z-PDFlib GmbH

PDFlib, PDFlib+PDI, PPS

A library for generating PDF on the fly
PDFlib 9.0.1

API Reference

For use with C, C++, Cobol, COM, Java, .NET, Objective-C,
Perl, PHP, Python, REALbasic/Xojo, RPG, Ruby

Copyright © 1997-2013 PDFlib GmbH and Thomas Merz. All rights reserved.
PDFlib users are granted permission to reproduce printed or digital copies of this manual for internal use.

PDFlib GmbH

Franziska-Bilek-Weg 9, 80339 Miinchen, Germany
www.pdflib.com

phone +49 + 89 « 452 33 84-0

fax +49 « 89 + 45233 84-99

If you have questions check the PDFlib mailing list and archive at tech.groups.yahoo.com/group/pdflib

Licensing contact: sales@pdflib.com
Support for commercial PDFlib licensees: support@pdflib.com (please include your license number)

This publication and the information herein is furnished as is, is subject to change without notice, and
should not be construed as a commitment by PDFlib GmbH. PDFlib GmbH assumes no responsibility or lia-
bility for any errors or inaccuracies, makes no warranty of any kind (express, implied or statutory) with re-
spect to this publication, and expressly disclaims any and all warranties of merchantability, fitness for par-
ticular purposes and noninfringement of third party rights.

PDFlib and the PDFlib logo are registered trademarks of PDFlib GmbH. PDFlib licensees are granted the
right to use the PDFlib name and logo in their product documentation. However, this is not required.

Adobe, Acrobat, PostScript, and XMP are trademarks of Adobe Systems Inc. AlX, IBM, 0S/390, WebSphere,
iSeries, and zSeries are trademarks of International Business Machines Corporation. ActiveX, Microsoft,
OpenType, and Windows are trademarks of Microsoft Corporation. Apple, Macintosh and TrueType are
trademarks of Apple Computer, Inc. Unicode and the Unicode logo are trademarks of Unicode, Inc. Unix is a
trademark of The Open Group. Java and Solaris are trademarks of Sun Microsystems, Inc. HKS is a regis-
tered trademark of the HKS brand association: Hostmann-Steinberg, K+E Printing Inks, Schmincke. Other
company product and service names may be trademarks or service marks of others.

PANTONE® colors displayed in the software application or in the user documentation may not match
PANTONE-identified standards. Consult current PANTONE Color Publications for accurate color. PANTONE®
and other Pantone, Inc. trademarks are the property of Pantone, Inc. © Pantone, Inc., 2003.

Pantone, Inc. is the copyright owner of color data and/or software which are licensed to PDFlib GmbH to
distribute for use only in combination with PDFlib Software. PANTONE Color Data and/or Software shall
not be copied onto another disk or into memory unless as part of the execution of PDFlib Software.

PDFlib contains modified parts of the following third-party software:

ICClib, Copyright © 1997-2002 Graeme W. Gill

GIF image decoder, Copyright © 1990-1994 David Koblas

PNG image reference library (libpng), Copyright © 1998-2012 Glenn Randers-Pehrson

Zlib compression library, Copyright © 1995-2012 Jean-loup Gailly and Mark Adler

TIFFlib image library, Copyright © 1988-1997 Sam Leffler, Copyright © 1991-1997 Silicon Graphics, Inc.
Cryptographic software written by Eric Young, Copyright © 1995-1998 Eric Young (eay@cryptsoft.com)
Independent JPEG Group’s JPEG software, Copyright © 1991-1998, Thomas G. Lane

Cryptographic software, Copyright © 1998-2002 The OpenSSL Project (www.openssl.org)

Expat XML parser, Copyright © 1998, 1999, 2000 Thai Open Source Software Center Ltd

ICU International Components for Unicode, Copyright © 1995-2012 International Business Machines Corpo-
ration and others

Reference sSRGB ICC color profile data, Copyright (c) 1998 Hewlett-Packard Company

PDFlib contains the RSA Security, Inc. MD5 message digest algorithm.

http://www.pdflib.com
http://tech.groups.yahoo.com/group/pdflib
mailto:sales@pdflib.com
mailto:support@pdflib.com

11

1.2

1.3

2.1
2.2
23
2.4

2.5
2.6

3.1
3.2
3.3
3-4

41
4.2
43
4.4
45

5.1
5.2
53

6.1

Contents

Programming Concepts ;

Option Lists 7

111 Syntax 7

112 Simple Data Types 10

113 Fontsize and Action Data Types 12
114 Color Data Type 13

11.5 Geometric Data Types 15

Function Scopes 17

Logging 18

General Functions 2z

Exception Handling 21

Unicode Conversion 23

Global Options 25

Creating and Deleting PDFlib Objects 32
PDFlib Virtual File System (PVF) 34

PDF Object Creation API (POCA) 37

Document and Page Functions 4
Document Functions 41

Fetching PDF Documents from Memory 51

Page Functions 52

Layers 57

Font and Text Functions 6;
Font Handling 63

Text Filter and Appearance Options 75
Simple Text Output 79

User-defined (Type 3) Fonts 83
User-defined 8-Bit Encodings 86

Text and Table Formatting s;

Single-Line Text with Textlines 87
Multi-Line Text with Textflows 93

Table Formatting 110

Object Fitting and Matchboxes 1

Object Fitting 121

Contents

3

6.2 Matchboxes 129

7 Graphics Functions 13;

7.1 Graphics Appearance Options 133

7.2 Graphics State 136

7.3 Coordinate System Transformations 140
7-4 Path Construction 143

7.5 Painting and Clipping 147

7.6 Path Objects 149

8 Color Functions s

8.1 Setting Color 155
8.2 ICC Profiles 158
8.3 Patterns and Shadings 160

9 Image, SVG Graphics and Template Functions 165

9.1 Images 165

9.2 SVG Graphics 173

9.3 Templates 179

9.4 Common XObject Options 181

10 PDF Import (PDI) and pCOS Functions :s;

10.1 Document Functions 187
10.2 Page Functions 191
10.3 Other PDI Processing 197
10.4 pCOS Functions 199

11 Block Filling Functions (PPS) :o3

1.1 Rectangle Options for Block Filling Functions 203
1.2 Textline and Textflow Blocks 204

1.3 Image Blocks 206

1.4 PDF Blocks 207

1.5 Graphics Blocks 208

12 Interactive Features 209

121 Bookmarks 209
12.2 Annotations 217
12.3 Form Fields 219
12.4 Actions 226

12.5 Named Destinations 237

4 Contents

12.6 PDF Packages and Portfolios 233

12.7 Geospatial Features 238

13 Multimedia Features 24

13.1 3D Artwork 247
13.2 Asset and Rich Media Features (Flash) 247

14 Document Interchange :ss

14.1 Document Information Fields 255
14.2 XMP Metadata 257

14.3 Tagged PDF 258

14.4 Marked Content 264

14.5 Document Part Hierarchy 266

A List of all APl Functions 269
B List of all Options and Keywords 7
C Revision History 2s;

Index 23¢9

Contents 5

1

1.1

Bindings

Note

Programming Concepts

Option Lists

Option lists are a powerful yet easy method for controlling API function calls. Instead of
requiring a multitude of function parameters, many API methods support option lists,
or optlists for short. These are strings which can contain an arbitrary number of options.
Option lists support various data types and composite data like lists. In most language
bindings optlists can easily be constructed by concatenating the required keywords and
values.

Clanguage binding: you may want to use the sprintf() function for constructing optlists.

NET language binding: C# programmers should keep in mind that the AppendFormat()
StringBuilder method uses the { and } braces to represent format items which will be re-
placed by the string representation of arguments. On the other hand, the Append()
method does not impose any special meaning on the brace characters. Since the option
list syntax makes use of the brace characters, care must be taken in selecting the
AppendFormat() or Append() method appropriately.

Syntax

Formal option list syntax definition. Option lists must be constructed according to fol-
lowing rules:

» All elements (keys and values) in an option list must be separated by one or more of
the following separator characters: space, tab, carriage return, newline, equal sign '=’.

» An outermost pair of enclosing braces is not part of the element. The sequence {}
designates an empty element.

» Separators within the outermost pair of braces no longer split elements, but are part
of the element. Therefore, an element which contains separators must be enclosed
with braces.

» If an element contains brace characters these must be protected with a preceding
backslash character.

» If an element contains a sequence of one or more backslash characters in front of a
brace, each backslash in the sequence must be protected with another backslash
character.

» Option lists must not contain binary zero values.

An option may have a list value according to its documentation in this PDFlib Refer-
ence. List values contain one or more elements (which may themselves be lists). They
are separated according to the rules above, with the only difference that the equal sign
isnolonger treated as a separator.

Option names (i.e. the key) never contain hyphen characters. Keep this in mind since the tables
with option descriptions may sometimes contain long option names which are hyphenated.
The hyphen must be omitted when supplying the option in an option list.

Simple option lists. In many cases option lists will contain one or more key/value
pairs. Keys and values, as well as multiple key/value pairs must be separated by one or

1.1 Option Lists

7

more whitespace characters (space, tab, carriage return, newline). Alternatively, keys
can be separated from values by an equal sign '=":

key=value

key = value

key value

keyl = valuel key2 = value2

To increase readability we recommend to use equal signs between key and value and
whitespace between adjacent key/value pairs.

Since option lists will be evaluated from left to right an option can be supplied mul-
tiply within the same list. In this case the last occurrence will overwrite earlier ones. In
the following example the first option assignment will be overridden by the second,
and key will have the value valuez after processing the option list:

key=valuel key=value2
List values. Lists contain one or more separated values, which may be simple values or

list values in turn. Lists are bracketed with { and } braces, and the values in the list must
be separated by whitespace characters. Examples:

dasharray={11 22 33} (1ist containing three numbers)
position={ center bottom } (1ist containing two keywords)

Alist may also contain nested lists. In this case the lists must also be separated from
each other by whitespace. While a separator must be inserted between adjacent } and {
characters, it can be omitted between braces of the same kind:

polylinelist={{10 20 30 40} {50 60 70 80}} (list containing two lists)

If the list contains exactly one list the braces for the nested list must not be omitted:
polylinelist={{10 20 30 40}} (1ist containing one nested list)

Nested option lists and list values. Some options accept the type option list or list of
option lists. Options of type option list contain one or more subordinate options. Options
of type list of option lists contain one or more nested option lists. When dealing with
nested option lists it is important to specify the proper number of enclosing braces.
Several examples are listed below.

The value of the option metadata is an option list which itself contains a single op-
tion filename:

metadata={filename=info.xmp}

The value of the option fill is a list of option lists containing a single option list:

fill={{ area=table fillcolor={rgb 1 0 0} }}

The value of the option fill is a list of option lists containing two option lists:

fill={{ area=rowodd fillcolor={rgb 0 1 0} } { area=roweven fillcolor={rgb 1 0 0} }}

List containing one option list with a value that includes spaces:

attachments={{filename={foo bar.xml} }}

8 Chapter1: Programming Concepts

List containing three strings:

itemnamelist = { {Isaac Newton} {James Clark Maxwell} {Albert Einstein} }

List containing two keywords:

position={left bottom}

List containing different types (float and keyword):

position={10 bottom}

List containing one rectangle:

boxes={{10 20 30 40}}

List containing two polylines with percentages:
polygons = {{10 20 40 60 90 120}} {12 87 34 98 34% 67% 34% 7%}}
Common traps and pitfalls. This paragraph lists some common errors regarding op-

tion list syntax.
Braces are not separators; the following is wrong:

key1 {valuei}key2 {value2} WRONG!
This will trigger the error message Unknown option 'value2'. Similarly, the following are
wrong since the separators are missing:

key{value} WRONG!
key={{value1i}{value2}} WRONG!

Braces must be balanced; the following is wrong (see below for unquoted string syntax):

key={open brace {} WRONG!

This will trigger the error message Braces aren't balanced in option list 'key={open brace {}"

A single brace as part of a string must be preceded by an additional backslash character:

key={closing brace \} and open brace \{} CORRECT!

Abackslash at the end of a string value must be preceded by another backslash if it is
followed by a closing brace character:

key={\value\} WRONG!
key={\value\\} CORRECT!

Unquoted string values in option lists. In the following situations conflicts between
the characters in an option value and optlist syntax characters may arise:
» Passwords may contain unbalanced braces, backslashes and other special characters
» Japanese SJIS filenames in option lists (reasonable only in non-Unicode-capable lan-
guage bindings)
» Supplying JavaScript code in options is problematic due to the use of { and } braces

1.1 Option Lists

.9

1.1.2

In order to provide a simple mechanism for supplying arbitrary text or binary data
which does not interfere with option list syntax elements, unquoted option values can
be supplied along with a length specifier in the following syntax variants:

key[n]=value
key[n]={value}

The decimal number n represents the following:
» in Unicode-capable language bindings: the number of UTF-16 code units
» in non-Unicode aware language bindings: the number of bytes comprising the string

The braces around the string value are optional, but strongly recommended. They are
required for strings starting with a space or other separator character. Braces, separators
and backslashes within the string value are taken literally without any special interpre-
tation.

Example for specifying a 7-character password containing space and brace charac-
ters. The whole string is surrounded by braces which are not part of the option value:

password[7]={ ab}c d}
Note that if an option value in a nested option list is provided with a length count, the
enclosing option list must also supply a length count, e.g.

fitannotation[34]={contents[19]={this is a brace '}'}}

Simple Data Types

String. Strings are plain ASCII strings (or EBCDIC strings on EBCDIC platforms) which
are generally used for non-localizable keywords. Strings containing whitespace or =’
characters must be bracketed with { and }:

password={ secret string } (string value contains three blanks)
contents={1length=3mm} (string value containing one equal sign)

The characters { and } must be preceded by an additional \ character if they are sup-
posed to be part of the string:

password={weird\}string} (string value contains a right brace)

A backslash in front of the closing brace of an element must be preceded by a backslash
character:

filename={C:\path\name\\} (string ends with a single backslash)

An empty string can be constructed with a pair or braces:

{

Content strings, hypertext strings and name strings: these can hold Unicode content in
various formats. Single bytes can be expressed by an escape sequence if the option
escapesequence is set. For details on these string types and encoding choices for string
options see the PDFlib Tutorial.

10 Chapter 1: Programming Concepts

Non-Unicode capable language bindings: if an option list starts with a [EBCDIC-]JUTEF-
8 BOM, each content, hypertext or name string of the option list is interpreted as a [EBC-
DIC-]UTF-8 string.

Unichar. A Unichar is a single Unicode value where several syntax variants are sup-
ported: decimal values > 10 (e.g. 173), hexadecimal values prefixed with x, X, ox, oX, or U+
(xAD, oxAD, U+00AD), numerical references, character references, and glyph name refer-
ences but without the ‘&’ and ’;’ decoration (shy, #xAD, #173). Alternatively, literal charac-
ters can be supplied. Examples:

replacementchar=? (literal)

replacementchar=63 (decimal)

replacementchar=x3F (hexadecimal)

replacementchar=0x3F (hexadecimal)

replacementchar=U+003F (Unicode notation)
replacementchar=euro (HTML character reference)
replacementchar=.question (standard glyph name reference)
replacementchar=.marina (font-specific glyph name reference)

Single characters which happen to be a number are treated literally, not as decimal Uni-
code values:

replacementchar=3 (U+0033 THREE, not U+0003!)
Unichars must be in the hexadecimal range o-ox10FFFF (decimal o-1174117). However,

some options are restricted to the range 0-oxFFFF (0-65535). This is noted in the respec-
tive option description.

Unicode range. A Unicode range identifies a contiguous range of Unicode characters
via start and end characters of the range. The start and end values of a Unicode range
must be separated by a minus sign -’ without any spaces, e.g.

forcechars={U+03AC-U+03CE}
Boolean. Booleans have the values true or false; if the value of a Boolean option is

omitted, the value true is assumed. As a shorthand notation noname can be used instead
of name=false:

embedding (equivalent to embedding=true)
noembedding (equivalent to embedding=false)

Keyword. An option of type keyword can hold one of a predefined list of fixed key-
words. Example:

blendmode=overlay
For some options the value hold either a number or a keyword.
Number. Option list support several numerical types.

Integer types can hold decimal and hexadecimal integers. Positive integers starting
with x, X, ox, or oX specify hexadecimal values:

1.1 Option Lists

1

-12345
0
OxFF

Floats can hold decimal floating point or integer numbers; period and comma can be
used as decimal separators for floating point values. Exponential notation is also sup-
ported. The following values are all equivalent:

size = -123.45
size = -123,45
size = -1.2345E2
size = -1.2345e+2

Percentages are numbers with a % character directly after the numerical value. Some
options allow negative percentages:

leading=120%
topoffset=-20.5%

Handle. Handles identify various types of objects, e.g. fonts, images, ICC profiles or ac-
tions. Technically these are integer values which have been returned earlier by an API
function. For example, an image handle is returned by PDF load_image(). Handles must
always be treated as opaque types; they must never be modified or created by the appli-
cation directly (as opposed to using a handle returned by an API function). Handles
must always be valid for the respective type of object. For example, an option which ex-
pects an image handle must not be supplied with a graphics handle, although both han-
dles are integer types.

Fontsize and Action Data Types

Fontsize. A fontsize can be defined in several ways which allow the size of text to be
specified in absolute values, relative to some external entity, or relative to some font
property. In general the fontsize must be different from o unless the option description
mentions otherwise.

In the most common case a fontsize contains a single float value which specifies re-
fers to units in the user coordinate system:

fontsize=12

The second variant contains a percentage, where the basis of the percentage depends on
the context (e.g. the width of the fitbox for PDF_fit_textline():

fontsize=8%
In the third variant, the fontsize is specified as an option list which must contain a key-
word and a number. The keyword describes the desired font metric according to Table

1.1, and the number contains the desired size. PDFlib will calculate the proper fontsize so
that the selected text metric matches the supplied value:

fontsize={capheight 5}

Action list. An action list specifies one or more actions. Each entry in the list consists
of an event keyword (trigger) and a list of action handles which must have been created

12 Chapter1: Programming Concepts

Table 1.1 Suboptions for options of type fontsize

option explanation

ascender The number is interpreted as ascender height.

bodyheight The number is interpreted as minimum distance between baselines, i.e. descenders and ascenders of ad-
jacent lines may exactly touch if this value is used as leading. This is the default behavior if no keyword is
provided.

capheight The number is interpreted as capital letter height.

xheight The number is interpreted as lowercase letter height.

with PDF create_action(). Actions will be performed in the listed order. The set of al-
lowed events (e.g. docopen) and the type of actions (e.g. JavaScript) are documented sep-
arately for the respective options.

List containing a single trigger with three actions:

action={ activate={ 012 } }

List containing three triggers with one action for each:

action={ keystroke=0 format=1 validate=2 }

1.1.4 Color Data Type

Overview of color spaces. You can specify the colors for filling and stroking paths and
text characters. Colors can be specified in several color spaces (each list item starts with
the corresponding color space keyword for PDF_setcolor() and color options):

>

| 4

v

v

gray: Gray values between o=black and 1=white;

rgb: RGB triples, i.e. three values between o and 1 specifying the percentage of red,
green, and blue; (o, 0, 0)=black, (1, 1, 7)=white. The commonly used RGB color values in
the range o-255 must be divided by 255 in order to scale them to the range o-1 as re-
quired by PDFlib.

As an alternative to numerical RGB values you can specify RGB colors via their HTML
name or hexadecimal values.

c¢myk: Four CMYK values between o = no color and 1 = full color, representing cyan,
magenta, yellow, and black values; (o, o, 0, 0o)=white, (0, o, 0, 1)=black. Note that this is
different from the RGB specification.

iccbased (not for PDF_setcolor()) and iccbasedgray/rgb/cmyk: ICC-based colors are based
on an ICC profile.

spotname: name of a predefined spot color and a tint value (percentage) in the range
o=no color to 1=maximum intensity.

Alternatively, the name of a custom spot color, a tint value (percentage), and an al-
ternate representation in one of the other color spaces above.

spot: handle for a predefined or custom spot color and a tint value (percentage).

lab expects device-independent colors in the CIE L*a*b* color space with D50 stan-
dard illuminant. Colors are specified by a luminance value in the range 0-100 and
two color values g and b in the range -128 to 127. The a component ranges from green
to red/magenta (negative values indicate green, positive values indicate magenta),
and the b component ranges from blue to yellow (negative values indicate blue, pos-
itive values indicate yellow).

1.1 Option Lists

13

Note

» pattern: tiling pattern with an object composed of arbitrary text, vector, or image
graphics. Patterns can be created with PDF_begin_pattern() or PDF_shading_pattern()
and are identified by a pattern handle.

The default color for stroke and fill operations is black. The color space for this default
color is selected automatically to match PDF/X and PDF/A color requirements.

Shadings (smooth blends) provide a gradual transition between two colors, and are based on
another color space. Shadings can be created with PDF_shading().

Color options. Color options can be defined in three different forms: using an RGB col-
or name, hexadecimal RGB values, or a flexible option list for colors in any color space.

Cookbook A full code sample for using RGB color values can be found in the Cookbook topic

color/web_colornames.

In the first form all valid color names from SVG 1.1 can be supplied directly to specify an
RGB color or an sRGB color if the sSRGB ICC profile has been selected, e.g.

strokecolor=pink

The color names are case-insensitive. A list of valid RGB color names can be found at the
following location:

www.w3.org/TR/SVG11/types.html#ColorKeywords

In the second form a hash '#’ character followed by any combination of three pairs of
hexadecimal digits oo-FF can be supplied to specify an RGB color value, e.g.

strokecolor=#FFCOCB

In the third form an color option list specified a color space and color value. A color op-
tion list contains a color space keyword and a list with a variable number of float values
depending on the particular color space. Color space keywords are the same as for PDF_
setcolor() (see Section 8.1, »Setting Color«, page 155). Table 1.2 contains specific descrip-
tions and examples. As detailed in the respective function descriptions, a particular op-
tion list may supply only a subset of the keywords presented above.

Cookbook A full code sample can be found in the Cookbook topic color/starter_color.

Table 1.2 Keywords for the color data type in option lists

keyword additional values example
gray single float value for the grayscale color space { gray 0.5 }
rgb three float values for the RGB color space {rgh100}
(no keyword) HTML color name or hexadecimal values for an RGB color pink
#FFCOCB
cmyk four float values for the CMYK color space {cmyk o100}
lab three float values for the Lab color space { lab 100 50 30 }
spot spot color handle and a float specifying the tint value { spot 1 0.8 }
14 Chapter1: Programming Concepts

http://www.w3.org/TR/SVG11/types.html#ColorKeywords
http://www.pdflib.com/pdflib-cookbook/color/starter-color
http://www.pdflib.com/pdflib-cookbook/color/web-colornames

Table 1.2 Keywords for the color data type in option lists

keyword additional values example

spotname (up to 63 bytes; fewer Unicode characters depending on format { spotname {PANTONE 281 U} 0.5 }

and encoding) spot color name and a float specifying the tint val-
ue

spotname Similar to the simple form of spotname above, but a color value { spotname {PDFlib Blue} 0.5

can be added to specify the alternate color for a custom spot color ~ { 1lab 100 50 30 } }
(i.e. a spot color name which is not known internally to PDFIib). If

multiple options define the same custom spot color name all defi-

nitions must be consistent (i.e. define the same alternate color).

iccbased ICC profile handle or keyword sxgb, plus 1, 3 or 4 color values de- { iccbased <handle> 0.5 }

pending on the type of ICC profile (gray, RGB, or CMYK). The stgb { iccbased <handle> 0 0 0.75 }

keyword must not be used in document scope. { iccbased srgb 0 0 0.75 }

{ iccbased <handle> 0 0 0.3 1 }

iccbasedgray single float value referring to an ICC profile selected with the op- { iccbasedgray 0.5 }

tion iccprofilegray

icchasedrgb three float values value referring to an ICC profile selected with the { iccbasedrgb 1 0 0 }

option iccprofilergb

iccbasedcmyk four float values value referring to an ICC profile selected with the { iccbasedcmyk 0 1 0 0 }

option iccprofilecmyk

attern attern handle { pattern 1}
p p p

none

1.1.5

specifies the absence of color none

Geometric Data Types

Line. Aline isa list of four float values specifying the x and y coordinates of the start
and end point of a line segment. The coordinate system for interpreting the coordinates
(default or user coordinate system) varies depending on the option, and is documented
separately:

line = {10 40 130 90}
Polyline. A polyline is alist containing an even number n of float values with n>2. Each
pair in the list specifies the x and y coordinates of a point; these points will be connected

by line segments. The coordinate system for interpreting the coordinates (default or
user coordinate system) varies depending on the option, and is documented separately:

polyline = {10 20 30 40 50 60}

The following option lists are equivalent:

polyline = {10 20 30r 40r 50r 601}
polyline = {10 20 40 60 90 120}

Quadrilaterals are a special type of polylines: these are rectangles which may be rotated
and for which exactly four points must be specified.

Another special type are polygons: these are polylines which will automatically be
closed by a line segment.

1.1 Option Lists

Rectangle. Arectangleis alist of four float values specifying the x and y coordinates of
the lower left and upper right corners of a rectangle. The coordinate system for inter-
preting the coordinates (default or user coordinate system) varies depending on the op-
tion, and is documented separately. Some options accept percentages, where the basis
for the percentage depends on the context (e.g. the fitbox of a Textflow). Relative coordi-
nates can be supplied by adding the suffix r immediately after a number. Within a coor-
dinate list a relative coordinate relates to the previous x or y coordinate. Relative coordi-
nates at the beginning of a list relate to the origin, i.e. they are absolute coordinates.
Examples:

cropbox={ 0 0 500 600 }
box={40% 30% 50% 70%}

The following options are equivalent:

box={12 34 56r 78r}
box={12 34 68 112}

Circle. A circle is specified as a list of four float values where the first pair specifies the
x and y coordinates of the center, and the second pair specifies the x and y coordinates
of an arbitrary point on the circle. The coordinate system for interpreting the coordi-
nates (default or user coordinate system) varies depending on the option, and is docu-
mented separately:

circle={200 325 200 200}

Curve list. A curve list consists of two or more connected third-order Bézier curve seg-
ments. A Bézier curve is specified by four control points. The first control point is the
starting point and the fourth point is the end point of the curve. The second and third
point control the shape of the curve. In a curve list the last point of a segment serves as

the first point for the next segment. A curve list is therefore specified as a list of 6 x n
float values with n>2:

curve={200 700 240 600 80 580 400 660 400 660 440 620}

The last control point will become the new current point after drawing the curves.

16 Chapter 1: Programming Concepts

1.2 Function Scopes

PDFlib applications must obey certain structural rules which are easy to understand.
For example, you obviously begin a document before ending it. PDFlib enforces correct
ordering of function calls with a strict scoping system. The scope definitions can be
found in Table 1.3. All API function descriptions specify the allowed scope for each func-
tion. Calling a function outside of the allowed scopes results in an exception. You can
query the current scope with the scope keyword of PDF_get_option().

Table 1.3 Function scope definitions

scope name definition

path started by one of PDF_moveto(), PDF circle(), PDF _arc(), PDF _arcn(), PDF_rect(), PDF_ellipse() or PDF _
elliptical_arc();
terminated by any of the functions in Section 7.5, »Painting and Clipping«, page 147

page between PDF_begin_page_ext() and PDF_end_page_ext(), but outside of path scope
template between PDF_begin_template_ext() and PDF_end_template_ext(), but outside of path scope

pattern between PDF_begin_pattern() and PDF_end_pattern(), but outside of path scope
font between PDF_begin_font() and PDF_end _font(), but outside of glyph scope
glyph between PDF_begin_glyph_ext() and PDF_end_glyph(), but outside of path scope

document between PDF_begin_document() and PDF_end_document(), but outside of page, template, pattern,
and font scope

object during the lifetime of the PDFlib object, but outside of document scope; in the C and Cobol language bind-
ings between PDF_new() and PDF_delete(), but outside of document scope

1.2 Function Scopes 17

1.3 Logging

The logging feature can be used to trace API calls. The contents of the log file may be
useful for debugging purposes, or may be requested by PDFlib GmbH support. Logging
options can be supplied in the following ways:

» As an option list for the global logging option of PDF set_option(), e.g.:

p.set_option("logging={filename=trace.log remove}")

» In an environment variable called PDFLIBLOGGING. This will activate the logging out-
put starting with the very first call to one of the API functions.

Table 1.4 Suboptions for the logging option

option
(empty list)
disable
enable

filename

flush

remove

stringlimit

description

Enable log output

(Boolean) Disable logging output
(Boolean) Enable logging output

(String) Name of the log file; stdout and stderr will be recognized as special names. On CICS this option
will be ignored, and logging output will always be written to stderr. Output will be appended to any ex-
isting contents. Default:

pdflog on z/0S
PDF1ib.log on Mac and iSeries
\PDF1ib.log on Windows

/tmp/PDF1ib.log on all other systems
The log file name can alternatively be supplied in an environment variable called PDFLIBLOGFILE.

(Boolean) If txue, the log file will be closed after each output, and reopened for the next output to make
sure that the output will actually be flushed. This may be useful when chasing program crashes where
the log file is truncated, but significantly slows down processing. If false, the log file will be opened only
once. Default: false

(Boolean) If txrue, an existing log file will be deleted before writing new output. Default: false

(Integer) Limit for the number of characters per line, or o for unlimited. Default: o

18 Chapter 1: Programming Concepts

Table 1.4 Suboptions for the logging option

option

classes

description

(Option list) List containing options of type integer, where each option describes a logging class and the
corresponding value describes the granularity level. Level o disables a logging class, positive numbers en-
able a class. Increasing levels provide more and more detailed output. The following options are provided
(default: {api=1 warning=1}):

api

filesearch
resource
tagging

user
warning

Log all API calls with their function parameters and results. If api=2 a timestamp will be
created in front of all API trace lines, and deprecated functions and options will be marked. If
api=3 try/catch calls will be logged (useful for debugging problems with nested exception
handling).

Log all attempts related to locating files via SeaxchPath or PVF.

Log all attempts at locating resources via Windows registry, UPR definitions as well as the
results of the resource search.

Structure element (tag) operations
User-specified logging output supplied with the userlog option.

Log all PDFlib warnings, i.e. error conditions which can be ignored or fixed internally. If
warning=2 messages from functions which do not throw any exception, but hook up the
message text for retrieval via PDF_get_errmsg(), and the reason for all failed attempts at
opening a file (searching for a file in searchpath) will also be logged.

1.3 Logging 19

20 Chapter1: Programming Concepts

2 General Functions

2.1 Exception Handling

Table 2.1 details the relevant option for this section. This option is supported by many E—
functions as indicated in the corresponding option list descriptions. It can also be sup-
plied as global option to PDF_set_option() (see Section 2.3, »Global Options«, page 25). D

Table 2.1 Exception-related option for PDF_set_option()
key explanation

errorpolicy (Keyword) Controls the behavior of various functions in case of an error. The global option errorpolicy —_—
can be overridden by the errorpolicy option of many functions, and serves as default for this option.
Supported keywords (default: legacy):
legacy (Deprecated) The behavior of the functions is the same as in PDFlib 6.

return If an error occurs the function will return. Functions which can return an error code (e.g. PDF _
load_image()) return -1 (in PHP: o). Functions which return result strings (e.g. PDF fit_
table()) return the string _exrror. Application developers must check the return value against
-1(in PHP: 0) or _error to detect error situations. In case of an error a detailed description can
be queried with PDF_get_errmsg(). This setting is recommended for new applications.

exception If an error occurs, the function will throw an exception. The exception must be caught in

client code using a binding-specific mechanism. The partial PDF output generated so far will
be unusable and must be discarded.

C++ Java C# int get_errnum() —
Perl PHP int get_errnum()
C int PDF_get_errnum(PDF *p)

Get the number of the last thrown exception or the reason of a failed function call. [
Returns The error code of the most recent error condition.

Scope Between an exception thrown by PDFlib and the death of the PDFlib object. Alternative-
ly, this function may be called after a function returned a -1 (in PHP: o) error code, but
before calling any other function except those listed in this section.

Bindings In C++,Java, Objective-C, .NET, PHP and REALbasic this function is also available as get _ —_—
errnum() in the PDFlibException object.

C++ Java C# String get_errmsg()
Perl PHP string get_errmsg()
C const char *PDF_get_errmsg(PDF *p)

Get the text of the last thrown exception or the reason of a failed function call.

Returns Text containing the description of the most recent error condition.

2.1 Exception Handling 21

Scope

. Bindings

Between an exception thrown by PDFlib and the death of the PDFlib object. Alternative-
ly, this function may be called after a function returned a -1 (in PHP: o) error code, but
before calling any other function except those listed in this section.

In C++, Java, Objective-C, .NET, PHP and REALbasic this function is also available as get_
errmsg() in the PDFlibException object.

C++ Java C# String get_apiname()

——— Perl PHP string get_apiname()

—— Returns

Scope

Bindings

C++

Returns

Details

Scope
Bindings

C const char *PDF_get_apiname(PDF *p)

Get the name of the API function which threw the last exception or failed.

The name of the API function which threw an exception, or the name of the most re-
cently called function which failed with an error code.

Between an exception thrown by PDFlib and the death of the PDFlib object. Alternative-
ly, this function may be called after a function returned a -1 (in PHP: o) error code, but
before calling any other function except those listed in this section.

In C++, Java, Objective-C, .NET, PHP and REALbasic this function is also available as get_
apiname() in the PDFlibException object.

void *get_opaque()

C void *PDF_get_opaque(PDF *p)

Fetch the opaque application pointer stored in PDFlib.

The opaque application pointer stored in PDFlib which has been supplied in the call to
PDF new2().

PDFlib never touches the opaque pointer, but supplies it unchanged to the client. This
may be used in multi-threaded applications for storing private thread-specific data
within the PDFlib object. It is especially useful for thread-specific exception handling.

any
Only available in the C and C++ bindings.

22 Chapter 2: General Functions

2.2 Unicode Conversion

C++

Java

string convert_to_unicode(string inputformat, string input, string optlist)
string convert_to_unicode(string inputformat, byte[] input, string optlist)

Perl PHP string convert_to_unicode(string inputformat, string input, string optlist)

Returns

Details

Scope
Bindings

C const char *PDF_convert_to_unicode(PDF *p,

const char *inputformat, const char *input, int inputlen, int *outputlen, const char *optlist)

Convert a string in an arbitrary encoding to a Unicode string in various formats.

inputformat Unicode text format or encoding name specifying interpretation of the
input string:
» Unicode text formats: utf8, ebcdicutfs, utfi6, utfiéle, utfi6be, utf32
» Only if the font option is specified: builtin, glyphid
» All internally known 8-bit encodings, encodings available on the host system, and
the CJK encodings cp932, cp936, cp949, cp950
» The keyword auto specifies the following behavior: if the input string contains a
UTEF-8 or UTF-16 BOM it will be used to determine the appropriate format, otherwise
the current system codepage is assumed.

input String (in COM: Variant; in REALbasic: MemoryBlock) to be converted to Uni-
code.

inputlen (Clanguage binding only) Length of the input string in bytes. If inputlen=0 a
null-terminated string must be provided.

outputlen (Clanguage binding only) C-style pointer to a memory location where the
length of the returned string (in bytes) will be stored.

optlist An option list specifying options for input interpretation and Unicode conver-
sion:
» Text filter options according to Table 4.6: charref, escapesequence
» Unicode conversion options according to Table 2.2:
bom, errorpolicy, font, inflate, outputformat

A Unicode string created from the input string according to the specified parameters
and options. If the input string does not conform to the specified input format (e.g. in-
valid UTF-8 string) an empty output string will be returned if errorpolicy=return, and an
exception will be thrown if errorpolicy=exception.

This function may be useful for general Unicode string conversion. It is provided for the
benefit of users who work in environments without suitable Unicode converters.

any

C binding: the returned strings will be stored in a ring buffer with up to 10 entries. If
more than 10 strings are converted, the buffers will be reused, which means that clients
must copy the strings if they want to access more than 10 strings in parallel. For exam-
ple, up to 10 calls to this function can be used as parameters for a printf() statement
since the return strings are guaranteed to be independent if no more than 10 strings are
used at the same time.

2.2 Unicode Conversion

.23

Non-Unicode-capable language bindings: this function can be used to create name
strings and option lists in non-Unicode aware language bindings. It creates the required
BOM with the options bom=optimize and outputformat=utfs.

C++ binding: The parameters inputformat and optlist must be passed as wstrings as
usual, while input and returned data must have type string.

Table 2.2 Options for PDF _convert_to_unicode()

option

bom

errorpolicy

font

inflate

output-
format

description

(Keyword; will be ignored for outputformat=utf32) Policy for adding a byte order mark (BOM) to the
output string. Supported keywords (default: none):

add Add a BOM.
keep Add a BOM if the input string has a BOM.
none Don’t add a BOM.

optimize Add a BOM except if outputformat=utf8 or ebcdicutf8 and the output string contains only
characters in the range < U+oo7F.

(Keyword) Behavior in case of conversion errors (default: the value of the exrorpolicy global option, see
Table 2.1):

return The replacement character will be used if a character reference cannot be resolved or a builtin
code or glyph ID doesn’t exist in the specified font. An empty string will be returned in case of
conversion errors.

exception An exception will be thrown in case of conversion errors.

(Font handle; required for inputformat=builtin and glyphid) Apply font-specific conversion according
to the specified font.

(Boolean; only for inputformat=utf8) If true, an invalid UTF-8 input string will not trigger an excep-
tion, but rather an inflated byte string in the specified output format will be generated. This may be use-
ful for debugging. Default: false

(Keyword) Unicode text format of the generated string: utf8, ebcdicutf8, utf16, utfi6le, utfiébe,
utf32. An empty string is equivalent to utf16. Default: utf16

Unicode-capable language bindings: the output format will be forced to utf16.
C++ language binding: only the following output formats are allowed: ebcdicutf8, utf8, utf16, utf32.

24 Chapter 2: General Functions

2.3 Global Options

PDFlib offers various global options for controlling the library and the appearance of
the PDF output. These options retain their settings across the life span of the PDFlib ob-
ject, or until they are explicitly changed by the client.

C++ Java C# void set_option(String optlist)

Perl PHP set_option(string optlist)

Details

Scope

C void PDF_set_option(PDF *p, const char *optlist)

Set one or more global options.

optlist An option list specifying global options according to Table 2.3. If an option is
provided more than once the last instance will override all previous ones. The following
options can be used:

» Options for resource handling and resource categories according to Table 2.3:
Encoding, enumeratefonts, FontAFM, FontnameAlias, FontOutline, FontPFM, HostFont,
ICCProfile, resourcefile, saveresources, searchpath

» Options for file handling and licensing according to Table 2.3:
avoiddemostamp, filenamehandling, license, licensefile

» Text filter options according to Table 2.3:
charref,escapesequence, glyphcheck, stringformat, textformat

» Options for interactive elements according to Table 2.3:
hypertextencoding, hypertextformat, usehypertextencoding, usercoordinates

» Other options according to Table 2.3:
asciifile, autospace, compress, kerning, logging, shutdownstrategy, usehostfonts, userlog

» Option for error handling according to Table 2.1: errorpolicy

» Options for color handling according to Table 8.1:
iccprofilecmyk, iccprofilegray, iccprofilergb, preserveoldpantonenames, spotcolorlookup

Except for resource category options new values override previously set option values.
The following options provide default values for the same-named text options (see
Table 4.6 and Table 4.7):
charref, escapesequence, glyphcheck, kerning, textformat
At the same time these options change the options of the same name in the current
text state. It is recommended to set options for content strings only in PDF_set_text_
option() to avoid unwanted side effects.

any, but restricted scopes apply to some options

Table 2.3 Global options for PDF set_option()

option description

asciifile

autospace

coding. Default: true on iSeries; false on zSeries

(Boolean; only supported on iSeries and zSeries). Expect text files (PFA, AFM, UPR, encodings) in ASCIl en-

If true and the current font contains a glyph for U+oo20, PDFlib will automatically add a space character

after each text output generated with a show operation. This may be useful for generating Tagged PDF.
Note that adding spaces changes the current text position after the show operation. Default: false

2.3 Global Options

.25

Table 2.3 Global options for PDF _set_option()

option
avoiddemo-

stamp

charref

compress

Encoding

enumerate-
fonts

escape-
sequence

filename-
handling

FontAFM

Fontname-
Alias

FontOutline

description

(Boolean) If true, an exception will be thrown when no valid license key was found; if false, a demo
stamp will be created on all pages. This option must be set before the first call to PDF_begin_
document(). Default: false

(Boolean) If txue, enable substitution of numeric and character entity references and glyph name refer-
ences for all content, name and hypertext strings. In order to avoid character reference substitution in
places where it is not desired (e.g. file names) it is recommended to set this option for content strings only
in PDF_set_text_option(); see PDFlib Tutorial for details. Default: false

(Integer) Compression level from o=no compression, 1=best speed, etc. to 9=best compression. This op-
tion does not affect image data handled in passthrough mode. Default: 6. Scope: any except object

(List of pairs of name strings) List of key/value pairs for a resource definition separated by whitespace or
equal signs '=’ (see PDFlib Tutorial for details). Multiple calls add new entries to the internal list.

(Boolean) If true, PDFlib will search for font outline files in all directories which can be accessed via the
SearchPath resource. This may take significant time if a large number of fonts is accessible, and should
therefore be used with care. The generated resource list can be saved to a file with the saveresources
option. The recommended strategy is to create and save the resource list only if the number of accessible
fonts has changed, and not for each generated document or for each PDFlib object.

For each valid font outline file PDFlib determines the font-family, font-weight and font-style names
and synthesizes an API font name according to the following scheme:
<font-family>[,<font-weight>][,font-style]

PDFlib creates a FontOutline resource of the form <fontname>=<pathname> which connects the artificial
font name with the full path name of the font. For PostScript Type 1 fonts the corresponding FontAFM or
FontPFM resource will be created as well. In addition to the APl font name PDFlib creates a Fontname-
Alias resource with the PostScript name of the font if it is different from the artificial name:
<PostScript fontname>=<artificial fontname>

As a result, the font can be loaded via the artificial font name or its PostScript name. Default: false

(Boolean) If txue, enable substitution of escape sequences in all content, name and hypertext strings. In
order to avoid escape sequence substitutions in places where it is not desired (e.g. file names) it is recom-
mended to set this option for content strings only in PDF _set_text_option(); Default: false

(Keyword; not required on Windows) Target encoding for file names. All file names supplied in non-Uni-
code aware language bindings without a UTF-8 BOM (and with length=o0 in C) are interpreted according
to this option (default: auto on i5/iSeries, otherwise legacy):

ascii 7-bit ASCII
basicebcdic Basic EBCDIC according to code page 1047, but only Unicode values <= U+oo7E

basicebcdic_37
Basic EBCDIC according to code page 0037, but only Unicode values <= U+oo7E

honorlang (Not on i5/iSeries) The environment variables LC_ALL, LC_CTYPE and LANG are interpreted and
applied to file names if they specify utf8, UTF-8, cpXXXX, CPXXXX, 1508859-x, or IS0-8859-x.

legacy Use host encoding to interpret the file name

unicode Unicode encoding in (EBCDIC-) UTF-8 format

all valid encoding names
Any encoding recognized by PDFlib (see Table 4.2) except glyphid and builtin

(List of pairs of name strings) List of key/value pairs for a resource definition separated by whitespace or
equal signs '=’ (see PDFlib Tutorial for details). Multiple calls add new entries to the internal list.

(List of pairs of name strings) List of key/value pairs for a resource definition separated by whitespace or
equal signs '=’ (see PDFlib Tutorial for details). Multiple calls add new entries to the internal list.

(List of pairs of name strings) List of key/value pairs for a resource definition separated by whitespace or
equal signs '=’ (see PDFlib Tutorial for details). Multiple calls add new entries to the internal list.

26 Chapter 2: General Functions

Table 2.3 Global options for PDF set_option()

option

FontPFM
glyphcheck
HostFont
hypertext-
encoding
hypertext-
format

ICCProfile

iccprofilecmyk
iccprofilegray
iccprofilergb
kerning

license

licensefile
logging
maxfile-

handles

resourcefile

saveresources

searchpath

shutdown-
strategy

description

(List of pairs of name strings) List of key/value pairs for a resource definition separated by whitespace or
equal signs '=’ (see PDFlib Tutorial for details). Multiple calls add new entries to the internal list.

(Keyword) See Table 4.6 for a description. It is recommended to set this option for content strings only in
PDF set_text_option(); see PDFlib Tutorial for details. Default: replace

(List of pairs of name strings) List of key/value pairs for a resource definition separated by whitespace or
equal signs '=’ (see PDFlib Tutorial for details). Multiple calls add new entries to the internal list.

(String; only for non-Unicode-capable language bindings) Encoding for hypertext strings. An empty
string is equivalent to unicode. Default: auto

(Keyword; only for non-Unicode-capable language bindings) Format for hypertext strings as function pa-
rameters. Supported keywords are bytes, utf8, ebcdicutf8, utf16, utfi6le, utfiébe, and auto. Default:
auto

(List of pairs of name strings) List of key/value pairs for a resource definition separated by whitespace or
equal signs '=’ (see PDFlib Tutorial for details). Multiple calls add new entries to the internal list.

(ICC profile handle) ICC profile which specifies a CMYK, Gray, or RGB color space for use with the icc-
basedcmyk/gray/rgb color options. Default: no ICC color space

(Boolean) If txue, enable kerning for fonts which have been opened with the readkerning option; disable
kerning otherwise. Default: true

(String) License key for PDFlib, PDFlib+PDI, or PPS (see PDFlib Tutorial for details). The key can be set be-
fore the first call to PDF_begin_document(). Use the avoiddemostamp option to make sure that missing
license keys will not accidentally result in a demo stamp.

(Name string) Name of a file containing the license key (see PDFlib Tutorial for details). The license file
can only be set once before the first call to PDF_begin_document().

(Option list) Logging options according to Table 1.4

(Unsupported; implemented on Windows only) New maximum for the number of simultaneously open
files (in the C runtime). The number must be greater or equal than 20 and less or equal than 2048. An ex-
ception will be thrown if the new value is not accepted by the C runtime. Scope: object

(Name string) Relative or absolute file name of the PDFlib UPR resource file. The resource file will be load-
ed immediately before the first access to any resource. Existing resources will be kept; their values are
overridden by new ones if they are set again.

(Option list) Save the current resource list to a file. The following option is supported:
filename The name of the resource file to which the resource list will be saved. Default: pdf1ib.upr

(List of name strings) One or more relative or absolute path name(s) of directories containing files to be
read. The search path can be set multiply; the entries will be accumulated and used in least-recently-set
order (see PDFlib Tutorial for details). It is recommended to use double braces even for a single entry to
avoid problems with directory names containing space characters. An empty string list (i.e. {{}})
deletes all existing search path entries including the default entries. On Windows the search path can
also be set via a registry entry. Default: platform-specific, see PDFlib Tutorial

(Integer) Strategy for releasing global resources which are allocated once for all PDFlib objects. Each

global resource is initialized on demand when it is first needed. This option must be set to the same value

for all PDF objects in a process; otherwise the behavior is undefined (default: o):

o A reference counter keeps track of how many PDFlib objects use the global resources. When
the last PDFlib object is deleted the resources are released.

1 The resources are kept until the end of the process. This may slightly improve performance,
but requires more memory after the last PDFlib object is deleted.

2.3 Global Options 27

Table 2.3 Global options for PDF set_option()

option description
stringformat (Keyword; only for non-Unicode-capable language bindings) Format used to interpret all strings at the
API, i.e. name strings, content strings, hypertext strings and option lists. Supported keywords (default:
legacy):
ebcdicutf8 (Only on iSeries and zSeries) All strings and option lists are expected in EBCDIC-UTF-8 format
—— with or without BOM.

legacy Name strings, content strings, hypertext strings and option lists are treated according to the
textformat, hypertextformat and hypertextencoding options.

utfs (Not on iSeries and zSeries) All strings and option lists are expected in UTF-8 format with or
without BOM. The options textformat, hypertextformat and hypertextencoding are not
allowed. The Textflow option fixedtextformat is forced to true. Legacy CJK CMaps can not
be used for loading fonts. In the C language binding name strings as function parameters are
still interpreted as UTF-16 strings if the length parameter is supplied with a value larger than
0. Use PDF_convert_to_unicode() to convert strings in 8-bit encodings to UTF-8.

user- (Boolean) If false, coordinates for hypertext rectangles are expected in the default coordinate system;
coordinates otherwise the current user coordinate system will be used. Default: false

- userlog String which will be copied to the log file
usehostfonts (Boolean) If txue, host fonts are included in the font search. Default: true

usehypertext- (Boolean; only for non-Unicode-capable language bindings) If true, the encoding specified in the
encoding hypertextencoding option will also be used for name strings. If false, the encoding for name strings
I without UTF-8 BOM is host. Default: false

textformat (Keyword; only for non-Unicode capable language bindings) Format used to interpret content strings.
— Supported keywords: bytes, utf8, ebcdicutf8 (only on iSeries and zSeries), utf16, utfi6le, utfiébe,
and auto. Default: auto

C++ Java C# double get_option(String keyword, String optlist)

Perl PHP float get_option(string keyword, string optlist)
C double PDF_get_option(PDF *p, const char “keyword, const char *optlist)

Retrieve some option or other value.

keyword Keyword specifying the option to retrieve. The keywords below are support-
ed; see description of PDF_set_option(), PDF set_text_option()and PDF set_graphics_
option() regarding their meaning. Keywords for which no corresponding option exists
are described in Table 2.4:
» Keywords for the string index of the n-th entry of the specified resource, where n cor-
responds to the resourcenumber option:
— Encoding, FontAFM, FontnameAlias, FontOutline, FontPFM, HostFont, ICCProfile,
searchpath
— » Keywords for Boolean option values return 1 for true or o for false:
asciifile, autospace,avoiddemostamp, charref, decorationabove, escapesequence, fakebold,
- kerning, overline, pdi, preserveoldpantonenames, spotcolorlookup, strikeout, tagged,
topdown, underline, usercoordinates, usehostfonts, usehypertextencoding
» Keywords for integer and float option values:
charspacing, compress, ctm_a, ctm_b, ctm_c, ctm_d, ctm_e, ctm_f, currentx, currenty,
icccomponents, flatness, font, fontsize, horizscaling, iccprofilecmyk, iccprofilegray, iccprofilergb,
italicangle, leading, linecap, linejoin, linewidth, major, minor, miterlimit, pageheight,

28 Chapter 2: General Functions

pagewidth, revision, scope, textrendering, textrise, textx, texty, underlineposition, underline-
width, wordspacing

» Keywords returning a string index for an option value or -1 if the string value is not
available:
cliprule, errorpolicy, filenamehandling, fillrule, glyphcheck, hypertextencoding, hypertext-
format, resourcefile, scope, textformat

» Keywords for querying the current structure element (only in Tagged PDF mode):
activeitemid, activeitemindex, activeitemisinline, activeitemkidcount, activeitemname,
activeitemstandardname

Table 2.4 Additional keywords for PDF get_option()

keyword

activeitemid

activeitem-
index

activeitem-
isinline

activeitem-
kidcount

activeitem-
name

activeitem-
standard-
name

ctm_a
ctm_b
ctm_c
ctm_d
ctm_e

ctm_f

currentx
currenty

icccomponents

major
minor
revision

pageheight
pagewidth

pdi

scope

description

(Integer) Item id of the currently active structure item. This may be used with PDF_activate_item() or the
parent suboption of PDF_begin_item() and the tag option. -1is returned if no root element has been cre-
ated yet. Scope: document, page

(Integer) Zero-based index of the currently active structure item within its parent. This may be used with
the index tag option. If the current item is a pseudo element or the root element or no root element has
been created yet -1 is returned. Scope: document, page

(Integer) Zero-based index of the currently active structure item within its parent. This may be used with
the index tag option. If the current item is a pseudo element or the root element or no root element has
been created yet -1 is returned. Scope: document, page

(Integer) Number of child elements of the currently active structure element created up to this point (not
counting pseudo elements). -1 is returned if no root element has been created yet. Scope: document, page

String index for the type name of the currently active structure element or pseudo element, or -1if no
root element has been created yet. Scope: document, page

String index for the standard element type name to which the currently active item is role mapped, or -1
if no root element has been created yet or the current item is a custom element for which no role map-
ping is available. If no rolemap is active the original type name is returned. Scope: document, page

(Float) The components of the current transformation matrix (CTM) for vector graphics. Scope: page,
pattern, template, glyph, path

(Float) The x or y coordinate (in units of the current coordinate system), respectively, of the current point.
Scope: page, pattern, template, glyph, path

(Integer) Number of color components in the ICC profile referenced by the handle provided in the
iccprofile option

(Integer) Major, minor, or revision number of PDFIib, respectively. Scope: any, null’

(Float) Page size of the current page (dimensions of the MediaBox), template or glyph. Scope: any except
object

(Integer) Returns 1if PDI has been included when building the underlying library. This is txue for all com-
bined PDFlib, PDFlib+PDI, and PPS binaries distributed by PDFlib GmbH, regardless of the license key. Oth-
erwise it returns o. Scope: any, null’

(Integer) String index for the name of the current scope (see Table 1.3)

2.3 Global Options 29

Table 2.4 Additional keywords for PDF_get_option()

keyword description
. textx (Float) The x or y coordinate of the current text position. Scope: page, pattern, template, glyph
texty

1. C language binding: may be called with a PDF * argument of NULL or o

optlist Option list specifying an option according to Table 2.5.

Returns The value of some option as requested by keyword. If no value for the requested key-
word is available, the function returns -1. If the requested keyword produces text, a
string index is returned, and the corresponding string must be retrieved with PDF _get_

string().
Scope any, but restricted scopes apply to some keywordsy

Table 2.5 Options for PDF_get_option()
key explanation

textstate (Boolean) If true, the values of the following options will be retrieved from the current text state, other-
wise from the global options, (default: false):
charref, escapesequence, glyphcheck, kerning, textformat

iccprofile (ICC profile handle) ICC profile for use with the icccomponents keyword

resource- (Integer) Number of the resource to be retrieved; resources are numbered starting with 1. Default: 1
number

C++ Java C# String get_string(int idx, String optlist)
Perl PHP string get_string(int idx, string optlist)
C const char *PDF_get_string(PDF *p, int idx, const char *optlist)

— Retrieve a string value.

idx String index returned by one of the PDF_get_option() or PDF_info_*() functions, or
-1if an option is supplied.

_ optlist An option list specifying options according to Table 2.6.
Returns The value of some string as requested by idx and optlist.
Scope Depends on the requested option.
—— Bindings C: The returned string is valid until the next call to any API function.
Table 2.6 Option for PDF_get string()

key explanation

— version (Boolean) Full PDFIib version string in the format <major>.<minor>.<revision>, possibly suffixed with
additional qualifiers such as beta, 1c, etc. Scope: any, null’

1. C language binding: may be called with a PDF * argument of NULL or o

30 Chapter 2: General Functions

C++ Java C# void set_parameter(String key, String value)
Perl PHP set_parameter(string key, string value)
C void PDF_set_parameter(PDF *p, const char *key, const char *value)

Deprecated, use PDF_set_option(), PDF_set_text_option(), and PDF_set_graphics_option().

C++ Java C# void set_value(String key, double value)
Perl PHP set_value(string key, float value) —
C void PDF_set_value(PDF "p, const char *key, double value)

Deprecated, use PDF_set_option(), PDF set text_option(), and PDF set graphics_option().

C++ Java C# String get_parameter(String key, double modifier)
Perl PHP string get_parameter(string key, float modifier) —
C const char * PDF_get_parameter(PDF *p, const char *key, double modifier)

Deprecated, use PDF_get_option() and PDF_get _string().

C++ Java C# double get_value(String key, double modifier)
Perl PHP float get_value(string key, float modifier)
C double PDF_get_value(PDF *p, const char *key, double modifier)

Deprecated, use PDF_get_option().

2.3 Global Options 31

2.4 Creating and Deleting PDFlib Objects

C PDF *PDF_new(void)

Details

Returns

Scope

Bindings

Returns

Details

Create a new PDFlib object.

This function creates a new PDFlib object, using PDFlib’s internal default error handling
and memory allocation routines.

A handle to a PDFlib object which is to be used in subsequent PDFlib calls. If this func-
tion doesn’t succeed due to unavailable memory it will return NULL (in C) or throw an
exception.

null; this function starts object scope, and must always be paired with a matching PDF _
delete() call.

The data type used for the opaque PDFlib object handle varies among language bind-
ings. This doesn’t really affect PDFlib clients, since all they have to do is pass the PDF
handle as the first argument to all functions.

C: In order to load the PDFlib DLL dynamically at runtime use PDF_new_dl(). PDF_new_
dl() returns a pointer to a PDFlib_api structure filled with pointers to all PDFlib API func-
tions. If the DLL cannot be loaded, or a mismatch of major or minor version number is
detected, NULL will be returned.

Obijective-C: this function is called when the PDFlib object’s init method is called.

C++, Java, Objective-C, Perl, PHP: this function is not available since it is hidden in the
PDFlib constructor.

PDF *PDF_new2(void (*errorhandler)(PDF *p, int errortype, const char *msg),
void* (*allocproc)(PDF *p, size_t size, const char *caller),
void* (*reallocproc)(PDF *p, void *mem, size_t size, const char *caller),
void (*freeproc)(PDF *p, void *mem),
void *opaque)

Create a new PDFlib object with client-supplied error handling and memory allocation
routines.

errorhandler Pointer to a user-supplied error-handling function. The error handler will
be ignored in PDF_TRY/PDF_CATCH sections.

allocproc Pointer to a user-supplied memory allocation function.
reallocproc Pointer to a user-supplied memory reallocation function.
freeproc Pointer to a user-supplied free function.

opaque Pointer to some user data which may be retrieved later with PDF get
opaque().
A handle to a PDFlib object which is to be used in subsequent PDFlib calls. If this func-

tion doesn’t succeed due to unavailable memory it will return NULL in C or throw an ex-
ception in C++.

This function creates a new PDFlib object with client-supplied error handling and mem-
ory allocation routines. Unlike PDF_new(), the caller may optionally supply own proce-

32 Chapter 2: General Functions

Scope

Bindings

Details

Scope

Bindings

dures for error handling and memory allocation. The function pointers for the error
handler, the memory procedures, or both may be NULL. PDFlib will use default routines
in these cases. Either all three memory routines must be provided, or none.

null; this function starts object scope, and must always be paired with a matching PDF_
delete() call. No other PDFlib function with the same PDFlib object must be called after
calling this function.

C++: this function is indirectly available via the PDF constructor. Not all function argu-
ments must be given since default values of NULL are supplied. All supplied functions
must be »C« style functions, not C++ methods.

void PDF_delete(PDF *p)

Delete a PDFlib object and free all internal resources.

This function deletes a PDF object and frees all document-related PDFlib-internal re-
sources. Although not necessarily required for single-document generation, deleting
the PDF object is heavily recommended for all server applications when they are done
producing PDF. This function must only be called once for a given PDF object. PDF_
delete() should also be called for cleanup when an exception occurred. PDF_delete() it-
self is guaranteed to not throw any exception. If more than one PDF document will be
generated it is not necessary to call PDF_delete() after each document, but only when
the complete sequence of PDF documents is done.

any; no more API function calls are allowed with the PDF object after this call.

C: If the PDFlib DLL has been loaded dynamically at runtime with PDF_new _dl(), use
PDF_delete_dl() to delete the PDFlib object.

C++: this function is indirectly available via the PDF destructor.

Java: this function is automatically called by the wrapper code. However, it can explicit-
ly be called from client code in order to overcome shortcomings in Java’s finalizer sys-
tem.

Obijective-C: this function is called when the PDFlib object’s release method is called.
Perl and PHP: this function is automatically called when the PDFlib object goes out of
scope.

2.4 Creating and Deleting PDFlib Objects 33

2.5 PDFlib Virtual File System (PVF)

Cookbook A full code sample can be found in the Cookbook topic general/starter_pvf.

C++ void create_pvfi(string filename, const void *data, size_t size, string optlist)

Java C# void create_pvf(String filename, byte[| data, String optlist)

Perl PHP create_pvf{(string filename, string data, string optlist)
C void PDF_create_pvf(PDF *p,

Details

Scope

const char *filename, int len, const void *data, size_t size, const char *optlist)

Create a named virtual read-only file from data provided in memory.

filename (Name string) The name of the virtual file. This is an arbitrary string which
can later be used to refer to the virtual file in other PDFlib calls. The name of the virtual
file will be subject to the SearchPath mechanism if it uses only slash '/’ characters as di-
rectory or file name separators.

len (Clanguage binding only) Length of filename (in bytes). If len=0 a null-terminated
string must be provided.

data A reference to the data for the virtual file. In C and C++ this is a pointer to a mem-
ory location. In Java this is a byte array. In Perl], Python, and PHP this is a string. In COM
this is a variant. In REALbasic this is a MemoryBlock.

size (C and C++ only) The length in bytes of the memory area containing the data.
optlist An option list according to Table 2.7. The following options can be used: copy

The virtual file name can be supplied to any API function which uses input files (virtual
files cannot be used for the generated PDF output; use an empty file name in PDF_begin _
document() to achieve this). Some of these functions may set a lock on the virtual file
until the data is no longer needed. Virtual files will be kept in memory until they are de-
leted explicitly with PDF_delete_pvf{(), or automatically in PDF_delete().

Each PDFlib object will maintain its own set of PVF files. Virtual files cannot be
shared among different PDFlib objects, but they can be used for creating multiple docu-
ments with the same PDFlib object. Multiple threads working with separate PDFlib ob-
jects do not need to synchronize PVF use. If filename refers to an existing virtual file an
exception will be thrown. This function does not check whether filename is already in
use for a regular disk file.

Unless the copy option has been supplied, the caller must not modify or free (delete)
the supplied data before a corresponding successful call to PDF_delete_pvf{). Not obey-
ing to this rule will most likely result in a crash.

any

Table 2.7 Options for PDF create_pvf()

option description

copy

(Boolean) PDFlib will immediately create an internal copy of the supplied data. In this case the caller may
dispose of the supplied data immediately after this call. The copy option will automatically be set to true
in the COM, .NET, and Java bindings (default for other bindings: false). In other language bindings the

data will not be copied unless the copy option is supplied.

34 Chapter 2: General Functions

http://www.pdflib.com/pdflib-cookbook/general-programming/starter-pvf

C++ Java C# int delete_pvf(String filename)

Perl PHP int delete_pvfi(string filename)

Returns

Details

Scope

C int PDF_delete_pvf(PDF *p, const char *filename, int len)

Delete a named virtual file and free its data structures (but not the contents).

filename (Name string; will be interpreted according to the global filenamehandling op-
tion (see Table 2.3) The name of the virtual file as supplied to PDF_create pvf{).

len (Clanguage binding only) Length of filename (in bytes). If len=0 a null-terminated
string must be provided.

-1 (in PHP: o) if the virtual file exists but is locked, and 1 otherwise.

If the file isn’t locked, PDFlib will immediately delete the data structures associated with
filename. If filename does not refer to a valid virtual file this function will silently do
nothing. After successfully calling this function filename may be reused. All virtual files
will automatically be deleted in PDF_delete().

The detailed semantics depend on whether or not the copy option has been supplied
to the corresponding call to PDF _create pvf(): If the copy option has been supplied, both
the administrative data structures for the file and the actual file contents (data) will be
freed; otherwise, the contents will not be freed, since the client is supposed to do so.

any

C++ Java C# double info_pvf(string filename, string keyword)

Perl PHP float info_pvf{(string filename, string keyword)

C double PDF_info_pvf(PDF *p, const char *filename, int len, const char *keyword)

Query properties of a virtual file or the PDFlib Virtual File system (PVEF).

filename (Name string) The name of the virtual file. The filename may be empty if
keyword=filecount.

len (Clanguage binding only) Length of filename (in bytes). If len=0 a null-terminated
string must be provided.

keyword Akeyword according to Table 2.7.

Table 2.8 Keywords for PDF_info_pvf()

option description

filecount Total number of files in the PDFlib Virtual File system maintained for the current PDFlib object. The

tilename parameter will be ignored.

exists 1if the file exists in the PDFlib Virtual File system (and has not been deleted), otherwise o

size (Only for existing virtual files) Size of the specified virtual file in bytes.

iscopy (Only for existing virtual files) 1if the copy option was supplied when the specified virtual file was creat-
ed, otherwise o

lockcount (Only for existing virtual files) Number of locks for the specified virtual file set internally by PDFlib func-

tions. The file can only be deleted if the lock count is o.

2.5 PDFlib Virtual File System (PVF) 35

Details This function returns various properties of a virtual file or the PDFlib Virtual File sys-
tem (PVF). The property is specified by keyword.

Scope any

36 Chapter 2: General Functions

2.6 PDF Object Creation API (POCA)

Object types and frozen objects. The PDF object creation API (POCA) is a low-level in-
terface for creating PDF objects. POCA supports the following object types:

» simple object types: boolean, integer, name, float, string;

» container object types: array, dictionary, stream;

» specific types for PDFlib Blocks: percentage, color.

The generated PDF objects can be used as follows:
» with the dpm option of PDF_begin/end_dpart() to create document part metadata for
PDEF/VT;
» with the blocks option of PDF_begin/end_page_ext() to create PDFlib Blocks for use
with PPS;
» with the richmediaargs option of PDF _create_action() to specify arguments for the
ActionScript or JavaScript associated with a rich media annotation.

Supplying a PDF container object to any of the options listed above freezes the contain-
er object itself as well as all objects referenced from the container directly or indirectly,
i.e. the full object tree created by the container will be frozen. Frozen objects can be used
again with the options above, but they can no longer be modified with PDF_poca_
insert() or PDF_poca_remove().

C++ Java C# int poca_new(String optlist)
Perl PHP int poca_new(string optlist)
C int PDF_poca_new(PDF *p, const char *optlist)

Create a new PDF container object of type dictionary, array, or stream and insert objects.

optlist An option list for creating and populating a container.
» Options for creating a container according to Table 2.9: containertype, usage
» Options for inserting objects in the container according to Table 2.11:
direct, hypertextencoding, index, key, type, value, values

Returns A POCA container handle which can be used until it is deleted with PDF_poca_delete().

Details This function creates an empty PDF container object of the specified container type. The
container can immediately be populated in the same call or later calls to PDF_poca_
insert().

PDF/VT A POCA container handle for an object of type dictionary with usage=dpm can be sup-
plied as Document Part Metadata (DPM) with the dpm option of PDF_begin/end_dpart().

Scope any

Table 2.9 Options for PDF poca new()

option description
container- (Keyword; required) Type of the container: dict, array, or stream. Unspecified array slots and array slots
type which have been removed without inserting a new object will contain the keyword null in the PDF out-

put. Note: containertype=streamis not yet implemented.

2.6 PDF Object Creation API (POCA) 37

Table 2.9 Options for PDF_poca_new()

option

usage

description

(Keyword; required) Context in which the new container will be used. This option enables some checks to
make sure that the container is suited for the intended use:

blocks

dpm

(Only relevant for containertype=dict; only in the PPS product) The Block dictionary (the
container which will be supplied to the blocks option of PDF_begin/end_page_ext()) must
contain one or more PDFlib Block definitions. The option usage=blocks must also be supplied
to all container objects which will directly or indirectly be inserted into the new dictionary.
(Only relevant for containertype=dict) All keys in the new dictionary or any dictionary
contained in it must consist of ASCII characters, must conform to the rules of an XML
NMTOKEN. This ensures that the dictionary can be used as Document Part Metadata (DPM)
dictionary for PDF/VT. The option usage=dpm must also be supplied to all container objects
which will directly or indirectly be inserted into the new dictionary.

richmediaargs

(Only for containertype=array) The array can contain objects of type string, integer, float,
or Boolean. However, the following is recommended to pass parameters from PDF to Flash: if
a parameter for an ActionScript function parameter has type string, number, or int, use
type=string in POCA (i.e. numbers must be wrapped within strings); if the parameter is de-
clared as Boolean, use type=boolean in POCA (i.e. do not wrap boolean values as string). The
POCA types integer and float should not be used since Acrobat will pass them correctly to
ActionScript.

C++ Java C# void poca_delete(int container, String optlist)

Perl PHP poca_delete(int container, string optlist)

C void PDF_poca_delete(PDF *p, int container, const char *optlist)

Details

Delete a PDF container object.
container A valid POCA container handle retrieved with PDF_poca_new().

optlist An option list according to Table 2.10. The following option can be used:
recursive

The container will be deleted and can no longer be used. If the container is referenced
from another dictionary or array all dictionary references to the deleted container are
removed, and all array references to the deleted container are replaced with the null ob-
ject. POCA container objects are not automatically deleted in PDF_end_document().

Scope any; must always be paired with a matching PDF_poca_new() call.

Table 2.10 Options for PDF_poca_delete()

option

recursive

description

(Boolean) If true, the container object itself and all objects referenced from it will be deleted recursively.
This may be useful as a shortcut for deleting a full object tree which is no longer needed. Default: false

38 Chapter 2: General Functions

C++ Java C# void poca_insert(int container, String optlist)

Perl PHP poca_insert(int container, string optlist)

C void PDF_poca_insert(PDF *p, int container, const char *optlist)

Insert a simple or container object in a PDF container object.

container A valid POCA container handle retrieved with PDF_poca_new(). Frozen con-
tainers (see »Object types and frozen objects«, page 37) are not allowed since they can no
longer be modified.

optlist An option list according to Table 2.11. The following options can be used:
direct, hypertextencoding, index, key, type, value, values

Details This function inserts an object in a container. The order in which objects are inserted in
a container is not significant. Inserted containers may be populated after insertion; it is
not required that inserted containers be complete at the time of insertion.

Inserting an object into a container must not create a loop of direct objects within
the object graph. For example, a directly inserted dictionary cannot include a direct ref-
erence to its container. In order to create cyclic references use direct=false to create indi-
rect objects which can reference arbitrary other objects.

Scope any

Table 2.11 Options for PDF_poca_new(), PDF_poca_insert() and PDF_poca_remove()

option

direct’

hypertext-
encoding

index

key

type’

description

(Boolean; only for type=array and dict; ignored for other types) If true, the object will be inserted di-
rectly in the container; if false, an indirect PDF object will be created and a reference to the indirect PDF
object will be inserted in the container. Indirect objects are useful to save space in the generated PDF if an
object is used more than once. Default: true

(Keyword) Specifies the encoding for the key, value, and values options. An empty string is equivalent to
unicode. Default: value of the global hypertextencoding option

(Non-negative integer; only for containers with type=array; required for PDF_poca_remove()) The
zero-based index at which the value(s) will be inserted in the array. The value -1 can be used to insert the
element as the new last item. The array will grow as necessary to include an element with the specified
index. If the array already contains a value at the specified index it will be replaced with the new value.
Default for PDF_poca_new() and PDF poca_insert(): -1

(Hypertext string; only for containers with type=dict and stream; required for type=dict) The key un-
der which the value will be inserted in the dictionary container or the dictionary associated with the
stream container. The key must not include the leading '/’ slash character. The key must conform to the
conditions specified in the dictionary’s usage option. If the dictionary already contains an entry with the
same key it will be replaced with the new value.

For type=stream the key must be different from Length and Filter.
(Keyword; required except for stream containers without the key option) Type of the inserted object:
array, boolean, dict, integer, name, float, stream, string, percentage, color

The following types are not allowed if the container has been created with usage=dpm: name (use
type=string instead), stream

The following types are only allowed if the container has been created with usage=blocks: color,
percentage

2.6 PDF Object Creation API (POCA) 39

option

. VaIUE1

values’

Table 2.11 Options for PDF_poca_new(), PDF_poca_insert() and PDF_poca_remove()

description

(Value according to the type option; exactly one of the options value and values must be provided) The
value of the inserted object, subject to the container type and the type option:

For array and dictionary containers:

If type=boolean the value must have option type string, and must contain one of the strings txue or
false.

If type=string or name the value must have option type Hypertext string, and must contain the target
directly. Values for type=name are limited to 127 bytes in UTF-8 representation, and must not include the
leading ’/’ slash character which starts name objects in PDF.

If type=integer the value must have option type integer, and must contain the target directly.

If type=float the value must have option type float or integer, and must contain the target directly.

If type=array, dict, or stream the value must have option type POCA container handle (i.e. created with
PDF _poca_new()) and must specify the inserted container. The inserted object must have been created
with the same usage option as the container.

For type=percentage the value must have option type number. It will be interpreted as a percentage val-
ue and must include the percent sign (e.g. 50%). It will be written as Block data type percentage

For type=color the value must have option type color (see Table 1.2, page 14). It will be written as Block
data type color. The following color space keywords are not allowed: iccbased, iccbasedgray,
iccbasedrgb, iccbasedcmyk, pattern

In order to pass arbitrary strings with this option the option list syntax described in »Unquoted string val-
ues in option lists«, page 9, may be useful.

(List of one or more values according to the type option; only for containers with type=array; exactly
one of the options value and values must be provided) One or more values of the same type which will
be inserted in the array at the position specified by the index option. See option value regarding the con-
ditions for specific types. If the specified list contains only a single element, the effect is equivalent to the
value option. If the list contains more than one element, all elements in the list will be inserted in the ar-
ray sequentially, possibly overriding existing elements. The array will grow as necessary to include all ele-
ments in the specified list.

1. Only for PDF_poca_new() and PDF_poca_insert()

C++ Java C# void poca_remove(int container, String optlist))

——— Perl PHP poca_remove(int container, string optlist)

C void PDF_poca_remove(PDF *p, int container, const char *optlist)

Remove a simple or container object from a PDF container object.

— container A valid POCA dictionary or array handle retrieved with PDF_poca_new(). Fro-
zen containers (see »Object types and frozen objects«, page 37) are not allowed since
- they can no longer be modified.

optlist The following options of PDF_poca_insert() in Table 2.11 can be used:

hypertextencoding, index, key

Details This function removes an object from a container of type array or dictionary. Nothing

happens if the specified object doesn’t exist in the container.

— Scope any

40 Chapter 2: General Functions

3 Document and Page Functions

3.1 Document Functions

Java C# int begin_document(String filename, String optlist)
Perl PHP int begin_document(string filename, string optlist)

C int PDF_begin_document(PDF *p, const char *filename, int len, const char *optlist)

C++ void begin_document_callback(size_t (*writeproc) (PDF *p, void *data, size_t size), string optlist)
C void PDF_begin_document_callback(PDF *p,
size_t (*writeproc) (PDF *p, void *data, size_t size), const char *optlist)

Create a new PDF document subject to various options.

filename (Name string; will be interpreted according to the global filenamehandling op-
tion, see Table 2.3) Absolute or relative name of the PDF output file to be generated. If
filename is empty, the PDF document will be generated in memory instead of on file,
and the generated PDF data must be fetched by the client with the PDF get_buffer()
function. On Windows it is OK to use UNC paths or mapped network drives.

len (Clanguage binding only) Length of filename (in bytes). If len=0 a null-terminated —
string must be provided.

writeproc (Only for C and C++) C callback function which will be called by PDFlib in or-
der to submit (portions of) the generated PDF data. The supplied writeproc must be a C-
style function, not a C++ method.

optlist An option list specifying document options: -

» General options: errorpolicy (see Table 2.1) and hypertextencoding (see Table 2.3)

» Document options according to Table 3.1. Some of these options can also be specified
in PDF_end_document(); in this case they have precedence over identical options
specified in PDF_begin_document():
associatedfiles, attachments, autoxmp, destination, groups, labels, linearize, metadata,
moddate, objectstreams, openmode, optimize, pagelayout, portfolio, search, uri, viewer-
preferences
Options for PDF compatibility and standards according to Table 3.2:
compatibility, nodenamelist, pdfa, pdfua, pdfvt, pdfx, recordlevel, usestransparency
Options for Tagged PDF according to Table 3.3:
checktags, lang, rolemap, structuretype, tag, tagged
Security options according to Table 3.4:
attachmentpassword, masterpassword, permissions, userpassword
» Output processing options according to Table 3.5:

createoutput, createpvf, filemode, flush, inmemory, recordsize, removefragments,
tempdirname, tempfilenames

A\

v

A\

Returns -1 (in PHP: 0) on error, and 1 otherwise. If filename is empty this function will always suc-
ceed, and never return the error value.

3.1 Document Functions 41

Details

PDF/VT

Scope

Bindings

This function creates a new PDF file using the supplied filename. PDFlib will attempt to
open a file with the given name, and close the file when the PDF document is finished.

PDF begin_document_callback() opens a new PDF document, but instead of writing to
a disk file it calls a client-supplied callback function to deliver the PDF output data. The
function supplied as writeproc must return the number of bytes written. If the return
value doesn’t match the size argument supplied by PDFlib, an exception will be thrown.
The frequency of writeproc calls is configurable with the flush option.

The following option is not allowed: groups.

object; this function starts document scope if the file could successfully be opened, and
must always be paired with a matching PDF_end _document() call.

ASP: the MapPath facility should be used to construct full path names to be passed to
this function.

C, C++, Java, JScript: take care of properly escaping the backslash path separator. For ex-
ample, the following denotes a file on a network drive: \\\\malik\\rp\\foo.pdf.
PDF begin_document _callback() is only available in C and C++.

C++ Java C# void end_document(String optlist)

Perl PH

Details

Scope

P end_document(string optlist)
C void PDF_end_document(PDF "p, const char *optlist)

Close the generated PDF document and apply various options.

optlist An option list specifying document processing options:

» General options: errorpolicy (see Table 2.1) and hypertextencoding (see Table 2.3)

» Document options according to Table 3.1. Options specified in PDF_end_document()
have precedence over identical options specified in PDF_begin_document(). The fol-
lowing options can be used:
action, associatedfiles, attachments, autoxmp, destination, destname, labels, metadata,
moddate, openmode, pagelayout, portfolio, search, uri, viewerpreferences

This function finishes the generated PDF document, frees all document-related resourc-
es, and closes the output file if the PDF document has been opened with PDF_begin_
document(). This function must be called when the client is done generating pages, re-
gardless of the method used to open the PDF document.

When the document was generated in memory (as opposed to on file), the document
buffer will still be kept after this function is called (so that it can be fetched with PDF
get_buffer()), and will be freed in the next call to PDF_begin_document(), or when the
PDFlib object goes out of scope.

document; this function terminates document scope, and must always be paired with a
matching call to one of PDF_begin_document() or PDF_begin_document callback().

42 Chapter 3: Document and Page Functions

Table 3.1 Document options for PDF_begin_document() and PDF_end_document()

option

action’

associated-
files'

attachments

autoxmp
destination
destname’

groups®

labels

linearize?

metadata

moddate

description

(Action list; not for PDF/A) List of document actions for one or more of the following events. Default:

empty list.

open Actions to be performed when the document is opened. Due to the execution order in Acrobat
document-level JavaScript must not be used for open actions.

didprint/didsave/willclose/willprint/willsave
JavaScript actions to be performed after printing/after saving/before closing/before printing/
before saving the document.

(List of asset handles; only for PDF 2.0 and PDF/A-3) Asset handles for associated files according to PDF/A-
3. The files must have been loaded with PDF _load_asset() and type=attachment.

(List of option lists or list of asset handles; not for PDF/X-1a/3 and PDF/A-1; PDF/A-2: only PDF/A-1 and
PDF/A-2 documents can be attached; PDF/A-3: not allowed, use associatedfiles instead) Specifies docu-
ment-level file attachments which have been loaded with PDF_load_asset() and type=attachment. It is
OK to supply file attachments both in PDF_begin_document() and PDF_end_document(). However, as-
set handles can only be supplied in PDF_end_document(). Supported suboptions: see Table 13.6

(Boolean; will be forced to true for PDF/X-3/4/5 and PDF/A) If txue, PDFlib will create XMP document
metadata from document info fields (see Section 14.2, »XMP Metadata«, page 257). Default: false

(Option list; will be ignored if an open action has been specified) An option list specifying the document
open action according to Table 12.10.

(Hypertext string; will be ignored if the destination option has been specified) The name of a destina-
tion which has been defined with PDF_add_nameddest(), and will be used as the document open action.

(List of strings; not allowed in PDF/VT mode or if a document part hierarchy is created) Define the names
and ordering of the page groups used in the document. Page groups keep pages together (useful e.g. for
attaching page labels); pages can be assigned to one of the page groups defined in the document, and
referenced within the respective group. If page groups are defined for a document, all pages must be as-
signed to a page group.

(List of option lists) A list containing one or more option lists according to Table 3.6 specifying symbolic
page names. The page name will be displayed as a page label (instead of the page number) in Acrobat’s
status line. The combination of style/prefix/start must be unique within a document. Default: none

(Boolean; not for PDF_begin_document_callback()) If true, the output document will be linearized. On
z/0S this option cannot be combined with an empty filename. Default: false

(Option list) Supply XMP document metadata (see Section 14.2, »XMP Metadata«, page 257). The XMP
will overwrite document info entries supplied with PDF_set_info(). In PDF/A mode the supplied XMP
metadata must conform to additional requirements (see PDFlib Tutorial).

(Boolean) If true, the ModDate (modification date) document info key will be created for compliance with
some preflight tools. Default: false

3.1 Document Functions 43

Table 3.1 Document options for PDF_begin_document() and PDF_end_document()

option

objectstreams’

openmode

optimize®

pagelayout

portfolio’

search

description

(List of keywords; PDF 1.5; will be forced to false if optimize or 1inearize is true) Generate compressed
object streams which significantly reduce output file size (default: {other nodocinfo}):

bookmarksCompress bookmark objects.

docinfo Compress document info fields.

dpartarrays Compress dictionaries related to the document part hierarchy.

dpartdicts Compress arrays related to the document part hierarchy.

fields Compress form fields.

names Compress objects for named destinations.

none Don’t generate any compressed object streams (except for categories which are explicitly
enabled after this option).

other All categories which are not explicitly disabled after this keyword, plus other object types
which don’t have their own keyword.

pages Compress the objects comprising the page tree.

poca Compress all simple objects created with the POCA interface.

tags Compress marked content tags.

xref Generate a compressed xref stream. This category will automatically be enabled if at least

one of the other categories is enabled.
Except for none and other, all keywords can be prefixed with no (e.g. nodocinfo) to disable compression
for the specified category. If at least one such negative keyword is supplied, the keyword other will be
prepended to the list.

(Keyword) Set the appearance when the document is opened. Default: bookmazrks if the document con-
tains any bookmarks, otherwise none.

none Open with no additional panel visible.

bookmarks Open with the bookmark panel visible.

thumbnails Open with the thumbnail panel visible.

fullscreen Open in fullscreen mode (does not work in the browser).
layers (PDF 1.5) Open with the layer panel visible.

attachments (PDF 1.6) Open with the attachments panel visible.

(Boolean) If txue, the output document will be optimized in a separate pass after generating it. Optimi-
zation reduces file size by eliminating redundant duplicate objects. In general optimization will not have
any significant effect except for inefficient client code (e.g. loading the same image or ICC profile multiply
instead of reusing the handle). On z/0S this option cannot be combined with in-core generation (i.e. an
empty filename). Default: false

(Keyword) The page layout to be used when the document is opened. Default: default.

default The default setting of the Acrobat viewer.

singlepage Display one page at a time.

onecolumn Display the pages continuously in one column.

twocolumnleft Display the pages in two columns, odd pages on the left.

twocolumnright Display the pages in two columns, odd pages on the right

twopageleft (PDF 1.5) Display the pages two at a time, with odd-numbered pages on the left.
twopageright (PDF 1.5) Display the pages two at a time, with odd-numbered pages on the right.

(Option list; PDF 1.7) Suboptions for creating a PDF portfolio according to Table 12.13

(Option list; not in I1SO 32000-1) Instruct Acrobat to attach a search index when opening the document.
The following suboptions are supported:

filename (Hypertext string; required) Name of a file containing a search index
indextype (Name string) Type of the index; must be PDX for Acrobat. Default: PDX

44 Chapter 3: Document and Page Functions

Table 3.1 Document options for PDF_begin_document() and PDF_end_document()

option

uri

viewer-
preferences

description

(String) Set the document’s base URL. This is useful when a document with relative Web links is moved to
a different location. Adjusting the base URL makes sure that relative links will still work. Default: none

(Option list) Option list specifying various viewer preferences according to Table 3.7. Default: empty

1. Only for PDF_end_document()
2. Only for PDF_begin_document() and PDF_begin_document_callback()

Table 3.2 Options for PDF compatibility and standards in PDF_begin_document()

option

compatibility

nodenamelist

pdfa

pdfua

pdfvt

description

(Keyword; will be ignored if one of the pdfa, pdfua, pdfvt or pdfx options is used with a value different
from none) Set the document’s PDF version to one of the keywords listed below. This option affects which
PDF creation features are available and which PDF documents can be imported with PDFlib+PDI (default:
1.7):

1.4 PDF 1.4 requires Acrobat 5 or above.
15 PDF 1.5 requires Acrobat 6 or above.
1.6 PDF 1.6 requires Acrobat 7 or above.
1.7 PDF 1.7 is specified in ISO 32000-1 and requires Acrobat 8 or above.

1.7ext3 PDF 1.7 extension level 3 requires Acrobat g or above.
1.7ext8 PDF 1.7 extension level 8 requires Acrobat X or above.
2.0 PDF 2.0 is specified in ISO 32000-2.

(List of name strings; required for pdfvt=PDF/VT-1 and pdfvt=PDF/VT-2) Names for all levels of the doc-
ument part hierarchy. All names must consist of ASClI characters and must conform to the rules of an
XML NMTOKEN. The first string specifies the name for level o in the document part hierarchy.

(Keyword) Set the PDF/A conformance level to one of the following (default: none) :

PDF/A-1a:2005, PDF/A-1b:2005 (implies compatibility=1.4)

PDF/A-2a, PDF/A-2b, PDF/A-2u (implies compatibility=1.7)

PDF/A-3a, PDF/A-3b, PDF/A-3u (implies compatibility=1.7)

none

PDF/A1-a:2005, PDF/A-2a, and PDF/A-3a imply tagged=true. PDF/A can simultaneously conform to oth-
er standards as follows:

pdfx=PDF/X-1a:2003, PDF/X-3:2003, PDF/X-4
pdfvt=PDF/VT-1
pdfua=PDF/UA-1

If multiple options for PDF standards are specified the lowest compatibility value is used.

(Keyword) Set the PDF/UA conformance level to one of the following (default: none) :
PDF/UA-1 Implies compatibility=1.7 and tagged=true.
none No PDF/UA output

(Keyword) Set the PDF/VT conformance level to one of the following (default: none) :
PDF/VT-1 Implies pdfx=PDF/X-4; any other value for the pdfx option is an error.

PDF/VT-2 The pdfx option must specify one of PDF/X-4p, PDF/X-5g, PDF/X-5pg; any other value for the
pdfx option is an error.

none No PDF/VT output

3.1 Document Functions 45

Table 3.2 Options for PDF compatibility and standards in PDF_begin_document()

option

pdfx

recordlevel

uses-

description

(Keyword) Set the PDF/X conformance level to one of the following (default: none) :
PDF/X-1a:2003 (implies compatibility=1.4)

PDF/X-3:2003 (implies compatibility=1.4)

PDF/X-4, PDF/X-4p’ (implies compatibility=1.6)

PDF/X-5g, PDF/X-5pg’ (implies compatibility=1.6)

none

(Non-negative integer; only relevant if a document part hierarchy is created) Zero-based level of the
document part hierarchy which corresponds to recipient records.

(Boolean; only for PDF/VT) If false, none of the pages in the generated document will contain any trans-

transparency parent objects. PDFlib will throw an exception if this assertion is violated. Setting this option to false is

allowed only for documents without transparency, and facilitates generation of encapsulated XObjects
for PDF/VT since all XObjects will unconditionally be marked as encapsulated. Default: txue

1. The PDFlib Tutorial contains an important note about Acrobat problems with referenced ICC profiles.

Table 3.3 Options for Tagged PDF in PDF_begin_document()

option

checktags

lang

rolemap

description

(Keyword; must be strict in PDF/UA mode) Specifies whether the structure element nesting rules (see
PDFlib Tutorial) are checked for elements created with PDF_begin_item() or the tag option of various
functions. This option is only provided as a migration aid. It does not affect the tags in imported pages
(see option checktags of PDF_open_pdi_document()). Supported keywords (default: strict):

none Tag nesting rules are not enforced. This setting may result in an invalid structure hierarchy
and is therefore not recommended.

relaxed Similar to strict except that a few rules are not enforced (see PDFlib Tutorial).
strict If a tag violates the nesting rules an exception will be thrown.

(String; recommended if tagged=true) Set the primary language of the document as a two-character
I1SO 639 language code (examples: DE, EN, FR, JA), optionally followed by a hyphen and a two-character
1SO 3166 country code (examples: EN-US, EN-GB, ES-MX). Case is not significant.

The language specification can be overridden for individual structure items on all levels of the structure
tree, but should be set initially for the document as a whole.

PDF/UA: the natural language must be specified with this option or with the 1ang suboption of individu-
al structure elements.

(List of string lists; the first element in each string list is a name string, the second element is a string; only
for Tagged PDF; required if custom element types are used) Mapping of custom element types to stan-
dard element types. Each sublist contains the name of a standard or custom element type, and the name
of the standard element type to which the first type will be mapped. Inline and pseudo element types are
not allowed for the second entry in a sublist. Standard element type names also can be mapped to other
standard element types in order to assign different semantics to existing element types. Indirect map-
pings are allowed, i.e. a custom type is mapped to another custom type which is then mapped to a stan-
dard type. Pairs with identical entries are silently ignored. See Section 14.3, »Tagged PDF«, page 258, re-
garding the use of custom element types in Tagged PDF. Custom element type names must not start with
the reserved prefix P1ib.

In PDF/UA it is not allowed to remap standard element types.

46 Chapter 3: Document and Page Functions

Table 3.3 Options for Tagged PDF in PDF_begin_document()
option description

structuretype (Keyword; only for PDF/UA) Type of document structure. Supported keywords (default: weak) :

strong The document is strongly structured, i.e. the structure tree reflects the document’s logical
organization. The only allowed structure type for headings is H, while H1, H2, etc. are not
allowed. Each node in the structure tree contains at most one H tag plus one or more
paragraph tags P.

weak The document is weakly structured, i.e. the structure tree is only a few levels deep with all
headings, paragraph etc. as immediate children. Logical structure may be expressed with
heading tags H1, H2, etc., while H is not allowed. Headings may not have any descendants.

tag (Option list) Tagging options according to Table 14.4. The specified structure element comprises the docu-
ment structure root and will be closed automatically in PDF_end_document(). Only grouping elements
are allowed for the tagname suboption.

tagged (Boolean) If true, generate Tagged PDF output. Proper structure information must be provided by the cli-
ent in Tagged PDF mode (see Section 14.3, »Tagged PDF«, page 258). If PDF/A-1a:2005, PDF/A-2a, PDF/A-
3a or PDF/UA-1 mode is active this option will automatically be set to true. Default: false

Table 3.4 Security options for PDF_begin_document(); not allowed for PDF/A and PDF/X
option description

attachment- (String®; PDF 1.6; will be ignored if usexpassword or masterpassword are set; can not be combined with

password' the linearize and optimize options; not for PDF/A and PDF/X) File attachments will be encrypted using
the supplied string as password. The rest of the document will not be encrypted. On EBCDIC platforms
the password is expected in ebcdic encoding or EBCDIC-UTF-8.

master- (String; required if permissions has been specified; not for PDF/A and PDF/X) The master password for
password' the document. If it is empty no master password will be applied. On EBCDIC platforms the password is
expected in ebcdic encoding or EBCDIC-UTF-8. Default: empty

permissions (Keyword list; not for PDF/A and PDF/X) The access permission list for the output document. It contains
any number of the following keywords (default: empty):

noprint Acrobat will prevent printing the file.

nohiresprint
Acrobat will prevent high-resolution printing. If noprint isn’t set, printing is restricted to the
»print as image« feature which prints a low-resolution rendition of the page.

nomodify Acrobat will prevent editing or cropping pages and creating or changing form fields.

noassemble (Implies nomodify) Acrobat will prevent inserting, deleting, or rotating pages and creating
bookmarks and thumbnails.

noannots Acrobat will prevent creating or changing annotations and form fields.

noforms (implies nomodify and noannots) Acrobat will prevent form field filling.

nocopy Acrobat will prevent copying and extracting text or graphics; the accessibility interface will be
controlled by noaccessible.

noaccessible
(Deprecated in PDF 2.0; not allowed in PDF/UA) Acrobat will prevent extracting text or
graphics for accessibility (e.g. a screenreader).

plainmetadata
(PDF 1.5) Keep XMP document metadata unencrypted even in an encrypted document.

user- (String; not for PDF/A and PDF/X) The user password for the document. If it is empty no user password
password' will be applied. On EBCDIC platforms the password is expected in ebcdic encoding or EBCDIC-UTF-8. De-
fault: empty

1. In order to pass arbitrary strings with this option the option list syntax described in »Unquoted string values in option lists«, page 9,
may be useful.
2. Characters outside of Winansi encoding are only allowed in passwords for compatibility=1.7ext3 or above

3.1 Document Functions 47

Table 3.5 Output processing options for PDF_begin_document()

option

createoutput

createpvf

filemode

flush

inmemory

recordsize

remove-
fragments

tempdirname

temp-
filenames

description

(Boolean) If false, the filename parameter is ignored and no output file or memory area is created. This
option implies compress=0, linearize=false and optimize=false. Default: true

(Boolean) If true, generate the PDF file in memory instead of on file. The supplied file name is the name
of a virtual file which will be created with the call of PDF_end_document(). In this case PDF_get_buffer()
cannot be called to fetch the PDF output data; instead, the name of the generated PVF file can be sup-
plied to other PDFlib functions. This may be useful when generating documents which will be included in
a PDF Portfolio. Default: false

(String, z/0S and USS only) Parameter string for setting the file mode of the document file and any tem-
porary file (e.g. with the 1inearize option). The supplied string will be appended to the default file mode
of »wb, «. The option recordsize must be consistent with the parameters specified in this option. Exam-
ple string: recfm=fb,1recl=80, space=(cyl, (1,5). Default: empty, or recfm=v for unblocked output.

(Keyword; only for PDF_begin_document_callback()) Set the flushing strategy. Default: page.
none flush only once at the end of the document

page flush at the end of each page

content flush after all fonts, images, file attachments, and pages

heavy always flush when the internal 64 KB document buffer is full

(Boolean