variety of interesting items and
create output for different purposes. By processing multiple PDF
documents with a single call you can easily create summaries of
document info entries, page formats, fonts, or any other property.
Combined with tabular output this provides a powerful PDF ad-
ministration tool.

There are many every-day pCOS applications for PDF practitioners,
but you can also use PDFlib pCOS as a tool for learning or debug-
ging PDF. Here are some typical scenarios:

Check incoming documents for predefined criteria >
Check PDFs for security problems and active content (JavaScript >
etc.)
Check documents for quality assurance before publication >
Identify problem files in a large collection >
Create property summaries for document management >
Learn details of PDF data structures >

PDFlib pCOS Features
Supported Input

PDFlib pCOS supports all relevant flavors of PDF input:
All PDF versions up to Acrobat 9 >
RC4 and AES encryption (password may be required) >
Sophisticated security model: even if you don’t know the pass- >
word, you can query certain pieces of information as long as this
doesn’t violate the document author’s intentions
Damaged PDF input documents will be repaired if possible >

Information Retrieval

PDFlib pCOS offers a simple query interface, without the need for
low-level parser programming. With PDFlib pCOS you can extract a
variety of interesting items, such as:

Document info entries and XMP metadata >

General information: linearization and tagged PDF status, en- >
cryption details and permission settings, number of pages and
fonts
All fonts with their name, embedding status, etc. >
Images with size, bit depth, color space, compression, etc. >
Color space details for all PDF color variations >
Target URLs and coordinates of Web links >
All bookmarks along with the corresponding page numbers, e.g. >
to create a table of contents
Form field data: full field names, contents, position, etc. >
Page size, CropBox, page rotation >
Status of PDF/X and PDF/A conforming documents >
List or extract file attachments >
Layer names, page labels, article threads >
Annotation details >
List all comments along with the reviewer’s name >
Digital signature details: name of signature field(s), signed/un- >
signed, name of signer, date and reason of signature
Extract ICC output intent profiles from PDF/X or PDF/A files >
List PDFlib block properties >
JavaScript on document, page, annotation, or field level >

Output Formats

PDFlib pCOS can create output for different purposes:
Plain text output >
Tabular output for processing with a spreadsheet/database >
Binary data for reuse, e.g. ICC profiles or file attachments >
Unicode text output in UTF-8 or UTF-16 formats >
User-defined output formats for custom post-processing >

pCOS Paths – Simple Syntax for PDF Objects

Instead of getting bogged down by complex tree structures, e.g.
for bookmarks or form fields, you can easily access PDF objects by
using the simple pCOS path syntax. It offers convenient shortcuts
for accessing commonly used PDF objects, such as pages, fonts,
bookmarks, form fields etc.

PDFlib pCOS 2
PDF Information
Retrieval Tool

PDFlib pCOS 2, 2009-06 PDFlib GmbH2 www.pdflib.com

About PDFlib GmbH

PDFlib GmbH is completely focused on PDF technology. Customers
worldwide use PDFlib products since 1997. The company closely
follows development and market trends, such as ISO standards for
PDF. PDFlib GmbH products are distributed all over the world with
major markets in North America, Europe, and Japan.

Contact

Fully functional evaluation versions including documentation and
samples are available on our Web site. For more information please
contact:

 PDFlib GmbH
 Franziska-Bilek-Weg 9, 80339 München, Germany
	 phone	+49	•	89	•	452	33	84-0,	fax	+49	•	89	•	452	33	84-99
 sales@pdflib.com
 www.pdflib.com

 DEF

pCOS Library or Command-Line Tool?

pCOS is available as a programming library (component) for various
development environments, and as a command-line tool for batch
operations. Both offer similar features, but are suitable for different
deployment tasks.

The pCOS programming library is used...

...for integration into desktop or server applications. Examples for
using the library with all supported language bindings are included
in the pCOS package. A variety of additional examples is available
in the pCOS Cookbook on the PDFlib Web site.

The pCOS command-line tool is suited...

...for batch processing PDF documents. It doesn’t require any
programming, but offers powerful command-line options which
can be used to integrate it into complex workflows. The pCOS
command-line tool extends the features of the library:

Simple retrieval of common PDF elements, such as bookmarks, >
annotations, metadata, form fields, etc.
Extended mode for querying more complex objects and custom- >
izing the output format
Extract data items such as file attachments, ICC profiles, etc. >
Emit information as comma-separated values or a userdefined >
format for import into a spreadsheet or database
Recursion feature for dumping composite PDF objects, such as >
dictionaries and arrays

Supported Development Environments

PDFlib pCOS is everywhere – it runs on practically all computing
platforms. We offer variants for all common flavors of Windows,
Mac OS, Linux and Unix.

The pCOS core is written in highly optimized C code for maximum
performance and small overhead. Via a simple API (Application
Programming Interface) the pCOS functionality is accessible from a
variety of development environments:

COM for use with VB, ASP, and many other languages >
C and C++ >
Java, including servlets and Java Application Server >
.NET for use with C#, VB.NET, ASP.NET, etc. >
Perl >
PHP >

Benefits of using PDFlib Software
Rock-solid Products

Tens of thousands of programmers worldwide are working with
our software. PDFlib meets all quality and performance require-
ments for server deployment. All PDFlib products are suitable for
robust 24x7 server deployment and unattended batch processing.

Speed and Simplicity

PDFlib products are incredibly fast – up to thousands of pages per
second. The programming interface is straightforward and easy to
learn.

PDFlib all over the World

Our products support all international languages as well as Uni-
code. They are used by customers in all parts of the world.

Professional Support

If there’s a problem, we will try to help. We offer commercial sup-
port to meet the requirements of your business-critical applica-
tions. By adding support you will have access to the latest versions,
and have guaranteed response times should any problems arise.

Licensing

We offer various licensing programs for server licenses, integration
and site licenses, and source code licenses. Support contracts for
extended technical support with short response times and free
updates are also available.

PDFlib-8.0.6-SunOS-sparc64-perl/bind/data/PDFlib-real-world.pdf

datasheet DEF

What is PDFlib?
PDFlib is the leading developer toolbox for generating and manipu-
lating files in the Portable Document Format (PDF).

PDFlib’s main targets are dynamic PDF creation on a Web server
or any other server system, and to implement »Save as PDF« in
existing applications. You can use PDFlib to dynamically create PDF
documents from database contents, similar to dynamic Web pages.

PDFlib has proven itself in a wide range of other use cases as well.

Application programmers need only decent graphics or print out-
put experience to be able to use PDFlib quickly. Since PDFlib frees
you from the technicalities of the PDF file format, you can focus on
acquiring the data and arranging text, graphics, and images on the
page.

The PDFlib Product Family
The PDFlib product family comprises the following products:

PDFlib offers all functions required to generate PDF documents
with text, graphics, images, and interactive elements such as an-
notations or bookmarks.

PDFlib+PDI includes all PDFlib functions plus the PDF Import
Library (PDI). With PDI you can open existing PDF documents and
incorporate some pages into the PDFlib output.

PDFlib Personalization Server (PPS) includes PDFlib+PDI plus ad-
ditional functions for variable data processing using PDFlib Blocks.
PPS makes applications independent of any layout changes.

»Save as PDF« for Applications

I work with a software development company and want to imple-
ment a »Save as PDF« feature in our applications.

PDFlib easily integrates into all kinds of applications to enable
reliable and high-quality PDF output. Many well-known develop-
ers of graphics programs, geographical information systems (GIS),
prepress and DTP applications and from many other domains rely
on PDFlib to add PDF generation features to their products.

Invoices for an Online Shop

How can I create PDF invoices dynamically in my online shop?

Dynamic invoice generation is one of the most popular PDFlib
scenarios. The generated PDF invoices can be viewed in the Web
browser, made available for separate download, or e-mailed to the
user.
Use PDFlib to place transaction data (customer details, item list,
prices, etc.) on a PDF page. Add images, such as a company logo, in
a variety of image formats. Use PDFlib+PDI to incorporate existing
PDF material, for example company stationery as background.

Mail Merge

How can I merge personal data into an existing PDF document to
create mass mailings?

PDFlib+PDI imports one or more pages of an existing PDF and
adds individual text and images to create individual letters. The
programmer adds code for retrieving text or graphics from a text
file or database. A single large PDF containing all letters can be pro-
duced for printing, or many personalized small PDFs for e-mailing
to the recipients.
If you need more flexibility because slightly different mailings
must be produced or changes in the page design occur frequently,
you can use the PDFlib Personalization Server (PPS). This facilitates
both the designer’s and the programmer’s job when it comes to
variable data processing.

Invoices and Reports from Office Applications

I’m unsatisfied with the look of invoices and reports created by our
office applications. How can I create nice PDF documents?

PDFlib can be attached to common office applications. You can add
PDF capability to MS Office and other applications with the popu-
lar Visual Basic scripting language. Use PDFlib to create invoices
from a database in order to print or e-mail them to customers.
Use PDFlib+PDI to incorporate PDF company stationery. Make PDF
processing even more efficient by deploying the PDFlib Personaliza-
tion Server (PPS).

PDFlib Products
in the Real World

About PDFlib GmbH

PDFlib GmbH is completely focused on PDF technology. Customers
worldwide use PDFlib products since 1997. The company closely
follows development and market trends, such as ISO standards for
PDF. PDFlib GmbH products are distributed all over the world with
major markets in North America, Europe, and Japan.

Contact

Fully functional evaluation versions including documentation and
samples are available on our Web site. For more information please
contact:

 PDFlib GmbH
 Franziska-Bilek-Weg 9, 80339 München, Germany
	 phone	+49	•	89	•	452	33	84-0,	fax	+49	•	89	•	452	33	84-99
 sales@pdflib.com
 www.pdflib.com

 DEF

PDFlib	Products	in	the	Real	World,	2009-12	PDFlib	GmbH2 www.pdflib.com

Commercial Printing

Can I use PDFlib to prepare prepress data for commercial printing?

Customers use PDFlib to build systems for creating, assembling,
or personalizing PDF documents for commercial printing. In many
cases these production systems are accessible via a Web browser.
The PDFlib product family supports a variety of features for the
graphic arts industry, including color management with ICC
profiles, CMYK color, spot colors with built-in PANTONE® and HKS®
tables,	and	PDF/X-3,	PDF/X-4	or	PDF/X-5	conforming	output.

Mass Generation of Phone Bills

I am responsible for creating the monthly phone bills at a major
telecommunications provider. We plan to migrate from paper-based
bills to online PDFs and distribute them via e-mail or Web.

PDFlib has a proven track record in mission-critical environments.
Even with several millions of bills in each run you won’t experience
performance or reliability problems. PDFlib works on any kind of
server, including midrange and mainframe systems.

Spice up existing PDFs

Can I add stamps and page numbers to existing PDF pages?

First, you import the pages from your PDF with PDFlib+PDI. Then
you add a transparent stamp, running page numbers, barcodes,
company logo, or any other content. You can even add interactive
elements including links, form fields, bookmarks, etc. With these
features you can approach PDF problems with a postprocessing
solution.

Other PDFlib GmbH Products
PDFlib TET. Extract text and images from any PDF and normalize
it to Unicode. TET includes patented content analysis algorithms
for identifying word boundaries or dehyphenating text, and much
more.

PDFlib TET PDF IFilter. Extracts the text and metadata of PDF
documents and makes it available to search and retrieval software
on Windows.

PDFlib PLOP. Linearize, optimize, and protect PDF documents, or
add XMP metadata.

PDFlib PLOP DS. Apply digital signatures to PDF documents.

PDFlib pCOS. Query any kind of information from PDF.

Supported Development Environments

PDFlib is everywhere – it runs on practically all computing plat-
forms.	We	offer	32-	and	64-bit	variants	for	all	common	flavors	of	
Windows, Mac OS X, Linux and Unix, as well as for IBM eServer
iSeries and zSeries mainframes.

The PDFlib core is written in highly optimized C code for maximum
performance and small overhead. Via a simple API (Application
Programming Interface) the PDFlib functionality is accessible from
a variety of development environments:

COM for use with VB, ASP, Borland Delphi, etc. >
C and C++ >
Cobol (IBM eServer zSeries) >
Java, including servlets and Java Application Server >

.NET for use with C#, VB.NET, ASP.NET, etc. >
PHP hypertext processor >
Perl >
Python >
REALbasic >
RPG (IBM eServer iSeries) >
Ruby >
Tcl >

Benefits of using PDFlib Software
Rock-solid Products

Tens of thousands of programmers worldwide are working with
our software. PDFlib meets all quality and performance require-
ments for server deployment. All PDFlib products are suitable for
robust	24x7	server	deployment	and	unattended	batch	processing.

Speed and Simplicity

PDFlib products are incredibly fast – up to thousands of pages per
second. The programming interface is straightforward and easy to
learn.

PDFlib Products all over the World

Our products support all international languages as well as Uni-
code. They are used by customers in all parts of the world.

Professional Support

If there’s a problem, we will try to help. We offer commercial sup-
port to meet the requirements of your business-critical applica-
tions. By adding support you will have access to the latest versions,
and have guaranteed response times should any problems arise.

Licensing

We offer various licensing programs for server licenses, integration
and site licenses, and source code licenses. Support contracts for
extended technical support with short response times and free
updates are also available.

PDFlib-8.0.6-SunOS-sparc64-perl/bind/data/PDFlib-datasheet.pdf

 DEF datasheet

What is PDFlib?
PDFlib is the leading developer toolbox for generating and manipu-
lating files in the Portable Document Format (PDF). PDFlib’s main
targets are dynamic PDF creation on a Web server or any other
server system, and to implement »Save as PDF« in existing applica-
tions. You can use PDFlib to dynamically create PDF documents
from database contents, similar to dynamic Web pages. PDFlib has
proven itself in a wide range of other use cases as well. Application
programmers need only decent graphics or print output experience
to be able to use PDFlib quickly. Since PDFlib frees you from the
technicalities of the PDF file format, you can focus on acquiring the
data and arranging text, graphics, and images on the page.

The PDFlib product family is available in three different flavors:
PDFlib, PDFlib+PDI (PDF Import), and the PDFlib Personalization
Server (PPS).

PDFlib

PDFlib offers all functions required to generate PDF documents
with text, graphics, images, and interactive elements such as an-
notations or bookmarks. Use PDFlib for the following tasks:

Add »Save as PDF« capability to your application >
Create PDF documents on a Web server in real time >
Create database reports in PDF >
Create PDF/X-1/3/4/5 documents for commercial printing >
Convert TIFF, JPEG, or other image formats to PDF >
Create PDF/A for archiving >

PDFlib+PDI (PDF Import)

PDFlib+PDI includes all PDFlib functions, plus the PDF Import
Library (PDI). With PDI you can open existing PDF documents and
incorporate some pages into the PDFlib output. Use PDFlib+PDI for
all PDFlib tasks plus the following:

Impose multiple PDF pages on a single sheet for printing >
Add text, such as headers, footers, stamps, or page numbers to >
existing PDF pages
Place images, e.g. company logo, on existing pages >
Add barcodes to existing PDF pages >
Assemble existing PDF pages >
Add content to PDF/X or PDF/A documents >

PDFlib Personalization Server (PPS)

The PDFlib Personalization Server (PPS) includes PDFlib+PDI plus
additional functions for variable data processing using PDFlib
Blocks. PPS makes applications independent from layout changes.
The designer creates the page layout and converts it to PDF. She
takes into account areas as placeholders for variable text and
images. In Acrobat she drags a rectangular Block for each area us-
ing the PDFlib Block Plugin. Each Block contains a variety of Block
properties, such as font size, color, image scaling. The PDFlib Block
Plugin offers a Preview feature which shows the results of filling
Blocks according to their properties.

The programmer writes code to fill PDFlib Blocks with text, images,
or PDF pages. He doesn’t need to know the formatting or position
of a Block. Use PPS for all PDFlib+PDI tasks plus the following:

Customize direct mailings with text and images >
Fill templates for transactional and statement processing >
Personalize promotional material with address data >
Generate individual parts catalogs from a database >
Produce customized documentation for multiple similar >
products

PDFlib,
PDFlib+PDI,
PDFlib
Personalization
Server (PPS) 8

PDFlib, PDFlib+PDI, PPS, 2009-12 PDFlib GmbH2 www.pdflib.com

What’s new in PDFlib 8?

New PDF Features for Acrobat 9

PDFlib supports various PDF features according to Acrobat 9 (tech-
nically: PDF 1.7 Adobe extension level 3):

External graphical content (Reference XObjects) >
Layer variants (also called layer configurations) >
PDF Portfolios >
Georeferenced PDF >
AES-256 encryption and Unicode passwords >
PDFlib+PDI and PPS can import and process Acrobat 9 data. >

Font Handling and Text Output

Quite a number of new typographical features can be found in
PDFlib 8:

Complex script shaping and bidirectional formatting for Arabic, >
Thai, Hindi, and many other writing systems
Fallback fonts >
OpenType layout features, e.g. ligatures and swash characters >
Retain fonts across documents >
SING fonts for CJK Gaiji characters >
Redesigned font engine >
Wrap text around image clipping paths >
Text on a path >

PDFlib Block Plugin and the PDFlib Personalization Server

The PDFlib Block Plugin is used to prepare PDF documents for Block
filling (personalization) with the PDFlib Personalization Server
(PPS). New features:

Preview PPS Block processing in Acrobat >
Redesigned user interface >
Snap-to-grid for quickly layout out Blocks in a raster >
Additional Block properties, e.g. for transparency >
Clone PDF/A or PDF/X status of the Block container >
Leverage PDFlib 8 features with Blocks >

Other important features

There are a number of other important new features, details can be
found in the product documentation:

Reusable path objects >
PDF/X-4 and PDF/X-5 >
Alpha channel in TIFF and PNG images >
JBIG2-compressed images >
Compressed object streams and cross-reference streams >
Built-in PANTONE® Goe™ color libraries >

PDFlib 8 also introduces a variety of improvements in existing func-
tions.

PDFlib, PDFlib+PDI, PPS, 2009-12 PDFlib GmbH3 www.pdflib.com

Common Features in PDFlib, PDFlib+PDI, and the PDFlib Personalization Server

PDF output Generate PDF documents on disk file or directly in memory (for Web servers)
High-volume output and arbitrary PDF file size (even beyond 10 GB)
Suspend/resume and insert page features to create pages out of order

PDF flavors PDF 1.3 – PDF 1.7ext3* (Acrobat 4–9) including ISO 32000-1 (=PDF 1.7)
Linearized (web-optimized) PDF for byteserving over the Web
Tagged PDF for accessibility and reflow
Marked Content for adding application-specific data or alternate text without Tagging*

ISO standards ISO 15930: PDF/X for the graphic arts industry*
ISO 19005: PDF/A for archiving
ISO 32000: standardized version of PDF 1.7*

Graphics Common vector graphics primitives: lines, curves, arcs, ellipses*, rectangles, etc.
Smooth shadings (color blends), pattern fills and strokes
Transparency (opacity) and blend modes
External graphical content (Reference XObjects) for variable data printing*
Reusable path objects and clipping paths imported from images*

Layers Optional page content which can selectively be displayed
Annotations and form fields can be placed on layers
Layers can be locked, automatically activated depending on zoom factor, etc.
Layer variants* (production-safe groups of layers) for PDF/X-4 and PDF/X-5

Fonts TrueType (TTF and TTC) and PostScript Type 1 fonts (PFB and PFA, plus LWFN on the Mac)
OpenType fonts with PostScript or TrueType outlines (TTF, OTF)
Support for dozens of OpenType layout features for Western and CJK text output, e.g. ligatures, small
caps, old-style numerals, swash characters, simplified/traditional forms, vertical alternates*
Directly use fonts which are installed on the Windows or Mac system (»host fonts«)
Font embedding for all font types; subsetting for TrueType, OpenType, and Type 3 fonts
User-defined (Type 3) fonts for bitmap fonts or custom logos
EUDC and SING* fonts (glyphlets) for CJK Gaiji characters
Fallback fonts (pull missing glyphs from an auxiliary font)*
Retain fonts across documents to increase performance*

Text output Text output in different fonts; underlined, overlined, and strikeout text
Glyphs in a font can be addressed by numerical value, Unicode value, or glyph name*
Kerning for improved character spacing
Artificial bold, italic, and shadow* text
Create text on a path*
Proportional widths for standard CJK fonts*
Configurable replacement of missing glyphs

Internationalization Unicode strings for page content, interactive elements, and file names*; UTF-8, UTF-16, and UTF-32
formats
Support for a variety of 8-bit and legacy multi-byte CJK encodings (e.g. Shift-JIS; Big5)
Fetch code pages from the system (Windows, IBM eServer iSeries and zSeries)
Standard and custom CJK fonts and CMaps for Chinese, Japanese, and Korean text
Vertical writing mode for Chinese, Japanese, and Korean text
Character shaping for complex scripts, e.g. Arabic, Thai, Devanagari*
Bidirectional text formatting for right-to-left scripts, e.g. Arabic and Hebrew*
Embed Unicode information in PDF for proper text extraction in Acrobat

PDFlib, PDFlib+PDI, PPS, 2009-12 PDFlib GmbH4 www.pdflib.com

Images Embed BMP, GIF, PNG, TIFF, JBIG2*, JPEG, JPEG 2000*, and CCITT raster images
Automatic detection of image file formats
Query image information (pixel size, resolution, ICC profile, clipping path, etc.)*
Interpret clipping paths in TIFF and JPEG images
Interpret alpha channel (transparency) in TIFF and PNG images*
Image masks (transparent images with a color applied), colorize images with a spot color

Color Grayscale, RGB (numerical, hexadecimal strings, HTML color names), CMYK, CIE Lab color
Integrated support for PANTONE® colors (incl. PANTONE® Goe™)* and HKS® colors
User-defined spot colors

Color management ICC-based color with ICC profiles; support for ICC 4 profiles*
Rendering intent for text, graphics, and raster images
Default gray, RGB, and CMYK color spaces to remap device-dependent colors
ICC profiles as output intent for PDF/A and PDF/X

Archiving PDF/A-1a and PDF/A-1b (ISO 19005-1)
XMP extension schemas for PDF/A-1

Graphic arts PDF/X-1a, PDF/X-3, PDF/X-4*, PDF/X-4p*, PDF/X-5p*, PDF/X-5pg* (ISO 15930)
Embedded or externally referenced* output intent ICC profile
External graphical content (referenced pages) for PDF/X-5p and PDF/X-5pg*
Create OPI 1.3 and OPI 2.0 information for imported images
Separation information (PlateColor)
Settings for text knockout, overprinting etc.

Textflow Formatting Format text into one or more rectangular or arbitrarily shaped areas with hyphenation (user-supplied
hyphenation points required), font and color changes, justification methods, tabs, leaders, control com-
mands; wrap text around images
Advanced line-breaking with language-specific processing
Flexible image placement and formatting
Wrap text around images or image clipping paths*

Table formatting Table formatter places rows and columns, and automatically calculates their sizes according to a vari-
ety of user preferences. Tables can be split across multiple pages.
Table cells can hold single- or multi-line text, images, PDF pages, path objects, annotations, and form
fields
Table cells can be formatted with ruling and shading options
Flexible stamping function
Matchbox concept for referencing the coordinates of placed images or other objects

Security Encrypt PDF output with RC4 (40/128 bit) or AES encryption algorithms (128/256* bit)
Unicode passwords*
Specify permission settings (e.g. printing or copying not allowed)

Interactive elements Create form fields with all field options and JavaScript
Create actions for bookmarks, annotations, page open/close and other events
Create bookmarks with a variety of options and controls
Page transition effects, such as shades and mosaic
Create all PDF annotation types, such as PDF links, launch links (other document types), Web links
Named destinations for links, bookmarks, and document open action
Create page labels (symbolic names for pages)

Multimedia Embed 3D animations in PDF
GeoPDF Create PDF with geospatial reference information*
Tagged PDF Create Tagged PDF and structure information for accessibility, page reflow, and improved content

repurposing; links and other annotations can be integrated in the document structure

PDFlib, PDFlib+PDI, PPS, 2009-12 PDFlib GmbH5 www.pdflib.com

PDF input (PDI) Import pages from existing PDF documents
Import all PDF versions up to PDF 1.7 extension level 3 (Acrobat 9)
Import documents which are encrypted with any of PDF’s standard encryption algorithms (master
password required)*
Query information about imported pages*
Clone page geometry of imported pages (e.g. BleedBox, TrimBox, CropBox)*
Delete redundant objects (e.g. identical fonts) across multiple imported PDF documents
Repair malformed input PDF documents*
Copy PDF/A or PDF/X output intent from imported PDF documents

pCOS interface pCOS interface for querying details about imported PDF documents*

*New or considerably improved in PDFlib+PDI and PPS 8

Variable Data Processing (PPS) PDF personalization with PDFlib Blocks for text, image, and PDF data
PDFlib Block Plugin PDFlib Block plugin for creating PDFlib Blocks interactively in Acrobat on Windows and Mac

Redesigned user interface*
Preview PPS Block filling in Acrobat*
Snap-to-grid for interactively creating or editing Blocks in Acrobat*
Clone PDF/X or PDF/A properties of the Block container*
Convert PDF form fields to PDFlib Blocks for automated filling
Textflow Blocks can be linked so that one Block holds the overflow text of a previous Block
List of PANTONE® and HKS® spot color names integrated in the Block plugin*

*New or considerably improved in PPS 8

Metadata Document information: common fields (Title, Subject, Author, Keywords) and user-defined fields
Create XMP metadata from document info fields or from client-supplied XMP streams
Process XMP image metadata in TIFF, JPEG, and JPEG 2000 images*

Programming Language bindings for Cobol, COM, C, C++*, Java, .NET, Perl, PHP, Python, REALbasic, RPG, Ruby, Tcl
Virtual file system for supplying data in memory, e.g., images from a database

* New or considerably improved in PDFlib/PDFlib+PDI/PPS 8

Additional Features in PDFlib+PDI and the PDFlib Personalization Server

Additional Features in the PDFlib Personalization Server

About PDFlib GmbH

PDFlib GmbH is completely focused on PDF technology. Customers
worldwide use PDFlib products since 1997. The company closely
follows development and market trends, such as ISO standards for
PDF. PDFlib GmbH products are distributed all over the world with
major markets in North America, Europe, and Japan.

Contact

Fully functional evaluation versions including documentation and
samples are available on our Web site. For more information please
contact:

 PDFlib GmbH
 Franziska-Bilek-Weg 9, 80339 München, Germany
	 phone	+49	•	89	•	452	33	84-0,	fax	+49	•	89	•	452	33	84-99
 sales@pdflib.com
 www.pdflib.com

 DEF

PDFlib, PDFlib+PDI, PPS, 2009-12 PDFlib GmbH6 www.pdflib.com

Supported Development Environments

PDFlib is everywhere – it runs on practically all computing plat-
forms. We offer 32- and 64-bit variants for all common flavors of
Windows, Mac OS X, Linux and Unix, as well as for IBM eServer
iSeries and zSeries mainframes.

The PDFlib core is written in highly optimized C code for maximum
performance and small overhead. Via a simple API (Application
Programming Interface) the PDFlib functionality is accessible from
a variety of development environments:

COM for use with VB, ASP, Borland Delphi, etc. >
C and C++ >
Cobol (IBM eServer zSeries) >
Java, including servlets and Java Application Server >
.NET for use with C#, VB.NET, ASP.NET, etc. >
PHP >
Perl >
Python >
REALbasic >
RPG (IBM eServer iSeries) >
Ruby >
Tcl >

Benefits of using PDFlib Software
Rock-solid Products

Tens of thousands of programmers worldwide are working with
our software. PDFlib products meet all quality and performance
requirements for server deployment. All products are suitable for
robust 24x7 server deployment and unattended batch processing.

Speed and Simplicity

PDFlib products are incredibly fast – up to thousands of pages per
second. The programming interface is straightforward and easy to
learn.

PDFlib Products all over the World

Our products support all international languages as well as Uni-
code. They are used by customers in all parts of the world.

Professional Support

If there’s a problem, we will try to help. We offer commercial sup-
port to meet the requirements of your business-critical applica-
tions. By adding support you will have access to the latest versions,
and have guaranteed response times should any problems arise.

Licensing

We offer various licensing programs for server licenses, integration
and site licenses, and source code licenses. Support contracts for
extended technical support with short response times and free
updates are also available.

PDFlib-8.0.6-SunOS-sparc64-perl/bind/data/PLOP-datasheet.pdf

datasheet DEF

What is PDFlib PLOP?
PDFlib PLOP is a versatile tool for linearizing, optimizing, repairing,
analyzing, encrypting and decrypting PDF documents. PLOP lineari-
zation and optimization features create efficient and small PDF
documents for fast Web delivery. PLOP protection features encrypt
or decrypt PDF documents and apply or remove permission set-
tings, such as »printing not allowed« or »content extraction not
allowed«. PLOP’s repair mode automatically detects damaged PDF
documents and fixes the problems if possible. PLOP analysis fea-
tures can be used to query arbitrary properties of a PDF document.
Document info entries and XMP metadata can be retrieved and set
in a PDF/A conforming manner.

PDFlib PLOP Features
Linearization

With PDFlib PLOP you can linearize a PDF document for fast deliv-
ery over the Web (byteserving). Byteserving increases the perceived
download speed since the first page is already visible while the
remainder of the document is downloaded in the background.

Optimization

PLOP can significantly reduce the file size of a PDF document
without affecting quality. It achieves this by removing unnecessary
or redundant identical objects, such as repeatedly embedded fonts,
images, identical ICC color profiles, etc.

Protection

PLOP can apply user and master passwords, and set access permis-
sions to prevent the document from being printed with Acrobat,
disallow text extraction or modification, etc.

PLOP supports both the older RC4 encryption algorithm as well as
the more secure AES algorithm. With PLOP’s protection features
you can:

encrypt a PDF document with user or master password, or both; >
remove PDF encryption (if you know the master password); >
add or remove permission settings, e.g. »printing not allowed« or >
»text extraction not allowed« (if you know the master pass-
word);

query information about the security status (encrypted with user >
or master password), encryption scheme, permission settings,
and document info fields

Repair Mode

Various kinds of damaged PDF documents are detected and auto-
matically repaired, if possible.

PDF Analysis

The PLOP library includes the pCOS interface for querying details
about a PDF document, such as document info and XMP metadata,
font lists, page size, and many more (see separate datasheet for the
pCOS product).

XMP Metadata

Metadata (»data about data«) is an important topic in many areas
of application software. XMP (Extensible Metadata Platform) is an
XML-based framework with many predefined metadata proper-
ties. As the name implies, XMP can be extended to satisfy specific
requirements using custom schemas and properties. XMP is
integrated in Acrobat/PDF, and much more powerful than simple
document info entries. XMP is required for PDF/A and other ISO
standards. Many industry groups have published XMP-based rec-
ommendations for vertical applications, such as digital imaging or
prepress data exchange.

With PLOP you can insert XMP metadata in PDF documents or
extract XMP from PDF. Inserted XMP will be validated to make sure
that valid output can be created. If the input document conforms
to the PDF/A-1 standard, the user-supplied XMP must conform to
the XMP rules set forth in PDF/A. These rules will be checked by
PLOP to make sure that PDF/A input plus user-supplied XMP will
result in standard-conforming PDF/A output.

XMP insertion with PLOP can be used in the following and other
situations (sample XMP is contained in the PLOP distribution):

Add XMP metadata to PDF/A-1 documents, including support for >
XMP extension schemas as defined in the PDF/A-1 standard.
Add XMP metadata describing the scanning process for digitized >
legacy documents, also according to PDF/A-1.
Add XMP metadata according to the Ghent Workgroup (GWG) Ad >
Ticket scheme.

PDFlib
PLOP 4
Linearization,
Optimization,
Protection

PDFlib PLOP 4, 2009-06 PDFlib GmbH2 www.pdflib.com

About PDFlib GmbH

PDFlib GmbH is completely focused on PDF technology. Customers
worldwide use PDFlib products since 1997. The company closely
follows development and market trends, such as ISO standards for
PDF. PDFlib GmbH products are distributed all over the world with
major markets in North America, Europe, and Japan.

Contact

Fully functional evaluation versions including documentation and
samples are available on our Web site. For more information please
contact:

 PDFlib GmbH
 Franziska-Bilek-Weg 9, 80339 München, Germany
	 phone	+49	•	89	•	452	33	84-0,	fax	+49	•	89	•	452	33	84-99
 sales@pdflib.com
 www.pdflib.com

Benefits of using PDFlib Software
Rock-solid Products

Tens of thousands of programmers worldwide are working with
our software. PDFlib products meet all quality and performance
requirements for server deployment. All products are suitable for
robust 24x7 server deployment and unattended batch processing.

Speed and Simplicity

PDFlib products are incredibly fast – up to thousands of pages per
second. The programming interface is straightforward andeasy to
learn.

PDFlib Products all over the World

Our products support all international languages as well as Uni-
code. They are used by customers in all parts of the world.

Professional Support

If there’s a problem, we will try to help. We offer commercial sup-
port to meet the requirements of your business-critical applica-
tions. By adding support you will have access to the latest versions,
and have guaranteed response times should any problems arise.

Licensing

We offer various licensing programs for server licenses, integration
and site licenses, and source code licenses. Support contracts for
extended technical support with short response times and free
updates are also available.

 DEF

Add company-specific XMP metadata. >
Add info entries. >

Document Info Entries

With PLOP you can add new document information entries or
replace the values of existing info entries. Both predefined and cus-
tom entries can be set. If the input document contains XMP docu-
ment metadata, all predefined info entries will automatically be
synchronized to the XMP metadata in order to keep the metadata
consistent (this is a requirement of PDF/A-1).

PDF Standards

PLOP is PDF/A-aware: if the input document conforms to the PDF/A
standard, the output document is guaranteed to still comply with
PDF/A. PLOP fully supports XMP extension schemas as required by
PDF/A-1. Similarly, PLOP is PDF/X-aware.
The ability to insert PDF/A-conforming XMP metadata in PDF docu-
ments is an important advantage of PLOP.

PLOP Library or Command-Line Tool?

PLOP is available as a programming library (component) for various
development environments, and as a command-line tool for batch
operations. The library and the command-line tool offer similar
features, but are suitable for different deployment tasks.

The PLOP programming library is used...

...for integration into your desktop or server application. Examples
for using the library with all supported language bindings are
included in the PLOP package. Since the PLOP library accepts PDF
input documents from a disk file or directly in memory, it can easily
be combined with other products.

The PLOP command-line tool is suited...

...for batch processing PDF documents. It doesn’t require any
programming, but offers powerful command-line options which
can be used to integrate it into complex workflows. The PLOP
command-line tool can also be called from environments which do
not support the use of the PLOP library.

Supported Development Environments

PDFlib PLOP is everywhere – it runs on practically all computing
platforms. We offer 32-bit and 64-bit packages for all common fla-
vors of Windows, Mac OS, Linux and Unix, as well as for IBM eServer
iSeries and zSeries systems. The PLOP core is written in highly opti-
mized C code for maximum performance and small overhead. Via a
simple API (Application Programming Interface) the PLOP function-
ality is accessible from a variety of development environments:

COM for use with VB, ASP, Borland Delphi, etc. >
C and C++ >
Java, including servlets and Java Application Server >
.NET for use with C#, VB.NET, ASP.NET, etc. >
Perl >
PHP >
RPG on iSeries >

PLOP DS for digitally signing PDF

The extended version PLOP DS supports all features of PLOP, plus
the ability to apply digital signatures to PDF documents. Please see
the separate PLOP DS datasheet for more information.

PDFlib-8.0.6-SunOS-sparc64-perl/bind/data/reference.pdf

List of all Options 227

C List of all Options
This index contains an alphabetical list of all options and keywords along with the func-
tions in which they can be used. Click on the page number to jump to the description.

&
&name option list macro call in fit_textflow() 87

3D
3Dactivate in create_annotation() 189
3Ddata in create_annotation() 189
3Dinitialview in create_annotation() 189
3Dinteractive in create_annotation() 189
3Dshared in create_annotation() 189
3Dview in create_action() 182

A
acrobat suboption for fontname in info_font() 58
action

in begin/end_page_ext() 40
in create_annotation() 190
in create_bookmark() 202
in create_field() and create_fieldgroup() 198
in end_document() 32
in process_pdi() 171

actual suboption for encoding in info_font() 57
ActualText in begin_item() 219
addfitbox suboption for wrap in fit_textflow() 94
adjustmethod in add/create_textflow() 84
adjustpage

in fit_image/pdi_page() 156
in fit_pdi_page() 169

advancedlinebreak in add/create_textflow() 84
align in fit/info_textline() and draw_path() 107
alignchar in fit/info_textline() 107
alignment

in add/create_textflow() 82
in create_annotation() 190
suboption for leader in fit/info_textline() and
add/create_textflow() 76

alphachannelname in load_image() 152
alphaisshape in create_gstate() 121
Alt in begin_item() 219
angle keyword in info_textline() 80
angularunit suboption for georeference 213
annotation suboption for targetpath in

create_action() 185
annotationtype in add_table_cell() 98
annotcolor in create_annotation() 190
antialias

in shading() 147
suboption for shading option of several
functions 117

api
suboption for encoding in info_font() 57
suboption for fontname in info_font() 58

area suboption for fill in fit_table() 101
areaunit suboption for georeference 213
artbox in begin/end_page_ext() 40
artifacttype in begin_item() 219
ascender

in info_font() 57
in load_font() 51
keyword in info_textline() 80

Attached in begin_item() 219
attachmentpassword in begin_document() 32
attachmentpoint in draw_path() 107
attachments in begin/end_document() 33
autocidfont in load_font() 51
autosubsetting in load_font() 51
autoxmp in begin/end_document() 33
avoidbreak in add/create_textflow() 84
avoidemptybegin in add/create_textflow() 83

B
background in create_3dview() 210
backgroundcolor in create_field() and

create_fieldgroup() 198
basestate in set_layer_dependency() 46
BBox in begin_item() 219
begoptlistchar in create_textflow() 88
beziers suboption for wrap in fit_textflow() 94
bitreverse in load_image() 152
bleedbox in begin/end_page_ext() 40
blendmode in create_gstate() 121
blind

in fit_table() 101
in fit_textflow() 90

bordercolor in create_field() and
create_fieldgroup() 198

borderstyle
in create_annotation() 190
in create_field() and create_fieldgroup() 198

borderwidth in several functions 115
bottom in add_nameddest() and suboption for

destination in create_action(),
create_annotation(), create_bookmark() and
begin/end_document() 186

228 List of all Options

boundingbox
in shading() 147
keyword in info_image() 157
keyword in info_path() 134
keyword in info_pdi_page() 170
keyword in info_table() 103
keyword in info_textflow() 95
suboption for viewports option in begin/
end_page_ext() 213

bounds suboption for georeference 213
boxes suboption for wrap in fit_textflow() 94
boxheight suboption for matchbox 111
boxlinecount keyword in info_textflow() 95
boxsize in various functions 107
boxwidth suboption for matchbox 111
bpc in load_image() 152
buttonlayout in create_field() and

create_fieldgroup() 198
buttonstyle in create_field() and

create_fieldgroup() 198

C
calcorder in create_field() and

create_fieldgroup() 198
calloutline in create_annotation() 190
camera2world in create_3dview() 210
cameradistance in create_3dview() 210
canonicaldate in create_action() 182
capheight

in info_font() 57
in load_font() 51
keyword in info_textline() 80

caption in create_field() and create_fieldgroup()
198

captiondown in create_field() and
create_fieldgroup() 198

captionoffset in create_annotation() 190
captionposition in create_annotation() 190
captionrollover in create_field() and

create_fieldgroup() 198
cascadedflate in load_image() 152
centerwindow suboption for viewerpreferences

in begin/end_document() 37
charclass in add/create_textflow() 85
charmapping in add/create_textflow() 86
charref in many functions 73
charspacing

in create_field() and create_fieldgroup() 198
in many functions 73

checkwordsplitting in add_table_cell() 98
children in set_layer_dependency() 46
cid in info_font() 56, 57
cidfont in info_font() 57
circles suboption for wrap in fit_textflow() 94
circular keyword in add_path_point() 132
classes for logging parameter 30
clip in draw_path() 134
clipping suboption for matchbox 111

clippingarea in open_pdi_page() 168
clippingpath keyword in info_image() 157
clippingpathname in load_image() 152
cloneboxes

in fit_pdi_page() 169
in open_pdi_page() 168

close
in add_path_point() 133
in draw_path() 134
suboption for textpath in fit_textline() 79

cloudy in create_annotation() 190
code in info_font() 56, 57
codepage in info_font() 57
codepagelist in info_font() 57
colorize in load_image() 152
colorized in begin_font() 60
colscalegroup in add_table_cell() 98
colspan in add_table_cell() 98
ColSpan in begin_item() 219
colwidth in add_table_cell() 98, 99
comb in create_field() and create_fieldgroup()

199
comment option list macro definition in

fit_textflow() 85
commitonselect in create_field() and

create_fieldgroup() 199
compatibility in begin_document() 33
components in load_image() 152
compress suboption for metadata 217
contents in create_annotation() 190
continuetextflow in add_table_cell() 98
control keyword in add_path_point() 132
convert in pcos_get_stream() 174
copy in create_pvf() 25
copyglobals in load_image() 152
coversheet suboption for portfolio in

begin_document() 207
crease suboption for rendermode in

create_3dview() 211
createdate in create_annotation() 190
createfittext in fit_textflow() 90
createlastindent in fit_textflow() 90
creatematchboxes suboption for wrap in

fit_textflow() 94
createpvf in begin_document() 33
createrichtext in create_annotation() 191
createwrapbox suboption for matchbox 111
creatorinfo in define_layer() 44
cropbox in begin/end_page_ext() 40
currentvalue in create_field() and

create_fieldgroup() 199
curve keyword in add_path_point() 132
custom in create_annotation() 191

List of all Options 229

D
dasharray

in add_path_point() 132
in create_annotation() 191
in create_field() and create_fieldgroup() 199
in many functions 73
in setdashpattern 118
in several functions 115

dashphase
in add_path_point() 132
in setdashpattern 118
in several functions 115

debugshow in fit_table() 101
decorationabove

in fit/info_textline() and add/
create_textflow() 64
in many functions 73

defaultcmyk in begin/end_page_ext() 40
defaultdir in create_action() 182
defaultgray in begin/end_page_ext() 40
defaultrgb in begin/end_page_ext() 40
defaultstate in define_layer() 44
defaultvalue in create_field() and

create_fieldgroup() 199
defaultvariant in set_layer_dependency() 46
defaultview in load_3d() 209
depend in set_layer_dependency() 46
descender

in info_font() 57
in load_font() 51
keyword in info_textline() 80

description
in add_portfolio_file() 206
in add_portfolio_folder() 204
in load_iccprofile() 141
suboption for attachments in begin/
end_document() 33

destination
in begin/end_document() 33
in create_action() 182
in create_annotation() 191
in create_bookmark() 202

destname
in create_action() 183
in create_annotation() 191
in create_bookmark() 202
in end_document() 33
suboption for targetpath in create_action()
185

direction suboption for viewerpreferences in
begin/end_document() 37

disable
for logging parameter 29
suboption for 3Dactivate in
create_annotation() 195

disablestate suboption for 3Dactivate in
create_annotation() 195

display
in create_annotation() 191
in create_field() and create_fieldgroup() 199

displaydoctitle suboption for viewerpreferences
in begin/end_document() 37

displaysystem suboption for georeference 213
domain

in shading() 147
suboption for shading option of several
functions 117

doubleadapt suboption for matchbox 111
doubleoffset suboption for matchbox 111
down

suboption for template in
create_annotation() 194

dpi in many functions 107
drawbottom, drawleft, drawright, drawtop

suboptions for matchbox 111
dropcorewidths in load_font() 51
duplex suboption for viewerpreferences in begin/

end_document() 37
duration

in begin/end_page_ext() 40
in create_action() 183

E
E in begin_item() 219
editable in create_field() and create_fieldgroup()

199
embedding in load_font() 51
embedprofile in load_iccprofile() 141
enable

for logging parameter 29
suboption for 3Dactivate in
create_annotation() 195

enablestate suboption for 3Dactivate in
create_annotation() 195

encoding
in info_font() 57
in load_font() 52

end
suboption for matchbox 112
suboption for shading option of several
functions 117

endcolor suboption for shading option of several
functions 117

endingstyles in create_annotation() 191
endoptlistchar in create_textflow() 88
endx, endy keywords in info_textline() 80
entire suboption for background in

create_3dview() 210
epsg suboption for the coords and displaycoords

suboptions of georeference 214
errorpolicy parameter and option for various

functions 27
escapesequence in many functions 73
exceedlimit suboption for matchbox 112
exchangefillcolors in fit_textflow() 90

230 List of all Options

exchangestrokecolors in fit_textflow() 90
exclude in create_action() 183
exists keyword in info_matchbox() 113
exportable in create_field() and

create_fieldgroup() 199
exportmethod in create_action() 183
extend0, extend1 in shading() 147

F
facecolor suboption for rendermode in

create_3dview() 211
fakebold in many functions 74
faked

suboption for ascender in info_font() 57
suboption for fontstyle in info_font() 58

fallbackfont in info_font() 57
fallbackfonts in load_font() 52
familyname

in begin_font() 60
in info_font() 57

feature in info_font() 58
featurelist in info_font() 58
features in many functions 75
fieldlist

in add_portfolio_file() 206
in add_portfolio_folder() 204

fieldname in add_table_cell() 98
fieldtype

in add_table_cell() 98
in create_fieldgroup() 199

filemode in begin_document() 33
filename

for logging parameter 29
in create_action() 183
in create_annotation() 191
suboption for attachments in begin/
end_document() 33
suboption for metadata 217
suboption for reference in
begin_template_ext(), load_image(), and
open_pdi_page() 159
suboption for search in begin/
end_document() 35

filename keyword in info_image() 157
filenamehandling in set_option() 20
fileselect in create_field() and create_fieldgroup()

199
fill

in draw_path() 134
in fit_table() 101

fillcolor
in add_path_point() 132
in create_annotation() 191
in create_field() and create_fieldgroup() 199
in many functions 74
in several functions 115
suboption for background in create_3dview()
210
suboption for leader in fit/info_textline() and
add/create_textflow() 76
suboption for leader in fit_textline() 78

fillrule
in add_path_point() 132
in several functions 115
suboption for wrap in fit_textflow() 94

firstbodyrow
keyword in info_matchbox() 113
keyword in info_table() 103

firstdraw in fit_table() 102
firstlinedist

in fit_textflow() 91
keyword in info_textflow() 95

firstparalinecount keyword in info_textflow() 95
fitannotation in add_table_cell() 98
fitfield in add_table_cell() 98
fitimage in add_table_cell() 98
fitmethod

in create_field() and create_fieldgroup() 199
in fit_textflow() 91
in various functions 107
suboption for template in
create_annotation() 194

fitpath in add_table_cell() 98
fitpdipage in add_table_cell() 98
fitscalex, fitscaley

keywords in info_image() 157
keywords in info_pdi_page() 170

fittext keyword in info_textflow() 95
fittextflow in add_table_cell() 99
fittextline in add_table_cell() 99
fitwindow suboption for viewerpreferences in

begin/end_document() 37
fixedleading in add/create_textflow() 83
fixedtextformat in create_textflow() 88
flatness

in add_path_point() 132
in create_gstate() 121
in several functions 115

flush
in begin_document() 33

flush for logging parameter 29
font

in create_annotation() 192
in create_field() and create_fieldgroup() 200
in many functions 74
suboption for leader in fit/info_textline() and
add/create_textflow() 76

fontfile in info_font() 58

List of all Options 231

fontname
in info_font() 58
in load_font() 52

fontscale
in fit_textflow() 91
keyword in info_textflow() 95

fontsize
in create_annotation() 192
in create_field() and create_fieldgroup() 200
in many functions 74
suboption for ascender in info_font() 57
suboption for leader in fit/info_textline() and
add/create_textflow() 76

fontstyle
in create_bookmark() 202
in info_font() 58
in load_font() 52

fonttype in info_font() 58
footer in fit_table() 102
full suboption for fontname in info_font() 58

G
georeference

in begin_template_ext() 158
in load_image() 152
suboption for viewports in begin/
end_page_ext() 213

glyphcheck in many functions 73
glyphid in info_font() 56, 58
glyphname in info_font() 56, 58
group

in begin_page_ext() 40
in resume_page() 43
in set_layer_dependency() 47
option in add_nameddest() and suboption for
destination option in create_action(),
create_annotation(), create_bookmark() and
begin/end_document() 186
suboption for labels in begin_document() 36

groups in begin_document() 33
gstate

in add_path_point() 132
in fit/info_textline() and add/
create_textflow() 91
in fit_image/pdi_page() 156
in fit_pdi_page() 169
in fit_table() 102
in many graphics functions 115
in many text functions 74
in shading_pattern() 146
suboption for shadow in fit_textline() 78

H
header in fit_table() 102

height
in begin/end_page_ext() 40
in load_image() 152
keyword in info_image() 157
keyword in info_matchbox() 113
keyword in info_path() 134
keyword in info_pdi_page() 170
keyword in info_table() 103
keyword in info_textline() 80

hide in create_action() 183
hidemenubar suboption for viewerpreferences in

begin/end_document() 37
hidetoolbar suboption for viewerpreferences in

begin/end_document() 37
hidewindowui suboption for viewerpreferences

in begin/end_document() 37
highlight

in create_annotation() 192
in create_field() and create_fieldgroup() 200

honorclippingpath in load_image() 152
honoriccprofile in load_image() 152
horboxgap keyword in info_table() 103
horizscaling in many functions 74
horshrinking keyword in info_table() 103
horshrinklimit in fit_table() 102
hortabmethod in add/create_textflow() 83
hortabsize in add/create_textflow() 83
hostfont in info_font() 58
hypertextencoding

parameter and option for various functions
181
suboption for labels in begin/
end_document() and label in begin/
end_page_ext() 36
suboption for reference in
begin_template_ext(), load_image(), and
open_pdi_page() 159
suboption for viewports in begin/
end_page_ext() 213

hypertextformat parameter and option for
various functions 181

hyphenchar in add/create_textflow() 86

I
iccprofile

in load_image() 152
keyword in info_image() 157

icon in create_field() and create_fieldgroup() 200
icondown in create_field() and

create_fieldgroup() 200
iconname

in begin_template_ext() 158
in create_annotation() 192
in load_image() and begin_template_ext()
152
in open_pdi_page() 168

iconrollover in create_field() and
create_fieldgroup() 200

232 List of all Options

ignoreclippingpath in fit_image/pdi_page() 156
ignoremask in load_image() 152
ignoreorientation

in fit_image/pdi_page() 156
in load_image() 153

image in add_table_cell() 99
imagehandle in load_image() 153
imageheight keyword in info_image() 157
imagemask keyword in info_image() 157
imagetype keyword in info_image() 157
imagewidth keyword in info_image() 157
index

in begin_item() 219
in create_bookmark() 203

indextype suboption for search in begin/
end_document() 35

infomode in open_pdi_document() 164
initialexportstate in define_layer() 44
initialprintstate in define_layer() 44
initialsubset in load_font() 53
initialview suboption for portfolio in

begin_document() 207
initialviewstate in define_layer() 44
inittextstate in many functions 74
inline

in begin_item() 219
in load_image() 153

inmemory
in begin_document() 34
in open_pdi_document 164

innerbox suboption for matchbox 112
inputencoding suboption for metadata 217
inputformat suboption for metadata 217
inreplyto in create_annotation() 192
intent in define_layer() 44
interiorcolor in create_annotation() 192
interpolate in load_image() 153
inversefill suboption for wrap in fit_textflow() 94
invert in load_image() 153
invisiblelayers in set_layer_dependency() 47
ismap in create_action() 183
italicangle

in info_font() 58
in many functions 74

itemname in create_field() and
create_fieldgroup() 200

itemnamelist in create_field() and
create_fieldgroup() 200

itemtextlist in create_field() and
create_fieldgroup() 200

K
K in load_image() 153
keepfilter in pcos_get_stream() 174
keepfont in load_font() 53
keephandles in delete_table() 104

keepnative
in info_font() 58
in load_font() 53

keepxmp suboption for metadata 217
kerning in many functions 74
kerningpairs in info_font() 58
key

suboption for custom in create_annotation()
191
suboption for fieldlist in
add_portfolio_folder() and
add_portfolio_file() 206
suboption for properties in begin_mc() and
mc_point() 221

L
label in begin/end_page_ext() 40
labels in begin/end_document() 34
lang in begin_document() 34
Lang in begin_item() 219
language

in define_layer() 45
in many functions 75
suboption for feature in info_font() 58

lastalignment in add/create_textflow() 83
lastbodyrow keyword in info_table() 103
lastfont keyword in info_textflow() 95
lastfontsize keyword in info_textflow() 95
lastlinedist

in fit_textflow() 91
keyword in info_textflow() 95

lastmark keyword in info_textflow() 95
lastparalinecount keyword in info_textflow() 95
layer

in begin_template_ext() 158
in create_annotation() 192
in create_field() and create_fieldgroup() 200
in load_image() and begin_template_ext()
153
in open_pdi_page() 168

layerstate in create_action() 183
leader

in add/create_textflow() 83
in fit/info_textline() 78

leaderlength in create_annotation() 192
leaderoffset

in create_annotation() 192
leading

in add/create_textflow() 83
keyword in info_textflow() 95

left option in add_nameddest() and suboption
for destination in create_action(),
create_annotation(), create_bookmark() and
begin/end_document() 186

leftindent in add/create_textflow() 83
leftlinex, leftliney keywords in info_textflow() 95
lighting in create_3dview() 211

List of all Options 233

line
in create_annotation() 192
keyword in add_path_point() 132
suboption for stroke in fit_table() 102

linearize in begin_document() 34
linearunit suboption for georeference 214
linecap

in add_path_point() 132
in create_gstate() 121
in load_font() 53
in several functions 116

linegap in info_font() 58
lineheight suboption for wrap in fit_textflow() 94
linejoin

in add_path_point() 132
in create_gstate() 121
in several functions 116

linespreadlimit in fit_textflow() 91
linewidth

in add_path_point() 132
in create_annotation() 192
in create_field() and create_fieldgroup() 200
in create_gstate() 121
in several functions 116

listmode in set_layer_dependency() 47
locale in add/create_textflow() 84
locked

in create_annotation() 193
in create_field() and create_fieldgroup() 200

lockedcontents in create_annotation() 193
lockmode in create_field() and

create_fieldgroup() 200
logging in set_option() 21

M
macro option list macro definition in

fit_textflow() 87
maingid in info_font() 58
mappoints suboption for georeference 214
mapsystem suboption for georeference 214
margin

in add_table_cell() 99
in various functions 107
suboption for matchbox 112

marginbottom in add_table_cell() 99
marginleft in add_table_cell() 99
marginright in add_table_cell() 99
margintop in add_table_cell() 99
mark in add/create_textflow() 85
mask in load_image() 153
masked in load_image() 153
masterpassword in begin_document() 34
matchbox

in fit/info_textline() and add/
create_textflow() 85
in various functions 108
suboption for createlastindent in
fit_textflow() 90

maxchar in create_field() and create_fieldgroup()
200

maxcode in info_font() 58
maxlinelength keyword in info_textflow() 95
maxlines in fit_textflow() 91
maxliney keyword in info_textflow() 95
maxspacing in add/create_textflow() 84
mediabox in begin/end_page_ext() 41
menuname in create_action() 183
metadata 217

in begin/end_document() 34
in begin/end_page_ext() 41
in begin_template_ext() 158
in load_font() 53
in load_iccprofile() 141
in load_image() and begin_template_ext()
153
in open_pdi_page() 168

metricsfile in info_font() 58
mimetype

in add_portfolio_file() 206
in create_annotation() 193
suboption for attachments in begin/
end_document() 33

minfontsize in fit_textflow() 91, 108
minlinecount in add/create_textflow() 83
minlinelength keyword in info_textflow() 95
minliney keyword in info_textflow() 95
minrowheight in add_table_cell() 99
minspacing in add/create_textflow() 84
mirroringx, mirroringy

keywords in info_image() 157
keywords in info_pdi_page() 170

miterlimit
in add_path_point() 132
in create_gstate() 121
in several functions 116

moddate in begin/end_document() 34
modeltree suboption for 3Dactivate in

create_annotation() 195
monospace

in info_font() 58
in load_font() 53

move keyword in add_path_point() 132
movieposter in create_annotation() 193
multiline in create_field() and create_fieldgroup()

200
multiselect in create_field() and

create_fieldgroup() 200

N
N

in shading() 147
suboption for shading option of several
functions 117

234 List of all Options

name
in add_path_point() 133
in add_portfolio_file() 206
in create_3dview() 211
in create_annotation() 193
keyword in info_matchbox() 113
suboption for attachments in begin/
end_document() 33
suboption for codepage in info_font() 57
suboption for feature in info_font() 58
suboption for matchbox 112
suboption for targetpath in create_action()
185
suboption for viewports in begin/
end_page_ext() 213

namelist in create_action() 184
newwindow in create_action() 184
nextline in add/create_textflow() 85
nextparagraph in add/create_textflow() 85
nofitlimit in add/create_textflow() 84
nonfullscreenpagemode suboption for

viewerpreferences in begin/end_document()
37

normal suboption for template in
create_annotation() 194

numcids in info_font() 58
numcopies suboption for viewerpreferences in

begin/end_document() 37
numglyphs in info_font() 59
numpoints in info_path() 134
numusableglyphs in info_font() 59
numusedglyphs in info_font() 59

O
objectstreams in begin_document() 34
offset

suboption for shadow in fit_textline() 78
suboption for wrap in fit_textflow() 94

offsetbottom, offsetleft, offsetright, offsettop
suboptions for matchbox 112

onpanel in define_layer() 45
opacity

in create_annotation() 193
suboption for rendermode in create_3dview()
211

opacityfill in create_gstate() 121
opacitystroke in create_gstate() 121
open

in create_annotation() 193
in create_bookmark() 203

openmode in begin/end_document() 34
openrect suboption for matchbox 112
operation in create_action() 184
OPI-1.3 in load_image() and

begin_template_ext() 154
OPI-2.0 in load_image() and

begin_template_ext() 154
optimize in begin_document() 35

optimizeinvisible in load_font() 53
orientate

in create_annotation() 193
in create_field() and create_fieldgroup() 200
in fit_textflow() 92
in various functions 108

origin keyword in add_path_point() 132
outlineformat in info_font() 59
overline in many functions 74
overprintfill in create_gstate() 121
overprintmode in create_gstate() 121
overprintstroke in create_gstate() 122

P
page

in load_image() 154
option in add_nameddest() and suboption
for destination in create_action(),
create_annotation(), create_bookmark() and
begin/end_document() 186

pageelement in define_layer() 45
pageheight keyword in info_pdi_page() 170
pagelabel suboption for reference in

begin_template_ext(), load_image(), and
open_pdi_page() 159

pagelayout in begin/end_document() 35
pagenumber

in begin_page_ext() 41
in resume_page() 43
suboption for labels in begin/
end_document() and label in begin/
end_page_ext() 36
suboption for reference in
begin_template_ext(), load_image(), and
open_pdi_page() 159
suboption for targetpath in create_action()
185

pages suboption for separationinfo in begin/
end_page_ext() 41

pagewidth keyword in info_pdi_page() 170
parameters in create_action() 184
parent

in begin_item() 220
in create_bookmark() 203
in set_layer_dependency() 47

parentname in create_annotation() 193
parindent in add/create_textflow() 83
passthrough

in load_image() 154
password

in add_portfolio_file() 206
in create_field() and create_fieldgroup() 200
in open_pdi_document 164

path
in add_table_cell() 99
suboption for textpath in fit_textline() 79

paths suboption for wrap in fit_textflow() 94
pdfa in begin_document() 35

List of all Options 235

pdfx in begin_document() 35
pdipage in add_table_cell() 99
pdiusebox

in open_pdi_page() 168
suboption for reference in
begin_template_ext(), load_image(), and
open_pdi_page() 159

permissions in begin_document() 35
perpendiculardir keyword in info_textline() 80
picktraybypdfsize suboption for

viewerpreferences in begin/end_document()
37

playmode in create_annotation() 193
polar in add_path_point() 133
polygons suboption for wrap in fit_textflow() 94
polylinelist in create_annotation() 193
popup in create_annotation() 193
position

in create_field() and create_fieldgroup() 201
in various functions 108
suboption for template in
create_annotation() 194

predefcmap in info_font() 59
prefix

suboption for fieldlist in
add_portfolio_folder() and
add_portfolio_file() 206
suboption for labels in begin/
end_document() and label in begin/
end_page_ext() 36

preserveradio in create_action() 184
printarea suboption for viewerpreferences in

begin/end_document() 37
printclip suboption for viewerpreferences in

begin/end_document() 37
printpagerange suboption for viewerpreferences

in begin/end_document() 37
printscaling suboption for viewerpreferences in

begin/end_document() 37
printsubtype in define_layer() 45
properties in begin_mc() and mc_point() 221
px, py

in info_path() 134

R
r0, r1 in shading() 147
radians in add_path_point() 133
readfeatures in load_font() 53
readkerning in load_font() 53
readonly

in create_annotation() 193
in create_field() and create_fieldgroup() 201

readshaping in load_font() 53
recordsize in begin_document() 35
rectangle keyword in info_matchbox() 113
reference

in begin_template_ext() 158
in open_pdi_page() 168

refpoint
in fill_*block() 108, 134

relation suboption for targetpath in
create_action() 185

relative in add_path_point() 133
remove for logging parameter 29
removeunused in define_layer() 45
rendercolor suboption for rendermode in

create_3dview() 211
renderingintent

in create_gstate() 122
in load_image() 154

rendermode in create_3dview() 211
repair in open_pdi_document 165
repeatcontent in add_table_cell() 99
replacedchars in info_textline() 80
replacementchar

in info_font() 59
in load_font() 54

replyto in create_annotation() 193
required in create_field() and create_fieldgroup()

201
requiredmode in open_pdi_document 165
resetfont in add/create_textflow() 85
resourcefile in set_option() 21
resx, resy keywords in info_image() 157
return

in add/create_textflow() 85
in add_table_cell() 99

returnatmark in fit_textflow() 92
returnreason

keyword in info_table() 103
keyword in info_textflow() 95

rewind
in fit_table() 102
in fit_textflow() 92

richtext in create_field() and create_fieldgroup()
201

right option in add_nameddest() and suboption
for destination in create_action(),
create_annotation(), create_bookmark() and
begin/end_document() 186

rightindent
in add/create_textflow() 83
suboption for createlastindent in
fit_textflow() 90

rightlinex, rightliney keywords in info_textflow()
95

rollover
suboption for template in
create_annotation() 194

rotate
in begin/end_page_ext() 41
in create_annotation() 193
in fit_textflow() 92
in various functions 108
keyword in info_pdi_page() 170
suboption for textpath in fit_textline() 79

236 List of all Options

round
in add_path_point() 133
in draw_path() 134
suboption for matchbox 112
suboption for textpath in fit_textline() 79

rowcount keyword in info_table() 103
rowheight in add_table_cell() 99
rowjoingroup in add_table_cell() 100
rowscalegroup in add_table_cell() 99
rowspan in add_table_cell() 100
RowSpan in begin_item() 220
rowsplit keyword in info_table() 103
ruler in add/create_textflow() 83

S
scale

in various functions 108
suboption for textpath in fit_textline() 79

scalex, scaley keywords in info_textline() 80
schema suboption for portfolio in

begin_document() 207
Scope in begin_item() 220
script

in create_action() 184
in load_3d() 209
in many functions 75
suboption for feature in info_font() 58

scriptname in create_action() 184
scrollable in create_field() and

create_fieldgroup() 201
search in begin/end_document() 35
searchpath in set_option() 21
separationinfo in begin_page_ext() 41
shading in several functions 116
shadow in fit/info_textline() 78
shaping in many functions 75
shapingsupport in info_font() 59
showborder

in fit_textflow() 92
in various functions 109

showcaption in create_annotation() 194
showcells in fit_table() 102
showcontrols in create_annotation() 194
showgrid in fit_table() 102
showtabs in fit_textflow() 92
shrinklimit

in add/create_textflow() 84
in various functions 109

shutdownstrategy in set_option() 21
singfont in info_font() 59
smoothness in create_gstate() 122
softmask in create_gstate() 122
sort suboption for portfolio in begin_document()

207
sorted in create_field() and create_fieldgroup()

201
soundvolume in create_annotation() 194
space in add/create_textflow() 85

spellcheck in create_field() and
create_fieldgroup() 201

split
keyword in info_textflow() 95
suboption for portfolio in begin_document()
207

spotcolor suboption for separationinfo in begin/
end_page_ext() 41

spotname suboption for separationinfo in begin/
end_page_ext() 41

spreadlimit in add/create_textflow() 85
stamp

in fit/info_textline() 78
in fit_textflow() 92

standardfont in info_font() 59
start

suboption for labels in begin/
end_document() and label in begin/
end_page_ext() 36
suboption for shading option of several
functions 117

startcolor in shading() 147
startoffset suboption for textpath in

fit_textline() 79
startx, starty keywords in info_textline() 80
stretch in begin_font() 60
strikeout in many functions 74
stringlimit for logging parameter 29
strips keyword in info_image() 157
stroke

in draw_path() 134
in fit_table() 102

strokeadjust in create_gstate() 122
strokecolor

in add_path_point() 132
in create_field() and create_fieldgroup() 201
in many functions 74
in several functions 116

strokewidth in many functions 74
strongref suboption for reference in

begin_template_ext() and open_pdi_page()
159

style suboption for labels in begin/
end_document() and label in begin/
end_page_ext() 36

subject in create_annotation() 194
submitemptyfields in create_action() 184
submitname in create_field() and

create_fieldgroup() 201
subpaths

in draw_path() 134
suboption for textpath in fit_textline() 79

subsetlimit in load_font() 54
subsetminsize in load_font() 54
subsetting in load_font() 54
Subtype in begin_item() 220
supplement in info_font() 59
symbolfont in info_font() 59

			C List of all Options

PDFlib-8.0.6-SunOS-sparc64-perl/bind/data/stationery.pdf

17, Aviation Road
Paperfield

Phone 7079-4301
Fax 7079-4302

www.kraxi.com
info@kraxi.com

Kraxi Systems, Inc.

Paper Planes

Kraxi Systems, Inc. • 17, Aviation Road • Paperfield

PDFlib-8.0.6-SunOS-sparc64-perl/bind/data/TET-datasheet.pdf

datasheet DEF

What is PDFlib TET?
PDFlib TET (Text Extraction Toolkit) reliably extracts text, images
and metadata from PDF documents. TET makes available the text
contents of a PDF as Unicode strings, plus detailed glyph and font
information as well as the position on the page. Raster images are
extracted in common raster formats. TET optionally converts PDF
documents to an XML-based format called TETML which contains
text and metadata as well as resource information.

TET contains advanced content analysis algorithms for determin-
ing word boundaries, grouping text into columns and removing
redundant text. Using the integrated pCOS interface you can
retrieve arbitrary objects from the PDF, such as metadata, interac-
tive elements, etc.

With PDFlib TET you can:
Implement the PDF indexer for a search engine >
Repurpose the text and images in PDFs >
Convert the contents of PDFs to other formats >
Process PDFs based on their contents, e.g. splitting based on >
headings (requires PDFlib+PDI in addition to TET)

PDFlib TET Features
Accepted PDF Input

TET supports all relevant flavors of PDF input:
All PDF versions up to Acrobat 9, including ISO 32000-1 >
Protected PDFs which do not require a password for opening the >
document
Damaged PDF documents will be repaired >

Unicode

Since text in PDF is usually not encoded in Unicode, PDFlib TET
normalizes the text in a PDF document to Unicode:

TET converts all text contents to Unicode. In C and other non- >
Unicode aware languages the text is returned in the UTF-8 or
UTF-16 formats, and as native strings in Unicode-capable pro-
gramming languages.
Ligatures and other multi-character glyphs are decomposed into >
a sequence of the corresponding Unicode characters.

Glyphs without appropriate Unicode mappings are identified as >
such, and are mapped to a configurable replacement character in
order to avoid misinterpretation.
TET implements various workarounds for problems with specific >
document creation packages, such as InDesign and TeX docu-
ments or PDFs generated on mainframe systems.

Content Analysis and Word Detection

TET includes advanced content analysis algorithms:
Patented algorithm for determining word boundaries which is >
required to retrieve proper words
Recombine the parts of hyphenated words (dehyphenation) >
Remove duplicate instances of text, e.g. shadow and artificially >
bolded text
Recombine paragraphs in reading order >
Correctly order text which is scattered over the page >

Page Layout and Table Detection

The page content is analyzed to determine text columns. Tables
are detected, including cells which span multiple columns. This
improves the ordering of the extracted text. Table rows and the
contents of each table cell can be identified.

Geometry

TET provides precise metrics for the text, such as the position on
the page, glyph widths, and text direction. Specific areas on the
page can be excluded or included in the text extraction, e.g. to
ignore headers and footers or margins.

Image Extract

Images on PDF pages can be extracted as TIFF, JPEG, or JPEG 2000
files. Precise geometric information (position, size, and angles) are
reported for each image. Fragmented images will be combined to
larger images to facilitate repurposing. Image fidelity is guaran-
teed since no downsampling or color space conversion occurs. This
ensures the highest possible image quality.

PDF Analysis

The TET library includes the pCOS interface for querying details
about a PDF document, such as document info and XMP metadata,
font lists, page size, and many more (see separate datasheet for the
pCOS product).

PDFlib TET 4
Text Extraction Toolkit

PDFlib TET 4, 2010-07 PDFlib GmbH2 www.pdflib.com

Configuration Options for problematic PDF

TET contains special handling and workarounds for various kinds
of PDF where the text cannot be extracted correctly with other
products. In addition, it includes various configuration features to
improve processing of problem documents:

Unicode mapping can be customized via user-supplied tables for >
mapping character codes or glyph names to Unicode.
PDFlib FontReporter is an auxiliary tool for analyzing fonts, >
encodings, and glyphs in PDF. It works as a plugin for Adobe Acro-
bat. This plugin is freely available for Mac and Windows.
Embedded fonts are analyzed to find additional hints which are >
useful for Unicode mapping. External font files or system fonts
are used to improve text extraction results if a font is not embed-
ded.

Unicode Postprocessing

TET supports various Unicode postprocessing steps which can be
used to improve the extracted text:

Foldings preserve, remove or replace characters, e.g. remove >
punctuation or characters from irrelevant scripts.
Decompositions replace a character with an equivalent sequence >
of one or more other characters, e.g. replace narrow, wide or ver-
tical Japanese characters or Latin superscript (e.g. a) variants with
their respective standard counterparts.
Text can be converted to all four Unicode normalization forms, >
e.g. emit NFC form to meet the requirements for Web text or a
database.

Document Domains

PDF documents may contain text in other places than the page
contents. While most applications will deal with the page contents
only, in many situations other document domains may be relevant
as well. TET extracts the text from all of the following document
domains:

page contents >
predefined and custom document info entries >
XMP metadata on document and image level >
bookmarks >
file attachments and PDF portfolios can be processed recursively >
form fields >
comments (annotations) >
general PDF properties can be queried, such as page count, con- >
formance to standards like PDF/A or PDF/X, etc.

XMP Metadata

TET supports XMP metadata in several ways:
Using the integrated pCOS interface, XMP metadata for the >
document, individual pages, images, or other parts of the docu-
ment can be extracted programmatically.
TETML output contains XMP document and image metadata if >
present in the PDF.
Images extracted in the TIFF or JPEG formats contain image >
metadata if present in the PDF.

TETML represents PDF Contents as XML

TET optionally represents the PDF contents in an XML flavor called
TETML. It contains a variety of PDF information in a form which can
easily be processed with common XML tools. TETML contains the
actual text plus optionally font and position information, resource
details (fonts, images, colorspaces), and metadata.

TETML is governed by a corresponding XML schema to make sure
that TET always creates consistent and reliable XML output. TETML
can be processed with XSLT stylesheets, e.g. to apply certain filters
or to convert TETML to other formats. Sample XSLT stylesheets for
processing TETML are included in the TET distribution.

The following fragment shows TETML output with glyph details:

<Word>
 <Text>PDFlib</Text>
 <Box llx="111.48" lly="636.33" urx="161.14" ury="654.33">
 <Glyph font="F1" size="18" x="111.48" y="636.33" width="9.65">P</Glyph>
 <Glyph font="F1" size="18" x="121.12" y="636.33" width="11.88">D</Glyph>
 <Glyph font="F1" size="18" x="133.00" y="636.33" width="8.33">F</Glyph>
 <Glyph font="F1" size="18" x="141.33" y="636.33" width="4.88">l</Glyph>
 <Glyph font="F1" size="18" x="146.21" y="636.33" width="4.88">i</Glyph>
 <Glyph font="F1" size="18" x="151.08" y="636.33" width="10.06">b</Glyph>
 </Box>
 </Word>

TET Connectors

TET connectors provide the necessary glue code to interface TET
with other software. The following TET connectors make PDF text
extraction functionality available for various software environ-
ments:

TET connector for the Lucene Search Engine >
TET connector for the Solr Search Server >
TET connector for Oracle Text >
TET connector for MediaWiki >
TET PDF IFilter for Microsoft products is available as a separate >
product. It extracts text and metadata from PDF documents and
makes it available to search and retrieval software on Windows
(see separate datasheet for details).

TET Cookbook

The TET Cookbook is a collection of programming examples which
demonstrate the use of TET for various text and image extraction
tasks. Several Cookbook samples show how to combine the TET and
PDFlib+PDI products in order to process and enhance PDF docu-
ments, e.g. add bookmarks or links based on the text on the page.

PDFlib TET 4, 2010-07 PDFlib GmbH3 www.pdflib.com

Challenges with PDF Text Extraction
Dehyphenation

TET detects hyphenated words which span multiple lines, removes
the hyphen, and combines the individual parts to form a complete
word. This is important to make sure that searches for the full word
will be successful although only hyphenated parts are present in
the document. Dashes (different from hyphens) will be treated
separately since they must not be removed.

Shadow and artifical bold Text Detection

Digital documents often contain shadowed text where the shadow
effect is achieved by placing the text multiply on the page, using
a small offset between the instances of text. Similarly, bold text is
often simulated by overprinting the same text multiply. As a result,
the document contains the characters in the shadowed or bold
word more than once. TET’s patented shadow detection algorithm
identifies and removes redundant instances of text to avoid excess
text extraction. While other software extracts the shadowed or
bold text multiply, TET correctly removes the redundant copies.
While extra instances of a word will still result in a search engine
hit, no more hits would be found if the text is duplicated character
by character as in the example.

Accented Characters

In many languages accents and other diacritical marks are placed
close to other characters to form combined characters. Some
typesetting programs, most notably TeX, emit two characters (base
character and accent) separately to create a combined character.
For example, to create the character ä first the letter a is placed on
the page, and then the dieresis character ¨ is placed on top of it.
TET detects this situation and recombines both characters to form
the appropriate combined character.

Ligatures

Ligatures combine two or more characters in a single glyph. The
most common ligatures are in use for the combinations fi, fl, and
ffi; less common ligatures are used for the combinations Th, sp, ct,
st, and many others. When extracting text from digital documents,
ligatures must be analyzed and separated to the constituent char-
acters to allow proper text processing. TET detects ligatures and
delivers two or more characters as appropriate.

Drop Caps

Drop caps are large initial characters at the beginning of a para-
graph where the top of the initial aligns with the top of the line,
and the remainder of the character drops down several lines. Drop
caps are used to emphasize the start of a paragraph. If they are
not treated properly the initial word is extracted in two parts: the
single initial character and the remainder of the word.

TET correctly removes the hyphen, but keeps the dash.

Other products extract »Inttrroduccttiion«.
TET correctly extracts »Introduction«.

Other products extract »Midi-Pyr´en´ees«.
TET correctly extracts »Midi-Pyrénées«.

Other products extract » e rst photographs«.
TET correctly extracts »The first photographs«.

Other products extract two words: the drop cap »S« and »tellen«.
TET correctly extracts the single word »Stellen«.

PDFlib TET 4, 2010-07 PDFlib GmbH4 www.pdflib.com

Challenges with PDF Text Extraction
Unicode Mapping

Unicode mapping forms the foundation of PDF text extraction:
every glyph on the page must be assigned the corresponding
Unicode value. PDF complicates this tasks by supporting a variety
of font and encoding variants which may or may not provide the
information required to assign proper Unicode values. In the worst
case the document does not provide enough information with the
result that no usable text can be extracted from the document.

TET’s patented Unicode mapping algorithm implements a cascad-
ed algorithm which takes all available pieces of information in or-
der to determine Unicode values. For many problematic documents
TET extracts proper Unicode text where other products deliver only
unusable garbage.

Damaged PDF Documents

PDF documents may get damaged because of transmission errors
or other problems. TET’s repair mode recovers many kinds of dam-
aged PDFs. Sometimes PDF documents are damaged so heavily
that the pages cannot even be displayed in Acrobat. Even in such
extreme cases TET often delivers the page contents of the docu-
ment.

Bidirectional Text with Arabic and Hebrew

PDF does not encode logical text, but is simply a container for
glyphs on the page. Text in the Arabic and Hebrew script runs from
right to left. Since it often contains left-to-right inserts such as
numbers or names in Western languages, text must be interpreted
in both directions – hence the term »bidirectional«. Arabic poses
additional challenges since the characters can be used in up to four
different contextual forms. These shaped forms of characters must
be normalized to the corresponding standard (isolated) form.

Challenges with PDF Image Extraction
Color Spaces and Compression

Raster image data in PDF may be encoded in any combination of
eleven color spaces and nine compression filters, but common
image file formats such as JPEG and TIFF support only a subset of
those. TET’s image extractor carefully balances the characteristics
of the PDF image with the capabilities of the image output format.
Regardless of the internal structure of the PDF image, the pixel im-
age will be extracted in one of the common image file formats.

Image Merging

The images in many PDF documents are broken into smaller pieces
by the software producing the PDF. What appears as a single im-
age on the page may actually consist of hundreds or thousands of
small fragments. Among others, Microsoft Office applications and
TeX are known to produce such documents. TET detects fragment-
ed images and merges the pieces to form a usable larger image.
Only with image merging such images can be repurposed in any
way.

Other products extract unusable garbage, while TET delivers text.

The page contents are not even displayed in Acrobat, but TET still
correctly extracts the text.

TET reorders the visual mixture of right-to-left and left-to-right
text to create proper logical text output.

Other products extract 133 tiny little strips.
TET extracts a single large image.

PDFlib TET 4, 2010-07 PDFlib GmbH5 www.pdflib.com

About PDFlib GmbH

PDFlib GmbH is completely focused on PDF technology. Customers
worldwide use PDFlib products since 1997. The company closely
follows development and market trends, such as ISO standards for
PDF. PDFlib GmbH products are distributed all over the world with
major markets in North America, Europe, and Japan.

Contact

Fully functional evaluation versions including documentation and
samples are available on our Web site. For more information please
contact:

 PDFlib GmbH
 Franziska-Bilek-Weg 9, 80339 München, Germany
	 phone	+49	•	89	•	452	33	84-0,	fax	+49	•	89	•	452	33	84-99
 sales@pdflib.com
 www.pdflib.com

 DEF

Many Ways to use TET

TET is available as a programming library for various development
environments, and as a command-line tool for batch operations.
Both offer similar features, but are suitable for different deploy-
ment scenarios. Both the TET library and the TET command-line
tool can create TETML, TET’s XML-based output format.

TET offers the following deployment options:
The TET programming library (component) is used for integration >
into desktop or server applications. Examples for using the library
are included in the TET package.
The TET command-line tool is suited for batch processing PDF >
documents. It doesn’t require any programming, but offers
command-line options which can be used to integrate it into
complex workflows.
TETML output is suited for XML-based workflows and developers >
who are familiar with the wide range of XML processing tools
and languages, e.g. XSLT.
TET connectors are suited for integrating TET in various common >
software packages, e.g. databases and search engines.

The TET Family of Products

The TET family comprises the following products:
The TET core product as described in this datasheet. >
TET PDF IFilter is available as a separate product. It is suitable for >
use with Microsoft search products, e.g. Windows Search, Share-
Point and SQL Server (see separate datasheet for details).
The TET Plugin for Adobe Acrobat is a free utility for extracting >
text and images from PDF. It can be used to evaluate TET interac-
tively.

Supported Development Environments

PDFlib TET is everywhere – it runs on practically all computing plat-
forms. We offer 32-bit and 64-bit packages for all common flavors
of Windows, Mac OS, Linux and Unix, as well as for IBM i5/iSeries
and zSeries systems.

The TET core is written in highly optimized C code for maximum
performance and small overhead. Via a simple API (Application
Programming Interface) the TET functionality is accessible from a
variety of development environments:

COM for use with VB, ASP, Borland Delphi, etc. >
C and C++ >
Java, including servlets and Java Application Server >
.NET for use with C#, VB.NET, ASP.NET, etc. >
Perl >
PHP >
Python >
REALbasic >
RPG (IBM i5/iSeries) >

Benefits of using PDFlib Software
Rock-solid Products

Tens of thousands of programmers worldwide are working with
our software. PDFlib meets all quality and performance require-
ments for server deployment. All PDFlib products are suitable for
robust 24x7 server deployment and unattended batch processing.

Speed and Simplicity

PDFlib products are incredibly fast – up to thousands of pages per
second. The programming interface is straightforward and easy to
learn.

PDFlib Products all over the World

Our products support all international languages as well as Uni-
code. They are used by customers in all parts of the world.

Professional Support

If there’s a problem, we will try to help. We offer commercial sup-
port to meet the requirements of your business-critical applica-
tions. By adding support you will have access to the latest versions,
and have guaranteed response times should any problems arise.

Licensing

We offer various licensing programs for server licenses, integration
and site licenses, and source code licenses. Support contracts for
extended technical support with short response times and free
updates are also available.

PDFlib-8.0.6-SunOS-sparc64-perl/bind/data/pdflib.upr

PS-Resources-1.0

% This is a sample UPR file for use with PDFlib. The complete description
% of the UPR file format can be found in the PDFlib manual.
% All resources can also be set at runtime via PDF_set_parameter().
% Some resources will also be search in the Windows registry.

% %%%
% List of all resource categories which are specified in the file

SearchPath
FontAFM
FontPFM
FontOutline
Encoding
ICCProfile
StandardOutputIntent
.

% %%%
% The SearchPath section.
% PDFlib will search for any files (font, PDFs, ICC profiles, images)
% in all the directories listed here. Modify as appropriate.
% Do not mix SearchPath with the deprecated "prefix" feature.

SearchPath
% /var/fonts
% C:/psfonts
% d:/myimagefolder
.

% %%%
% The AFM font metrics section, one line per font in the format
% <fontname>=<filename>
% Note that PostScript font names must not contain any blank character

FontAFM
.

% %%%
% The PFM font metrics section, one line per font in the format
% <fontname>=<filename>
% Note that PostScript font names must not contain any blank character

FontPFM
%Poetica-ChanceryI=Poetica-ChanceryI.pfm
.

% %%%
% The PostScript, TrueType, and OpenType font outline section, one line per
% font in the format
% <fontname>=<filename>
% Note that PostScript font names must not contain any blank character,
% but TrueType font names may contain blank characters (and often do).

FontOutline
.

% %%%
% The Encoding section, one line per encoding in the format
% <encodingname>=<filename>
% This will only rarely be required since PDFlib contains a lot of built-in
% encodings.

Encoding
%cp0874=cp0874.cpg
.

% %%%
% The ICCProfile section lists the names of known ICC color profiles in the
% format
% <encodingname>=<filename>

ICCProfile
%highspeedprinter=cmykhighspeed.icc
.

% %%%
% The StandardOutputIntent section lists the names of known standard output
% intents for PDF/X. This will only be used when standard intent names other
% than those known to PDFlib internally will be used.
% format
% <intentname>=<description>

StandardOutputIntent
.

PDFlib-8.0.6-SunOS-sparc64-perl/bind/data/PDFlib-logo.tif

PDFlib-8.0.6-SunOS-sparc64-perl/bind/data/nesrin_gray.jpg

PDFlib-8.0.6-SunOS-sparc64-perl/bind/data/ScheherazadeRegOT.ttf

PDFlib-8.0.6-SunOS-sparc64-perl/bind/data/SILEOT.ttf

PDFlib-8.0.6-SunOS-sparc64-perl/bind/data/raghu8.ttf

PDFlib-8.0.6-SunOS-sparc64-perl/bind/data/Norasi.ttf

PDFlib-8.0.6-SunOS-sparc64-perl/bind/data/fallback.ttf

PDFlib-8.0.6-SunOS-sparc64-perl/bind/data/ISOcoated.icc

PDFlib-8.0.6-SunOS-sparc64-perl/bind/data/EUDC.TTE

PDFlib-8.0.6-SunOS-sparc64-perl/bind/data/PDFlibWing.gai

PDFlib-8.0.6-SunOS-sparc64-perl/bind/data/DejaVuSerif.ttf

PDFlib-8.0.6-SunOS-sparc64-perl/bind/data/munich.png

PDFlib-8.0.6-SunOS-sparc64-perl/bind/data/x5target.pdf

PDFlib-8.0.6-SunOS-sparc64-perl/bind/data/UniJIS-UTF16-H

PDFlib-8.0.6-SunOS-sparc64-perl/bind/data/Adobe-Japan1-UCS2

PDFlib-8.0.6-SunOS-sparc64-perl/bind/data/TIR_____.AFM

Comments

Copyright (c) 1985, 1987, 1989, 1990, 1993, 1997 Adobe Systems Incorporated. All Rights Reserved.

UniqueID 43146

VMusage 34396 41288

PDFlib-8.0.6-SunOS-sparc64-perl/bind/perl/readme.txt

PDFlib and different versions of Perl
=====================================

Since extensions for Perl depend on the specific version of Perl in
use, we deliver various binary flavors of the PDFlib binding for Perl.

In the binary packages you will find a separate directory for
each supported version of Perl:

- perl58	for Perl 5.8.x
- perl58-nt	for Perl 5.8.x (compiled without ithread support)
- perl510	for Perl 5.10.x
- perl510-nt	for Perl 5.10.x (compiled without ithread support)

Note that not all versions are available for all platforms. Perl on
SunOS and FreeBSD normally does not have ithreads support.

If you see the following message when trying to use the PDFlib binding
for Perl:

 Unresolved symbol: Perl_Gthr_key_ptr (code)

you are using a version of PDFlib which has been built with ithread
support, but have a Perl binary without ithread support. To solve
this you must use the "-nt" build of PDFlib.

ActiveState Perl distributions work with the PDFlib bindings for Perl,
i.e. those with ithread support (and not the "-nt" version).

PDFlib-8.0.6-SunOS-sparc64-perl/bind/perl/Makefile

Sample Makefile for PDFlib's Perl binding
$Id: Makefile.sample,v 1.7 2009/09/11 10:32:16 stm Exp $

RM	= rm -f
PERLBIN = perl

all: test

test::
	-$(PERLBIN) hello.pl
	-$(PERLBIN) image.pl
	-$(PERLBIN) pdfclock.pl
	-$(PERLBIN) chartab.pl
	-$(PERLBIN) invoice.pl
	-$(PERLBIN) businesscard.pl
	-$(PERLBIN) starter_3d.pl
	-$(PERLBIN) starter_basic.pl
	-$(PERLBIN) starter_block.pl
	-$(PERLBIN) starter_color.pl
	-$(PERLBIN) starter_fallback.pl
	-$(PERLBIN) starter_geospatial.pl
	-$(PERLBIN) starter_graphics.pl
	-$(PERLBIN) starter_image.pl
	-$(PERLBIN) starter_layer.pl
	-$(PERLBIN) starter_opentype.pl
	-$(PERLBIN) starter_path.pl
	-$(PERLBIN) starter_pcos.pl
	-$(PERLBIN) starter_pdfa1b.pl
	-$(PERLBIN) starter_pdfmerge.pl
	-$(PERLBIN) starter_pdfx3.pl
	-$(PERLBIN) starter_pdfx4.pl
	-$(PERLBIN) starter_pdfx5g.pl
	-$(PERLBIN) starter_portfolio.pl
	-$(PERLBIN) starter_pvf.pl
	-$(PERLBIN) starter_shaping.pl
	-$(PERLBIN) starter_table.pl
	-$(PERLBIN) starter_tagged.pl
	-$(PERLBIN) starter_textflow.pl
	-$(PERLBIN) starter_textline.pl
	-$(PERLBIN) starter_type3font.pl
	-$(PERLBIN) starter_webform.pl

clean::
	$(RM) hello.pdf image.pdf pdfclock.pdf chartab.pdf invoice.pdf
	$(RM) businesscard.pdf quickreference.pdf
	$(RM) starter_*.pdf starter_pcos.txt

PDFlib-8.0.6-SunOS-sparc64-perl/bind/perl/pdflib_pl.pm

#---#
Copyright (c) 1997-2010 PDFlib GmbH. All rights reserved.
#---#
This software may not be copied or distributed except as expressly
authorized by PDFlib GmbH's general license agreement or a custom
license agreement signed by PDFlib GmbH.
For more information about licensing please refer to www.pdflib.com.
#---#

$Id: pdflib_pl.pm,v 1.32 2009/11/24 09:22:29 rjs Exp $
#
#---*
PDFlib - A library for generating PDF on the fly |
#---+

package pdflib_pl;
require Exporter;
require DynaLoader;
our $VERSION = 8.0;
@ISA = qw(Exporter DynaLoader);
package pdflibc;
bootstrap pdflib_pl;
var_pdflib_init();
@EXPORT = qw();

---------- BASE METHODS -------------

package pdflib_pl;

sub TIEHASH {
 my ($classname,$obj) = @_;
 return bless $obj, $classname;
}

sub CLEAR { }

sub this {
 my $ptr = shift;
 return tied(%$ptr);
}

------- FUNCTION WRAPPERS --------

update from pl_wrapped.c
utf* function to be added manually
package pdflib_pl;
*PDF_new = *pdflibc::PDF_new;
*PDF_delete = *pdflibc::PDF_delete;
*PDF_utf16_to_utf8 = *pdflibc::PDF_utf16_to_utf8;
*PDF_utf32_to_utf16 = *pdflibc::PDF_utf32_to_utf16;
*PDF_utf8_to_utf16 = *pdflibc::PDF_utf8_to_utf16;
*PDF_utf32_to_utf8 = *pdflibc::PDF_utf32_to_utf8;
*PDF_utf8_to_utf32 = *pdflibc::PDF_utf8_to_utf32;
*PDF_utf16_to_utf32 = *pdflibc::PDF_utf16_to_utf32;

*PDF_activate_item = *pdflibc::PDF_activate_item;
*PDF_add_bookmark = *pdflibc::PDF_add_bookmark;
*PDF_add_launchlink = *pdflibc::PDF_add_launchlink;
*PDF_add_locallink = *pdflibc::PDF_add_locallink;
*PDF_add_nameddest = *pdflibc::PDF_add_nameddest;
*PDF_add_note = *pdflibc::PDF_add_note;
*PDF_add_path_point = *pdflibc::PDF_add_path_point;
*PDF_add_pdflink = *pdflibc::PDF_add_pdflink;
*PDF_add_portfolio_file = *pdflibc::PDF_add_portfolio_file;
*PDF_add_portfolio_folder = *pdflibc::PDF_add_portfolio_folder;
*PDF_add_table_cell = *pdflibc::PDF_add_table_cell;
*PDF_add_textflow = *pdflibc::PDF_add_textflow;
*PDF_add_thumbnail = *pdflibc::PDF_add_thumbnail;
*PDF_add_weblink = *pdflibc::PDF_add_weblink;
*PDF_align = *pdflibc::PDF_align;
*PDF_arc = *pdflibc::PDF_arc;
*PDF_arcn = *pdflibc::PDF_arcn;
*PDF_attach_file = *pdflibc::PDF_attach_file;
*PDF_begin_document = *pdflibc::PDF_begin_document;
*PDF_begin_font = *pdflibc::PDF_begin_font;
*PDF_begin_glyph = *pdflibc::PDF_begin_glyph;
*PDF_begin_item = *pdflibc::PDF_begin_item;
*PDF_begin_layer = *pdflibc::PDF_begin_layer;
*PDF_begin_mc = *pdflibc::PDF_begin_mc;
*PDF_begin_page = *pdflibc::PDF_begin_page;
*PDF_begin_page_ext = *pdflibc::PDF_begin_page_ext;
*PDF_begin_pattern = *pdflibc::PDF_begin_pattern;
*PDF_begin_template = *pdflibc::PDF_begin_template;
*PDF_begin_template_ext = *pdflibc::PDF_begin_template_ext;
*PDF_circle = *pdflibc::PDF_circle;
*PDF_circular_arc = *pdflibc::PDF_circular_arc;
*PDF_clip = *pdflibc::PDF_clip;
*PDF_close = *pdflibc::PDF_close;
*PDF_close_font = *pdflibc::PDF_close_font;
*PDF_close_image = *pdflibc::PDF_close_image;
*PDF_close_pdi = *pdflibc::PDF_close_pdi;
*PDF_close_pdi_document = *pdflibc::PDF_close_pdi_document;
*PDF_close_pdi_page = *pdflibc::PDF_close_pdi_page;
*PDF_closepath = *pdflibc::PDF_closepath;
*PDF_closepath_fill_stroke = *pdflibc::PDF_closepath_fill_stroke;
*PDF_closepath_stroke = *pdflibc::PDF_closepath_stroke;
*PDF_concat = *pdflibc::PDF_concat;
*PDF_continue_text = *pdflibc::PDF_continue_text;
*PDF_create_3dview = *pdflibc::PDF_create_3dview;
*PDF_create_action = *pdflibc::PDF_create_action;
*PDF_create_annotation = *pdflibc::PDF_create_annotation;
*PDF_create_bookmark = *pdflibc::PDF_create_bookmark;
*PDF_create_field = *pdflibc::PDF_create_field;
*PDF_create_fieldgroup = *pdflibc::PDF_create_fieldgroup;
*PDF_create_gstate = *pdflibc::PDF_create_gstate;
*PDF_create_pvf = *pdflibc::PDF_create_pvf;
*PDF_create_textflow = *pdflibc::PDF_create_textflow;
*PDF_curveto = *pdflibc::PDF_curveto;
*PDF_define_layer = *pdflibc::PDF_define_layer;
*PDF_delete_path = *pdflibc::PDF_delete_path;
*PDF_delete_pvf = *pdflibc::PDF_delete_pvf;
*PDF_delete_table = *pdflibc::PDF_delete_table;
*PDF_delete_textflow = *pdflibc::PDF_delete_textflow;
*PDF_draw_path = *pdflibc::PDF_draw_path;
*PDF_ellipse = *pdflibc::PDF_ellipse;
*PDF_encoding_set_char = *pdflibc::PDF_encoding_set_char;
*PDF_end_document = *pdflibc::PDF_end_document;
*PDF_end_font = *pdflibc::PDF_end_font;
*PDF_end_glyph = *pdflibc::PDF_end_glyph;
*PDF_end_item = *pdflibc::PDF_end_item;
*PDF_end_layer = *pdflibc::PDF_end_layer;
*PDF_end_mc = *pdflibc::PDF_end_mc;
*PDF_end_page = *pdflibc::PDF_end_page;
*PDF_end_page_ext = *pdflibc::PDF_end_page_ext;
*PDF_end_pattern = *pdflibc::PDF_end_pattern;
*PDF_end_template = *pdflibc::PDF_end_template;
*PDF_end_template_ext = *pdflibc::PDF_end_template_ext;
*PDF_endpath = *pdflibc::PDF_endpath;
*PDF_fill = *pdflibc::PDF_fill;
*PDF_fill_imageblock = *pdflibc::PDF_fill_imageblock;
*PDF_fill_pdfblock = *pdflibc::PDF_fill_pdfblock;
*PDF_fill_stroke = *pdflibc::PDF_fill_stroke;
*PDF_fill_textblock = *pdflibc::PDF_fill_textblock;
*PDF_findfont = *pdflibc::PDF_findfont;
*PDF_fit_image = *pdflibc::PDF_fit_image;
*PDF_fit_pdi_page = *pdflibc::PDF_fit_pdi_page;
*PDF_fit_table = *pdflibc::PDF_fit_table;
*PDF_fit_textflow = *pdflibc::PDF_fit_textflow;
*PDF_fit_textline = *pdflibc::PDF_fit_textline;
*PDF_get_apiname = *pdflibc::PDF_get_apiname;
*PDF_get_buffer = *pdflibc::PDF_get_buffer;
*PDF_get_errmsg = *pdflibc::PDF_get_errmsg;
*PDF_get_errnum = *pdflibc::PDF_get_errnum;
*PDF_get_parameter = *pdflibc::PDF_get_parameter;
*PDF_get_pdi_parameter = *pdflibc::PDF_get_pdi_parameter;
*PDF_get_pdi_value = *pdflibc::PDF_get_pdi_value;
*PDF_get_value = *pdflibc::PDF_get_value;
*PDF_info_font = *pdflibc::PDF_info_font;
*PDF_info_image = *pdflibc::PDF_info_image;
*PDF_info_matchbox = *pdflibc::PDF_info_matchbox;
*PDF_info_path = *pdflibc::PDF_info_path;
*PDF_info_pdi_page = *pdflibc::PDF_info_pdi_page;
*PDF_info_table = *pdflibc::PDF_info_table;
*PDF_info_textflow = *pdflibc::PDF_info_textflow;
*PDF_info_textline = *pdflibc::PDF_info_textline;
*PDF_initgraphics = *pdflibc::PDF_initgraphics;
*PDF_lineto = *pdflibc::PDF_lineto;
*PDF_load_3ddata = *pdflibc::PDF_load_3ddata;
*PDF_load_font = *pdflibc::PDF_load_font;
*PDF_load_iccprofile = *pdflibc::PDF_load_iccprofile;
*PDF_load_image = *pdflibc::PDF_load_image;
*PDF_makespotcolor = *pdflibc::PDF_makespotcolor;
*PDF_mc_point = *pdflibc::PDF_mc_point;
*PDF_moveto = *pdflibc::PDF_moveto;
*PDF_open_CCITT = *pdflibc::PDF_open_CCITT;
*PDF_open_file = *pdflibc::PDF_open_file;
*PDF_open_image = *pdflibc::PDF_open_image;
*PDF_open_image_file = *pdflibc::PDF_open_image_file;
*PDF_open_pdi = *pdflibc::PDF_open_pdi;
*PDF_open_pdi_document = *pdflibc::PDF_open_pdi_document;
*PDF_open_pdi_page = *pdflibc::PDF_open_pdi_page;
*PDF_pcos_get_number = *pdflibc::PDF_pcos_get_number;
*PDF_pcos_get_string = *pdflibc::PDF_pcos_get_string;
*PDF_pcos_get_stream = *pdflibc::PDF_pcos_get_stream;
*PDF_place_image = *pdflibc::PDF_place_image;
*PDF_place_pdi_page = *pdflibc::PDF_place_pdi_page;
*PDF_process_pdi = *pdflibc::PDF_process_pdi;
*PDF_rect = *pdflibc::PDF_rect;
*PDF_restore = *pdflibc::PDF_restore;
*PDF_resume_page = *pdflibc::PDF_resume_page;
*PDF_rotate = *pdflibc::PDF_rotate;
*PDF_save = *pdflibc::PDF_save;
*PDF_scale = *pdflibc::PDF_scale;
*PDF_set_border_color = *pdflibc::PDF_set_border_color;
*PDF_set_border_dash = *pdflibc::PDF_set_border_dash;
*PDF_set_border_style = *pdflibc::PDF_set_border_style;
*PDF_set_gstate = *pdflibc::PDF_set_gstate;
*PDF_set_info = *pdflibc::PDF_set_info;
*PDF_set_layer_dependency = *pdflibc::PDF_set_layer_dependency;
*PDF_set_option = *pdflibc::PDF_set_option;
*PDF_set_parameter = *pdflibc::PDF_set_parameter;
*PDF_set_text_pos = *pdflibc::PDF_set_text_pos;
*PDF_set_value = *pdflibc::PDF_set_value;
*PDF_setcolor = *pdflibc::PDF_setcolor;
*PDF_setdash = *pdflibc::PDF_setdash;
*PDF_setdashpattern = *pdflibc::PDF_setdashpattern;
*PDF_setflat = *pdflibc::PDF_setflat;
*PDF_setfont = *pdflibc::PDF_setfont;
*PDF_setgray = *pdflibc::PDF_setgray;
*PDF_setgray_fill = *pdflibc::PDF_setgray_fill;
*PDF_setgray_stroke = *pdflibc::PDF_setgray_stroke;
*PDF_setlinecap = *pdflibc::PDF_setlinecap;
*PDF_setlinejoin = *pdflibc::PDF_setlinejoin;
*PDF_setlinewidth = *pdflibc::PDF_setlinewidth;
*PDF_setmatrix = *pdflibc::PDF_setmatrix;
*PDF_setmiterlimit = *pdflibc::PDF_setmiterlimit;
*PDF_setpolydash = *pdflibc::PDF_setpolydash;
*PDF_setrgbcolor = *pdflibc::PDF_setrgbcolor;
*PDF_setrgbcolor_fill = *pdflibc::PDF_setrgbcolor_fill;
*PDF_setrgbcolor_stroke = *pdflibc::PDF_setrgbcolor_stroke;
*PDF_shading = *pdflibc::PDF_shading;
*PDF_shading_pattern = *pdflibc::PDF_shading_pattern;
*PDF_shfill = *pdflibc::PDF_shfill;
*PDF_show = *pdflibc::PDF_show;
*PDF_show_boxed = *pdflibc::PDF_show_boxed;
*PDF_show_xy = *pdflibc::PDF_show_xy;
*PDF_skew = *pdflibc::PDF_skew;
*PDF_stringwidth = *pdflibc::PDF_stringwidth;
*PDF_stroke = *pdflibc::PDF_stroke;
*PDF_suspend_page = *pdflibc::PDF_suspend_page;
*PDF_translate = *pdflibc::PDF_translate;
@EXPORT = qw(
PDF_new
PDF_delete
PDF_utf16_to_utf8
PDF_utf32_to_utf16
PDF_utf8_to_utf16
PDF_utf32_to_utf8
PDF_utf8_to_utf32
PDF_utf16_to_utf32

PDF_activate_item
PDF_add_bookmark
PDF_add_launchlink
PDF_add_locallink
PDF_add_nameddest
PDF_add_note
PDF_add_path_point
PDF_add_pdflink
PDF_add_portfolio_file
PDF_add_portfolio_folder
PDF_add_table_cell
PDF_add_textflow
PDF_add_thumbnail
PDF_add_weblink
PDF_align
PDF_arc
PDF_arcn
PDF_attach_file
PDF_begin_document
PDF_begin_font
PDF_begin_glyph
PDF_begin_item
PDF_begin_layer
PDF_begin_mc
PDF_begin_page
PDF_begin_page_ext
PDF_begin_pattern
PDF_begin_template
PDF_begin_template_ext
PDF_circle
PDF_circular_arc
PDF_clip
PDF_close
PDF_close_font
PDF_close_image
PDF_close_pdi
PDF_close_pdi_document
PDF_close_pdi_page
PDF_closepath
PDF_closepath_fill_stroke
PDF_closepath_stroke
PDF_concat
PDF_continue_text
PDF_create_3dview
PDF_create_action
PDF_create_annotation
PDF_create_bookmark
PDF_create_field
PDF_create_fieldgroup
PDF_create_gstate
PDF_create_pvf
PDF_create_textflow
PDF_curveto
PDF_define_layer
PDF_delete_path
PDF_delete_pvf
PDF_delete_table
PDF_delete_textflow
PDF_draw_path
PDF_ellipse
PDF_encoding_set_char
PDF_end_document
PDF_end_font
PDF_end_glyph
PDF_end_item
PDF_end_layer
PDF_end_mc
PDF_end_page
PDF_end_page_ext
PDF_end_pattern
PDF_end_template
PDF_end_template_ext
PDF_endpath
PDF_fill
PDF_fill_imageblock
PDF_fill_pdfblock
PDF_fill_stroke
PDF_fill_textblock
PDF_findfont
PDF_fit_image
PDF_fit_pdi_page
PDF_fit_table
PDF_fit_textflow
PDF_fit_textline
PDF_get_apiname
PDF_get_buffer
PDF_get_errmsg
PDF_get_errnum
PDF_get_parameter
PDF_get_pdi_parameter
PDF_get_pdi_value
PDF_get_value
PDF_info_font
PDF_info_image
PDF_info_matchbox
PDF_info_path
PDF_info_pdi_page
PDF_info_table
PDF_info_textflow
PDF_info_textline
PDF_initgraphics
PDF_lineto
PDF_load_3ddata
PDF_load_font
PDF_load_iccprofile
PDF_load_image
PDF_makespotcolor
PDF_mc_point
PDF_moveto
PDF_open_CCITT
PDF_open_file
PDF_open_image
PDF_open_image_file
PDF_open_pdi
PDF_open_pdi_document
PDF_open_pdi_page
PDF_pcos_get_number
PDF_pcos_get_string
PDF_pcos_get_stream
PDF_place_image
PDF_place_pdi_page
PDF_process_pdi
PDF_rect
PDF_restore
PDF_resume_page
PDF_rotate
PDF_save
PDF_scale
PDF_set_border_color
PDF_set_border_dash
PDF_set_border_style
PDF_set_gstate
PDF_set_info
PDF_set_layer_dependency
PDF_set_option
PDF_set_parameter
PDF_set_text_pos
PDF_set_value
PDF_setcolor
PDF_setdash
PDF_setdashpattern
PDF_setflat
PDF_setfont
PDF_setgray
PDF_setgray_fill
PDF_setgray_stroke
PDF_setlinecap
PDF_setlinejoin
PDF_setlinewidth
PDF_setmatrix
PDF_setmiterlimit
PDF_setpolydash
PDF_setrgbcolor
PDF_setrgbcolor_fill
PDF_setrgbcolor_stroke
PDF_shading
PDF_shading_pattern
PDF_shfill
PDF_show
PDF_show_boxed
PDF_show_xy
PDF_skew
PDF_stringwidth
PDF_stroke
PDF_suspend_page
PDF_translate
);

------- VARIABLE STUBS --------

package pdflib_pl;

1;

PDFlib-8.0.6-SunOS-sparc64-perl/bind/perl/PDFlib/PDFlib.pm

#---#
Copyright (c) 1997-2010 PDFlib GmbH. All rights reserved.
#---#
This software may not be copied or distributed except as expressly
authorized by PDFlib GmbH's general license agreement or a custom
license agreement signed by PDFlib GmbH.
For more information about licensing please refer to www.pdflib.com.
#---#

$Id: PDFlib.pm,v 1.5 2009/11/24 09:22:30 rjs Exp $
#
#---*
PDFlib - A library for generating PDF on the fly |
#---+

package PDFlib::PDFlib;

use strict;
use Carp;

use pdflib_pl 8.0;
our $VERSION = 8.0;

sub new {
 my $class = shift;
 my $self = {};
 my $pdf = PDF_new();

 bless $self, $class;
 $self->{pdf} = $pdf;
 PDF_set_parameter($pdf, "objorient", "true");

 return $self;
}

sub DESTROY {
 my $self = shift;

 PDF_delete($self->{pdf});
}

Automatically generated methods

sub activate_item {
 my $self = shift;
 eval {
	PDF_activate_item($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
}

sub add_bookmark {
 my $self = shift;
 my $ret;
 eval {
	$ret = PDF_add_bookmark($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
 return($ret);
}

sub add_launchlink {
 my $self = shift;
 eval {
	PDF_add_launchlink($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
}

sub add_locallink {
 my $self = shift;
 eval {
	PDF_add_locallink($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
}

sub add_nameddest {
 my $self = shift;
 eval {
	PDF_add_nameddest($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
}

sub add_note {
 my $self = shift;
 eval {
	PDF_add_note($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
}

sub add_path_point {
 my $self = shift;
 my $ret;
 eval {
	$ret = PDF_add_path_point($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
 return($ret);
}

sub add_pdflink {
 my $self = shift;
 eval {
	PDF_add_pdflink($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
}

sub add_portfolio_file {
 my $self = shift;
 my $ret;
 eval {
	$ret = PDF_add_portfolio_file($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
 return($ret);
}

sub add_portfolio_folder {
 my $self = shift;
 my $ret;
 eval {
	$ret = PDF_add_portfolio_folder($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
 return($ret);
}

sub add_table_cell {
 my $self = shift;
 my $ret;
 eval {
	$ret = PDF_add_table_cell($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
 return($ret);
}

sub add_textflow {
 my $self = shift;
 my $ret;
 eval {
	$ret = PDF_add_textflow($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
 return($ret);
}

sub add_thumbnail {
 my $self = shift;
 eval {
	PDF_add_thumbnail($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
}

sub add_weblink {
 my $self = shift;
 eval {
	PDF_add_weblink($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
}

sub align {
 my $self = shift;
 eval {
	PDF_align($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
}

sub arc {
 my $self = shift;
 eval {
	PDF_arc($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
}

sub arcn {
 my $self = shift;
 eval {
	PDF_arcn($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
}

sub attach_file {
 my $self = shift;
 eval {
	PDF_attach_file($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
}

sub begin_document {
 my $self = shift;
 my $ret;
 eval {
	$ret = PDF_begin_document($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
 return($ret);
}

sub begin_font {
 my $self = shift;
 eval {
	PDF_begin_font($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
}

sub begin_glyph {
 my $self = shift;
 eval {
	PDF_begin_glyph($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
}

sub begin_item {
 my $self = shift;
 my $ret;
 eval {
	$ret = PDF_begin_item($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
 return($ret);
}

sub begin_layer {
 my $self = shift;
 eval {
	PDF_begin_layer($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
}

sub begin_mc {
 my $self = shift;
 eval {
	PDF_begin_mc($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
}

sub begin_page {
 my $self = shift;
 eval {
	PDF_begin_page($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
}

sub begin_page_ext {
 my $self = shift;
 eval {
	PDF_begin_page_ext($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
}

sub begin_pattern {
 my $self = shift;
 my $ret;
 eval {
	$ret = PDF_begin_pattern($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
 return($ret);
}

sub begin_template {
 my $self = shift;
 my $ret;
 eval {
	$ret = PDF_begin_template($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
 return($ret);
}

sub begin_template_ext {
 my $self = shift;
 my $ret;
 eval {
	$ret = PDF_begin_template_ext($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
 return($ret);
}

sub circle {
 my $self = shift;
 eval {
	PDF_circle($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
}

sub circular_arc {
 my $self = shift;
 eval {
	PDF_circular_arc($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
}

sub clip {
 my $self = shift;
 eval {
	PDF_clip($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
}

sub close {
 my $self = shift;
 eval {
	PDF_close($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
}

sub close_font {
 my $self = shift;
 eval {
	PDF_close_font($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
}

sub close_image {
 my $self = shift;
 eval {
	PDF_close_image($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
}

sub close_pdi {
 my $self = shift;
 eval {
	PDF_close_pdi($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
}

sub close_pdi_document {
 my $self = shift;
 eval {
	PDF_close_pdi_document($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
}

sub close_pdi_page {
 my $self = shift;
 eval {
	PDF_close_pdi_page($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
}

sub closepath {
 my $self = shift;
 eval {
	PDF_closepath($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
}

sub closepath_fill_stroke {
 my $self = shift;
 eval {
	PDF_closepath_fill_stroke($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
}

sub closepath_stroke {
 my $self = shift;
 eval {
	PDF_closepath_stroke($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
}

sub concat {
 my $self = shift;
 eval {
	PDF_concat($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
}

sub continue_text {
 my $self = shift;
 eval {
	PDF_continue_text($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
}

sub create_3dview {
 my $self = shift;
 my $ret;
 eval {
	$ret = PDF_create_3dview($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
 return($ret);
}

sub create_action {
 my $self = shift;
 my $ret;
 eval {
	$ret = PDF_create_action($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
 return($ret);
}

sub create_annotation {
 my $self = shift;
 eval {
	PDF_create_annotation($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
}

sub create_bookmark {
 my $self = shift;
 my $ret;
 eval {
	$ret = PDF_create_bookmark($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
 return($ret);
}

sub create_field {
 my $self = shift;
 eval {
	PDF_create_field($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
}

sub create_fieldgroup {
 my $self = shift;
 eval {
	PDF_create_fieldgroup($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
}

sub create_gstate {
 my $self = shift;
 my $ret;
 eval {
	$ret = PDF_create_gstate($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
 return($ret);
}

sub create_pvf {
 my $self = shift;
 eval {
	PDF_create_pvf($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
}

sub create_textflow {
 my $self = shift;
 my $ret;
 eval {
	$ret = PDF_create_textflow($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
 return($ret);
}

sub curveto {
 my $self = shift;
 eval {
	PDF_curveto($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
}

sub define_layer {
 my $self = shift;
 my $ret;
 eval {
	$ret = PDF_define_layer($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
 return($ret);
}

sub delete_path {
 my $self = shift;
 eval {
	PDF_delete_path($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
}

sub delete_pvf {
 my $self = shift;
 my $ret;
 eval {
	$ret = PDF_delete_pvf($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
 return($ret);
}

sub delete_table {
 my $self = shift;
 eval {
	PDF_delete_table($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
}

sub delete_textflow {
 my $self = shift;
 eval {
	PDF_delete_textflow($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
}

sub draw_path {
 my $self = shift;
 eval {
	PDF_draw_path($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
}

sub ellipse {
 my $self = shift;
 eval {
	PDF_ellipse($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
}

sub encoding_set_char {
 my $self = shift;
 eval {
	PDF_encoding_set_char($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
}

sub end_document {
 my $self = shift;
 eval {
	PDF_end_document($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
}

sub end_font {
 my $self = shift;
 eval {
	PDF_end_font($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
}

sub end_glyph {
 my $self = shift;
 eval {
	PDF_end_glyph($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
}

sub end_item {
 my $self = shift;
 eval {
	PDF_end_item($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
}

sub end_layer {
 my $self = shift;
 eval {
	PDF_end_layer($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
}

sub end_mc {
 my $self = shift;
 eval {
	PDF_end_mc($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
}

sub end_page {
 my $self = shift;
 eval {
	PDF_end_page($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
}

sub end_page_ext {
 my $self = shift;
 eval {
	PDF_end_page_ext($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
}

sub end_pattern {
 my $self = shift;
 eval {
	PDF_end_pattern($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
}

sub end_template {
 my $self = shift;
 eval {
	PDF_end_template($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
}

sub end_template_ext {
 my $self = shift;
 eval {
	PDF_end_template_ext($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
}

sub endpath {
 my $self = shift;
 eval {
	PDF_endpath($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
}

sub fill {
 my $self = shift;
 eval {
	PDF_fill($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
}

sub fill_imageblock {
 my $self = shift;
 my $ret;
 eval {
	$ret = PDF_fill_imageblock($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
 return($ret);
}

sub fill_pdfblock {
 my $self = shift;
 my $ret;
 eval {
	$ret = PDF_fill_pdfblock($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
 return($ret);
}

sub fill_stroke {
 my $self = shift;
 eval {
	PDF_fill_stroke($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
}

sub fill_textblock {
 my $self = shift;
 my $ret;
 eval {
	$ret = PDF_fill_textblock($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
 return($ret);
}

sub findfont {
 my $self = shift;
 my $ret;
 eval {
	$ret = PDF_findfont($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
 return($ret);
}

sub fit_image {
 my $self = shift;
 eval {
	PDF_fit_image($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
}

sub fit_pdi_page {
 my $self = shift;
 eval {
	PDF_fit_pdi_page($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
}

sub fit_table {
 my $self = shift;
 my $ret;
 eval {
	$ret = PDF_fit_table($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
 return($ret);
}

sub fit_textflow {
 my $self = shift;
 my $ret;
 eval {
	$ret = PDF_fit_textflow($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
 return($ret);
}

sub fit_textline {
 my $self = shift;
 eval {
	PDF_fit_textline($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
}

sub get_apiname {
 my $self = shift;
 my $ret;
 eval {
	$ret = PDF_get_apiname($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
 return($ret);
}

sub get_buffer {
 my $self = shift;
 my $ret;
 eval {
	$ret = PDF_get_buffer($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
 return($ret);
}

sub get_errmsg {
 my $self = shift;
 my $ret;
 eval {
	$ret = PDF_get_errmsg($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
 return($ret);
}

sub get_errnum {
 my $self = shift;
 my $ret;
 eval {
	$ret = PDF_get_errnum($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
 return($ret);
}

sub get_parameter {
 my $self = shift;
 my $ret;
 eval {
	$ret = PDF_get_parameter($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
 return($ret);
}

sub get_pdi_parameter {
 my $self = shift;
 my $ret;
 eval {
	$ret = PDF_get_pdi_parameter($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
 return($ret);
}

sub get_pdi_value {
 my $self = shift;
 my $ret;
 eval {
	$ret = PDF_get_pdi_value($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
 return($ret);
}

sub get_value {
 my $self = shift;
 my $ret;
 eval {
	$ret = PDF_get_value($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
 return($ret);
}

sub info_font {
 my $self = shift;
 my $ret;
 eval {
	$ret = PDF_info_font($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
 return($ret);
}

sub info_image {
 my $self = shift;
 my $ret;
 eval {
	$ret = PDF_info_image($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
 return($ret);
}

sub info_matchbox {
 my $self = shift;
 my $ret;
 eval {
	$ret = PDF_info_matchbox($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
 return($ret);
}

sub info_path {
 my $self = shift;
 my $ret;
 eval {
	$ret = PDF_info_path($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
 return($ret);
}

sub info_pdi_page {
 my $self = shift;
 my $ret;
 eval {
	$ret = PDF_info_pdi_page($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
 return($ret);
}

sub info_table {
 my $self = shift;
 my $ret;
 eval {
	$ret = PDF_info_table($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
 return($ret);
}

sub info_textflow {
 my $self = shift;
 my $ret;
 eval {
	$ret = PDF_info_textflow($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
 return($ret);
}

sub info_textline {
 my $self = shift;
 my $ret;
 eval {
	$ret = PDF_info_textline($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
 return($ret);
}

sub initgraphics {
 my $self = shift;
 eval {
	PDF_initgraphics($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
}

sub lineto {
 my $self = shift;
 eval {
	PDF_lineto($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
}

sub load_3ddata {
 my $self = shift;
 my $ret;
 eval {
	$ret = PDF_load_3ddata($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
 return($ret);
}

sub load_font {
 my $self = shift;
 my $ret;
 eval {
	$ret = PDF_load_font($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
 return($ret);
}

sub load_iccprofile {
 my $self = shift;
 my $ret;
 eval {
	$ret = PDF_load_iccprofile($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
 return($ret);
}

sub load_image {
 my $self = shift;
 my $ret;
 eval {
	$ret = PDF_load_image($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
 return($ret);
}

sub makespotcolor {
 my $self = shift;
 my $ret;
 eval {
	$ret = PDF_makespotcolor($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
 return($ret);
}

sub mc_point {
 my $self = shift;
 eval {
	PDF_mc_point($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
}

sub moveto {
 my $self = shift;
 eval {
	PDF_moveto($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
}

sub open_CCITT {
 my $self = shift;
 my $ret;
 eval {
	$ret = PDF_open_CCITT($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
 return($ret);
}

sub open_file {
 my $self = shift;
 my $ret;
 eval {
	$ret = PDF_open_file($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
 return($ret);
}

sub open_image {
 my $self = shift;
 my $ret;
 eval {
	$ret = PDF_open_image($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
 return($ret);
}

sub open_image_file {
 my $self = shift;
 my $ret;
 eval {
	$ret = PDF_open_image_file($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
 return($ret);
}

sub open_pdi {
 my $self = shift;
 my $ret;
 eval {
	$ret = PDF_open_pdi($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
 return($ret);
}

sub open_pdi_document {
 my $self = shift;
 my $ret;
 eval {
	$ret = PDF_open_pdi_document($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
 return($ret);
}

sub open_pdi_page {
 my $self = shift;
 my $ret;
 eval {
	$ret = PDF_open_pdi_page($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
 return($ret);
}

sub pcos_get_number {
 my $self = shift;
 my $ret;
 eval {
	$ret = PDF_pcos_get_number($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
 return($ret);
}

sub pcos_get_string {
 my $self = shift;
 my $ret;
 eval {
	$ret = PDF_pcos_get_string($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
 return($ret);
}

sub pcos_get_stream {
 my $self = shift;
 my $ret;
 eval {
	$ret = PDF_pcos_get_stream($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
 return($ret);
}

sub place_image {
 my $self = shift;
 eval {
	PDF_place_image($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
}

sub place_pdi_page {
 my $self = shift;
 eval {
	PDF_place_pdi_page($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
}

sub process_pdi {
 my $self = shift;
 my $ret;
 eval {
	$ret = PDF_process_pdi($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
 return($ret);
}

sub rect {
 my $self = shift;
 eval {
	PDF_rect($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
}

sub restore {
 my $self = shift;
 eval {
	PDF_restore($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
}

sub resume_page {
 my $self = shift;
 eval {
	PDF_resume_page($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
}

sub rotate {
 my $self = shift;
 eval {
	PDF_rotate($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
}

sub save {
 my $self = shift;
 eval {
	PDF_save($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
}

sub scale {
 my $self = shift;
 eval {
	PDF_scale($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
}

sub set_border_color {
 my $self = shift;
 eval {
	PDF_set_border_color($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
}

sub set_border_dash {
 my $self = shift;
 eval {
	PDF_set_border_dash($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
}

sub set_border_style {
 my $self = shift;
 eval {
	PDF_set_border_style($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
}

sub set_gstate {
 my $self = shift;
 eval {
	PDF_set_gstate($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
}

sub set_info {
 my $self = shift;
 eval {
	PDF_set_info($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
}

sub set_layer_dependency {
 my $self = shift;
 eval {
	PDF_set_layer_dependency($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
}

sub set_option {
 my $self = shift;
 eval {
	PDF_set_option($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
}

sub set_parameter {
 my $self = shift;
 eval {
	PDF_set_parameter($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
}

sub set_text_pos {
 my $self = shift;
 eval {
	PDF_set_text_pos($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
}

sub set_value {
 my $self = shift;
 eval {
	PDF_set_value($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
}

sub setcolor {
 my $self = shift;
 eval {
	PDF_setcolor($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
}

sub setdash {
 my $self = shift;
 eval {
	PDF_setdash($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
}

sub setdashpattern {
 my $self = shift;
 eval {
	PDF_setdashpattern($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
}

sub setflat {
 my $self = shift;
 eval {
	PDF_setflat($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
}

sub setfont {
 my $self = shift;
 eval {
	PDF_setfont($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
}

sub setgray {
 my $self = shift;
 eval {
	PDF_setgray($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
}

sub setgray_fill {
 my $self = shift;
 eval {
	PDF_setgray_fill($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
}

sub setgray_stroke {
 my $self = shift;
 eval {
	PDF_setgray_stroke($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
}

sub setlinecap {
 my $self = shift;
 eval {
	PDF_setlinecap($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
}

sub setlinejoin {
 my $self = shift;
 eval {
	PDF_setlinejoin($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
}

sub setlinewidth {
 my $self = shift;
 eval {
	PDF_setlinewidth($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
}

sub setmatrix {
 my $self = shift;
 eval {
	PDF_setmatrix($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
}

sub setmiterlimit {
 my $self = shift;
 eval {
	PDF_setmiterlimit($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
}

sub setpolydash {
 my $self = shift;
 eval {
	PDF_setpolydash($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
}

sub setrgbcolor {
 my $self = shift;
 eval {
	PDF_setrgbcolor($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
}

sub setrgbcolor_fill {
 my $self = shift;
 eval {
	PDF_setrgbcolor_fill($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
}

sub setrgbcolor_stroke {
 my $self = shift;
 eval {
	PDF_setrgbcolor_stroke($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
}

sub shading {
 my $self = shift;
 my $ret;
 eval {
	$ret = PDF_shading($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
 return($ret);
}

sub shading_pattern {
 my $self = shift;
 my $ret;
 eval {
	$ret = PDF_shading_pattern($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
 return($ret);
}

sub shfill {
 my $self = shift;
 eval {
	PDF_shfill($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
}

sub show {
 my $self = shift;
 eval {
	PDF_show($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
}

sub show_boxed {
 my $self = shift;
 my $ret;
 eval {
	$ret = PDF_show_boxed($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
 return($ret);
}

sub show_xy {
 my $self = shift;
 eval {
	PDF_show_xy($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
}

sub skew {
 my $self = shift;
 eval {
	PDF_skew($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
}

sub stringwidth {
 my $self = shift;
 my $ret;
 eval {
	$ret = PDF_stringwidth($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
 return($ret);
}

sub stroke {
 my $self = shift;
 eval {
	PDF_stroke($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
}

sub suspend_page {
 my $self = shift;
 eval {
	PDF_suspend_page($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
}

sub translate {
 my $self = shift;
 eval {
	PDF_translate($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
}

sub utf16_to_utf8 {
 my $self = shift;
 my $ret;
 eval {
	$ret = PDF_utf16_to_utf8($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
 return($ret);
}

sub utf32_to_utf8 {
 my $self = shift;
 my $ret;
 eval {
	$ret = PDF_utf32_to_utf8($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
 return($ret);
}

sub utf8_to_utf32 {
 my $self = shift;
 my $ret;
 eval {
	$ret = PDF_utf8_to_utf32($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
 return($ret);
}

sub utf16_to_utf32 {
 my $self = shift;
 my $ret;
 eval {
	$ret = PDF_utf16_to_utf32($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
 return($ret);
}

sub utf32_to_utf16 {
 my $self = shift;
 my $ret;
 eval {
	$ret = PDF_utf32_to_utf16($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
 return($ret);
}

sub utf8_to_utf16 {
 my $self = shift;
 my $ret;
 eval {
	$ret = PDF_utf8_to_utf16($self->{pdf}, @_);
 };
 if ($@) {
	croak($@);
 }
 return($ret);
}

PDFlib-8.0.6-SunOS-sparc64-perl/bind/perl/hello.pl

#!/usr/bin/perl
$Id: hello.pl,v 1.31 2009/11/23 15:33:25 rjs Exp $
#
PDFlib client: hello example in Perl
#

use PDFlib::PDFlib 8.0;
use strict;

eval {
 my $p = new PDFlib::PDFlib;

 # This means we must check return values of load_font() etc.
 $p->set_parameter("errorpolicy", "return");

 # This line is required to avoid problems on Japanese systems
 $p->set_parameter("hypertextencoding", "winansi");

 if ($p->begin_document("hello.pdf", "") == -1) {
	die("Error: %s\n", $p->get_errmsg());
 }

 $p->set_info("Creator", "hello.pl");
 $p->set_info("Author", "Thomas Merz");
 $p->set_info("Title", "Hello world (Perl)!");

 $p->begin_page_ext(595, 842, "");

 my $font = $p->load_font("Helvetica-Bold", "winansi", "");
 if ($font == -1) {
	die("Error: %s\n", $p->get_errmsg());
 }

 $p->setfont($font, 24.0);
 $p->set_text_pos(50, 700);
 $p->show("Hello world!");
 $p->continue_text("(says Perl)");
 $p->end_page_ext("");

 $p->end_document("");
};

if ($@) {
 die("$0: PDFlib Exception occurred:\n$@");
}

PDFlib-8.0.6-SunOS-sparc64-perl/bind/perl/image.pl

#!/usr/bin/perl
$Id: image.pl,v 1.27 2009/11/23 15:33:25 rjs Exp $
#
PDFlib client: image example in Perl
#

use PDFlib::PDFlib 8.0;

This is where font/image/PDF input files live. Adjust as necessary.
my $searchpath = "../data";
my $imagefile = "nesrin.jpg";

my $p = new PDFlib::PDFlib;

eval {
 # This means we must check return values of load_font() etc.
 $p->set_parameter("errorpolicy", "return");

 $p->set_parameter("SearchPath", $searchpath);

 # This line is required to avoid problems on Japanese systems
 $p->set_parameter("hypertextencoding", "winansi");

 if ($p->begin_document("image.pdf", "") == -1){
	die("Error: %s\n", $p->get_errmsg());
 }

 $p->set_info("Creator", "image.pl");
 $p->set_info("Author", "Thomas Merz");
 $p->set_info("Title", "image sample (Perl)");

 my $image = $p->load_image("auto", $imagefile, "");
 die "Couldn't open image '$imagefile'" if ($image == -1);

 # dummy page size, will be adjusted by $p->fit_image()
 $p->begin_page_ext(10, 10, "");
 $p->fit_image($image, 0, 0, "adjustpage");
 $p->close_image($image);
 $p->end_page_ext("");

 $p->end_document("");
};

if ($@) {
 die("$0: PDFlib Exception occurred:\n$@");
}

PDFlib-8.0.6-SunOS-sparc64-perl/bind/perl/pdfclock.pl

#!/usr/bin/perl
$Id: pdfclock.pl,v 1.23 2009/11/23 15:33:25 rjs Exp $
#
PDFlib client: pdfclock example in Perl
#

use PDFlib::PDFlib 8.0;
use strict;

my $RADIUS = 200.0;
my $MARGIN = 20.0;

eval {
 my $p = new PDFlib::PDFlib;

 # This means we must check return values of load_font() etc.
 $p->set_parameter("errorpolicy", "return");

 # This line is required to avoid problems on Japanese systems
 $p->set_parameter("hypertextencoding", "winansi");

 if ($p->begin_document("pdfclock.pdf", "") == -1) {
	die("Error: %s\n", $p->get_errmsg());
 }

 $p->set_info("Creator", "pdfclock.pl");
 $p->set_info("Author", "Thomas Merz");
 $p->set_info("Title", "PDF clock (Perl)");

 $p->begin_page_ext(2 * ($RADIUS + $MARGIN), 2 * ($RADIUS + $MARGIN),"");

 $p->translate($RADIUS + $MARGIN, $RADIUS + $MARGIN);
 $p->setcolor("fillstroke", "rgb", 0.0, 0.0, 1.0, 0.0);
 $p->save();

 # minute strokes
 $p->setlinewidth(2.0);
 for (my $alpha = 0; $alpha < 360; $alpha += 6) {
	$p->rotate(6.0);
	$p->moveto($RADIUS, 0.0);
	$p->lineto($RADIUS-$MARGIN/3, 0.0);
	$p->stroke();
 }

 $p->restore();
 $p->save();

 # 5 minute strokes
 $p->setlinewidth(3.0);
 for (my $alpha = 0; $alpha < 360; $alpha += 30) {
	$p->rotate(30.0);
	$p->moveto($RADIUS, 0.0);
	$p->lineto($RADIUS-$MARGIN, 0.0);
	$p->stroke();
 }

 my ($tm_sec,$tm_min,$tm_hour) = localtime(time);

 # draw hour hand
 $p->save();
 $p->rotate((-(($tm_min/60.0) + $tm_hour - 3.0) * 30.0));
 $p->moveto(-$RADIUS/10, -$RADIUS/20);
 $p->lineto($RADIUS/2, 0.0);
 $p->lineto(-$RADIUS/10, $RADIUS/20);
 $p->closepath();
 $p->fill();
 $p->restore();

 # draw minute hand
 $p->save();
 $p->rotate((-(($tm_sec/60.0) + $tm_min - 15.0) * 6.0));
 $p->moveto(-$RADIUS/10, -$RADIUS/20);
 $p->lineto($RADIUS * 0.8, 0.0);
 $p->lineto(-$RADIUS/10, $RADIUS/20);
 $p->closepath();
 $p->fill();
 $p->restore();

 # draw second hand
 $p->setcolor("fillstroke", "rgb", 1.0, 0.0, 0.0, 0.0);
 $p->setlinewidth(2);
 $p->save();
 $p->rotate(-(($tm_sec - 15.0) * 6.0));
 $p->moveto(-$RADIUS/5, 0.0);
 $p->lineto($RADIUS, 0.0);
 $p->stroke();
 $p->restore();

 # draw little circle at center
 $p->circle(0, 0, $RADIUS/30);
 $p->fill();

 $p->restore();
 $p->end_page_ext("");

 $p->end_document("");
};

if ($@) {
 die("$0: PDFlib Exception occurred:\n$@");
}

PDFlib-8.0.6-SunOS-sparc64-perl/bind/perl/chartab.pl

#!/usr/bin/perl
$Id: chartab.pl,v 1.23 2009/11/23 15:33:25 rjs Exp $
#
PDFlib client: hello example in Perl
#

use PDFlib::PDFlib 8.0;
use strict;

change these as required
my $fontname = "LuciduxSans-Oblique";

This is where font/image/PDF input files live. Adjust as necessary.
my $searchpath = "../data";

list of encodings to use
my @encodings = ("iso8859-1", "iso8859-2", "iso8859-15");

whether or not to embed the font
my $embed = 1;

use constant "FONTSIZE" => 	16;
use constant "TOP" =>		700;
use constant "LEFT" => 		50;
use constant "YINCR" => 	2*FONTSIZE;
use constant "XINCR" =>		2*FONTSIZE;

eval {
 my $p = new PDFlib::PDFlib;

 # This means we must check return values of load_font() etc.
 $p->set_parameter("errorpolicy", "return");

 $p->set_parameter("SearchPath", $searchpath);

 # This line is required to avoid problems on Japanese systems
 $p->set_parameter("hypertextencoding", "winansi");

 if ($p->begin_document("chartab.pdf",
	 "destination {type fitwindow page 1}") == -1) {
	die("Error: %s\n", $p->get_errmsg());
 }

 $p->set_info("Creator", "chartab.pl");
 $p->set_info("Author", "Thomas Merz");
 $p->set_info("Title", "Character table (Perl)");

 # loop over all encodings
 for (my $page = 0; $page <= $#encodings; $page++) {
	$p->begin_page_ext(595, 842, "");

	# print the heading and generate the bookmark
	my $font = $p->load_font("Helvetica", "winansi", "");
	if ($font == -1) {
	 die("Error: %s\n", $p->get_errmsg());
	}
	$p->setfont($font, FONTSIZE);
	my $buf = sprintf("%s (%s) %sembedded",
	 $fontname, $encodings[$page], $embed ? "" : "not ");

	$p->show_xy($buf, LEFT - XINCR, TOP + 3 * YINCR);
	$p->create_bookmark($buf, "");

	# print the row and column captions
	$p->setfont($font, 2 * FONTSIZE/3);

	for (my $row = 0; $row < 16; $row++) {
	 $buf = sprintf("x%X", $row);
	 $p->show_xy($buf, LEFT + $row*XINCR, TOP + YINCR);

	 $buf = sprintf("%Xx", $row);
	 $p->show_xy($buf, LEFT - XINCR, TOP - $row * YINCR);
	}

	# print the character table
	$font = $p->load_font($fontname, $encodings[$page],
	 $embed ? "embedding": "");
	if ($font == -1) {
	 die("Error: %s\n", $p->get_errmsg());
	}
	$p->setfont($font, FONTSIZE);

	my $y = TOP;
	my $x = LEFT;

	for (my $row = 0; $row < 16; $row++) {
	 for (my $col = 0; $col < 16; $col++) {
		$buf = sprintf("%c", 16*$row + $col);
		$p->show_xy($buf, $x, $y);
		$x += XINCR;
	 }
	 $x = LEFT;
	 $y -= YINCR;
	}

	$p->end_page_ext("");
 }

 $p->end_document("");
};

if ($@) {
 die("$0: PDFlib Exception occurred:\n$@");
}

PDFlib-8.0.6-SunOS-sparc64-perl/bind/perl/invoice.pl

#!/usr/bin/perl
$Id: invoice.pl,v 1.25 2009/11/23 15:33:25 rjs Exp $
#
PDFlib client: invoice generation demo
#

use PDFlib::PDFlib 8.0;
use strict;

my $left = 55;
my $right = 530;
my $fontsize = 12;
my $pagewidth = 595;
my $pageheight = 842;
my $fontsize = 12;
my $searchpath = "../data";
my $infile = "stationery.pdf";
my $baseopt = "ruler { 30 45 275 375 475} " .
	 "tabalignment {right left right right right} " .
	 "hortabmethod ruler fontsize 12 ";

This is where font/image/PDF input files live. Adjust as necessary.
my $closingtext =
	"Terms of payment: <fillcolor={rgb 1 0 0}>30 days net. " .
	"<fillcolor={gray 0}>90 days warranty starting at the day of sale. " .
	"This warranty covers defects in workmanship only. " .
	"<fontname=Helvetica-BoldOblique encoding=host>Kraxi Systems, Inc. " .
	"<resetfont>will, at its option, repair or replace the " .
	"product under the warranty. This warranty is not transferable. " .
	"No returns or exchanges will be accepted for wet products.";

my @data = ({name=>"Super Kite", 	price=>20,	quantity=>2},
	 {name=>"Turbo Flyer", 	price=>40, 	quantity=>5},
	 {name=>"Giga Trasch", 	price=>180, 	quantity=>1},
	 {name=>"Bare Bone Kit", 	price=>50, 	quantity=>3},
	 {name=>"Nitty Gritty", 	price=>20, 	quantity=>10},
	 {name=>"Pretty Dark Flyer",	price=>75, 	quantity=>1},
	 {name=>"Free Gift", 	price=>0, 	quantity=>1}
);

my @months = ("January", "February", "March", "April", "May", "June",
	 "July", "August", "September", "October", "November", "December");

eval {
 my $p = new PDFlib::PDFlib;

 # This means we must check return values of load_font() etc.
 $p->set_parameter("errorpolicy", "return");

 $p->set_parameter("SearchPath", $searchpath);

 # This line is required to avoid problems on Japanese systems
 $p->set_parameter("hypertextencoding", "winansi");

 if ($p->begin_document("invoice.pdf", "") == -1) {
	die("Error: %s\n", $p->get_errmsg());
 }

 $p->set_info("Creator", "invoice.pl");
 $p->set_info("Author", "Thomas Merz");
 $p->set_info("Title", "PDFlib invoice generation demo (Perl)");

 my $stationery = $p->open_pdi_document($infile, "");
 if ($stationery == -1) {
	die("Error: %s\n", $p->get_errmsg());
 }

 my $page = $p->open_pdi_page($stationery, 1, "");
 if ($page == -1) {
	die("Error: %s\n", $p->get_errmsg());
 }

 my $boldfont = $p->load_font("Helvetica-Bold", "winansi", "");
 if ($boldfont == -1) {
	die("Error: %s\n", $p->get_errmsg());
 }
 my $regularfont = $p->load_font("Helvetica", "winansi", "");
 if ($regularfont == -1) {
	die("Error: %s\n", $p->get_errmsg());
 }
 my $leading = $fontsize + 2;

 # Establish coordinates with the origin in the upper left corner.
 $p->begin_page_ext($pagewidth, $pageheight, "topdown");

 $p->fit_pdi_page($page, 0, $pageheight, "");
 $p->close_pdi_page($page);

 $p->setfont($regularfont, $fontsize);

 # print the address
 my $y = 170;
 $p->set_value("leading", $leading);

 $p->show_xy("John Q. Doe", $left, $y);
 $p->continue_text("255 Customer Lane");
 $p->continue_text("Suite B");
 $p->continue_text("12345 User Town");
 $p->continue_text("Everland");

 # print the header and date
 $p->setfont($boldfont, $fontsize);
 $y = 300;
 $p->show_xy("INVOICE", $left, $y);

 my $buf = sprintf("%s %d, %d", $months[(localtime)[4]], (localtime)[3],
 (localtime)[5]+1900);
 $p->fit_textline($buf, $right, $y, "position {100 0}");

 # print the invoice header line
 $y = 370;
 $buf = sprintf("\tITEM\tDESCRIPTION\tQUANTITY\tPRICE\tAMOUNT");
 my $optlist = sprintf("%s font %d", $baseopt, $boldfont);

 my $textflow = $p->create_textflow($buf, $optlist);

 if ($textflow == -1) {
	die("Error: %s\n", $p->get_errmsg());
 }

 $p->fit_textflow($textflow, $left, $y-$leading, $right, $y, "");
 $p->delete_textflow($textflow);

 # print the article list

 $y += 2*$leading;
 my $total = 0;

 $optlist = sprintf("%s font %d", $baseopt, $regularfont);

 for (my $i = 0; $i <= $#data; $i++) {
	my $sum = $data[$i]{price}*$data[$i]{quantity};

	$buf = sprintf("\t%d\t%s\t%d\t%.2f\t%.2f",
	 $i+1, $data[$i]{name}, $data[$i]{quantity}, $data[$i]{price}, $sum);

	$textflow = $p->create_textflow($buf, $optlist);

	if ($textflow == -1) {
	 die("Error: %s\n", $p->get_errmsg());
	}

	$p->fit_textflow($textflow, $left, $y-$leading, $right, $y, "");
	$p->delete_textflow($textflow);

	$y += $leading;
	$total +=$sum;
 }

 $y += $leading;
 $p->setfont($boldfont, $fontsize);
 $p->fit_textline(sprintf("%.2f",$total), $right, $y, "position {100 0}");

 # Print the closing text

 $y +=5*$leading;
 $optlist = "alignment=justify leading=120% " .
		"fontname=Helvetica fontsize=12 encoding=winansi ";

 $textflow = $p->create_textflow($closingtext, $optlist);

 if ($textflow == -1) {
	die("Error: %s\n", $p->get_errmsg());
 }

 $p->fit_textflow($textflow, $left, $y + 6*$leading, $right, $y, "");
 $p->delete_textflow($textflow);

 $p->end_page_ext("");
 $p->end_document("");
 $p->close_pdi_document($stationery);
};

if ($@) {
 die("$0: PDFlib Exception occurred:\n$@");
}

PDFlib-8.0.6-SunOS-sparc64-perl/bind/perl/pdfclock.cgi.pl

#!/usr/bin/perl
$Id: pdfclock.cgi.pl,v 1.16 2009/11/23 14:31:30 rjs Exp $
#
PDFlib client: pdfclock CGI example in Perl
#

use PDFlib::PDFlib 8.0;
use strict;

my $RADIUS = 200.0;
my $MARGIN = 20.0;

my $p = new PDFlib::PDFlib;

This means we must check return values of load_font() etc.
$p->set_parameter("errorpolicy", "return");

This line is required to avoid problems on Japanese systems
$p->set_parameter("hypertextencoding", "winansi");

$p->begin_document("", "");

$p->set_info("Creator", "pdfclock.cgi.pl");
$p->set_info("Author", "Thomas Merz");
$p->set_info("Title", "PDF clock (Perl/CGI)");

$p->begin_page_ext(2 * ($RADIUS + $MARGIN), 2 * ($RADIUS + $MARGIN), "");

$p->translate($RADIUS + $MARGIN, $RADIUS + $MARGIN);
$p->setcolor("fillstroke", "rgb", 0.0, 0.0, 1.0, 0.0);
$p->save();

minute strokes
$p->setlinewidth(2.0);
for (my $alpha = 0; $alpha < 360; $alpha += 6) {
 $p->rotate(6.0);
 $p->moveto($RADIUS, 0.0);
 $p->lineto($RADIUS-$MARGIN/3, 0.0);
 $p->stroke();
}

$p->restore();
$p->save();

5 minute strokes
$p->setlinewidth(3.0);
for (my $alpha = 0; $alpha < 360; $alpha += 30) {
 $p->rotate(30.0);
 $p->moveto($RADIUS, 0.0);
 $p->lineto($RADIUS-$MARGIN, 0.0);
 $p->stroke();
}

my ($tm_sec,$tm_min,$tm_hour) = localtime(time);

draw hour hand
$p->save();
$p->rotate((-(($tm_min/60.0) + $tm_hour - 3.0) * 30.0));
$p->moveto(-$RADIUS/10, -$RADIUS/20);
$p->lineto($RADIUS/2, 0.0);
$p->lineto(-$RADIUS/10, $RADIUS/20);
$p->closepath();
$p->fill();
$p->restore();

draw minute hand
$p->save();
$p->rotate((-(($tm_sec/60.0) + $tm_min - 15.0) * 6.0));
$p->moveto(-$RADIUS/10, -$RADIUS/20);
$p->lineto($RADIUS * 0.8, 0.0);
$p->lineto(-$RADIUS/10, $RADIUS/20);
$p->closepath();
$p->fill();
$p->restore();

draw second hand
$p->setcolor("fillstroke", "rgb", 1.0, 0.0, 0.0, 0.0);
$p->setlinewidth(2);
$p->save();
$p->rotate(-(($tm_sec - 15.0) * 6.0));
$p->moveto(-$RADIUS/5, 0.0);
$p->lineto($RADIUS, 0.0);
$p->stroke();
$p->restore();

draw little circle at center
$p->circle(0, 0, $RADIUS/30);
$p->fill();

$p->restore();
$p->end_page_ext("");

$p->end_document("");

my $buf = $p->get_buffer();

the following is required on Windows systems
binmode(STDOUT);

print "Content-Type: application/pdf\n";
print "Content-Length: " . length($buf) . "\n";
print "Content-Disposition: inline; filename=" . "pdfclock.cgi.pl.pdf" . "\n\n";
print $buf;

PDFlib-8.0.6-SunOS-sparc64-perl/bind/perl/businesscard.pl

#!/usr/bin/perl
$Id: businesscard.pl,v 1.28 2009/11/23 15:33:25 rjs Exp $
#
PDFlib client: block processing example in C
#

use PDFlib::PDFlib 8.0;
use strict;

my $infile = "boilerplate.pdf";
This is where font/image/PDF input files live. Adjust as necessary.
#
Note that this directory must also contain the LuciduxSans font outline
and metrics files.
#
my $searchpath = "../data";

my %data = ("name"			=> "Victor Kraxi",
	 "business.title"		=> "Chief Paper Officer",
	 "business.address.line1" 	=> "17, Aviation Road",
	 "business.address.city"	=> "Paperfield",
	 "business.telephone.voice"	=> "phone +1 234 567-89",
	 "business.telephone.fax"	=> "fax +1 234 567-98",
	 "business.email"		=> "victor\@kraxi.com",
	 "business.homepage"		=> "www.kraxi.com"
);

eval {
 my $p = new PDFlib::PDFlib;

 # This means we must check return values of load_font() etc.
 $p->set_parameter("errorpolicy", "return");

 # Set the search path for fonts and PDF files
 $p->set_parameter("SearchPath", $searchpath);

 # This line is required to avoid problems on Japanese systems
 $p->set_parameter("hypertextencoding", "winansi");

 if ($p->begin_document("businesscard.pdf", "") == -1){
	die ("Error: %s\n", $p->get_errmsg());
 }

 $p->set_info("Creator", "businesscard.pl");
 $p->set_info("Author", "Thomas Merz");
 $p->set_info("Title", "PDFlib block processing sample (Perl)");

 my $blockcontainer = $p->open_pdi_document($infile, "");
 if ($blockcontainer == -1){
	die ("Error: %s\n", $p->get_errmsg());
 }

 my $page = $p->open_pdi_page($blockcontainer, 1, "");
 if ($page == -1){
	die ("Error: %s\n", $p->get_errmsg());
 }

 $p->begin_page_ext(20, 20, "");		# dummy page size

 # This will adjust the page size to the block container's size.
 $p->fit_pdi_page($page, 0, 0, "adjustpage");

 # Fill all text blocks with dynamic data
 foreach my $elem(keys %data){
	if ($p->fill_textblock($page, $elem, $data{$elem},
 "embedding encoding=winansi") == -1) {
	 printf ("Warning: %s\n", $p->get_errmsg());
	}
 }

 $p->end_page_ext("");
 $p->close_pdi_page($page);

 $p->end_document("");
 $p->close_pdi_document($blockcontainer);
};

if ($@) {
 die("$0: PDFlib Exception occurred:\n$@");
}

PDFlib-8.0.6-SunOS-sparc64-perl/bind/perl/quickreference.pl

#!/usr/bin/perl
$Id: quickreference.pl,v 1.30 2009/11/23 15:33:25 rjs Exp $
#
PDFlib+PDI client: mini imposition demo
#

use PDFlib::PDFlib 8.0;
use strict;

my $infile = "reference.pdf";
This is where font/image/PDF input files live. Adjust as necessary.
my $searchpath = "../data";
my $maxrow = 2;
my $maxcol = 2;
my $width = 500.0;
my $height = 770.0;
my $endpage = 0 ;

eval {
 my $p = new PDFlib::PDFlib;

 # This means we must check return values of load_font() etc.
 $p->set_parameter("errorpolicy", "return");

 $p->set_parameter("SearchPath", $searchpath);

 # This line is required to avoid problems on Japanese systems
 $p->set_parameter("hypertextencoding", "winansi");

 if ($p->begin_document("quickreference.pdf", "") == -1) {
	die("Error: %s\n", $p->get_errmsg());
 }

 $p->set_info("Creator", "quickreference.pl");
 $p->set_info("Author", "Thomas Merz");
 $p->set_info("Title", "mini imposition demo (Perl)");

 my $manual = $p->open_pdi_document($infile, "");
 if ($manual == -1) {
	die("Error: %s\n", $p->get_errmsg());
 }

 my $row = 0;
 my $col = 0;

 $p->set_parameter("topdown", "true");

 my $endpage = $p->pcos_get_number($manual, "length:pages");

 for (my $pageno = 1; $pageno <= $endpage; $pageno++) {
	if ($row == 0 && $col == 0) {
	 $p->begin_page_ext($width, $height, "");
	 my $font = $p->load_font("Helvetica-Bold", "winansi", "");
	 $p->setfont($font, 18);
	 $p->set_text_pos(24, 24);
	 $p->show("PDFlib Quick Reference");
	}

	my $page = $p->open_pdi_page($manual, $pageno, "");

	if ($page == -1) {
	 die("Error: %s\n", $p->get_errmsg());
	}

	$p->fit_pdi_page($page, $width/$maxcol*$col, ($row + 1)
		* $height/$maxrow, "scale ". 1/$maxrow);
	$p->close_pdi_page($page);

	$col++;
	if ($col == $maxcol) {
	 $col = 0;
	 $row++;
	}
	if ($row == $maxrow) {
	 $row = 0;
	 $p->end_page_ext("");
	}
 }

 # finish the last partial page
 if ($row != 0 || $col != 0) {
	$p->end_page_ext("");
 }

 $p->end_document("");
 $p->close_pdi_document($manual);
};

if ($@) {
 die("$0: PDFlib Exception occurred:\n$@");
}

PDFlib-8.0.6-SunOS-sparc64-perl/bind/perl/starter_3d.pl

#!/usr/bin/perl
$Id: starter_3d.pl,v 1.7.2.1 2011/05/10 17:41:38 rjs Exp $
3D Starter:
Load a 3D model and create a 3D annotation from it.
#
Define a 3D view and load some 3D data with the view defined. Then create
an annotation containing the loaded 3D data with the defined 3D view as the
initial view.
#
Required software: PDFlib/PDFlib+PDI/PPS 8.0.3
Required data: PRC data file
#

use PDFlib::PDFlib 8.0;
use strict;

This is where the data files are. Adjust if necessary.
my $searchpath = "../data";
my $outfile = "starter_3d.pdf";

my $view;
my $data;

eval {
 my $p = new PDFlib::PDFlib;

 $p->set_parameter("SearchPath", $searchpath);

 # This means we must check return values of load_font() etc.
 $p->set_parameter("errorpolicy", "return");

 # Start the document
 if ($p->begin_document($outfile, "compatibility=1.7ext3") == -1) {
	die("Error: %s\n", $p->get_errmsg());
 }

 $p->set_info("Creator", "PDFlib starter sample");
 $p->set_info("Title", "starter_3d");

 my $font = $p->load_font("Helvetica", "winansi", "");
 if ($font == -1) {
	die("Error: %s\n", $p->get_errmsg());
 }

 $p->begin_page_ext(0, 0, "width=a4.width height=a4.height");

 # Define a 3D view which shows the model from the top
 my $optlist = "type=PRC name=FirstView background={fillcolor=Lavender} " .
		"camera2world={-1 0 0 0 1 0 0 0 -1 0.5 0 300}";
 if (($view = $p->create_3dview("First view", $optlist)) == -1) {
	die("Error: %s\n", $p->get_errmsg());
 }

 # Load some 3D data with the view defined above
 my $buf = "type=PRC views={$view}";
 if (($data = $p->load_3ddata("riemann.prc", $buf)) == -1) {
	die("Error: %s\n", $p->get_errmsg());
 }

 # Create an annotation containing the loaded 3D data with the
 # defined 3D view as the initial view
 #
 $buf = "name=annot usercoordinates contents=PRC 3Ddata=$data 3Dactivate={enable=open} 3Dinitialview=$view";
 $p->create_annotation(116, 200, 447, 580, "3D", $buf);

 $p->end_page_ext("");

 $p->end_document("");

};

if ($@) {
 die("$0: PDFlib Exception occurred:\n$@");
}

PDFlib-8.0.6-SunOS-sparc64-perl/bind/perl/starter_basic.pl

#!/usr/bin/perl
$Id: starter_basic.pl,v 1.8.2.2 2011/11/04 13:01:57 rjs Exp $
#
Basic starter:
Create some simple text, vector graphics and image output
#
required software: PDFlib/PDFlib+PDI/PPS 7
required data: none
#
important: this file must be encoded in UTF-8

use PDFlib::PDFlib 7.0;
use strict;

This is where the data files are. Adjust as necessary.
my $searchpath = "../data/";
my $imagefile = "nesrin.jpg";
my $outfilename = "starter_basic.pdf";

eval {
 my $p = new PDFlib::PDFlib;

 # This means we must check return values of load_font() etc.
 $p->set_parameter("errorpolicy", "return");

 $p->set_parameter("SearchPath", $searchpath);

 # we use "bytes" as textformat, this allows to use unicode encoding
 $p->set_parameter("textformat", "bytes");

 if ($p->begin_document($outfilename, "") == -1) {
	die("Error: " . $p->get_errmsg());
 }

 $p->set_info("Creator", "PDFlib starter sample");
 $p->set_info("Title", "starter_basic");

 # We load the $image before the first page, and use it
 # on all pages

 my $image = $p->load_image("auto", $imagefile, "");

 if ($image == -1) {
	die("Error: " . $p->get_errmsg());
 }

 # Page 1
 $p->begin_page_ext(595, 842, "");

 # use DejaVuSerif font with text format UTF-8 for placing the text
 # and demonstrate various options how to pass the UTF-8 text to PDFlib
 #
 my $optlist = "fontname={DejaVuSerif} embedding fontsize=24 " .
	 "encoding=unicode textformat=utf8";

 # plain 7-bit ASCII text
 $p->fit_textline("en: Hello!", 50, 700, $optlist);
 # using Perls Backslashed Character Escapes */
 $p->fit_textline("\x67\x72\x3A\x20\xCE\x93\xCE\xB5\xCE\xB9\xCE\xAC\x21",
	 50, 650, $optlist);
 # plain UTF-8 text
 $p->fit_textline("ru: Привет!", 50, 600, $optlist);
 # using PDFlib's character references
 $p->fit_textline("es: ¡Hola!", 50, 550, $optlist . " charref=true");

 $p->fit_image($image, 0.0, 0.0, "scale=0.25");

 $p->end_page_ext("");

 # Page 2
 $p->begin_page_ext(595, 842, "");

 # red rectangle
 $p->setcolor("fill", "rgb", 1.0, 0.0, 0.0, 0.0);
 $p->rect(200, 200, 250, 150);
 $p->fill();

 # blue circle
 $p->setcolor("fill", "rgb", 0.0, 0.0, 1.0, 0.0);
 $p->arc(400, 600, 100, 0, 360);
 $p->fill();

 # thick gray line
 $p->setcolor("stroke", "gray", 0.5, 0.0, 0.0, 0.0);
 $p->setlinewidth(10);
 $p->moveto(100, 500);
 $p->lineto(300, 700);
 $p->stroke();

 # Using the same $image handle means the data will be copied
 # to the PDF only once, which saves space.

 $p->fit_image($image, 150.0, 25.0, "scale=0.25");
 $p->end_page_ext("");

 # Page 3
 $p->begin_page_ext(595, 842, "");

 # Fit the image to a box of predefined size (without distortion)
 my $optlist = "boxsize={400 400} position={center} fitmethod=meet";
 $p->fit_image($image, 100, 200, $optlist);

 $p->end_page_ext("");

 $p->close_image($image);
 $p->end_document("");
};

if ($@) {
 printf("$0: PDFlib Exception occurred:\n");
 printf(" $@\n");
 exit(1);
}

PDFlib-8.0.6-SunOS-sparc64-perl/bind/perl/starter_block.pl

#!/usr/bin/perl
$Id: starter_block.pl,v 1.9 2009/11/23 15:33:25 rjs Exp $
#
Block starter:
Import a PDF page containing blocks and fill text and image
blocks with some data. For each addressee of the simulated
mailing a separate page with personalized information is
generated.
A real-world application would of course fill the blocks with data
retrieved from some external data source.
#
Required software: PPS 8 or above
Required data: input PDF, image

use PDFlib::PDFlib 8.0;
use strict;

This is where the data files are. Adjust as necessary.
use constant searchpath => "../data";
use constant outfile => "starter_block.pdf";
use constant infile => "block_template.pdf";
use constant imagefile => "new.jpg";

Names of the person-related blocks contained on the imported page
use constant addressblocks => qw(name street city);

Data related to various persons used for personalization
use constant persons => (
 ["Mr Maurizio Moroni", "Strada Provinciale 124", "Reggio Emilia"],
 ["Ms Dominique Perrier", "25, rue Lauriston", "Paris"],
 ["Mr Liu Wong", "55 Grizzly Peak Rd.", "Butte"]
);

Static text simulates database-driven variable contents
use constant intro => "Dear";
use constant goodbye => "Yours sincerely,\nVictor Kraxi";
use constant announcement =>
 "Our <fillcolor=red>BEST PRICE OFFER<fillcolor=black> includes today:" .
 "\n\n" .
 "Long Distance Glider\nWith this paper rocket you can send all your " .
 "messages even when sitting in a hall or in the cinema pretty near " .
 "the back.\n\n" .
 "Giant Wing\nAn unbelievable sailplane! It is amazingly robust and " .
 "can even do aerobatics. But it is best suited to gliding.\n\n" .
 "Cone Head Rocket\nThis paper arrow can be thrown with big swing. " .
 "We launched it from the roof of a hotel. It stayed in the air a " .
 "long time and covered a considerable distance.\n\n" .
 "Super Dart\nThe super dart can fly giant loops with a radius of 4 " .
 "or 5 meters and cover very long distances. Its heavy cone point is " .
 "slightly bowed upwards to get the lift required for loops.\n\n" .
 "Visit us on our Web site at www.kraxi.com!";

eval {
 my $p = new PDFlib::PDFlib;

 $p->set_parameter("SearchPath", searchpath);

 # This means we must check return values of load_font() etc.
 $p->set_parameter("errorpolicy", "return");

 if ($p->begin_document(outfile,
 "destination={type=fitwindow} pagelayout=singlepage") == -1) {
 die("Error: " . $p->get_errmsg());
 }

 $p->set_info("Creator", "PDFlib starter sample");
 $p->set_info("Title", "starter_block");

 # Open the Block template which contains PDFlib Blocks
 my $indoc = $p->open_pdi_document(infile, "");
 if ($indoc == -1) {
 die("Error: " . $p->get_errmsg());
 }

 # Open the first page and clone the page size
 my $inpage = $p->open_pdi_page($indoc, 1, "cloneboxes");
 if ($inpage == -1) {
 die("Error: " . $p->get_errmsg());
 }

 my $image = $p->load_image("auto", imagefile, "");

 if ($image == -1) {
 die("Error: " . $p->get_errmsg());
 }

 # Based on the imported page generate several pages with the blocks
 # being filled with data related to different persons
 foreach my $person (persons) {
 # Start the output page with a dummy size
 $p->begin_page_ext(10, 10, "");

 # Place the imported page on the output page, and clone all
 # page boxes which are present in the input page; this will
 # override the dummy size used in begin_page_ext().
 $p->fit_pdi_page($inpage, 0, 0, "cloneboxes");

 # Option list for text blocks
 my $optlist = "encoding=winansi embedding";

 # Loop over all person-related blocks. Fill the j-th block with the
 # corresponding entry of the persons array.
 my $j = 0;
 foreach my $adressblock (addressblocks) {
 if ($p->fill_textblock($inpage, $adressblock,
 $person->[$j], $optlist) == -1) {
 printf("Warning: %s\n", $p->get_errmsg());
 }
 $j += 1;
 }

 # Fill the "intro" block
 my $buf = sprintf "%s %s,", intro, $person->[0];
 if ($p->fill_textblock($inpage, "intro", $buf, $optlist) == -1) {
 printf("Warning: %s\n", $p->get_errmsg());
 }

 # Fill the "announcement" block
 if ($p->fill_textblock($inpage, "announcement", announcement,
 $optlist) == -1) {
 printf("Warning: %s\n", $p->get_errmsg());
 }

 # Fill the "goodbye" block
 if ($p->fill_textblock($inpage, "goodbye", goodbye,
 $optlist) == -1) {
 printf("Warning: %s\n", $p->get_errmsg());
 }

 # Fill the image block
 if ($p->fill_imageblock($inpage, "icon", $image, "") == -1) {
 printf("Warning: %s\n", $p->get_errmsg());
 }

 $p->end_page_ext("");
 }

 $p->close_pdi_page($inpage);
 $p->close_pdi_document($indoc);
 $p->close_image($image);

 $p->end_document("");
};

if ($@) {
 die("$0: PDFlib Exception occurred:\n$@");
}

PDFlib-8.0.6-SunOS-sparc64-perl/bind/perl/starter_color.pl

#!/usr/bin/perl
$Id: starter_color.pl,v 1.5 2009/11/23 14:31:30 rjs Exp $
Starter color:
Demonstrate the basic use of supported color spaces
#
Apply the following color spaces to text and vector graphics:
- gray
- rgb
- cmyk
- iccbasedgray/rgb/cmyk
- spot
- lab
- pattern
- shadings
#
Required software: PDFlib/PDFlib+PDI/PPS 7
Required data: none

use PDFlib::PDFlib 7.0;
use strict;

This is where the data files are. Adjust as necessary.
my $ searchpath = "../data";
my $ outfile = "starter_color.pdf";

my $buf;
my ($font, $spot);
my $y = 800;
my $x = 50;
my $xoffset1=80;
my $xoffset2 = 100;
my $yoffset = 70;
my $r = 30;
my $icchandle;

create a new PDFlib::PDFlib object
my $p = new PDFlib::PDFlib;

eval {
 $p->set_parameter("SearchPath", $searchpath);

 # This means we must check return values of load_font() etc.
 $p->set_parameter("errorpolicy", "return");

 if ($p->begin_document($outfile, "") == -1) {
	printf("Error: %s\n", $p->get_errmsg());
	exit(2);
 }

 $p->set_info("Creator", "PDFlib starter sample");
 $p->set_info("Title", "starter_color");

 # Load the font
 $font = $p->load_font("Helvetica", "winansi", "");

 if ($font == -1) {
	printf("Error: %s\n", $p->get_errmsg());
	exit(2);
 }

 # Start the page
 $p->begin_page_ext(0, 0, "width=a4.width height=a4.height");

 $p->setfont($font, 14);

 # ---
 # Use default colors
 #
 # If no special color is set the default values will be used. The
 # default values are restored at the beginning of the page.
 # 0=black in the Gray color space is the default fill and stroke
 # color in many cases, as shown in our sample.
 # ---

 # Fill a circle with the default black fill color
 $p->circle($x, $y-=$yoffset, $r);
 $p->fill();

 # Output text with default black fill color
 $p->fit_textline("Circle and text filled with default color {gray 0}",
	 $x+$xoffset2, $y, "");

 $p->fit_textline("1.", $x+$xoffset1, $y, "");

 # ---
 # Use the Gray color space
 #
 # Gray color is defined by Gray values between 0=black and 1=white.
 # ---

 # Using setcolor(), set the current fill color to a light gray
 # represented by (0.5, 0, 0, 0) which defines 50% gray. Since gray
 # colors are defined by only one value, the last three function
 # parameters must be set to 0.

 $p->setcolor("fill", "gray", 0.5, 0, 0, 0);

 # Fill a circle with the current fill color defined above
 $p->circle($x, $y-=$yoffset, $r);
 $p->fill();

 # Output text with the current fill color
 $p->fit_textline("Circle and text filled with {gray 0.5}",
	 $x+$xoffset2, $y, "");

 # Alternatively, you can set the fill color in the call to
 # fit_textline() using the "fillcolor" option. This case applies the
 # fill color just the single function call. The current fill color
 # won't be affected.

 $p->fit_textline("2.", $x+$xoffset1, $y, "fillcolor={gray 0.5}");

 # --
 # Use the RGB color space
 #
 # RGB color is defined by RGB triples, i.e. three values between 0 and
 # 1 specifying the percentage of red, green, and blue.
 # (0, 0, 0) is black and (1, 1, 1) is white. The commonly used RGB
 # color values in the range 0�5 must be divided by 255 in order to
 # scale them to the range 0�as required by PDFlib.
 # --

 # Use setcolor() to set the fill color to a grass-green
 # represented by (0.1, 0.95, 0.3, 0) which defines 10% red, 95% green,
 # 30% blue. Since RGB colors are defined by only three values, the last
 # function parameter must be set to 0.

 $p->setcolor("fill", "rgb", 0.1, 0.95, 0.3, 0);

 # Draw a circle with the current fill color defined above
 $p->circle($x, $y-=$yoffset, $r);
 $p->fill();

 # Output a text line with the RGB fill color defined above
 $p->fit_textline("Circle and text filled with {rgb 0.1 0.95 0.3}",
	 $x+$xoffset2, $y, "");

 # Alternatively, you can set the fill color in the call to
 # fit_textline() using the "fillcolor" option. This case applies the
 # fill color just the single function call. The current fill color
 # won't be affected.

 $p->fit_textline("3.", $x+$xoffset1, $y,
	 "fillcolor={rgb 0.1 0.95 0.3}");

 # --
 # Use the CMYK color space
 #
 # CMYK color is defined by four CMYK values between 0 = no color and
 # 1 = full color representing cyan, magenta, yellow, and black values;
 # (0, 0, 0, 0) is white and (0, 0, 0, 1) is black.
 # --

 # Use setcolor() to set the current fill color to a pale
 # orange, represented by (0.1, 0.7, 0.7, 0.1) which defines 10% Cyan,
 # 70% Magenta, 70% Yellow, and 10% Black.

 $p->setcolor("fill", "cmyk", 0.1, 0.7, 0.7, 0.1);

 # Fill a circle with the current fill color defined above
 $p->circle($x, $y-=$yoffset, $r);
 $p->fill();

 # Output a text line with the CMYK fill color defined above
 $p->fit_textline("Circle and text filled with {cmyk 0.1 0.7 0.7 0.1}",
	 $x+$xoffset2, $y, "");

 # Alternatively, you can set the fill color in the call to
 # fit_textline() using the "fillcolor" option. This case applies the
 # fill color just the single function call. The current fill color
 # won't be affected.

 $p->fit_textline("4.", $x+$xoffset1, $y,
	 "fillcolor={cmyk 0.1 0.7 0.7 0.1}");

 # --
 # Use a Lab color
 #
 # Device-independent color in the CIE L*a*b* color space is specified
 # by a luminance value in the range 0-100 and two color values in the
 # range -127 to 128. The first value contains the green-red axis,
 # while the second value contains the blue-yellow axis.
 # --

 # Set the current fill color to a loud blue, represented by
 # (100, -127, -127, 0). Since Lab colors are defined by only three
 # values, the last function parameter must be set to 0.

 $p->setcolor("fill", "lab", 100, -127, -127, 0);

 # Fill a circle with the fill color defined above
 $p->circle($x, $y-=$yoffset, $r);
 $p->fill();

 # Output a text line with the Lab fill color defined above
 $p->fit_textline("Circle and text filled with {lab 100 -127 -127}",
	 $x+$xoffset2, $y, "");

 # Alternatively, you can set the fill color in the call to
 # fit_textline() using the "fillcolor" option. This case applies the
 # fill color just the single function call. The current fill color
 # won't be affected.

 $p->fit_textline("5.", $x+$xoffset1, $y,
	 "fillcolor={lab 100 -127 -127}");

 # ---
 # Use an ICC based color
 #
 # ICC-based colors are specified with the help of an ICC profile.
 # ---

 # Load the sRGB profile. sRGB is guaranteed to be always available
 $icchandle = $p->load_iccprofile("sRGB", "usage=iccbased");

 # Set the sRGB profile. (Accordingly, you can use
 # "setcolor:iccprofilergb" or "setcolor:iccprofilegray" with an
 # appropriate profile)

 $p->set_value("setcolor:iccprofilergb", $icchandle);

 # Use setcolor() with the "iccbasedrgb" color space to set the current
 # fill and stroke color to a grass-green, represented
 # by the RGB color values (0.1 0.95 0.3 0) which define 10% Red,
 # 95% Green, and 30% Blue. Since iccbasedrgb colors are defined by only
 # three values, the last function parameter must be set to 0.

 $p->setcolor("fill", "iccbasedrgb", 0.1, 0.95, 0.3, 0);

 # Fill a circle with the ICC based RGB fill color defined above
 $p->circle($x, $y-=$yoffset, $r);
 $p->fill();

 # Output a text line with the ICC based RGB fill color defined above
 $p->fit_textline("Circle and text filled with {iccbasedrgb 0.1 0.95 0.3}",
	 $x+$xoffset2, $y, "");

 # Alternatively, you can set the fill color in the call to
 # fit_textline() using the "fillcolor" option. This case applies the
 # fill color just the single function call. The current fill color
 # won't be affected.

 $p->fit_textline("6.", $x+$xoffset1, $y,
	 "fillcolor={iccbasedrgb 0.1 0.95 0.3}");

 # --
 # Use a spot color
 #
 # Spot color (separation color space) is a predefined or arbitrarily
 # named custom color with an alternate representation in one of the
 # other color spaces above; this is generally used for preparing
 # documents which are intended to be printed on an offset printing
 # machine with one or more custom colors. The tint value (percentage)
 # ranges from 0 = no color to 1 = maximum intensity of the spot color.
 # --

 # Define the spot color "PANTONE 281 U" from the builtin color
 # library PANTONE

 $spot = $p->makespotcolor("PANTONE 281 U");

 # Set the spot color "PANTONE 281 U" with a tint value of 1 (=100%)
 # and output some text. Since spot colors are defined by only two
 # values, the last two function parameters must be set to 0.

 $p->setcolor("fill", "spot", $spot, 1.0, 0, 0);

 # Fill a circle with the ICC based RGB fill color defined above
 $p->circle($x, $y-=$yoffset, $r);
 $p->fill();

 $p->fit_textline("Circle and text filled with {spotname {PANTONE 281 U} 1}",
	 $x+$xoffset2, $y, "");

 # Alternatively, you can set the fill color in the call to
 # fit_textline() using the "fillcolor" option. This case applies the
 # fill color just the single function call. The current fill color
 # won't be affected.

 $p->fit_textline("7.", $x+$xoffset1, $y,
	"fillcolor={spotname {PANTONE 281 U} 1}");

 # or
 $buf = "fillcolor={spot " . $spot . " 1}";
 $p->fit_textline("7.", $x+$xoffset1, $y, $buf);

 # --
 # For using the Pattern color space, see the Cookbook topics
 # graphics/fill_pattern and images/background_pattern.
 # --

 # ---
 # For using the Shading color space, see the Cookbook topic
 # color/color_gradient.
 # ---

 $p->end_page_ext("");

 $p->end_document("");

};

if ($@) {
 die("$0: PDFlib Exception occurred:\n$@");
}

PDFlib-8.0.6-SunOS-sparc64-perl/bind/perl/starter_fallback.pl

#!/usr/bin/perl
$Id: starter_fallback.pl,v 1.4.2.1 2010/01/29 11:10:01 rjs Exp $
Starter sample for fallback fonts
#
Required software: PDFlib/PDFlib+PDI/PPS 8
Required data: suitable fonts, Japanese CMaps

use PDFlib::PDFlib 8.0;
use strict;

This is where the data files are. Adjust as necessary.
use constant searchpath => "../data";
use constant outfile => "starter_fallback.pdf";

use constant {
 llx => 50.0,
 lly => 50.0,
 urx => 800.0,
 ury => 550.0
};

use constant headers => (
 "Use case",
 "Option list for the 'fallbackfonts' option",
 "Base font",
 "With fallback font"
);

Key names used to make a dictionary for the description of the
testcase entries
my @testcase_keys = qw(usecase fontname encoding fallbackoptions text);

Function to create a hash describing each testcase
sub make_testcase_hash {
 my $values = $_[0]; # reference to array
 my %result;
 @result{@testcase_keys} = @{$values};
 return \%result;
}

The testcases organized as an array of references to hashes
my @testcases = map { make_testcase_hash($_) } (
 [# Add Euro glyph to an encoding which doesn't support it
 "Extend 8-bit encoding", # usecase
 "Helvetica", # fontname
 "iso8859-1", # encoding
 "{fontname=Helvetica encoding=unicode forcechars=euro}", #fallbackoptions
 # Reference Euro glyph by name (since it is missing from the encoding)
 "123€" # text
],
 [
 "Use Euro glyph from another font",
 "Courier",
 "winansi",
 "{fontname=Helvetica encoding=unicode forcechars=euro textrise=-5%}",
 "123€"
],
 [
 "Enlarge all glyphs in a font",
 "Times-Italic",
 "winansi",
 # Enlarge all glyphs to better match other fonts of the same point size
 "{fontname=Times-Italic encoding=unicode forcechars={U+0020-U+00FF} " .
 "fontsize=120%}",
 "font size"
],
 [
 "Add enlarged pictogram",
 "Times-Roman",
 "unicode",
 # pointing hand pictogram
 "{fontname=ZapfDingbats encoding=unicode forcechars=.a12 fontsize=150% " .
 "textrise=-15%}",
 "Bullet symbol: &.a12;"
],
 [
 "Add enlarged symbol glyph",
 "Times-Roman",
 "unicode",
 "{fontname=Symbol encoding=unicode forcechars=U+2663 fontsize=125%}",
 "Club symbol: ♣"
],
 [# Greek characters missing in the font will be pulled from Symbol font
 "Add Greek characters to Latin font",
 "Times-Roman",
 "unicode",
 "{fontname=Symbol encoding=unicode}",
 "Greek text: ΛΟΓΟΣ"
],
 [# Font with end-user defined character (EUDC)
 "Gaiji with EUDC font",
 "KozMinProVI-Regular",
 "unicode",
 "{fontname=EUDC encoding=unicode forcechars=U+E000 fontsize=140% " .
 "textrise=-20%}",
 "Gaiji: "
],
 [# SING fontlet containing a single gaiji character
 "Gaiji with SING font",
 "KozMinProVI-Regular",
 "unicode",
 "{fontname=PDFlibWing encoding=unicode forcechars=gaiji}",
 "Gaiji: "
],
 ["Replace Latin characters in CJK font",
 "KozMinProVI-Regular",
 "unicode",
 "{fontname=Courier-Bold encoding=unicode forcechars={U+0020-U+007E}}",
 "Latin and 日本語"
],
 # Requires "Unicode BMP Fallback SIL" font in fallback.ttf
 [# Identify missing glyphs caused by workflow problems
 "Identify missing glyphs",
 "Times-Roman",
 "unicode",
 "{fontname=fallback encoding=unicode}",
 # deliberately use characters which are not available in the base font
 "Missing glyphs: ሴ 本 語"
]
);

my $p = new PDFlib::PDFlib;

eval {
 my $optlist;

 $p->set_parameter("SearchPath", searchpath);
 $p->set_parameter("textformat", "bytes");
 $p->set_parameter("charref", "true");
 $p->set_parameter("glyphcheck", "replace");

 # This means that formatting and other errors will raise an
 # exception. This simplifies our sample code, but is not
 # recommended for production code.
 $p->set_parameter("errorpolicy", "exception");

 # Set an output path according to the name of the topic
 if ($p->begin_document(outfile, "") == -1) {
 printf("Error: %s\n", $p->get_errmsg());
 $p->delete();
 exit(2);
 }

 $p->set_info("Creator", "PDFlib starter sample");
 $p->set_info("Title", "starter_fallback");

 # Start Page
 $p->begin_page_ext(0, 0, "width=a4.height height=a4.width");

 my $table = -1;

 # Table header
 my $col = 1;
 foreach my $header (headers) {
 $optlist =
 "fittextline={fontname=Helvetica-Bold encoding=unicode fontsize=11} " .
 "margin=4";
 $table = $p->add_table_cell($table, $col, 1, $header, $optlist);
 $col += 1;
 }

 # Create fallback samples, one use case per row
 my $row = 2;
 foreach my $testcase (@testcases) {
 $col = 1;

 # Column 1: description of the use case
 $optlist =
 "fittextline={fontname=Helvetica encoding=unicode fontsize=11} " .
 "margin=4";
 $table = $p->add_table_cell($table, $col++, $row,
 $testcase->{usecase}, $optlist);

 # Column 2: reproduce option list literally
 $optlist =
 "fittextline={fontname=Helvetica encoding=unicode fontsize=10} " .
 "margin=4";
 $table = $p->add_table_cell($table, $col++, $row,
 $testcase->{fallbackoptions}, $optlist);

 # Column 3: text with base font
 $optlist = sprintf
 "fittextline={fontname=%s encoding=%s fontsize=11 " .
 "replacementchar=? } margin=4",
 $testcase->{fontname}, $testcase->{encoding};
 $table = $p->add_table_cell($table, $col++, $row,
 $testcase->{text}, $optlist);

 # Column 4: text with base font and fallback fonts
 $optlist = sprintf
 "fittextline={fontname=%s encoding=%s " .
 "fontsize=11 fallbackfonts={%s}} margin=4",
 $testcase->{fontname},
 $testcase->{encoding},
 $testcase->{fallbackoptions};
 $table = $p->add_table_cell($table, $col++, $row,
 $testcase->{text}, $optlist);

 $row += 1;
 }

 # Place the table
 $optlist = "header=1 fill={{area=rowodd fillcolor={gray 0.9}}} " .
 "stroke={{line=other}} ";
 my $result = $p->fit_table($table, llx, lly, urx, ury, $optlist);

 if ($result eq "_error")
 {
 printf("Couldn't place table: %s\n", $p->get_errmsg());
 $p->delete();
 exit(2);
 }

 $p->end_page_ext("");
 $p->end_document("");
};

if ($@) {
 die("$0: PDFlib Exception occurred:\n$@");
}

PDFlib-8.0.6-SunOS-sparc64-perl/bind/perl/starter_geospatial.pl

#!/usr/bin/perl
$Id: starter_geospatial.pl,v 1.2 2009/11/23 14:31:30 rjs Exp $
Starter for georeferenced PDF:
Import an image with a map and add geospatial reference information
#
Sample map and coordinates:
We use a map from www.openstreetmap.com; the geospatial coordinates of the
image edges were also provided by that Web site.
The coordinate system is WGS84 which is also used for GPS.
#
Required software: PDFlib/PDFlib+PDI/PPS 8
Required data: image file and associated geospatial reference information

use PDFlib::PDFlib 8.0;
use strict;

This is where the data files are. Adjust as necessary.
use constant searchpath => "../data";
use constant outfile => "starter_geospatial.pdf";
use constant imagefile => "munich.png";

WKT for plain latitude/longitude values in WGS84
use constant georef =>
 "worldsystem={type=geographic wkt={" .
 "GEOGCS[\"WGS 84\"," .
 " DATUM[\"WGS_1984\", SPHEROID[\"WGS 84\", 6378137,298.257223563]]," .
 " PRIMEM[\"Greenwich\", 0.0]," .
 " UNIT[\"Degree\", 0.01745329251994328]]" .
 "}} linearunit=M areaunit=SQM angularunit=degree";

world coordinates of the image (in degrees)
use constant worldpoints => (
 48.145, # latitude of top edge
 11.565, # longitude of left edge
 11.59, # longitude of right edge
 48.13 # latitude of bottom edge
);

my $p = new PDFlib::PDFlib;

eval {
 my $optlist;

 $p->set_parameter("SearchPath", searchpath);

 # This means we must check return values of load_font() etc.
 $p->set_parameter("errorpolicy", "return");

 # Start the document
 if ($p->begin_document(outfile, "compatibility=1.7ext3") == -1) {
 printf("Error: %s\n", $p->get_errmsg());
 exit(2);
 }

 $p->set_info("Creator", "PDFlib starter sample");
 $p->set_info("Title", "starter_geospatial");

 # Generate georeference option list
 # Use the four corners as reference points; (0,0)=lower left etc.
 my $georefoptlist = sprintf
 "georeference={%s mappoints={0 0 1 0 1 1 0 1} ",
 georef;

 $georefoptlist .= "worldpoints={";

 # lower left corner
 $georefoptlist .= sprintf "%g %g ", (worldpoints)[3], (worldpoints)[1];
 # lower right corner
 $georefoptlist .= sprintf "%g %g ", (worldpoints)[3], (worldpoints)[2];
 # upper right corner
 $georefoptlist .= sprintf "%g %g ", (worldpoints)[0], (worldpoints)[2];
 # upper left corner
 $georefoptlist .= sprintf "%g %g ", (worldpoints)[0], (worldpoints)[1];

 $georefoptlist .= "} }";

 # Load the image with geospatial reference attached
 my $image = $p->load_image("auto", imagefile, $georefoptlist);
 if ($image == -1) {
 printf("Error: %s\n", $p->get_errmsg());
 exit(2);
 }

 $p->begin_page_ext(0, 0, "width=a4.width height=a4.height");

 # Create caption
 $p->fit_textline("Map with geospatial reference information",
 50, 700,
 "fontname=LuciduxSans-Oblique encoding=winansi fontsize=18");

 # Place the map on the page
 $p->fit_image($image, 50, 50, "boxsize={500 600} fitmethod=meet");

 $p->end_page_ext("");

 $p->end_document("");
};

if ($@) {
 die("$0: PDFlib Exception occurred:\n$@");
}

PDFlib-8.0.6-SunOS-sparc64-perl/bind/perl/starter_graphics.pl

#!/usr/bin/perl
$Id: starter_graphics.pl,v 1.7 2009/11/23 14:31:30 rjs Exp $
Starter Graphics:
Create some basic examples of vector graphics
#
Stroke a line, curve, circle, arc, and rectangle using the current line width
and stroke color. Stroke and fill a rectangle.
Draw an arc segment by drawing a line and an arc, closing the path and
filling and stroking it.
Draw a rectangle and use it as the clipping a path. Draw and fill a circle
using the clipping path defined.
#
Required software: PDFlib/PDFlib+PDI/PPS 7
Required data: none

use PDFlib::PDFlib 7.0;
use strict;

This is where the data files are. Adjust as necessary.
my $searchpath = "../data";
my $outfile = "starter_graphics.pdf";

create a new PDFlib::PDFlib object
my $p = new PDFlib::PDFlib;

my $buf;
my $xt=20;
my $x = 210;
my $y=770;
my $dy=90;
my $font;

eval {
 $p->set_parameter("SearchPath", $searchpath);

 # This means we must check return values of load_font() etc.
 $p->set_parameter("errorpolicy", "return");

 if ($p->begin_document($outfile, "") == -1) {
	printf("Error: %s\n", $p->get_errmsg());
	exit(2);
 }

 $p->set_info("Creator", "PDFlib starter sample");
 $p->set_info("Title", "starter_graphics");

 $font = $p->load_font("Helvetica", "winansi", "");
 if ($font == -1) {
	printf("Error: %s\n", $p->get_errmsg());
	exit(2);
 }

 # Start an A4 page
 $p->begin_page_ext(0, 0, "width=a4.width height=a4.height");

 # Set the font
 $p->setfont($font, 14);

 # Set the line width
 $p->setlinewidth(2.0);

 # Set the stroke color
 $p->setcolor("stroke", "rgb", 0.0, 0.5, 0.5, 0.0);

 # Set the fill color
 $p->setcolor("fill", "rgb", 0.0, 0.85, 0.85, 0.0);

 # -------------
 # Stroke a line
 # -------------

 # Set the current point for graphics output
 $p->moveto($x, $y);

 # Draw a line from the current point to the supplied point
 $p->lineto($x+300, $y+50);

 # Stroke the path using the current line width and stroke color, and
 # clear it

 $p->stroke();

 # Output some descriptive black text
 $p->fit_textline("lineto() and stroke()", $xt, $y,
	"fillcolor={gray 0}");

 # --------------
 # Stroke a curve
 # --------------

 # Set the current point for graphics output
 $p->moveto($x, $y-=$dy);

 # Draw a Bézier curve from the current point to (x3, y3), using three
 # control points

 $p->curveto($x+50, $y+40, $x+200, $y+80, $x+300, $y+30);

 # Stroke the path using the current line width and stroke color, and
 # clear it

 $p->stroke();

 # Output some descriptive black text
 $p->fit_textline("curveto() and stroke()", $xt, $y,
	"fillcolor={gray 0}");

 # ---------------
 # Stroke a circle
 # ---------------

 # Draw a circle at position (x, y) with a radius of 40
 $p->circle($x, $y-=$dy, 40);

 # Stroke the path using the current line width and stroke color, and
 # clear it

 $p->stroke();

 # Output some descriptive black text
 $p->fit_textline("circle() and stroke()", $xt, $y,
	"fillcolor={gray 0}");

 # ---------------------
 # Stroke an arc segment
 # ---------------------

 # Draw an arc segment counterclockwise at position (x, y) with a radius
 # of 40 starting at an angle of 90 degrees and ending at 180 degrees

 $p->arc($x, $y-=$dy+20, 40, 90, 180);

 # Stroke the path using the current line width and stroke color, and
 # clear it

 $p->stroke();

 # Output some descriptive black text
 $p->fit_textline("arc() and stroke()", $xt, $y,
	"fillcolor={gray 0}");

 # ------------------
 # Stroke a rectangle
 # ------------------

 # Draw a rectangle at position (x, y) with a width of 200 and a height
 # of 50

 $p->rect($x, $y-=$dy, 200, 50);

 # Stroke the path using the current line width and stroke color, and
 # clear it

 $p->stroke();

 # Output some descriptive black text
 $p->fit_textline("rect() and stroke()", $xt, $y,
	"fillcolor={gray 0}");

 # ----------------
 # Fill a rectangle
 # ----------------

 # Draw a rectangle at position (x, y) with a width of 200 and a height
 # of 50

 $p->rect($x, $y-=$dy, 200, 50);

 # Fill the path using current fill color, and clear it
 $p->fill();

 # Output some descriptive black text
 $p->fit_textline("rect() and fill()", $xt, $y,
	"fillcolor={gray 0}");

 # ---------------------------
 # Fill and stroke a rectangle
 # ---------------------------

 # Draw a rectangle at position (x, y) with a width of 200 and a height
 # of 50

 $p->rect($x, $y-=$dy, 200, 50);

 # Fill and stroke the path using the current line width, fill color,
 # and stroke color, and clear it

 $p->fill_stroke();

 # Output some descriptive black text
 $p->fit_textline("rect() and fill_stroke()", $xt, $y,
	"fillcolor={gray 0}");

 # ---
 # Draw a line and an arc, close the path and fill and stroke it
 # ---

 # Set the current point for graphics output
 $p->moveto($x-40, $y-=$dy);

 # Draw a line from the current point to the supplied point
 $p->lineto($x, $y);

 # Draw an arc segment counterclockwise at position (x, y) with a radius
 # of 40 starting at an angle of 90 degrees and ending at 180 degrees

 $p->arc($x, $y, 40, 90, 180);

 # Close the path and stroke and fill it, i.e. close the current subpath
 # (add a straight line segment from the current point to the starting
 # point of the path), and stroke and fill the complete current path

 $p->closepath_fill_stroke();

 # Output some descriptive black text
 $p->fit_textline("lineto(), arc(), and", $xt, $y+20,
	"fillcolor={gray 0}");
 $p->fit_textline("closepath_fill_stroke()", $xt, $y,
	"fillcolor={gray 0}");

 # ---
 # Draw a rectangle and use it as the clipping a path. Draw and fill
 # a circle and clip it according to the clipping path defined.
 # ---

 # Save the current graphics state including the current clipping
 # path which is set to the entire page by default

 $p->save();

 # Draw a rectangle at position (x, y) with a width of 200 and a height
 # of 50

 $p->rect($x, $y-=$dy, 200, 50);

 # Use the current path as the clipping path for subsequent operations
 $p->clip();

 # Draw a circle at position (x, y) with a radius of 100
 $p->circle($x, $y, 80);

 # Fill the path with the current fill color and clear it
 $p->fill();

 # Restore the graphics state which has been saved above
 $p->restore();

 # Output some descriptive black text
 $p->fit_textline("rect(), clip(),", $xt, $y+20,
	"fillcolor={gray 0}");
 $p->fit_textline("circle(), and fill()", $xt, $y,
	"fillcolor={gray 0}");

 $p->end_page_ext("");

 $p->end_document("");

};

if ($@) {
 die("$0: PDFlib Exception occurred:\n$@");
}

PDFlib-8.0.6-SunOS-sparc64-perl/bind/perl/starter_image.pl

#!/usr/bin/perl
$Id: starter_image.pl,v 1.5 2009/11/23 14:31:30 rjs Exp $
Starter image:
Load and place an image using various options for scaling and positioning
#
Place the image it its original size.
Place the image with scaling and orientation to the west.
Fit the image into a box with clipping.
Fit the image into a box with proportional resizing.
Fit the image into a box entirely.
#
Required software: PDFlib/PDFlib+PDI/PPS 7
Required data: image file

use PDFlib::PDFlib 7.0;
use strict;

This is where the data files are. Adjust as necessary.
my $searchpath = "../data";
my $outfile = "starter_image.pdf";

create a new PDFlib::PDFlib object
my $p = new PDFlib::PDFlib;

my $buf;
my $imagefile = "lionel.jpg";
my ($font, $image);
my $bw = 400;
my $bh = 200;
my $x = 20;
my $y = 580;
my $yoffset = 260;

eval {
 $p->set_parameter("SearchPath", $searchpath);

 # This means we must check return values of load_font() etc.
 $p->set_parameter("errorpolicy", "return");

 if ($p->begin_document($outfile, "") == -1) {
	printf("Error: %s\n", $p->get_errmsg());
	exit(2);
 }

 $p->set_info("Creator", "PDFlib starter sample");
 $p->set_info("Title", "starter_image");

 $font = $p->load_font("Helvetica", "winansi", "");
 if ($font == -1) {
	printf("Error: %s\n", $p->get_errmsg());
	exit(2);
 }

 # Load the image
 $image = $p->load_image("auto", $imagefile, "");
 if ($image == -1) {
	printf("Error: %s\n", $p->get_errmsg());
	exit(2);
 }

 # Start page 1
 $p->begin_page_ext(0, 0, "width=a4.width height=a4.height");
 $p->setfont($font, 12);

 # ------------------------------------
 # Place the image in its original size
 # ------------------------------------

 # Position the image in its original size with its lower left corner
 # at the reference point (20, 380)

 $p->fit_image($image, 20, 380, "");

 # Output some descriptive text
 $p->fit_textline(
	"The image is placed with the lower left corner in its original " .
	"size at reference point (20, 380):", 20, 820, "");
 $p->fit_textline("fit_image(image, 20, 380, \"\");", 20, 800, "");

 # --
 # Place the image with scaling and orientation to the west
 # --

 # Position the image with its lower right corner at the reference
 # point (580, 20).
 # "scale=0.5" scales the image by 0.5.
 # "orientate=west" orientates the image to the west.

 $p->fit_image($image, 580, 20,
	"scale=0.5 position={right bottom} orientate=west");

 # Output some descriptive text
 $p->fit_textline(
	"The image is placed with a scaling of 0.5 and an orientation to " .
	"the west with the lower right corner", 580, 320,
	"position={right bottom}");
 $p->fit_textline(
	" at reference point (580, 20): fit_image(image, 580, 20, " .
	"\"scale=0.5 orientate=west position={right bottom}\");",
	580, 300, "position={right bottom}");

 $p->end_page_ext("");

 # Start page 2
 $p->begin_page_ext(0, 0, "width=a4.width height=a4.height");
 $p->setfont($font, 12);

 # --------------------------------------
 # Fit the image into a box with clipping
 # --------------------------------------

 # The "boxsize" option defines a box with a given width and height and
 # its lower left corner located at the reference point.
 # "position={right top}" positions the image on the top right of the
 # box.
 # "fitmethod=clip" clips the image to fit it into the box.

 $buf = "boxsize={" . $bw . " " . $bh .
	 "} position={right top} fitmethod=clip";
 $p->fit_image($image, $x, $y, $buf);

 # Output some descriptive text
 $p->fit_textline(
	"fit_image(image, x, y, \"boxsize={400 200} position={right top} " .
	"fitmethod=clip\");", 20, $y+$bh+10, "");

 # ---
 # Fit the image into a box with proportional resizing
 # ---

 # The "boxsize" option defines a box with a given width and height and
 # its lower left corner located at the reference point.
 # "position={center}" positions the image in the center of the
 # box.
 # "fitmethod=meet" resizes the image proportionally until its height
 # or width completely fits into the box.
 # The "showborder" option is used to illustrate the borders of the box.

 $buf = "boxsize={" . $bw . " " . $bh .
		"} position={center} fitmethod=meet showborder";
 $p->fit_image($image, $x, $y-=$yoffset, $buf);

 # Output some descriptive text
 $p->fit_textline(
	"fit_image(image, x, y, \"boxsize={400 200} position={center} " .
	"fitmethod=meet showborder\");", 20, $y+$bh+10, "");

 # ---------------------------------
 # Fit the image into a box entirely
 # ---------------------------------

 # The "boxsize" option defines a box with a given width and height and
 # its lower left corner located at the reference point.
 # By default, the image is positioned in the lower left corner of the
 # box.
 # "fitmethod=entire" resizes the image proportionally until its height
 # or width completely fits into the box.

 $buf = "boxsize={" . $bw . " " . $bh . "} fitmethod=entire";
 $p->fit_image($image, $x, $y-=$yoffset, $buf);

 # Output some descriptive text
 $p->fit_textline(
	"fit_image(image, x, y, \"boxsize={400 200} fitmethod=entire\");",
	20, $y+$bh+10, "");

 $p->end_page_ext("");

 $p->close_image($image);

 $p->end_document("");
};

if ($@) {
 die("$0: PDFlib Exception occurred:\n$@");
}

PDFlib-8.0.6-SunOS-sparc64-perl/bind/perl/starter_layer.pl

#!/usr/bin/perl
$Id: starter_layer.pl,v 1.6 2009/11/23 14:31:30 rjs Exp $
Starter layer:
Define several layers, output images and text to them and define
particular layers to be visible when opening the document
#
Define two layers for RGB or Grayscale images and two layers for English or
German image captions. Output images and text on the various layers and
open the document with the RGB images and English captions visible.
#
Required software: PDFlib/PDFlib+PDI/PPS 7
Required data: grayscale and RGB images
#

use PDFlib::PDFlib 7.0;
use strict;

This is where the data files are. Adjust as necessary.
my $searchpath = "../data";
my $outfile = "starter_layer.pdf";

create a new PDFlib object
my $p = new PDFlib::PDFlib;

my $rgb = "nesrin.jpg";
my $gray = "nesrin_gray.jpg";

my $buf;
my $font;
my $imageRGB;
my $imageGray;
my $layerRGB;
my $layerGray;
my $layerEN;
my $layerDE;

eval {
 $p->set_parameter("SearchPath", $searchpath);

 # This means we must check return values of load_font() etc.
 $p->set_parameter("errorpolicy", "return");

 # Open the document with the "Layers" navigation tab visible
 if ($p->begin_document($outfile, "openmode=layers") == -1) {
	printf("Error: %s\n", $p->get_errmsg());
	exit(2);
 }

 $p->set_info("Creator", "PDFlib starter sample");
 $p->set_info("Title", "starter_layer");

 # Load the font
 $font = $p->load_font("Helvetica", "winansi", "");

 if ($font == -1) {
	printf("Error: %s\n", $p->get_errmsg());
	exit(2);
 }

 # Load the Grayscale image
 $imageGray = $p->load_image("auto", $gray, "");
 if ($imageGray == -1) {
	printf("Error: %s\n", $p->get_errmsg());
	exit(2);
 }

 # Load the RGB image
 $imageRGB = $p->load_image("auto", $rgb, "");
 if ($imageRGB == -1) {
	printf("Error: %s\n", $p->get_errmsg());
	exit(2);
 }

 # Define all layers which will be used, and their relationships.
 # This should be done before the first page if the layers are
 # used on more than one page.

 # Define the layer "RGB"
 $layerRGB = $p->define_layer("RGB", "");

 # Define the layer "Grayscale" which is hidden when opening the
 # document or printing it.
 $layerGray = $p->define_layer("Grayscale",
		"initialviewstate=false initialprintstate=false");

 # At most one of the "Grayscale" and "RGB" layers should be visible
 $buf = "group={" . $layerGray . " " . $layerRGB . "}";
 $p->set_layer_dependency("Radiobtn", $buf);

 # Define the layer "English"
 $layerEN = $p->define_layer("English", "");

 # Define the layer "German" which is hidden when opening the document
 # or printing it.
 $layerDE = $p->define_layer("German",
		"initialviewstate=false initialprintstate=false");

 # At most one of the "English" and "German" layers should be visible
 $buf = "group={" . $layerEN . " " . $layerDE . "}";
 $p->set_layer_dependency("Radiobtn", $buf);

 # Start page
 $p->begin_page_ext(0, 0, "width=a4.width height=a4.height");

 # Place the RGB image on the layer "RGB"
 $p->begin_layer($layerRGB);
 $p->fit_image($imageRGB, 100, 400,
		"boxsize={400 300} fitmethod=meet");

 # Place the Grayscale image on the layer "Grayscale"
 $p->begin_layer($layerGray);
 $p->fit_image($imageGray, 100, 400,
		"boxsize={400 300} fitmethod=meet");

 # Place an English image caption on the layer "English"
 $p->begin_layer($layerEN);
 $buf = "font=" . $font . " fontsize=20";
 $p->fit_textline("This is the Nesrin image.", 100, 370, $buf);

 # Place a German image caption on the layer "German"
 $p->begin_layer($layerDE);
 $buf = "font=" . $font . " fontsize=20";
 $p->fit_textline("Das ist das Nesrin-Bild.", 100, 370, $buf);

 $p->end_layer();

 $p->end_page_ext("");

 $p->end_document("");

};

if ($@) {
 die("$0: PDFlib Exception occurred:\n$@");
}

PDFlib-8.0.6-SunOS-sparc64-perl/bind/perl/starter_opentype.pl

#!/usr/bin/perl
$Id: starter_opentype.pl,v 1.2 2009/11/23 14:31:30 rjs Exp $
Starter sample for OpenType font features
#
Demonstrate various typographic OpenType features after checking
whether a particular feature is supported in a font.
#
Required software: PDFlib/PDFlib+PDI/PPS 8
Required data: suitable fonts with OpenType feature tables
#
This sample uses a default font which includes a few features.
For better results you should replace the default font with a suitable
commercial font. Depending on the implementation of the features you
may also have to replace the sample text below.
#
Some ideas for suitable test fonts:
Palatino Linotype: standard Windows font with many OpenType features

use PDFlib::PDFlib 8.0;
use strict;

This is where the data files are. Adjust as necessary.
use constant searchpath => "../data";
use constant outfile => "starter_opentype.pdf";

use constant {
 llx => 50.0,
 lly => 50.0,
 urx => 800.0,
 ury => 550.0
};

This font will be used unless another one is specified in the table
use constant defaulttestfont => "DejaVuSerif";

use constant headers => (
 "OpenType feature",
 "Option list",
 "Font name",
 "Raw input (feature disabled)",
 "Feature enabled"
);

Key names used to make a dictionary for the description of the
testcase entries
my @testcase_keys = qw(description fontname feature text);

Function to create a hash describing each testcase
sub make_testcase_hash {
 my $values = $_[0]; # reference to array
 my %result;
 @result{@testcase_keys} = @{$values};
 return \%result;
}

The testcases organized as an array of references to hashes
my @testcases = map { make_testcase_hash($_) } (
 [
 "ligatures", # description
 "", # fontname
 "liga", # feature
 "ff fi fl ffi ffl" # text
],
 [
 "discretionary ligatures",
 "",
 "dlig",
 "st c/o"
],
 [
 "historical ligatures",
 "",
 "hlig",
 "&.longs;b &.longs;t"
],
 [
 "small capitals",
 "",
 "smcp",
 "PostScript"
],
 [
 "ordinals",
 "",
 "ordn",
 "1o 2a 3o"
],
 [
 "fractions",
 "",
 "frac",
 "1/2 1/4 3/4"
],
 [
 "alternate fractions",
 "",
 "afrc",
 "1/2 1/4 3/4"
],
 [
 "slashed zero",
 "",
 "zero",
 "0"
],
 [
 "historical forms",
 "",
 "hist",
 "s"
],
 [
 "proportional figures",
 "",
 "pnum",
 "0123456789"
],
 [
 "old-style figures",
 "",
 "onum",
 "0123456789"
],
 [
 "lining figures",
 "",
 "lnum",
 "0123456789"
],
 [
 "superscript",
 "",
 "sups",
 "0123456789"
]
);

my $p = new PDFlib::PDFlib;

eval {
 my $optlist;

 $p->set_parameter("SearchPath", searchpath);
 $p->set_parameter("textformat", "bytes");
 $p->set_parameter("charref", "true");

 # This means that formatting and other errors will raise an
 # exception. This simplifies our sample code, but is not
 # recommended for production code.
 $p->set_parameter("errorpolicy", "exception");

 # Set an output path according to the name of the topic
 if ($p->begin_document(outfile, "") == -1) {
 printf("Error: %s\n", $p->get_errmsg());
 exit(2);
 }

 $p->set_info("Creator", "PDFlib starter sample");
 $p->set_info("Title", "starter_opentype");

 # Start Page
 $p->begin_page_ext(0, 0, "width=a4.height height=a4.width");

 my $table = -1;

 # Table header
 my $col = 1;
 foreach my $header (headers) {
 $optlist =
 "fittextline={fontname=Helvetica-Bold encoding=unicode fontsize=12} " .
 "margin=4";
 $table = $p->add_table_cell($table, $col, 1, $header, $optlist);
 $col += 1;
 }

 # Create a table with feature samples, one feature per table row
 my $row = 2;
 foreach my $testcase (@testcases) {
 # Use the entry in the test table if available, and the
 # default test font otherwise. This way we can easily check
 # a font for all features, as well as insert suitable fonts
 # for individual features.
 my $testfont =
 $testcase->{fontname} ? $testcase->{fontname} : defaulttestfont;

 $col = 1;

 # Common option list for columns 1-3
 $optlist =
 "fittextline={fontname=Helvetica encoding=unicode fontsize=12} " .
 "margin=4";

 # Column 1: feature description
 $table = $p->add_table_cell($table, $col++, $row,
 $testcase->{description}, $optlist);

 # Column 2: option list
 my $buf = sprintf "features={%s}", $testcase->{feature};
 $table = $p->add_table_cell($table, $col++, $row, $buf, $optlist);

 # Column 3: font name
 $table = $p->add_table_cell($table, $col++, $row, $testfont,
 $optlist);

 # Column 4: raw input text with feature disabled
 $optlist = sprintf
 "fittextline={fontname={%s} encoding=unicode fontsize=12 " .
 "embedding} margin=4", $testfont;
 $table = $p->add_table_cell($table, $col++, $row,
 $testcase->{text}, $optlist);

 # Column 5: text with enabled feature, or warning if the
 # feature is not available in the font
 my $font = $p->load_font($testfont, "unicode", "embedding");

 # Check whether font contains the required feature table
 $optlist = sprintf "name=%s", $testcase->{feature};
 if ($p->info_font($font, "feature", $optlist) == 1) {
 # feature is available: apply it to the text
 $optlist = sprintf
 "fittextline={fontname={%s} encoding=unicode fontsize=12 " .
 "embedding features={%s}} margin=4",
 $testfont, $testcase->{feature};
 $table = $p->add_table_cell($table, $col++, $row,
 $testcase->{text}, $optlist);
 }
 else {
 # feature is not available: emit a warning
 $optlist =
 "fittextline={fontname=Helvetica encoding=unicode " .
 "fontsize=12 fillcolor=red} margin=4";
 $table = $p->add_table_cell($table, $col++, $row,
 "(feature not available in this font)", $optlist);
 }

 $row += 1;
 }

 # Place the table
 $optlist = sprintf "header=1 fill={{area=rowodd " .
 "fillcolor={gray 0.9}}} stroke={{line=other}} ";
 my $result = $p->fit_table($table, llx, lly, urx, ury, $optlist);

 if ($result eq "_error") {
 printf("Couldn't place table: %s\n", $p->get_errmsg());
 exit(2);
 }

 $p->end_page_ext("");
 $p->end_document("");
};

if ($@) {
 die("$0: PDFlib Exception occurred:\n$@");
}

PDFlib-8.0.6-SunOS-sparc64-perl/bind/perl/starter_path.pl

#!/usr/bin/perl
$Id: starter_basic.pl,v 1.8.2.1 2010/01/29 11:10:01 rjs Exp $
#
Starter sample for pathobjects:
Create some basic examples of pathobject construction and use
#
required software: PDFlib/PDFlib+PDI/PPS 8
required data: none
#

use PDFlib::PDFlib 8.0;
use strict;

my $outfilename = "starter_path.pdf";
my $text = "Lorem ipsum dolor sit amet, consectetur adipisicing elit, " .
 "sed do eiusmod tempor incididunt ut labore et dolore magna " .
 "aliqua. Ut enim ad minim veniam, quis nostrud exercitation " .
 "ullamco laboris nisi ut aliquip ex ea commodo consequat. " .
 "Duis aute irure dolor in reprehenderit in voluptate velit esse cillum " .
 "dolore eu fugiat nulla pariatur. Excepteur sint occaecat " .
 "cupidatat non proident, sunt in culpa qui officia deserunt mollit anim " .
 "id est laborum. ";

eval {
 my $p = new PDFlib::PDFlib;

 # This means we must check return values of load_font() etc.
 $p->set_parameter("errorpolicy", "return");

 if ($p->begin_document($outfilename, "") == -1) {
	die("Error: " . $p->get_errmsg());
 }

 $p->set_info("Creator", "PDFlib starter sample");
 $p->set_info("Title", "starter_path");
 # Start an A4 page
 $p->begin_page_ext(0, 0, "width=a4.width height=a4.height");

 # Construct a pathobject for an arrow shape

 my $path= -1;

 # The tip of the arrow gets rounded corners
 $path= $p->add_path_point($path, 200.0, 25.0, "move", "round=10");
 $path= $p->add_path_point($path, 200.0, 75.0, "line", "");
 # assign a name to the arrow's tip
 $path= $p->add_path_point($path, 300.0, 0.0, "line", "name=tip");
 $path= $p->add_path_point($path, 200.0, -75.0, "line", "");
 $path= $p->add_path_point($path, 200.0, -25.0, "line", "");

 # Start a new sub$pathfor the straight base of the arrow
 $path= $p->add_path_point($path, 200.0, -25.0, "move", "");
 $path= $p->add_path_point($path, 0.0, -25.0, "line", "");

 # The center of the base can serve as a named attachment point
 $path= $p->add_path_point($path, 0.0, 0.0, "line", "name=base");
 $path= $p->add_path_point($path, 0.0, 25.0, "line", "");
 $path= $p->add_path_point($path, 200.0, 25.0, "line", "");

 my $x = 100.0;
 my $y = 850.0;

 # --
 # Place arrow in its original direction
 # --

 $y -= 100.0;
 $p->draw_path($path, $x, $y,
	"stroke linewidth=3 fill fillcolor=Turquoise " .
	"linecap=projecting attachmentpoint=base ");

 # --
 # Scale down arrow and align it to north east
 # --

 $y -= 200.0;
 $p->draw_path($path, $x, $y,
	"stroke linewidth=3 fill fillcolor=Turquoise " .
	"linecap=projecting attachmentpoint=base scale=0.5 align={1 1}");

 # --
 # Scale to 50%, use the arrow tip as attachment point,
 # and align the arrow to the left
 # --

 $y -= 100.0;
 $p->draw_path($path, $x, $y,
	"stroke linewidth=3 fill fillcolor=Turquoise " .
	"linecap=projecting attachmentpoint=tip scale=0.5 align={-1 0}");

 # --
 # Place text on the $path; round all corners to
 # allow smoother text at the corners
 # --

 $y -= 100.0;
 my $optlist = sprintf("textpath={path=%d round=10} position={center bottom} " .
	"fontname=Helvetica encoding=winansi fontsize=8",
	$path);
 $p->fit_textline($text, $x, $y, $optlist);

 # --
 # Use the $pathas clipping $pathfor a Textflow
 # --

 $y -= 300.0;

 # Feed the text to the Textflow object
 my $tf = $p->add_textflow(-1, $text,
	"fontname=Helvetica fontsize=10 encoding=winansi " .
	"alignment=justify");
 # Use text twice to fill the arrow
 $tf = $p->add_textflow($tf, $text,
	"fontname=Helvetica fontsize=10 encoding=winansi " .
	"alignment=justify");
 if ($tf == -1) {
	die("Error: %s\n", $p->get_errmsg());
 }

 # Attach the $path's reference point to the middle left (0%, 50%)
 # of the fitbox, and wrap the text inside the $path(inversefill)

 $optlist = sprintf("wrap={inversefill " .
	 "paths={{path=%d refpoint={0%% 50%%} scale=1.5 }}}",
	$path);
 my $result = $p->fit_textflow($tf, $x, $y, $x+450, $y+225, $optlist);

 if ($result eq "_stop")
 {
	# In this example we don't care about overflow text
 }
 $p->delete_textflow($tf);

 # --
 # Query information about the pathobject
 # --

 my $n = $p->info_path($path, "numpoints", "");

 $p->delete_path($path);
 $p->end_page_ext("");
 $p->end_document("");

};

if ($@) {
 printf("$0: PDFlib Exception occurred:\n");
 printf(" $@\n");
 exit(1);
}

PDFlib-8.0.6-SunOS-sparc64-perl/bind/perl/starter_pcos.pl

#!/usr/bin/perl
$Id: starter_pcos.pl,v 1.13 2009/11/23 15:33:25 rjs Exp $
#
pCOS starter:
Dump information from an existing PDF document
#
required software: PDFlib+PDI/PPS 7
required data: PDF input file

use PDFlib::PDFlib 7.0;
use strict;

This is where the data files are. Adjust as necessary.
my $searchpath = "../data";
my $pdfinput = "TET-datasheet.pdf";
my $docoptlist = "requiredmode=minimum";

eval {
 my $p = new PDFlib::PDFlib;

 # This means we must check return values of load_font() etc.
 $p->set_parameter("errorpolicy", "return");

 $p->set_parameter("SearchPath", $searchpath);

 # We do not create any output document, so no call to
 # begin_document() is required.

 # Open the input document
 my $doc = $p->open_pdi_document($pdfinput, $docoptlist);
 if ($doc == -1) {
	die("Error: " . $p->get_errmsg());
 }

 # --------- general information (always available)

 my $pcosmode = $p->pcos_get_number($doc, "pcosmode");

 printf(" File name: %s\n",
	$p->pcos_get_string($doc,"filename"));

 printf(" PDF version: %s\n",
	$p->pcos_get_string($doc, "pdfversionstring"));

 printf(" Encryption: %s\n",
	$p->pcos_get_string($doc, "encrypt/description"));

 printf(" Master pw: %s\n",
	(($p->pcos_get_number($doc, "encrypt/master") != 0) ? "yes":"no"));

 printf(" User pw: %s\n",
	(($p->pcos_get_number($doc, "encrypt/user") != 0) ? "yes" : "no"));

 printf("Text copying: %s\n",
	(($p->pcos_get_number($doc, "encrypt/nocopy") != 0) ? "no":"yes"));

 printf(" Linearized: %s\n\n",
	(($p->pcos_get_number($doc, "linearized") != 0) ? "yes" : "no"));

 if ($pcosmode == 0) {
	printf("Minimum mode: no more information available\n\n");
	exit(0);
 }

 # --------- more details (requires at least user password)
 printf("PDF/X status: %s\n", $p->pcos_get_string($doc, "pdfx"));

 printf("PDF/A status: %s\n", $p->pcos_get_string($doc, "pdfa"));

 my $xfa_present =
 $p->pcos_get_number($doc, "type:/Root/AcroForm/XFA") != 0;
 printf(" XFA data: %s\n", $xfa_present ? "yes" : "no");

 printf(" Tagged PDF: %s\n",
 (($p->pcos_get_number($doc, "tagged") != 0) ? "yes" : "no"));

 printf("No. of pages: %s\n",
	$p->pcos_get_number($doc, "length:pages"));

 printf(" Page 1 size: width=%.3f, height=%.3f\n",
	 $p->pcos_get_number($doc, "pages[0]/width"),
	 $p->pcos_get_number($doc, "pages[0]/height"));

 my $count = $p->pcos_get_number($doc, "length:fonts");
 printf("No. of fonts: %s\n", $count);

 for (my $i=0; $i < $count; $i++) {
	my $fonts = "fonts[" . $i . "]/embedded";
	if ($p->pcos_get_number($doc, $fonts) != 0) {
	 print("embedded ");
	} else {
	 print("unembedded ");
	}

	$fonts = "fonts[" . $i . "]/type";
	print($p->pcos_get_string($doc, $fonts) . " font ");
	$fonts = "fonts[" . $i . "]/name";
	printf("%s\n", $p->pcos_get_string($doc, $fonts));
 }

 printf("\n");

 my $plainmetadata =
 $p->pcos_get_number($doc, "encrypt/plainmetadata") != 0;

 if ($pcosmode == 1 && !$plainmetadata
 && $p->pcos_get_number($doc, "encrypt/nocopy") != 0) {
	print("Restricted mode: no more information available");
	exit(0);
 }

 # ----- document $info keys and XMP metadata (requires master pw)

 my $count = $p->pcos_get_number($doc, "length:/Info");

 for (my $i=0; $i < $count; $i++) {
	my $info = "type:/Info[" . $i . "]";
	my $objtype = $p->pcos_get_string($doc, $info);

	$info = "/Info[" . $i . "].key";
	my $key = $p->pcos_get_string($doc, $info);
	my $len = 12 - length($key);
	while ($len-- > 0) {
	 print(" ");
	}

	print($key . ": ");

	# $info entries can be stored as string or name objects
	if ($objtype eq "name" || $objtype eq "string") {
	 $info = "/Info[" . $i . "]";
	 printf("'" . $p->pcos_get_string($doc, $info) . "'\n");
	}
 else {
	 $info = "type:/Info[" . $i . "]";
	 printf("(" . $p->pcos_get_string($doc, $info) . " object)\n");
	}
 }

 print("\n" . "XMP metadata: ");

 my $objtype = $p->pcos_get_string($doc, "type:/Root/Metadata");
 if ($objtype eq "stream") {
	my $contents = $p->pcos_get_stream($doc, "", "/Root/Metadata");
	print(length($contents) . " bytes \n");
	printf("");
 }
 else {
	printf("not present\n");
 }

 $p->close_pdi_document($doc);

};

if ($@) {
 die("$0: PDFlib Exception occurred:\n$@");
}

PDFlib-8.0.6-SunOS-sparc64-perl/bind/perl/starter_pdfa1b.pl

#!/usr/bin/perl
$Id: starter_pdfa1b.pl,v 1.5.2.1 2010/01/29 11:10:01 rjs Exp $
#
PDF/A-1b starter:
Create PDF/A-1b conforming output
#
Required software: PDFlib/PDFlib+PDI/PPS 7
Required data: font file, image file

use PDFlib::PDFlib 7.0;
use strict;

This is where the data files are. Adjust as necessary.
my $searchpath = "../data";
my $imagefile = "nesrin.jpg";
my $outfilename = "starter_pdfa1b.pdf";

eval {
 my $p = new PDFlib::PDFlib;

 # This means we must check return values of load_font() etc.
 $p->set_parameter("errorpolicy", "return");

 $p->set_parameter("SearchPath", $searchpath);
 $p->set_parameter("textformat", "bytes");

 # PDF/A-1a requires Tagged PDF
 if ($p->begin_document($outfilename, "pdfa=PDF/A-1b:2005") == -1) {
	die("Error: " . $p->get_errmsg());
 }

 #
 # We use sRGB as output intent since it allows the color
 # spaces CIELab, ICC-based, grayscale, and RGB.
 #
 # If you need CMYK color you must use a CMYK output profile.

 $p->load_iccprofile("sRGB", "usage=outputintent");

 $p->set_info("Creator", "PDFlib starter sample");
 $p->set_info("Title", "starter_pdfa1b");

 $p->begin_page_ext(595, 842, "");

 # $font embedding is required for PDF/A
 my $font = $p->load_font("LuciduxSans-Oblique", "unicode", "embedding");
 if ($font == -1) {
	die("Error: %s\n", $p->get_errmsg());
 }
 $p->setfont($font, 24);

 $p->fit_textline("PDF/A-1b:2005 starter", 50, 700, "");

 # We can use an RGB $image since we already supplied an
 # output intent profile.

 my $image = $p->load_image("auto", $imagefile, "");
 if ($image == -1) {
	die("Error: " . $p->get_errmsg());
 }

 # Place the $image at the bottom of the page
 $p->fit_image($image, 0.0, 0.0, "scale=0.5");

 $p->end_page_ext("");
 $p->close_image($image);

 $p->end_document("");

};

if ($@) {
 die("$0: PDFlib Exception occurred:\n$@");
}

PDFlib-8.0.6-SunOS-sparc64-perl/bind/perl/starter_pdfmerge.pl

#!/usr/bin/perl
$Id: starter_pdfmerge.pl,v 1.8 2009/11/24 09:22:29 rjs Exp $
#
PDF merge starter:
Merge pages from multiple PDF documents; interactive elements (e.g.
bookmarks) will be dropped.
#
required software: PDFlib+PDI/PPS 7
required data: PDF documents

use PDFlib::PDFlib 7.0;
use strict;

This is where the data files are. Adjust as necessary.
my $searchpath = "../data";
my $outfilename = "starter_pdfmerge.pdf";

my @pdffiles = (
	"PDFlib-real-world.pdf",
	"PDFlib-datasheet.pdf",
	"TET-datasheet.pdf",
	"PLOP-datasheet.pdf",
	"pCOS-datasheet.pdf"
);

eval {
 my $p = new PDFlib::PDFlib;

 # This means we must check return values of load_font() etc.
 $p->set_parameter("errorpolicy", "return");

 $p->set_parameter("SearchPath", $searchpath);

 if ($p->begin_document($outfilename, "") == -1) {
	die("Error: " . $p->get_errmsg());
 }

 $p->set_info("Creator", "PDFlib starter sample");
 $p->set_info("Title", "starter_pdfmerge");

 foreach my $pdffile (@pdffiles) {
	# Open the input PDF
	my $indoc = $p->open_pdi_document($pdffile, "");
	if ($indoc == -1) {
	 printf("Error: %s\n", $p->get_errmsg());
	 next;
	}

	my $endpage = $p->pcos_get_number($indoc, "length:pages");

	# Loop over all pages of the input document
	for (my $pageno = 1; $pageno <= $endpage; $pageno++) {
	 my $page = $p->open_pdi_page($indoc, $pageno, "");

	 if ($page == -1) {
		printf("Error: %s\n", $p->get_errmsg());
		next;
	 }
	 # Dummy $page size; will be adjusted later
	 $p->begin_page_ext(10, 10, "");

	 # Create a bookmark with the file name
	 if ($pageno == 1) {
		$p->create_bookmark($pdffile, "");
	 }

	 # Place the imported $page on the output $page, and
	 # adjust the $page size
	
	 $p->fit_pdi_page($page, 0, 0, "adjustpage");
	 $p->close_pdi_page($page);

	 $p->end_page_ext("");
	}
	$p->close_pdi_document($indoc);
 }

 $p->end_document("");

};

if ($@) {
 die("$0: PDFlib Exception occurred:\n$@");
}

PDFlib-8.0.6-SunOS-sparc64-perl/bind/perl/starter_pdfx3.pl

#!/usr/bin/perl
$Id: starter_pdfx3.pl,v 1.5 2009/11/24 09:22:29 rjs Exp $
#
PDF/X-3 starter:
Create PDF/X-3 conforming output
#
required software: PDFlib/PDFlib+PDI/PPS 7
required data: font file, image file, icc profile
(see www.pdflib.com for ICC profiles)

use PDFlib::PDFlib 7.0;
use strict;

This is where the data files are. Adjust as necessary.*/
my $searchpath = "../data";
my $imagefile = "nesrin.jpg";
my $outfilename = "starter_pdfx3.pdf";

eval {
 my $p = new PDFlib::PDFlib;

 # This means we must check return values of load_font() etc.
 $p->set_parameter("errorpolicy", "return");

 $p->set_parameter("SearchPath", $searchpath);

 if ($p->begin_document($outfilename, "pdfx=PDF/X-3:2003") == 0) {
	die("Error: " . $p->get_errmsg());
 }

 $p->set_info("Creator", "PDFlib starter sample");
 $p->set_info("Title", "starter_pdfx3");

 #
 # You can use one of the Standard output intents (e.g. for SWOP
 # printing) which do not require an ICC profile:
 #
 # $p->load_iccprofile("CGATS TR 001", "usage=outputintent");
 #
 # However, if you use ICC or Lab color you must load an ICC
 # profile as output intent:

 if ($p->load_iccprofile("ISOcoated.icc", "usage=outputintent") == -1) {
	printf("Error: %s\n", $p->get_errmsg());
	printf("Please install the ICC profile package from " .
	 "www.pdflib.com to run the PDF/X starter sample.\n");
	exit(2);
 }

 $p->begin_page_ext(595, 842, "");

 # $font embedding is required for PDF/X
 my $font = $p->load_font("LuciduxSans-Oblique", "unicode", "embedding");
 if ($font == -1) {
	die("Error: %s\n", $p->get_errmsg());
 }
 $p->setfont($font, 24);

 my $spot = $p->makespotcolor("PANTONE 123 C");
 $p->setcolor("fill", "spot", $spot, 1.0, 0.0, 0.0);
 $p->fit_textline("PDF/X-3:2003 starter", 50, 700, "");

 # The RGB $image below needs an $icc profile; we use sRGB.
 my $icc = $p->load_iccprofile("sRGB", "");
 my $image = $p->load_image("auto", $imagefile, "iccprofile=" . $icc);

 if ($image == -1) {
	die("Error: " . $p->get_errmsg());
 }

 $p->fit_image($image, 0.0, 0.0, "scale=0.5");

 $p->end_page_ext("");

 $p->end_document("");

};

if ($@) {
 die("$0: PDFlib Exception occurred:\n$@");
}

PDFlib-8.0.6-SunOS-sparc64-perl/bind/perl/starter_pdfx4.pl

#!/usr/bin/perl
$Id: starter_pdfx4.pl,v 1.3 2009/11/24 09:22:29 rjs Exp $
#
PDF/X-4 starter:
Create PDF/X-4 conforming output with layer variants and transparency
#
A low-level layer is created for each of several languages, as well
as an image layer. Each of the language layers together with the
image layer forms a "layer variant" according to PDF/X-4 (in Acrobat
layer variants are called "configurations").
This ensures that low-level layers cannot be enabled/disabled individually,
but only via the corresponding layer variant. This prevents accidental
printing of a language layer without the required image layer.
#
The document contains transparent text which is allowed in
PDF/X-4, but not earlier PDF/X standards.
#
Required software: PDFlib/PDFlib+PDI/PPS 8
Required data: font file, image file, ICC output intent profile
(see www.pdflib.com for ICC profiles)

use PDFlib::PDFlib 8.0;
use strict;

This is where the data files are. Adjust as necessary.
use constant searchpath => "../data";
use constant imagefile => "zebra.tif";

my $p = new PDFlib::PDFlib;

eval {
 # This means we must check return values of load_font() etc.
 $p->set_parameter("errorpolicy", "return");

 $p->set_parameter("SearchPath", searchpath);

 if ($p->begin_document("starter_pdfx4.pdf", "pdfx=PDF/X-4")
 == -1) {
 printf("Error: %s\n", $p->get_errmsg());
 exit(2);
 }

 $p->set_info("Creator", "PDFlib starter sample");
 $p->set_info("Title", "starter_pdfx4");

 if ($p->load_iccprofile("ISOcoated.icc", "usage=outputintent") == -1)
 {
 printf("Error: %s\n", $p->get_errmsg());
 printf("Please install the ICC profile package from " .
 "www.pdflib.com to run the PDF/X-4 starter sample.\n");
 exit(2);
 }

 # Define the low-level layers. These cannot be controlled directly
 # in Acrobat's layer pane.

 my $layer_english = $p->define_layer("English text", "");
 my $layer_german = $p->define_layer("German text", "");
 my $layer_french = $p->define_layer("French text", "");
 my $layer_image = $p->define_layer("Images", "");

 # Define a radio button relationship for the language layers.
 # Individual layers will only be visible in Acrobat X (but
 # not Acrobat 9).
 #
 my $optlist = sprintf
	 "group={%d %d %d}",
	 $layer_english, $layer_german, $layer_french;
 $p->set_layer_dependency("Radiobtn", $optlist);

 # Define the layer combinations for document variants. The variants
 # control the low-level layers, and can be activated in Acrobat 9's
 # layer pane. Using layer variants we can make sure that the image
 # layer cannot accidentally be disabled; it will always accompany
 # the text regardless of the selected language.

 $optlist = sprintf
 	"variantname={English variant} includelayers={%d %d} " .
 	"defaultvariant=true createorderlist",
 	$layer_english, $layer_image;
 $p->set_layer_dependency("Variant", $optlist);

 $optlist = sprintf
 	"variantname={German variant} includelayers={%d %d}",
 	$layer_german, $layer_image;
 $p->set_layer_dependency("Variant", $optlist);

 $optlist = sprintf
 	"variantname={French variant} includelayers={%d %d}",
 	$layer_french, $layer_image;
 $p->set_layer_dependency("Variant", $optlist);

 $p->begin_page_ext(595, 842, "");

 # Font embedding is required for PDF/X
 my $font = $p->load_font("LuciduxSans-Oblique", "winansi", "embedding");

 if ($font == -1) {
 printf("Error: %s\n", $p->get_errmsg());
 exit(2);
 }

 $p->setfont($font, 24);

 $p->begin_layer($layer_english);

 $p->fit_textline("PDF/X-4 starter sample with layers", 50, 700, "");

 $p->begin_layer($layer_german);
 $p->fit_textline("PDF/X-4 Starter-Beispiel mit Ebenen", 50, 700, "");

 $p->begin_layer($layer_french);
 $p->fit_textline("PDF/X-4 Starter exemple avec des calques", 50, 700, "");

 $p->begin_layer($layer_image);

 $p->setfont($font, 48);

 # The RGB image needs an ICC profile; we use sRGB.
 my $icc = $p->load_iccprofile("sRGB", "");
 $optlist = sprintf "iccprofile=%d", $icc;
 my $image = $p->load_image("auto", imagefile, $optlist);

 if ($image == -1) {
 printf("Error: %s\n", $p->get_errmsg());
 exit(2);
 }

 # Place a diagonal stamp across the image area
 my $width = $p->info_image($image, "width", "");
 my $height = $p->info_image($image, "height", "");

 $optlist = sprintf "boxsize={%f %f} stamp=ll2ur", $width, $height;
 $p->fit_textline("Zebra", 0, 0, $optlist);

 # Set transparency in the graphics state
 my $gstate = $p->create_gstate("opacityfill=0.5");
 $p->set_gstate($gstate);

 # Place the image on the page and close it
 $p->fit_image($image, 0.0, 0.0, "");
 $p->close_image($image);

 # Close all layers
 $p->end_layer();

 $p->end_page_ext("");

 $p->end_document("");
};

if ($@) {
 die("$0: PDFlib Exception occurred:\n$@");
}

PDFlib-8.0.6-SunOS-sparc64-perl/bind/perl/starter_pdfx5g.pl

#!/usr/bin/perl
$Id: starter_pdfx5g.pl,v 1.3 2009/11/24 09:22:29 rjs Exp $
#
PDF/X-5g starter:
Create PDF/X-5g conforming output with a reference to an external page
#
The external document from which a page is referenced must conform to
one of the following standards:
PDF/X-1a:2003, PDF/X-3:2002, PDF/X-4, PDF/X-4p, PDF/X-5g, or PDF/X-5pg
#
In order to properly display and print the referenced target page with
Acrobat you must configure Acrobat appropriately (see PDFlib Tutorial),
and the target PDF must be available to Acrobat.
#
Required software: PDFlib/PDFlib+PDI/PPS 8
Required data: font file, external PDF/X target, ICC output intent profile
(see www.pdflib.com for ICC profiles)

use PDFlib::PDFlib 8.0;
use strict;

This is where the data files are. Adjust as necessary.
use constant searchpath => "../data";
use constant targetname => "x5target.pdf";

use constant linewidth => 2.0;

my $p = new PDFlib::PDFlib;

eval {
 # This means we must check return values of load_font() etc.
 $p->set_parameter("errorpolicy", "return");

 $p->set_parameter("SearchPath", searchpath);

 if ($p->begin_document("starter_pdfx5g.pdf", "pdfx=PDF/X-5g") == -1) {
 printf("Error: %s\n", $p->get_errmsg());
 exit(2);
 }

 $p->set_info("Creator", "PDFlib starter sample");
 $p->set_info("Title", "starter_pdfx5g");

 # Open the output intent profile
 if ($p->load_iccprofile("ISOcoated.icc", "usage=outputintent") == -1)
 {
 printf("Error: %s\n", $p->get_errmsg());
 printf("Please install the ICC profile package from " .
 "www.pdflib.com to run the PDF/X-5g starter sample.\n");
 exit(2);
 }

 # Font embedding is required for PDF/X
 my $font = $p->load_font("LuciduxSans-Oblique", "winansi", "embedding");

 if ($font == -1) {
 printf("Error: %s\n", $p->get_errmsg());
 exit(2);
 }

 # Create a template which will serve as proxy. The referenced
 # page (the target) is attached to the proxy.
 # The template width and height will be determined automatically,
 # so we don't have to supply them.
 my $optlist = sprintf "reference={filename=%s pagenumber=1}", targetname;
 my $proxy = $p->begin_template_ext(0, 0, $optlist);

 if ($proxy == -1) {
 printf("Error: %s\n", $p->get_errmsg());
 exit(2);
 }

 my $width = $p->info_image($proxy, "imagewidth", "");
 my $height = $p->info_image($proxy, "imageheight", "");

 # Draw a crossed-out rectangle to visualize the proxy.
 # Attention: if we use the exact corner points, one half of the
 # linewidth would end up outside the template, and therefore be
 # clipped.
 $p->setlinewidth(linewidth);
 $p->moveto(linewidth/2, linewidth/2);
 $p->lineto($width - linewidth/2, linewidth/2);
 $p->lineto($width - linewidth/2, $height - linewidth/2);
 $p->lineto(linewidth/2, $height - linewidth/2);
 $p->lineto(linewidth/2, linewidth/2);
 $p->lineto($width - linewidth/2, $height - linewidth/2);

 $p->moveto($width - linewidth/2, linewidth/2);
 $p->lineto(linewidth/2, $height - linewidth/2);
 $p->stroke();

 $p->setfont($font, 24);

 $optlist = sprintf "fitmethod=auto position=center boxsize={%f %f}",
 $width, $height;
 $p->fit_textline("Proxy replaces target here", 0, 0, $optlist);

 $p->end_template_ext(0, 0);

 # Create the page
 $p->begin_page_ext(595, 842, "");

 $p->setfont($font, 18);

 $p->fit_textline(
 "PDF/X-5 starter sample with reference to an external page",
 50, 700, "");

 # Place the proxy on the page
 $p->fit_image($proxy, 50, 50, "boxsize={500 500} fitmethod=meet");

 $p->end_page_ext("");
 $p->end_document("");
};

if ($@) {
 die("$0: PDFlib Exception occurred:\n$@");
}

PDFlib-8.0.6-SunOS-sparc64-perl/bind/perl/starter_portfolio.pl

#!/usr/bin/perl
$Id: starter_portfolio.pl,v 1.2 2009/11/23 14:31:30 rjs Exp $
#
PDF portfolio starter:
Package multiple PDF and other documents into a PDF portfolio
The generated PDF portfolio requires Acrobat 9 for proper
viewing. The documents in the Portfolio will be assigned predefined
and custom metadata fields; for the custom fields a schema description
is created.
#
Acrobat 8 will only display a "PDF package" with a flat list of documents
without any folder structure.
#
Required software: PDFlib/PDFlib+PDI/PPS 8
Required data: PDF and other input documents

use PDFlib::PDFlib 8.0;
use strict;

This is where the data files are. Adjust as necessary.
use constant searchpath => "../data";

Key names used to make a dictionary for the description of the
portfolio entries
my @document_keys = qw(filename description status id);

Function to create a hash describing each document
sub make_document_hash {
 my $values = $_[0]; # reference to array
 my %result;
 @result{@document_keys} = @{$values};
 return \%result;
}

The documents for the Portfolio along with description and metadata,
organized as an array of references to hashes
my @root_folder_docs = map { make_document_hash($_) } (
 [
 "TIR_____.AFM", # filename
 "Metrics for Times-Roman", # description
 "internal", # status
 200 # id
],
 [
 "nesrin.jpg",
 "Zabrisky point",
 "archived",
 300
]
);

my @datasheet_docs = map { make_document_hash($_) } (
 [
 "PDFlib-real-world.pdf",
 "PDFlib in the real world",
 "published",
 100
],
 [
 "PDFlib-datasheet.pdf",
 "Generate PDF on the fly",
 "published",
 101
],
 [
 "TET-datasheet.pdf",
 "Extract text and images from PDF",
 "published",
 102
],
 [
 "PLOP-datasheet.pdf",
 "PDF Linearization, Optimization, Protection",
 "published",
 103
],
 [
 "pCOS-datasheet.pdf",
 "PDF Information Retrieval Tool",
 "published",
 104
]
);

my $p = new PDFlib::PDFlib;

eval {
 my ($optlist, $doc);

 $p->set_parameter("SearchPath", searchpath);

 # This means we must check return values of load_font() etc.
 $p->set_parameter("errorpolicy", "return");

 if ($p->begin_document("starter_portfolio.pdf", "compatibility=1.7ext3") == -1) {
 printf("Error: %s\n", $p->get_errmsg());
 exit(2);
 }

 $p->set_info("Creator", "PDFlib starter sample");
 $p->set_info("Title", "starter_portfolio");

 # Insert all files for the root folder along with their description
 # and the following custom fields:
 # status string describing the document status
 # id numerical identifier, prefixed with "PHX"
 foreach $doc (@root_folder_docs) {
 $optlist = sprintf
 "description={%s} " .
 "fieldlist={ " .
 "{key=status value=%s} " .
 "{key=id value=%d prefix=PHX type=text} " .
 "}",
 $doc->{description}, $doc->{status}, $doc->{id};

 # -1 means root folder
 $p->add_portfolio_file(-1, $doc->{filename}, $optlist);
 }

 # Create the "datasheets" folder in the root folder
 my $folder = $p->add_portfolio_folder(-1, "datasheets", "");

 # Insert documents in the "datasheets" folder along with
 # description and custom fields
 foreach $doc (@datasheet_docs) {
 $optlist = sprintf
 	"description={%s} " .
 	"fieldlist={ " .
 		"{key=status value=%s} " .
 		"{key=id value=%d prefix=PHX type=text} " .
 	"}",
 	$doc->{description}, $doc->{status}, $doc->{id};

 # Add the file to the "datasheets" folder
 $p->add_portfolio_file($folder, $doc->{filename}, $optlist);
 }

 # Create a single-page document as cover sheet
 $p->begin_page_ext(0, 0, "width=a4.width height=a4.height");

 my $font = $p->load_font("Helvetica", "winansi", "");
 if ($font == -1) {
 printf("Error: %s\n", $p->get_errmsg());
 exit(2);
 }

 $p->setfont($font, 24);
 $p->fit_textline("Welcome to the PDFlib Portfolio sample!", 50, 700, "");

 $p->end_page_ext("");

 # Set options for Portfolio display
 $optlist = "portfolio={initialview=detail ";

 # Add schema definition for Portfolio metadata
 $optlist .=
 "schema={ " .
 # Some predefined fields are included here to make them visible.
 "{order=1 label=Name key=_filename visible editable} " .
 "{order=2 label=Description key=_description visible} " .
 "{order=3 label=Size key=_size visible} " .
 "{order=4 label={Last edited} key=_moddate visible} " .

 # User-defined fields
 "{order=5 label=Status key=status type=text editable} " .
 "{order=6 label=ID key=id type=text editable} ";

 $optlist .= "}}";

 $p->end_document($optlist);
};

if ($@) {
 die("$0: PDFlib Exception occurred:\n$@");
}

PDFlib-8.0.6-SunOS-sparc64-perl/bind/perl/starter_pvf.pl

#!/usr/bin/perl
$Id: starter_pvf.pl,v 1.6 2009/11/23 14:31:30 rjs Exp $
PDFlib Virtual File system (PVF):
Create a PVF file which holds an image or PDF, and import the data from the
PVF file
#
This avoids disk access and is especially useful when the same image or PDF
is imported multiply. For examples, images which sit in a database don't
have to be written and re-read from disk, but can be passed to PDFlib
directly in memory. A similar technique can be used for loading other data
such as fonts, ICC profiles, etc.
#
Required software: PDFlib/PDFlib+PDI/PPS 7
Required data: image file

use PDFlib::PDFlib 7.0;
use strict;

#
Helper function to read the content of a file into a buffer
avoids incompatible systemcalls

sub read_file($)
{
 my ($fname) = @_;
 my $data;

 open(INPUT, "$fname") or die "couldn't open $fname $!\n";
 binmode(INPUT);
 undef $/;
 $data = <INPUT>;
 close(INPUT);

 return $data;
} # read_file

This is where the data files are. Adjust as necessary.
my $searchpath = "../data";
my $outfile = "starter_pvf.pdf";

my $buf;
my $p;
my $imagedata;

create a new PDFlib object
my $p = new PDFlib::PDFlib;

eval {
 $p->set_parameter("SearchPath", $searchpath);

 # This means we must check return values of load_font() etc.
 $p->set_parameter("errorpolicy", "return");

 # Set an output path according to the name of the topic
 if ($p->begin_document($outfile, "") == -1) {
	printf("Error: %s\n", $p->get_errmsg());
	exit(2);
 }

 $p->set_info("Creator", "PDFlib starter sample");
 $p->set_info("Title", "starter_pvf");

 # We just read some image data from a file; to really benefit
 # from using PVF read the data from a Web site or a database instead

 $imagedata = read_file("../data/PDFlib-logo.tif");

 $p->create_pvf("/pvf/image", $imagedata, "");

 # Load the image from the PVF
 my $image = $p->load_image("auto", "/pvf/image", "");
 if ($image == -1) {
	printf("Error: %s\n", $p->get_errmsg());
	exit(2);
 }

 # Fit the image on page 1
 $p->begin_page_ext(595, 842, "");

 $p->fit_image($image, 350, 750, "");

 $p->end_page_ext("");

 # Fit the image on page 2
 $p->begin_page_ext(595, 842, "");

 $p->fit_image($image, 350, 50, "");

 $p->end_page_ext("");

 # Delete the virtual file to free the allocated memory
 $p->delete_pvf("/pvf/image");

 $p->end_document("");

};

if ($@) {
 die("$0: PDFlib Exception occurred:\n$@");
}

PDFlib-8.0.6-SunOS-sparc64-perl/bind/perl/starter_shaping.pl

#!/usr/bin/perl
$Id: starter_shaping.pl,v 1.4.2.2 2010/02/11 07:57:45 stm Exp $
Starter sample for text shaping features
Demonstrate text shaping for Arabic, Hebrew, Devanagari, and Thai scripts
Right-to-left text is reordered according to the Bidi algorithm.
#
Required software: PDFlib/PDFlib+PDI/PPS 8
Required data: suitable fonts for the scripts

use PDFlib::PDFlib 8.0;
use strict;

This is where the data files are. Adjust as necessary.
use constant searchpath1 => "../data";
use constant searchpath2 => "../../data";
use constant outfile => "starter_shaping.pdf";

use constant {
 llx => 50.0,
 lly => 50.0,
 urx => 800.0,
 ury => 550.0
};

use constant headers =>
 ("Language", "Raw input", "Reordered and shaped output");

Key names used to make a dictionary for the description of the samples
fontname: name of the font for this script
optlist: text options
textflow: can't use Textflow for Bidi text
language: language name
text: sample text
my @sample_keys = qw(fontname optlist textflow language text);

Function to create a hash describing each sample
sub make_sample_hash {
 my $values = $_[0]; # reference to array
 my %result;
 @result{@sample_keys} = @{$values};
 return \%result;
}

Sample descriptions, organized as an array of references to hashes
my @shapingsamples = map { make_sample_hash($_) } (

 # -------------------------- Arabic --------------------------
 ["ScheherazadeRegOT", "shaping script=arab", 0, "Arabic",
 "العَرَبِ" .
 "ية"
],

 ["ScheherazadeRegOT", "shaping script=arab", 0, "Arabic",
 "مرحبا! (Hello)"
],

 ["ScheherazadeRegOT", "shaping script=arab", 0, "Arabic",
 "﻿المادة " .
 "1 يولد ج" .
 "ميع النا" .
 "س أحرارً" .
 "ا متساوي" .
 "ن في الك" .
 "رامة وال" .
 "حقوق. "
],

 ["ScheherazadeRegOT", "shaping script=arab", 0, "Arabic",
 "وقد وهبو" .
 "ا عقلاً " .
 "وضميرًا " .
 "وعليهم أ" .
 "ن يعامل " .
 "بعضهم بع" .
 "ضًا بروح" .
 " الإخاء."
],

 # -------------------------- Hebrew --------------------------
 ["SILEOT", "shaping script=hebr", 0, "Hebrew",
 "עִבְרִית"
],

 ["SILEOT", "shaping script=hebr", 0, "Hebrew",
 "סעיף א. " .
 "כל בני א" .
 "דם נולדו" .
 " בני חור" .
 "ין ושווי" .
 "ם בערכם " .
 "ובזכויות" .
 "יהם. "
],

 ["SILEOT", "shaping script=hebr", 0, "Hebrew",
 "כולם חונ" .
 "נו בתבונ" .
 "ה ובמצפו" .
 "ן, "
],

 ["SILEOT", "shaping script=hebr", 0, "Hebrew",
 "לפיכך חו" .
 "בה עליהם" .
 " לנהוג א" .
 "יש ברעהו" .
 " ברוח של" .
 " אחוה."
],

 # -------------------------- Hindi --------------------------
 ["raghu8", "shaping script=deva", 1, "Hindi",
 "हिन्दी"
],

 ["raghu8", "shaping script=deva advancedlinebreak", 1, "Hindi",
 "अनुच्छेद" .
 " १. सभी " .
 "मनुष्यों" .
 " को गौरव" .
 " और अधिक" .
 "ारों के " .
 "मामले मे" .
 "ं जन्मजा" .
 "त स्वतन्" .
 "त्रता और" .
 " समानता " .
 "प्राप्त " .
 "है । उन्" .
 "हें बुद्" .
 "घि और अन" .
 "्तरात्मा" .
 " की देन " .
 "प्राप्त " .
 "है और पर" .
 "स्पर उन्" .
 "हें भाईच" .
 "ारे के भ" .
 "ाव से बर" .
 "्ताव करन" .
 "ा चाहिए " .
 "।"
],

 # -------------------------- Sanskrit --------------------------
 ["raghu8", "shaping script=deva", 1, "Sanskrit",
 "संस्कृतम" .
 "्"
],

 ["raghu8", "shaping script=deva", 1, "Sanskrit",
 "अनुच्छेद" .
 ": 1 सर्व" .
 "े मानवा:" .
 " स्वतन्त" .
 "्रा: समु" .
 "त्पन्ना:" .
 " वर्तन्त" .
 "े अपि च," .
 " गौरवदृश" .
 "ा अधिकार" .
 "दृशा च स" .
 "माना: एव" .
 " वर्तन्त" .
 "े। एते स" .
 "र्वे चेत" .
 "ना-तर्क-" .
 "शक्तिभ्य" .
 "ां सुसम्" .
 "पन्ना: स" .
 "न्ति। अप" .
 "ि च, सर्" .
 "वेऽपि बन" .
 "्धुत्व-भ" .
 "ावनया पर" .
 "स्परं व्" .
 "यवहरन्तु" .
 "।"
],

 # -------------------------- Thai --------------------------
 ["Norasi", "shaping script=thai advancedlinebreak locale=THA", 1, "Thai",
 "ไทย"
],

 ["Norasi", "shaping script=thai advancedlinebreak", 1, "Thai",
 "ข้อ 1 มน" .
 "ุษย์ทั้ง" .
 "หลายเกิด" .
 "มามีอิสร" .
 "ะและเสมอ" .
 "ภาคกันใน" .
 "เกียรติศ" .
 "ักด[เกีย" .
 "รติศักดิ" .
 "์]และสิท" .
 "ธิ ต่างม" .
 "ีเหตุผลแ" .
 "ละมโนธรร" .
 "ม และควร" .
 "ปฏิบัติต" .
 "่อกันด้ว" .
 "ยเจตนารม" .
 "ณ์แห่งภร" .
 "าดรภาพ"
]
);

my $p = new PDFlib::PDFlib;

eval {
 my $optlist;

 $p->set_parameter("SearchPath", searchpath1);
 $p->set_parameter("SearchPath", searchpath2);
 $p->set_parameter("textformat", "bytes");
 $p->set_parameter("charref", "true");

 # This means that formatting and other errors will raise an
 # exception. This simplifies our sample code, but is not
 # recommended for production code.
 $p->set_parameter("errorpolicy", "exception");

 # Set an output path according to the name of the topic
 if ($p->begin_document(outfile, "") == -1) {
 printf("Error: %s\n", $p->get_errmsg());
 exit(2);
 }

 $p->set_info("Creator", "PDFlib starter sample");
 $p->set_info("Title", "starter_shaping");

 my $table = -1;

 # Create table header
 my $col = 1;
 foreach my $header (headers) {
 $optlist = sprintf
 "fittextline={fontname=Helvetica-Bold encoding=winansi fontsize=14} " .
 "colwidth=%s", $col==1 ? "10%" : "45%" ;
 $table = $p->add_table_cell($table, $col, 1, $header, $optlist);
 $col += 1;
 }

 # Create shaping samples
 my $row = 2;
 foreach my $sample (@shapingsamples) {
 $col = 1;

 # Column 1: language name
 $optlist =
 "fittextline={fontname=Helvetica encoding=unicode fontsize=12}";
 $table = $p->add_table_cell($table, $col++, $row,
 $sample->{language}, $optlist);

 # Column 2: raw text
 $optlist = sprintf
 "fontname={%s} encoding=unicode fontsize=13 " .
 "leading=150%% alignment=left",
 $sample->{fontname};
 my $tf = $p->create_textflow($sample->{text}, $optlist);
 $optlist = sprintf
 "margin=4 fittextflow={verticalalign=top} textflow=%d", $tf;
 $table = $p->add_table_cell($table, $col++, $row, "", $optlist);

 # Column 3: shaped and reordered text (Textline or Textflow)
 if ($sample->{textflow}) {
 $optlist = sprintf
 "fontname={%s} encoding=unicode fontsize=13 %s " .
 "leading=150%% alignment=left",
 $sample->{fontname}, $sample->{optlist};
 $tf = $p->create_textflow($sample->{text}, $optlist);
 $optlist = sprintf
 "margin=4 fittextflow={verticalalign=top} textflow=%d", $tf;
 $table = $p->add_table_cell($table, $col++, $row, "", $optlist);
 }
 else {
 $optlist = sprintf
 "fittextline={fontname={%s} encoding=unicode " .
 "fontsize=13 %s}",
 $sample->{fontname}, $sample->{optlist};
 $table = $p->add_table_cell($table, $col++, $row,
 $sample->{text}, $optlist);
 }

 $row += 1;
 }

 # ---------- Place the table on one or more pages ----------
 #
 # Loop until all of the table is placed; create new pages
 # as long as more table instances need to be placed.
 my $result;
 do {
 $p->begin_page_ext(0, 0, "width=a4.height height=a4.width");

 # Shade every other row; draw lines for all table cells.
 $optlist = "header=1 fill={{area=rowodd " .
 "fillcolor={gray 0.9}}} stroke={{line=other}} ";

 # Place the table instance
 $result = $p->fit_table($table, llx, lly, urx, ury, $optlist);

 if ($result eq "_error") {
 printf("Couldn't place table: %s\n", $p->get_errmsg());
 exit(2);
 }

 $p->end_page_ext("");
 } while ($result eq "_boxfull");

 $p->end_document("");
};

if ($@) {
 die("$0: PDFlib Exception occurred:\n$@");
}

PDFlib-8.0.6-SunOS-sparc64-perl/bind/perl/starter_table.pl

#!/usr/bin/perl
$Id: starter_table.pl,v 1.9 2009/11/24 09:22:29 rjs Exp $
#
Table starter:
Create table which may span multiple pages
#
required software: PDFlib/PDFlib+PDI/PPS 7
required data: image file (dummy text created within the program)

use PDFlib::PDFlib 7.0;
use strict;

This is where the data files are. Adjust as necessary.
my $searchpath = "../data";
my $imagefile = "nesrin.jpg";
my $outfilename = "starter_table.pdf";

my $tf=-1;
my $tbl=-1;
my $rowmax = 50;
my $colmax = 5;
my $llx= 50;
my $lly=50;
my $urx=550;
my $ury=800;

my $headertext = "Table header (centered across all columns)";

Dummy text for filling a cell with multi-line Textflow
my $tf_text =
"Lorem ipsum dolor sit amet, consectetur adi­pi­sicing elit, sed do eius­mod tempor incidi­dunt ut labore et dolore magna ali­qua. Ut enim ad minim ve­niam, quis nostrud exer­citation ull­amco la­bo­ris nisi ut ali­quip ex ea commodo con­sequat. Duis aute irure dolor in repre­henderit in voluptate velit esse cillum dolore eu fugiat nulla pari­atur. Excep­teur sint occae­cat cupi­datat non proident, sunt in culpa qui officia dese­runt mollit anim id est laborum. ";

eval {
 my $p = new PDFlib::PDFlib;

 # This means we must check return values of load_font() etc.
 $p->set_parameter("errorpolicy", "return");

 $p->set_parameter("SearchPath", $searchpath);

 # we use "bytes" as textformat, this allows to use unicode encoding
 $p->set_parameter("textformat", "bytes");

 if ($p->begin_document($outfilename, "") == -1) {
	die("Error: " . $p->get_errmsg());
 }

 $p->set_info("Creator", "PDFlib starter sample");
 $p->set_info("Title", "starter_table");

 # -------------------- Add table cells --------------------

 # ---------- row 1: table header (spans all columns)
 my $row = 1; my $col = 1;
 my $font = $p->load_font("Times-Bold", "unicode", "");
 if ($font == -1) {
	printf("Error: %s\n", $p->get_errmsg()); exit;
 }

 my $optlist = "fittextline={position=center font=" . $font .
	" fontsize=14} colspan=" . $colmax;

 my $tbl = $p->add_table_cell($tbl, $col, $row, $headertext, $optlist);
 if ($tbl == -1) {
	die("Error: %s\n", $p->get_errmsg());
 }

 # ---------- row 2: various kinds of content
 # ----- Simple text cell
 $row++; $col=1;

 my $optlist = "fittextline={font=" . $font . " fontsize=10 orientate=west}";

 $tbl = $p->add_table_cell($tbl, $col, $row, "vertical line", $optlist);
 if ($tbl == -1) {
	die("Error: %s\n", $p->get_errmsg());
 }

 # ----- Colorized background
 $col++;

 $optlist = "fittextline={font=" . $font . " fontsize=10} " .
 "matchbox={fillcolor={rgb 0.9 0.5 0}}";

 $tbl = $p->add_table_cell($tbl, $col, $row, "some color", $optlist);
 if ($tbl == -1) {
	die("Error: %s\n", $p->get_errmsg());
 }

 # ----- Multi-line text with Textflow
 $col++;
 $font = $p->load_font("Times-Roman", "unicode", "");
 if ($font == -1) {
	printf("Error: %s\n", $p->get_errmsg()); exit;
 }

 $optlist = "charref fontname=Times-Roman encoding=unicode fontsize=8 ";

 $tf = $p->add_textflow($tf, $tf_text, $optlist);
 if ($tf == -1) {
	die("Error: %s\n", $p->get_errmsg());
 }

 $optlist = "margin=2 textflow=" . $tf;

 $tbl = $p->add_table_cell($tbl, $col, $row, "", $optlist);
 if ($tbl == -1) {
	die("Error: %s\n", $p->get_errmsg());
 }

 # ----- Rotated $image
 $col++;

 my $image = $p->load_image("auto", $imagefile, "");
 if ($image == -1) {
	die("Couldn't load $image: " . $p->get_errmsg());
 }

 $optlist = "image=" . $image . " fitimage={orientate=west}";

 $tbl = $p->add_table_cell($tbl, $col, $row, "", $optlist);
 if ($tbl == -1) {
	die("Error: %s\n", $p->get_errmsg());
 }

 # ----- Diagonal stamp
 $col++;

 $optlist = "fittextline={font=" . $font . " fontsize=10 stamp=ll2ur}";

 $tbl = $p->add_table_cell($tbl, $col, $row, "entry void", $optlist);
 if ($tbl == -1) {
	die("Error: %s\n", $p->get_errmsg());
 }

 # ---------- Fill $row 3 and above with their numbers
 for ($row++; $row <= $rowmax; $row++) {
	for ($col = 1; $col <= $colmax; $col++) {
	 my $num = "Col " . $col . "/Row " . $row;
	 $optlist = "colwidth=20% fittextline={font=" . $font . " fontsize=10}";
	 $tbl = $p->add_table_cell($tbl, $col, $row, $num, $optlist);
	 if ($tbl == -1) {
	 die("Error: %s\n", $p->get_errmsg());
	}
	}
 }

 # ---------- Place the table on one or more pages ----------

 #
 # Loop until all of the table is placed; create new pages
 # as long as more table instances need to be placed.

 my $result;
 do {
	$p->begin_page_ext(0, 0, "width=a4.width height=a4.height");

	# Shade every other $row; draw lines for all table cells.
	# Add "showcells showborder" to visualize cell borders

	$optlist = "header=1 fill={{area=rowodd fillcolor={gray 0.9}}} " .
	"stroke={{line=other}} ";

	# Place the table instance
	$result = $p->fit_table($tbl, $llx, $lly, $urx, $ury, $optlist);
	if ($result eq "_error") {
	 die("Couldn't place table:" . $p->get_errmsg());
	}

	$p->end_page_ext("");

 } while ($result eq "_boxfull");

 # Check the $result; "_stop" means all is ok.
 if ($result ne "_stop") {
	if ($result eq "_error") {
	 die("Error when placing table: " . $p->get_errmsg());
	} else {
	 # Any other return value is a user exit caused by
	 # the "return" option; this requires dedicated code to
	 # deal with.
	 die("User return found in Textflow");
	}
 }

 # This will also delete Textflow handles used in the table
 $p->delete_table($tbl, "");

 $p->end_document("");

};

if ($@) {
 die("$0: PDFlib Exception occurred:\n$@");
}

PDFlib-8.0.6-SunOS-sparc64-perl/bind/perl/starter_tagged.pl

#!/usr/bin/perl
$Id: starter_tagged.pl,v 1.9.2.1 2011/07/11 12:35:29 rjs Exp $
#
Tagged PDF starter:
Create document with structure information for reflow and accessibility
#
required software: PDFlib/PDFlib+PDI/PPS 7
required data: none (dummy text created in program)

use PDFlib::PDFlib 7.0;
use strict;

This is where the data files are. Adjust as necessary.
my $searchpath = "../data";
my $outfilename = "starter_tagged.pdf";

eval {
 my $p = new PDFlib::PDFlib;

 # This means we must check return values of load_font() etc.
 $p->set_parameter("errorpolicy", "return");

 $p->set_parameter("SearchPath", $searchpath);

 if ($p->begin_document($outfilename, "tagged=true lang=en") == -1) {
	die("Error: " . $p->get_errmsg());
 }

 $p->set_info("Creator", "PDFlib starter sample");
 $p->set_info("Title", "starter_tagged");

 # Automatically create spaces between chunks of text
 $p->set_parameter("autospace", "true");

 # open the first structure element as a child of the document
 # structure root (=0)

 my $id = $p->begin_item("Document",
	 "Title = {Starter sample for Tagged PDF}");

 $p->begin_page_ext(0, 0,
	 "width=a4.width height=a4.height taborder=structure");

 $p->create_bookmark("Section 1", "");

 my $font = $p->load_font("Helvetica", "winansi", "");
 if ($font == -1) {
	die("Error: %s\n", $p->get_errmsg());
 }
 $p->setfont($font, 24.0);

 my $id2 = $p->begin_item("H1", "Title = {Introduction}");
 $p->show_xy("1 Introduction", 50, 700);
 $p->end_item($id2);

 $id2 = $p->begin_item("P", "Title = {Simple paragraph}");
 $p->setfont($font, 12.0);
 $p->continue_text("This PDF has a very simple document structure ");
 $p->continue_text("which demonstrates basic Tagged PDF features ");
 $p->continue_text("for accessibility.");

 $p->end_item($id2);

 # The page number is created as an artifact; it will be
 # ignored when reflowing the page in Acrobat.

 my $id_artifact = $p->begin_item("Artifact", "");
 $p->show_xy("Page 1", 250, 100);
 $p->end_item($id_artifact);

 $p->end_page_ext("");

 $p->end_item($id);
 $p->end_document("");

};

if ($@) {
 die("$0: PDFlib Exception occurred:\n$@");
}

PDFlib-8.0.6-SunOS-sparc64-perl/bind/perl/starter_textflow.pl

#!/usr/bin/perl
$Id: starter_textflow.pl,v 1.9 2009/11/24 09:22:29 rjs Exp $
#
Textflow starter:
Create multi-column text output which may span multiple pages
#
required software: PDFlib/PDFlib+PDI/PPS 7 or above
required data: none

use PDFlib::PDFlib 7.0;
use strict;

my $outfilename = "starter_textflow.pdf";
my $tf = -1;
my $llx1= 50; my $lly1=50; my $urx1=250; my $ury1=800;
my $llx2=300; my $lly2=50; my $urx2=500; my $ury2=800;

Repeat the dummy text to produce more contents
my $count = 50;

my $optlist1 = "fontname=Helvetica fontsize=10.5 encoding=unicode " .
 "fillcolor={gray 0} alignment=justify";
my $optlist2 = "fontname=Helvetica-Bold fontsize=14 encoding=unicode " .
 "fillcolor={rgb 1 0 0} charref";

Dummy text for filling the columns. Soft hyphens are marked with
the character reference "­" (character references are
enabled by the charref option).

my $text=
"Lorem ipsum dolor sit amet, consectetur adi­pi­sicing elit, sed do eius­mod tempor incidi­dunt ut labore et dolore magna ali­qua. Ut enim ad minim ve­niam, quis nostrud exer­citation ull­amco la­bo­ris nisi ut ali­quip ex ea commodo con­sequat. Duis aute irure dolor in repre­henderit in voluptate velit esse cillum dolore eu fugiat nulla pari­atur. Excep­teur sint occae­cat cupi­datat non proident, sunt in culpa qui officia dese­runt mollit anim id est laborum. ";

eval {
 my $p = new PDFlib::PDFlib;

 # This means we must check return values of load_font() etc.
 $p->set_parameter("errorpolicy", "return");

 # we use "bytes" as textformat, this allows to use unicode encoding
 $p->set_parameter("textformat", "bytes");

 if ($p->begin_document($outfilename, "") == -1) {
	die("Error: " . $p->get_errmsg());
 }

 $p->set_info("Creator", "PDFlib starter sample");
 $p->set_info("Title", "starter_textflow");

 # Create some amount of dummy text and feed it to a Textflow
 # object with alternating options.

 for (my $i=1; $i<=$count; $i++) {
	my $num = $i . " ";

	$tf = $p->add_textflow($tf, $num, $optlist2);
	if ($tf == -1) {
	 die("Error: " . $p->get_errmsg());
	}

	$tf = $p->add_textflow($tf, $text, $optlist1);
	if ($tf == -1) {
	 die("Error: " . $p->get_errmsg());
	}
 }

 # Loop until all of the text is placed; create new pages
 # as long as more text needs to be placed. Two columns will
 # be created on all pages.

 my $result;
 do {
	# Add "showborder to visualize the fitbox borders
	my $optlist = "verticalalign=justify linespreadlimit=120% ";

	$p->begin_page_ext(0, 0, "width=a4.width height=a4.height");

	# Fill the first column
	$result = $p->fit_textflow($tf, $llx1, $lly1, $urx1, $ury1, $optlist);

	# Fill the second column if we have more text*/
	if ($result ne "_stop") {
	 $result = $p->fit_textflow($tf,
			$llx2, $lly2, $urx2, $ury2, $optlist);
	}

	$p->end_page_ext("");

	# "_boxfull" means we must continue because there is more text;
	# "_nextpage" is interpreted as "start new column"

 } while ($result eq "_boxfull" || $result eq "_nextpage");

 # Check for errors
 if ($result ne "_stop") {
	# "_boxempty" happens if the box is very small and doesn't
	# hold any text at all.

	if ($result eq "_boxempty") {
	 die("Error: Textflow box too small");
	} else {
	 # Any other return value is a user exit caused by
	 # the "return" option; this requires dedicated code to
	 # deal with.
	 die("User return '" . $result . "' found in Textflow");
	}
 }

 $p->delete_textflow($tf);

 $p->end_document("");

};

if ($@) {
 die("$0: PDFlib Exception occurred:\n$@");
}

PDFlib-8.0.6-SunOS-sparc64-perl/bind/perl/starter_textline.pl

#!/usr/bin/perl
$Id: starter_textline.pl,v 1.5 2009/11/23 14:31:30 rjs Exp $
Starter text line:
Demonstrate various options for placing a text line
#
Place a text line with different font sizes.
Output overlined, stroke out, and underlined text.
Output text and define character spacing, work spacing, or horizontal
scaling.
Output text with a defined fill color. Output text including its outlines
with a defined stroke color.
Place text into a box at various positions. Place text completely into a box
with automatic scaling if required.
#
Required software: PDFlib/PDFlib+PDI/PPS 7
Required data: none

use PDFlib::PDFlib 7.0;
use strict;

This is where the data files are. Adjust as necessary.
my $searchpath = "../data";
my $outfile = "starter_textline.pdf";

create a new PDFlib object
my $p = new PDFlib::PDFlib;

my $buf;
my $optlist;
my $font;
my $x = 10;
my $xt = 280;
my $y = 800;
my $yoff = 50;
my $textline = "Giant Wing Paper Plane";

eval {
 $p->set_parameter("SearchPath", $searchpath);

 # This means we must check return values of load_font() etc.
 $p->set_parameter("errorpolicy", "return");

 # Set an output path according to the name of the topic
 if ($p->begin_document($outfile, "") == -1) {
	printf("Error: %s\n", $p->get_errmsg());
	exit(2);
 }

 $p->set_info("Creator", "PDFlib starter sample");
 $p->set_info("Title", "starter_text_line");

 # Start Page
 $p->begin_page_ext(0, 0, "width=a4.width height=a4.height");

 $font = $p->load_font("Helvetica", "winansi", "");

 if ($font == -1) {
	printf("Error: %s\n", $p->get_errmsg());
	exit(2);
 }

 # Set the font with a font size of 14
 $p->setfont($font, 14);

 # Place the text line without any options applied
 $p->fit_textline($textline, $x, $y, "");

 # Output descriptive text
 $p->fit_textline("fit_textline() without any options", $xt, $y,
	"fontsize=12");

 # Place the text with a different font size
 $optlist = "fontsize=22";

 $p->fit_textline($textline, $x, $y-=$yoff, $optlist); # sample text
 $p->fit_textline($optlist, $xt, $y, "fontsize=12"); # description

 # Place stroke out text
 $optlist = "strikeout";

 $p->fit_textline($textline, $x, $y-=$yoff, $optlist); # sample text
 $p->fit_textline($optlist, $xt, $y, "fontsize=12"); # description

 # Place underlined text
 $optlist = "underline underlinewidth=7% underlineposition=-20%";

 $p->fit_textline($textline, $x, $y-=$yoff, $optlist); # sample text
 $p->fit_textline($optlist, $xt, $y, "fontsize=12"); # description

 # Place overlined text
 $optlist = "overline";

 $p->fit_textline($textline, $x, $y-=$yoff, $optlist); # sample text
 $p->fit_textline($optlist, $xt, $y, "fontsize=12"); # description

 # Place the text with a horizontal scaling of 150%
 $optlist = "horizscaling=150%";

 $p->fit_textline($textline, $x, $y-=$yoff, $optlist); # sample text
 $p->fit_textline($optlist, $xt, $y, "fontsize=12"); # description

 # Place the text with a character spacing of 30% of the font size
 $optlist = "charspacing=30%";

 $p->fit_textline($textline, $x, $y-=$yoff, $optlist); # sample text
 $p->fit_textline($optlist, $xt, $y, "fontsize=12"); # description

 # Place the text with a word spacing of 50% of the font size
 $optlist = "wordspacing=50%";

 $p->fit_textline($textline, $x, $y-=$yoff, $optlist); # sample text
 $p->fit_textline($optlist, $xt, $y, "fontsize=12"); # description

 # Place the text with a different fill color
 $optlist = "fillcolor={rgb 0.5 0.2 0.5}";

 $p->fit_textline($textline, $x, $y-=$yoff, $optlist);
 $p->fit_textline($optlist, $xt, $y, "fontsize=12");

 # Place the text including its outlines using a text rendering mode of
 # 2 for "filling and stroking text" and different fill and stroke
 # colors

 $optlist =
	"fontsize=22 fillcolor={rgb 0.6 0.3 0.6} strokecolor={gray 0} " .
	"strokewidth=0.4 textrendering=2";

 $p->fit_textline($textline, $x, $y-=$yoff, $optlist);

 # Output descriptive text
 $p->fit_textline("fillcolor={rgb 0.6 0.3 0.6} strokecolor={gray 0} ",
	$xt, $y+10, "fontsize=12");
 $p->fit_textline("strokewidth=0.4 textrendering=2 fontsize=22",
	$xt, $y-5, "fontsize=12");

 # Place the text with its outlines using a text rendering mode of
 # 1 for "stroking text" and a stroke color of black

 $optlist =
	"fontsize=22 strokecolor={gray 0} strokewidth=0.4 textrendering=1";

 $p->fit_textline($textline, $x, $y-=$yoff, $optlist);

 # Output descriptive text
 $p->fit_textline("strokecolor={gray 0} strokewidth=0.4", $xt, $y+10,
	"fontsize=12");
 $p->fit_textline("textrendering=1 fontsize=22", $xt, $y-=5,
	"fontsize=12");

 # Place the text in a box with default positioning and fitting
 $optlist = "boxsize={200 20} showborder";

 $p->fit_textline($textline, $x, $y-=$yoff, $optlist); # sample text
 $p->fit_textline($optlist, $xt, $y+3, "fontsize=12"); # description

 # Place the text in a box on the top right
 $optlist = "boxsize={200 20} position={top right} showborder";

 $p->fit_textline($textline, $x, $y-=$yoff, $optlist); # sample text
 $p->fit_textline($optlist, $xt, $y+3, "fontsize=12"); # description

 # Use "fitmethod=clip" to place the text in a box not large enough to
 # show the complete text. The text will be clipped.

 $optlist = "boxsize={130 20} fitmethod=clip showborder";

 $p->fit_textline($textline, $x, $y-=$yoff, $optlist); # sample text
 $p->fit_textline($optlist, $xt, $y+3, "fontsize=12"); # description

 # Fit the text into the box automatically with "fitmethod=auto".
 # In this case, if the text doesn't fit into the box a distortion
 # factor is calculated which makes the text fit into the box. If this
 # factor is larger than the "shrinklimit" option the text will
 # be distorted by that factor. Otherwise, the font size will be
 # be decreased until until the text fits into the box.

		
 # Use "fitmethod=auto" to place the text in a box not large enough to
 # show the complete text. The text will be distorted.

 $optlist = "boxsize={130 20} fitmethod=auto showborder";

 $p->fit_textline($textline, $x, $y-=$yoff, $optlist); # sample text
 $p->fit_textline($optlist, $xt, $y+3, "fontsize=12"); # description

 # Use "fitmethod=auto" to place the text in a box too small to show the
 # complete text. The font size will be reduced until the text fits into
 # the box.

 $optlist = "boxsize={100 20} fitmethod=auto showborder";

 $p->fit_textline($textline, $x, $y-=$yoff, $optlist); # sample text
 $p->fit_textline($optlist, $xt, $y+3, "fontsize=12"); # description

 $p->end_page_ext("");

 $p->end_document("");

};

if ($@) {
 die("$0: PDFlib Exception occurred:\n$@");
}

PDFlib-8.0.6-SunOS-sparc64-perl/bind/perl/starter_type3font.pl

#!/usr/bin/perl
$Id: starter_type3font.pl,v 1.6 2009/11/23 14:31:30 rjs Exp $
Type 3 font starter:
Create a simple Type 3 font from vector data
#
Define a type 3 font with the glyphs "l" and "space" and output text with
that font. In addition the glyph ".notdef" is defined which any undefined
character will be mapped to.
#
Required software: PDFlib/PDFlib+PDI/PPS 7
Required data: none

use PDFlib::PDFlib 7.0;
use strict;

This is where the data files are. Adjust as necessary.
my $searchpath = "../data";
my $outfile = "starter_type3font.pdf";

my $buf;
my $font;
my ($x, $y);
create a new PDFlib object
my $p = new PDFlib::PDFlib;

eval {
 $p->set_parameter("SearchPath", $searchpath);

 # This means we must check return values of load_font() etc.
 $p->set_parameter("errorpolicy", "return");

 if ($p->begin_document($outfile, "") == -1) {
	printf("Error: %s\n", $p->get_errmsg());
	exit(2);
 }

 $p->set_info("Creator", "PDFlib starter sample");
 $p->set_info("Title", "starter_type3font");

 # Create the font "SimpleFont" containing the glyph "l",
 # the glyph "space" for spaces and the glyph ".notdef" for any
 # undefined character

 $p->begin_font("SimpleFont",
		0.001, 0.0, 0.0, 0.001, 0.0, 0.0, "");
 $p->begin_glyph(".notdef", 266, 0, 0, 0, 0);
 $p->end_glyph();
 $p->begin_glyph("space", 266, 0, 0, 0, 0);
 $p->end_glyph();
 $p->begin_glyph("l", 266, 0, 0, 266, 570);
 $p->setlinewidth(20);
 $p->setdash(0, 0);
 $x = 197;
 $y = 10;
 $p->moveto($x, $y);
 $y += 530;
 $p->lineto($x, $y);
 $x -= 64;
 $p->lineto($x, $y);
 $y -= 530;
 $p->moveto($x, $y);
 $x += 128;
 $p->lineto($x, $y);

 $p->stroke();
 $p->end_glyph();

 $p->end_font();

 # Start page
 $p->begin_page_ext(0, 0, "width=300 height=200");

 # Load the new "SimpleFont" font
 $font = $p->load_font("SimpleFont", "winansi", "");

 if ($font == -1) {
	printf("Error: %s\n", $p->get_errmsg());
	exit(2);
 }

 # Output the characters "l" and "space" of the "SimpleFont" font.
 # The character "x" is undefined and will be mapped to ".notdef"

 $buf = " font=" . $font . " fontsize=40";
 $p->fit_textline("lll lllxlll", 100, 100, $buf);

 $p->end_page_ext("");

 $p->end_document("");
};

if ($@) {
 die("$0: PDFlib Exception occurred:\n$@");
}

PDFlib-8.0.6-SunOS-sparc64-perl/bind/perl/starter_webform.pl

#!/usr/bin/perl
$Id: starter_webform.pl,v 1.7 2009/11/23 15:33:25 rjs Exp $
#
Webform starter:
create a linearized PDF (for fast delivery over the Web, also known
as "fast Web view") which is encrypted and contains some form fields.
A few lines of JavaScript are inserted as "page open" action to
automatically populate the date field with the current date.
#
required software: PDFlib/PDFlib+PDI/PPS 7
required data: none

use PDFlib::PDFlib 7.0;
use strict;

my $outfilename = "starter_webform.pdf";

my $llx=150; my $lly=550; my $urx=350; my $ury=575;

JavaScript for automatically filling the date into a form field
my $js = "var d = util.printd(\"mm/dd/yyyy\", new Date());" .
 "var date = this.getField(\"date\");" .
 "date.value = d;";

my $p = new PDFlib::PDFlib;

eval {
 # This means we must check return values of load_font() etc.
 $p->set_parameter("errorpolicy", "return");

 # Prevent changes with a master password
 my $optlist = "linearize masterpassword=pdflib permissions={nomodify}";

 if ($p->begin_document($outfilename, $optlist) == -1) {
	die("Error: " . $p->get_errmsg());
 }

 $p->set_info("Creator", "PDFlib starter sample");
 $p->set_info("Title", "starter_webform");

 $optlist = "script={" . $js . "}";
 my $action = $p->create_action("JavaScript", $optlist);

 $optlist = "action={open=" . $action . "}";
 $p->begin_page_ext(595, 842, $optlist);

 my $font = $p->load_font("Helvetica", "winansi", "");
 if ($font == -1) {
	die("Error: %s\n", $p->get_errmsg());
 }
 $p->setfont($font, 24);

 $p->fit_textline("Date: ", 125, $lly+5, "position={right bottom}");

 # The tooltip will be used as rollover text for the field
 $optlist =
	"tooltip={Date (will be filled automatically)} " .
	"bordercolor={gray 0} font=" . $font;
 $p->create_field($llx, $lly, $urx, $ury, "date", "textfield", $optlist);

 $lly-=100; $ury-=100;
 $p->fit_textline("Name: ", 125, $lly+5, "position={right bottom}");

 $optlist = "tooltip={Enter your name here} " .
	"bordercolor={gray 0} font=" . $font;
 $p->create_field($llx, $lly, $urx, $ury, "name", "textfield", $optlist);

 $p->end_page_ext("");

 $p->end_document("");

};

if ($@) {
 die("$0: PDFlib Exception occurred:\n$@");
}

PDFlib-8.0.6-SunOS-sparc64-perl/bind/perl/oldstype/hello.pl

#!/usr/bin/perl
$Id: hello.pl,v 1.29 2009/09/11 10:32:16 stm Exp $
#
PDFlib client: hello example in Perl
#

use pdflib_pl 8.0;

$p = PDF_new();

eval {
 # This means we must check return values of load_font() etc.
 PDF_set_parameter($p, "errorpolicy", "return");

 # This line is required to avoid problems on Japanese systems
 PDF_set_parameter($p, "hypertextencoding", "winansi");

 if (PDF_begin_document($p, "hello.pdf", "") == -1) {
	die("Error: %s\n", PDF_get_errmsg($p));
 }

 PDF_set_info($p, "Creator", "hello.pl");
 PDF_set_info($p, "Author", "Thomas Merz");
 PDF_set_info($p, "Title", "Hello world (Perl)!");

 PDF_begin_page_ext($p, 595, 842, "");

 $font = PDF_load_font($p, "Helvetica-Bold", "winansi", "");
 if ($font == -1) {
	die("Error: %s\n", PDF_get_errmsg($p));
 }

 PDF_setfont($p, $font, 24.0);
 PDF_set_text_pos($p, 50, 700);
 PDF_show($p, "Hello world!");
 PDF_continue_text($p, "(says Perl)");
 PDF_end_page_ext($p, "");

 PDF_end_document($p, "");
};

if ($@) {
 printf("$0: PDFlib Exception occurred:\n");
 printf(" $@\n");
 exit(1);
}

PDF_delete($p);

PDFlib-8.0.6-SunOS-sparc64-perl/bind/perl/oldstype/image.pl

#!/usr/bin/perl
$Id: image.pl,v 1.25 2009/09/11 10:32:16 stm Exp $
#
PDFlib client: image example in Perl
#

use pdflib_pl 8.0;

This is where font/image/PDF input files live. Adjust as necessary.
$searchpath = "../data";
$imagefile = "nesrin.jpg";

$p = PDF_new();

eval {
 # This means we must check return values of load_font() etc.
 PDF_set_parameter($p, "errorpolicy", "return");

 PDF_set_parameter($p, "SearchPath", $searchpath);

 # This line is required to avoid problems on Japanese systems
 PDF_set_parameter($p, "hypertextencoding", "winansi");

 if (PDF_begin_document($p, "image.pdf", "") == -1){
	die("Error: %s\n", PDF_get_errmsg($p));
 }

 PDF_set_info($p, "Creator", "image.pl");
 PDF_set_info($p, "Author", "Thomas Merz");
 PDF_set_info($p, "Title", "image sample (Perl)");

 $image = PDF_load_image($p, "auto", $imagefile, "");
 die "Couldn't open image '$imagefile'" if ($image == -1);

 # dummy page size, will be adjusted by PDF_fit_image()
 PDF_begin_page_ext($p, 10, 10, "");
 PDF_fit_image($p, $image, 0, 0, "adjustpage");
 PDF_close_image($p, $image);
 PDF_end_page_ext($p, "");

 PDF_end_document($p, "");
};

if ($@) {
 printf("$0: PDFlib Exception occurred:\n");
 printf(" $@\n");
 exit(1);
}

PDF_delete($p);

PDFlib-8.0.6-SunOS-sparc64-perl/bind/perl/oldstype/pdfclock.pl

#!/usr/bin/perl
$Id: pdfclock.pl,v 1.21 2009/09/11 10:32:16 stm Exp $
#
PDFlib client: pdfclock example in Perl
#

use pdflib_pl 8.0;

$RADIUS = 200.0;
$MARGIN = 20.0;

$p = PDF_new();
eval{
 # This means we must check return values of load_font() etc.
 PDF_set_parameter($p, "errorpolicy", "return");

 # This line is required to avoid problems on Japanese systems
 PDF_set_parameter($p, "hypertextencoding", "winansi");

 if (PDF_begin_document($p, "pdfclock.pdf", "") == -1) {
	die("Error: %s\n", PDF_get_errmsg($p));
 }

 PDF_set_info($p, "Creator", "pdfclock.pl");
 PDF_set_info($p, "Author", "Thomas Merz");
 PDF_set_info($p, "Title", "PDF clock (Perl)");

 PDF_begin_page_ext($p, 2 * ($RADIUS + $MARGIN), 2 * ($RADIUS + $MARGIN),"");

 PDF_translate($p, $RADIUS + $MARGIN, $RADIUS + $MARGIN);
 PDF_setcolor($p, "fillstroke", "rgb", 0.0, 0.0, 1.0, 0.0);
 PDF_save($p);

 # minute strokes
 PDF_setlinewidth($p, 2.0);
 for ($alpha = 0; $alpha < 360; $alpha += 6) {
	PDF_rotate($p, 6.0);
	PDF_moveto($p, $RADIUS, 0.0);
	PDF_lineto($p, $RADIUS-$MARGIN/3, 0.0);
	PDF_stroke($p);
 }

 PDF_restore($p);
 PDF_save($p);

 # 5 minute strokes
 PDF_setlinewidth($p, 3.0);
 for ($alpha = 0; $alpha < 360; $alpha += 30) {
	PDF_rotate($p, 30.0);
	PDF_moveto($p, $RADIUS, 0.0);
	PDF_lineto($p, $RADIUS-$MARGIN, 0.0);
	PDF_stroke($p);
 }

 ($tm_sec,$tm_min,$tm_hour) = localtime(time);

 # draw hour hand
 PDF_save($p);
 PDF_rotate($p, (-(($tm_min/60.0) + $tm_hour - 3.0) * 30.0));
 PDF_moveto($p, -$RADIUS/10, -$RADIUS/20);
 PDF_lineto($p, $RADIUS/2, 0.0);
 PDF_lineto($p, -$RADIUS/10, $RADIUS/20);
 PDF_closepath($p);
 PDF_fill($p);
 PDF_restore($p);

 # draw minute hand
 PDF_save($p);
 PDF_rotate($p, (-(($tm_sec/60.0) + $tm_min - 15.0) * 6.0));
 PDF_moveto($p, -$RADIUS/10, -$RADIUS/20);
 PDF_lineto($p, $RADIUS * 0.8, 0.0);
 PDF_lineto($p, -$RADIUS/10, $RADIUS/20);
 PDF_closepath($p);
 PDF_fill($p);
 PDF_restore($p);

 # draw second hand
 PDF_setcolor($p, "fillstroke", "rgb", 1.0, 0.0, 0.0, 0.0);
 PDF_setlinewidth($p, 2);
 PDF_save($p);
 PDF_rotate($p, -(($tm_sec - 15.0) * 6.0));
 PDF_moveto($p, -$RADIUS/5, 0.0);
 PDF_lineto($p, $RADIUS, 0.0);
 PDF_stroke($p);
 PDF_restore($p);

 # draw little circle at center
 PDF_circle($p, 0, 0, $RADIUS/30);
 PDF_fill($p);

 PDF_restore($p);
 PDF_end_page_ext($p,"");

 PDF_end_document($p,"");
};

if ($@) {
 printf("$0: PDFlib Exception occurred:\n");
 printf(" $@\n");
 exit(1);
}

PDF_delete($p); # delete the PDFlib object

PDFlib-8.0.6-SunOS-sparc64-perl/bind/perl/oldstype/chartab.pl

#!/usr/bin/perl
$Id: chartab.pl,v 1.21 2009/09/11 10:32:16 stm Exp $
#
PDFlib client: hello example in Perl
#

use pdflib_pl 8.0;

change these as required
$fontname = "LuciduxSans-Oblique";

This is where font/image/PDF input files live. Adjust as necessary.
$searchpath = "../data";

list of encodings to use
@encodings = ("iso8859-1", "iso8859-2", "iso8859-15");

whether or not to embed the font
$embed = 1;

use constant "FONTSIZE" => 	16;
use constant "TOP" =>		700;
use constant "LEFT" => 		50;
use constant "YINCR" => 	2*FONTSIZE;
use constant "XINCR" =>		2*FONTSIZE;

$p = PDF_new();

eval {
 # This means we must check return values of load_font() etc.
 PDF_set_parameter($p, "errorpolicy", "return");

 PDF_set_parameter($p, "SearchPath", $searchpath);

 # This line is required to avoid problems on Japanese systems
 PDF_set_parameter($p, "hypertextencoding", "winansi");

 if (PDF_begin_document($p, "chartab.pdf",
	 "destination {type fitwindow page 1}") == -1) {
	die("Error: %s\n", PDF_get_errmsg($p));
 }

 PDF_set_info($p, "Creator", "chartab.pl");
 PDF_set_info($p, "Author", "Thomas Merz");
 PDF_set_info($p, "Title", "Character table (Perl)");

 # loop over all encodings
 for ($page = 0; $page <= $#encodings; $page++) {
	PDF_begin_page_ext($p, 595, 842, "");

	# print the heading and generate the bookmark
	$font = PDF_load_font($p, "Helvetica", "winansi", "");
	if (font == -1) {
	 die("Error: %s\n", PDF_get_errmsg($p));
	}
	PDF_setfont($p, $font, FONTSIZE);
	$buf = sprintf("%s (%s) %sembedded",
	 $fontname, $encodings[$page], $embed ? "" : "not ");

	PDF_show_xy($p, $buf, LEFT - XINCR, TOP + 3 * YINCR);
	PDF_create_bookmark($p, $buf, "");

	# print the row and column captions
	PDF_setfont($p, $font, 2 * FONTSIZE/3);

	for ($row = 0; $row < 16; $row++) {
	 $buf = sprintf("x%X", $row);
	 PDF_show_xy($p, $buf, LEFT + $row*XINCR, TOP + YINCR);

	 $buf = sprintf("%Xx", $row);
	 PDF_show_xy($p, $buf, LEFT - XINCR, TOP - $row * YINCR);
	}

	# print the character table
	$font = PDF_load_font($p, $fontname, $encodings[$page],
	 $embed ? "embedding": "");
	if ($font == -1) {
	 die("Error: %s\n", PDF_get_errmsg($p));
	}
	PDF_setfont($p, $font, FONTSIZE);

	$y = TOP;
	$x = LEFT;

	for ($row = 0; $row < 16; $row++) {
	 for ($col = 0; $col < 16; $col++) {
		$buf = sprintf("%c", 16*$row + $col);
		PDF_show_xy($p, $buf, $x, $y);
		$x += XINCR;
	 }
	 $x = LEFT;
	 $y -= YINCR;
	}

	PDF_end_page_ext($p,"");
 }

 PDF_end_document($p,"");
};

if ($@) {
 printf("$0: PDFlib Exception occurred:\n");
 printf(" $@\n");
 exit(1);
}

PDF_delete($p);					# delete the PDFlib object

PDFlib-8.0.6-SunOS-sparc64-perl/bind/perl/oldstype/invoice.pl

#!/usr/bin/perl
$Id: invoice.pl,v 1.23 2009/09/11 10:32:16 stm Exp $
#
PDFlib client: invoice generation demo
#

use pdflib_pl 8.0;

$left = 55;
$right = 530;
$fontsize = 12;
$pagewidth = 595;
$pageheight = 842;
$fontsize = 12;
$searchpath = "../data";
$infile = "stationery.pdf";
$baseopt = "ruler { 30 45 275 375 475} " .
	 "tabalignment {right left right right right} " .
	 "hortabmethod ruler fontsize 12 ";

This is where font/image/PDF input files live. Adjust as necessary.
$closingtext =
	"Terms of payment: <fillcolor={rgb 1 0 0}>30 days net. " .
	"<fillcolor={gray 0}>90 days warranty starting at the day of sale. " .
	"This warranty covers defects in workmanship only. " .
	"<fontname=Helvetica-BoldOblique encoding=host>Kraxi Systems, Inc. " .
	"<resetfont>will, at its option, repair or replace the " .
	"product under the warranty. This warranty is not transferable. " .
	"No returns or exchanges will be accepted for wet products.";

@data = ({name=>"Super Kite", 	price=>20,	quantity=>2},
	 {name=>"Turbo Flyer", 	price=>40, 	quantity=>5},
	 {name=>"Giga Trasch", 	price=>180, 	quantity=>1},
	 {name=>"Bare Bone Kit", 	price=>50, 	quantity=>3},
	 {name=>"Nitty Gritty", 	price=>20, 	quantity=>10},
	 {name=>"Pretty Dark Flyer",	price=>75, 	quantity=>1},
	 {name=>"Free Gift", 	price=>0, 	quantity=>1}
);

@months = ("January", "February", "March", "April", "May", "June",
	 "July", "August", "September", "October", "November", "December");

$p = PDF_new();

eval {
 # This means we must check return values of load_font() etc.
 PDF_set_parameter($p, "errorpolicy", "return");

 PDF_set_parameter($p, "SearchPath", $searchpath);

 # This line is required to avoid problems on Japanese systems
 PDF_set_parameter($p, "hypertextencoding", "winansi");

 if (PDF_begin_document($p, "invoice.pdf", "") == -1) {
	die("Error: %s\n", PDF_get_errmsg($p));
 }

 PDF_set_info($p, "Creator", "invoice.pl");
 PDF_set_info($p, "Author", "Thomas Merz");
 PDF_set_info($p, "Title", "PDFlib invoice generation demo (Perl)");

 $stationery = PDF_open_pdi_document($p, $infile, "");
 if ($stationery == -1) {
	die("Error: %s\n", PDF_get_errmsg($p));
 }

 $page = PDF_open_pdi_page($p, $stationery, 1, "");
 if ($page == -1) {
	die("Error: %s\n", PDF_get_errmsg($p));
 }

 $boldfont = PDF_load_font($p, "Helvetica-Bold", "winansi", "");
 if ($boldfont == -1) {
	die("Error: %s\n", PDF_get_errmsg($p));
 }
 $regularfont = PDF_load_font($p, "Helvetica", "winansi", "");
 if ($regularfont == -1) {
	die("Error: %s\n", PDF_get_errmsg($p));
 }
 $leading = $fontsize + 2;

 # Establish coordinates with the origin in the upper left corner.
 PDF_begin_page_ext($p, $pagewidth, $pageheight, "topdown");

 PDF_fit_pdi_page($p, $page, 0, $pageheight, "");
 PDF_close_pdi_page($p, $page);

 PDF_setfont($p, $regularfont, $fontsize);

 # print the address
 $y = 170;
 PDF_set_value($p, "leading", $leading);

 PDF_show_xy($p, "John Q. Doe", $left, $y);
 PDF_continue_text($p, "255 Customer Lane");
 PDF_continue_text($p, "Suite B");
 PDF_continue_text($p, "12345 User Town");
 PDF_continue_text($p, "Everland");

 # print the header and date
 PDF_setfont($p, $boldfont, $fontsize);
 $y = 300;
 PDF_show_xy($p, "INVOICE", $left, $y);

 $buf = sprintf("%s %d, %d", $months[(localtime)[4]], (localtime)[3],
 (localtime)[5]+1900);
 PDF_fit_textline($p, $buf, $right, $y, "position {100 0}");

 # print the invoice header line
 $y = 370;
 $buf = sprintf("\tITEM\tDESCRIPTION\tQUANTITY\tPRICE\tAMOUNT");
 $optlist = sprintf("%s font %d", $baseopt, $boldfont);

 $textflow = PDF_create_textflow($p, $buf, $optlist);

 if ($textflow == -1) {
	die("Error: %s\n", PDF_get_errmsg($p));
 }

 PDF_fit_textflow($p, $textflow, $left, $y-$leading, $right, $y, "");
 PDF_delete_textflow($p, $textflow);

 # print the article list

 $y += 2*$leading;
 $total = 0;

 $optlist = sprintf("%s font %d", $baseopt, $regularfont);

 for ($i = 0; $i <= $#data; $i++) {
	$sum = $data[$i]{price}*$data[$i]{quantity};

	$buf = sprintf("\t%d\t%s\t%d\t%.2f\t%.2f",
	 $i+1, $data[$i]{name}, $data[$i]{quantity}, $data[$i]{price}, $sum);

	$textflow = PDF_create_textflow($p, $buf, $optlist);

	if ($textflow == -1) {
	 die("Error: %s\n", PDF_get_errmsg($p));
	}

	PDF_fit_textflow($p, $textflow, $left, $y-$leading, $right, $y, "");
	PDF_delete_textflow($p, $textflow);

	$y += $leading;
	$total +=$sum;
 }

 $y += $leading;
 PDF_setfont($p, $boldfont, $fontsize);
 PDF_fit_textline($p,sprintf("%.2f",$total), $right, $y, "position {100 0}");

 # Print the closing text

 $y +=5*$leading;
 $optlist = "alignment=justify leading=120% " .
		"fontname=Helvetica fontsize=12 encoding=winansi ";

 $textflow = PDF_create_textflow($p, $closingtext, $optlist);

 if ($textflow == -1) {
	die("Error: %s\n", PDF_get_errmsg($p));
 }

 PDF_fit_textflow($p, $textflow, $left, $y + 6*$leading, $right, $y, "");
 PDF_delete_textflow($p, $textflow);

 PDF_end_page_ext($p, "");
 PDF_end_document($p, "");
 PDF_close_pdi_document($p, $stationery);
};

if ($@) {
 printf("$0: PDFlib Exception occurred:\n");
 printf(" $@\n");
 exit(1);
}

PDF_delete($p);

PDFlib-8.0.6-SunOS-sparc64-perl/bind/perl/oldstype/pdfclock.cgi.pl

#!/usr/bin/perl
$Id: pdfclock.cgi.pl,v 1.15 2007/10/29 21:53:40 rjs Exp $
#
PDFlib client: pdfclock CGI example in Perl
#

use pdflib_pl 8.0;

$RADIUS = 200.0;
$MARGIN = 20.0;

$p = PDF_new();

This means we must check return values of load_font() etc.
PDF_set_parameter($p, "errorpolicy", "return");

This line is required to avoid problems on Japanese systems
PDF_set_parameter($p, "hypertextencoding", "winansi");

PDF_begin_document($p, "", "");

PDF_set_info($p, "Creator", "pdfclock.cgi.pl");
PDF_set_info($p, "Author", "Thomas Merz");
PDF_set_info($p, "Title", "PDF clock (Perl/CGI)");

PDF_begin_page_ext($p, 2 * ($RADIUS + $MARGIN), 2 * ($RADIUS + $MARGIN), "");

PDF_translate($p, $RADIUS + $MARGIN, $RADIUS + $MARGIN);
PDF_setcolor($p, "fillstroke", "rgb", 0.0, 0.0, 1.0, 0.0);
PDF_save($p);

minute strokes
PDF_setlinewidth($p, 2.0);
for ($alpha = 0; $alpha < 360; $alpha += 6) {
 PDF_rotate($p, 6.0);
 PDF_moveto($p, $RADIUS, 0.0);
 PDF_lineto($p, $RADIUS-$MARGIN/3, 0.0);
 PDF_stroke($p);
}

PDF_restore($p);
PDF_save($p);

5 minute strokes
PDF_setlinewidth($p, 3.0);
for ($alpha = 0; $alpha < 360; $alpha += 30) {
 PDF_rotate($p, 30.0);
 PDF_moveto($p, $RADIUS, 0.0);
 PDF_lineto($p, $RADIUS-$MARGIN, 0.0);
 PDF_stroke($p);
}

($tm_sec,$tm_min,$tm_hour) = localtime(time);

draw hour hand
PDF_save($p);
PDF_rotate($p, (-(($tm_min/60.0) + $tm_hour - 3.0) * 30.0));
PDF_moveto($p, -$RADIUS/10, -$RADIUS/20);
PDF_lineto($p, $RADIUS/2, 0.0);
PDF_lineto($p, -$RADIUS/10, $RADIUS/20);
PDF_closepath($p);
PDF_fill($p);
PDF_restore($p);

draw minute hand
PDF_save($p);
PDF_rotate($p, (-(($tm_sec/60.0) + $tm_min - 15.0) * 6.0));
PDF_moveto($p, -$RADIUS/10, -$RADIUS/20);
PDF_lineto($p, $RADIUS * 0.8, 0.0);
PDF_lineto($p, -$RADIUS/10, $RADIUS/20);
PDF_closepath($p);
PDF_fill($p);
PDF_restore($p);

draw second hand
PDF_setcolor($p, "fillstroke", "rgb", 1.0, 0.0, 0.0, 0.0);
PDF_setlinewidth($p, 2);
PDF_save($p);
PDF_rotate($p, -(($tm_sec - 15.0) * 6.0));
PDF_moveto($p, -$RADIUS/5, 0.0);
PDF_lineto($p, $RADIUS, 0.0);
PDF_stroke($p);
PDF_restore($p);

draw little circle at center
PDF_circle($p, 0, 0, $RADIUS/30);
PDF_fill($p);

PDF_restore($p);
PDF_end_page_ext($p, "");

PDF_end_document($p, "");

$buf = PDF_get_buffer($p);

the following is required on Windows systems
binmode(STDOUT);

print "Content-Type: application/pdf\n";
print "Content-Length: " . length($buf) . "\n";
print "Content-Disposition: inline; filename=" . "pdfclock.cgi.pl.pdf" . "\n\n";
print $buf;

PDF_delete($p);

PDFlib-8.0.6-SunOS-sparc64-perl/bind/perl/oldstype/businesscard.pl

#!/usr/bin/perl
$Id: businesscard.pl,v 1.26 2009/09/11 10:32:16 stm Exp $
#
PDFlib client: block processing example in C
#

use pdflib_pl 8.0;

$infile = "boilerplate.pdf";
This is where font/image/PDF input files live. Adjust as necessary.
#
Note that this directory must also contain the LuciduxSans font outline
and metrics files.
#
$searchpath = "../data";

%data = ("name"			=> "Victor Kraxi",
	 "business.title"		=> "Chief Paper Officer",
	 "business.address.line1" 	=> "17, Aviation Road",
	 "business.address.city"	=> "Paperfield",
	 "business.telephone.voice"	=> "phone +1 234 567-89",
	 "business.telephone.fax"	=> "fax +1 234 567-98",
	 "business.email"		=> "victor\@kraxi.com",
	 "business.homepage"		=> "www.kraxi.com"
);

$p = PDF_new();

eval {
 # This means we must check return values of load_font() etc.
 PDF_set_parameter($p, "errorpolicy", "return");

 # Set the search path for fonts and PDF files
 PDF_set_parameter($p, "SearchPath", $searchpath);

 # This line is required to avoid problems on Japanese systems
 PDF_set_parameter($p, "hypertextencoding", "winansi");

 if (PDF_begin_document($p, "businesscard.pdf", "") == -1){
	die ("Error: %s\n", PDF_get_errmsg($p));
 }

 PDF_set_info($p, "Creator", "businesscard.pl");
 PDF_set_info($p, "Author", "Thomas Merz");
 PDF_set_info($p, "Title", "PDFlib block processing sample (Perl)");

 $blockcontainer = PDF_open_pdi_document($p, $infile, "");
 if ($blockcontainer == -1){
	die ("Error: %s\n", PDF_get_errmsg($p));
 }

 $page = PDF_open_pdi_page($p, $blockcontainer, 1, "");
 if ($page == -1){
	die ("Error: %s\n", PDF_get_errmsg($p));
 }

 PDF_begin_page_ext($p, 20, 20, "");		# dummy page size

 # This will adjust the page size to the block container's size.
 PDF_fit_pdi_page($p, $page, 0, 0, "adjustpage");

 # Fill all text blocks with dynamic data
 foreach $elem(keys %data){
	if (PDF_fill_textblock($p, $page, $elem, $data{$elem},
 "embedding encoding=winansi") == -1) {
	 printf ("Warning: %s\n", PDF_get_errmsg($p));
	}
 }

 PDF_end_page_ext($p, "");
 PDF_close_pdi_page($p, $page);

 PDF_end_document($p, "");
 PDF_close_pdi_document($p, $blockcontainer);
};
if ($@) {
 printf("$0: PDFlib Exception occurred:\n");
 printf(" $@\n");
 exit(1);
}
PDF_delete($p); 			# delete the PDFlib object

PDFlib-8.0.6-SunOS-sparc64-perl/bind/perl/oldstype/quickreference.pl

#!/usr/bin/perl
$Id: quickreference.pl,v 1.28 2009/09/11 10:32:16 stm Exp $
#
PDFlib+PDI client: mini imposition demo
#

use pdflib_pl 8.0;

$infile = "reference.pdf";
This is where font/image/PDF input files live. Adjust as necessary.
$searchpath = "../data";
$maxrow = 2;
$maxcol = 2;
$width = 500.0;
$height = 770.0;
$endpage = 0 ;

$p = PDF_new();
eval{
 # This means we must check return values of load_font() etc.
 PDF_set_parameter($p, "errorpolicy", "return");

 PDF_set_parameter($p, "SearchPath", $searchpath);

 # This line is required to avoid problems on Japanese systems
 PDF_set_parameter($p, "hypertextencoding", "winansi");

 if (PDF_begin_document($p, "quickreference.pdf", "") == -1) {
	die("Error: %s\n", PDF_get_errmsg($p));
 }

 PDF_set_info($p, "Creator", "quickreference.pl");
 PDF_set_info($p, "Author", "Thomas Merz");
 PDF_set_info($p, "Title", "mini imposition demo (Perl)");

 $manual = PDF_open_pdi_document($p, $infile, "");
 if ($manual == -1) {
	die("Error: %s\n", PDF_get_errmsg($p));
 }

 $row = 0;
 $col = 0;

 PDF_set_parameter($p, "topdown", "true");

 $endpage = PDF_pcos_get_number($p, $manual, "length:pages");

 for ($pageno = 1; $pageno <= $endpage; $pageno++) {
	if ($row == 0 && $col == 0) {
	 PDF_begin_page_ext($p, $width, $height, "");
	 $font = PDF_load_font($p, "Helvetica-Bold", "winansi", "");
	 PDF_setfont($p, $font, 18);
	 PDF_set_text_pos($p, 24, 24);
	 PDF_show($p, "PDFlib Quick Reference");
	}

	$page = PDF_open_pdi_page($p, $manual, $pageno, "");

	if ($page == -1) {
	 die("Error: %s\n", PDF_get_errmsg($p));
	}

	PDF_fit_pdi_page($p, $page, $width/$maxcol*$col, ($row + 1)
		* $height/$maxrow, "scale ". 1/$maxrow);
	PDF_close_pdi_page($p, $page);

	$col++;
	if ($col == $maxcol) {
	 $col = 0;
	 $row++;
	}
	if ($row == $maxrow) {
	 $row = 0;
	 PDF_end_page_ext($p, "");
	}
 }

 # finish the last partial page
 if ($row != 0 || $col != 0) {
	PDF_end_page_ext($p, "");
 }

 PDF_end_document($p, "");
 PDF_close_pdi_document($p, $manual);
};

if ($@) {
 printf("$0: PDFlib Exception occurred:\n");
 printf(" $@\n");
 exit(1);
}

PDF_delete($p);

PDFlib-8.0.6-SunOS-sparc64-perl/bind/perl/oldstype/starter_3d.pl

#!/usr/bin/perl
$Id: starter_3d.pl,v 1.1.2.1 2011/05/10 17:41:39 rjs Exp $
3D Starter:
Load a 3D model and create a 3D annotation from it.
#
Define a 3D view and load some 3D data with the view defined. Then create
an annotation containing the loaded 3D data with the defined 3D view as the
initial view.
#
Required software: PDFlib/PDFlib+PDI/PPS 8.0.3
Required data: PRC data file
#

use pdflib_pl 8.0;

This is where the data files are. Adjust if necessary.
$searchpath = "../data";
$outfile = "starter_3d.pdf";

$p = PDF_new();

eval {
 PDF_set_parameter($p, "SearchPath", $searchpath);

 # This means we must check return values of load_font() etc.
 PDF_set_parameter($p, "errorpolicy", "return");

 # Start the document
 if (PDF_begin_document($p, $outfile, "compatibility=1.7ext3") == -1) {
	die("Error: %s\n", PDF_get_errmsg($p));
 }

 PDF_set_info($p, "Creator", "PDFlib starter sample");
 PDF_set_info($p, "Title", "starter_3d");

 $font = PDF_load_font($p, "Helvetica", "winansi", "");
 if ($font == -1) {
	die("Error: %s\n", PDF_get_errmsg($p));
 }

 PDF_begin_page_ext($p, 0, 0, "width=a4.width height=a4.height");

 # Define a 3D view which shows the model from the top
 $optlist = "type=PRC name=FirstView background={fillcolor=Lavender} " .
		"camera2world={-1 0 0 0 1 0 0 0 -1 0.5 0 300}";
 if (($view = PDF_create_3dview($p, "First view", $optlist)) == -1) {
	die("Error: %s\n", PDF_get_errmsg($p));
 }

 # Load some 3D data with the view defined above
 $buf = "type=PRC views={$view}";
 if (($data = PDF_load_3ddata($p, "riemann.prc", $buf)) == -1) {
	die("Error: %s\n", PDF_get_errmsg($p));
 }

 # Create an annotation containing the loaded 3D data with the
 # defined 3D view as the initial view
 #
 $buf = "name=annot usercoordinates contents=PRC 3Ddata=$data 3Dactivate={enable=open} 3Dinitialview=$view";
 PDF_create_annotation($p, 116, 200, 447, 580, "3D", $buf);

 PDF_end_page_ext($p, "");

 PDF_end_document($p, "");

};

if ($@) {
 printf("$0: PDFlib Exception occurred:\n");
 printf(" $@\n");
 exit(1);
}

PDF_delete($p);

PDFlib-8.0.6-SunOS-sparc64-perl/bind/perl/oldstype/starter_basic.pl

#!/usr/bin/perl
$Id: starter_basic.pl,v 1.1 2009/11/23 14:31:31 rjs Exp $
#
Basic starter:
Create some simple text, vector graphics and image output
#
required software: PDFlib/PDFlib+PDI/PPS 7
required data: none
#

use pdflib_pl 7.0;

This is where the data files are. Adjust as necessary.
$searchpath = "../data/";
$imagefile = "nesrin.jpg";
$outfilename = "starter_basic.pdf";

$p = PDF_new();

eval {
 # This means we must check return values of load_font() etc.
 PDF_set_parameter($p, "errorpolicy", "return");

 PDF_set_parameter($p, "SearchPath", $searchpath);

 # we use "bytes" as textformat, this allows to use unicode encoding
 PDF_set_parameter($p, "textformat", "bytes");

 if (PDF_begin_document($p, $outfilename, "") == -1) {
	die("Error: " . PDF_get_errmsg($p));
 }

 PDF_set_info($p, "Creator", "PDFlib starter sample");
 PDF_set_info($p, "Title", "starter_basic");

 # We load the $image before the first page, and use it
 # on all pages

 $image = PDF_load_image($p, "auto", $imagefile, "");

 if ($image == -1) {
	die("Error: " . PDF_get_errmsg($p));
 }

 # Page 1
 PDF_begin_page_ext($p, 595, 842, "");

 $font = PDF_load_font($p, "Helvetica-Bold", "unicode", "");
 if ($font == -1) {
	die("Error: %s\n", PDF_get_errmsg($p));
 }

 PDF_setfont($p, $font, 24);

 PDF_set_text_pos($p, 50, 700);
 PDF_show($p, "Hello world!");

 PDF_fit_image($p, $image, 0.0, 0.0, "scale=0.25");

 PDF_end_page_ext($p, "");

 # Page 2
 PDF_begin_page_ext($p, 595, 842, "");

 # red rectangle
 PDF_setcolor($p, "fill", "rgb", 1.0, 0.0, 0.0, 0.0);
 PDF_rect($p, 200, 200, 250, 150);
 PDF_fill($p);

 # blue circle
 PDF_setcolor($p, "fill", "rgb", 0.0, 0.0, 1.0, 0.0);
 PDF_arc($p, 400, 600, 100, 0, 360);
 PDF_fill($p);

 # thick gray line
 PDF_setcolor($p, "stroke", "gray", 0.5, 0.0, 0.0, 0.0);
 PDF_setlinewidth($p, 10);
 PDF_moveto($p, 100, 500);
 PDF_lineto($p, 300, 700);
 PDF_stroke($p);

 # Using the same $image handle means the data will be copied
 # to the PDF only once, which saves space.

 PDF_fit_image($p, $image, 150.0, 25.0, "scale=0.25");
 PDF_end_page_ext($p, "");

 # Page 3
 PDF_begin_page_ext($p, 595, 842, "");

 # Fit the image to a box of predefined size (without distortion)
 $optlist = "boxsize={400 400} position={center} fitmethod=meet";
 PDF_fit_image($p, $image, 100, 200, $optlist);

 PDF_end_page_ext($p, "");

 PDF_close_image($p, $image);
 PDF_end_document($p, "");
 PDF_delete($p);
};

if ($@) {
 printf("$0: PDFlib Exception occurred:\n");
 printf(" $@\n");
 exit(1);
}

PDFlib-8.0.6-SunOS-sparc64-perl/bind/perl/oldstype/starter_block.pl

#!/usr/bin/perl
$Id: starter_block.pl,v 1.7 2009/09/25 09:32:57 tm Exp $
#
Block starter:
Import a PDF page containing blocks and fill text and image
blocks with some data. For each addressee of the simulated
mailing a separate page with personalized information is
generated.
A real-world application would of course fill the blocks with data
retrieved from some external data source.
#
Required software: PPS 8 or above
Required data: input PDF, image

use pdflib_pl 8.0;
use strict;

This is where the data files are. Adjust as necessary.
use constant searchpath => "../data";
use constant outfile => "starter_block.pdf";
use constant infile => "block_template.pdf";
use constant imagefile => "new.jpg";

Names of the person-related blocks contained on the imported page
use constant addressblocks => qw(name street city);

Data related to various persons used for personalization
use constant persons => (
 ["Mr Maurizio Moroni", "Strada Provinciale 124", "Reggio Emilia"],
 ["Ms Dominique Perrier", "25, rue Lauriston", "Paris"],
 ["Mr Liu Wong", "55 Grizzly Peak Rd.", "Butte"]
);

Static text simulates database-driven variable contents
use constant intro => "Dear";
use constant goodbye => "Yours sincerely,\nVictor Kraxi";
use constant announcement =>
 "Our <fillcolor=red>BEST PRICE OFFER<fillcolor=black> includes today:" .
 "\n\n" .
 "Long Distance Glider\nWith this paper rocket you can send all your " .
 "messages even when sitting in a hall or in the cinema pretty near " .
 "the back.\n\n" .
 "Giant Wing\nAn unbelievable sailplane! It is amazingly robust and " .
 "can even do aerobatics. But it is best suited to gliding.\n\n" .
 "Cone Head Rocket\nThis paper arrow can be thrown with big swing. " .
 "We launched it from the roof of a hotel. It stayed in the air a " .
 "long time and covered a considerable distance.\n\n" .
 "Super Dart\nThe super dart can fly giant loops with a radius of 4 " .
 "or 5 meters and cover very long distances. Its heavy cone point is " .
 "slightly bowed upwards to get the lift required for loops.\n\n" .
 "Visit us on our Web site at www.kraxi.com!";

my $p = PDF_new();

eval {
 PDF_set_parameter($p, "SearchPath", searchpath);

 # This means we must check return values of load_font() etc.
 PDF_set_parameter($p, "errorpolicy", "return");

 if (PDF_begin_document($p, outfile,
 "destination={type=fitwindow} pagelayout=singlepage") == -1) {
 die("Error: " . PDF_get_errmsg($p));
 }

 PDF_set_info($p, "Creator", "PDFlib starter sample");
 PDF_set_info($p, "Title", "starter_block");

 # Open the Block template which contains PDFlib Blocks
 my $indoc = PDF_open_pdi_document($p, infile, "");
 if ($indoc == -1) {
 die("Error: " . PDF_get_errmsg($p));
 }

 # Open the first page and clone the page size
 my $inpage = PDF_open_pdi_page($p, $indoc, 1, "cloneboxes");
 if ($inpage == -1) {
 die("Error: " . PDF_get_errmsg($p));
 }

 my $image = PDF_load_image($p, "auto", imagefile, "");

 if ($image == -1) {
 die("Error: " . PDF_get_errmsg($p));
 }

 # Based on the imported page generate several pages with the blocks
 # being filled with data related to different persons
 foreach my $person (persons) {
 # Start the output page with a dummy size
 PDF_begin_page_ext($p, 10, 10, "");

 # Place the imported page on the output page, and clone all
 # page boxes which are present in the input page; this will
 # override the dummy size used in begin_page_ext().
 PDF_fit_pdi_page($p, $inpage, 0, 0, "cloneboxes");

 # Option list for text blocks
 my $optlist = "encoding=winansi embedding";

 # Loop over all person-related blocks. Fill the j-th block with the
 # corresponding entry of the persons array.
 my $j = 0;
 foreach my $adressblock (addressblocks) {
 if (PDF_fill_textblock($p, $inpage, $adressblock,
 $person->[$j], $optlist) == -1) {
 printf("Warning: %s\n", PDF_get_errmsg($p));
 }
 $j += 1;
 }

 # Fill the "intro" block
 my $buf = sprintf "%s %s,", intro, $person->[0];
 if (PDF_fill_textblock($p, $inpage, "intro", $buf, $optlist) == -1) {
 printf("Warning: %s\n", PDF_get_errmsg($p));
 }

 # Fill the "announcement" block
 if (PDF_fill_textblock($p, $inpage, "announcement", announcement,
 $optlist) == -1) {
 printf("Warning: %s\n", PDF_get_errmsg($p));
 }

 # Fill the "goodbye" block
 if (PDF_fill_textblock($p, $inpage, "goodbye", goodbye,
 $optlist) == -1) {
 printf("Warning: %s\n", PDF_get_errmsg($p));
 }

 # Fill the image block
 if (PDF_fill_imageblock($p, $inpage, "icon", $image, "") == -1) {
 printf("Warning: %s\n", PDF_get_errmsg($p));
 }

 PDF_end_page_ext($p, "");
 }

 PDF_close_pdi_page($p, $inpage);
 PDF_close_pdi_document($p, $indoc);
 PDF_close_image($p, $image);

 PDF_end_document($p, "");
};

if ($@) {
 printf("$0: PDFlib Exception occurred:\n");
 printf(" $@\n");
 exit(1);
}

PDFlib-8.0.6-SunOS-sparc64-perl/bind/perl/oldstype/starter_color.pl

#!/usr/bin/perl
$Id: starter_color.pl,v 1.4 2009/09/11 10:32:16 stm Exp $
Starter color:
Demonstrate the basic use of supported color spaces
#
Apply the following color spaces to text and vector graphics:
- gray
- rgb
- cmyk
- iccbasedgray/rgb/cmyk
- spot
- lab
- pattern
- shadings
#
Required software: PDFlib/PDFlib+PDI/PPS 7
Required data: none

use pdflib_pl 7.0;
use strict;

This is where the data files are. Adjust as necessary.
my $ searchpath = "../data";
my $ outfile = "starter_color.pdf";

my $buf;
my ($font, $spot);
my $y = 800;
my $x = 50;
my $xoffset1=80;
my $xoffset2 = 100;
my $yoffset = 70;
my $r = 30;
my $icchandle;

create a new PDFlib object
my $p = PDF_new();

eval {
 PDF_set_parameter($p, "SearchPath", $searchpath);

 # This means we must check return values of load_font() etc.
 PDF_set_parameter($p, "errorpolicy", "return");

 if (PDF_begin_document($p, $outfile, "") == -1) {
	printf("Error: %s\n", PDF_get_errmsg($p));
	PDF_delete($p);
	exit(2);
 }

 PDF_set_info($p, "Creator", "PDFlib starter sample");
 PDF_set_info($p, "Title", "starter_color");

 # Load the font
 $font = PDF_load_font($p, "Helvetica", "winansi", "");

 if ($font == -1) {
	printf("Error: %s\n", PDF_get_errmsg($p));
	PDF_delete($p);
	exit(2);
 }

 # Start the page
 PDF_begin_page_ext($p, 0, 0, "width=a4.width height=a4.height");

 PDF_setfont($p, $font, 14);

 # ---
 # Use default colors
 #
 # If no special color is set the default values will be used. The
 # default values are restored at the beginning of the page.
 # 0=black in the Gray color space is the default fill and stroke
 # color in many cases, as shown in our sample.
 # ---

 # Fill a circle with the default black fill color
 PDF_circle($p, $x, $y-=$yoffset, $r);
 PDF_fill($p);

 # Output text with default black fill color
 PDF_fit_textline($p,
	 "Circle and text filled with default color {gray 0}",
	 $x+$xoffset2, $y, "");

 PDF_fit_textline($p, "1.", $x+$xoffset1, $y, "");

 # ---
 # Use the Gray color space
 #
 # Gray color is defined by Gray values between 0=black and 1=white.
 # ---

 # Using setcolor(), set the current fill color to a light gray
 # represented by (0.5, 0, 0, 0) which defines 50% gray. Since gray
 # colors are defined by only one value, the last three function
 # parameters must be set to 0.

 PDF_setcolor($p, "fill", "gray", 0.5, 0, 0, 0);

 # Fill a circle with the current fill color defined above
 PDF_circle($p, $x, $y-=$yoffset, $r);
 PDF_fill($p);

 # Output text with the current fill color
 PDF_fit_textline($p, "Circle and text filled with {gray 0.5}",
	 $x+$xoffset2, $y, "");

 # Alternatively, you can set the fill color in the call to
 # fit_textline() using the "fillcolor" option. This case applies the
 # fill color just the single function call. The current fill color
 # won't be affected.

 PDF_fit_textline($p, "2.", $x+$xoffset1, $y, "fillcolor={gray 0.5}");

 # --
 # Use the RGB color space
 #
 # RGB color is defined by RGB triples, i.e. three values between 0 and
 # 1 specifying the percentage of red, green, and blue.
 # (0, 0, 0) is black and (1, 1, 1) is white. The commonly used RGB
 # color values in the range 0�5 must be divided by 255 in order to
 # scale them to the range 0�as required by PDFlib.
 # --

 # Use setcolor() to set the fill color to a grass-green
 # represented by (0.1, 0.95, 0.3, 0) which defines 10% red, 95% green,
 # 30% blue. Since RGB colors are defined by only three values, the last
 # function parameter must be set to 0.

 PDF_setcolor($p, "fill", "rgb", 0.1, 0.95, 0.3, 0);

 # Draw a circle with the current fill color defined above
 PDF_circle($p, $x, $y-=$yoffset, $r);
 PDF_fill($p);

 # Output a text line with the RGB fill color defined above
 PDF_fit_textline($p, "Circle and text filled with {rgb 0.1 0.95 0.3}",
	 $x+$xoffset2, $y, "");

 # Alternatively, you can set the fill color in the call to
 # fit_textline() using the "fillcolor" option. This case applies the
 # fill color just the single function call. The current fill color
 # won't be affected.

 PDF_fit_textline($p, "3.", $x+$xoffset1, $y,
	 "fillcolor={rgb 0.1 0.95 0.3}");

 # --
 # Use the CMYK color space
 #
 # CMYK color is defined by four CMYK values between 0 = no color and
 # 1 = full color representing cyan, magenta, yellow, and black values;
 # (0, 0, 0, 0) is white and (0, 0, 0, 1) is black.
 # --

 # Use setcolor() to set the current fill color to a pale
 # orange, represented by (0.1, 0.7, 0.7, 0.1) which defines 10% Cyan,
 # 70% Magenta, 70% Yellow, and 10% Black.

 PDF_setcolor($p, "fill", "cmyk", 0.1, 0.7, 0.7, 0.1);

 # Fill a circle with the current fill color defined above
 PDF_circle($p, $x, $y-=$yoffset, $r);
 PDF_fill($p);

 # Output a text line with the CMYK fill color defined above
 PDF_fit_textline($p,
	 "Circle and text filled with {cmyk 0.1 0.7 0.7 0.1}",
	 $x+$xoffset2, $y, "");

 # Alternatively, you can set the fill color in the call to
 # fit_textline() using the "fillcolor" option. This case applies the
 # fill color just the single function call. The current fill color
 # won't be affected.

 PDF_fit_textline($p, "4.", $x+$xoffset1, $y,
	 "fillcolor={cmyk 0.1 0.7 0.7 0.1}");

 # --
 # Use a Lab color
 #
 # Device-independent color in the CIE L*a*b* color space is specified
 # by a luminance value in the range 0-100 and two color values in the
 # range -127 to 128. The first value contains the green-red axis,
 # while the second value contains the blue-yellow axis.
 # --

 # Set the current fill color to a loud blue, represented by
 # (100, -127, -127, 0). Since Lab colors are defined by only three
 # values, the last function parameter must be set to 0.

 PDF_setcolor($p, "fill", "lab", 100, -127, -127, 0);

 # Fill a circle with the fill color defined above
 PDF_circle($p, $x, $y-=$yoffset, $r);
 PDF_fill($p);

 # Output a text line with the Lab fill color defined above
 PDF_fit_textline($p, "Circle and text filled with {lab 100 -127 -127}",
	 $x+$xoffset2, $y, "");

 # Alternatively, you can set the fill color in the call to
 # fit_textline() using the "fillcolor" option. This case applies the
 # fill color just the single function call. The current fill color
 # won't be affected.

 PDF_fit_textline($p, "5.", $x+$xoffset1, $y,
	 "fillcolor={lab 100 -127 -127}");

 # ---
 # Use an ICC based color
 #
 # ICC-based colors are specified with the help of an ICC profile.
 # ---

 # Load the sRGB profile. sRGB is guaranteed to be always available
 $icchandle = PDF_load_iccprofile($p, "sRGB", "usage=iccbased");

 # Set the sRGB profile. (Accordingly, you can use
 # "setcolor:iccprofilergb" or "setcolor:iccprofilegray" with an
 # appropriate profile)

 PDF_set_value($p, "setcolor:iccprofilergb", $icchandle);

 # Use setcolor() with the "iccbasedrgb" color space to set the current
 # fill and stroke color to a grass-green, represented
 # by the RGB color values (0.1 0.95 0.3 0) which define 10% Red,
 # 95% Green, and 30% Blue. Since iccbasedrgb colors are defined by only
 # three values, the last function parameter must be set to 0.

 PDF_setcolor($p, "fill", "iccbasedrgb", 0.1, 0.95, 0.3, 0);

 # Fill a circle with the ICC based RGB fill color defined above
 PDF_circle($p, $x, $y-=$yoffset, $r);
 PDF_fill($p);

 # Output a text line with the ICC based RGB fill color defined above
 PDF_fit_textline($p,
	 "Circle and text filled with {iccbasedrgb 0.1 0.95 0.3}",
	 $x+$xoffset2, $y, "");

 # Alternatively, you can set the fill color in the call to
 # fit_textline() using the "fillcolor" option. This case applies the
 # fill color just the single function call. The current fill color
 # won't be affected.

 PDF_fit_textline($p, "6.", $x+$xoffset1, $y,
	 "fillcolor={iccbasedrgb 0.1 0.95 0.3}");

 # --
 # Use a spot color
 #
 # Spot color (separation color space) is a predefined or arbitrarily
 # named custom color with an alternate representation in one of the
 # other color spaces above; this is generally used for preparing
 # documents which are intended to be printed on an offset printing
 # machine with one or more custom colors. The tint value (percentage)
 # ranges from 0 = no color to 1 = maximum intensity of the spot color.
 # --

 # Define the spot color "PANTONE 281 U" from the builtin color
 # library PANTONE

 $spot = PDF_makespotcolor($p, "PANTONE 281 U");

 # Set the spot color "PANTONE 281 U" with a tint value of 1 (=100%)
 # and output some text. Since spot colors are defined by only two
 # values, the last two function parameters must be set to 0.

 PDF_setcolor($p, "fill", "spot", $spot, 1.0, 0, 0);

 # Fill a circle with the ICC based RGB fill color defined above
 PDF_circle($p, $x, $y-=$yoffset, $r);
 PDF_fill($p);

 PDF_fit_textline($p,
	 "Circle and text filled with {spotname {PANTONE 281 U} 1}",
	 $x+$xoffset2, $y, "");

 # Alternatively, you can set the fill color in the call to
 # fit_textline() using the "fillcolor" option. This case applies the
 # fill color just the single function call. The current fill color
 # won't be affected.

 PDF_fit_textline($p, "7.", $x+$xoffset1, $y,
	"fillcolor={spotname {PANTONE 281 U} 1}");

 # or
 $buf = "fillcolor={spot " . $spot . " 1}";
 PDF_fit_textline($p, "7.", $x+$xoffset1, $y, $buf);

 # --
 # For using the Pattern color space, see the Cookbook topics
 # graphics/fill_pattern and images/background_pattern.
 # --

 # ---
 # For using the Shading color space, see the Cookbook topic
 # color/color_gradient.
 # ---

 PDF_end_page_ext($p, "");

 PDF_end_document($p, "");

};

if ($@) {
 printf("$0: PDFlib Exception occurred:\n");
 printf(" $@\n");
 exit(1);
}

PDFlib-8.0.6-SunOS-sparc64-perl/bind/perl/oldstype/starter_fallback.pl

#!/usr/bin/perl
$Id: starter_fallback.pl,v 1.1.2.1 2010/01/29 11:10:02 rjs Exp $
Starter sample for fallback fonts
#
Required software: PDFlib/PDFlib+PDI/PPS 8
Required data: suitable fonts, Japanese CMaps

use pdflib_pl 8.0;
use strict;

This is where the data files are. Adjust as necessary.
use constant searchpath => "../data";
use constant outfile => "starter_fallback.pdf";

use constant {
 llx => 50.0,
 lly => 50.0,
 urx => 800.0,
 ury => 550.0
};

use constant headers => (
 "Use case",
 "Option list for the 'fallbackfonts' option",
 "Base font",
 "With fallback font"
);

Key names used to make a dictionary for the description of the
testcase entries
my @testcase_keys = qw(usecase fontname encoding fallbackoptions text);

Function to create a hash describing each testcase
sub make_testcase_hash {
 my $values = $_[0]; # reference to array
 my %result;
 @result{@testcase_keys} = @{$values};
 return \%result;
}

The testcases organized as an array of references to hashes
my @testcases = map { make_testcase_hash($_) } (
 [# Add Euro glyph to an encoding which doesn't support it
 "Extend 8-bit encoding", # usecase
 "Helvetica", # fontname
 "iso8859-1", # encoding
 "{fontname=Helvetica encoding=unicode forcechars=euro}", #fallbackoptions
 # Reference Euro glyph by name (since it is missing from the encoding)
 "123€" # text
],
 [
 "Use Euro glyph from another font",
 "Courier",
 "winansi",
 "{fontname=Helvetica encoding=unicode forcechars=euro textrise=-5%}",
 "123€"
],
 [
 "Enlarge all glyphs in a font",
 "Times-Italic",
 "winansi",
 # Enlarge all glyphs to better match other fonts of the same point size
 "{fontname=Times-Italic encoding=unicode forcechars={U+0020-U+00FF} " .
 "fontsize=120%}",
 "font size"
],
 [
 "Add enlarged pictogram",
 "Times-Roman",
 "unicode",
 # pointing hand pictogram
 "{fontname=ZapfDingbats encoding=unicode forcechars=.a12 fontsize=150% " .
 "textrise=-15%}",
 "Bullet symbol: &.a12;"
],
 [
 "Add enlarged symbol glyph",
 "Times-Roman",
 "unicode",
 "{fontname=Symbol encoding=unicode forcechars=U+2663 fontsize=125%}",
 "Club symbol: ♣"
],
 [# Greek characters missing in the font will be pulled from Symbol font
 "Add Greek characters to Latin font",
 "Times-Roman",
 "unicode",
 "{fontname=Symbol encoding=unicode}",
 "Greek text: ΛΟΓΟΣ"
],
 [# Font with end-user defined character (EUDC)
 "Gaiji with EUDC font",
 "KozMinProVI-Regular",
 "unicode",
 "{fontname=EUDC encoding=unicode forcechars=U+E000 fontsize=140% " .
 "textrise=-20%}",
 "Gaiji: "
],
 [# SING fontlet containing a single gaiji character
 "Gaiji with SING font",
 "KozMinProVI-Regular",
 "unicode",
 "{fontname=PDFlibWing encoding=unicode forcechars=gaiji}",
 "Gaiji: "
],
 ["Replace Latin characters in CJK font",
 "KozMinProVI-Regular",
 "unicode",
 "{fontname=Courier-Bold encoding=unicode forcechars={U+0020-U+007E}}",
 "Latin and 日本語"
],
 # Requires "Unicode BMP Fallback SIL" font in fallback.ttf
 [# Identify missing glyphs caused by workflow problems
 "Identify missing glyphs",
 "Times-Roman",
 "unicode",
 "{fontname=fallback encoding=unicode}",
 # deliberately use characters which are not available in the base font
 "Missing glyphs: ሴ 本 語"
]
);

my $p = PDF_new();

eval {
 my $optlist;

 PDF_set_parameter($p, "SearchPath", searchpath);
 PDF_set_parameter($p, "textformat", "bytes");
 PDF_set_parameter($p, "charref", "true");
 PDF_set_parameter($p, "glyphcheck", "replace");

 # This means that formatting and other errors will raise an
 # exception. This simplifies our sample code, but is not
 # recommended for production code.
 PDF_set_parameter($p, "errorpolicy", "exception");

 # Set an output path according to the name of the topic
 if (PDF_begin_document($p, outfile, "") == -1) {
 printf("Error: %s\n", PDF_get_errmsg($p));
 PDF_delete($p);
 exit(2);
 }

 PDF_set_info($p, "Creator", "PDFlib starter sample");
 PDF_set_info($p, "Title", "starter_fallback");

 # Start Page
 PDF_begin_page_ext($p, 0, 0, "width=a4.height height=a4.width");

 my $table = -1;

 # Table header
 my $col = 1;
 foreach my $header (headers) {
 $optlist =
 "fittextline={fontname=Helvetica-Bold encoding=unicode fontsize=11} " .
 "margin=4";
 $table = PDF_add_table_cell($p, $table, $col, 1, $header, $optlist);
 $col += 1;
 }

 # Create fallback samples, one use case per row
 my $row = 2;
 foreach my $testcase (@testcases) {
 $col = 1;

 # Column 1: description of the use case
 $optlist =
 "fittextline={fontname=Helvetica encoding=unicode fontsize=11} " .
 "margin=4";
 $table = PDF_add_table_cell($p, $table, $col++, $row,
 $testcase->{usecase}, $optlist);

 # Column 2: reproduce option list literally
 $optlist =
 "fittextline={fontname=Helvetica encoding=unicode fontsize=10} " .
 "margin=4";
 $table = PDF_add_table_cell($p, $table, $col++, $row,
 $testcase->{fallbackoptions}, $optlist);

 # Column 3: text with base font
 $optlist = sprintf
 "fittextline={fontname=%s encoding=%s fontsize=11 " .
 "replacementchar=? } margin=4",
 $testcase->{fontname}, $testcase->{encoding};
 $table = PDF_add_table_cell($p, $table, $col++, $row,
 $testcase->{text}, $optlist);

 # Column 4: text with base font and fallback fonts
 $optlist = sprintf
 "fittextline={fontname=%s encoding=%s " .
 "fontsize=11 fallbackfonts={%s}} margin=4",
 $testcase->{fontname},
 $testcase->{encoding},
 $testcase->{fallbackoptions};
 $table = PDF_add_table_cell($p, $table, $col++, $row,
 $testcase->{text}, $optlist);

 $row += 1;
 }

 # Place the table
 $optlist = "header=1 fill={{area=rowodd fillcolor={gray 0.9}}} " .
 "stroke={{line=other}} ";
 my $result = PDF_fit_table($p, $table, llx, lly, urx, ury, $optlist);

 if ($result eq "_error")
 {
 printf("Couldn't place table: %s\n", PDF_get_errmsg($p));
 PDF_delete($p);
 exit(2);
 }

 PDF_end_page_ext($p, "");
 PDF_end_document($p, "");
};

if ($@) {
 printf("$0: PDFlib Exception occurred:\n");
 printf(" $@\n");
 exit(1);
}

PDFlib-8.0.6-SunOS-sparc64-perl/bind/perl/oldstype/starter_geospatial.pl

#!/usr/bin/perl
$Id: starter_geospatial.pl,v 1.1 2009/09/11 10:32:16 stm Exp $
Starter for georeferenced PDF:
Import an image with a map and add geospatial reference information
#
Sample map and coordinates:
We use a map from www.openstreetmap.com; the geospatial coordinates of the
image edges were also provided by that Web site.
The coordinate system is WGS84 which is also used for GPS.
#
Required software: PDFlib/PDFlib+PDI/PPS 8
Required data: image file and associated geospatial reference information

use pdflib_pl 8.0;
use strict;

This is where the data files are. Adjust as necessary.
use constant searchpath => "../data";
use constant outfile => "starter_geospatial.pdf";
use constant imagefile => "munich.png";

WKT for plain latitude/longitude values in WGS84
use constant georef =>
 "worldsystem={type=geographic wkt={" .
 "GEOGCS[\"WGS 84\"," .
 " DATUM[\"WGS_1984\", SPHEROID[\"WGS 84\", 6378137,298.257223563]]," .
 " PRIMEM[\"Greenwich\", 0.0]," .
 " UNIT[\"Degree\", 0.01745329251994328]]" .
 "}} linearunit=M areaunit=SQM angularunit=degree";

world coordinates of the image (in degrees)
use constant worldpoints => (
 48.145, # latitude of top edge
 11.565, # longitude of left edge
 11.59, # longitude of right edge
 48.13 # latitude of bottom edge
);

my $p = PDF_new();

eval {
 my $optlist;

 PDF_set_parameter($p, "SearchPath", searchpath);

 # This means we must check return values of load_font() etc.
 PDF_set_parameter($p, "errorpolicy", "return");

 # Start the document
 if (PDF_begin_document($p, outfile, "compatibility=1.7ext3") == -1) {
 printf("Error: %s\n", PDF_get_errmsg($p));
 PDF_delete($p);
 exit(2);
 }

 PDF_set_info($p, "Creator", "PDFlib starter sample");
 PDF_set_info($p, "Title", "starter_geospatial");

 # Generate georeference option list
 # Use the four corners as reference points; (0,0)=lower left etc.
 my $georefoptlist = sprintf
 "georeference={%s mappoints={0 0 1 0 1 1 0 1} ",
 georef;

 $georefoptlist .= "worldpoints={";

 # lower left corner
 $georefoptlist .= sprintf "%g %g ", (worldpoints)[3], (worldpoints)[1];
 # lower right corner
 $georefoptlist .= sprintf "%g %g ", (worldpoints)[3], (worldpoints)[2];
 # upper right corner
 $georefoptlist .= sprintf "%g %g ", (worldpoints)[0], (worldpoints)[2];
 # upper left corner
 $georefoptlist .= sprintf "%g %g ", (worldpoints)[0], (worldpoints)[1];

 $georefoptlist .= "} }";

 # Load the image with geospatial reference attached
 my $image = PDF_load_image($p, "auto", imagefile, $georefoptlist);
 if ($image == -1) {
 printf("Error: %s\n", PDF_get_errmsg($p));
 PDF_delete($p);
 exit(2);
 }

 PDF_begin_page_ext($p, 0, 0, "width=a4.width height=a4.height");

 # Create caption
 PDF_fit_textline($p, "Map with geospatial reference information",
 50, 700,
 "fontname=LuciduxSans-Oblique encoding=winansi fontsize=18");

 # Place the map on the page
 PDF_fit_image($p, $image, 50, 50, "boxsize={500 600} fitmethod=meet");

 PDF_end_page_ext($p, "");

 PDF_end_document($p, "");
};

if ($@) {
 printf("$0: PDFlib Exception occurred:\n");
 printf(" $@\n");
 exit(1);
}

PDFlib-8.0.6-SunOS-sparc64-perl/bind/perl/oldstype/starter_graphics.pl

#!/usr/bin/perl
$Id: starter_graphics.pl,v 1.6 2009/09/11 10:32:16 stm Exp $
Starter Graphics:
Create some basic examples of vector graphics
#
Stroke a line, curve, circle, arc, and rectangle using the current line width
and stroke color. Stroke and fill a rectangle.
Draw an arc segment by drawing a line and an arc, closing the path and
filling and stroking it.
Draw a rectangle and use it as the clipping a path. Draw and fill a circle
using the clipping path defined.
#
Required software: PDFlib/PDFlib+PDI/PPS 7
Required data: none

use pdflib_pl 7.0;
use strict;

This is where the data files are. Adjust as necessary.
my $searchpath = "../data";
my $outfile = "starter_graphics.pdf";

create a new PDFlib object
my $p = PDF_new();

my $buf;
my $xt=20;
my $x = 210;
my $y=770;
my $dy=90;
my $font;

eval {
 PDF_set_parameter($p, "SearchPath", $searchpath);

 # This means we must check return values of load_font() etc.
 PDF_set_parameter($p, "errorpolicy", "return");

 if (PDF_begin_document($p, $outfile, "") == -1) {
	printf("Error: %s\n", PDF_get_errmsg($p));
	PDF_delete($p);
	exit(2);
 }

 PDF_set_info($p, "Creator", "PDFlib starter sample");
 PDF_set_info($p, "Title", "starter_graphics");

 $font = PDF_load_font($p, "Helvetica", "winansi", "");
 if ($font == -1) {
	printf("Error: %s\n", PDF_get_errmsg($p));
	PDF_delete($p);
	exit(2);
 }

 # Start an A4 page
 PDF_begin_page_ext($p, 0, 0, "width=a4.width height=a4.height");

 # Set the font
 PDF_setfont($p, $font, 14);

 # Set the line width
 PDF_setlinewidth($p, 2.0);

 # Set the stroke color
 PDF_setcolor($p, "stroke", "rgb", 0.0, 0.5, 0.5, 0.0);

 # Set the fill color
 PDF_setcolor($p, "fill", "rgb", 0.0, 0.85, 0.85, 0.0);

 # -------------
 # Stroke a line
 # -------------

 # Set the current point for graphics output
 PDF_moveto($p, $x, $y);

 # Draw a line from the current point to the supplied point
 PDF_lineto($p, $x+300, $y+50);

 # Stroke the path using the current line width and stroke color, and
 # clear it

 PDF_stroke($p);

 # Output some descriptive black text
 PDF_fit_textline($p, "lineto() and stroke()", $xt, $y,
	"fillcolor={gray 0}");

 # --------------
 # Stroke a curve
 # --------------

 # Set the current point for graphics output
 PDF_moveto($p, $x, $y-=$dy);

 # Draw a Bézier curve from the current point to (x3, y3), using three
 # control points

 PDF_curveto($p, $x+50, $y+40, $x+200, $y+80, $x+300, $y+30);

 # Stroke the path using the current line width and stroke color, and
 # clear it

 PDF_stroke($p);

 # Output some descriptive black text
 PDF_fit_textline($p, "curveto() and stroke()", $xt, $y,
	"fillcolor={gray 0}");

 # ---------------
 # Stroke a circle
 # ---------------

 # Draw a circle at position (x, y) with a radius of 40
 PDF_circle($p, $x, $y-=$dy, 40);

 # Stroke the path using the current line width and stroke color, and
 # clear it

 PDF_stroke($p);

 # Output some descriptive black text
 PDF_fit_textline($p, "circle() and stroke()", $xt, $y,
	"fillcolor={gray 0}");

 # ---------------------
 # Stroke an arc segment
 # ---------------------

 # Draw an arc segment counterclockwise at position (x, y) with a radius
 # of 40 starting at an angle of 90 degrees and ending at 180 degrees

 PDF_arc($p, $x, $y-=$dy+20, 40, 90, 180);

 # Stroke the path using the current line width and stroke color, and
 # clear it

 PDF_stroke($p);

 # Output some descriptive black text
 PDF_fit_textline($p, "arc() and stroke()", $xt, $y,
	"fillcolor={gray 0}");

 # ------------------
 # Stroke a rectangle
 # ------------------

 # Draw a rectangle at position (x, y) with a width of 200 and a height
 # of 50

 PDF_rect($p, $x, $y-=$dy, 200, 50);

 # Stroke the path using the current line width and stroke color, and
 # clear it

 PDF_stroke($p);

 # Output some descriptive black text
 PDF_fit_textline($p, "rect() and stroke()", $xt, $y,
	"fillcolor={gray 0}");

 # ----------------
 # Fill a rectangle
 # ----------------

 # Draw a rectangle at position (x, y) with a width of 200 and a height
 # of 50

 PDF_rect($p, $x, $y-=$dy, 200, 50);

 # Fill the path using current fill color, and clear it
 PDF_fill($p);

 # Output some descriptive black text
 PDF_fit_textline($p, "rect() and fill()", $xt, $y,
	"fillcolor={gray 0}");

 # ---------------------------
 # Fill and stroke a rectangle
 # ---------------------------

 # Draw a rectangle at position (x, y) with a width of 200 and a height
 # of 50

 PDF_rect($p, $x, $y-=$dy, 200, 50);

 # Fill and stroke the path using the current line width, fill color,
 # and stroke color, and clear it

 PDF_fill_stroke($p);

 # Output some descriptive black text
 PDF_fit_textline($p, "rect() and fill_stroke()", $xt, $y,
	"fillcolor={gray 0}");

 # ---
 # Draw a line and an arc, close the path and fill and stroke it
 # ---

 # Set the current point for graphics output
 PDF_moveto($p, $x-40, $y-=$dy);

 # Draw a line from the current point to the supplied point
 PDF_lineto($p, $x, $y);

 # Draw an arc segment counterclockwise at position (x, y) with a radius
 # of 40 starting at an angle of 90 degrees and ending at 180 degrees

 PDF_arc($p, $x, $y, 40, 90, 180);

 # Close the path and stroke and fill it, i.e. close the current subpath
 # (add a straight line segment from the current point to the starting
 # point of the path), and stroke and fill the complete current path

 PDF_closepath_fill_stroke($p);

 # Output some descriptive black text
 PDF_fit_textline($p, "lineto(), arc(), and", $xt, $y+20,
	"fillcolor={gray 0}");
 PDF_fit_textline($p, "closepath_fill_stroke()", $xt, $y,
	"fillcolor={gray 0}");

 # ---
 # Draw a rectangle and use it as the clipping a path. Draw and fill
 # a circle and clip it according to the clipping path defined.
 # ---

 # Save the current graphics state including the current clipping
 # path which is set to the entire page by default

 PDF_save($p);

 # Draw a rectangle at position (x, y) with a width of 200 and a height
 # of 50

 PDF_rect($p, $x, $y-=$dy, 200, 50);

 # Use the current path as the clipping path for subsequent operations
 PDF_clip($p);

 # Draw a circle at position (x, y) with a radius of 100
 PDF_circle($p, $x, $y, 80);

 # Fill the path with the current fill color and clear it
 PDF_fill($p);

 # Restore the graphics state which has been saved above
 PDF_restore($p);

 # Output some descriptive black text
 PDF_fit_textline($p, "rect(), clip(),", $xt, $y+20,
	"fillcolor={gray 0}");
 PDF_fit_textline($p, "circle(), and fill()", $xt, $y,
	"fillcolor={gray 0}");

 PDF_end_page_ext($p, "");

 PDF_end_document($p, "");

};

if ($@) {
 printf("$0: PDFlib Exception occurred:\n");
 printf(" $@\n");
 exit(1);
}

PDFlib-8.0.6-SunOS-sparc64-perl/bind/perl/oldstype/starter_image.pl

#!/usr/bin/perl
$Id: starter_image.pl,v 1.4 2009/09/11 10:32:16 stm Exp $
Starter image:
Load and place an image using various options for scaling and positioning
#
Place the image it its original size.
Place the image with scaling and orientation to the west.
Fit the image into a box with clipping.
Fit the image into a box with proportional resizing.
Fit the image into a box entirely.
#
Required software: PDFlib/PDFlib+PDI/PPS 7
Required data: image file

use pdflib_pl 7.0;
use strict;

This is where the data files are. Adjust as necessary.
my $searchpath = "../data";
my $outfile = "starter_image.pdf";

create a new PDFlib object
my $p = PDF_new();

my $buf;
my $imagefile = "lionel.jpg";
my ($font, $image);
my $bw = 400;
my $bh = 200;
my $x = 20;
my $y = 580;
my $yoffset = 260;

eval {
 PDF_set_parameter($p, "SearchPath", $searchpath);

 # This means we must check return values of load_font() etc.
 PDF_set_parameter($p, "errorpolicy", "return");

 if (PDF_begin_document($p, $outfile, "") == -1) {
	printf("Error: %s\n", PDF_get_errmsg($p));
	PDF_delete($p);
	exit(2);
 }

 PDF_set_info($p, "Creator", "PDFlib starter sample");
 PDF_set_info($p, "Title", "starter_image");

 $font = PDF_load_font($p, "Helvetica", "winansi", "");
 if ($font == -1) {
	printf("Error: %s\n", PDF_get_errmsg($p));
	PDF_delete($p);
	exit(2);
 }

 # Load the image
 $image = PDF_load_image($p, "auto", $imagefile, "");
 if ($image == -1) {
	printf("Error: %s\n", PDF_get_errmsg($p));
	PDF_delete($p);
	exit(2);
 }

 # Start page 1
 PDF_begin_page_ext($p, 0, 0, "width=a4.width height=a4.height");
 PDF_setfont($p, $font, 12);

 # ------------------------------------
 # Place the image in its original size
 # ------------------------------------

 # Position the image in its original size with its lower left corner
 # at the reference point (20, 380)

 PDF_fit_image($p, $image, 20, 380, "");

 # Output some descriptive text
 PDF_fit_textline($p,
	"The image is placed with the lower left corner in its original " .
	"size at reference point (20, 380):", 20, 820, "");
 PDF_fit_textline($p, "fit_image(image, 20, 380, \"\");", 20, 800, "");

 # --
 # Place the image with scaling and orientation to the west
 # --

 # Position the image with its lower right corner at the reference
 # point (580, 20).
 # "scale=0.5" scales the image by 0.5.
 # "orientate=west" orientates the image to the west.

 PDF_fit_image($p, $image, 580, 20,
	"scale=0.5 position={right bottom} orientate=west");

 # Output some descriptive text
 PDF_fit_textline($p,
	"The image is placed with a scaling of 0.5 and an orientation to " .
	"the west with the lower right corner", 580, 320,
	"position={right bottom}");
 PDF_fit_textline($p,
	" at reference point (580, 20): fit_image(image, 580, 20, " .
	"\"scale=0.5 orientate=west position={right bottom}\");",
	580, 300, "position={right bottom}");

 PDF_end_page_ext($p, "");

 # Start page 2
 PDF_begin_page_ext($p, 0, 0, "width=a4.width height=a4.height");
 PDF_setfont($p, $font, 12);

 # --------------------------------------
 # Fit the image into a box with clipping
 # --------------------------------------

 # The "boxsize" option defines a box with a given width and height and
 # its lower left corner located at the reference point.
 # "position={right top}" positions the image on the top right of the
 # box.
 # "fitmethod=clip" clips the image to fit it into the box.

 $buf = "boxsize={" . $bw . " " . $bh .
	 "} position={right top} fitmethod=clip";
 PDF_fit_image($p, $image, $x, $y, $buf);

 # Output some descriptive text
 PDF_fit_textline($p,
	"fit_image(image, x, y, \"boxsize={400 200} position={right top} " .
	"fitmethod=clip\");", 20, $y+$bh+10, "");

 # ---
 # Fit the image into a box with proportional resizing
 # ---

 # The "boxsize" option defines a box with a given width and height and
 # its lower left corner located at the reference point.
 # "position={center}" positions the image in the center of the
 # box.
 # "fitmethod=meet" resizes the image proportionally until its height
 # or width completely fits into the box.
 # The "showborder" option is used to illustrate the borders of the box.

 $buf = "boxsize={" . $bw . " " . $bh .
		"} position={center} fitmethod=meet showborder";
 PDF_fit_image($p, $image, $x, $y-=$yoffset, $buf);

 # Output some descriptive text
 PDF_fit_textline($p,
	"fit_image(image, x, y, \"boxsize={400 200} position={center} " .
	"fitmethod=meet showborder\");", 20, $y+$bh+10, "");

 # ---------------------------------
 # Fit the image into a box entirely
 # ---------------------------------

 # The "boxsize" option defines a box with a given width and height and
 # its lower left corner located at the reference point.
 # By default, the image is positioned in the lower left corner of the
 # box.
 # "fitmethod=entire" resizes the image proportionally until its height
 # or width completely fits into the box.

 $buf = "boxsize={" . $bw . " " . $bh . "} fitmethod=entire";
 PDF_fit_image($p, $image, $x, $y-=$yoffset, $buf);

 # Output some descriptive text
 PDF_fit_textline($p,
	"fit_image(image, x, y, \"boxsize={400 200} fitmethod=entire\");",
	20, $y+$bh+10, "");

 PDF_end_page_ext($p, "");

 PDF_close_image($p, $image);

 PDF_end_document($p, "");
};

if ($@) {
 printf("$0: PDFlib Exception occurred:\n");
 printf(" $@\n");
 exit(1);
}

PDFlib-8.0.6-SunOS-sparc64-perl/bind/perl/oldstype/starter_layer.pl

#!/usr/bin/perl
$Id: starter_layer.pl,v 1.5 2009/09/11 10:32:16 stm Exp $
Starter layer:
Define several layers, output images and text to them and define
particular layers to be visible when opening the document
#
Define two layers for RGB or Grayscale images and two layers for English or
German image captions. Output images and text on the various layers and
open the document with the RGB images and English captions visible.
#
Required software: PDFlib/PDFlib+PDI/PPS 7
Required data: grayscale and RGB images
#

use pdflib_pl 7.0;
use strict;

This is where the data files are. Adjust as necessary.
my $searchpath = "../data";
my $outfile = "starter_layer.pdf";

create a new PDFlib object
my $p = PDF_new();

my $rgb = "nesrin.jpg";
my $gray = "nesrin_gray.jpg";

my $buf;
my $font;
my $imageRGB;
my $imageGray;
my $layerRGB;
my $layerGray;
my $layerEN;
my $layerDE;

eval {
 PDF_set_parameter($p, "SearchPath", $searchpath);

 # This means we must check return values of load_font() etc.
 PDF_set_parameter($p, "errorpolicy", "return");

 # Open the document with the "Layers" navigation tab visible
 if (PDF_begin_document($p, $outfile, "openmode=layers") == -1) {
	printf("Error: %s\n", PDF_get_errmsg($p));
	PDF_delete($p);
	exit(2);
 }

 PDF_set_info($p, "Creator", "PDFlib starter sample");
 PDF_set_info($p, "Title", "starter_layer");

 # Load the font
 $font = PDF_load_font($p, "Helvetica", "winansi", "");

 if ($font == -1) {
	printf("Error: %s\n", PDF_get_errmsg($p));
	PDF_delete($p);
	exit(2);
 }

 # Load the Grayscale image
 $imageGray = PDF_load_image($p, "auto", $gray, "");
 if ($imageGray == -1) {
	printf("Error: %s\n", PDF_get_errmsg($p));
	PDF_delete($p);
	exit(2);
 }

 # Load the RGB image
 $imageRGB = PDF_load_image($p, "auto", $rgb, "");
 if ($imageRGB == -1) {
	printf("Error: %s\n", PDF_get_errmsg($p));
	PDF_delete($p);
	exit(2);
 }

 # Define all layers which will be used, and their relationships.
 # This should be done before the first page if the layers are
 # used on more than one page.

 # Define the layer "RGB"
 $layerRGB = PDF_define_layer($p, "RGB", "");

 # Define the layer "Grayscale" which is hidden when opening the
 # document or printing it.
 $layerGray = PDF_define_layer($p, "Grayscale",
		"initialviewstate=false initialprintstate=false");

 # At most one of the "Grayscale" and "RGB" layers should be visible
 $buf = "group={" . $layerGray . " " . $layerRGB . "}";
 PDF_set_layer_dependency($p, "Radiobtn", $buf);

 # Define the layer "English"
 $layerEN = PDF_define_layer($p, "English", "");

 # Define the layer "German" which is hidden when opening the document
 # or printing it.
 $layerDE = PDF_define_layer($p, "German",
		"initialviewstate=false initialprintstate=false");

 # At most one of the "English" and "German" layers should be visible
 $buf = "group={" . $layerEN . " " . $layerDE . "}";
 PDF_set_layer_dependency($p, "Radiobtn", $buf);

 # Start page
 PDF_begin_page_ext($p, 0, 0, "width=a4.width height=a4.height");

 # Place the RGB image on the layer "RGB"
 PDF_begin_layer($p, $layerRGB);
 PDF_fit_image($p, $imageRGB, 100, 400,
		"boxsize={400 300} fitmethod=meet");

 # Place the Grayscale image on the layer "Grayscale"
 PDF_begin_layer($p, $layerGray);
 PDF_fit_image($p, $imageGray, 100, 400,
		"boxsize={400 300} fitmethod=meet");

 # Place an English image caption on the layer "English"
 PDF_begin_layer($p, $layerEN);
 $buf = "font=" . $font . " fontsize=20";
 PDF_fit_textline($p, "This is the Nesrin image.", 100, 370, $buf);

 # Place a German image caption on the layer "German"
 PDF_begin_layer($p, $layerDE);
 $buf = "font=" . $font . " fontsize=20";
 PDF_fit_textline($p, "Das ist das Nesrin-Bild.", 100, 370, $buf);

 PDF_end_layer($p);

 PDF_end_page_ext($p, "");

 PDF_end_document($p, "");

};

if ($@) {
 printf("$0: PDFlib Exception occurred:\n");
 printf(" $@\n");
 exit(1);
}

PDFlib-8.0.6-SunOS-sparc64-perl/bind/perl/oldstype/starter_opentype.pl

#!/usr/bin/perl
$Id: starter_opentype.pl,v 1.1 2009/09/11 10:32:16 stm Exp $
Starter sample for OpenType font features
#
Demonstrate various typographic OpenType features after checking
whether a particular feature is supported in a font.
#
Required software: PDFlib/PDFlib+PDI/PPS 8
Required data: suitable fonts with OpenType feature tables
#
This sample uses a default font which includes a few features.
For better results you should replace the default font with a suitable
commercial font. Depending on the implementation of the features you
may also have to replace the sample text below.
#
Some ideas for suitable test fonts:
Palatino Linotype: standard Windows font with many OpenType features

use pdflib_pl 8.0;
use strict;

This is where the data files are. Adjust as necessary.
use constant searchpath => "../data";
use constant outfile => "starter_opentype.pdf";

use constant {
 llx => 50.0,
 lly => 50.0,
 urx => 800.0,
 ury => 550.0
};

This font will be used unless another one is specified in the table
use constant defaulttestfont => "DejaVuSerif";

use constant headers => (
 "OpenType feature",
 "Option list",
 "Font name",
 "Raw input (feature disabled)",
 "Feature enabled"
);

Key names used to make a dictionary for the description of the
testcase entries
my @testcase_keys = qw(description fontname feature text);

Function to create a hash describing each testcase
sub make_testcase_hash {
 my $values = $_[0]; # reference to array
 my %result;
 @result{@testcase_keys} = @{$values};
 return \%result;
}

The testcases organized as an array of references to hashes
my @testcases = map { make_testcase_hash($_) } (
 [
 "ligatures", # description
 "", # fontname
 "liga", # feature
 "ff fi fl ffi ffl" # text
],
 [
 "discretionary ligatures",
 "",
 "dlig",
 "st c/o"
],
 [
 "historical ligatures",
 "",
 "hlig",
 "&.longs;b &.longs;t"
],
 [
 "small capitals",
 "",
 "smcp",
 "PostScript"
],
 [
 "ordinals",
 "",
 "ordn",
 "1o 2a 3o"
],
 [
 "fractions",
 "",
 "frac",
 "1/2 1/4 3/4"
],
 [
 "alternate fractions",
 "",
 "afrc",
 "1/2 1/4 3/4"
],
 [
 "slashed zero",
 "",
 "zero",
 "0"
],
 [
 "historical forms",
 "",
 "hist",
 "s"
],
 [
 "proportional figures",
 "",
 "pnum",
 "0123456789"
],
 [
 "old-style figures",
 "",
 "onum",
 "0123456789"
],
 [
 "lining figures",
 "",
 "lnum",
 "0123456789"
],
 [
 "superscript",
 "",
 "sups",
 "0123456789"
]
);

my $p = PDF_new();

eval {
 my $optlist;

 PDF_set_parameter($p, "SearchPath", searchpath);
 PDF_set_parameter($p, "textformat", "bytes");
 PDF_set_parameter($p, "charref", "true");

 # This means that formatting and other errors will raise an
 # exception. This simplifies our sample code, but is not
 # recommended for production code.
 PDF_set_parameter($p, "errorpolicy", "exception");

 # Set an output path according to the name of the topic
 if (PDF_begin_document($p, outfile, "") == -1) {
 printf("Error: %s\n", PDF_get_errmsg($p));
 PDF_delete($p);
 exit(2);
 }

 PDF_set_info($p, "Creator", "PDFlib starter sample");
 PDF_set_info($p, "Title", "starter_opentype");

 # Start Page
 PDF_begin_page_ext($p, 0, 0, "width=a4.height height=a4.width");

 my $table = -1;

 # Table header
 my $col = 1;
 foreach my $header (headers) {
 $optlist =
 "fittextline={fontname=Helvetica-Bold encoding=unicode fontsize=12} " .
 "margin=4";
 $table = PDF_add_table_cell($p, $table, $col, 1, $header, $optlist);
 $col += 1;
 }

 # Create a table with feature samples, one feature per table row
 my $row = 2;
 foreach my $testcase (@testcases) {
 # Use the entry in the test table if available, and the
 # default test font otherwise. This way we can easily check
 # a font for all features, as well as insert suitable fonts
 # for individual features.
 my $testfont =
 $testcase->{fontname} ? $testcase->{fontname} : defaulttestfont;

 $col = 1;

 # Common option list for columns 1-3
 $optlist =
 "fittextline={fontname=Helvetica encoding=unicode fontsize=12} " .
 "margin=4";

 # Column 1: feature description
 $table = PDF_add_table_cell($p, $table, $col++, $row,
 $testcase->{description}, $optlist);

 # Column 2: option list
 my $buf = sprintf "features={%s}", $testcase->{feature};
 $table = PDF_add_table_cell($p, $table, $col++, $row, $buf, $optlist);

 # Column 3: font name
 $table = PDF_add_table_cell($p, $table, $col++, $row, $testfont,
 $optlist);

 # Column 4: raw input text with feature disabled
 $optlist = sprintf
 "fittextline={fontname={%s} encoding=unicode fontsize=12 " .
 "embedding} margin=4", $testfont;
 $table = PDF_add_table_cell($p, $table, $col++, $row,
 $testcase->{text}, $optlist);

 # Column 5: text with enabled feature, or warning if the
 # feature is not available in the font
 my $font = PDF_load_font($p, $testfont, "unicode", "embedding");

 # Check whether font contains the required feature table
 $optlist = sprintf "name=%s", $testcase->{feature};
 if (PDF_info_font($p, $font, "feature", $optlist) == 1) {
 # feature is available: apply it to the text
 $optlist = sprintf
 "fittextline={fontname={%s} encoding=unicode fontsize=12 " .
 "embedding features={%s}} margin=4",
 $testfont, $testcase->{feature};
 $table = PDF_add_table_cell($p, $table, $col++, $row,
 $testcase->{text}, $optlist);
 }
 else {
 # feature is not available: emit a warning
 $optlist =
 "fittextline={fontname=Helvetica encoding=unicode " .
 "fontsize=12 fillcolor=red} margin=4";
 $table = PDF_add_table_cell($p, $table, $col++, $row,
 "(feature not available in this font)", $optlist);
 }

 $row += 1;
 }

 # Place the table
 $optlist = sprintf "header=1 fill={{area=rowodd " .
 "fillcolor={gray 0.9}}} stroke={{line=other}} ";
 my $result = PDF_fit_table($p, $table, llx, lly, urx, ury, $optlist);

 if ($result eq "_error") {
 printf("Couldn't place table: %s\n", PDF_get_errmsg($p));
 PDF_delete($p);
 exit(2);
 }

 PDF_end_page_ext($p, "");
 PDF_end_document($p, "");
};

if ($@) {
 printf("$0: PDFlib Exception occurred:\n");
 printf(" $@\n");
 exit(1);
}

PDFlib-8.0.6-SunOS-sparc64-perl/bind/perl/oldstype/starter_path.pl

#!/usr/bin/perl
$Id: starter_path.pl,v 1.1.2.2 2010/12/08 13:54:18 rp Exp $
#
Starter sample for pathobjects:
Create some basic examples of pathobject construction and use
#
required software: PDFlib/PDFlib+PDI/PPS 8
required data: none
#

use pdflib_pl 8.0;
use strict;

my $outfilename = "starter_path.pdf";
my $text = "Lorem ipsum dolor sit amet, consectetur adipisicing elit, " .
 "sed do eiusmod tempor incididunt ut labore et dolore magna " .
 "aliqua. Ut enim ad minim veniam, quis nostrud exercitation " .
 "ullamco laboris nisi ut aliquip ex ea commodo consequat. " .
 "Duis aute irure dolor in reprehenderit in voluptate velit esse cillum " .
 "dolore eu fugiat nulla pariatur. Excepteur sint occaecat " .
 "cupidatat non proident, sunt in culpa qui officia deserunt mollit anim " .
 "id est laborum. ";

my $p = PDF_new();
eval {

 # This means we must check return values of load_font() etc.
 PDF_set_parameter($p, "errorpolicy", "return");

 if (PDF_begin_document($p, $outfilename, "") == -1) {
	die("Error: " . PDF_get_errmsg($p));
 }

 PDF_set_info($p, "Creator", "PDFlib starter sample");
 PDF_set_info($p, "Title", "starter_path");
 # Start an A4 page
 PDF_begin_page_ext($p, 0, 0, "width=a4.width height=a4.height");

 # Construct a pathobject for an arrow shape

 my $path= -1;

 # The tip of the arrow gets rounded corners
 $path= PDF_add_path_point($p, $path, 200.0, 25.0, "move", "round=10");
 $path= PDF_add_path_point($p, $path, 200.0, 75.0, "line", "");
 # assign a name to the arrow's tip
 $path= PDF_add_path_point($p, $path, 300.0, 0.0, "line", "name=tip");
 $path= PDF_add_path_point($p, $path, 200.0, -75.0, "line", "");
 $path= PDF_add_path_point($p, $path, 200.0, -25.0, "line", "");

 # Start a new sub$pathfor the straight base of the arrow
 $path= PDF_add_path_point($p, $path, 200.0, -25.0, "move", "");
 $path= PDF_add_path_point($p, $path, 0.0, -25.0, "line", "");

 # The center of the base can serve as a named attachment point
 $path= PDF_add_path_point($p, $path, 0.0, 0.0, "line", "name=base");
 $path= PDF_add_path_point($p, $path, 0.0, 25.0, "line", "");
 $path= PDF_add_path_point($p, $path, 200.0, 25.0, "line", "");

 my $x = 100.0;
 my $y = 850.0;

 # --
 # Place arrow in its original direction
 # --

 $y -= 100.0;
 PDF_draw_path($p, $path, $x, $y,
	"stroke linewidth=3 fill fillcolor=Turquoise " .
	"linecap=projecting attachmentpoint=base ");

 # --
 # Scale down arrow and align it to north east
 # --

 $y -= 200.0;
 PDF_draw_path($p, $path, $x, $y,
	"stroke linewidth=3 fill fillcolor=Turquoise " .
	"linecap=projecting attachmentpoint=base scale=0.5 align={1 1}");

 # --
 # Scale to 50%, use the arrow tip as attachment point,
 # and align the arrow to the left
 # --

 $y -= 100.0;
 PDF_draw_path($p, $path, $x, $y,
	"stroke linewidth=3 fill fillcolor=Turquoise " .
	"linecap=projecting attachmentpoint=tip scale=0.5 align={-1 0}");

 # --
 # Place text on the $path; round all corners to
 # allow smoother text at the corners
 # --

 $y -= 100.0;
 my $optlist = sprintf("textpath={path=%d round=10} position={center bottom} " .
	"fontname=Helvetica encoding=winansi fontsize=8",
	$path);
 PDF_fit_textline($p, $text, $x, $y, $optlist);

 # --
 # Use the $pathas clipping $pathfor a Textflow
 # --

 $y -= 300.0;

 # Feed the text to the Textflow object
 my $tf = PDF_add_textflow($p, -1, $text,
	"fontname=Helvetica fontsize=10 encoding=winansi " .
	"alignment=justify");
 # Use text twice to fill the arrow
 $tf = PDF_add_textflow($p, $tf, $text,
	"fontname=Helvetica fontsize=10 encoding=winansi " .
	"alignment=justify");
 if ($tf == -1) {
	die("Error: %s\n", PDF_get_errmsg($p));
 }

 # Attach the $path's reference point to the middle left (0%, 50%)
 # of the fitbox, and wrap the text inside the $path(inversefill)

 $optlist = sprintf("wrap={inversefill " .
	 "paths={{path=%d refpoint={0%% 50%%} scale=1.5 }}}",
	$path);
 my $result = PDF_fit_textflow($p, $tf, $x, $y, $x+450, $y+225, $optlist);

 if ($result eq "_stop")
 {
	# In this example we don't care about overflow text
 }
 PDF_delete_textflow($p, $tf);

 # --
 # Query information about the pathobject
 # --

 my $n = PDF_info_path($p, $path, "numpoints", "");

 PDF_delete_path($p, $path);
 PDF_end_page_ext($p, "");
 PDF_end_document($p, "");

};

if ($@) {
 printf("$0: PDFlib Exception occurred:\n");
 printf(" $@\n");
 exit(1);
}

PDFlib-8.0.6-SunOS-sparc64-perl/bind/perl/oldstype/starter_pcos.pl

#!/usr/bin/perl
$Id: starter_pcos.pl,v 1.11 2009/10/06 15:18:13 stm Exp $
#
pCOS starter:
Dump information from an existing PDF document
#
required software: PDFlib+PDI/PPS 7
required data: PDF input file

use pdflib_pl 7.0;

This is where the data files are. Adjust as necessary.
$searchpath = "../data";
$pdfinput = "TET-datasheet.pdf";
$docoptlist = "requiredmode=minimum";

$p = PDF_new();

eval {
 # This means we must check return values of load_font() etc.
 PDF_set_parameter($p, "errorpolicy", "return");

 PDF_set_parameter($p, "SearchPath", $searchpath);

 # We do not create any output document, so no call to
 # begin_document() is required.

 # Open the input document
 $doc = PDF_open_pdi_document($p, $pdfinput, $docoptlist);
 if ($doc == -1) {
	die("Error: " . PDF_get_errmsg($p));
 }

 # --------- general information (always available)

 $pcosmode = PDF_pcos_get_number($p, $doc, "pcosmode");

 printf(" File name: %s\n",
	PDF_pcos_get_string($p, $doc,"filename"));

 printf(" PDF version: %s\n",
	PDF_pcos_get_string($p, $doc, "pdfversionstring"));

 printf(" Encryption: %s\n",
	PDF_pcos_get_string($p, $doc, "encrypt/description"));

 printf(" Master pw: %s\n",
	((PDF_pcos_get_number($p, $doc, "encrypt/master") != 0) ? "yes":"no"));

 printf(" User pw: %s\n",
	((PDF_pcos_get_number($p, $doc, "encrypt/user") != 0) ? "yes" : "no"));

 printf("Text copying: %s\n",
	((PDF_pcos_get_number($p, $doc, "encrypt/nocopy") != 0) ? "no":"yes"));

 printf(" Linearized: %s\n\n",
	((PDF_pcos_get_number($p, $doc, "linearized") != 0) ? "yes" : "no"));

 if ($pcosmode == 0) {
	printf("Minimum mode: no more information available\n\n");
	PDF_delete($p);
	exit(0);
 }

 # --------- more details (requires at least user password)
 printf("PDF/X status: %s\n", PDF_pcos_get_string($p, $doc, "pdfx"));

 printf("PDF/A status: %s\n", PDF_pcos_get_string($p, $doc, "pdfa"));

 $xfa_present =
 PDF_pcos_get_number($p, $doc, "type:/Root/AcroForm/XFA") != 0;
 printf(" XFA data: %s\n", $xfa_present ? "yes" : "no");

 printf(" Tagged PDF: %s\n",
 ((PDF_pcos_get_number($p, $doc, "tagged") != 0) ? "yes" : "no"));

 printf("No. of pages: %s\n",
	PDF_pcos_get_number($p, $doc, "length:pages"));

 printf(" Page 1 size: width=%.3f, height=%.3f\n",
	 PDF_pcos_get_number($p, $doc, "pages[0]/width"),
	 PDF_pcos_get_number($p, $doc, "pages[0]/height"));

 $count = PDF_pcos_get_number($p, $doc, "length:fonts");
 printf("No. of fonts: %s\n", $count);

 for ($i=0; $i < $count; $i++) {
	$fonts = "fonts[" . $i . "]/embedded";
	if (PDF_pcos_get_number($p, $doc, $fonts) != 0) {
	 print("embedded ");
	} else {
	 print("unembedded ");
	}

	$fonts = "fonts[" . $i . "]/type";
	print(PDF_pcos_get_string($p, $doc, $fonts) . " font ");
	$fonts = "fonts[" . $i . "]/name";
	printf("%s\n", PDF_pcos_get_string($p, $doc, $fonts));
 }

 printf("\n");

 $plainmetadata =
 PDF_pcos_get_number($p, $doc, "encrypt/plainmetadata") != 0;

 if ($pcosmode == 1 && !$plainmetadata
 && PDF_pcos_get_number($p, $doc, "encrypt/nocopy") != 0) {
	print("Restricted mode: no more information available");
	PDF_delete($p);
	exit(0);
 }

 # ----- document $info keys and XMP metadata (requires master pw)

 $count = PDF_pcos_get_number($p, $doc, "length:/Info");

 for ($i=0; $i < $count; $i++) {
	$info = "type:/Info[" . $i . "]";
	$objtype = PDF_pcos_get_string($p, $doc, $info);

	$info = "/Info[" . $i . "].key";
	$key = PDF_pcos_get_string($p, $doc, $info);
	$len = 12 - length($key);
	while ($len-- > 0) {
	 print(" ");
	}

	print($key . ": ");

	# $info entries can be stored as string or name objects
	if ($objtype eq "name" || $objtype eq "string") {
	 $info = "/Info[" . $i . "]";
	 printf("'" . PDF_pcos_get_string($p, $doc, $info) . "'\n");
	}
 else {
	 $info = "type:/Info[" . $i . "]";
	 printf("(" . PDF_pcos_get_string($p, $doc, $info) . " object)\n");
	}
 }

 print("\n" . "XMP metadata: ");

 $objtype = PDF_pcos_get_string($p, $doc, "type:/Root/Metadata");
 if ($objtype eq "stream") {
	$contents = PDF_pcos_get_stream($p, $doc, "", "/Root/Metadata");
	print(length($contents) . " bytes \n");
	printf("");
 }
 else {
	printf("not present\n");
 }

 PDF_close_pdi_document($p, $doc);

 PDF_delete($p);
};

if ($@) {
 printf("$0: PDFlib Exception occurred:\n");
 printf(" $@\n");
 exit(1);
}

PDFlib-8.0.6-SunOS-sparc64-perl/bind/perl/oldstype/starter_pdfa1b.pl

#!/usr/bin/perl
$Id: starter_pdfa1b.pl,v 1.1.2.1 2010/01/29 11:10:02 rjs Exp $
#
PDF/A-1b starter:
Create PDF/A-1b conforming output
#
Required software: PDFlib/PDFlib+PDI/PPS 7
Required data: font file, image file

use pdflib_pl 7.0;

This is where the data files are. Adjust as necessary.
$searchpath = "../data";
$imagefile = "nesrin.jpg";
$outfilename = "starter_pdfa1b.pdf";

$p = PDF_new();

eval {
 # This means we must check return values of load_font() etc.
 PDF_set_parameter($p, "errorpolicy", "return");

 PDF_set_parameter($p, "SearchPath", $searchpath);

 # we use "bytes" as textformat, this allows to use unicode encoding
 PDF_set_parameter($p, "textformat", "bytes");

 # PDF/A-1a requires Tagged PDF
 if (PDF_begin_document($p, $outfilename, "pdfa=PDF/A-1b:2005") == -1) {
	die("Error: " . PDF_get_errmsg($p));
 }

 #
 # We use sRGB as output intent since it allows the color
 # spaces CIELab, ICC-based, grayscale, and RGB.
 #
 # If you need CMYK color you must use a CMYK output profile.

 PDF_load_iccprofile($p, "sRGB", "usage=outputintent");

 PDF_set_info($p, "Creator", "PDFlib starter sample");
 PDF_set_info($p, "Title", "starter_pdfa1b");

 PDF_begin_page_ext($p, 595, 842, "");

 # $font embedding is required for PDF/A
 $font = PDF_load_font($p, "LuciduxSans-Oblique", "unicode", "embedding");
 if ($font == -1) {
	die("Error: %s\n", PDF_get_errmsg($p));
 }
 PDF_setfont($p, $font, 24);

 PDF_fit_textline($p, "PDF/A-1b:2005 starter", 50, 700, "");

 # We can use an RGB $image since we already supplied an
 # output intent profile.

 $image = PDF_load_image($p, "auto", $imagefile, "");
 if ($image == -1) {
	die("Error: " . PDF_get_errmsg($p));
 }

 # Place the $image at the bottom of the page
 PDF_fit_image($p, $image, 0.0, 0.0, "scale=0.5");

 PDF_end_page_ext($p, "");
 PDF_close_image($p, image);

 PDF_end_document($p, "");

 PDF_delete($p);
};

if ($@) {
 printf("$0: PDFlib Exception occurred:\n");
 printf(" $@\n");
 exit;
}

PDFlib-8.0.6-SunOS-sparc64-perl/bind/perl/oldstype/starter_pdfmerge.pl

#!/usr/bin/perl
$Id: starter_pdfmerge.pl,v 1.1 2009/11/23 14:31:31 rjs Exp $
#
PDF merge starter:
Merge pages from multiple PDF documents; interactive elements (e.g.
bookmarks) will be dropped.
#
required software: PDFlib+PDI/PPS 7
required data: PDF documents

use pdflib_pl 7.0;

This is where the data files are. Adjust as necessary.
$searchpath = "../data";
$outfilename = "starter_pdfmerge.pdf";

@pdffiles = (
	"PDFlib-real-world.pdf",
	"PDFlib-datasheet.pdf",
	"TET-datasheet.pdf",
	"PLOP-datasheet.pdf",
	"pCOS-datasheet.pdf"
);

$p = PDF_new();

eval {
 # This means we must check return values of load_font() etc.
 PDF_set_parameter($p, "errorpolicy", "return");

 PDF_set_parameter($p, "SearchPath", $searchpath);

 if (PDF_begin_document($p, $outfilename, "") == -1) {
	die("Error: " . PDF_get_errmsg($p));
 }

 PDF_set_info($p, "Creator", "PDFlib starter sample");
 PDF_set_info($p, "Title", "starter_pdfmerge");

 foreach $pdffile (@pdffiles) {
	# Open the input PDF
	$indoc = PDF_open_pdi_document($p, $pdffile, "");
	if ($indoc == -1) {
	 printf("Error: %s\n", PDF_get_errmsg($p));
	 next;
	}

	$endpage = PDF_pcos_get_number($p, $indoc, "length:pages");

	# Loop over all pages of the input document
	for ($pageno = 1; $pageno <= $endpage; $pageno++) {
	 $page = PDF_open_pdi_page($p, $indoc, $pageno, "");

	 if ($page == -1) {
		printf("Error: %s\n", PDF_get_errmsg($p));
		next;
	 }
	 # Dummy $page size; will be adjusted later
	 PDF_begin_page_ext($p, 10, 10, "");

	 # Create a bookmark with the file name
	 if ($pageno == 1) {
		PDF_create_bookmark($p, $pdffile, "");
	 }

	 # Place the imported $page on the output $page, and
	 # adjust the $page size
	
	 PDF_fit_pdi_page($p, $page, 0, 0, "adjustpage");
	 PDF_close_pdi_page($p, $page);

	 PDF_end_page_ext($p, "");
	}
	PDF_close_pdi_document($p, $indoc);
 }

 PDF_end_document($p, "");

 PDF_delete($p);
};

if ($@) {
 printf("$0: PDFlib Exception occurred:\n");
 printf(" $@\n");
 exit(1);
}

PDFlib-8.0.6-SunOS-sparc64-perl/bind/perl/oldstype/starter_pdfx3.pl

#!/usr/bin/perl
$Id: starter_pdfx3.pl,v 1.1 2009/11/23 14:31:31 rjs Exp $
#
PDF/X-3 starter:
Create PDF/X-3 conforming output
#
required software: PDFlib/PDFlib+PDI/PPS 7
required data: font file, image file, icc profile
(see www.pdflib.com for ICC profiles)

use pdflib_pl 7.0;

This is where the data files are. Adjust as necessary.*/
$searchpath = "../data";
$imagefile = "nesrin.jpg";
$outfilename = "starter_pdfx3.pdf";

$p = PDF_new();

eval {
 # This means we must check return values of load_font() etc.
 PDF_set_parameter($p, "errorpolicy", "return");

 PDF_set_parameter($p, "SearchPath", $searchpath);

 # we use "bytes" as textformat, this allows to use unicode encoding
 PDF_set_parameter($p, "textformat", "bytes");

 if (PDF_begin_document($p, $outfilename, "pdfx=PDF/X-3:2003") == 0) {
	die("Error: " . PDF_get_errmsg($p));
 }

 PDF_set_info($p, "Creator", "PDFlib starter sample");
 PDF_set_info($p, "Title", "starter_pdfx3");

 #
 # You can use one of the Standard output intents (e.g. for SWOP
 # printing) which do not require an ICC profile:
 #
 # PDF_load_iccprofile($p, "CGATS TR 001", "usage=outputintent");
 #
 # However, if you use ICC or Lab color you must load an ICC
 # profile as output intent:

 if (PDF_load_iccprofile($p, "ISOcoated.icc", "usage=outputintent") == -1) {
	printf("Error: %s\n", PDF_get_errmsg($p));
	printf("Please install the ICC profile package from " .
	 "www.pdflib.com to run the PDF/X starter sample.\n");
	PDF_delete($p);
	exit(2);
 }

 PDF_begin_page_ext($p, 595, 842, "");

 # $font embedding is required for PDF/X
 $font = PDF_load_font($p, "LuciduxSans-Oblique", "unicode", "embedding");
 if ($font == -1) {
	die("Error: %s\n", PDF_get_errmsg($p));
 }
 PDF_setfont($p, $font, 24);

 $spot = PDF_makespotcolor($p, "PANTONE 123 C");
 PDF_setcolor($p, "fill", "spot", $spot, 1.0, 0.0, 0.0);
 PDF_fit_textline($p, "PDF/X-3:2003 starter", 50, 700, "");

 # The RGB $image below needs an $icc profile; we use sRGB.
 $icc = PDF_load_iccprofile($p, "sRGB", "");
 $image = PDF_load_image($p, "auto", $imagefile, "iccprofile=" . $icc);

 if ($image == -1) {
	die("Error: " . PDF_get_errmsg($p));
 }

 PDF_fit_image($p, $image, 0.0, 0.0, "scale=0.5");

 PDF_end_page_ext($p, "");

 PDF_end_document($p, "");

 PDF_delete($p);
};

if ($@) {
 printf("$0: PDFlib Exception occurred:\n");
 printf(" $@\n");
 exit(1);
}

PDFlib-8.0.6-SunOS-sparc64-perl/bind/perl/oldstype/starter_pdfx4.pl

#!/usr/bin/perl
$Id: starter_pdfx4.pl,v 1.1 2009/11/23 14:31:31 rjs Exp $
#
PDF/X-4 starter:
Create PDF/X-4 conforming output with layer variants and transparency
#
A low-level layer is created for each of several languages, as well
as an image layer. Each of the language layers together with the
image layer forms a "layer variant" according to PDF/X-4 (in Acrobat
layer variants are called "configurations").
This ensures that low-level layers cannot be enabled/disabled individually,
but only via the corresponding layer variant. This prevents accidental
printing of a language layer without the required image layer.
#
The document contains transparent text which is allowed in
PDF/X-4, but not earlier PDF/X standards.
#
Required software: PDFlib/PDFlib+PDI/PPS 8
Required data: font file, image file, ICC output intent profile
(see www.pdflib.com for ICC profiles)

use pdflib_pl 8.0;
use strict;

This is where the data files are. Adjust as necessary.
use constant searchpath => "../data";
use constant imagefile => "zebra.tif";

my $p = PDF_new();

eval {
 # This means we must check return values of load_font() etc.
 PDF_set_parameter($p, "errorpolicy", "return");

 PDF_set_parameter($p, "SearchPath", searchpath);

 if (PDF_begin_document($p, "starter_pdfx4.pdf", "pdfx=PDF/X-4")
 == -1) {
 printf("Error: %s\n", PDF_get_errmsg($p));
 PDF_delete($p);
 exit(2);
 }

 PDF_set_info($p, "Creator", "PDFlib starter sample");
 PDF_set_info($p, "Title", "starter_pdfx4");

 if (PDF_load_iccprofile($p, "ISOcoated.icc", "usage=outputintent") == -1)
 {
 printf("Error: %s\n", PDF_get_errmsg($p));
 printf("Please install the ICC profile package from " .
 "www.pdflib.com to run the PDF/X-4 starter sample.\n");
 PDF_delete($p);
 exit(2);
 }

 # Define the low-level layers. These cannot be controlled directly
 # in Acrobat's layer pane.

 my $layer_english = PDF_define_layer($p, "English text", "");
 my $layer_german = PDF_define_layer($p, "German text", "");
 my $layer_french = PDF_define_layer($p, "French text", "");
 my $layer_image = PDF_define_layer($p, "Images", "");

 # Define a radio button relationship for the language layers.
 # Individual layers will only be visible in Acrobat X (but
 # not Acrobat 9).
 #
 my $optlist = sprintf
	 "group={%d %d %d}",
	 $layer_english, $layer_german, $layer_french;
 PDF_set_layer_dependency($p, "Radiobtn", $optlist);

 # Define the layer combinations for document variants. The variants
 # control the low-level layers, and can be activated in Acrobat 9's
 # layer pane. Using layer variants we can make sure that the image
 # layer cannot accidentally be disabled; it will always accompany
 # the text regardless of the selected language.

 $optlist = sprintf
 	"variantname={English variant} includelayers={%d %d} " .
 	"defaultvariant=true createorderlist",
 	$layer_english, $layer_image;
 PDF_set_layer_dependency($p, "Variant", $optlist);

 $optlist = sprintf
 	"variantname={German variant} includelayers={%d %d}",
 	$layer_german, $layer_image;
 PDF_set_layer_dependency($p, "Variant", $optlist);

 $optlist = sprintf
 	"variantname={French variant} includelayers={%d %d}",
 	$layer_french, $layer_image;
 PDF_set_layer_dependency($p, "Variant", $optlist);

 PDF_begin_page_ext($p, 595, 842, "");

 # Font embedding is required for PDF/X
 my $font = PDF_load_font($p, "LuciduxSans-Oblique", "winansi", "embedding");

 if ($font == -1) {
 printf("Error: %s\n", PDF_get_errmsg($p));
 PDF_delete($p);
 exit(2);
 }

 PDF_setfont($p, $font, 24);

 PDF_begin_layer($p, $layer_english);

 PDF_fit_textline($p, "PDF/X-4 starter sample with layers", 50, 700, "");

 PDF_begin_layer($p, $layer_german);
 PDF_fit_textline($p, "PDF/X-4 Starter-Beispiel mit Ebenen", 50, 700, "");

 PDF_begin_layer($p, $layer_french);
 PDF_fit_textline($p, "PDF/X-4 Starter exemple avec des calques", 50, 700, "");

 PDF_begin_layer($p, $layer_image);

 PDF_setfont($p, $font, 48);

 # The RGB image needs an ICC profile; we use sRGB.
 my $icc = PDF_load_iccprofile($p, "sRGB", "");
 $optlist = sprintf "iccprofile=%d", $icc;
 my $image = PDF_load_image($p, "auto", imagefile, $optlist);

 if ($image == -1) {
 printf("Error: %s\n", PDF_get_errmsg($p));
 PDF_delete($p);
 exit(2);
 }

 # Place a diagonal stamp across the image area
 my $width = PDF_info_image($p, $image, "width", "");
 my $height = PDF_info_image($p, $image, "height", "");

 $optlist = sprintf "boxsize={%f %f} stamp=ll2ur", $width, $height;
 PDF_fit_textline($p, "Zebra", 0, 0, $optlist);

 # Set transparency in the graphics state
 my $gstate = PDF_create_gstate($p, "opacityfill=0.5");
 PDF_set_gstate($p, $gstate);

 # Place the image on the page and close it
 PDF_fit_image($p, $image, 0.0, 0.0, "");
 PDF_close_image($p, $image);

 # Close all layers
 PDF_end_layer($p);

 PDF_end_page_ext($p, "");

 PDF_end_document($p, "");
};

if ($@) {
 printf("$0: PDFlib Exception occurred:\n");
 printf(" $@\n");
 exit(1);
}

PDFlib-8.0.6-SunOS-sparc64-perl/bind/perl/oldstype/starter_pdfx5g.pl

#!/usr/bin/perl
$Id: starter_pdfx5g.pl,v 1.1 2009/11/23 14:31:31 rjs Exp $
#
PDF/X-5g starter:
Create PDF/X-5g conforming output with a reference to an external page
#
The external document from which a page is referenced must conform to
one of the following standards:
PDF/X-1a:2003, PDF/X-3:2002, PDF/X-4, PDF/X-4p, PDF/X-5g, or PDF/X-5pg
#
In order to properly display and print the referenced target page with
Acrobat you must configure Acrobat appropriately (see PDFlib Tutorial),
and the target PDF must be available to Acrobat.
#
Required software: PDFlib/PDFlib+PDI/PPS 8
Required data: font file, external PDF/X target, ICC output intent profile
(see www.pdflib.com for ICC profiles)

use pdflib_pl 8.0;
use strict;

This is where the data files are. Adjust as necessary.
use constant searchpath => "../data";
use constant targetname => "x5target.pdf";

use constant linewidth => 2.0;

my $p = PDF_new();

eval {
 # This means we must check return values of load_font() etc.
 PDF_set_parameter($p, "errorpolicy", "return");

 PDF_set_parameter($p, "SearchPath", searchpath);

 if (PDF_begin_document($p, "starter_pdfx5g.pdf", "pdfx=PDF/X-5g") == -1) {
 printf("Error: %s\n", PDF_get_errmsg($p));
 PDF_delete($p);
 exit(2);
 }

 PDF_set_info($p, "Creator", "PDFlib starter sample");
 PDF_set_info($p, "Title", "starter_pdfx5g");

 # Open the output intent profile
 if (PDF_load_iccprofile($p, "ISOcoated.icc", "usage=outputintent") == -1)
 {
 printf("Error: %s\n", PDF_get_errmsg($p));
 printf("Please install the ICC profile package from " .
 "www.pdflib.com to run the PDF/X-5g starter sample.\n");
 PDF_delete($p);
 exit(2);
 }

 # Font embedding is required for PDF/X
 my $font = PDF_load_font($p, "LuciduxSans-Oblique", "winansi", "embedding");

 if ($font == -1) {
 printf("Error: %s\n", PDF_get_errmsg($p));
 PDF_delete($p);
 exit(2);
 }

 # Create a template which will serve as proxy. The referenced
 # page (the target) is attached to the proxy.
 # The template width and height will be determined automatically,
 # so we don't have to supply them.
 my $optlist = sprintf "reference={filename=%s pagenumber=1}", targetname;
 my $proxy = PDF_begin_template_ext($p, 0, 0, $optlist);

 if ($proxy == -1) {
 printf("Error: %s\n", PDF_get_errmsg($p));
 PDF_delete($p);
 exit(2);
 }

 width = PDF_info_image($p, $proxy, "imagewidth", "");
 height = PDF_info_image($p, $proxy, "imageheight", "");

 # Draw a crossed-out rectangle to visualize the proxy.
 # Attention: if we use the exact corner points, one half of the
 # linewidth would end up outside the template, and therefore be
 # clipped.
 PDF_setlinewidth($p, linewidth);
 PDF_moveto($p, linewidth/2, linewidth/2);
 PDF_lineto($p, $width - linewidth/2, linewidth/2);
 PDF_lineto($p, $width - linewidth/2, $height - linewidth/2);
 PDF_lineto($p, linewidth/2, $height - linewidth/2);
 PDF_lineto($p, linewidth/2, linewidth/2);
 PDF_lineto($p, $width - linewidth/2, $height - linewidth/2);

 PDF_moveto($p, $width - linewidth/2, linewidth/2);
 PDF_lineto($p, linewidth/2, $height - linewidth/2);
 PDF_stroke($p);

 PDF_setfont($p, $font, 24);

 $optlist = sprintf "fitmethod=auto position=center boxsize={%f %f}",
 $width, $height;
 PDF_fit_textline($p, "Proxy replaces target here", 0, 0, $optlist);

 PDF_end_template_ext($p, 0, 0);

 # Create the page
 PDF_begin_page_ext($p, 595, 842, "");

 PDF_setfont($p, $font, 18);

 PDF_fit_textline($p,
 "PDF/X-5 starter sample with reference to an external page",
 50, 700, "");

 # Place the proxy on the page
 PDF_fit_image($p, $proxy, 50, 50, "boxsize={500 500} fitmethod=meet");

 PDF_end_page_ext($p, "");
 PDF_end_document($p, "");
};

if ($@) {
 printf("$0: PDFlib Exception occurred:\n");
 printf(" $@\n");
 exit(1);
}

PDFlib-8.0.6-SunOS-sparc64-perl/bind/perl/oldstype/starter_portfolio.pl

#!/usr/bin/perl
$Id: starter_portfolio.pl,v 1.1 2009/09/11 10:32:16 stm Exp $
#
PDF portfolio starter:
Package multiple PDF and other documents into a PDF portfolio
The generated PDF portfolio requires Acrobat 9 for proper
viewing. The documents in the Portfolio will be assigned predefined
and custom metadata fields; for the custom fields a schema description
is created.
#
Acrobat 8 will only display a "PDF package" with a flat list of documents
without any folder structure.
#
Required software: PDFlib/PDFlib+PDI/PPS 8
Required data: PDF and other input documents

use pdflib_pl 8.0;
use strict;

This is where the data files are. Adjust as necessary.
use constant searchpath => "../data";

Key names used to make a dictionary for the description of the
portfolio entries
my @document_keys = qw(filename description status id);

Function to create a hash describing each document
sub make_document_hash {
 my $values = $_[0]; # reference to array
 my %result;
 @result{@document_keys} = @{$values};
 return \%result;
}

The documents for the Portfolio along with description and metadata,
organized as an array of references to hashes
my @root_folder_docs = map { make_document_hash($_) } (
 [
 "TIR_____.AFM", # filename
 "Metrics for Times-Roman", # description
 "internal", # status
 200 # id
],
 [
 "nesrin.jpg",
 "Zabrisky point",
 "archived",
 300
]
);

my @datasheet_docs = map { make_document_hash($_) } (
 [
 "PDFlib-real-world.pdf",
 "PDFlib in the real world",
 "published",
 100
],
 [
 "PDFlib-datasheet.pdf",
 "Generate PDF on the fly",
 "published",
 101
],
 [
 "TET-datasheet.pdf",
 "Extract text and images from PDF",
 "published",
 102
],
 [
 "PLOP-datasheet.pdf",
 "PDF Linearization, Optimization, Protection",
 "published",
 103
],
 [
 "pCOS-datasheet.pdf",
 "PDF Information Retrieval Tool",
 "published",
 104
]
);

my $p = PDF_new();

eval {
 my ($optlist, $doc);

 PDF_set_parameter($p, "SearchPath", searchpath);

 # This means we must check return values of load_font() etc.
 PDF_set_parameter($p, "errorpolicy", "return");

 if (PDF_begin_document($p, "starter_portfolio.pdf", "compatibility=1.7ext3") == -1) {
 printf("Error: %s\n", PDF_get_errmsg($p));
 PDF_delete($p);
 exit(2);
 }

 PDF_set_info($p, "Creator", "PDFlib starter sample");
 PDF_set_info($p, "Title", "starter_portfolio");

 # Insert all files for the root folder along with their description
 # and the following custom fields:
 # status string describing the document status
 # id numerical identifier, prefixed with "PHX"
 foreach $doc (@root_folder_docs) {
 $optlist = sprintf
 "description={%s} " .
 "fieldlist={ " .
 "{key=status value=%s} " .
 "{key=id value=%d prefix=PHX type=text} " .
 "}",
 $doc->{description}, $doc->{status}, $doc->{id};

 # -1 means root folder
 PDF_add_portfolio_file($p, -1, $doc->{filename}, $optlist);
 }

 # Create the "datasheets" folder in the root folder
 my $folder = PDF_add_portfolio_folder($p, -1, "datasheets", "");

 # Insert documents in the "datasheets" folder along with
 # description and custom fields
 foreach $doc (@datasheet_docs) {
 $optlist = sprintf
 	"description={%s} " .
 	"fieldlist={ " .
 		"{key=status value=%s} " .
 		"{key=id value=%d prefix=PHX type=text} " .
 	"}",
 	$doc->{description}, $doc->{status}, $doc->{id};

 # Add the file to the "datasheets" folder
 PDF_add_portfolio_file($p, $folder, $doc->{filename}, $optlist);
 }

 # Create a single-page document as cover sheet
 PDF_begin_page_ext($p, 0, 0, "width=a4.width height=a4.height");

 my $font = PDF_load_font($p, "Helvetica", "winansi", "");
 if ($font == -1) {
 printf("Error: %s\n", PDF_get_errmsg($p));
 PDF_delete($p);
 exit(2);
 }

 PDF_setfont($p, $font, 24);
 PDF_fit_textline($p, "Welcome to the PDFlib Portfolio sample!", 50, 700, "");

 PDF_end_page_ext($p, "");

 # Set options for Portfolio display
 $optlist = "portfolio={initialview=detail ";

 # Add schema definition for Portfolio metadata
 $optlist .=
 "schema={ " .
 # Some predefined fields are included here to make them visible.
 "{order=1 label=Name key=_filename visible editable} " .
 "{order=2 label=Description key=_description visible} " .
 "{order=3 label=Size key=_size visible} " .
 "{order=4 label={Last edited} key=_moddate visible} " .

 # User-defined fields
 "{order=5 label=Status key=status type=text editable} " .
 "{order=6 label=ID key=id type=text editable} ";

 $optlist .= "}}";

 PDF_end_document($p, $optlist);
};

if ($@) {
 printf("$0: PDFlib Exception occurred:\n");
 printf(" $@\n");
 exit(1);
}

PDFlib-8.0.6-SunOS-sparc64-perl/bind/perl/oldstype/starter_pvf.pl

#!/usr/bin/perl
$Id: starter_pvf.pl,v 1.5 2009/09/21 18:12:28 rjs Exp $
PDFlib Virtual File system (PVF):
Create a PVF file which holds an image or PDF, and import the data from the
PVF file
#
This avoids disk access and is especially useful when the same image or PDF
is imported multiply. For examples, images which sit in a database don't
have to be written and re-read from disk, but can be passed to PDFlib
directly in memory. A similar technique can be used for loading other data
such as fonts, ICC profiles, etc.
#
Required software: PDFlib/PDFlib+PDI/PPS 7
Required data: image file

use pdflib_pl 7.0;
use strict;

#
Helper function to read the content of a file into a buffer
avoids incompatible systemcalls

sub read_file($)
{
 my ($fname) = @_;
 my $data;

 open(INPUT, "$fname") or die "couldn't open $fname $!\n";
 binmode(INPUT);
 undef $/;
 $data = <INPUT>;
 close(INPUT);

 return $data;
} # read_file

This is where the data files are. Adjust as necessary.
my $searchpath = "../data";
my $outfile = "starter_pvf.pdf";

my $buf;
my $p;
my $imagedata;

create a new PDFlib object
my $p = PDF_new();

eval {
 PDF_set_parameter($p, "SearchPath", $searchpath);

 # This means we must check return values of load_font() etc.
 PDF_set_parameter($p, "errorpolicy", "return");

 # Set an output path according to the name of the topic
 if (PDF_begin_document($p, $outfile, "") == -1) {
	printf("Error: %s\n", PDF_get_errmsg($p));
	PDF_delete($p);
	exit(2);
 }

 PDF_set_info($p, "Creator", "PDFlib starter sample");
 PDF_set_info($p, "Title", "starter_pvf");

 # We just read some image data from a file; to really benefit
 # from using PVF read the data from a Web site or a database instead

 $imagedata = read_file("../data/PDFlib-logo.tif");

 PDF_create_pvf($p, "/pvf/image", $imagedata, "");

 # Load the image from the PVF
 my $image = PDF_load_image($p, "auto", "/pvf/image", "");
 if ($image == -1) {
	printf("Error: %s\n", PDF_get_errmsg($p));
	PDF_delete($p);
	exit(2);
 }

 # Fit the image on page 1
 PDF_begin_page_ext($p, 595, 842, "");

 PDF_fit_image($p, $image, 350, 750, "");

 PDF_end_page_ext($p, "");

 # Fit the image on page 2
 PDF_begin_page_ext($p, 595, 842, "");

 PDF_fit_image($p, $image, 350, 50, "");

 PDF_end_page_ext($p, "");

 # Delete the virtual file to free the allocated memory
 PDF_delete_pvf($p, "/pvf/image");

 PDF_end_document($p, "");

};

if ($@) {
 printf("$0: PDFlib Exception occurred:\n");
 printf(" $@\n");
 exit(1);
}

PDFlib-8.0.6-SunOS-sparc64-perl/bind/perl/oldstype/starter_shaping.pl

#!/usr/bin/perl
$Id: starter_shaping.pl,v 1.1.2.1 2010/01/29 11:10:02 rjs Exp $
Starter sample for text shaping features
Demonstrate text shaping for Arabic, Hebrew, Devanagari, and Thai scripts
Right-to-left text is reordered according to the Bidi algorithm.
#
Required software: PDFlib/PDFlib+PDI/PPS 8
Required data: suitable fonts for the scripts

use pdflib_pl 8.0;
use strict;

This is where the data files are. Adjust as necessary.
use constant searchpath => "../data";
use constant outfile => "starter_shaping.pdf";

use constant {
 llx => 50.0,
 lly => 50.0,
 urx => 800.0,
 ury => 550.0
};

use constant headers =>
 ("Language", "Raw input", "Reordered and shaped output");

Key names used to make a dictionary for the description of the samples
fontname: name of the font for this script
optlist: text options
textflow: can't use Textflow for Bidi text
language: language name
text: sample text
my @sample_keys = qw(fontname optlist textflow language text);

Function to create a hash describing each sample
sub make_sample_hash {
 my $values = $_[0]; # reference to array
 my %result;
 @result{@sample_keys} = @{$values};
 return \%result;
}

Sample descriptions, organized as an array of references to hashes
my @shapingsamples = map { make_sample_hash($_) } (

 # -------------------------- Arabic --------------------------
 ["ScheherazadeRegOT", "shaping script=arab", 0, "Arabic",
 "العَرَبِ" .
 "ية"
],

 ["ScheherazadeRegOT", "shaping script=arab", 0, "Arabic",
 "مرحبا! (Hello)"
],

 ["ScheherazadeRegOT", "shaping script=arab", 0, "Arabic",
 "﻿المادة " .
 "1 يولد ج" .
 "ميع النا" .
 "س أحرارً" .
 "ا متساوي" .
 "ن في الك" .
 "رامة وال" .
 "حقوق. "
],

 ["ScheherazadeRegOT", "shaping script=arab", 0, "Arabic",
 "وقد وهبو" .
 "ا عقلاً " .
 "وضميرًا " .
 "وعليهم أ" .
 "ن يعامل " .
 "بعضهم بع" .
 "ضًا بروح" .
 " الإخاء."
],

 # -------------------------- Hebrew --------------------------
 ["SILEOT", "shaping script=hebr", 0, "Hebrew",
 "עִבְרִית"
],

 ["SILEOT", "shaping script=hebr", 0, "Hebrew",
 "סעיף א. " .
 "כל בני א" .
 "דם נולדו" .
 " בני חור" .
 "ין ושווי" .
 "ם בערכם " .
 "ובזכויות" .
 "יהם. "
],

 ["SILEOT", "shaping script=hebr", 0, "Hebrew",
 "כולם חונ" .
 "נו בתבונ" .
 "ה ובמצפו" .
 "ן, "
],

 ["SILEOT", "shaping script=hebr", 0, "Hebrew",
 "לפיכך חו" .
 "בה עליהם" .
 " לנהוג א" .
 "יש ברעהו" .
 " ברוח של" .
 " אחוה."
],

 # -------------------------- Hindi --------------------------
 ["raghu8", "shaping script=deva", 1, "Hindi",
 "हिन्दी"
],

 ["raghu8", "shaping script=deva advancedlinebreak", 1, "Hindi",
 "अनुच्छेद" .
 " १. सभी " .
 "मनुष्यों" .
 " को गौरव" .
 " और अधिक" .
 "ारों के " .
 "मामले मे" .
 "ं जन्मजा" .
 "त स्वतन्" .
 "त्रता और" .
 " समानता " .
 "प्राप्त " .
 "है । उन्" .
 "हें बुद्" .
 "घि और अन" .
 "्तरात्मा" .
 " की देन " .
 "प्राप्त " .
 "है और पर" .
 "स्पर उन्" .
 "हें भाईच" .
 "ारे के भ" .
 "ाव से बर" .
 "्ताव करन" .
 "ा चाहिए " .
 "।"
],

 # -------------------------- Sanskrit --------------------------
 ["raghu8", "shaping script=deva", 1, "Sanskrit",
 "संस्कृतम" .
 "्"
],

 ["raghu8", "shaping script=deva", 1, "Sanskrit",
 "अनुच्छेद" .
 ": 1 सर्व" .
 "े मानवा:" .
 " स्वतन्त" .
 "्रा: समु" .
 "त्पन्ना:" .
 " वर्तन्त" .
 "े अपि च," .
 " गौरवदृश" .
 "ा अधिकार" .
 "दृशा च स" .
 "माना: एव" .
 " वर्तन्त" .
 "े। एते स" .
 "र्वे चेत" .
 "ना-तर्क-" .
 "शक्तिभ्य" .
 "ां सुसम्" .
 "पन्ना: स" .
 "न्ति। अप" .
 "ि च, सर्" .
 "वेऽपि बन" .
 "्धुत्व-भ" .
 "ावनया पर" .
 "स्परं व्" .
 "यवहरन्तु" .
 "।"
],

 # -------------------------- Thai --------------------------
 ["Norasi", "shaping script=thai advancedlinebreak locale=THA", 1, "Thai",
 "ไทย"
],

 ["Norasi", "shaping script=thai advancedlinebreak", 1, "Thai",
 "ข้อ 1 มน" .
 "ุษย์ทั้ง" .
 "หลายเกิด" .
 "มามีอิสร" .
 "ะและเสมอ" .
 "ภาคกันใน" .
 "เกียรติศ" .
 "ักด[เกีย" .
 "รติศักดิ" .
 "์]และสิท" .
 "ธิ ต่างม" .
 "ีเหตุผลแ" .
 "ละมโนธรร" .
 "ม และควร" .
 "ปฏิบัติต" .
 "่อกันด้ว" .
 "ยเจตนารม" .
 "ณ์แห่งภร" .
 "าดรภาพ"
]
);

my $p = PDF_new();

eval {
 my $optlist;

 PDF_set_parameter($p, "SearchPath", searchpath);
 PDF_set_parameter($p, "textformat", "bytes");
 PDF_set_parameter($p, "charref", "true");

 # This means that formatting and other errors will raise an
 # exception. This simplifies our sample code, but is not
 # recommended for production code.
 PDF_set_parameter($p, "errorpolicy", "exception");

 # Set an output path according to the name of the topic
 if (PDF_begin_document($p, outfile, "") == -1) {
 printf("Error: %s\n", PDF_get_errmsg($p));
 PDF_delete($p);
 exit(2);
 }

 PDF_set_info($p, "Creator", "PDFlib starter sample");
 PDF_set_info($p, "Title", "starter_shaping");

 my $table = -1;

 # Create table header
 my $col = 1;
 foreach my $header (headers) {
 $optlist = sprintf
 "fittextline={fontname=Helvetica-Bold encoding=winansi fontsize=14} " .
 "colwidth=%s", $col==1 ? "10%" : "45%" ;
 $table = PDF_add_table_cell($p, $table, $col, 1, $header, $optlist);
 $col += 1;
 }

 # Create shaping samples
 my $row = 2;
 foreach my $sample (@shapingsamples) {
 $col = 1;

 # Column 1: language name
 $optlist =
 "fittextline={fontname=Helvetica encoding=unicode fontsize=12}";
 $table = PDF_add_table_cell($p, $table, $col++, $row,
 $sample->{language}, $optlist);

 # Column 2: raw text
 $optlist = sprintf
 "fontname={%s} encoding=unicode fontsize=13 " .
 "leading=150%% alignment=left",
 $sample->{fontname};
 my $tf = PDF_create_textflow($p, $sample->{text}, $optlist);
 $optlist = sprintf
 "margin=4 fittextflow={verticalalign=top} textflow=%d", $tf;
 $table = PDF_add_table_cell($p, $table, $col++, $row, "", $optlist);

 # Column 3: shaped and reordered text (Textline or Textflow)
 if ($sample->{textflow}) {
 $optlist = sprintf
 "fontname={%s} encoding=unicode fontsize=13 %s " .
 "leading=150%% alignment=left",
 $sample->{fontname}, $sample->{optlist};
 $tf = PDF_create_textflow($p, $sample->{text}, $optlist);
 $optlist = sprintf
 "margin=4 fittextflow={verticalalign=top} textflow=%d", $tf;
 $table = PDF_add_table_cell($p, $table, $col++, $row, "", $optlist);
 }
 else {
 $optlist = sprintf
 "fittextline={fontname={%s} encoding=unicode " .
 "fontsize=13 %s}",
 $sample->{fontname}, $sample->{optlist};
 $table = PDF_add_table_cell($p, $table, $col++, $row,
 $sample->{text}, $optlist);
 }

 $row += 1;
 }

 # ---------- Place the table on one or more pages ----------
 #
 # Loop until all of the table is placed; create new pages
 # as long as more table instances need to be placed.
 my $result;
 do {
 PDF_begin_page_ext($p, 0, 0, "width=a4.height height=a4.width");

 # Shade every other row; draw lines for all table cells.
 $optlist = "header=1 fill={{area=rowodd " .
 "fillcolor={gray 0.9}}} stroke={{line=other}} ";

 # Place the table instance
 $result = PDF_fit_table($p, $table, llx, lly, urx, ury, $optlist);

 if ($result eq "_error") {
 printf("Couldn't place table: %s\n", PDF_get_errmsg($p));
 PDF_delete($p);
 exit(2);
 }

 PDF_end_page_ext($p, "");
 } while ($result eq "_boxfull");

 PDF_end_document($p, "");
};

if ($@) {
 printf("$0: PDFlib Exception occurred:\n");
 printf(" $@\n");
 exit(1);
}

PDFlib-8.0.6-SunOS-sparc64-perl/bind/perl/oldstype/starter_table.pl

#!/usr/bin/perl
$Id: starter_table.pl,v 1.1 2009/11/23 14:31:31 rjs Exp $
#
Table starter:
Create table which may span multiple pages
#
required software: PDFlib/PDFlib+PDI/PPS 7
required data: image file (dummy text created within the program)

use pdflib_pl 7.0;

This is where the data files are. Adjust as necessary.
$searchpath = "../data";
$imagefile = "nesrin.jpg";
$outfilename = "starter_table.pdf";

$tf=-1; $tbl=-1;
$rowmax = 50; $colmax = 5;
$llx= 50; $lly=50; $urx=550; $ury=800;

$headertext = "Table header (centered across all columns)";

Dummy text for filling a cell with multi-line Textflow
$tf_text =
"Lorem ipsum dolor sit amet, consectetur adi­pi­sicing elit, sed do eius­mod tempor incidi­dunt ut labore et dolore magna ali­qua. Ut enim ad minim ve­niam, quis nostrud exer­citation ull­amco la­bo­ris nisi ut ali­quip ex ea commodo con­sequat. Duis aute irure dolor in repre­henderit in voluptate velit esse cillum dolore eu fugiat nulla pari­atur. Excep­teur sint occae­cat cupi­datat non proident, sunt in culpa qui officia dese­runt mollit anim id est laborum. ";

$p = PDF_new();

eval {
 # This means we must check return values of load_font() etc.
 PDF_set_parameter($p, "errorpolicy", "return");

 PDF_set_parameter($p, "SearchPath", $searchpath);

 # we use "bytes" as textformat, this allows to use unicode encoding
 PDF_set_parameter($p, "textformat", "bytes");

 if (PDF_begin_document($p, $outfilename, "") == -1) {
	die("Error: " . PDF_get_errmsg($p));
 }

 PDF_set_info($p, "Creator", "PDFlib starter sample");
 PDF_set_info($p, "Title", "starter_table");

 # -------------------- Add table cells --------------------

 # ---------- row 1: table header (spans all columns)
 $row = 1; $col = 1;
 $font = PDF_load_font($p, "Times-Bold", "unicode", "");
 if ($font == -1) {
	printf("Error: %s\n", PDF_get_errmsg($p)); exit;
 }

 $optlist = "fittextline={position=center font=" . $font . " fontsize=14} " .
 "colspan=" . $colmax;

 $tbl = PDF_add_table_cell($p, $tbl, $col, $row, $headertext, $optlist);
 if ($tbl == -1) {
	die("Error: %s\n", PDF_get_errmsg($p));
 }

 # ---------- row 2: various kinds of content
 # ----- Simple text cell
 $row++; $col=1;

 $optlist = "fittextline={font=" . $font . " fontsize=10 orientate=west}";

 $tbl = PDF_add_table_cell($p, $tbl, $col, $row, "vertical line", $optlist);
 if ($tbl == -1) {
	die("Error: %s\n", PDF_get_errmsg($p));
 }

 # ----- Colorized background
 $col++;

 $optlist = "fittextline={font=" . $font . " fontsize=10} " .
 "matchbox={fillcolor={rgb 0.9 0.5 0}}";

 $tbl = PDF_add_table_cell($p, $tbl, $col, $row, "some color", $optlist);
 if ($tbl == -1) {
	die("Error: %s\n", PDF_get_errmsg($p));
 }

 # ----- Multi-line text with Textflow
 $col++;
 $font = PDF_load_font($p, "Times-Roman", "unicode", "");
 if ($font == -1) {
	printf("Error: %s\n", PDF_get_errmsg($p)); exit;
 }

 $optlist = "charref fontname=Times-Roman encoding=unicode fontsize=8 ";

 $tf = PDF_add_textflow($p, $tf, $tf_text, $optlist);
 if ($tf == -1) {
	die("Error: %s\n", PDF_get_errmsg($p));
 }

 $optlist = "margin=2 textflow=" . $tf;

 $tbl = PDF_add_table_cell($p, $tbl, $col, $row, "", $optlist);
 if ($tbl == -1) {
	die("Error: %s\n", PDF_get_errmsg($p));
 }

 # ----- Rotated $image
 $col++;

 $image = PDF_load_image($p, "auto", $imagefile, "");
 if ($image == -1) {
	die("Couldn't load $image: " . PDF_get_errmsg($p));
 }

 $optlist = "image=" . $image . " fitimage={orientate=west}";

 $tbl = PDF_add_table_cell($p, $tbl, $col, $row, "", $optlist);
 if ($tbl == -1) {
	die("Error: %s\n", PDF_get_errmsg($p));
 }

 # ----- Diagonal stamp
 $col++;

 $optlist = "fittextline={font=" . $font . " fontsize=10 stamp=ll2ur}";

 $tbl = PDF_add_table_cell($p, $tbl, $col, $row, "entry void", $optlist);
 if ($tbl == -1) {
	die("Error: %s\n", PDF_get_errmsg($p));
 }

 # ---------- Fill $row 3 and above with their numbers
 for ($row++; $row <= $rowmax; $row++) {
	for ($col = 1; $col <= $colmax; $col++) {
	 $num = "Col " . $col . "/Row " . $row;
	 $optlist = "colwidth=20% fittextline={font=" . $font . " fontsize=10}";
	 $tbl = PDF_add_table_cell($p, $tbl, $col, $row, $num, $optlist);
	 if ($tbl == -1) {
	 die("Error: %s\n", PDF_get_errmsg($p));
	}
	}
 }

 # ---------- Place the table on one or more pages ----------

 #
 # Loop until all of the table is placed; create new pages
 # as long as more table instances need to be placed.

 do {
	PDF_begin_page_ext($p, 0, 0, "width=a4.width height=a4.height");

	# Shade every other $row; draw lines for all table cells.
	# Add "showcells showborder" to visualize cell borders

	$optlist = "header=1 fill={{area=rowodd fillcolor={gray 0.9}}} " .
	"stroke={{line=other}} ";

	# Place the table instance
	$result = PDF_fit_table($p, $tbl, $llx, $lly, $urx, $ury, $optlist);
	if ($result eq "_error") {
	 die("Couldn't place table:" . PDF_get_errmsg($p));
	}

	PDF_end_page_ext($p, "");

 } while ($result eq "_boxfull");

 # Check the $result; "_stop" means all is ok.
 if ($result ne "_stop") {
	if ($result eq "_error") {
	 die("Error when placing table: " . PDF_get_errmsg($p));
	} else {
	 # Any other return value is a user exit caused by
	 # the "return" option; this requires dedicated code to
	 # deal with.
	 die("User return found in Textflow");
	}
 }

 # This will also delete Textflow handles used in the table
 PDF_delete_table($p, $tbl, "");

 PDF_end_document($p, "");

 PDF_delete($p);
};

if ($@) {
 printf("$0: PDFlib Exception occurred:\n");
 printf(" $@\n");
 exit(1);
}

PDFlib-8.0.6-SunOS-sparc64-perl/bind/perl/oldstype/starter_tagged.pl

#!/usr/bin/perl
$Id: starter_tagged.pl,v 1.1 2009/11/23 14:31:31 rjs Exp $
#
Tagged PDF starter:
Create document with structure information for reflow and accessibility
#
required software: PDFlib/PDFlib+PDI/PPS 7
required data: none (dummy text created in program)

use pdflib_pl 7.0;

This is where the data files are. Adjust as necessary.
$searchpath = "../data";
$outfilename = "starter_tagged.pdf";

$p = PDF_new();

eval {
 # This means we must check return values of load_font() etc.
 PDF_set_parameter($p, "errorpolicy", "return");

 PDF_set_parameter($p, "SearchPath", $searchpath);

 if (PDF_begin_document($p, $outfilename, "tagged=true lang=en") == -1) {
	die("Error: " . PDF_get_errmsg($p));
 }

 PDF_set_info($p, "Creator", "PDFlib starter sample");
 PDF_set_info($p, "Title", "starter_tagged");

 # Automatically create spaces between chunks of text
 PDF_set_parameter($p, "autospace", "true");

 # open the first structure element as a child of the document
 # structure root (=0)

 my $id = PDF_begin_item($p, "Document",
	 "Title = {Starter sample for Tagged PDF}");

 PDF_begin_page_ext($p, 0, 0,
	 "width=a4.width height=a4.height taborder=structure");

 PDF_create_bookmark($p, "Section 1", "");

 $font = PDF_load_font($p, "Helvetica", "winansi", "");
 if ($font == -1) {
	die("Error: %s\n", PDF_get_errmsg($p));
 }
 PDF_setfont($p, $font, 24.0);

 my $id2 = PDF_begin_item($p, "H1", "Title = {Introduction}");
 PDF_show_xy($p, "1 Introduction", 50, 700);
 PDF_end_item($p, $id2);

 $id2 = PDF_egin_item($p, "P", "Title = {Simple paragraph}");
 PDF_setfont($p, $font, 12.0);
 PDF_continue_text($p, "This PDF has a very simple document structure ");
 PDF_continue_text($p, "which demonstrates basic Tagged PDF features ");
 PDF_continue_text($p, "for accessibility.");

 PDF_end_item($p, $id2);

 # The page number is created as an artifact; it will be
 # ignored when reflowing the page in Acrobat.

 $id_artifact = PDF_begin_item($p, "Artifact", "");
 PDF_show_xy($p, "Page 1", 250, 100);
 PDF_end_item($p, $id_artifact);

 PDF_end_page_ext($p, "");

 PDF_end_item($p, $id);
 PDF_end_document($p, "");

 PDF_delete($p);
};

if ($@) {
 printf("$0: PDFlib Exception occurred:\n");
 printf(" $@\n");
 exit(1);
}

PDFlib-8.0.6-SunOS-sparc64-perl/bind/perl/oldstype/starter_textflow.pl

#!/usr/bin/perl
$Id: starter_textflow.pl,v 1.1 2009/11/23 14:31:31 rjs Exp $
#
Textflow starter:
Create multi-column text output which may span multiple pages
#
required software: PDFlib/PDFlib+PDI/PPS 7 or above
required data: none

use pdflib_pl 7.0;

$outfilename = "starter_textflow.pdf";
$tf = -1;
$llx1= 50; $lly1=50; $urx1=250; $ury1=800;
$llx2=300; $lly2=50; $urx2=500; $ury2=800;

Repeat the dummy text to produce more contents
$count = 50;

$optlist1 = "fontname=Helvetica fontsize=10.5 encoding=unicode " .
 "fillcolor={gray 0} alignment=justify";
$optlist2 = "fontname=Helvetica-Bold fontsize=14 encoding=unicode " .
 "fillcolor={rgb 1 0 0} charref";

Dummy text for filling the columns. Soft hyphens are marked with
the character reference "­" (character references are
enabled by the charref option).

$text=
"Lorem ipsum dolor sit amet, consectetur adi­pi­sicing elit, sed do eius­mod tempor incidi­dunt ut labore et dolore magna ali­qua. Ut enim ad minim ve­niam, quis nostrud exer­citation ull­amco la­bo­ris nisi ut ali­quip ex ea commodo con­sequat. Duis aute irure dolor in repre­henderit in voluptate velit esse cillum dolore eu fugiat nulla pari­atur. Excep­teur sint occae­cat cupi­datat non proident, sunt in culpa qui officia dese­runt mollit anim id est laborum. ";

$p = PDF_new();

eval {
 # This means we must check return values of load_font() etc.
 PDF_set_parameter($p, "errorpolicy", "return");

 # we use "bytes" as textformat, this allows to use unicode encoding
 PDF_set_parameter($p, "textformat", "bytes");

 if (PDF_begin_document($p, $outfilename, "") == -1) {
	die("Error: " . PDF_get_errmsg($p));
 }

 PDF_set_info($p, "Creator", "PDFlib starter sample");
 PDF_set_info($p, "Title", "starter_textflow");

 # Create some amount of dummy text and feed it to a Textflow
 # object with alternating options.

 for ($i=1; $i<=$count; $i++) {
	$num = $i . " ";

	$tf = PDF_add_textflow($p, $tf, $num, $optlist2);
	if ($tf == -1) {
	 die("Error: " . PDF_get_errmsg($p));
	}

	$tf = PDF_add_textflow($p, $tf, $text, $optlist1);
	if ($tf == -1) {
	 die("Error: " . PDF_get_errmsg($p));
	}
 }

 # Loop until all of the text is placed; create new pages
 # as long as more text needs to be placed. Two columns will
 # be created on all pages.

 do {
	# Add "showborder to visualize the fitbox borders
	$optlist = "verticalalign=justify linespreadlimit=120% ";

	PDF_begin_page_ext($p, 0, 0, "width=a4.width height=a4.height");

	# Fill the first column
	$result = PDF_fit_textflow($p, $tf, $llx1, $lly1, $urx1, $ury1, $optlist);

	# Fill the second column if we have more text*/
	if ($result ne "_stop") {
	 $result = PDF_fit_textflow($p, $tf,
			$llx2, $lly2, $urx2, $ury2, $optlist);
	}

	PDF_end_page_ext($p, "");

	# "_boxfull" means we must continue because there is more text;
	# "_nextpage" is interpreted as "start new column"

 } while ($result eq "_boxfull" || $result eq "_nextpage");

 # Check for errors
 if ($result ne "_stop") {
	# "_boxempty" happens if the box is very small and doesn't
	# hold any text at all.

	if ($result eq "_boxempty") {
	 die("Error: Textflow box too small");
	} else {
	 # Any other return value is a user exit caused by
	 # the "return" option; this requires dedicated code to
	 # deal with.
	 die("User return '" . $result . "' found in Textflow");
	}
 }

 PDF_delete_textflow($p, $tf);

 PDF_end_document($p, "");

 PDF_delete($p);
};

if ($@) {
 printf("$0: PDFlib Exception occurred:\n");
 printf(" $@\n");
 exit(1);
}

PDFlib-8.0.6-SunOS-sparc64-perl/bind/perl/oldstype/starter_textline.pl

#!/usr/bin/perl
$Id: starter_textline.pl,v 1.4 2009/09/11 10:32:16 stm Exp $
Starter text line:
Demonstrate various options for placing a text line
#
Place a text line with different font sizes.
Output overlined, stroke out, and underlined text.
Output text and define character spacing, work spacing, or horizontal
scaling.
Output text with a defined fill color. Output text including its outlines
with a defined stroke color.
Place text into a box at various positions. Place text completely into a box
with automatic scaling if required.
#
Required software: PDFlib/PDFlib+PDI/PPS 7
Required data: none

use pdflib_pl 7.0;
use strict;

This is where the data files are. Adjust as necessary.
my $searchpath = "../data";
my $outfile = "starter_textline.pdf";

create a new PDFlib object
my $p = PDF_new();

my $buf;
my $optlist;
my $font;
my $x = 10;
my $xt = 280;
my $y = 800;
my $yoff = 50;
my $textline = "Giant Wing Paper Plane";

eval {
 PDF_set_parameter($p, "SearchPath", $searchpath);

 # This means we must check return values of load_font() etc.
 PDF_set_parameter($p, "errorpolicy", "return");

 # Set an output path according to the name of the topic
 if (PDF_begin_document($p, $outfile, "") == -1) {
	printf("Error: %s\n", PDF_get_errmsg($p));
	PDF_delete($p);
	exit(2);
 }

 PDF_set_info($p, "Creator", "PDFlib starter sample");
 PDF_set_info($p, "Title", "starter_text_line");

 # Start Page
 PDF_begin_page_ext($p, 0, 0, "width=a4.width height=a4.height");

 $font = PDF_load_font($p, "Helvetica", "winansi", "");

 if ($font == -1) {
	printf("Error: %s\n", PDF_get_errmsg($p));
	PDF_delete($p);
	exit(2);
 }

 # Set the font with a font size of 14
 PDF_setfont($p, $font, 14);

 # Place the text line without any options applied
 PDF_fit_textline($p, $textline, $x, $y, "");

 # Output descriptive text
 PDF_fit_textline($p, "fit_textline() without any options", $xt, $y,
	"fontsize=12");

 # Place the text with a different font size
 $optlist = "fontsize=22";

 PDF_fit_textline($p, $textline, $x, $y-=$yoff, $optlist); # sample text
 PDF_fit_textline($p, $optlist, $xt, $y, "fontsize=12"); # description

 # Place stroke out text
 $optlist = "strikeout";

 PDF_fit_textline($p, $textline, $x, $y-=$yoff, $optlist); # sample text
 PDF_fit_textline($p, $optlist, $xt, $y, "fontsize=12"); # description

 # Place underlined text
 $optlist = "underline underlinewidth=7% underlineposition=-20%";

 PDF_fit_textline($p, $textline, $x, $y-=$yoff, $optlist); # sample text
 PDF_fit_textline($p, $optlist, $xt, $y, "fontsize=12"); # description

 # Place overlined text
 $optlist = "overline";

 PDF_fit_textline($p, $textline, $x, $y-=$yoff, $optlist); # sample text
 PDF_fit_textline($p, $optlist, $xt, $y, "fontsize=12"); # description

 # Place the text with a horizontal scaling of 150%
 $optlist = "horizscaling=150%";

 PDF_fit_textline($p, $textline, $x, $y-=$yoff, $optlist); # sample text
 PDF_fit_textline($p, $optlist, $xt, $y, "fontsize=12"); # description

 # Place the text with a character spacing of 30% of the font size
 $optlist = "charspacing=30%";

 PDF_fit_textline($p, $textline, $x, $y-=$yoff, $optlist); # sample text
 PDF_fit_textline($p, $optlist, $xt, $y, "fontsize=12"); # description

 # Place the text with a word spacing of 50% of the font size
 $optlist = "wordspacing=50%";

 PDF_fit_textline($p, $textline, $x, $y-=$yoff, $optlist); # sample text
 PDF_fit_textline($p, $optlist, $xt, $y, "fontsize=12"); # description

 # Place the text with a different fill color
 $optlist = "fillcolor={rgb 0.5 0.2 0.5}";

 PDF_fit_textline($p, $textline, $x, $y-=$yoff, $optlist);
 PDF_fit_textline($p, $optlist, $xt, $y, "fontsize=12");

 # Place the text including its outlines using a text rendering mode of
 # 2 for "filling and stroking text" and different fill and stroke
 # colors

 $optlist =
	"fontsize=22 fillcolor={rgb 0.6 0.3 0.6} strokecolor={gray 0} " .
	"strokewidth=0.4 textrendering=2";

 PDF_fit_textline($p, $textline, $x, $y-=$yoff, $optlist);

 # Output descriptive text
 PDF_fit_textline($p, "fillcolor={rgb 0.6 0.3 0.6} strokecolor={gray 0} ",
	$xt, $y+10, "fontsize=12");
 PDF_fit_textline($p, "strokewidth=0.4 textrendering=2 fontsize=22",
	$xt, $y-5, "fontsize=12");

 # Place the text with its outlines using a text rendering mode of
 # 1 for "stroking text" and a stroke color of black

 $optlist =
	"fontsize=22 strokecolor={gray 0} strokewidth=0.4 textrendering=1";

 PDF_fit_textline($p, $textline, $x, $y-=$yoff, $optlist);

 # Output descriptive text
 PDF_fit_textline($p, "strokecolor={gray 0} strokewidth=0.4", $xt, $y+10,
	"fontsize=12");
 PDF_fit_textline($p, "textrendering=1 fontsize=22", $xt, $y-=5,
	"fontsize=12");

 # Place the text in a box with default positioning and fitting
 $optlist = "boxsize={200 20} showborder";

 PDF_fit_textline($p, $textline, $x, $y-=$yoff, $optlist); # sample text
 PDF_fit_textline($p, $optlist, $xt, $y+3, "fontsize=12"); # description

 # Place the text in a box on the top right
 $optlist = "boxsize={200 20} position={top right} showborder";

 PDF_fit_textline($p, $textline, $x, $y-=$yoff, $optlist); # sample text
 PDF_fit_textline($p, $optlist, $xt, $y+3, "fontsize=12"); # description

 # Use "fitmethod=clip" to place the text in a box not large enough to
 # show the complete text. The text will be clipped.

 $optlist = "boxsize={130 20} fitmethod=clip showborder";

 PDF_fit_textline($p, $textline, $x, $y-=$yoff, $optlist); # sample text
 PDF_fit_textline($p, $optlist, $xt, $y+3, "fontsize=12"); # description

 # Fit the text into the box automatically with "fitmethod=auto".
 # In this case, if the text doesn't fit into the box a distortion
 # factor is calculated which makes the text fit into the box. If this
 # factor is larger than the "shrinklimit" option the text will
 # be distorted by that factor. Otherwise, the font size will be
 # be decreased until until the text fits into the box.

		
 # Use "fitmethod=auto" to place the text in a box not large enough to
 # show the complete text. The text will be distorted.

 $optlist = "boxsize={130 20} fitmethod=auto showborder";

 PDF_fit_textline($p, $textline, $x, $y-=$yoff, $optlist); # sample text
 PDF_fit_textline($p, $optlist, $xt, $y+3, "fontsize=12"); # description

 # Use "fitmethod=auto" to place the text in a box too small to show the
 # complete text. The font size will be reduced until the text fits into
 # the box.

 $optlist = "boxsize={100 20} fitmethod=auto showborder";

 PDF_fit_textline($p, $textline, $x, $y-=$yoff, $optlist); # sample text
 PDF_fit_textline($p, $optlist, $xt, $y+3, "fontsize=12"); # description

 PDF_end_page_ext($p, "");

 PDF_end_document($p, "");

};

if ($@) {
 printf("$0: PDFlib Exception occurred:\n");
 printf(" $@\n");
 exit(1);
}

PDFlib-8.0.6-SunOS-sparc64-perl/bind/perl/oldstype/starter_type3font.pl

#!/usr/bin/perl
$Id: starter_type3font.pl,v 1.5 2009/11/18 14:28:24 rjs Exp $
Type 3 font starter:
Create a simple Type 3 font from vector data
#
Define a type 3 font with the glyphs "l" and "space" and output text with
that font. In addition the glyph ".notdef" is defined which any undefined
character will be mapped to.
#
Required software: PDFlib/PDFlib+PDI/PPS 7
Required data: none

use pdflib_pl 7.0;
use strict;

This is where the data files are. Adjust as necessary.
my $searchpath = "../data";
my $outfile = "starter_type3font.pdf";

my $buf;
my $font;
my ($x, $y);
create a new PDFlib object
my $p = PDF_new();

eval {
 PDF_set_parameter($p, "SearchPath", $searchpath);

 # This means we must check return values of load_font() etc.
 PDF_set_parameter($p, "errorpolicy", "return");

 if (PDF_begin_document($p, $outfile, "") == -1) {
	printf("Error: %s\n", PDF_get_errmsg($p));
	PDF_delete($p);
	exit(2);
 }

 PDF_set_info($p, "Creator", "PDFlib starter sample");
 PDF_set_info($p, "Title", "starter_type3font");

 # Create the font "SimpleFont" containing the glyph "l",
 # the glyph "space" for spaces and the glyph ".notdef" for any
 # undefined character

 PDF_begin_font($p, "SimpleFont",
		0.001, 0.0, 0.0, 0.001, 0.0, 0.0, "");
 PDF_begin_glyph($p, ".notdef", 266, 0, 0, 0, 0);
 PDF_end_glyph($p);
 PDF_begin_glyph($p, "space", 266, 0, 0, 0, 0);
 PDF_end_glyph($p);
 PDF_begin_glyph($p, "l", 266, 0, 0, 266, 570);
 PDF_setlinewidth($p, 20);
 PDF_setdash($p, 0, 0);
 $x = 197;
 $y = 10;
 PDF_moveto($p, $x, $y);
 $y += 530;
 PDF_lineto($p, $x, $y);
 $x -= 64;
 PDF_lineto($p, $x, $y);
 $y -= 530;
 PDF_moveto($p, $x, $y);
 $x += 128;
 PDF_lineto($p, $x, $y);

 PDF_stroke($p);
 PDF_end_glyph($p);

 PDF_end_font($p);

 # Start page
 PDF_begin_page_ext($p, 0, 0, "width=300 height=200");

 # Load the new "SimpleFont" font
 $font = PDF_load_font($p, "SimpleFont", "winansi", "");

 if ($font == -1) {
	printf("Error: %s\n", PDF_get_errmsg($p));
	PDF_delete($p);
	exit(2);
 }

 # Output the characters "l" and "space" of the "SimpleFont" font.
 # The character "x" is undefined and will be mapped to ".notdef"

 $buf = " font=" . $font . " fontsize=40";
 PDF_fit_textline($p, "lll lllxlll", 100, 100, $buf);

 PDF_end_page_ext($p, "");

 PDF_end_document($p, "");
};

if ($@) {
 printf("$0: PDFlib Exception occurred:\n");
 printf(" $@\n");
 exit(1);
}

PDFlib-8.0.6-SunOS-sparc64-perl/bind/perl/oldstype/starter_webform.pl

#!/usr/bin/perl
$Id: starter_webform.pl,v 1.5 2009/09/11 10:32:16 stm Exp $
#
Webform starter:
create a linearized PDF (for fast delivery over the Web, also known
as "fast Web view") which is encrypted and contains some form fields.
A few lines of JavaScript are inserted as "page open" action to
automatically populate the date field with the current date.
#
required software: PDFlib/PDFlib+PDI/PPS 7
required data: none

use pdflib_pl 7.0;

$outfilename = "starter_webform.pdf";

$llx=150; $lly=550; $urx=350; $ury=575;

JavaScript for automatically filling the date into a form field
$js = "var d = util.printd(\"mm/dd/yyyy\", new Date());" .
 "var date = this.getField(\"date\");" .
 "date.value = d;";

$p = PDF_new();

eval {
 # This means we must check return values of load_font() etc.
 PDF_set_parameter($p, "errorpolicy", "return");

 # Prevent changes with a master password
 $optlist = "linearize masterpassword=pdflib permissions={nomodify}";

 if (PDF_begin_document($p, $outfilename, $optlist) == -1) {
	die("Error: " . PDF_get_errmsg($p));
 }

 PDF_set_info($p, "Creator", "PDFlib starter sample");
 PDF_set_info($p, "Title", "starter_webform");

 $optlist = "script={" . $js . "}";
 $action = PDF_create_action($p, "JavaScript", $optlist);

 $optlist = "action={open=" . $action . "}";
 PDF_begin_page_ext($p, 595, 842, $optlist);

 $font = PDF_load_font($p, "Helvetica", "winansi", "");
 if ($font == -1) {
	die("Error: %s\n", PDF_get_errmsg($p));
 }
 PDF_setfont($p, $font, 24);

 PDF_fit_textline($p, "Date: ", 125, $lly+5, "position={right bottom}");

 # The tooltip will be used as rollover text for the field
 $optlist =
	"tooltip={Date (will be filled automatically)} " .
	"bordercolor={gray 0} font=" . $font;
 PDF_create_field($p, $llx, $lly, $urx, $ury, "date", "textfield", $optlist);

 $lly-=100; $ury-=100;
 PDF_fit_textline($p, "Name: ", 125, $lly+5, "position={right bottom}");

 $optlist = "tooltip={Enter your name here} " .
	"bordercolor={gray 0} font=" . $font;
 PDF_create_field($p, $llx, $lly, $urx, $ury, "name", "textfield", $optlist);

 PDF_end_page_ext($p, "");

 PDF_end_document($p, "");

 PDF_delete($p);
};

if ($@) {
 printf("$0: PDFlib Exception occurred:\n");
 printf(" $@\n");
 exit(1);
}

PDFlib-8.0.6-SunOS-sparc64-perl/bind/perl/perl510/pdflib_pl.so

