z-PDFlib GmbH

PDFlib, PDFlib+PDI, PPS

A library for generating PDF on the fly
PDFlib 9.0.3

API Reference

For use with C, C++, Cobol, COM, Java, .NET, Objective-C,
Perl, PHP, Python, REALbasic/Xojo, RPG, Ruby

Copyright © 1997-2014 PDFlib GmbH and Thomas Merz. All rights reserved.
PDFlib users are granted permission to reproduce printed or digital copies of this manual for internal use.

PDFlib GmbH

Franziska-Bilek-Weg 9, 80339 Miinchen, Germany
www.pdflib.com

phone +49 + 89 « 452 33 84-0

fax +49 « 89 + 45233 84-99

If you have questions check the PDFlib mailing list and archive at tech.groups.yahoo.com/group/pdflib

Licensing contact: sales@pdflib.com
Support for commercial PDFlib licensees: support@pdflib.com (please include your license number)

This publication and the information herein is furnished as is, is subject to change without notice, and
should not be construed as a commitment by PDFlib GmbH. PDFlib GmbH assumes no responsibility or lia-
bility for any errors or inaccuracies, makes no warranty of any kind (express, implied or statutory) with re-
spect to this publication, and expressly disclaims any and all warranties of merchantability, fitness for par-
ticular purposes and noninfringement of third party rights.

PDFlib and the PDFlib logo are registered trademarks of PDFlib GmbH. PDFlib licensees are granted the
right to use the PDFlib name and logo in their product documentation. However, this is not required.

Adobe, Acrobat, PostScript, and XMP are trademarks of Adobe Systems Inc. AlX, IBM, 0S/390, WebSphere,
iSeries, and zSeries are trademarks of International Business Machines Corporation. ActiveX, Microsoft,
OpenType, and Windows are trademarks of Microsoft Corporation. Apple, Macintosh and TrueType are
trademarks of Apple Computer, Inc. Unicode and the Unicode logo are trademarks of Unicode, Inc. Unix is a
trademark of The Open Group. Java and Solaris are trademarks of Sun Microsystems, Inc. HKS is a regis-
tered trademark of the HKS brand association: Hostmann-Steinberg, K+E Printing Inks, Schmincke. Other
company product and service names may be trademarks or service marks of others.

PANTONE® colors displayed in the software application or in the user documentation may not match
PANTONE-identified standards. Consult current PANTONE Color Publications for accurate color. PANTONE®
and other Pantone, Inc. trademarks are the property of Pantone, Inc. © Pantone, Inc., 2003.

Pantone, Inc. is the copyright owner of color data and/or software which are licensed to PDFlib GmbH to
distribute for use only in combination with PDFlib Software. PANTONE Color Data and/or Software shall
not be copied onto another disk or into memory unless as part of the execution of PDFlib Software.

PDFlib contains modified parts of the following third-party software:

ICClib, Copyright © 1997-2002 Graeme W. Gill

GIF image decoder, Copyright © 1990-1994 David Koblas

PNG image reference library (libpng), Copyright © 1998-2012 Glenn Randers-Pehrson

Zlib compression library, Copyright © 1995-2012 Jean-loup Gailly and Mark Adler

TIFFlib image library, Copyright © 1988-1997 Sam Leffler, Copyright © 1991-1997 Silicon Graphics, Inc.
Cryptographic software written by Eric Young, Copyright © 1995-1998 Eric Young (eay@cryptsoft.com)
Independent JPEG Group’s JPEG software, Copyright © 1991-1998, Thomas G. Lane

Cryptographic software, Copyright © 1998-2002 The OpenSSL Project (www.openssl.org)

Expat XML parser, Copyright © 1998, 1999, 2000 Thai Open Source Software Center Ltd

ICU International Components for Unicode, Copyright © 1995-2012 International Business Machines Corpo-
ration and others

Reference sSRGB ICC color profile data, Copyright (c) 1998 Hewlett-Packard Company

PDFlib contains the RSA Security, Inc. MD5 message digest algorithm.

http://www.pdflib.com
http://tech.groups.yahoo.com/group/pdflib
mailto:sales@pdflib.com
mailto:support@pdflib.com

11

1.2

1.3

2.1
2.2
23
2.4

2.5
2.6

3.1
3.2
3.3
3-4

41
4.2
43
4.4
45

5.1
5.2
53

6.1

Contents

Programming Concepts ;

Option Lists 7

111 Syntax 7

112 Simple Data Types 10

11.3 Fontsize and Action Data Types 12
114 Color Data Type 13

11.5 Geometric Data Types 15

Function Scopes 17

Logging 18

General Functions 2z

Exception Handling 21

Unicode Conversion 23

Global Options 25

Creating and Deleting PDFlib Objects 32
PDFlib Virtual File System (PVF) 34

PDF Object Creation API (POCA) 37

Document and Page Functions 4
Document Functions 41

Fetching PDF Documents from Memory 51

Page Functions 52

Layers 57

Font and Text Functions 6;
Font Handling 63

Text Filter and Appearance Options 75
Simple Text Output 8o

User-defined (Type 3) Fonts 84
User-defined 8-Bit Encodings 87

Text and Table Formatting sy

Single-Line Text with Textlines 89
Multi-Line Text with Textflows g5

Table Formatting 112

Object Fitting and Matchboxes 123
Object Fitting 123

Contents

3

71
7.2
73
74
75
7.6

8.1
8.2
8.3

9.1
9.2
93
9.4

10
10.1
10.2
10.3

10.4

n

1.1

1.3

1.4
1.5

12

12.1
12.2
12.3

12.4
12.5

Matchboxes 131

Graphics Functions i35

Graphics Appearance Options 135
Graphics State 138

Coordinate System Transformations 142
Path Construction 145

Painting and Clipping 149

Path Objects 157

Color Functions 157

Setting Color 157
ICC Profiles 160
Patterns and Shadings 162

Image, SVG and Template Functions 1,

Images 167
SVG Graphics 175
Templates 181

Common XObject Options 183

PDF Import (PDI) and pCOS Functions s;

Document Functions 187
Page Functions 191
Other PDI Processing 197
pCOS Functions 199

Block Filling Functions (PPS) :o3

Rectangle Options for Block Filling Functions 203
Textline and Textflow Blocks 204

Image Blocks 206

PDF Blocks 207

Graphics Blocks 208

Interactive Features :o09

Bookmarks 209
Annotations 217
Form Fields 219
Actions 226

Named Destinations 237

4 Contents

12.6 PDF Packages and Portfolios 233

12.7 Geospatial Features 238

13 Multimedia Features 24

13.1 3D Artwork 247
13.2 Asset and Rich Media Features (Flash) 247

14 Document Interchange :ss

14.1 Document Information Fields 255
14.2 XMP Metadata 257

14.3 Tagged PDF 258

14.4 Marked Content 264

14.5 Document Part Hierarchy 266

A List of all APl Functions 269
B List of all Options and Keywords 7
C Revision History 2s;

Index 23¢9

Contents 5

1

1.1

Bindings

Note

Programming Concepts

Option Lists

Option lists are a powerful yet easy method for controlling API function calls. Instead of
requiring a multitude of function parameters, many API methods support option lists,
or optlists for short. These are strings which can contain an arbitrary number of options.
Option lists support various data types and composite data like lists. In most language
bindings optlists can easily be constructed by concatenating the required keywords and
values.

Clanguage binding: you may want to use the sprintf() function for constructing optlists.

NET language binding: C# programmers should keep in mind that the AppendFormat()
StringBuilder method uses the { and } braces to represent format items which will be re-
placed by the string representation of arguments. On the other hand, the Append()
method does not impose any special meaning on the brace characters. Since the option
list syntax makes use of the brace characters, care must be taken in selecting the
AppendFormat() or Append() method appropriately.

Syntax

Formal option list syntax definition. Option lists must be constructed according to fol-
lowing rules:

» All elements (keys and values) in an option list must be separated by one or more of
the following separator characters: space, tab, carriage return, newline, equal sign '=’.

» An outermost pair of enclosing braces is not part of the element. The sequence {}
designates an empty element.

» Separators within the outermost pair of braces no longer split elements, but are part
of the element. Therefore, an element which contains separators must be enclosed
with braces.

» If an element contains brace characters these must be protected with a preceding
backslash character.

» If an element contains a sequence of one or more backslash characters in front of a
brace, each backslash in the sequence must be protected with another backslash
character.

» Option lists must not contain binary zero values.

An option may have a list value according to its documentation in this PDFlib Refer-
ence. List values contain one or more elements (which may themselves be lists). They
are separated according to the rules above, with the only difference that the equal sign
isnolonger treated as a separator.

Option names (i.e. the key) never contain hyphen characters. Keep this in mind since the tables
with option descriptions may sometimes contain long option names which are hyphenated.
The hyphen must be omitted when supplying the option in an option list.

Simple option lists. In many cases option lists will contain one or more key/value
pairs. Keys and values, as well as multiple key/value pairs must be separated by one or

1.1 Option Lists

7

more whitespace characters (space, tab, carriage return, newline). Alternatively, keys
can be separated from values by an equal sign '=":

key=value

key = value

key value

keyl = valuel key2 = value2

To increase readability we recommend to use equal signs between key and value and
whitespace between adjacent key/value pairs.

Since option lists will be evaluated from left to right an option can be supplied mul-
tiply within the same list. In this case the last occurrence will overwrite earlier ones. In
the following example the first option assignment will be overridden by the second,
and key will have the value valuez after processing the option list:

key=valuel key=value2
List values. Lists contain one or more separated values, which may be simple values or

list values in turn. Lists are bracketed with { and } braces, and the values in the list must
be separated by whitespace characters. Examples:

dasharray={11 22 33} (1ist containing three numbers)
position={ center bottom } (1ist containing two keywords)

Alist may also contain nested lists. In this case the lists must also be separated from
each other by whitespace. While a separator must be inserted between adjacent } and {
characters, it can be omitted between braces of the same kind:

polylinelist={{10 20 30 40} {50 60 70 80}} (list containing two lists)

If the list contains exactly one list the braces for the nested list must not be omitted:
polylinelist={{10 20 30 40}} (1ist containing one nested list)

Nested option lists and list values. Some options accept the type option list or list of
option lists. Options of type option list contain one or more subordinate options. Options
of type list of option lists contain one or more nested option lists. When dealing with
nested option lists it is important to specify the proper number of enclosing braces.
Several examples are listed below.

The value of the option metadata is an option list which itself contains a single op-
tion filename:

metadata={filename=info.xmp}

The value of the option fill is a list of option lists containing a single option list:

fill={{ area=table fillcolor={rgb 1 0 0} }}

The value of the option fill is a list of option lists containing two option lists:

fill={{ area=rowodd fillcolor={rgb 0 1 0} } { area=roweven fillcolor={rgb 1 0 0} }}

List containing one option list with a value that includes spaces:

attachments={{filename={foo bar.xml} }}

8 Chapter1: Programming Concepts

List containing three strings:

itemnamelist = { {Isaac Newton} {James Clark Maxwell} {Albert Einstein} }

List containing two keywords:

position={left bottom}

List containing different types (float and keyword):

position={10 bottom}

List containing one rectangle:

boxes={{10 20 30 40}}

List containing two polylines with percentages:
polygons = {{10 20 40 60 90 120}} {12 87 34 98 34% 67% 34% 7%}}
Common traps and pitfalls. This paragraph lists some common errors regarding op-

tion list syntax.
Braces are not separators; the following is wrong:

key1 {valuei}key2 {value2} WRONG!
This will trigger the error message Unknown option 'value2'. Similarly, the following are
wrong since the separators are missing:

key{value} WRONG!
key={{value1i}{value2}} WRONG!

Braces must be balanced; the following is wrong (see below for unquoted string syntax):

key={open brace {} WRONG!

This will trigger the error message Braces aren't balanced in option list 'key={open brace {}"

A single brace as part of a string must be preceded by an additional backslash character:

key={closing brace \} and open brace \{} CORRECT!

Abackslash at the end of a string value must be preceded by another backslash if it is
followed by a closing brace character:

key={\value\} WRONG!
key={\value\\} CORRECT!

Unquoted string values in option lists. In the following situations conflicts between
the characters in an option value and optlist syntax characters may arise:
» Passwords may contain unbalanced braces, backslashes and other special characters
» Japanese SJIS filenames in option lists (reasonable only in non-Unicode-capable lan-
guage bindings)
» Supplying JavaScript code in options is problematic due to the use of { and } braces

1.1 Option Lists

.9

1.1.2

In order to provide a simple mechanism for supplying arbitrary text or binary data
which does not interfere with option list syntax elements, unquoted option values can
be supplied along with a length specifier in the following syntax variants:

key[n]=value
key[n]={value}

The decimal number n represents the following:
» in Unicode-capable language bindings: the number of UTF-16 code units
» in non-Unicode aware language bindings: the number of bytes comprising the string

The braces around the string value are optional, but strongly recommended. They are
required for strings starting with a space or other separator character. Braces, separators
and backslashes within the string value are taken literally without any special interpre-
tation.

Example for specifying a 7-character password containing space and brace charac-
ters. The whole string is surrounded by braces which are not part of the option value:

password[7]={ ab}c d}
If an option value in a nested option list is provided with a length count, the enclosing
option list must also supply a length count, e.g.

fitannotation[34]={contents[19]={this is a brace '}'}}

Simple Data Types

String. Strings are plain ASCII strings (or EBCDIC strings on EBCDIC platforms) which
are generally used for non-localizable keywords. Strings containing whitespace or =’
characters must be bracketed with { and }:

password={ secret string } (string value contains three blanks)
contents={1length=3mm} (string value containing one equal sign)

The characters { and } must be preceded by an additional \ character if they are sup-
posed to be part of the string:

password={weird\}string} (string value contains a right brace)

A backslash in front of the closing brace of an element must be preceded by a backslash
character:

filename={C:\path\name\\} (string ends with a single backslash)

An empty string can be constructed with a pair or braces:

{

Content strings, hypertext strings and name strings: these can hold Unicode content in
various formats. Single bytes can be expressed by an escape sequence if the option
escapesequence is set. For details on these string types and encoding choices for string
options see the PDFlib Tutorial.

10 Chapter 1: Programming Concepts

Non-Unicode capable language bindings: if an option list starts with a [EBCDIC-]JUTEF-
8 BOM, each content, hypertext or name string of the option list is interpreted as a [EBC-
DIC-]UTF-8 string.

Unichar. A Unichar is a single Unicode value where several syntax variants are sup-
ported: decimal values > 10 (e.g. 173), hexadecimal values prefixed with x, X, ox, oX, or U+
(xAD, oxAD, U+00AD), numerical references, character references, and glyph name refer-
ences but without the ‘&’ and ’;’ decoration (shy, #xAD, #173). Alternatively, literal charac-
ters can be supplied. Examples:

replacementchar=? (literal)

replacementchar=63 (decimal)

replacementchar=x3F (hexadecimal)

replacementchar=0x3F (hexadecimal)

replacementchar=U+003F (Unicode notation)
replacementchar=euro (HTML character reference)
replacementchar=.question (standard glyph name reference)
replacementchar=.marina (font-specific glyph name reference)

Single characters which happen to be a number are treated literally, not as decimal Uni-
code values:

replacementchar=3 (U+0033 THREE, not U+0003!)
Unichars must be in the hexadecimal range o-ox10FFFF (decimal o-1174117). However,

some options are restricted to the range 0-oxFFFF (0-65535). This is noted in the respec-
tive option description.

Unicode range. A Unicode range identifies a contiguous range of Unicode characters
via start and end characters of the range. The start and end values of a Unicode range
must be separated by a minus sign -’ without any spaces, e.g.

forcechars={U+03AC-U+03CE}
Boolean. Booleans have the values true or false; if the value of a Boolean option is

omitted, the value true is assumed. As a shorthand notation noname can be used instead
of name=false:

embedding (equivalent to embedding=true)
noembedding (equivalent to embedding=false)

Keyword. An option of type keyword can hold one of a predefined list of fixed key-
words. Example:

blendmode=overlay
For some options the value hold either a number or a keyword.
Number. Option list support several numerical types.

Integer types can hold decimal and hexadecimal integers. Positive integers starting
with x, X, ox, or oX specify hexadecimal values:

1.1 Option Lists

1

-12345
0
OxFF

Floats can hold decimal floating point or integer numbers; period and comma can be
used as decimal separators for floating point values. Exponential notation is also sup-
ported. The following values are all equivalent:

size = -123.45
size = -123,45
size = -1.2345E2
size = -1.2345e+2

Percentages are numbers with a % character directly after the numerical value. Some
options allow negative percentages:

leading=120%
topoffset=-20.5%

Handle. Handles identify various types of objects, e.g. fonts, images, ICC profiles or ac-
tions. Technically these are integer values which have been returned earlier by an API
function. For example, an image handle is returned by PDF load_image(). Handles must
always be treated as opaque types; they must never be modified or created by the appli-
cation directly (as opposed to using a handle returned by an API function). Handles
must always be valid for the respective type of object. For example, an option which ex-
pects an image handle must not be supplied with a graphics handle, although both han-
dles are integer types.

Fontsize and Action Data Types

Fontsize. A fontsize can be defined in several ways which allow the size of text to be
specified in absolute values, relative to some external entity, or relative to some font
property. In general the fontsize must be different from o unless the option description
mentions otherwise.

In the most common case a fontsize contains a single float value which specifies re-
fers to units in the user coordinate system:

fontsize=12

The second variant contains a percentage, where the basis of the percentage depends on
the context (e.g. the width of the fitbox for PDF fit_textline()):

fontsize=8%
In the third variant, the fontsize is specified as an option list which must contain a key-
word and a number. The keyword describes the desired font metric according to Table

1.1, and the number contains the desired size. PDFlib will calculate the proper fontsize so
that the selected text metric matches the supplied value:

fontsize={capheight 5}

Action list. An action list specifies one or more actions. Each entry in the list consists
of an event keyword (trigger) and a list of action handles which must have been created

12 Chapter1: Programming Concepts

Table 1.1 Suboptions for options of type fontsize

option explanation

ascender The number is interpreted as ascender height.

bodyheight The number is interpreted as minimum distance between baselines, i.e. descenders and ascenders of ad-
jacent lines may exactly touch if this value is used as leading. This is the default behavior if no keyword is
provided.

capheight The number is interpreted as capital letter height.

xheight The number is interpreted as lowercase letter height.

with PDF create_action(). Actions will be performed in the listed order. The set of al-
lowed events (e.g. docopen) and the type of actions (e.g. JavaScript) are documented sep-
arately for the respective options.

List containing a single trigger with three actions:

action={ activate={ 012 } }

List containing three triggers with one action for each:

action={ keystroke=0 format=1 validate=2 }

1.1.4 Color Data Type

Overview of color spaces. You can specify the colors for filling and stroking paths and
text characters. Colors can be specified in several color spaces (each list item starts with
the corresponding color space keyword for PDF setcolor() and color options):

>

| 4

v

v

gray: Gray values between o=black and 1=white;

rgb: RGB triples, i.e. three values between o and 1 specifying the percentage of red,
green, and blue; (o, 0, 0)=black, (1, 1, 7)=white. The commonly used RGB color values in
the range o-255 must be divided by 255 in order to scale them to the range o-1 as re-
quired by PDFlib.

As an alternative to numerical RGB values you can specify RGB colors via their HTML
name or hexadecimal values.

c¢myk: Four CMYK values between o = no color and 1 = full color, representing cyan,
magenta, yellow, and black values; (o, o, 0, 0o)=white, (0, o, 0, 1)=black. Note that this is
different from the RGB specification.

iccbased (not for PDF _setcolor()) and iccbasedgray/rgb/cmyk: ICC-based colors are based
on an ICC profile.

spotname: name of a predefined spot color and a tint value (percentage) in the range
o=no color to 1=maximum intensity.

Alternatively, the name of a custom spot color, a tint value (percentage), and an al-
ternate representation in one of the other color spaces above.

spot: handle for a predefined or custom spot color and a tint value (percentage).

lab expects device-independent colors in the CIE L*a*b* color space with D50 stan-
dard illuminant. Colors are specified by a luminance value in the range 0-100 and
two color values g and b in the range -128 to 127. The a component ranges from green
to red/magenta (negative values indicate green, positive values indicate magenta),
and the b component ranges from blue to yellow (negative values indicate blue, pos-
itive values indicate yellow).

1.1 Option Lists

13

Note

» pattern: tiling pattern with an object composed of arbitrary text, vector, or image
graphics. Patterns can be created with PDF_begin_pattern_ext() or PDf _shading
pattern() and are identified by a pattern handle.

The default color for stroke and fill operations is black. The color space for this default
color is selected automatically to match PDF/X and PDF/A color requirements.

Shadings (smooth blends) provide a gradual transition between two colors. They can be creat-
ed with PDF_shading().

Color options. Color options can be defined in three different forms: using an RGB col-
or name, hexadecimal RGB values, or a flexible option list for colors in any color space.

Cookbook A full code sample for using RGB color values can be found in the Cookbook topic

color/web_colornames.

In the first form all valid color names from SVG 1.1 can be supplied directly to specify an
RGB color or an sRGB color if the sSRGB ICC profile has been selected, e.g.

strokecolor=pink

The color names are case-insensitive. A list of valid RGB color names can be found at the
following location:

www.w3.org/TR/SVG11/types.html#ColorKeywords

In the second form a hash '#’ character followed by any three pairs of hexadecimal dig-
its oo-FF can be supplied to specify an RGB color value, e.g.

strokecolor=#FFCOCB

In the third form an color option list specified a color space and color value. A color op-
tion list contains a color space keyword and a list with a variable number of float values
depending on the particular color space. Color space keywords are the same as for PDF
setcolor() (see Section 8.1, »Setting Color«, page 157). Table 1.2 contains specific descrip-
tions and examples. As detailed in the respective function descriptions, a particular op-
tion list may support only a subset of the color space keywords.

Cookbook A full code sample can be found in the Cookbook topic color/starter_color.

Table 1.2 Keywords for the color data type in option lists

keyword additional values example
gray single float value for the grayscale color space { gray 0.5 }
rgb three float values for the RGB color space {rgh100}
(no keyword) HTML color name or hexadecimal values for an RGB color pink
#FFCOCB
cmyk four float values for the CMYK color space {cmyk o100}
lab three float values for the Lab color space { lab 100 50 30 }
spot spot color handle and a float specifying the tint value { spot 1 0.8 }
14 Chapter1: Programming Concepts

http://www.w3.org/TR/SVG11/types.html#ColorKeywords
http://www.pdflib.com/pdflib-cookbook/color/starter-color
http://www.pdflib.com/pdflib-cookbook/color/web-colornames

Table 1.2 Keywords for the color data type in option lists

keyword additional values example

spotname (up to 63 bytes; fewer Unicode characters depending on format { spotname {PANTONE 281 U} 0.5 }

and encoding) spot color name and a float specifying the tint val-
ue

spotname Similar to the simple form of spotname above, but a color value { spotname {PDFlib Blue} 0.5

can be added to specify the alternate color for a custom spot color ~ { 1lab 100 50 30 } }
(i.e. a spot color name which is not known internally to PDFIib). If

multiple options define the same custom spot color name all defi-

nitions must be consistent (i.e. define the same alternate color).

iccbased ICC profile handle or keyword sxgb, plus 1, 3 or 4 color values de- { iccbased <handle> 0.5 }

pending on the type of ICC profile (gray, RGB, or CMYK). The stgb { iccbased <handle> 0 0 0.75 }

keyword must not be used in document scope. { iccbased srgb 0 0 0.75 }

{ iccbased <handle> 0 0 0.3 1 }

iccbasedgray single float value referring to an ICC profile selected with the op- { iccbasedgray 0.5 }

tion iccprofilegray

icchasedrgb three float values value referring to an ICC profile selected with the { iccbasedrgb 1 0 0 }

option iccprofilergb

iccbasedcmyk four float values value referring to an ICC profile selected with the { iccbasedcmyk 0 1 0 0 }

option iccprofilecmyk

attern attern handle { pattern 1}
p p p

none

1.1.5

specifies the absence of color none

Geometric Data Types

Line. Aline isa list of four float values specifying the x and y coordinates of the start
and end point of a line segment. The coordinate system for interpreting the coordinates
(default or user coordinate system) varies depending on the option, and is documented
separately:

line = {10 40 130 90}
Polyline. A polyline is alist containing an even number n of float values with n>2. Each
pair in the list specifies the x and y coordinates of a point; these points will be connected

by line segments. The coordinate system for interpreting the coordinates (default or
user coordinate system) varies depending on the option, and is documented separately:

polyline = {10 20 30 40 50 60}

The following option lists are equivalent:

polyline = {10 20 30r 40r 50r 601}
polyline = {10 20 40 60 90 120}

Quadrilaterals are a special type of polylines: these are rectangles which may be rotated
and for which exactly four points must be specified.

Another special type are polygons: these are polylines which will automatically be
closed by a line segment.

1.1 Option Lists

Rectangle. Arectangleis alist of four float values specifying the x and y coordinates of
the lower left and upper right corners of a rectangle. The coordinate system for inter-
preting the coordinates (default or user coordinate system) varies depending on the op-
tion, and is documented separately. Some options accept percentages, where the basis
for the percentage depends on the context (e.g. the fitbox of a Textflow). Relative coordi-
nates can be supplied by adding the suffix r immediately after a number. Within a coor-
dinate list a relative coordinate relates to the previous x or y coordinate. Relative coordi-
nates at the beginning of a list relate to the origin, i.e. they are absolute coordinates.
Examples:

cropbox={ 0 0 500 600 }
box={40% 30% 50% 70%}

The following options are equivalent:

box={12 34 56r 78r}
box={12 34 68 112}

Circle. A circle is specified as a list of four float values where the first pair specifies the
x and y coordinates of the center, and the second pair specifies the x and y coordinates
of an arbitrary point on the circle. The coordinate system for interpreting the coordi-
nates (default or user coordinate system) varies depending on the option, and is docu-
mented separately:

circle={200 325 200 200}

Curve list. A curve list consists of two or more connected third-order Bézier curve seg-
ments. A Bézier curve is specified by four control points. The first control point is the
starting point and the fourth point is the end point of the curve. The second and third

point control the shape of the curve. In a curve list the last point of a segment serves as
the first point for the next segment:

curve={200 700 240 600 80 580 400 660 400 660 440 620}

The last control point will become the new current point after drawing the curves.

16 Chapter 1: Programming Concepts

1.2 Function Scopes

PDFlib applications must obey certain structural rules which are easy to understand.
For example, you obviously begin a document before ending it. PDFlib enforces correct
ordering of function calls with a strict scoping system. The scope definitions can be
found in Table 1.3. All API function descriptions specify the allowed scope for each func-
tion. Calling a function outside of the allowed scopes results in an exception. You can
query the current scope with the scope keyword of PDF_get_option().

Table 1.3 Function scope definitions

scope name definition

path started by one of PDF_moveto(), PDF circle(), PDF arc(), PDF arcn(), PDF rect(), PDF ellipse() or PDF _
elliptical_arc();
terminated by any of the functions in Section 7.5, »Painting and Clipping«, page 149

page between PDF begin_page_ext() and PDF _end_page_ext(), but outside of path scope

template between PDF begin_template_ext() and PDF end_template_ext(), but outside of path scope

pattern between PDF _begin_pattern_ext() and PDF end_pattern(), but outside of path scope
font between PDF _begin_font() and PDF end_font(), but outside of glyph scope
glyph between PDF_begin_glyph_ext() and PDF_end_glyph(), but outside of path scope

document between PDF_begin_document() and PDF end_document(), but outside of page, template, pattern,
and font scope

object during the lifetime of the PDFlib object, but outside of document scope; in the C and Cobol language bind-
ings between PDF_new() and PDF _delete(), but outside of document scope

1.2 Function Scopes 17

1.3

Logging
The logging feature can be used to trace API calls. The contents of the log file may be
useful for debugging purposes, or may be requested by PDFlib GmbH support. Logging
options can be supplied in the following ways:

» As an option list for the global logging option of PDF set option(), e.g.:

p.set_option("logging={filename=trace.log remove}")

» In an environment variable called PDFLIBLOGGING. This will activate the logging out-
put starting with the very first call to one of the API functions.

Table 1.4 Suboptions for the logging option

option

description

(empty list) Enable log output

disable (Boolean) Disable logging output
enable (Boolean) Enable logging output
filename (String) Name of the log file; stdout and stderr will be recognized as special names. On CICS this option

will be ignored, and logging output will always be written to stderr. Output will be appended to any ex-

isting contents. Default:

pdflog on z/0S
PDF1ib.log on Mac and iSeries
\PDF1ib.log on Windows

/tmp/PDF1ib.log on all other systems
The log file name can alternatively be supplied in an environment variable called PDFLIBLOGFILE.

flush (Boolean) If txue, the log file will be closed after each output, and reopened for the next output to make
sure that the output will actually be flushed. This may be useful when chasing program crashes where
the log file is truncated, but significantly slows down processing. If false, the log file will be opened only
once. Default: false

includepid (Boolean; not on MVS) Include the process id in the log file name. This should be enabled if multiple pro-

cesses use the same log file name. Default: false

includetid (Boolean; not on MVS) Include the thread id in the log file name. This should be enabled if multiple

threads in the same process use the same log file name. Default: false

includeoid (Boolean; not on MVS) Include the object id in the log file name. This should be enabled if multiple PDFlib
objects in the same thread use the same log file name. Default: false

remove (Boolean) If true, an existing log file will be deleted before writing new output. Default: false

removeon- (Boolean) Remove the generated log file in PDF_delete() unless an exception occurred. This may be useful

success for analyzing occasional problems in multi-threaded applications or problems which occur only sporadi-

cally. It is recommended to combine this option with includepid/includetid/includeoid as appropri-

ate.

stringlimit (Integer) Limit for the number of characters per line, or o for unlimited. Default: o

18

Chapter 1: Programming Concepts

Table 1.4 Suboptions for the 1logging option

option

classes

description

(Option list) List containing options of type integer, where each option describes a logging class and the
corresponding value describes the granularity level. Level o disables a logging class, positive numbers en-
able a class. Increasing levels provide more and more detailed output. The following options are provided
(default: {api=1 warning=1}):

api

filesearch
resource
tagging

user
warning

Log all API calls with their function parameters and results. If api=2 a timestamp will be
created in front of all API trace lines, and deprecated functions and options will be marked. If
api=3 try/catch calls will be logged (useful for debugging problems with nested exception
handling).

Log all attempts related to locating files via SeaxchPath or PVF.

Log all attempts at locating resources via Windows registry, UPR definitions as well as the
results of the resource search.

Structure element (tag) operations
User-specified logging output supplied with the userlog option.

Log all PDFlib warnings, i.e. error conditions which can be ignored or fixed internally. If
warning=2 messages from functions which do not throw any exception, but hook up the
message text for retrieval via PDF _get_errmsg(), and the reason for all failed attempts at
opening a file (searching for a file in searchpath) will also be logged.

1.3 Logging 19

2 General Functions

2.1 Exception Handling

Table 2.1 details the relevant option for this section. This option is supported by many E—
functions as indicated in the corresponding option list descriptions. It can also be sup-
plied as global option to PDF set_option() (see Section 2.3, »Global Options«, page 25). D

Table 2.1 Exception-related option for PDF set_option()
key explanation

errorpolicy (Keyword) Controls the behavior of various functions in case of an error. The global option errorpolicy —_—
can be overridden by the errorpolicy option of many functions, and serves as default for this option.
Supported keywords (default: legacy):
legacy (Deprecated) The behavior of the functions is the same as in PDFlib 6.

return If an error occurs the function will return. Functions which can return an error code (e.g. PDF _
load_image()) return -1 (in PHP: o). Functions which return result strings (e.g. PDF fit_
table()) return the string _exrror. Application developers must check the return value against
-1(in PHP: o) or _error to detect error situations. In case of an error a detailed description can
be queried with PDF get_errmsg(). This setting is recommended for new applications.

exception If an error occurs, the function will throw an exception. The exception must be caught in

client code using a binding-specific mechanism. The partial PDF output generated so far will
be unusable and must be discarded.

C++ Java C# int get_errnum() —
Perl PHP int get_errnum()
C int PDF_get_errnum(PDF *p)

Get the number of the last thrown exception or the reason of a failed function call. [
Returns The error code of the most recent error condition.

Scope Between an exception thrown by PDFlib and the death of the PDFlib object. Alternative-
ly, this function may be called after a function returned a -1 (in PHP: o) error code, but
before calling any other function except those listed in this section.

Bindings In C++,Java, Objective-C, .NET, PHP and REALbasic this function is also available as get _ —_—
errnum() in the PDFlibException object.

C++ Java C# String get_errmsg()
Perl PHP string get_errmsg()
C const char *PDF_get_errmsg(PDF *p)

Get the text of the last thrown exception or the reason of a failed function call.

Returns Text containing the description of the most recent error condition.

2.1 Exception Handling 21

Scope

. Bindings

Between an exception thrown by PDFlib and the death of the PDFlib object. Alternative-
ly, this function may be called after a function returned a -1 (in PHP: o) error code, but
before calling any other function except those listed in this section.

In C++, Java, Objective-C, .NET, PHP and REALbasic this function is also available as get_
errmsg() in the PDFlibException object.

C++ Java C# String get_apiname()

——— Perl PHP string get_apiname()

—— Returns

Scope

Bindings

C const char *PDF_get_apiname(PDF *p)

Get the name of the API function which threw the last exception or failed.

The name of the API function which threw an exception, or the name of the most re-
cently called function which failed with an error code.

Between an exception thrown by PDFlib and the death of the PDFlib object. Alternative-
ly, this function may be called after a function returned a -1 (in PHP: o) error code, but
before calling any other function except those listed in this section.

In C++, Java, Objective-C, .NET, PHP and REALbasic this function is also available as get_
apiname() in the PDFlibException object.

C++ void *get_opaque()

Returns

Details

Scope
Bindings

C void *PDF_get_opaque(PDF *p)

Fetch the opaque application pointer stored in PDFlib.

The opaque application pointer stored in PDFlib which has been supplied in the call to
PDF new2().

PDFlib never touches the opaque pointer, but supplies it unchanged to the client. This
may be used in multi-threaded applications for storing private thread-specific data
within the PDFlib object. It is especially useful for thread-specific exception handling.

any

Only available in the C and C++ bindings.

22 Chapter 2: General Functions

2.2 Unicode Conversion

C++ string convert_to_unicode(string inputformat, string input, string optlist)

Java

string convert_to_unicode(string inputformat, byte[] input, string optlist)

Perl PHP string convert_to_unicode(string inputformat, string input, string optlist)

Returns

Details

Scope
Bindings

C const char *PDF_convert_to_unicode(PDF *p,

const char *inputformat, const char *input, int inputlen, int *outputlen, const char *optlist)

Convert a string in an arbitrary encoding to a Unicode string in various formats.

inputformat Unicode text format or encoding name specifying interpretation of the
input string:
» Unicode text formats: utf8, ebcdicutfs, utfi6, utfiéle, utfi6be, utf32
» Only if the font option is specified: builtin, glyphid
» All internally known 8-bit encodings, encodings available on the host system, and
the CJK encodings cp932, cp936, cp949, cp950
» The keyword auto specifies the following behavior: if the input string contains a
UTEF-8 or UTF-16 BOM it will be used to determine the appropriate format, otherwise
the current system codepage is assumed.

input String (in COM: Variant; in REALbasic: MemoryBlock) to be converted to Uni-
code.

inputlen (Clanguage binding only) Length of the input string in bytes. If inputlen=0 a
null-terminated string must be provided.

outputlen (Clanguage binding only) C-style pointer to a memory location where the
length of the returned string (in bytes) will be stored.

optlist An option list specifying options for input interpretation and Unicode conver-
sion:
» Text filter options according to Table 4.6: charref, escapesequence
» Unicode conversion options according to Table 2.2:
bom, errorpolicy, font, inflate, outputformat

A Unicode string created from the input string according to the specified parameters
and options. If the input string does not conform to the specified input format (e.g. in-
valid UTF-8 string) an empty output string will be returned if errorpolicy=return, and an
exception will be thrown if errorpolicy=exception.

This function may be useful for general Unicode string conversion. It is provided for the
benefit of users who work in environments without suitable Unicode converters.

any

C binding: the returned strings will be stored in a ring buffer with up to 10 entries. If
more than 10 strings are converted, the buffers will be reused, which means that clients
must copy the strings if they want to access more than 10 strings in parallel. For exam-
ple, up to 10 calls to this function can be used as parameters for a printf() statement
since the return strings are guaranteed to be independent if no more than 10 strings are
used at the same time.

2.2 Unicode Conversion

.23

Non-Unicode-capable language bindings: this function can be used to create name
strings and option lists in non-Unicode aware language bindings. It creates the required
BOM with the options bom=optimize and outputformat=utfs.

C++ binding: The parameters inputformat and optlist must be passed as wstrings as
usual, while input and returned data must have type string.

Table 2.2 Options for PDF convert_to_unicode()

option

bom

errorpolicy

font

inflate

output-
format

description

(Keyword; will be ignored for outputformat=utf32) Policy for adding a byte order mark (BOM) to the
output string. Supported keywords (default: none):

add Add a BOM.
keep Add a BOM if the input string has a BOM.
none Don’t add a BOM.

optimize Add a BOM except if outputformat=utf8 or ebcdicutf8 and the output string contains only
characters in the range < U+oo7F.

(Keyword) Behavior in case of conversion errors (default: the value of the exrorpolicy global option, see
Table 2.1):

return The replacement character will be used if a character reference cannot be resolved or a code
or glyph ID doesn’t exist in the specified font. An empty string will be returned in case of con-
version errors.

exception An exception will be thrown in case of conversion errors.

(Font handle; required for inputformat=builtin and glyphid) Apply font-specific conversion according
to the specified font.

(Boolean; only for inputformat=utf8) If true, an invalid UTF-8 input string will not trigger an excep-
tion, but rather an inflated byte string in the specified output format will be generated. The inflated
string contains Unicode characters which correspond to the ASCIl interpretation of the bytes in the input
string. This may be useful for debugging. Default: false

(Keyword) Unicode text format of the generated string: utf8, ebcdicutf8, utf16, utfiéle, utfiébe,
utf32. An empty string is equivalent to utf16. Default: utf16

Unicode-capable language bindings: the output format will be forced to utf16.
C++ language binding: only the following output formats are allowed: ebcdicutf8, utf8, utf16, utf32.

24 Chapter 2: General Functions

2.3 Global Options

PDFlib offers various global options for controlling the library and the appearance of
the PDF output. These options retain their settings across the life span of the PDFlib ob-
ject, or until they are explicitly changed by the client.

C++ Java C# void set_option(String optlist)
Perl PHP set_option(string optlist)
C void PDF_set_option(PDF *p, const char *optlist)

Set one or more global options.

optlist An option list specifying global options according to Table 2.3. The following S
options can be used:
» Options for resource handling and resource categories according to Table 2.3:
Encoding, enumeratefonts, FontAFM, FontnameAlias, FontOutline, FontPFM, HostFont,
ICCProfile, resourcefile, saveresources, searchpath
» Options for file handling and licensing according to Table 2.3:
avoiddemostamp, filenamehandling, license, licensefile
» Text filter options according to Table 2.3:
charref,escapesequence, glyphcheck, stringformat, textformat
» Options for interactive elements according to Table 2.3:
hypertextencoding, hypertextformat, usehypertextencoding, usercoordinates
» Other options according to Table 2.3:
asciifile, autospace, compress, kerning, logging, shutdownstrategy, usehostfonts, userlog
» Option for error handling according to Table 2.1: errorpolicy
» Options for color handling according to Table 8.1:
iccprofilecmyk, iccprofilegray, iccprofilergb, preserveoldpantonenames, spotcolorlookup

Details Except for resource category options new values override previously set option values.
The following options provide default values for the same-named text options (see
Table 4.6 and Table 4.7):
charref, escapesequence, glyphcheck, kerning, textformat
At the same time these options change the options of the same name in the current
text state. It is recommended to set options for content strings only in PDF_set_text_
option() to avoid unwanted side effects.

Scope any, but restricted scopes apply to some options

Table 2.3 Global options for PDF set_option()
option description

asciifile (Boolean; only supported on i5s/iSeries and zSeries). Expect text files (PFA, AFM, UPR, encodings) in ASCII
encoding. Default: txue on is/iSeries; false on zSeries

autospace If true and the current font contains a glyph for U+o0o20, PDFlib will automatically add a space character
after each text output. This may be useful for generating Tagged PDF. Note that adding spaces changes
the current text position. Default: false

avoiddemo- (Boolean) If true, an exception will be thrown when no valid license key was found; if false, a demo
stamp stamp will be created on all pages. This option must be set before the first call to PDF begin _
document(). Default: false

2.3 Global Options 25

Table 2.3 Global options for PDF set_option()

option

charref

compress

Encoding

enumerate-
fonts

escape-
sequence

filename-
handling

FontAFM
Fontname-
Alias

FontOutline

FontPFM

description

(Boolean) If txue, enable substitution of numeric and character entity references and glyph name refer-
ences for all content, name and hypertext strings. In order to avoid character reference substitution in
places where it is not desired (e.g. file names) it is recommended to set this option for content strings only
in PDF_set_text_option(); see PDFlib Tutorial for details. Default: false

(Integer) Compression level from o=no compression, 1=best speed, etc. to 9=best compression. This op-
tion does not affect image data handled in passthrough mode. Default: 6. Scope: any except object

(List of pairs of name strings) List of key/value pairs for a resource definition separated by whitespace or
equal signs '=’ (see PDFlib Tutorial for details). Multiple calls add new entries to the internal list.

(Boolean) If true, PDFlib will search for font outline files in all directories which can be accessed via the
SearchPath resource. This may take significant time if a large number of fonts is accessible, and should
therefore be used with care. The generated resource list can be saved to a file with the saveresources
option. The recommended strategy is to create and save the resource list only if the number of accessible
fonts has changed, and not for each generated document or for each PDFlib object.

For each valid font outline file PDFlib determines the font-family, font-weight and font-style names
and synthesizes an API font name according to the following scheme:
<font-family>[,<font-weight>][,font-style]

PDFlib creates a FontOutline resource of the form <fontname>=<pathname> which connects the artificial
font name with the full path name of the font. For PostScript Type 1 fonts the corresponding FontAFM or
FontPFM resource will be created as well. In addition to the APl font name PDFlib creates a Fontname-
Alias resource with the PostScript name of the font if it is different from the artificial name:
<PostScript fontname>=<artificial fontname>

As a result, the font can be loaded via the artificial font name or its PostScript name. Default: false

(Boolean) If txue, enable substitution of escape sequences in all content, name and hypertext strings. In
order to avoid escape sequence substitutions in places where it is not desired (e.g. file names) it is recom-
mended to set this option for content strings only in PDF set_text_option(); Default: false

(Keyword; not required on Windows) Target encoding for file names. All file names supplied in non-Uni-
code aware language bindings without a UTF-8 BOM (and with length=0 in C) are interpreted according
to this option (default: auto on i5/iSeries, otherwise legacy):

ascii 7-bit ASCII
basicebcdic Basic EBCDIC according to code page 1047, but only Unicode values <= U+oo7E

basicebcdic_37
Basic EBCDIC according to code page 0037, but only Unicode values <= U+o07E

honorlang (Not on i5/iSeries) The environment variables LC_ALL, LC_CTYPE and LANG are interpreted and
applied to file names if they specify utf8, UTF-8, cpXXXX, CPXXXX, 1508859-x, or IS0-8859-x.

legacy Use host encoding to interpret the file name

unicode Unicode encoding in (EBCDIC-) UTF-8 format

all valid encoding names
Any encoding recognized by PDFIib (see Table 4.2) except glyphid and builtin

(List of pairs of name strings) List of key/value pairs for a resource definition separated by whitespace or
equal signs '=’ (see PDFlib Tutorial for details). Multiple calls add new entries to the internal list.

(List of pairs of name strings) List of key/value pairs for a resource definition separated by whitespace or
equal signs '=’ (see PDFlib Tutorial for details). Multiple calls add new entries to the internal list.

(List of pairs of name strings) List of key/value pairs for a resource definition separated by whitespace or
equal signs '=’ (see PDFlib Tutorial for details). Multiple calls add new entries to the internal list.

(List of pairs of name strings) List of key/value pairs for a resource definition separated by whitespace or
equal signs '=’ (see PDFlib Tutorial for details). Multiple calls add new entries to the internal list.

26 Chapter 2: General Functions

Table 2.3 Global options for PDF set_option()

option
glyphcheck
HostFont
hypertext-
encoding
hypertext-
format

ICCProfile

iccprofilecmyk
iccprofilegray
iccprofilergb
kerning

license

licensefile
logging
maxfile-

handles

resourcefile

saveresources

searchpath

shutdown-
strategy

description

(Keyword) See Table 4.6 for a description. It is recommended to set this option for content strings only in
PDF set_text_option(); see PDFlib Tutorial for details. Default: replace

(List of pairs of name strings) List of key/value pairs for a resource definition separated by whitespace or
equal signs '=’ (see PDFlib Tutorial for details). Multiple calls add new entries to the internal list.

(String; only for non-Unicode-capable language bindings) Encoding for hypertext strings. An empty
string is equivalent to unicode. Default: auto

(Keyword; only for non-Unicode-capable language bindings) Format for hypertext strings as function pa-
rameters. Supported keywords are bytes, utf8, ebcdicutf8, utf16, utfi6le, utfiébe, and auto. Default:
auto

(List of pairs of name strings) List of key/value pairs for a resource definition separated by whitespace or
equal signs '=’ (see PDFlib Tutorial for details). Multiple calls add new entries to the internal list.

(ICC profile handle) ICC profile which specifies a CMYK, Gray, or RGB color space for use with the icc-
basedcmyk/gray/rgb color options. Default: no ICC color space

(Boolean) If txue, enable kerning for fonts which have been opened with the readkerning option; disable
kerning otherwise. Default: true

(String) License key for PDFlib, PDFlib+PDI, or PPS (see PDFlib Tutorial for details). The key can be set be-
fore the first call to PDF _begin_document(). Use the avoiddemostamp option to make sure that missing
license keys will not accidentally result in a demo stamp.

(Name string) Name of a file containing the license key (see PDFlib Tutorial for details). The license file
can only be set once before the first call to PDF_begin_document()).

(Option list) Logging options according to Table 1.4

(Unsupported; implemented on Windows only) New maximum for the number of simultaneously open
files (in the C runtime). The number must be greater or equal than 20 and less or equal than 2048. An ex-
ception will be thrown if the new value is not accepted by the C runtime. Scope: object

(Name string) Relative or absolute file name of the PDFlib UPR resource file. The resource file will be load-
ed immediately before the first access to any resource. Existing resources will be kept; their values are
overridden by new ones if they are set again.

(Option list) Save the current resource list to a file. The following option is supported:
filename The name of the resource file to which the resource list will be saved. Default: pdf1ib.upr

(List of name strings) One or more relative or absolute path name(s) of directories containing files to be
read. The search path can be set multiply; the entries will be accumulated and used in least-recently-set
order (see PDFlib Tutorial for details). It is recommended to use double braces even for a single entry to
avoid problems with directory names containing space characters. An empty string list (i.e. {{}})
deletes all existing search path entries including the default entries. On Windows the search path can
also be set via a registry entry. Default: platform-specific, see PDFlib Tutorial

(Integer) Strategy for releasing global resources which are allocated once for all PDFlib objects. Each

global resource is initialized on demand when it is first needed. This option must be set to the same value

for all PDFlib objects in a process; otherwise the behavior is undefined (default: o):

o A reference counter keeps track of how many PDFlib objects use the global resources. When
the last PDFlib object is deleted the resources are released.

1 The resources are kept until the end of the process. This may slightly improve performance,
but requires more memory after the last PDFlib object is deleted.

2.3 Global Options 27

Table 2.3 Global options for PDF set_option()

option description
stringformat (Keyword; only for non-Unicode-capable language bindings) Format used to interpret all strings at the
API, i.e. name strings, content strings, hypertext strings and option lists. Supported keywords (default:
legacy):
ebcdicutf8 (Only on is/iSeries and zSeries) All strings and option lists are expected in EBCDIC-UTF-8
— format with or without BOM.

legacy Name strings, content strings, hypertext strings and option lists are treated according to the
textformat, hypertextformat and hypertextencoding options.

utf8 (Not on i5/iSeries and zSeries) All strings and option lists are expected in UTF-8 format with or
without BOM. The options textformat, hypertextformat and hypertextencoding are not
allowed. The Textflow option fixedtextformat is forced to true. Legacy CJK CMaps can not
be used for loading fonts. In the C language binding name strings as function parameters are
still interpreted as UTF-16 strings if the length parameter is supplied with a value larger than
0. Use PDF _convert_to_unicode() to convert strings in 8-bit encodings to UTF-8.

user- (Boolean) If false, coordinates for hypertext rectangles are expected in the default coordinate system;
coordinates otherwise the current user coordinate system will be used. Default: false

- userlog String which will be copied to the log file
usehostfonts (Boolean) If txue, host fonts are included in the font search. Default: true

usehypertext- (Boolean; only for non-Unicode-capable language bindings) If true, the encoding specified in the
encoding hypertextencoding option will also be used for name strings. If false, the encoding for name strings
I without UTF-8 BOM is host. Default: false

textformat (Keyword; only for non-Unicode capable language bindings) Format used to interpret content strings.
— Supported keywords: bytes, utf8, ebcdicutf8 (only on is/iSeries and zSeries), utf16, utfiéle,
utfi6be, and auto. Default: auto

C++ Java C# double get_option(String keyword, String optlist)

Perl PHP float get_option(string keyword, string optlist)
C double PDF_get_option(PDF *p, const char “keyword, const char *optlist)

Retrieve some option or other value.

keyword Keyword specifying the option to retrieve. The keywords below are support-
ed; see description of PDF set_option(), PDF set_text_option()and PDF set_graphics_
option() regarding their meaning. Keywords for which no corresponding option exists
are described in Table 2.4:
» Keywords for the string index of the n-th entry of the specified resource, where n cor-
responds to the resourcenumber option:
— Encoding, FontAFM, FontnameAlias, FontOutline, FontPFM, HostFont, ICCProfile,
searchpath
— » Keywords for Boolean option values return 1 for true or o for false:
asciifile, autospace,avoiddemostamp, charref, decorationabove, escapesequence, fakebold,
- kerning, overline, pdi, preserveoldpantonenames, spotcolorlookup, strikeout, tagged,
topdown, underline, usercoordinates, usehostfonts, usehypertextencoding
» Keywords for integer and float option values:
charspacing, compress, ctm_a, ctm_b, ctm_c, ctm_d, ctm_e, ctm_f, currentx, currenty,
icccomponents, flatness, font, fontsize, horizscaling, iccprofilecmyk, iccprofilegray, iccprofilergb,
italicangle, leading, linecap, linejoin, linewidth, major, minor, miterlimit, pageheight,

28 Chapter 2: General Functions

pagewidth, revision, scope, textrendering, textrise, textx, texty, underlineposition, underline-
width, wordspacing

» Keywords returning a string index for an option value or -1 if the string value is not
available:
cliprule, errorpolicy, filenamehandling, fillrule, glyphcheck, hypertextencoding, hypertext-
format, resourcefile, scope, textformat

» Keywords for querying the current structure element (only in Tagged PDF mode):
activeitemid, activeitemindex, activeitemisinline, activeitemkidcount, activeitemname,
activeitemstandardname

Table 2.4 Additional keywords for PDF get_option()

keyword

activeitemid

activeitem-
index

activeitem-
isinline
activeitem-
kidcount

activeitem-
name

activeitem-
standard-
name

ctm_a
ctm_b
ctm_c
ctm_d
ctm_e

ctm_f

currentx
currenty

icccomponents

major
minor
revision

pageheight
pagewidth

pdi

scope

description

(Integer) Item id of the currently active structure item. This may be used with PDF _activate_item() or the
parent suboption of PDF begin_item() and the tag option. -1is returned if no root element has been cre-
ated yet. Scope: document, page

(Integer) Zero-based index of the currently active structure item within its parent. This may be used with
the index tag option. If the current item is a pseudo element or the root element or no root element has
been created yet -1 is returned. Scope: document, page

(Integer) 1 if the currently active structure item is an inline element, o otherwise Scope: document, page

(Integer) Number of child elements of the currently active structure element created up to this point (not
counting pseudo elements). -1is returned if no root element has been created yet. Scope: document, page

String index for the type name of the currently active structure element or pseudo element, or -1if no
root element has been created yet. Scope: document, page

String index for the standard element type name to which the currently active item is role mapped, or -1
if no root element has been created yet or the current item is a custom element for which no role map-
ping is available. If no rolemap is active the original type name is returned. Scope: document, page

(Float) The components of the current transformation matrix (CTM) for vector graphics. Scope: page,
pattern, template, glyph, path

(Float) The x or y coordinate (in units of the current coordinate system), respectively, of the current point.
Scope: page, pattern, template, glyph, path

(Integer) Number of color components in the ICC profile referenced by the handle provided in the
iccprofile option

(Integer) Major, minor, or revision number of PDFlib, respectively. Scope: any, null’

(Float) Page size of the current page (dimensions of the MediaBox), template or glyph. Scope: any except
object

(Integer) Returns 1 if PDI has been included when building the underlying library. This is txue for all com-
bined PDFlib, PDFlib+PDI, and PPS binaries distributed by PDFlib GmbH, regardless of the license key. Oth-
erwise it returns o. Scope: any, null’

(Integer) String index for the name of the current scope (see Table 1.3)

2.3 Global Options 29

Table 2.4 Additional keywords for PDF_get_option()

keyword description
. textx (Float) The x or y coordinate of the current text position. Scope: page, pattern, template, glyph
texty

1. C language binding: may be called with a PDF * argument of NULL or o

optlist Option list specifying an option according to Table 2.5.

Returns The value of some option as requested by keyword. If no value for the requested key-
word is available, the function returns -1. If the requested keyword produces text, a
string index is returned, and the corresponding string must be retrieved with PDF get_

string().
Scope any, but restricted scopes apply to some keywordsy

Table 2.5 Options for PDF get_option()
option description

textstate (Boolean) If true, the values of the following options will be retrieved from the current text state, other-
wise from the global options, (default: false):
charref, escapesequence, glyphcheck, kerning, textformat

iccprofile (ICC profile handle) ICC profile for use with the icccomponents keyword

resource- (Integer) Number of the resource to be retrieved; resources are numbered starting with 1. Default: 1
number

C++ Java C# String get_string(int idx, String optlist)
Perl PHP string get_string(int idx, string optlist)
C const char *PDF_get_string(PDF *p, int idx, const char *optlist)

— Retrieve a string value.

idx String index returned by one of the PDF_get_option() or PDF_info_*() functions, or
-1if an option is supplied.

_ optlist An option list specifying options according to Table 2.6.
Returns The value of some string as requested by idx and optlist.
Scope Depends on the requested option.
—— Bindings C: The returned string is valid until the next call to any API function.
Table 2.6 Option for PDF get string()

option description

— version (Boolean) Full PDFIib version string in the format <major>.<minor>.<revision>, possibly suffixed with
additional qualifiers such as beta, 1c, etc. Scope: any, null’

1. C language binding: may be called with a PDF * argument of NULL or o

30 Chapter 2: General Functions

C++ Java C# void set_parameter(String key, String value)
Perl PHP set_parameter(string key, string value)
C void PDF_set_parameter(PDF *p, const char *key, const char *value)

Deprecated, use PDF set_option(), PDF set_text_option(), and PDF set_graphics_option().

C++ Java C# void set_value(String key, double value)
Perl PHP set_value(string key, float value) —
C void PDF_set_value(PDF *p, const char *key, double value)

Deprecated, use PDF_set_option(), PDF set text_option(), and PDF set _graphics_option().

C++ Java C# String get_parameter(String key, double modifier)
Perl PHP string get_parameter(string key, float modifier) —
C const char * PDF_get_parameter(PDF *p, const char *key, double modifier)

Deprecated, use PDF_get_option()and PDF get_string().

C++ Java C# double get_value(String key, double modifier)
Perl PHP float get_value(string key, float modifier)
C double PDF_get_value(PDF *p, const char *key, double modifier)

Deprecated, use PDF_get_option().

2.3 Global Options 31

2.4 Creating and Deleting PDFlib Objects

Details

Returns

Scope

Bindings

Returns

Details

3

C PDF *PDF_new(void)

Create a new PDFlib object.

This function creates a new PDFlib object, using PDFlib’s internal default error handling
and memory allocation routines.

A handle to a PDFlib object which is to be used in subsequent PDFlib calls. If this func-
tion doesn’t succeed due to unavailable memory it returns NULL or throws an excep-
tion.

null; this function starts object scope, and must always be paired with a matching PDF
delete() call.

C: In order to load the PDFlib DLL dynamically at runtime use PDF_new_dl(). PDF_new _
dl() returns a pointer to a PDFlib_api structure filled with pointers to all PDFlib API func-
tions. If the DLL cannot be loaded, or a mismatch of major or minor version number is
detected, NULL will be returned.

Other language bindings: this function is not available since it is hidden in the PDFlib
constructor.

C PDF *"PDF_newz2(void (*errorhandler)(PDF *p, int errortype, const char *msg),
void* (*allocproc)(PDF *p, size_t size, const char *caller),
void™ (*reallocproc)(PDF *p, void *mem, size_t size, const char *caller),
void (*freeproc)(PDF *p, void *mem),
void *opaque)

Create a new PDFlib object with client-supplied error handling and memory allocation
routines.

errorhandler Pointer to a user-supplied error-handling function. The error handler will
be ignored in PDF_TRY/PDF_CATCH sections.

allocproc Pointer to a user-supplied memory allocation function.
reallocproc Pointer to a user-supplied memory reallocation function.
freeproc Pointer to a user-supplied free function.

opaque Pointer to some user data which may be retrieved later with PDF _get_
opaque().

A handle to a PDFlib object which is to be used in subsequent PDFlib calls. If this func-
tion doesn’t succeed due to unavailable memory it will return NULL in C or throw an ex-
ception in C++.

This function creates a new PDFlib object with client-supplied error handling and mem-
ory allocation routines. Unlike PDF_new(), the caller may optionally supply own proce-
dures for error handling and memory allocation. The function pointers for the error
handler, the memory procedures, or both may be NULL. PDFlib will use default routines
in these cases. Either all three memory routines must be provided, or none.

2 Chapter 2: General Functions

Scope

Bindings

Details

Scope

Bindings

null; this function starts object scope, and must always be paired with a matching PDF_
delete() call.

C++: this function is indirectly available via the PDF constructor. Not all function argu-
ments must be given since default values of NULL are supplied. All supplied functions
must be »C« style functions, not C++ methods.

C void PDF_delete(PDF *p)

Delete a PDFlib object and free all internal resources.

This function deletes a PDFlib object and frees all document-related PDFlib-internal re-
sources. This function must only be called once for a given PDFlib object. PDF_delete()
should also be called for cleanup when an exception occurred. PDF_delete() itself is guar-
anteed to not throw any exception. If more than one PDF document will be generated it
is not necessary to call PDF_delete() after each document, but only when the complete
sequence of PDF documents is done.

any; no more API function calls with the same PDFlib object are allowed with the PDF
object after this call.

C: If the PDFlib DLL has been loaded dynamically at runtime with PDF_new _dl(), use
PDF_delete_dl() to delete the PDFlib object.

C++: this function is indirectly available via the PDF destructor.

Java: this function is automatically called by the wrapper code. However, it can explicit-
ly be called from client code in order to overcome shortcomings in Java’s finalizer sys-
tem.

Objective-C: this function is called when the PDFlib object’s release method is called.
Perl and PHP: this function is automatically called when the PDFlib object goes out of
scope.

2.4 Creating and Deleting PDFlib Objects 33

2.5 PDFlib Virtual File System (PVF)

Cookbook A full code sample can be found in the Cookbook topic general/starter_pvf.

C++ void create_pvf(string filename, const void *data, size_t size, string optlist)

Java C# void create_pvf(String filename, byte[| data, String optlist)

Perl PHP create_pvf(string filename, string data, string optlist)
C void PDF_create_pvf(PDF *p,

Details

Scope

const char *filename, int len, const void *data, size_t size, const char *optlist)

Create a named virtual read-only file from data provided in memory.

filename (Name string) The name of the virtual file. This is an arbitrary string which
can later be used to refer to the virtual file in other PDFlib calls. The name of the virtual
file will be subject to the SearchPath mechanism if it uses only slash '/’ characters as di-
rectory or file name separators.

len (Clanguage binding only) Length of filename (in bytes). If len=0 a null-terminated
string must be provided.

data A reference to the data for the virtual file. In C and C++ this is a pointer to a mem-
ory location. In Java this is a byte array. In Perl], Python, and PHP this is a string. In COM
this is a variant. In REALbasic this is a MemoryBlock.

size (C and C++ only) The length in bytes of the memory area containing the data.
optlist An option list according to Table 2.7. The following option can be used: copy

The virtual file name can be supplied to any API function which uses input files. Use the
createpvf option of PDF_begin_document() to create a PVF file which contains the gener-
ated PDF output. Some of these functions may set a lock on the virtual file until the data
isnolonger needed. Virtual files will be kept in memory until they are deleted explicitly
with PDF delete_pvf{(), or automatically in PDF delete().

Each PDFlib object will maintain its own set of PVF files. Virtual files cannot be
shared among different PDFlib objects, but they can be used for creating multiple docu-
ments with the same PDFlib object. Multiple threads working with separate PDFlib ob-
jects do not need to synchronize PVF use. If filename refers to an existing virtual file an
exception will be thrown. This function does not check whether filename is already in
use for a regular disk file.

Unless the copy option has been supplied, the caller must not modify or free (delete)
the supplied data before a corresponding successful call to PDF_delete_pvf(). Not obey-
ing to this rule will most likely result in a crash.

any

Table 2.7 Option for PDF create_pvf{()

option description

copy

(Boolean) PDFlib will immediately create an internal copy of the supplied data. In this case the caller may
dispose of the supplied data immediately after this call. The copy option will automatically be set to true
in the COM, .NET, and Java bindings (default for other bindings: false). In other language bindings the

data will not be copied unless the copy option is supplied.

34 Chapter 2: General Functions

http://www.pdflib.com/pdflib-cookbook/general-programming/starter-pvf

C++ Java C# int delete_pvf(String filename)

Perl PHP int delete_pvf{(string filename)

Returns

Details

Scope

C int PDF_delete_pvf(PDF *p, const char *filename, int len)

Delete a named virtual file and free its data structures (but not the contents).

filename (Name string; will be interpreted according to the global filenamehandling op-
tion (see Table 2.3) The name of the virtual file as supplied to PDF create pvf{).

len (Clanguage binding only) Length of filename (in bytes). If len=0 a null-terminated
string must be provided.

-1 (in PHP: o) if the virtual file exists but is locked, and 1 otherwise.

If the file isn’t locked, PDFlib will immediately delete the data structures associated with
filename. If filename does not refer to a valid virtual file this function will silently do
nothing. After successfully calling this function filename may be reused. All virtual files
will automatically be deleted in PDF_delete().

The detailed semantics depend on whether or not the copy option has been supplied
to the corresponding call to PDF create pvf(): If the copy option has been supplied, both
the administrative data structures for the file and the actual file contents (data) will be
freed; otherwise, the contents will not be freed, since the client is supposed to do so.

any

C++ Java C# double info_pvf(string filename, string keyword)

Perl PHP float info_pvfi(string filename, string keyword)

C double PDF_info_pvf(PDF *p, const char *filename, int len, const char *keyword)

Query properties of a virtual file or the PDFlib Virtual File system (PVEF).

filename (Name string) The name of the virtual file. The filename may be empty if
keyword=filecount.

len (Clanguage binding only) Length of filename (in bytes). If len=0 a null-terminated
string must be provided.

keyword Akeyword according to Table 2.7.

Table 2.8 Keywords for PDF_info_pvf()

keyword description

filecount Total number of files in the PDFlib Virtual File system maintained for the current PDFlib object. The

tilename parameter will be ignored.

exists 1if the file exists in the PDFlib Virtual File system (and has not been deleted), otherwise o

size (Only for existing virtual files) Size of the specified virtual file in bytes.

iscopy (Only for existing virtual files) 1if the copy option was supplied when the specified virtual file was creat-
ed, otherwise o

lockcount (Only for existing virtual files) Number of locks for the specified virtual file set internally by PDFlib func-

tions. The file can only be deleted if the lock count is o.

2.5 PDFlib Virtual File System (PVF) 35

Details This function returns various properties of a virtual file or the PDFlib Virtual File sys-
tem (PVF). The property is specified by keyword.

Scope any

36 Chapter 2: General Functions

2.6 PDF Object Creation API (POCA)

Object types and frozen objects. The PDF object creation API (POCA) is a low-level in-
terface for creating PDF objects. POCA supports the following object types:

» simple object types: boolean, integer, name, float, string;

» container object types: array, dictionary, stream;

» specific types for PDFlib Blocks: percentage, color.

The generated PDF objects can be used as follows:
» with the dpm option of PDF begin/end_dpart() to create document part metadata for
PDEF/VT;
» with the blocks option of PDF begin/end_page_ext() to create PDFlib Blocks for use
with PPS;
» with the richmediaargs option of PDF create_action() to specify arguments for the
ActionScript or JavaScript associated with a rich media annotation.

Supplying a PDF container object to any of the options listed above freezes the contain-
er object itself as well as all objects referenced from the container directly or indirectly,
i.e. the full object tree created by the container will be frozen. Frozen objects can be used
again with the options above, but they can no longer be modified with PDF _poca_
insert() or PDF_poca_remove().

C++Java C# int poca_new(String optlist)
Perl PHP int poca_newf(string optlist)
C int PDF_poca_new(PDF *p, const char *optlist)

Create a new PDF container object of type dictionary, array, or stream and insert objects.

optlist An option list for creating and populating a container.
» Options for creating a container according to Table 2.9: containertype, usage
» Options for inserting objects in the container according to Table 2.11:
direct, hypertextencoding, index, key, type, value, values

Returns A POCA container handle which can be used until it is deleted with PDF poca_delete().

Details This function creates an empty PDF container object of the specified container type. The
container can immediately be populated in the same call or later calls to PDF _poca_
insert().

PDF/VT A POCA container handle for an object of type dictionary with usage=dpm can be sup-
plied as Document Part Metadata (DPM) with the dpm option of PDF _begin/end_dpart().

Scope any

Table 2.9 Options for PDF poca _new()

option description
container- (Keyword; required) Type of the container: dict, array, or stream. Unspecified array slots and array slots
type which have been removed without inserting a new object will contain the keyword null in the PDF out-

put. Note: containertype=streamis not yet implemented.

2.6 PDF Object Creation API (POCA) 37

Table 2.9 Options for PDF _poca_new()

option

usage

description

(Keyword; required) Context in which the new container will be used. This option enables some checks to
make sure that the container is suited for the intended use:

blocks

dpm

(Only relevant for containertype=dict; only in the PPS product) The Block dictionary (the
container which will be supplied to the blocks option of PDF_begin/end_page_ext()) must
contain one or more PDFlib Block definitions. The option usage=blocks must also be supplied
to all container objects which will directly or indirectly be inserted into the new dictionary.
(Only relevant for containertype=dict) All keys in the new dictionary or any dictionary
contained in it must consist of ASCII characters, must conform to the rules of an XML
NMTOKEN. This ensures that the dictionary can be used as Document Part Metadata (DPM)
dictionary for PDF/VT. The option usage=dpm must also be supplied to all container objects
which will directly or indirectly be inserted into the new dictionary.

richmediaargs

(Only for containertype=array) The array can contain objects of type string, integer, float,
or Boolean. However, the following is recommended to pass parameters from PDF to Flash: if
a parameter for an ActionScript function parameter has type string, number, or int, use
type=string in POCA (i.e. numbers must be wrapped within strings); if the parameter is de-
clared as Boolean, use type=boolean in POCA (i.e. do not wrap boolean values as string). The
POCA types integer and float should not be used since Acrobat does not pass them correctly
to ActionScript.

C++ Java C# void poca_delete(int container, String optlist)

Perl PHP poca_delete(int container, string optlist)

C void PDF_poca_delete(PDF *p, int container, const char *optlist)

Details

Delete a PDF container object.
container A valid POCA container handle retrieved with PDF_poca_new().

optlist An option list according to Table 2.10. The following option can be used:
recursive

The container will be deleted and can no longer be used. If the container is referenced
from another dictionary or array all dictionary references to the deleted container are
removed, and all array references to the deleted container are replaced with the null ob-
ject. POCA container objects are not automatically deleted in PDF _end_document().

Scope any; must always be paired with a matching PDF_poca_new() call.

Table 2.10 Options for PDF poca_delete()

option

recursive

description

(Boolean) If true, the container object itself and all objects referenced from it will be deleted recursively.
This may be useful as a shortcut for deleting a full object tree which is no longer needed. Default: false

38 Chapter 2: General Functions

C++ Java C# void poca_insert(int container, String optlist)

Perl PHP poca_insert(int container, string optlist)

C void PDF_poca_insert(PDF *p, int container, const char *optlist)

Insert a simple or container object in a PDF container object.

container A valid POCA container handle retrieved with PDF poca_new(). Frozen con-
tainers (see »Object types and frozen objects«, page 37) are not allowed since they can no
longer be modified.

optlist An option list according to Table 2.11. The following options can be used:
direct, hypertextencoding, index, key, type, value, values

Details This function inserts an object in a container. The order in which objects are inserted in
a container is not significant. Inserted containers may be populated after insertion; it is
not required that inserted containers be complete at the time of insertion.

Inserting an object into a container must not create a loop of direct objects within
the object graph. For example, a directly inserted dictionary cannot include a direct ref-
erence to its container. In order to create cyclic references use direct=false to create indi-
rect objects which can reference arbitrary other objects.

Scope any

Table 2.11 Options for PDF _poca_new(), PDF_poca_insert() and PDF_poca_remove()

option

direct’

hypertext-
encoding

index

key

type’

description

(Boolean; only for type=array and dict; ignored for other types) If true, the object will be inserted di-
rectly in the container; if false, an indirect PDF object will be created and a reference to the indirect PDF
object will be inserted in the container. Indirect objects are useful to save space in the generated PDF if an
object is used more than once. Default: true

(Keyword) Specifies the encoding for the key, value, and values options. An empty string is equivalent to
unicode. Default: value of the global hypertextencoding option

(Integer; only for containers with type=array; required for PDF _poca_remove()) The zero-based index
at which the value(s) will be inserted or deleted in the array. The value -1 can be used to insert the ele-
ment as the new last item. The array will grow as necessary to include an element with the specified in-
dex. If the array already contains a value at the specified index it will be replaced with the new value. De-
fault for PDF_poca_new() and PDF_poca_insert(): -1

(Hypertext string; only for containers with type=dict and stream; required for type=dict) The key un-
der which the value will be inserted in the dictionary container or the dictionary associated with the
stream container. The key must not include the leading '/’ slash character. The key must conform to the
conditions specified in the dictionary’s usage option. If the dictionary already contains an entry with the
same key it will be replaced with the new value.

For type=stream the key must be different from Length and Filter.
(Keyword; required except for stream containers without the key option) Type of the inserted object:
array, boolean, dict, integer, name, float, stream, string, percentage, color

The following types are not allowed if the container has been created with usage=dpm: name (use
type=string instead), stream

The following types are only allowed if the container has been created with usage=blocks: color,
percentage

2.6 PDF Object Creation API (POCA) 39

option

. VaIUE1

values'

Table 2.11 Options for PDF_poca_new(), PDF _poca_insert() and PDF _poca_remove()

description

(Data type according to the type option; exactly one of the options value and values must be provided)
The value of the inserted object, subject to the container type and the type option:

For array and dictionary containers:

If type=boolean the value must have option type string, and must contain one of the strings txue or
false.

If type=string or name the value must have option type Hypertext string, and must contain the target
directly. Values for type=name are limited to 127 bytes in UTF-8 representation, and must not include the
leading ’/’ slash character.

If type=integer the value must have option type integer, and must contain the target directly.

If type=float the value must have option type float or integer, and must contain the target directly.

If type=array, dict, or stream the value must have option type POCA container handle (i.e. created with
PDF poca_new()) and must specify the inserted container. The inserted object must have been created
with the same usage option as the container.

For type=percentage the value must have option type number. It will be interpreted as a percentage val-
ue and must include the percent sign (e.g. 50%). It will be written as Block data type percentage

For type=color the value must have option type color (see Table 1.2, page 14). It will be written as Block
data type color. The following color space keywords are not allowed: iccbased, iccbasedgray,
iccbasedrgb, iccbasedcmyk, pattern

In order to pass arbitrary strings with this option the option list syntax described in »Unquoted string val-
ues in option lists«, page 9, may be useful.

(List of one or more values according to the type option; only for containers with type=array; exactly
one of the options value and values must be provided) One or more values of the same type which will
be inserted in the array at the position specified by the index option. See option value regarding the con-
ditions for specific types. If the specified list contains only a single element, the effect is equivalent to the
value option. If the list contains more than one element, all elements in the list will be inserted in the ar-
ray sequentially, possibly overriding existing elements. The array will grow as necessary to include all ele-
ments in the specified list.

1. Only for PDF_poca_new() and PDF_poca_insert()

C++ Java C# void poca_remove(int container, String optlist))

——— Perl PHP poca_remove(int container, string optlist)

C void PDF_poca_remove(PDF *p, int container, const char *optlist)

Remove a simple or container object from a PDF container object.

— container A valid POCA dictionary or array handle retrieved with PDF _poca_new(). Fro-
zen containers (see »Object types and frozen objects«, page 37) are not allowed since
- they can no longer be modified.

optlist
hypertextencoding, index, key

The following options of PDF_poca_insert() in Table 2.11 can be used:

Details This function removes an object from a container of type array or dictionary. Nothing

happens if the specified object doesn’t exist in the container.

— Scope any

40 Chapter 2: General Functions

3 Document and Page Functions

3.1 Document Functions

C++ Java C# int begin_document(String filename, String optlist)
Perl PHP int begin_document(string filename, string optlist)
C int PDF_begin_document(PDF *p, const char *filename, int len, const char *optlist)

C++ void begin_document_callback(size_t (*writeproc) (PDF *p, void *data, size_t size), string optlist) —
C void PDF_begin_document_callback(PDF *p,
size_t (*writeproc) (PDF *p, void *data, size_t size), const char *optlist)

Create a new PDF document subject to various options.

filename (Name string; will be interpreted according to the global filenamehandling op-

tion, see Table 2.3) Absolute or relative name of the PDF output file to be generated. If —
filename is empty, the PDF document will be generated in memory instead of on file,

and the generated PDF data must be fetched by the client with the PDF get_buffer() —
function. On Windows it is OK to use UNC paths or mapped network drives.

len (Clanguage binding only) Length of filename (in bytes). If len=0 a null-terminated
string must be provided.

writeproc (Only for C and C++) C callback function which will be called by PDFlib in or-
der to submit (portions of) the generated PDF data. The supplied writeproc must be a C-
style function, not a C++ method.

optlist An option list specifying document options: —
» General options: errorpolicy (see Table 2.1) and hypertextencoding (see Table 2.3)
» Document options according to Table 3.1. Some of these options can also be specified —
in PDF_end_document(); in this case they have precedence over identical options
specified in PDF_begin_document(): -
associatedfiles, attachments, autoxmp, destination, groups, labels, linearize, metadata,
moddate, objectstreams, openmode, optimize, pagelayout, portfolio, search, uri, viewer-
preferences
Options for PDF compatibility and standards according to Table 3.2:
compatibility, nodenamelist, pdfa, pdfua, pdfvt, pdfx, recordlevel, usestransparency
Options for Tagged PDF according to Table 3.3:
checktags, lang, rolemap, structuretype, tag, tagged
Security options according to Table 3.4:
attachmentpassword, masterpassword, permissions, userpassword
» Output processing options according to Table 3.5:
createoutput, createpvf, filemode, flush, inmemory, recordsize, removefragments,
tempdirname, tempfilenames

v

v

v

Returns -1 (in PHP: 0) on error, and 1 otherwise. If filename is empty this function will always suc-
ceed, and never return the error value.

3.1 Document Functions 41

Details

PDF/VT

Scope

Bindings

This function creates a new PDF file using the supplied filename. PDFlib will attempt to
open a file with the given name, and close the file when the PDF document is finished.

PDF begin_document_callback() opens a new PDF document, but instead of writing to
a disk file it calls a client-supplied callback function to deliver the PDF output data. The
function supplied as writeproc must return the number of bytes written. If the return
value doesn’t match the size argument supplied by PDFlib, an exception will be thrown.
The frequency of writeproc calls is configurable with the flush option.

The following option is not allowed: groups.

object; this function starts document scope if the file could successfully be opened, and
must always be paired with a matching PDF _end _document() call.

ASP: the MapPath facility should be used to construct full path names to be passed to
this function.

C, C++, Java, JScript: take care of properly escaping the backslash path separator. For ex-
ample, the following denotes a file on a network drive: \\\\malik\\rp\\foo.pdf.
PDF begin_document _callback() is only available in C and C++.

C++ Java C# void end_document(String optlist)

Perl PH

Details

Scope

P end_document(string optlist)
C void PDF_end_document(PDF "p, const char *optlist)

Close the generated PDF document and apply various options.

optlist An option list specifying document processing options:

» General option: hypertextencoding (see Table 2.3)

» Document options according to Table 3.1. Options specified in PDF_end_document()
have precedence over identical options specified in PDF_begin_document(). The fol-
lowing options can be used:
action, associatedfiles, attachments, autoxmp, destination, destname, labels, metadata,
moddate, openmode, pagelayout, portfolio, search, uri, viewerpreferences

This function finishes the generated PDF document, frees all document-related resourc-
es, and closes the output file if the PDF document has been opened with PDF begin_
document(). This function must be called when the client is done generating pages, re-
gardless of the method used to open the PDF document.

When the document was generated in memory (as opposed to on file), the document
buffer will still be kept after this function is called (so that it can be fetched with PDF
get_buffer()), and will be freed in the next call to PDF _begin_document(), or when the
PDFlib object goes out of scope.

document; this function terminates document scope, and must always be paired with a
matching call to one of PDF_begin_document() or PDF_begin_document_callback().

42 Chapter 3: Document and Page Functions

Table 3.1 Document options for PDF_begin_document() and PDF_end_document()

option

action’

associated-
files'

attachments

autoxmp
destination
destname’

groups®

labels

linearize

metadata

moddate

description

(Action list; not for PDF/A) List of document actions for one or more of the following events (default:

empty list):

open Actions to be performed when the document is opened. Due to the execution order in Acrobat
document-level JavaScript must not be used for open actions.

didprint/didsave/willclose/willprint/willsave
JavaScript actions to be performed after printing/after saving/before closing/before printing/
before saving the document.

(List of asset handles; only for PDF 2.0 and PDF/A-3) Asset handles for associated files according to PDF/A-
3. The files must have been loaded with PDF load_asset() and type=attachment.

(List of option lists or list of asset handles; not for PDF/X-1a/3 and PDF/A-1; PDF/A-2: only PDF/A-1 and
PDF/A-2 documents can be attached; PDF/A-3: not allowed, use associatedfiles instead) Specifies docu-
ment-level file attachments which have been loaded with PDF load_asset() and type=attachment. It is
OK to supply file attachments both in PDF_begin_document() and PDF_end_document(). However, as-
set handles can only be supplied in PDF end_document(). Supported suboptions: see Table 13.6

(Boolean; will be forced to true for PDF/X-3/4/5 and PDF/A) If txue, PDFlib will create XMP document
metadata from document info fields (see Section 14.2, »XMP Metadata«, page 257). Default: false

(Option list; will be ignored if an open action has been specified) An option list specifying the document
open action according to Table 12.10.

(Hypertext string; will be ignored if the destination option has been specified) The name of a destina-
tion which has been defined with PDF add_nameddest(), and will be used as the document open action.

(List of strings; not allowed in PDF/VT mode or if a document part hierarchy is created) Define the names
and ordering of the page groups used in the document. Page groups keep pages together (useful e.g. for
attaching page labels); pages can be assigned to one of the page groups defined in the document, and
referenced within the respective group. If page groups are defined for a document, all pages must be as-
signed to a page group.

(List of option lists) A list containing one or more option lists according to Table 3.6 specifying symbolic
page names. The page name will be displayed as a page label (instead of the page number) in Acrobat’s
status line. The combination of style/prefix/start must be unique within a document. Default: no
page labels

(Boolean; only for PDF_begin_document()) If txue, the output document will be linearized. On z/0S this
option cannot be combined with an empty filename. Default: false

(Option list) Supply XMP document metadata (see Section 14.2, »XMP Metadata«, page 257). Individual
XMP properties may be overridden with document info fields supplied with PDF set_info(). In PDF/A
mode the supplied XMP metadata must conform to additional requirements (see PDFlib Tutorial).

(Boolean) If true, the ModDate (modification date) document info key will be created for compliance with
some preflight tools. Default: false

3.1 Document Functions 43

Table 3.1 Document options for PDF_begin_document() and PDF_end_document()

option

objectstreams’

openmode

optimize®

pagelayout

portfolio’

search

description

(List of keywords; PDF 1.5; will be forced to false if optimize or 1inearize is true) Generate compressed
object streams which significantly reduce output file size (default: {other nodocinfo}):

bookmarksCompress bookmark objects.

docinfo Compress document info fields.

dpartarrays Compress dictionaries related to the document part hierarchy.

dpartdicts Compress arrays related to the document part hierarchy.

fields Compress form fields.

names Compress objects for named destinations.

none Don’t generate any compressed object streams (except for categories which are explicitly
enabled after this option).

other All categories which are not explicitly disabled after this keyword, plus other object types
which don’t have their own keyword.

pages Compress the objects comprising the page tree.

poca Compress all simple objects created with the POCA interface.

tags Compress marked content tags.

xref Generate a compressed xref stream. This category will automatically be enabled if at least

one of the other categories is enabled.
Except for none and other, all keywords can be prefixed with no (e.g. nodocinfo) to disable compression
for the specified category. If at least one such negative keyword is supplied, the keyword other will be
prepended to the list.

(Keyword) Set the appearance when the document is opened. Default: bookmazrks if the document con-
tains any bookmarks, otherwise none.

none Open with no additional panel visible.

bookmarks Open with the bookmark panel visible.

thumbnails Open with the thumbnail panel visible.

fullscreen Open in fullscreen mode (does not work in the browser).
layers (PDF 1.5) Open with the layer panel visible.

attachments (PDF 1.6) Open with the attachments panel visible.

(Boolean) If txue, the output document will be optimized in a separate pass after generating it. Optimi-
zation reduces file size by eliminating redundant duplicate objects. In general optimization will not have
any significant effect except for inefficient client code (e.g. loading the same image or ICC profile multiply
instead of reusing the handle). On z/0S this option cannot be combined with in-core generation (i.e. an
empty filename). Default: false

(Keyword) The page layout to be used when the document is opened (default: default):

default The default setting of the Acrobat viewer.

singlepage Display one page at a time.

onecolumn Display the pages continuously in one column.

twocolumnleft Display the pages in two columns, odd pages on the left.

twocolumnright Display the pages in two columns, odd pages on the right

twopageleft (PDF 1.5) Display the pages two at a time, with odd-numbered pages on the left.
twopageright (PDF 1.5) Display the pages two at a time, with odd-numbered pages on the right.

(Option list; PDF 1.7) Suboptions for creating a PDF portfolio according to Table 12.13

(Option list; not in I1SO 32000-1) Instruct Acrobat to attach a search index when opening the document.
The following suboptions are supported:

filename (Hypertext string; required) Name of a file containing a search index
indextype (Name string) Type of the index; must be PDX for Acrobat. Default: PDX

44 Chapter 3: Document and Page Functions

Table 3.1 Document options for PDF_begin_document() and PDF_end_document()

option

uri

viewer-
preferences

description

(String) Set the document’s base URL. This is useful when a document with relative Web links is moved to
a different location. Adjusting the base URL makes sure that relative links will still work. Default: no base
URI

(Option list) Option list specifying various viewer preferences according to Table 3.7. Default: empty

1. Only for PDF_end_document()
2. Only for PDF_begin_document() and PDF_begin_document _callback()

Table 3.2 Options for PDF compatibility and standards in PDF_begin_document()

option

compatibility

nodenamelist

pdfa

pdfua

pdfvt

description

(Keyword; will be ignored if one of the pdfa, pdfua, pdfvt or pdfx options is used with a value different
from none) Set the document’s PDF version to one of the keywords listed below. This option affects which
PDF creation features are available and which PDF documents can be imported with PDFlib+PDI (default:
1.7):

1.4 PDF 1.4 requires Acrobat 5 or above.
15 PDF 1.5 requires Acrobat 6 or above.
1.6 PDF 1.6 requires Acrobat 7 or above.
1.7 PDF 1.7 is specified in ISO 32000-1 and requires Acrobat 8 or above.

1.7ext3 PDF 1.7 extension level 3 requires Acrobat 9 or above.
1.7ext8 PDF 1.7 extension level 8 requires Acrobat X or above.
2.0 PDF 2.0 is specified in ISO 32000-2.

(List of name strings; required for pdfvt=PDF/VT-1 and pdfvt=PDF/VT-2) Names for all levels of the doc-
ument part hierarchy. All names must consist of ASClI characters and must conform to the rules of an
XML NMTOKEN. The first string specifies the name for level o in the document part hierarchy.

(Keyword) Set the PDF/A conformance level to one of the following (default: none) :
PDF/A-1a:2005, PDF/A-1b:2005 (implies compatibility=1.4)

PDF/A-2a, PDF/A-2b, PDF/A-2u (implies compatibility=1.7)

PDF/A-3a, PDF/A-3b, PDF/A-3u (implies compatibility=1.7)

none

PDF/A1-a:2005, PDF/A-2a, and PDF/A-3a imply tagged=true. PDF/A can simultaneously conform to oth-
er standards as follows:

pdfx=PDF/X-1a:2003, PDF/X-3:2003, PDF/X-4
pdfvt=PDF/VT-1
pdfua=PDF/UA-1

If multiple options for PDF standards are specified the lowest compatibility value is used.

(Keyword) Set the PDF/UA conformance level to one of the following (default: none) :
PDF/UA-1 Implies compatibility=1.7 and tagged=true.
none No PDF/UA output

(Keyword) Set the PDF/VT conformance level to one of the following (default: none):
PDF/VT-1 Implies pdfx=PDF/X-4; any other value for the pdfx option is an error.

PDF/VT-2 The pdfx option must specify one of PDF/X-4p, PDF/X-5g, PDF/X-5pg; any other value for the
pdfx option is an error.

none No PDF/VT output

3.1 Document Functions 45

Table 3.2 Options for PDF compatibility and standards in PDF_begin_document()

option

pdfx

recordlevel

uses-

description

(Keyword) Set the PDF/X conformance level to one of the following (default: none) :
PDF/X-1a:2003 (implies compatibility=1.4)

PDF/X-3:2003 (implies compatibility=1.4)

PDF/X-4, PDF/X-4p’ (implies compatibility=1.6)

PDF/X-5g, PDF/X-5pg’ (implies compatibility=1.6)

none

(Non-negative integer; only relevant if a document part hierarchy is created) Zero-based level of the
document part hierarchy which corresponds to recipient records.

(Boolean; only for PDF/VT) If false, none of the pages in the generated document will contain any trans-

transparency parent objects. PDFlib will throw an exception if this assertion is violated. Setting this option to false is

allowed only for documents without transparency, and facilitates generation of encapsulated XObjects
for PDF/VT since all XObjects will unconditionally be marked as encapsulated. Default: txue

1. The PDFlib Tutorial contains an important note about Acrobat problems with referenced ICC profiles.

Table 3.3 Options for Tagged PDF in PDF_begin_document()

option

checktags

lang

rolemap

description

(Keyword; must be strict in PDF/UA mode) Specifies whether the structure element nesting rules (see
PDFlib Tutorial) are checked for elements created with PDF_begin_item() or the tag option of various
functions. This option is only provided as a migration aid. It does not affect the tags in imported pages
(see option checktags of PDF open_pdi_document()). Supported keywords (default: strict):

none Tag nesting rules are not enforced. This setting may result in an invalid structure hierarchy
and is therefore not recommended.

relaxed Similar to strict except that a few rules are not enforced (see PDFIib Tutorial).
strict If a tag violates the nesting rules an exception will be thrown.

(String; recommended if tagged=true) Set the primary language of the document as a two-character
I1SO 639 language code (examples: DE, EN, FR, JA), optionally followed by a hyphen and a two-character
1SO 3166 country code (examples: EN-US, EN-GB, ES-MX). Case is not significant.

The language specification can be overridden for individual structure items on all levels of the structure
tree, but should be set initially for the document as a whole.

PDF/UA: the natural language must be specified with this option or with the 1ang suboption of individu-
al structure elements.

(List of string lists; the first element in each string list is a name string, the second element is a string; only
for Tagged PDF; required if custom element types are used) Mapping of custom element types to stan-
dard element types. Each sublist contains the name of a standard or custom element type, and the name
of the standard element type to which the first type will be mapped. Inline and pseudo element types are
not allowed for the second entry in a sublist. Standard element type names also can be mapped to other
standard element types in order to assign different semantics to existing element types. Indirect map-
pings are allowed, i.e. a custom type is mapped to another custom type which is then mapped to a stan-
dard type. Pairs with identical entries are silently ignored. See Section 14.3, »Tagged PDF«, page 258, re-
garding the use of custom element types in Tagged PDF. Custom element type names must not start with
the reserved prefix P1ib.

In PDF/UA it is not allowed to remap standard element types.

46 Chapter 3: Document and Page Functions

Table 3.3 Options for Tagged PDF in PDF_begin_document()
option description

structuretype (Keyword; only for PDF/UA) Type of document structure. Supported keywords (default: weak) :

strong The document is strongly structured, i.e. the structure tree reflects the document’s logical
organization. The only allowed structure type for headings is H, while H1, H2, etc. are not
allowed. Each node in the structure tree contains at most one H tag plus one or more
paragraph tags P.

weak The document is weakly structured, i.e. the structure tree is only a few levels deep with all
headings, paragraph etc. as immediate children. Logical structure may be expressed with
heading tags H1, H2, etc., while H is not allowed. Headings may not have any descendants.

tag (Option list) Tagging options according to Table 14.4. The specified structure element comprises the docu-
ment structure root and will be closed automatically in PDF_end_document(). Only grouping elements
are allowed for the tagname suboption.

tagged (Boolean) If true, generate Tagged PDF output. Proper structure information must be provided by the cli-
ent in Tagged PDF mode (see Section 14.3, »Tagged PDF«, page 258). If PDF/A-1a:2005, PDF/A-2a, PDF/A-
3a or PDF/UA-1 mode is active this option will automatically be set to true. Default: false

Table 3.4 Security options for PDF begin_document(); not allowed for PDF/A and PDF/X
option description

attachment- (String®; PDF 1.6; will be ignored if usexpassword or masterpassword are set; can not be combined with

password' the linearize and optimize options; not for PDF/A and PDF/X) File attachments will be encrypted using
the supplied string as password. The rest of the document will not be encrypted. On EBCDIC platforms
the password is expected in ebcdic encoding or EBCDIC-UTF-8.

master- (String; required if permissions has been specified; not for PDF/A and PDF/X) The master password for
password' the document. If it is empty no master password will be applied. On EBCDIC platforms the password is
expected in ebcdic encoding or EBCDIC-UTF-8. Default: empty

permissions (Keyword list; not for PDF/A and PDF/X) The access permission list for the output document. It contains
any number of the following keywords (default: empty):

noprint Acrobat will prevent printing the file.

nohiresprint
Acrobat will prevent high-resolution printing. If noprint isn’t set, printing is restricted to the
»print as image« feature which prints a low-resolution rendition of the page.

nomodify Acrobat will prevent editing or cropping pages and creating or changing form fields.

noassemble (Implies nomodify) Acrobat will prevent inserting, deleting, or rotating pages and creating
bookmarks and thumbnails.

noannots Acrobat will prevent creating or changing annotations and form fields.

noforms (implies nomodify and noannots) Acrobat will prevent form field filling.

nocopy Acrobat will prevent copying and extracting text or graphics; the accessibility interface will be
controlled by noaccessible.

noaccessible
(Deprecated in PDF 2.0; not allowed in PDF/UA) Acrobat will prevent extracting text or
graphics for accessibility (e.g. a screenreader).

plainmetadata
(PDF 1.5) Keep XMP document metadata unencrypted even in an encrypted document.

user- (String; not for PDF/A and PDF/X) The user password for the document. If it is empty no user password
password' will be applied. On EBCDIC platforms the password is expected in ebcdic encoding or EBCDIC-UTF-8. De-
fault: empty

1. In order to pass arbitrary strings with this option the option list syntax described in »Unquoted string values in option lists«, page 9,
may be useful.
2. Characters outside of Winansi encoding are only allowed in passwords for compatibility=1.7ext3 or above

3.1 Document Functions 47

Table 3.5 Output processing options for PDF_begin_document()

option

createoutput

createpvf

filemode

flush

inmemory

recordsize

remove-
fragments

tempdirname

temp-
filenames

description

(Boolean) If false, the filename parameter is ignored and no output file or memory area is created. This
option implies compress=0, linearize=false and optimize=false. Default: true

(Boolean) If true, generate the PDF file in memory instead of on file. The supplied file name is the name
of a virtual file which will be created with the call of PDF_end_document(). In this case PDF get_buffer()
cannot be called to fetch the PDF output data; instead, the name of the generated PVF file can be sup-
plied to other PDFlib functions. This may be useful when generating documents which will be included in
a PDF Portfolio. Default: false

(String, z/0S and USS only) Parameter string for setting the file mode of the document file and any tem-
porary file (e.g. with the 1inearize option). The supplied string will be appended to the default file mode
of »wb, «. The option recordsize must be consistent with the parameters specified in this option. Exam-
ple string: recfm=fb,1recl=80, space=(cyl, (1,5). Default: empty, or recfm=v for unblocked output

(Keyword; only for PDF begin_document_callback()) Set the flushing strategy (default: page) :
none flush only once at the end of the document

page flush at the end of each page

content flush after all fonts, images, file attachments, and pages

heavy always flush when the internal 64 KB document buffer is full

(Boolean; not for PDF_begin_document_callback()) If true and the linearize or optimize option is
true as well, PDFlib will not create any temporary files for linearization, but will process the file in mem-
ory. This can result in tremendous performance gains on some systems (especially z/0S), but requires
memory twice the size of the document. If false, a temporary file will be created for linearization and op-
timization. Default: false

(Integer; z/0S and USS only) The record size of the output file, and any temporary file which may have to
be created for the 1inearize and optimize options. Default: o (unblocked output)

If true, a partial PDF output document which exists after an exception will be removed in PDF_delete().
Such PDF fragments are never usable as documents. This option has no effect if an empty filename has
been specified, i.e. for in-memory PDF generation. Default: false

(String; not for PDF_begin_document_callback()) Directory where temporary files for the 1inearize and
optimize options will be created. If this option is missing, PDFlib will generate temporary files in the cur-
rent directory. This option will be ignored if the tempfilenames option has been supplied. Default: not
present

(List of two strings; only for z/0S and USS) Full file names for two temporary files required for the
linearize and optimize options. If empty, PDFlib will generate unique temporary file names. The user is
responsible for deleting the temporary files after PDF_end_document(). If this option is supplied the
filename parameter must not be empty. Default: not present

48 Chapter 3: Document and Page Functions

Table 3.6 Suboptions for the labels option in PDF_begin/end_document() and label option in PDF_begin/end_page_ext()
option description

group (String; only for PDF_begin_document(); required if the document uses page groups, but not allowed
otherwise) The label will be applied to all pages in the specified group and all pages in all subsequent
groups until a new label is applied. The group name must have been defined with the groups option in
PDF_begin_document().

hypertext- (Keyword) Specifies the encoding for the prefix option. An empty string is equivalent to unicode. De-
encoding fault: value of the global hypertextencoding option.

pagenumber (Integer; only for PDF_end_document(); required if the document does not use page groups, but not al-
lowed otherwise) The label will be applied to the specified page and subsequent pages until a new label

is applied. S
prefix (Hypertext string) The label prefix for all labels in the range. Default: none
start (Integer >= 1) Numeric value for the first label in the range. Subsequent pages in the range will be num-

bered sequentially starting with this value. Default: 1

style (Keyword) The numbering style to be used. Default: none.
none no page number; labels will only consist of the prefix.
D decimal arabic numerals (1, 2, 3, ...) o
R uppercase roman numerals (1, 11, 111, ...)
r lowercase roman numerals (i, ii, iii, ...) -
A uppercase letters (A, B, C, ..., AA, BB, CC, ...)
a lowercase letters (a, b, c, ..., aa, bb, cc, ...) E—

3.1 Document Functions 49

Table 3.7 Suboptions for the viewerpreferences option in PDF_begin_document() and PDF _end_document()

option
centerwindow

direction

displaydoctitle

duplex

fitwindow
hidemenubar'
hidetoolbar’

hide-
windowui’

nonfullscreen-
pagemode

numcopies
picktrayby-
pdfsize

printscaling

printpage-
range

printarea
printclip
viewarea
viewclip

description

(Boolean) If true, position the document’s window in the center of the screen. Default: false
(Keyword) The reading order of the document, which affects the scroll ordering in double-page view and
the side (left/right) of the first page for double-page layout in Acrobat (default 12r) :

l2r Left to right

r2/ Right to left (including vertical writing systems)

(Boolean; only true allowed in PDF/UA mode) Display the Title document info field in Acrobat’s title bar
(true) or the file name (false). Default: true for PDF/UA, otherwise false

(Keyword; PDF 1.7) Paper handling option for the print dialog (default: none) :

DuplexFlipShortEdge
Duplex and flip on the short edge of the sheet.

DuplexFlipLongEdge
Duplex and flip on the long edge of the sheet.

none No paper handling specified.
Simplex Print single-sided.

(Boolean) Specifies whether to resize the document’s window to the size of the first page. Default: false
(Boolean) Specifies whether to hide Acrobat’s menu bar. Default: false
(Boolean) Specifies whether to hide Acrobat’s tool bars. Default: false

(Boolean) Specifies whether to hide Acrobat’s window controls. Default: false

(Keyword; only relevant if the openmode option is set to fullscreen) Specifies how to display the docu-
ment on exiting full-screen mode (default: none):

bookmarks display page and bookmark pane
thumbnails display page and thumbnail pane
layers display page and layer pane

none display page only

(Integer in the range 1-5, PDF 1.7) The number of copies for the print dialog. Default: viewer-specific

(Boolean; PDF 1.7; no effect on Mac 0OS) Specifies whether the PDF page size is used to select the input pa-
per tray in the print dialog. Default: viewer-specific

(Keyword; PDF 1.6) Page scaling option to be selected when a print dialog is presented for the document.
Supported keywords (default: appdefault):

none No page scaling; this may be useful for printing page contents at their exact sizes.

appdefault Use the current print scaling as specified in Acrobat.

(List with pairs of integers; PDF 1.7) Page numbers for the print dialog. Each pair denotes the start and end
page numbers of a page range to be printed (first page is 1). Default: viewer-specific

(Keyword; for PDF/X only media and bleed are allowed) The type of the page boundary box representing
the area of a page to be displayed or clipped when viewing the document on screen or printing it. Acro-
bat ignores this setting, but it may be useful for other applications. Supported keywords (default: crop):
art Use the ArtBox

bleed Use the BleedBox

crop Use the CropBox
media Use the MediaBox
trim Use the TrimBox

1. Acrobat 8 and above does not support the combination of hidemenubaz, hidetoolbar, and hidewindowui (i.e. all user interface ele-
ments hidden). The menu bar will still be visible if all three elements are set to hidden.

50 Chapter 3: Document and Page Functions

3.2 Fetching PDF Documents from Memory

C+

If a non-empty filename parameter has been supplied to PDF_begin_document() PDFlib
writes PDF documents to a named disk file. Alternatively, PDF document data are gener-
ated in memory if the filename parameter is empty. In this case the PDF document data
must be fetched from memory with PDF_get_buffer(). This is especially useful when
shipping PDF from a Web server.

+ const char *get_buffer(long *size)

Java C# byte[| get_buffer()
Perl PHP string get_buffer()

Returns

Details

Scope

Bindings

C const char * PDF_get_buffer(PDF *p, long *size)

Get the contents of the PDF output buffer.

size (C and C++ language bindings only) C-style pointer to a memory location where
the length of the returned data in bytes will be stored.

A buffer full of binary PDF data for consumption by the client. The function returns a
language-specific data type for binary data. The returned buffer must be used by the cli-
ent before calling any other PDFlib function.

Fetch the full or partial buffer containing the generated PDF data. If this function is
called between page descriptions, it will return the PDF data generated so far. If generat-
ing PDF into memory, this function must at least be called after PDF _end_document(),
and will return the remainder of the PDF document. It can be called earlier to fetch par-
tial document data. If there is only a single call to this function which happens after
PDF _end_document() the returned buffer is guaranteed to contain the complete PDF
document in a contiguous buffer.

Since PDF output contains binary characters, client software must be prepared to ac-
cept non-printable characters including null values.

object, document (in other words: after PDF end_page_ext() and before PDF begin_page _
ext(), or after PDF_end_document() and before PDF delete(). This function can only be
used if an empty filename has been supplied to PDF _begin_document().

If the linearize option in PDF_begin_document() has been set to true, the scope is re-
stricted to object, i.e. this function can only be called after PDF end document().

C and C++: the size parameter is only used for C and C++ clients.

COM: Most COM clients will use a Variant type to hold the buffer contents. JavaScript
with COM does not allow to retrieve the length of the returned variant array (but it does
work with other languages and COM).

Other bindings: an object of appropriate length will be returned, and the size param-
eter must be omitted.

3.2 Fetching PDF Documents from Memory 51

3.3 Page Functions

C++ Java C# void begin_page_ext(double width, double height, String optlist)

Perl PHP begin_page_ext(float width, float height, string optlist)
C void PDF_begin_page_ext(PDF *p, double width, double height, const char *optlist)

Add a new page to the document and specify various options.

width, height The width and height parameters are the dimensions of the new page in
points (or user units, if the userunit option has been specified). They can be overridden
by the options with the same name (the dummy value o can be used for the parameters
in this case). A list of commonly used page formats can be found in Table 3.8. The PDFlib
Tutorial lists applicable page size limits in Acrobat. See also Table 3.9 for more details
(options width and height).

Table 3.8 Common standard page size dimensions in points’

- format width height format width height format width height
ao 2380 3368 a4q 595 842 letter 612 792
ai 1684 2380 as 421 595 legal 612 1008
— az 190 1684 a6 297 421 ledger 1224 792
a3 842 1190 11X17 792 1224

1. More information about ISO, Japanese, and U.S. standard formats can be found at
www.cl.cam.ac.uk/~mgk2s/iso-paper.html

optlist An option list with page options according to Table 3.9. These options have low-
er priority than identical options specified in PDF _end_page_ext():

action, artbox, associatedfiles, bleedbox, blocks, cropbox, defaultcmyk, defaultgray, defaultrgb,
duration, group, height, label, mediabox, metadata, pagenumber, rotate, separationinfo,
taborder, topdown, transition, transparencygroup, trimbox, userunit, viewports, width

Details This function resets all text, graphics, and color state parameters to their default values,
— and establishes a coordinate system according to the topdown option.

PDF/VT The following options are not allowed: group, pagenumber.

Scope document; this function starts page scope, and must always be paired with a matching
- PDF end_page_ext() call.

C++ Java C# void end_page_ext(String optlist)
Perl PHP end_page_ext(string optlist)
C void PDF_end_page_ext(PDF *p, const char optlist)

Finish a page and apply various options.

optlist An option list according to Table 3.9. Options specified in PDF_end_page_ext()
have priority over identical options specified in PDF begin_page_ext(). The following
options can be used:

52 Chapter 3: Document and Page Functions

http://www.cl.cam.ac.uk/~mgk25/iso-paper.html

associatedfiles, action, artbox, bleedbox, blocks, cropbox, defaultcmyk, defaultgray, defaultrgb,
duration, group, height, label, mediabox, metadata, rotate, taborder, transition, transparency-
group, trimbox, userunit, viewports, width

Scope page; this function terminates page scope, and must always be paired with a matching
PDF_begin_page_ext() call. In Tagged PDF mode all inline and pseudo items must be
closed before calling this function.

Table 3.9 Page options for PDF_begin_page_ext() and PDF end_page_ext()

option

action

associatedfiles

artbox
bleedbox
cropbox

blocks

defaultgray’
defaultrgb’
defaultcmyk’

duration

group’

height

label

mediabox

description

(Action list; not for PDF/A) List of page actions for one or more of the following events (default: empty
list):

open Actions to be performed when the page is opened.

close Actions to be performed when the page is closed.

(List of asset handles; only for PDF 2.0 and PDF/A-3) Asset handles for associated files according to PDF/A-
3. The files must have been loaded with PDF load_asset() and type=attachment.

(Rectangle) Specify the ArtBox, BleedBox, or CropBox for the current page, respectively. The coordinates
are specified in the default coordinate system. Default: no box entries

(POCA container handle; may be supplied to PDF_begin_page_ext() or PDF_end_page_ext(), but not to
both functions for the same page; only available in PPS) Handle for a dictionary container created with
PDF_poca_new() which contains PDFlib Block definitions for the PDFlib Personalization Server (PPS). The
specified Blocks will be attached to the page. The dictionary must have been created with the option
usage=blocks. Default: no Blocks

(ICC handle or keyword) Set a default gray, RGB, or CMYK color space for the page according to the sup-
plied ICC profile handle. The option defaultrgb also supports the keyword sxgb. The specified color
space will be used to map device-dependent gray, RGB, or CMYK colors on the page (but not within tem-
plates on the page).

(Float) Set the page display duration in seconds for the current page if openmode=fullscreen (see Table
3.1). Default: 1

(String; required if the document uses page groups, but not allowed otherwise; not allowed in PDF/VT
mode or if a document part hierarchy is created) Name of the page group to which the page will belong.
This name can be used to keep pages together in a page group and to address pages with PDF resume_
page(). The group name must have been defined with the groups option in PDF_begin_document().

(Float or keyword; not allowed if the topdown option is true) Dimensions of the new page in points (or
user units, if the userunit option has been specified). In order to produce landscape pages use width >
height or the rotate option. PDFlib uses width and height to construct the page’s MediaBox, but the
MediaBox can also explicitly be set using the mediabox option. The width and height options override
the parameters with the same name.

The following symbolic page size names can be used as keywords by appending .width or .height (e.g.
a4.width, a4.height):

ao, ai, a2, a3, a4, a5, ab, b5, letter, legal, ledger, 11x17

(Option list) An option list according to Table 3.6 specifying symbolic page names. The page name will be
displayed as a page label (instead of the page number) in Acrobat’s status line. The specified numbering
scheme will be used for the current and subsequent pages until it is changed again. The combination of
style/prefix/start values must be unique within a document.

(Rectangle; not allowed if the topdown option is true) Change the MediaBox for the current page. The
coordinates are specified in the default coordinate system. By default, the MediaBox will be created by
using the width and height parameters. The mediabox option overrides the width and height options
and parameters.

3.3 Page Functions 53

Table 3.9 Page options for PDF_begin_page_ext() and PDF _end_page_ext()

option
metadata

pagenumber’

rotate

separation-
info’

taborder

topdown’

transition

description
(Option list) Metadata for the page (see Section 14.2, »XMP Metadata«, page 257)

(Integer; not allowed in PDF/VT mode or if a document part hierarchy is created) If this option is specified
with a value n, the page will be inserted before the existing page n within the page group specified in
the group option (or the document if the document doesn’t use page groups). If this option is not speci-
fied the page will be inserted at the end of the group.

(Integer) The page rotation value. The rotation will affect page display, but does not modify the coordi-
nate system. Possible values are o, 90, 180, 270. Default: o

(Option list) An option list containing color separation details for the current page. This will be ignored in

Acrobat, but may be useful in third-party software for identifying and correctly previewing separated

pages in a preseparated workflow:

pages (Integer; required for the first page of a set of separation pages, but not allowed for subse-
quent pages of the same set) The number of pages which belong to the same set of separa-
tion pages comprising the color data for a single composite page. All pages in the set must
appear sequentially in the file.

spotname (String; required unless spotcolor has been supplied) The name of the colorant for the
current page.

spotcolor (Spot color handle) A color handle describing the colorant for the current page.

(Keyword; PDF 1.5; only structure allowed in PDF/UA) Keyword specifying the tab order for form fields

and annotations (Default: structure in Tagged PDF mode for PDF 1.5 and above, otherwise none) :

column Column by column from top to bottom, where columns are ordered as specified by the
direction suboption of the viewerpreferences option of PDF_begin/end_document().

none The tab order is unspecified.

structure Form fields and annotations are visited in the order in which they appear in the structure
tree.

row Row by row starting at the topmost row, where the direction within a row is as specified by

the direction suboption of the viewerpreferences option of PDF begin/end_document().

(Boolean) If txue, the origin of the coordinate system at the beginning of the page will be assumed in the
top left corner of the page, and y coordinates will increase downwards; otherwise the default coordinate
system will be used. Default: false

(Keyword) Set the page transition for the current page in order to achieve special effects which may be
useful when displaying the PDF in Acrobat’s full-screen mode as presentations if openmode=fullscreen
(see Table 3.1). Default: replace

split Two lines sweeping across the screen reveal the page
blinds Multiple lines sweeping across the screen reveal the page
box A box reveals the page

wipe A single line sweeping across the screen reveals the page

dissolve The old page dissolves to reveal the page

glitter The dissolve effect moves from one screen edge to another

replace The old page is simply replaced by the new page

fly (PDF 1.5) The new page flies into the old page.

push (PDF 1.5) The new page pushes the old page off the screen

cover (PDF 1.5) The new page slides on to the screen and covers the old page.
uncover (PDF 1.5) The old page slides off the screen and uncovers the new page.
fade (PDF 1.5) The new page gradually becomes visible through the old one.

54 Chapter 3: Document and Page Functions

Table 3.9 Page options for PDF begin_page_ext() and PDF_end_page_ext()

option description

trans- (Option list or keyword; not for PDF/A-1 and PDF/X-1/3; restrictions apply to PDF/A-2/3 and PDF/X-4/5)
parency- Create a transparency group for the page. The following keywords are supported (default: auto) :
group auto If transparent objects are present on the page itself or on an imported PDF page, graphics or

template, the transparencygroup option is automatically created with a suitable color
space; otherwise no transparency group is created.

none (Not allowed for PDF/A-2/3 without output intent if transparency is used on the page) Don’t
create any transparency group for the page.
The following suboptions can be used to explicitly create a transparency group:
colorspace (Keyword or ICC profile handle; required for PDF/A-2/3 without output intent if transparency
is used on the page) Blending color space of the transparency group (default: none):
DeviceCMYK PDF/A-2/3 and PDF/X-4/5: only allowed with a CMYK output intent or if the
defaultcmyk option has been supplied. —_
DeviceGray PDF/A-2/3 and PDF/X-4/5: only allowed with a gray or CMYK output intent or if
the defaultgray option has been supplied.
DeviceRGB PDF/A-2/3 and PDF/X-4/5: only allowed with an RGB output intent or if the
defaultrgb option has been supplied.
none (Not allowed for PDF/A-2/3 without output intent if transparency is used on the -
page) No color space is emitted for the transparency group.
srgb Keyword for selecting the sRGB color space
isolated (Boolean) Specifies whether the transparency group is isolated. Default: false

knockout (Boolean) Specifies whether the transparency group is a knockout group. Default: false

trimbox (Rectangle) Specify the TrimBox for the current page. The coordinates are specified in the default coordi-
nate system. Default: no TrimBox entry

userunit (Float or keyword; PDF 1.6) A number in the range 1..75 ooo specifying the size of a user unit in points, or
one of the keywords mm, cm, or m which scales to the respective unit. User units don’t change the actual
page contents; they are only a hint to Acrobat which is used when printing the page or using the mea- I
surement tools. Default: 1 (i.e. one unit is one point)

viewports (List of option lists; PDF 1.7ext3) Specifies one or more georeferenced areas (viewports) on the page; see
Section 12.7, »Geospatial Features«, page 238, for details.

Viewports allow different geospatial references (specified by the georeference option) to be used on dif- [
ferent areas of the page, e.g. for multiple maps. The ordering of the option lists in the viewports list is
relevant for overlapping viewports: the last viewport which contains a point will be used for that point.

width (Float or keyword; not allowed if the topdown option is true) See height option.

1. Only for PDF_begin_page_ext() —

C++ Java C# void suspend_page(String optlist)
Perl PHP suspend_page(string optlist)
C void PDF_suspend_page(PDF *p, const char *optlist)

Suspend the current page so that it can later be resumed.
optlist An option list for future use.

Details The full graphics, color, text and layer states of the current page are saved internally.
The page can later be resumed with PDF_resume_page() to add more content. Suspended
pages must be resumed before they can be closed.

3.3 Page Functions 55

Scope

page; this function starts document scope, and must always be paired with a matching
PDF_resume_page() call. In Tagged PDF mode all inline and pseudo items must be closed
before calling this function.

C++ Java C# void resume_page(String optlist)
Perl PHP resume_page(string optlist)

— Details

— Scope

C void PDF_resume_page(PDF *p, const char *optlist)

Resume a page to add more content to it.

optlist An option list according to Table 3.10. The following options can be used:
group, pagenumber

The page must have been suspended with PDF suspend_page(). It will be opened again
so that more content can be added. All suspended pages must be resumed before they
can be closed, even if no more content has been added.

In Tagged PDF mode it must be kept in mind that resuming a page does not restore
any structure item. Instead, the item which is active when PDF resume_page() is called
will be the current item for subsequent page contents. It is recommended to use PDF
activate_item() to restore a specific structure element on the page as parent for
subsequently generated contents.

document; this function starts page scope, and must always be paired with a matching
PDF_suspend_page() call.

Table 3.10 Options for PDF_resume_page()

- option description

group

- pagenumber

(String; required if the document uses page groups, but not allowed otherwise) Name of the page group
of the resumed page. The group name must have been defined with the groups option in PDF_begin_
document().

(Integer) If this option is supplied, the page with the specified number within the page group chosen in
the group option (or in the document if the document doesn’t use page groups) will be resumed. If this
option is missing the last page in the group will be resumed.

56 Chapter 3: Document and Page Functions

3.4

Layers

Cookbook A full code sample can be found in the Cookbook topic graphics/starter_layer.

C++ Java C#
Perl PHP
C

int define_layer(String name, String optlist)
int define_layer(string name, string optlist)
int PDF_define_layer(PDF *p, const char *name, int len, const char *optlist)

Returns

Details

PDF/A

PDF/X

PDF/UA

Scope

Create a new layer definition (requires PDF 1.5).
name (Hypertext string) The name of the layer.

len (Clanguage binding only) Length of name (in bytes). If len = 0 a null-terminated
string must be provided.

optlist An option list with layer settings:
» General options: hypertextencoding and hypertextformat (see Table 2.3)
» Layer control options according to Table 3.11:
creatorinfo, defaultstate, initialexportstate, initialprintstate, initialviewstate, intent,
language, onpanel, pageelement, printsubtype, removeunused, zoom

Alayer handle which can be used in calls to PDF_begin_layer() and PDF set_layer
dependency() until the end of the enclosing document scope.

PDFlib will issue a warning if a layer was defined but hasn’t been used in the document.
Layers which are used on multiple pages should be defined only once (e.g. before creat-
ing the first page). If PDF_define_layer() is called repeatedly on multiple pages, the layer
definitions will accumulate (even if they have the same name), which is usually not de-
sired.

PDF/A-1: this function must not be called.
PDF/A-2/3: some options are restricted.

PDF/X-1/2/3: this function must not be called.
PDF/X-4/5: some options are restricted.

Some options are restricted.

any except object

Table 3.11 Options for PDF_define_layer()

option

explanation

creatorinfo (Option list; not for PDF/A-2/3, PDF/X-4/5, and PDF/UA) An option list describing the content and the cre-

ating application. Both of the following entries are required if this option is used:
creator (Hypertext string) The name of the application which created the layer
subtype (String) The type of content. Suggested values are Artwork and Technical.

defaultstate (Boolean) Specifies whether or not the layer is visible by default. Default: true

initial-

(Boolean; not for PDF/A-2/3, PDF/X-4/5, and PDF/UA) Specifies the layer’s recommended export state. If

exportstate true, Acrobat will include the layer when converting/exporting to older PDF versions or other document

initial-

formats. Default: true

(Boolean; not for PDF/A-2/3, PDF/X-4/5, and PDF/UA) The layer’s recommended printing state. If true,

printstate Acrobat includes the layer when printing the document. Default: true

3.4 Layers 57

http://www.pdflib.com/pdflib-cookbook/graphics/starter-layer

option

initial-
viewstate

. intent
language

onpanel

pageelement

printsubtype

removeunused

zoom

Table 3.11 Options for PDF_define_layer()

explanation

(Boolean; not for PDF/A-2/3, PDF/X-4/5, and PDF/UA) The layer’s recommended viewing state. If txrue,
Acrobat displays the layer when opening the document. Default: true

(Keyword) Intended use of the graphics: View or Design. Default: View

(Option list; not for PDF/A-2/3, PDF/X-4/5, and PDF/UA) Specifies the language of the layer:

lang (String; required) The language and possibly locale in the format described in Table 3.1 for the
lang option

preferred (Boolean) If true this layer is used if there is only a partial match between the layer and the
system language. Default: false

(Boolean; not for PDF/A-2/3, PDF/X-4/5, and PDF/UA) If false, the layer name will not be visible in Acro-
bat’s layer panel, and therefore cannot be manipulated by the user. Default: true

(Keyword; not for PDF/A-2/3, PDF/X-4/5, and PDF/UA) Specifies that the layer contains a pagination arti-
fact: one of HF (header/footer), FG (foreground image or graphic), BG (background image or graphic), or L
(logo).

(Option list; not for PDF/A-2/3, PDF/X-4/5, and PDF/UA) Specifies whether the layer is intended for print-

ing:

subtype (Keyword) One of Trapping, PrintersMarks, or Watermark specifying the kind of content in
the layer.

printstate (Boolean) If true, Acrobat will activate the layer contents upon printing.

(Boolean) If true and the layer is not used on a page, the layer will not be included in the page’s layer list.
A layer is considered used on a page if it has been supplied to PDF_begin_layer() at least once on that
page. Default: false unless the layer is included in a non-default variant with 1istmode=visiblepages

(List of floats or percentages; not for PDF/A-2/3, PDF/X-4/5, and PDF/UA) One or two values specifying the
layer’s visibility depending on the zoom factor (1.0 means a zoom factor of 100 percent). If one value is
provided, it will be used as the maximum zoom factor at which the layer should be visible; if two values
are provided they specify the minimum and maximum zoom factor. The keyword maxzoom can be used to
specify the largest possible zoom factor.

C++ Java C# void set_layer_dependency(String type, String optlist)

—— Perl PHP set_layer_dependency(string type, string optlist)

C void PDF_set_layer_dependency(PDF *p, const char *type, const char *optlist)

Define layer relationships and variants (requires PDF 1.5).

type

The type of dependency or relationship according to Table 3.12.

Table 3.12 Dependency and relationship types for layers

type
GroupAllOn

GroupAnyOn

GroupAllOff

GroupAnyOff

notes; options specific for this type

The layer specified in the depend option will be visible if all layers specified in the group option are visi-
ble. Options specific for this type: depend, group

The layers specified in the depend option will be visible if any layer specified in the group option is visible.
Options specific for this type: depend, group

The layer specified in the depend option will be visible if all layers specified in the group option are invis-
ible. Options specific for this type: depend, group

The layer specified in the depend option will be visible if any layer specified in the group option is invisi-
ble. Options specific for this type: depend, group

58 Chapter 3: Document and Page Functions

Table 3.12 Dependency and relationship types for layers

type
Lock

Parent

Radiobtn

Title

notes; options specific for this type

(PDF 1.6) The layers specified in the group option are locked, i.e. their state cannot be changed interac-

tively in Acrobat. Options specific for this type: group

Specify a hierarchical relationship between the layer specified in the parent option and the layers speci-
fied in the children option. Setting the parent to invisible automatically sets its children to invisible. A

layer cannot belong to more than one parent layer. Options specific for this type: children, parent

Option specific for this type: group

The layer specified in the parent option does not control any page contents directly, but serves as a hier-

archical separator for the layers specified in the children option. Options specific for this type:
children, parent

Variant Specify a document variant, i.e. a combination of one or more layers. Later calls to PDF set_layer

Details

PDF/A

PDF/X

PDF/UA

Scope

dependency() can supply the variantname option again in order to specify dependency rules for this con-

figuration. Options specific for this type: basestate, defaultvariant, includelayers,
invisiblelayers, visiblelayers

optlist An option list for layer dependencies:
» General option: hypertextencoding (see Table 2.3)
» Layer dependency options according to Table 3.13:
basestate, children, createorderlist, defaultvariant, depend, includelayers, invisiblelayers,
group, visiblelayers, listmode, parent, variantname.

Layer relationships specify the presentation of layer names in Acrobat’s layer pane as
well as the visibility of one or more layers when the user interactively enables or dis-
ables layers.

Variants consist of a fixed combination of layers to enhance production safety. In-
stead of manipulating individual layers the user can only enable or disable a variant. If
a document contains variants, Acrobat 9 does not display individual layer names, but
only the names of the layer variants. Layer variants are presented in Acrobat g only, and
only for PDF/X documents. Acrobat X and above do not display layer variants. For this
reason the use of layer variants is not recommended.

In order to specify a dependency in the presence of layer variants where not all af-
fected layers are part of the same variant, the dependency must be specified before set-
ting the default variant.

PDF/A-1: this function must not be called.
PDF/A-2/3: some options are restricted.

PDF/X-1/2/3: this function must not be called.
PDF/X-4/5: some options are restricted.

Layer variants were required in the superseded standard PDF/X-4:2008, but direct
layer control (without variants) is allowed in the successor PDF/X-4:2010 which is sup-
ported by PDFlib.

Some options are restricted.

any except object; Layer relationships should be specified after all layers have been
defined.

3.4 Layers 59

Specify a radio button relationship between the layers specified in the group option. This means that at
most one layer in the group is visible at a time, which is particularly useful for multiple language layers.

Table 3.13 Options for PDF set_layer_dependency()

option

basestate

children

createorder-
list

default-
variant

depend

group

includelayers

invisiblelayers

listmode

parent

variantname

visiblelayers

explanation

(Keyword; only for type=Variant; not for PDF/A-2/3, PDF/X-4/5, and PDF/UA) Specify the visibility of all
layers which are not explicitly configured in the visiblelayers and invisiblelayers options. Sup-
ported keywords (default: on):

on All layers will be visible for the selected variant.

off All layers will be invisible for the selected variant.

unchanged The state of all layers will be left unmodified for the selected variant.

(List of layer handles; only for type=Parent and Title) One or more layer handles specifying the layers
subordinate to the provided parent layer.

(Boolean; only for type=Variant and defaultvariant=true) If true, Acrobat will display the names of

all layers. The value true has the following implications (default: true):

> Acrobat g displays layer variants (if present) in the Layers panel, but not layer names, and emits PDF/
X-4 validation errors for documents with createorderlist=true since this is not allowed in PDF/X-
4:2008.

» Acrobat X and above display the layer names in its Layers panel, but not the layer variants, and suc-
cessfully validates documents with createorderlist=true since this is allowed in PDF/X-4:2010.

(Boolean; only for type=Variant) If true, the specified variant is the default variant, i.e. it will be active
when the document is opened. Exactly one variant must be specified as default variant. Default: false

(Layer handle; only for type=GroupAl1l0n, GroupAnyOn, GroupAl10ff, and GroupAnyOff) The layer which
is controlled by the layers specified in the group option.

(List of layer handles; only for type=GroupAl10n, GroupAnyOn, GroupA110ff, GroupAnyOff, Lock, and
Radiobtn) One or more layer handles comprising the group. For type=Lock all layers in the group will be
locked.

(List of layer handles; only for type=Variant) Specify the layers which belong to the variant. Default: all
layers defined so far in the document

(List of layer handles; only for type=Variant) Specify a list of layers which will initially be invisible for the
selected variant. A layer must not be listed in a variant’s visiblelayers and invisiblelayers lists at
the same time. If defaultvariant=true this option overrides the defaultstate option of PDF_define_
layer(). Default (depends on the basestate option): all layers in the includelayers list if basestate=
off; empty list if basestate=on

(Keyword; only for type=Variant) Specify which layer names will be displayed in Acrobat’s layer pane.

Supported keywords (default: visiblepages):

allpages The names of all layers on all pages will be displayed.

visiblepages The names of all layers on the currently visible page(s) will be displayed. This implies the
default value removeunused=true for all layers which belong to the variant.

In Acrobat this has an effect only if defaultvariant=true.

(Layer handle; only for type=Parent and Title) The layer which is the parent of the layers specified in
the children option.

(Hypertext string; required for type=Variant) Name of the selected variant. If type=Variant each vari-
ant name must be specified only once. Default if type is different from Variant: the default variant

(List of layer handles; only for type=Variant) Specify a list of layers which will initially be visible in the
selected variant. A layer must not be listed in a variant’s visiblelayers and invisiblelayers lists at
the same time. If defaultvariant=true this option overrides the defaultstate option of PDF_define_
layer(). Default (depends on the basestate option): all layers in the includelayers list if basestate=on;
empty list if basestate=off

60 Chapter 3: Document and Page Functions

C++ Java C# void begin_layer(int layer)
Perl PHP begin_layer(int layer)
C void PDF_begin_layer(PDF *p, int layer)

Start a layer for subsequent output on the page (requires PDF 1.5).
layer The layer’s handle, which must have been retrieved with PDF define_layer().

Details All content placed on the page after this call, but before any subsequent call to PDF _
begin_layer() or PDF end_layer() will be part of the specified layer. The content’s
visibility depends on the layer’s settings.

This function activates the specified layer, and deactivates any layer which may be
currently active.

Layers for annotations, images, graphics, templates, and form fields can be con-
trolled with the layer option of the respective functions.

Scope page

C++ Java C# void end_layer()
Perl PHP end_layer()
C void PDF_end_layer(PDF *p)

Deactivate all active layers (requires PDF 1.5).

Details Content placed on the page after this call will not belong to any layer. All layers must be
closed at the end of a page.

In order to switch from layer A to layer B a single call to PDF begin_layer() is suffi-
cient; it is not required to explicitly call PDF end_layer() to close layer A. PDF end_layer()
is only required to create unconditional content (which is always visible), and to close
all layers at the end of a page.

Scope page

3.4 Layers 61

4

Font and Text Functions

4.1 Font Handling

C++ Java C# int load_font(String fontname, String encoding, String optlist)

Perl PHP int load_font(string fontname, string encoding, string optlist)

Returns

C int PDF_load_font(PDF *p, const char *fontname, int len, const char *encoding, const char *optlist)

Search for a font and prepare it for later use.

fontname (Name string) Name of the font. It can alternatively be provided via the
fontname option which overrides this parameter. See option fontname in Table 4.2 for
details.

len (Clanguage binding only) Length of fontna?me in bytes. If len = 0 a null-terminated
string must be provided.

encoding Name of the encoding. It can alternatively be provided via the encoding op-
tion which overrides this parameter. See option encoding in Table 4.2 for details. Note
the following common encoding-related problems:
» An 8-bit encoding was supplied but the font does not contain any glyph for this en-
coding, or the font is a standard CJK font.
» The encoding builtin was supplied, but the font does not contain any internal encod-
ing. This can only happen for TrueType fonts.
» A predefined CMap was supplied but doesn’t match the font.

optlist An option list with the following options:

» General option: errorpolicy (see Table 2.1)

» Font loading options according to Table 4.2:
ascender, autosubsetting, capheight, descender, dropcorewidths, embedding, encoding,
fallbackfonts, fontname, initialsubset, keepfont, keepnative, linegap, metadata, optimize-
invisible, preservepua, readfeatures, readkerning, readselectors, readshaping, replacement-
char, skipembedding, skipposttable, subsetlimit, subsetminsize, subsetting, unicodemap,
vertical, xheight

A font handle for later use with PDF info_font(), text output functions, and the font text
appearance option. If the requested font/encoding combination cannot be loaded due
to a configuration problem (e.g. a font, metrics, or encoding file could not be found, or a
mismatch was detected), an error code of -1 (in PHP: o) will be returned or an exception
raised. The error behavior can be changed with the errorpolicy option.

If the function returns an error you can request the reason of the failure with PDF_
get_errmsg(). Otherwise, the value returned by this function can be used as font handle
when calling other font-related functions. The returned handle doesn’t have any signif-
icance to the user other than serving as a font handle.

The returned font handle is valid until the font is closed with PDF close_font(). Fin-
ishing the document with PDF_end_document() closes each open font handle unless the
option keepfont has been supplied in the respective PDF load_font() call, or the font has
been loaded in object scope (i.e. outside of any document).

4.1 Font Handling 63

Details This function prepares a font for later use.

Repeated calls: when this function is called again with the same font name, the same
encoding, and the same options, the same font handle as in the first call will be re-
turned. Exceptions: if one of the following options has been specified in the first call,
but not in the subsequent call, the second font handle will nevertheless be identical to
the first font handle: embedding, readkerning, replacementchar, fallbackfonts, metadata.
Similarly, the initialsubset option will be ignored when comparing fonts, e.g. if the font
has first been loaded without initialsubset and is loaded again with initialsubset, a handle
to the first font will be returned and initialsubset will not have any effect.

Trying to load a font again will fail if embedding=false in the first call and embedding=
true in the second call. This situation usually points to a problem in the application.

Implicit font loading: in addition to explicitly loading a font with PDF load font(),
some API functions (e.g. PDF_add/create_textflow() or PDF_fill_textblock()) can implicitly
load a font for which the font name and encoding have been specified in an option list.
A new font handle will be created unless the font has already been loaded earlier.

Some text output features are not available for certain encodings (see Table 4.1).

In non-Unicode language bindings, the option textformat=auto behaves as follows
(note that all UTF formats are allowed for both cases):

» Wide character encodings: text in the loaded font is expected in text format utfi16 (for
encoding=glyphid surrogates will not be interpreted)

» Byte- and multibyte encodings: text in the loaded font is expected in text format
bytes.

PDF/A All fonts must be embedded.
PDF/UA All fonts must be embedded.
PDF/X All fonts must be embedded.

Table 4.1 Availability of PDFlib features for various encodings

unicode and 8-bit legacy CMaps,
feature Unicode CMaps encodings cp936 etc. glyphid
Textflow yes yes yes' yes
glyph replacement yes® yes yes' -
fallback fonts yes® yes yes' -
shaping yes® - yes' yes
OpenType layout features yes - yes' yes

1. This feature is not available for CIK fonts with keepnative=true.
2. This feature is not available for standard CIK fonts with Unicode CMaps or keepnative=true.

Scope any

64 Chapter 4: Font and Text Functions

Table 4.2 Font loading options for PDF _load_font() and implicit font loading

option

ascender

autocidfont

auto-
subsetting

capheight
descender

dropcore-
widths

embedding

encoding

description

(Integer between -2048 and 2048) Force the corresponding typographic property to the specified value.
This will override any values found in the font, and is especially useful if the font does not contain any
such information (e.g. Type 3 fonts). Default: the value in the font if present, or an estimated value other-
wise (which can be queried with PDF _info_font())

(Boolean) Deprecated and no longer functional due to internal changes in the font engine.

(Boolean) Dynamically decide whether or not the font will be subset, subject to the subsetlimit and
subsetminsize options and the actual usage of glyphs. This option will be ignored if the subsetting op-
tion has been supplied. Default: true

(Integer between -2048 and 2048) See ascender above.
(Integer between -2048 and 2048) See ascender above.

(Boolean; unsupported; will be forced to false for PDF/A, PDF/UA, and PDF/X) The widths for unembed-
ded core fonts will not be emitted in the generated PDF. The slightly reduces output file size, but may cre-
ate incorrect text rendering for certain characters. It is strongly recommended to keep this option at its
default value. Default: false

(Boolean; must be txue for PDF/A, PDF/UA and PDF/X; will be ignored for SING and Type 3 fonts which are
always embedded) Controls whether or not the font will be embedded. If a font is to be embedded, the
font outline file must be available in addition to the metrics information (this is irrelevant for TrueType
and OpenType fonts), and the actual font outline definition will be included in the PDF output. If a font is
not embedded, only general information about the font is included in the PDF output.

Default: generally false, but txrue in certain situations involving TrueType and OpenType fonts with en-
codings which result in conversion to a CID font. Although PDFlib will automatically embed such fonts,
font embedding can be prevented by setting embedding to false. In this case the font must be installed
on the system where the PDF documents are viewed or printed.

The option embedding=false will be ignored if the same font has already been loaded earlier with
embedding=true. The embedding behavior for fonts with invisible text can be modified with the
optimizeinvisible option even for embedding=true.

Font embedding can also be controlled with the skipembedding option.

(String; required for implicit font loading if the text appearance option font is not specified) The encod-
ing in which incoming text for this font is interpreted:

Wide character encodings:
> unicode or the name of a Unicode CMaps

» Identity-H or Identity-V for CID addressing
» glyphid: all glyphs in the font can be addressed by their font-specific ID

Byte and multibyte encodings:
» one of the predefined 8-bit encodings winansi, macroman, macroman_apple, ebcdic, ebcdic_37,
pdfdoc, 1508859-X, or cpXXXX, and non-Unicode (legacy) CMaps

> (not for Unicode-capable language bindings) cp932, cp936, cp949, or cp950 for CJIK codepages
> host or auto or the name of a user-defined encoding or an encoding known to the operating system
» builtin to select the font’s internal encoding (mostly for symbolic fonts);

PDF load_font(): this option can alternatively be provided as function parameter.

PDF fill_textblock(): this option is required unless the string in the text parameter is empty and the
defaulttext property is used, or the font option has been supplied.

4.1 Font Handling 65

Table 4.2 Font loading options for PDF_load_font() and implicit font loading

option

fallbackfonts

fontname

fontstyle

initialsubset

keepfont

keepnative

linegap

metadata

description

(List of option lists according to Table 4.3) Specify one or more fallback fonts for the loaded font. Each fall-
back font must be defined by a font handle in the font suboption or suitable suboptions for implicit font
loading. Fallback fonts are not supported for some combinations of font type and encoding (see Table
4.1).

If glyphcheck=replace and the text contains a character which is not part of the base font’s 8-bit encod-
ing, or the base font does not contain a glyph for the character, or glyph replacement is forced via the
forcechars suboption, PDFlib will search a glyph for this character in all specified fallback fonts in the or-
der in which they are listed. If a suitable glyph is found in one of the fallback fonts, the character will be
rendered with this glyph; otherwise the usual glyph replacement mechanism applies.

(Name string; required for implicit font loading except for PDF_fill_textblock() if the text appearance op-
tion font is not specified) Real or alias name of the font (case is significant). This name will be used to
find the font data. On Windows, font style names can be appended to the font name after a comma (see
PDFlib Tutorial for details). If fontname starts with an ‘@” character the font will be applied in vertical
writing mode.

PDF load_font(): the font name can alternatively be provided as function parameter.

(Keyword; deprecated) Controls the creation of artificial font styles. Possible keywords are normal, bold,
italic, bolditalic. All text created with this font will be styled with the fakebold and/or italicangle
text appearance options as appropriate. Unless another value of italicangle has been set, -12 is used.

If this option is applied to one of the core fonts, the appropriate bold, italic, or bolditalic font variant will
be selected instead of faking the font style. If no such font is available (e.g. applying bold to Times-Bold),
the option is ignored. Default: normal

(List of Unichars or Unicode ranges, or list of keywords; only relevant for embedding=true and sub-
setting=true) Specify the Unicode values for which glyphs will be included in the initial font subset.
This can be used to reduce the PDF output file size by creating identical subsets, which facilitates later op-
timizations when merging multiple documents. The Unicode values can be specified explicitly by Uni-
chars or Unicode ranges, or implicitly by the name of an 8-bit encoding. Unichars and Unicode ranges
have precedence over encoding names. Supported keywords (default: empty):
empty The initial font subset will be empty; the contents of the subset will be determined by the
text in the document.

any 8-bit encoding name
All Unicode values found in the encoding will be included in the initial subset. Glyphs for
additional characters will be added to the subset automatically if required by the text in the
document or by the features and shaping text options.

(Boolean; not allowed for Type 3 fonts) If false the font will be deleted automatically in PDF end _
document(). If true the font can also be used in subsequent documents until PDF close_font() has been
called. Default: true if PDF _load_font() is called in object scope, otherwise false

(Boolean; only relevant for unembedded CIK fonts with a predefined CMap; will be ignored for other
fonts; will be forced to false if embedding=true) If false, text in this font will be converted to CID values
when creating PDF output. The text supplied to API functions must still match the selected CMap (e.g.
Shift-JIS). However, the font can be used in Textflow and all simple text output functions (but not in form
fields). Except for glyph replacement and fallback fonts which are unavailable, a font with Unicode
CMaps will behave as with encoding=unicode.

If txue, text in this font will be written to the PDF output in its native format according to the specified
CMap. The font can be used in form fields and all simple text output functions, but not in Textflow.
Default: false for TrueType fonts or embedding=true, and true otherwise.

(Integer between -2048 and 2048) See ascender above.

(Option list) Supply metadata for the font (see Section 14.2, »XMP Metadata«, page 257)

66 Chapter 4: Font and Text Functions

Table 4.2 Font loading options for PDF _load_font() and implicit font loading

option

monospace

optimize-
invisible

preservepua

readfeatures

readkerning

readselectors

readshaping

replace-
mentchar

description

(Integer between 1 and 2048; not for PDF/A and PDF/UA; deprecated) Forces all glyphs in the font to use
the specified width (in the font coordinate system: 1000 units equal the font size). For Type 3 fonts all
glyph widths which are different from o will be modified. This option should only be used for standard
CIK fonts, and is not supported for core fonts; it will be ignored if the font is embedded. Default: absent
(metrics from the font will be used)

(Boolean; not for PDF/X-1/2/3) If txrue, fonts which are exclusively used for invisible text (i.e. text-
rendering=3) will not be embedded even if embedding=true. This may be useful to avoid font embed-
ding for PDF/A output with invisible text containing OCR results. Even if the font is not embedded, font
files must be configured as usual since PDFlib decides about non-embedding only at the end of the docu-
ment. Default: false

(Boolean) If true, characters which are mapped to a Unicode value in the Private Use Area (PUA) in the
font retain their PUA value in the PDF output. This may be useful if the PUA characters carry locally de-
fined semantics such as Japanese Gaiji/EUDC characters. If false, PUA characters are mapped to
U+FFFD (Unicode replacement character) in the ToUnicode CMap in the PDF output. Default: false

(Boolean; only relevant for TrueType and OpenType fonts and encoding=unicode, glyphid, or Unicode
CMaps) Specifies whether the feature tables of a TrueType or OpenType font will be read from the font.
Actually applying OpenType features to text is controlled by the features option (see Table 5.4). Setting
this option to false may speed up font loading if OpenType features are not required. Default: true

(Boolean) Controls whether or not kerning values will be read from the font. Actually applying the kern-
ing values to text is controlled by the kerning text option (see Table 4.7). Setting this option to false
may speed up font loading if kerning is not required. Default: true

(Boolean; only relevant for TrueType and OpenType fonts) If txue, the variation selectors will be read
from the font if available. This is required for automatically substituting Ideographic Variation Sequences
(IVS) within Unicode text. Default: true

(Boolean; only relevant for TrueType and OpenType fonts and the encodings unicode and glyphid) Spec-
ifies whether the shaping tables of a TrueType or OpenType font will be read, which is a requirement for
complex script shaping. Actually shaping text is controlled by the shaping option (see Table 5.4). Setting
readfeatures to false can save memory if shaping is not required. Default: true

(Unichar or keyword; only relevant for glyphcheck=replace; ignored for fonts loaded with a non-Uni-
code CMap or glyphid encoding) Glyphs which are not available in the selected font and which cannot
be substituted by fallback fonts or typographically similar characters will be replaced with the specified
Unicode value. If the font doesn’t contain any glyph for the specified Unicode character, the behavior of
auto will be applied. U+oooo can be used to specify the font’s »missing glyph« symbol. For symbolic
fonts loaded with encoding=builtin the byte code must be supplied instead of the Unicode value. The
following keywords can be used as an alternative to a Unicode character (default: auto) :
auto The first character from the following list for which a glyph is available in the font will be
used as a replacement character:
U+00Ao (NO-BREAK SPACE), U+oo20 (SPACE), U+oooo (missing glyph symbol).

drop No output will be created for the character.

error An exception will be thrown if a typographically similar character is not available. This may
be used to avoid unreadable text output.

4.1 Font Handling 67

option

skip-
embedding

- skippost-
table

subsetlimit

subsetminsize

subsetting

- unicodemap

— vertical

— xheight

Table 4.2 Font loading options for PDF load_font() and implicit font loading

description

(List of keywords; only relevant for embedding=true) Silently ignore font embedding problem:s (i.e.
embedding=true, but the font cannot be embedded for some reason) if the font satisfies one or more of
the conditions specified in the list. This may be useful in situations where font embedding is desired, but
an unembedded font is preferable over an unusable font in cases where embedding is not possible. Sup-
ported keywords:

latincore The font is included in the set of 14 Latin core fonts (see PDFlib Tutorial for full list).

standardcjk
The font is included in the set of standard CIK fonts (see PDFlib Tutorial for full list).
fstype The font is a TrueType or OpenType font and doesn’t permit embedding according to the
fsType flag in the font’s 0S/2 table.
metricsonly
Only the PFM or AFM metrics file for the font is available, but the font outline (PFA, PFB) is
missing.
Default: empty list
In PDF/A, PDF/X and PDF/UA only an empty list is allowed.

(Boolean; unsupported; only relevant for TrueType and OpenType fonts) Specifies whether the post table
of TrueType/OpenType fonts will be parsed to determine glyph names. Setting this option to true can
speed up font loading, but glyph name references to glyphs with non-standard names will not work for
the font (this mainly affects symbolic fonts, but usually not text fonts). Default: false

(Float or percentage; ignored for Type 3 fonts) Disable automatic font subsetting if the percentage of
glyphs used in the document related to the total number of glyphs in the font exceeds the provided per-
centage. Default: 100%

(Float; ignored for Type 3 fonts) Disable automatic font subsetting if the size of the original font file is less
than the provided value in KB. Default: 50

(Boolean) Controls whether or not the font will be subset. Subsetting for Type 3 fonts requires a two-pass
definition of the font (see PDFlib Tutorial), and the subsetting option must be provided in the first call to
PDF_load_font(). Default: subsetting is enabled automatically based on the subsetlimit/subsetmin-
size settings.

(Boolean; must not be set to false for PDF/A-1a/2a/2u/3a/3u and PDF/UA) Controls generation of ToUni-
code CMaps. This option will be ignored in Tagged PDF mode. Default: true

(Boolean; only for TrueType and OpenType fonts; will be ignored for predefined CMaps, and will be forced
to true if the font name starts with @) If true, the font will be prepared for vertical writing mode.

(Integer between -2048 and 2048) See ascender above.

C++ Java C# void close_font(int font)
— Perl PHP close_font(int font)
C void PDF_close_font(PDF *p, int font)

Close an open font handle which has not yet been used in the document.

— font Afont handle returned by PDF load_font() which has not already been used in the
document or closed.

Details This function closes a font handle, and releases all resources related to the font. The font
handle must not be used after this call. Usually fonts will automatically be closed at the

end of a document. However, closing a font is useful in the following situations:

68 Chapter 4: Font and Text Functions

Table 4.3 Suboptions for the fallbackfonts option of PDF load_font()
option description

font loading If the font is specified implicitly (i.e. via the fontname and encoding options, as opposed to the font op-
options tion), all font loading options according to Table 4.2 except fallbackfonts can be supplied as subop-
tions. Fonts loaded with a non-Unicode CMap can not be used as fallback fonts.

font (Font handle) A font handle returned by a call to PDF load_font() without the fallbackfonts option. If
this option is supplied, all font loading options (including fontname and encoding) will be ignored. The
font must not be a standard CJK font with embedding=false and keepnative=true.

fontsize (Float or percentage) Size of the fallback font in user coordinates or as a percentage of the current font
size. This option can be used to adjust the size of the fallback font if the design size of the fallback font
doesn’t match that of the base font. Default: 100% N

forcechars (List of Unichars or Unicode ranges, or single keyword) Specify characters which are always rendered with
glyphs from the fallback font (regardless of the glyphcheck setting). The fallback font must contain —_
glyphs for the specified characters (if individual characters are specified), or at least glyphs for the first
and last characters in the specified Unicode range. Unicode values can be specified for this option even if
an 8-bit encoding has been specified for the base font.
One of the following keywords can be supplied:

gaiji The fallback font must refer to a SING font, and this keyword can be used as a shortcut for the S
Unicode value of the main glyph of the SING font.
all All glyphs in the fallback font will be used to replace the corresponding characters in the base

font, even if the character is available in the base font.

textrise (Float or percentage) Text rise value (see Table 4.7). Percentages are based on the size specified for the fall-
back font (i.e. after applying the fontsize suboption if present). This option can be used to adjust the po-
sition of text in the fallback font if the design size of the fallback font doesn’t match that of the base font.
Default: o —

» After querying font properties with PDF info_font() it was determined that the font
will not be used in the current PDF document.

» A font was retained across document boundaries (with the keepfont option of PDF
load_font()), but now it should be disposed because it is no longer required.

If the font has already been used in the current document it must not be closed.

Scope any —

C++ Java C# double info_font(int font, String keyword, String optlist)
Perl PHP float info_font(int font, string keyword, string optlist)
C double PDF_info_font(PDF *p, int font, const char *keyword, const char *optlist)

Query detailed information about a loaded font.
font A font handle returned by PDF load_font(), or -1 (in PHP: o) for some keywords.

keyword Akeyword specifying the requested information according to Table 4.5. The
following keywords can be used: —
» Keywords for glyph mapping: cid, code, glyphid, glyphname, unicode
» Font metrics: ascender, capheight, descender, italicangle, linegap, xheight —
» Font file, name, and type: cidfont, familyname, fontfile, fontname, fonttype, metricsfile,
outlineformat, singfont, standardfont, supplement -

4.1 Font Handling 69

» Technical font information: feature, featurelist, hostfont, kerningpairs, numglyphs,
shapingsupport, vertical

» Keywords for Ideographic Variation Selectors:
maxuvsunicode, minuvsunicode, selector, selectorlist

» Font/encoding relationship: codepage, codepagelist, encoding, fallbackfont, keepnative,
maxcode, numcids, numusableglyphs, predefcmap, replacementchar, symbolfont,
unicodefont, unmappedglyphs

» Results of font processing for the current document: numusedglyphs, usedglyph,
willembed, willsubset

» Color compatibility check for Type 3 fonts and PDF/A or PDF/X: checkcolorspace

optlist An option list which additionally qualifies the selected keyword. The following
options can be used:
» Keyword-specific options which are detailed along with the corresponding keyword
in Table 4.5.
» Mapping options according to Table 4.4 for specifying glyphs:
cid, code, glyphid, glyphname, selector, unicode.
These options define the source value for the mapping keywords cid, code, glyphid,
glyphname, and unicode. The mapping options are mutually exclusive. The code,
glyphname, and unicode options can be combined with the encoding option.

Table 4.4 Options for specifying glyphs in PDF info_font()

option description

cid (Number) CID value of the glyph; only reasonable if cidfont=1

code (Number in the range o...255; only for fonts with 8-bit encoding) Encoding slot
glyphid (Number in the range o...65535) Internal glyph id

glyphname (String) Name of a glyph; not reasonable if cidfont=1

selector (Unichar) Unicode value of a variation selector in the range U+0XFE00. .U+FEOF or U+E0100. .U+EO1EF. All
values returned by the selector keyword can be supplied here.

unicode (Unichar) Unicode character

Returns The value of some font or encoding property as requested by keyword and in some cases
auxiliary options. For unspecified combinations of keyword and options -1 (in PHP: o)
will be returned. If the requested keyword produces text, a string index is returned, and
the corresponding string must be retrieved with PDF get_string().

Details This function supplies information from the following distinct sources:

» If a valid font handle is supplied it returns information gathered from the font. Ex-
amples: font metrics, name, or type; unicode value for a particular glyphid.

» If font = -1 (in PHP: 0) and the encoding option is supplied it returns information
about this encoding. Example: unicode value for a code in the encoding.

» If font = -1 (in PHP: 0) and the encoding option is not supplied it returns information
gathered from PDFlib’s internal tables. Example: unicode value for a particular
glyphname.

Scope any

70 Chapter 4: Font and Text Functions

Table 4.5 Keywords and options for PDF_info_font()

keyword

ascender

capheight
cid
cidfont

code

codepage

codepagelist
check-
colorspace
descender

encoding

fallbackfont

familyname

explanation and options

Metrics value for the ascender. Supported options (default: fontsize=1000):

faked (Boolean) 1if the value had to be estimated because it was not available in the font or metrics
file, otherwise o

fontsize (Fontsize) Value will be scaled to the specified font size

Metrics value for the capheight. See ascender.

CID for the specified glyph, or -1if not available. Supported options: cid, glyphid, unicode, selector
1if the font will be embedded as a CID font, otherwise o

Number in the range o...255 specifying an encoding slot or -1if no such slot was found in the font or in the
encoding (if the encoding option was supplied and font=-1 (in PHP: 0)). Supported options are the map-
ping options code, glyphid, glyphname, unicode plus the following:

encoding (String) Name of an 8-bit encoding

Check whether the font supports a specific codepage. The information will be taken from the 0S/2 table
of TrueType/OpenType fonts if available. Supported option:

name (String; required) Name of a codepage in the form cpXXXX, where XXXX indicates the decimal
number of a codepage (e.g. cpa37, cp1252)
The following return values indicate whether the specified codepage is supported by the font:

-1 Unknown because the font is not a TrueType or OpenType font.
o Font does not support the specified codepage.
1 Font supports the specified codepage.

String index of a space-separated list of all codepages supported by the font (in the form cpXXXX), or -1if
the codepage list is unknown because the font is not a TrueType or OpenType font (see codepage).

(Only relevant for Type 3 fonts with colorized=true) 1if the font can safely be used on the current page
without risking a color-related violation of PDF/A or PDF/X; o otherwise

Metrics value for the descender. See ascender.

String index of the name of the font’s encoding or CMap. Supported options (default: actual) :
api (Boolean) If true, the encoding name as specified in the APl
actual (Boolean) If true, the name of the actual encoding used for the font

Handle of the base or fallback font which will be used to render the character specified in the unicode op-
tion. This can be used to check which font in the chain of fallback fonts actually provides the glyph used
for the specified character. If the character cannot be rendered with any of the base or fallback fonts, -1
will be returned. Supported option: unicode

String index of the name of the font family, or -1 if unavailable

4.1 Font Handling 71

Table 4.5 Keywords and options for PDF _info_font()

keyword

feature

featurelist

fontfile

fontname

fontstyle
fonttype

glyphid

glyphname

hostfont
italicangle
keepnative
kerningpairs
linegap
maingid

maxcode

metricsfile

maxuvs-
unicode

explanation and options

Check whether the font contains a specific OpenType feature table which is supported by PDFlib.

Supported options:

language (Keyword; only if scxipt is supplied) Specifies the language name. Default: _none

name (Keyword; required) Specifies the four-character name of an OpenType feature table, e.g. 1iga
(standard ligatures), ital (italic forms in CIK fonts), vert (vertical writing). Feature kexn can
not be queried.

script (Keyword) Specifies the script name. Default: _none

An exception is thrown if an unknown keyword for language, name, or script is supplied; see PDFlib Tu-

torial for lists of known keywords. The following return values indicate whether the specified OpenType

feature table is present in the font and supported by PDFlib:

-1 No feature tables are available in the font.

o The feature is not availablefor the specified specified script and language in the font, or is not
known to PDFlib.

1 The feature is available for the specified script and language.

String index of a space-separated list of all features which are available in the font and supported by
PDFlib, or -1 if no feature tables are available.

String index of the path name for the font outline file, or -1if unavailable

String index of the font name, or -1 if unavailable. Supported options (default: acrobat):
api (Boolean) If txue, the font name as specified in the API

full (Boolean) If txue, the /FontName entry in the PDF font descriptor

acrobat (Boolean) If txue, the font name as displayed in Acrobat

String index for the value of the fontstyle option (normal, bold, italic, or bolditalic)

String index of the font type, or -1 if unavailable. Known font types are Multiple Master, OpenType,
TrueType, TrueType (CID), Type 1, Type 1 (CID), Type 1 CFF, Type 1 CFF (CID), Type 3

Number in the range o...65535 specifying the font-internal id (GID) of the specified glyph, or -1if no such
glyph was found. Supported options are the mapping options cid, code, glyphid, glyphname, unicode,
selector.

String index of the name of the specified glyph, or -1 if no such glyph was found in the font or in the spec-
ified encoding (if the encoding option was supplied and font=-1 (in PHP: 0)). Supported options are the
mapping options code, glyphid, glyphname, unicode plus the following:

encoding (String) Name of an 8-bit encoding

1if the font is a host font, o otherwise

Italic angle of the font (ItalicAngle in the PDF font descriptor)
The resulting value of the keepnative option

Number of kerning pairs in the font

Metrics value for the linegap. See ascender.

Glyph ID of the main glyph (member mainGID of SING table).

Highest code value for the font’s encoding, in particular: oxFF for single-byte encodings, numglyphs-1 for
encoding=glyphid, and the highest Unicode value in the encoding otherwise.

String index of the path name for the font metrics file (AFM or PFM), or -1 if unavailable

Largest Unicode value which may be contained in a valid Ideographic Variation Sequence (IVS).

72 Chapter 4: Font and Text Functions

Table 4.5 Keywords and options for PDF_info_font()

keyword

minuvs-
unicode

monospace
numcids

numglyphs

numusable-
glyphs
numused-
glyphs

outlineformat

predefcmap

replace-
mentchar

selector

selectorlist

shaping-
support

singfont
standardfont
supplement
symbolfont

unicode

unicodefont

unmapped-
glyphs

usedglyph
vertical

weight

explanation and options

Smallest Unicode value which may be contained in a valid Ideographic Variation Sequence (IVS).

(Deprecated) Value of the monospace option, or o if it hasn’t been supplied
Number of CIDs if the font uses a standard CMap, otherwise -1

Number of glyphs in the font (including the .notdef glyph). Since GIDs start at o the highest possible GID
value is one smaller than numglyphs.

Number of glyphs in the font which can be reached by the encoding supplied in PDF load_font()

Number of glyphs used in generated text so far.

Font format; one of PFA, PFB, LWFN, TTF, OTF. For TTC and WOFF fonts the keyword for the underlying base
font format is returned, e.g. TTF. For CEF fonts the returned string is OTF.

String index of the name of a predefined CMap which was specified as encoding for the font, or -1 if un-
available.

Unicode value of the character specified in the replacementchar option. For symbolic fonts loaded with
encoding=builtin the code will be returned instead of the Unicode value.

Unicode value of the variation selector with the number specified in the index option. If the index option
is not specified or the specified selector is not available in the font, -1is returned. Supported option:

index (Non-negative Integer) Index of a selector.

String index of a string containing a space-separated list of the Unicode values of all variation selectors in
the font. Each value is provided in the form hhhhh where h is a hexadecimal digit.

1if the font supports shaping and the readshaping option was supplied when loading the font, other-
wise o

1if the font is a SING (gaiji) font, otherwise o

1if the font is a PDF core font or a standard CIK font, otherwise o

Supplement number of the character collection for fonts with a standard CJK CMap, otherwise o
1if the font is a symbolic font, o otherwise (symbol flag in the PDF font descriptor)

Unicode UTF-32 value for the specified glyph, or -1 if no Unicode value was found in the font or encoding
(if the encoding option was supplied and font=-1 (in PHP: 0)). Supported options are the mapping op-
tions cid, code, glyphid, glyphname, unicode, selector plus the following:

encoding (String) Name of an 8-bit encoding

1if the font/encoding combination provides Unicode mapping for the glyphs, otherwise o. CJK fonts with
non-Unicode CMaps and keepnative=true will return o.

Number of glyphs in the font which are mapped to Unicode PUA values, regardless of whether the PUA
value was already present in the font or has been assigned by PDFlib.

1if the specified glyph ID was used in the text, otherwise o. Supported option: glyphid
1if the font is for vertical writing mode, otherwise o

Font weight in the range 100...900; 400=normal, 700=bold

4.1 Font Handling 73

Table 4.5 Keywords and options for PDF _info_font()
keyword explanation and options
willembed 1if the font will be embedded (via the embedding option or forced font embedding), otherwise o

willsubset 1if a font subset will be created (if autosubsetting=true, the subsetlimit must be reached for subset-
ting to be activated), otherwise o

xheight Metrics value for the xheight. See ascender.

74 Chapter 4: Font and Text Functions

4.2

Table 4.6 Text filter options for PDF set_text_option(), PDF_fit/info_textline(), PDF fill_textblock() and PDF_add/
create_textflow()
option explanation
charref (Boolean) If true, enable substitution of numeric and character entity references and glyph name refer-
ences in content strings.’ Default: the global charref option
escape- (Boolean) If true, enable substitution of escape sequences in content strings.” Default: the global
sequence escapesequence option
glyphcheck (Keyword) Glyph checking policy: what happens if a code in the text cannot be mapped to a glyph in the
selected font (default: the global glyphcheck option)':
error An exception will be thrown for unavailable glyphs. A detailed error message can be retrieved
with PDF_get_errmsg().
none No checking. notdef glyphs will trigger an exception in PDF/A, PDF/UA or PDF/X-4/5 mode;
otherwise notdef glyphs may appear in the output.
replace Try to replace unavailable glyphs with typographically similar characters in the base and
fallback fonts and decompose ligatures. If no suitable glyph could be found, the character will
be handled according to the replacementchar option.
normalize (Keyword; ignored for encoding=glyphid and non-Unicode CMaps) Normalize incoming text to one of
the Unicode normalization forms (default: none) :
none Do not apply any normalization. This is the default behavior; the client is responsible for
supplying text which can be represented with glyphs from the selected font.
nfc Normalization Form C (NFC): canonical decomposition followed by canonical composition.
NFC replaces combining sequences with precomposed characters. This is useful for workflows
with combining sequences since fonts usually contain only glyphs for the precomposed
character. Without NFC normalization PDFlib emits a sequence of multiple characters instead
of the precomposed character.
nfkc Normalization Form KC (NFKC): compatibility decomposition followed by canonical composi-
tion. This is useful for workflows which are only interested in the semantics of characters, but
not in formatting differences, e.g. convert shaped Arabic characters to their base form, resolve
ligatures and fractions, replace vertical forms with horizontal forms, wide characters with
reqular characters.
nfd Normalization Form D (NFD): canonical decomposition
nfkd Normalization Form KD (NFKD): compatibility decomposition
Since NFD and NFKD can create combining sequences they are unlikely to be useful in PDFlib workflows.
textformat (Keyword; only for non-Unicode compatible language bindings) Format used to interpret content strings.

Text Filter and Appearance Options

In this section the term text designates content strings, i.e. text with a specified appear-
ance (font, color, etc.). In contrast, name strings and hypertext strings (e.g. file names)
don’t have any appearance; see PDFlib Tutorial for details.

Text options can be used with PDF set text_option(), PDF fit/info_textline(), PDF fill _
textblock() and PDF add/create_textflow(). Text options also apply to table cells and text
Blocks. The following groups of text options are available:

» text filter options according to Table 4.6;

» text appearance options according to Table 4.7;

» shaping and typographic options according to Table 5.4 (not for PDF_set_text_
option()).

Supported keywords: bytes, utf8, ebcdicutf8 (only on iSeries and zSeries), utf16, utfi6le, utfiébe,

and auto.” Default: the global textformat option

1. The value may be overridden by a subsequent call to PDF_set_option() with the same option.

4.2 Text Filter and Appearance Options 75

Table 4.7 Text appearance options for PDF set_text_option(), PDF fit/info_textline(), PDF fill _textblock() and PDF add/
create_textflow()

option explanation

charspacing (Float or percentage) Character spacing, i.e. the shift of the current point after placing individual charac-
ters in a string. Float values specify units of the user coordinate system; percentages are based on
fontsize. In order to spread characters apart use positive values for horizontal writing mode, and nega-
tive values for vertical writing mode. Default: o

dasharray (List of two floats) The lengths of dashes and gaps for stroked (outline) text and decoration. Default:
{0 0} (i.e. asolid line)

decoration- (Boolean) If txue, the text decoration enabled with the underline, strikeout, and overline options will
above be drawn above the text, otherwise below the text. Changing the drawing order affects visibility of the
decoration lines, i.e. you can control whether the text overprints the lines or vice versa. Default: false

fakebold (Boolean) If true, simulate bold text by stroking glyph outlines or multiple overprinting. Default: false

fillcolor (Color) Fill color of the text.!
Default for simple text output functions and PDF fit_textline() with inittextstate=false: the corre-
sponding option in the current graphics state.
Default for Textflow and PDF _fit_textline() with inittextstate=true: {gray 0} (in PDF/A mode: {1ab
00 0})

font (Font handle) Handle for the font to be used. If this option is supplied, all font loading options (including
fontname and encoding) will be ignored. Using the font option instead of implicit font loading with the
fontname/encoding options offers performance benefits.

Default: the implicitly loaded font if available, else the font selected with PDF setfont() for simple text
output and PDF fit_textline() with inittextstate=false. Otherwise no font is available which will trig-
ger an error.

‘ontsize (Fontsize) Size of the font, measured in units of the current user coordinate system. In PDF fit_textline()
Y. _
percentages relate to the box width (for orientate=north and south) or box height (for orientate=
east andwest). In PDF_set_text_option() and Textflow percentages relate to the size of the preceding
text.

Default: PDF_setfont() sets the default only for simple text output functions and PDF fit_textline() with
inittextstate=false. Otherwise no font size is available which will trigger an error.

gstate (Gstate handle) Handle for a graphics state retrieved with PDF create_gstate(). The graphics state af-
fects all text created with this function. Default: no graphics state (i.e. current settings will be used).

horizscaling (Float or percentage; must be different from o) Horizontal text scaling to the given percentage. Text scal-
ing shrinks or expands the text by a given percentage. Text scaling always relates to the horizontal coor-
dinate. Default: 100%

inittextstate (Boolean; only for PDF fit_textline()) If txue all text appearance options are initialized with the default
values. If false the current text state values are used. Default: false

italicangle (Float; not supported for vertical writing mode) The italic (slant) angle of text in degrees (between -9o°
and 90°). Negative values can be used to simulate italic text when only a plain upright font is available,
especially for CJK fonts. Default: o

kerning (Boolean) If txue, enable kerning for fonts which have been opened with the readkerning option; disable
kerning otherwise.? Default: the global option kerning

76 Chapter 4: Font and Text Functions

Table 4.7 Text appearance options for PDF_set_text_option(), PDF fit/info_textline(), PDF fill_textblock()and PDF add/
create_textflow()

option explanation

leading (Float or percentage) Specify the leading for multi-line text, i.e. the distance between baselines of adja-
cent lines of text as absolute value in user coordinates or as a percentage of fontsize. Setting the lead-
ing equal to the font size results in dense line spacing. However, ascenders and descenders of adjacent
lines generally don’t overlap (leading=0 results in overprinting lines). Default: 100%
The leading for PDF_add/create_textflow() is determined as follows: if there are option lists at the begin-
ning of a line, the leading is determined by the last relevant option (font, fontsize, leading, etc.). If
there are additional option lists on the same line, any options relevant for leading are only taken into ac-
count if fixedleading=false. If there are no option lists in the line, the previous leading value is used.

overline (Boolean) If txue, a line will be drawn above the text. Default: false

shadow (Option list; only for PDF fit_textline(), PDF fill_textblock(), PDF _add/create_textflow()) Create a shad-

ow effect for the text (default: no shadow):

disable (Boolean; only for PDF _add/create_textflow()) If txue, a previously specified shadow is
disabled. Default: false —

fillcolor (Color) Fill color of the shadow. Default: {gray 0.8}

gstate (Gstate handle) Graphics state created with PDF create_gstate() which will be applied to the —
shadow. Default: none

offset (List of 2 floats or percentages) The shadow’s offset from the reference point of the text in user
coordinates or as a percentage of the font size. Default: {5% -5%}

strokecolor (Color; only effective if textrendering is set to stroke text) Stroke color of the shadow.
Default: current stroke color

strokewidth (Float, percentage or keyword; only effective if textrendering is set to stroke text) Line width
for outline text in the shadow (in user coordinates or as a percentage of the font size). The _
keyword auto or the equivalent value o uses a built-in default. Default: current stroke width if
the main text is also set to stroke text, otherwise auto

textrendering
(Integer) Text rendering mode of the shadow. Default: current value of textrendering

strikeout (Boolean) If txue, a line will be drawn through the text; see also decorationabove. Default: false
strokecolor (Color; only effective for stroked text, see textrendering) Stroke color of the text. Default: see fillcolor

strokewidth (Float, percentage, or keyword; only effective if textrendering is set to stroke text) Line width for outline
text (in user coordinates or as a percentage of the fontsize). The keyword auto or the equivalent value
o0 uses a built-in default. Default: auto

tagtrailing- (Unichar or keyword; only relevant for Tagged PDF) If the last character in the text (after possibly apply- -

hyphen ing glyph replacements) is equal to the specified Unicode value, it will be tagged as Span with Actual-
Text soft hyphen U+00AD if required by the font, and no autospace will be added. The keyword none re-
sults in no tagging for soft hyphens. Default: U+ooAD

4.2 Text Filter and Appearance Options 77

Table 4.7 Text appearance options for PDF set_text_option(), PDF fit/info_textline(), PDF fill_textblock()and PDF add/
create_textflow()

option explanation

textrendering (Integer) Text rendering mode. Only textrendering=3 has an effect on Type 3 fonts (default: o):

o P fill text 4 P fill text and add it to the clipping path

1 I—P) stroke text (outline) 5 ? stroke text and add it to the clipping path

2 P fill and stroke text 6 P fill and stroke text and add it to the clipping path
3 invisible text 7 ;i: add text to the clipping path

Behavior of textrendering=4/5/6/7 (clipping modes):

> There is no clipping effect after PDF fit_textflow(), PDF fit_table(), PDF fill _textblock() and PDF fit_
textline() if the textpath option is specified.

> Clipping areas can be accumulated across multiple calls to simple text output functions, but not across
multiple calls to PDF fit_textline().

> PDF fit_textline(): the specified fillcolor and strokecolor remain in effect after the function call.
textrise (Float or percentage) Textrise value, which specifies the distance between the desired text position and

the baseline. Positive values of textrise move the text up. Textrise always relates to the vertical coordi-
nate. This may be useful for superscripts and subscripts. Percentages are based on fontsize. Default: o

underline (Boolean) If txue, a line will be drawn below the text. Default: false
underline- (Float, percentage, or keyword) Position of the stroked line for underlined text relative to the baseline
position (absolute values or relative to the fontsize; a typical value is -10%). The keyword auto specifies a font-spe-

cific value which will be retrieved from the font metrics or outline file. Default: auto

underline- (Float, percentage, or keyword) Line width for underlined text (absolute value or percentage of the font-
width size). The keyword auto or the value o uses a font-specific value from the font metrics or outline file if
available, otherwise 5%. Default: auto

wordspacing (Float or percentage) Wordspacing, i.e. the shift of the current point after placing individual words in a
line. In other words, the current point is moved horizontally after each space character (U+0020). The
value is specified in user coordinates or a percentage of the fontsize. Default: o

1. The value may be overridden by a subsequent call to PDF_setcolor() for simple text output functions and PDF fit_textline() with
inittextstate=false.
2. The value may be overridden by a subsequent call to PDF_set_option() with the same option.

C++ Java C# void set_text_option(String optlist)
Perl PHP set_text_option(string optlist)
C void PDF_set_text_option(PDF *p, const char *optlist)

Set one or more text filter or text appearance options for simple text output functions.

optlist An option list specifying font and text options as follows:
» Text filter options according to Table 4.6:
charref, escapesequence, glyphcheck, textformat
» Text appearance options according to Table 4.7:
charspacing, dasharray, decorationabove, fakebold, fillcolor, font, fontsize, gstate,
horizscaling, inittextstate, italicangle, kerning, leading, overline, strikeout, strokecolor,

78 Chapter 4: Font and Text Functions

strokewidth, tagtrailinghyphen, textrendering, textrise, underline, underlineposition,
underlinewidth, wordspacing

Details The values of text options are relevant for all simple text output functions and PDF_fit_
textline() with inittextstate=false. Calls to PDF set_text_option() should not be mixed
with calls to PDF_setfont() and PDF setcolor().

All text options are reset to their default values at the beginning of a page, pattern,
template, or glyph description, and retain their values until the end of the current page,
pattern, template, or glyph scope. However, the text options can also be reset with the
inittextstate option.

Scope page, pattern, template, glyph

4.2 Text Filter and Appearance Options 79

4.3 Simple Text Output

The functions listed in this section can be used for low-level text output. It is recom-
mended to use the more powerful Textline and Textflow functions for more advanced
— text output (see Section 5.1, »Single-Line Text with Textlines«, page 89, and Section 5.2,
»Multi-Line Text with Textflows, page 9s.

.C++ Java C# void PDF_setfont(int font, double fontsize)
Perl PHP setfont(int font, float fontsize)
C void PDF_setfont(PDF *p, int font, double fontsize)

Set the current font in the specified size.
font Afont handle returned by PDF load_font().

— fontsize Size of the font, measured in units of the current user coordinate system. The
font size must not be o; a negative font size will result in mirrored text relative to the
S current transformation matrix.

Details This function sets the font and font size to be used by simple text output functions (e.g.
— PDF show()) and PDF fit_textline(). It is almost equivalent to a call to PDF set_text_
option() with the option list font= fontsize=<fontsize>. However, unlike PDF_set_
— text_option() this function additionally sets the leading text option to fontsize.
The font must be set on each page before calling any of the simple text output func-
— tions. Font settings are not retained across pages.
The use of PDF set_text_option() is recommended over PDF setfont().

Scope page, pattern, template, glyph

C++ Java C# void set_text_pos(double x, double y)
— Perl PHP set_text_pos(float x, float y)
C void PDF_set_text_pos(PDF *p, double x, double y)

Set the position for simple text output on the page.
— x,y New text position

Details The text position is set to the default value of (o, 0) at the beginning of each page. The
current point for graphics output and the current text position are maintained sepa-
rately.

Scope page, pattern, template, glyph

80 Chapter 4: Font and Text Functions

C++ Java C# void show(String text)
Perl PHP show(string text)

Details

Scope

Bindings

C void PDF_show(PDF *p, const char *text)
C void PDF_show2(PDF *p, const char “text, int len)

Print text in the current font and size at the current text position.

text (Content string) The text to be printed. In C text must not contain null bytes when
using PDF_show(), since it is assumed to be null-terminated; use PDF_show2() for strings
which may contain null characters.

len (Only for PDF show2()) Length of text (in bytes). If len = 0 a null-terminated string
must be provided.

The font and font size must have been set before with PDF _setfont() or PDF set_text_
option(). The current text position is moved to the end of the printed text.

page, pattern, template, glyph

PDF showz2() is only available in C since in all other bindings arbitrary string contents
can be supplied with PDF_show().

C++ Java C# void show_xy(String text, double x, double y)

Perl PHP show_xy(string text, float x, float y)

Details

Scope
Bindings

C void PDF_show_xy(PDF *p, const char *text, double x, double y)
C void PDF_show_xy2(PDF *p, const char *text, int len, double x, double y)

Print text in the current font at the specified position.

text (Content string) The text to be printed. In C text must not contain null bytes when
using PDF_show_xy(), since it is assumed to be null-terminated; use PDF_show_xy2() for
strings which may contain null characters.

x,y The position in the user coordinate system where the text will be printed.

len (Only for PDF_show_xy2()) Length of text (in bytes). If len = 0 a null-terminated
string must be provided.

The font and font size must have been set before with PDF setfont() or PDF set_text_
option(). The current text position is moved to the end of the printed text.

page, pattern, template, glyph

PDF_show_xy2() is only available in C since in all other bindings arbitrary string con-
tents can be supplied with PDF_show_xy().

4.3 Simple Text Output 81

C++ Java C# void continue_text(String text)

___ Perl PHP continue_text(string text)

Details

Scope

Bindings

C void PDF_continue_text(PDF *p, const char *text)
C void PDF_continue_text2(PDF *p, const char *text, int len)

Print text at the next line.

text (Content string) The text to be printed. If this is an empty string, the text position
will be moved to the next line anyway. In C text must not contain null bytes when using
PDF continue_text(), since it is assumed to be null-terminated; use PDF _continue_text2()
for strings which may contain null bytes.

len (Only for PDF continue_text2()) Length of text (in bytes). If len = 0 a null-terminat-
ed string must be provided as in PDF_continue_text().

The positioning of text (x and y position) and the spacing between lines is determined
by the leading text option (which can be set with PDF set_text_option()) and the most re-
cent call to PDF_show_xy() or PDF set_text_pos(). The current point will be moved to the
end of the printed text; the x position for subsequent calls of this function will not be
changed.

page, pattern, template, glyph; this function should not be used in vertical writing mode.

PDF_continue_text2() is only available in C since in all other bindings arbitrary string
contents can be supplied with PDF _continue_text().

C++ Java C# double stringwidth(String text, int font, double fontsize)
Perl PHP float stringwidth(string text, int font, float fontsize)

Returns

Details

C double PDF_stringwidth(PDF *p, const char *text, int font, double fontsize)
C double PDF_stringwidth2(PDF *p, const char *text, int len, int font, double fontsize)

Calculate the width of text in an arbitrary font.

text (Content string) The text for which the width will be queried. In C text must not
contain null bytes when using PDF_stringwidth(), since it is assumed to be null-termi-
nated; use PDF_stringwidth2() for strings which may contain null bytes.

len (Only for PDF stringwidth2()) Length of text (in bytes). If len = 0 a null-terminated
string must be provided.

font Afont handle returned by PDF load_font().
fontsize Size of the font, measured in units of the user coordinate system.

The width of text in a font which has been selected with PDF load_font() and the sup-
plied fontsize. The returned width value may be negative (e.g. when negative horizontal
scaling has been set). In vertical writing mode the width of the widest glyph will be re-
turned (use PDF info_textline() to determine the actual height of the text).

If character spacing has been specified, it will be applied after the last glyph as well (this
behavior differs from PDF info_textline()).

The width calculation takes into account the values of the following text options (which
can be set with PDF set_text_option()): horizscaling, kerning, charspacing, and wordspacing.

82 Chapter 4: Font and Text Functions

Scope any except object

Bindings PDF_stringwidth2() is only available in C since in all other bindings arbitrary string con-
tents can be supplied with PDF_stringwidth().

C++ void xshow(String text, const double *xadvancelist)
C void PDF_xshow(PDF *p, const char *text, int len, const double *xadvancelist)

Deprecated, use PDF fit_textline() with the xadvancelist option.

4.3 Simple Text Output 83

4.4 User-defined (Type 3) Fonts

Cookbook A full code sample can be found in the Cookbook topic fonts/starter_type3font.

C++ Java C# void begin_font(String fontname,

double a, double b, double c, double d, double e, double f, String optlist)

. Perl PHP begin_font(string fontname, float a, float b, float c, float d, float e, float f, string optlist)

C void PDF_begin_font(PDF *p, const char *fontname, int reserved,
double a, double b, double c, double d, double e, double f, const char *optlist)

Start a Type 3 font definition.

fontname (Name string) The name under which the font will be registered, and can
later be used with PDF load font().

reserved (C language binding only) Reserved, must be o.

a,b,c,d e f (Willbeignored in the second pass of the font definition for Type 3 font
subsets) Elements of the font matrix. This matrix defines the coordinate system in
which the glyphs will be drawn. The six values make up a matrix in the same way as in
PostScript and PDF (see references). In order to avoid degenerate transformations, a*d
must not be equal to b*c. A typical font matrix for a 1000 x 1000 coordinate system is

[o.001, 0, 0, 0.001, 0, O].

— optlist (Ignored in the second pass for subset fonts) Option list according to Table 4.8.
The following options can be used: colorized, familyname, stretch, weight, widthsonly

Details The font may contain an arbitrary number of glyphs. The font can be used until the end
of the current document scope.

Scope any except object; this function starts font scope, and must always be paired with a
- matching PDF end_font() call. For the second pass of subsetted fonts only document
scope is allowed.

Table 4.8 Options for PDF_begin_font()

option

colorized
familyname'
stretch’
weight’

widthsonly

description

(Boolean) If true, the font may explicitly specify the color of individual characters. If false, all characters
will be drawn with the current color (at the time the font is used, not when it is defined), and the glyph
definitions must not contain any color operators or images other than masks. Default: false

(String; PDF 1.5) Name of the font family

(Keyword; PDF 1.5) Font stretch value: ultracondensed, extracondensed, condensed, semicondensed,
normal, semiexpanded, expanded, extraexpanded, ultraexpanded. Default: normal

(Integer or keyword; PDF 1.5) Font weight: 100=thin, 200=extralight, 300=1ight, 400=normal,
500=medium, 600=semibold, 700=bold, 8oo=extrabold, goo=black. Default: noxrmal

(Boolean) If true (pass 1for Type 3 font subsetting), only the metrics of the font and glyphs will be de-
fined. No other API functions should be called between PDF_begin_glyph_ext() and PDF_end_glyph(). If
other functions are called nevertheless, they will not have any effect on the PDF output, and will not raise
any exception. If widthsonly=false (pass 2 for Type 3 font subsetting) the actual glyph outlines can be
defined. This two-pass definition enables PDFlib to perform subsetting on Type 3 fonts. Default: false

1. These options are strongly recommended when creating Tagged PDF, and will be ignored otherwise.

84 Chapter 4: Font and Text Functions

http://www.pdflib.com/pdflib-cookbook/fonts-and-encodings/starter-type3font

C++ Java C# void end_font()
Perl PHP end_font()
C void PDF_end_font(PDF *p)

Terminate a Type 3 font definition.

Scope font; this function terminates font scope, and must always be paired with a matching
PDF begin_font() call.

C++ Java C# void begin_glyph_ext(int uv, String optlist)

Perl PHP begin_glyph_ext(int uv, string optlist)

C void PDF_begin_glyph_ext(PDF *p, int uv, const char *optlist)

Start a glyph definition for a Type 3 font.

uv Unicode value for the glyph. Each Unicode value can be supplied only for one glyph
description. The glyph with the Unicode value o always gets glyph ID o and glyph name
.notdef, regardless of whether or not the glyph was specified.

If uv=-1the Unicode value is derived from the glyphname option according to PDFlib’s
internal glyph name list. If a glyph name is unknown, consecutive PUA values (starting
at U+Eooo) will be assigned. This value can be queried with PDF _info_font().

optlist Option list according to Table 4.9. The following options can be used:
boundingbox, code, glyphname, width

Details The glyphs in a font can be defined using text, graphics, and image functions. Images,

however, can only be used if the font’s colorized option is true, or if the image has been
opened with the mask option. This function resets all text, graphics, and color state pa-
rameters to their default values.

Since the complete graphics state of the surrounding page will be inherited for the
glyph definition when the colorized option is true, the glyph definition should explicitly
set any aspect of the graphics state which is relevant for the glyph definition (e.g. line-
width).

Scope font; this function starts glyph scope, and must always be paired with a matching PDF
end_glyph() call. If widthsonly=true in PDF begin_font() all API function calls between
PDF begin_glyph_ext() and PDF_end_glyph() will be ignored.

Table 4.9 Options for PDF_begin_glyph_ext()

option

bounding-
box

code

glyphname

width

description

(List of 4 floats; will be ignored in the second pass of the font definition for Type 3 font subsets and if the
font’s colorized option is true) If the font’s colorized option is false (which is default), the coordi-
nates of the lower left and upper right corners of the glyph’s bounding box. The bounding box values
must be correct in order to avoid problems with PostScript printing. Default: {0 0 0 0}

(Integer) Specify the glyph’s slot number, i.e. its byte code in the Type 3 font’s builtin encoding. By default
the glyphs are numbered sequentially (starting with o) in the order of creation.

(String) Name of the glyph. The name for glyph o with Unicode o is forced to .notdef. Default: Gi> for
glyph <i>=1,2,3,...

(Float; required; will be ignored in the second pass of the font definition for Type 3 font subsets) Width of
the glyph in the glyph coordinate system as specified by the font’s matrix.

4.4 User-defined (Type 3) Fonts 85

C++ Java C# void end_glyph()
___ Perl PHP end_glyph()
C void PDF_end_glyph(PDF *p)

Terminate a glyph definition for a Type 3 font.

Scope glyph; this function changes from glyph scope to font scope, and must always be paired
. with a matching PDF _begin_glyph_ext() call.

C++ Java C# void begin_glyph(String glyphname, double wx, double lix, double Ily, double urx, double ury)
Perl PHP begin_glyph(string glyphname, float wx, float lix, float lly, float urx, float ury)
C void PDF_begin_glyph(PDF "p,
const char *glyphname, double wx, double lix, double Ily, double urx, double ury)

Deprecated, use PDF_begin_glyph_ext().

86 Chapter 4: Font and Text Functions

4.5 User-defined 8-Bit Encodings

C++ Java C# void encoding_set_char(String encoding, int slot, String glyphname, int uv)
Perl PHP encoding_set_char(string encoding, int slot, string glyphname, int uv)
C void PDF_encoding_set_char(PDF *p, const char *encoding, int slot, const char *glyphname, int uv)

Add a glyph name and/or Unicode value to a custom 8-bit encoding.

encoding The name of the encoding. This is the name which must be used with PDF_
load_font(). The encoding name must be different from any built-in encoding and all
previously used encodings.

slot The position of the character to be defined, with o <= slot <= 255. A particular slot
must only be filled once within a given encoding.

glyphname The character’s name
uv The character’s Unicode value

Details This function is only required for specialized applications which must work with non-
standard 8-bit encodings. It can be called multiply to define up to 256 character slots in
an encoding. More characters may be added to a particular encoding until it has been
used for the first time; otherwise an exception will be raised. Not all code points must be
specified; undefined slots will be filled with .notdef and U+ooo0o0.

There are three possible combinations of glyph name and Unicode value:
» glyphname supplied, uv=o: this parallels an encoding file without Unicode values;
» uv supplied, but no glyphname supplied: this parallels a codepage file;
» glyphname and uv supplied: this parallels an encoding file with Unicode values.

It is strongly recommended to supply each glyph name/Unicode value only once in an
encoding (with the exception of .notdef/U+0000). If slot o is used, it should contain the
.notdef character.

If the encoding is intended for use with Type 3 fonts it is recommended to specify
the encoding slots only with glyph names.

The defined encoding can be used until the end of the current object scope.

Scope any

4.5 User-defined 8-Bit Encodings 87

5 Text and Table Formatting

5.1 Single-Line Text with Textlines

Cookbook A full code sample can be found in the Cookbook topic text_output/starter_textline. —

C++ Java C# void fit_textline(String text, double x, double y, String optlist)
Perl PHP fit_textline(string text, float x, float y, string optlist)
C void PDF_fit_textline(PDF"p, const char *text, int len, double x, double y, const char *optlist)

Place a single line of text at position (x, y) subject to various options.
text (Content string) The text to be placed on the page.

len (Clanguage binding only) Length of text (in bytes). If len = 0 a null-terminated
string must be provided. —

x,y The coordinates of the reference point in the user coordinate system where the
text will be placed, subject to various options. See Section 6.1, »Object Fitting«, page 123,
for a description of the fitting algorithm.

optlist An option list specifying font, text, and formatting options. The following op-
tions are supported:

» General option: errorpolicy (see Table 2.1)

» Font loading options according to Table 4.2 for implicit font loading (i.e. font option
in the text appearance group not supplied):
ascender, autosubsetting, capheight, descender, embedding, encoding, fallbackfonts,
fontname, fontstyle, keepnative, linegap, metadata, monospace, readfeatures, replace-
mentchar, subsetlimit, subsetminsize, subsetting, unicodemap, vertical, xheight

» Text filter options according to Table 4.6:
charref, escapesequence, glyphcheck, normalize, textformat

» Text appearance options according to Table 4.7: —
charspacing, dasharray, decorationabove, fakebold, fillcolor, font, fontsize, gstate,
horizscaling, inittextstate, italicangle, kerning, leading, overline, shadow, strikeout, _—
strokecolor, strokewidth, textrendering, textrise, underline, underlineposition, underline-
width, wordspacing I

» Options for Textline formatting according to Table 5.1:
justifymethod, leader, textpath, xadvancelist

» Shaping and typographic options according to Table 5.4:
features, language, script, shaping

» Fitting options according to Table 6.1:
alignchar, blind, boxsize, fitmethod, margin, matchbox, orientate, position, rotate, stamp,
showborder, shrinklimit

» Option for abbreviated structure element tagging according to Table 14.5 (only al-
lowed in page scope): tag

5.1 Single-Line Text with Textlines 89

http://www.pdflib.com/pdflib-cookbook/text-output/starter-textline

Details

Scope

Table 5.

option

Jjustifymethod (List of keywords; only relevant for fitmethod=auto and stamp=none; requires boxsize; ignored in verti-
cal writing mode) Ensure that the text will not extend beyond the fitbox by applying one or more for-

leader

textpath

xadvancelist

90

If inittextstate=false (which is the default), the current text and graphics state options
are used to control the appearance of the text output unless they are explicitly overrid-
den by options.

If inittextstate=true the default values of the text and graphics state options are used
to control the appearance of the text output unless they are explicitly overridden by op-
tions. The Textline options will not affect any output created after this call to PDF fit_
textline().

The current text and graphics state are not modified by this function (in particular,
the current font will be unaffected). However, the textx/texty options are adjusted to
point to the end of the generated text output.

The reference point for PDF continue_text() is not set to the beginning of the text. In
order to use PDF_continue_text() after PDF fit_textline() you must query the starting
point with PDF info_textline() and the startx/starty keywords and set the text position
with PDF set_text_pos().

page, pattern, template, glyph

1 Additional options for PDF fit_textline()

explanation

matting methods without changing the fontsize. One or more of the following keywords can be sup-

plied; if multiple keywords are present justification will be applied in the following order of decreasing

priority: wordspacing, charspacing, horizscaling (default: none):
charspacing Justify with an appropriate charspacing value.
horizscaling Justify with an appropriate horizscaling value.

none No justification

wordspacing
Justify with an appropriate wordspacing value. If the text does not contain any space
characters wordspacing justification will not be applied.

(Option list; ignored if boxsize is not specified or the width of the box is o) Specifies filler text (e.g. dot
leaders) and formatting options. Leaders will be inserted repeatedly between the border of the text box

and the text.
See Table 5.3 for a list of supported suboptions. Default: no leader

linewidth and stroke color.

The following options of PDF_fit_textline() have modified meaning for text on a path:
matchbox A separate box will be created for each glyph.

position The first value specifies the starting position of the text relative to the length of the path

(left/center/right). If the text is longer than the path it will always begin at startoffset.
The second value specifies the vertical position of each glyph relative to the path, i.e. which

part of the glyph box will touch the path (bottom/center/top).
rotate Specifies a rotation angle for each glyph.

The following fitbox-related options are ignored:
boxsize, margin, fitmethod, orientate, alignchar, showborder, stamp, leader

Kerning and text with CJK legacy encodings are not supported for text on a path.

of the standard glyph widths. Other effects, such as kerning and character spacing, are unaffected.

Chapter 5: Text and Table Formatting

(Option list) Draw text along a path. Text beyond the end of the path will not be displayed. See Table 5.2
for a list of supported suboptions. If showborder=true the flattened path will be drawn with the current

(List of floats) Specifies the advance width of the glyphs in the text in user coordinates. The length of the
list must be less or equal than the number of glyphs in the text. The xadvance values will be used instead

Table 5.2 Suboptions for the textpath option of PDF fit_textline()

option

path

rotate

scale

startoffset

tolerance

subpaths

close

round

explanation

(Path handle; required) The path to use as baseline for text output. By default, the text will be placed at
the left side of the path and the path will serve as the text baseline. However, if the second keyword in
the position option is top the text will be placed on the other side of the path and the top of the text
will touch the path. The parameters x andy of PDF_fit_textline() are used as reference point for the path.

(Float) Rotate the path, using the reference point as center and the specified value as rotation angle in
degrees. Default: o

(List with one or two floats) Scale the path, using the reference point as center and the specified value(s)
as horizontal and vertical scaling factor(s). If only one value is supplied it will be used for both directions.
Default: {1 1}

(Float or percentage) The offset of the starting point of the text along the path in user coordinates or as
percentage of the path length. Default: o

(Float or percentage) Indicates how much the last glyph on the path is allowed to extend beyond the
path. The value is specified in user coordinates or as a percentage of the fontsize. Default: 25%

(List of integers or single keyword) List with the numbers of subpaths to be drawn. The keyword all spec-
ifies all subpaths. Default: all

(Boolean) If true, each subpath will be closed with a straight line. Default: the value specified when the
path was constructed, or false if no value was specified there

(Float) For each subpath, adjacent 1ine vertices will be rounded in their joining point by a circular arc
with the line segments as its tangents and with the specified radius. If the radius is negative the arc will
be swept so that the corners are circularly grooved. If close=true and no line from the last to the first
point was specified, the first line and the closing line will also be rounded. If round=0 no rounding will be
done. Default: the value specified when the path was constructed, or 0 if no value was specified there

C++ Java C# double info_textline(String text, String keyword, String optlist)

Perl PHP float info_textline(string text, string keyword, string optlist)

C double PDF_info_textline(PDF *p, const char *text, int len, const char *keyword, const char *optlist)

Perform Textline formatting without creating output and query the resulting metrics.

text

len

(Content string) The contents of the Textline.

(Clanguage binding only) The length of text in bytes, or o for null-terminated

strings.

keyword A keyword specifying the requested information:

» Keywords for querying the results of object fitting according to Table 6.3:
boundingbox, fitscalex, fitscaley, height, objectheight, objectwidth, width, x1, y1, x2, y2, x3,
V3, X4, Y4

» Additional keywords according to Table 5.5:
angle, ascender, capheight, descender, endx, endy, pathlength, perpendiculardir, replaced-
chars, righttoleft, scalex, scaley, scriptlist, startx, starty, textwidth, textheight, unmapped-
chars, wellformed, writingdirx, writingdiry, xheight

5.1 Single-Line Text with Textlines 91

Table 5.3 Suboptions for the leader option for PDF fit_textline() and PDF add/create_textflow() and inline options in
PDF_create_textflow()

option

font loading
options

alignment

fillcolor
font
fontsize
text

yposition

explanation

If the font is specified implicitly (i.e. via the fontname and encoding options, as opposed to the font op-
tion), all font loading options according to Table 4.2 can be supplied as suboptions.

(One or two keywords) Textline: The first keyword specifies the alignment of the leader between the left

border of the fitbox and the Textline; the second keyword specifies the alignment of the leader between

the Textline and the right border of the fitbox. If only one keyword is specified it will be used for the lead-

er between the Textline and the right border of the fitbox. Supported keywords (default for Textline:

{none grid}; default for Textflow: grid):

center Textline: the leader is justified between the Textline and the border of the fitbox.
Textflow: the leader is centered between the last text fragment (or the start of the line if there
is no text) and the tab position (or the end of the line if there is no tab).

grid PDFlib snaps the position of the leader text to the next multiple of one half of the width of
the leader text to the left or right of the Textline. This may result in a gap between the
Textline and the leader text which spans at most 50% of the width of the leader text.

Justify Textline: the leader is justified between the Textline and the border of the fitbox by applying a
suitable character spacing.
Textflow: the leader is justified between the last text fragment (or the start of the line if there
is no text) and the tab position (or the end of the line if there is no tab) by applying a suitable
character spacing.

left The leader is repeated starting from the left border of the fitbox or the end of the Textline,
respectively. This may result in a gap at the start of the Textline or the right border of the
fitbox, respectively.

none No leader

right The leader is repeated starting from the right border of the fitbox or the beginning of the
Textline, respectively. This may result in a gap at the end of the Textline or the left border of
the fitbox, respectively.

(Color) Color of the leader. Default: color of the text line

(Font handle) Handle for the font to be used for the leader. Default: font of the text line
(Fontsize) Size of the leader. Default: font size of the Textline

(Content string) The text which will be used for the leader. Default: U+oo2E ’ (period)

(Float or keyword) Specifies the vertical position of the leader relative to the baseline as a numerical val-
ue or as one of the keywords fontsize, ascender, xheight, baseline, descender, textrise. Default:
baseline

optlist An option list specifying options for PDF fit_textline(). Options which are not
relevant for the requested keyword will silently be ignored.

Returns The value of some text metric value as requested by keyword.

Details This function will perform all calculations required for placing the text according to the
supplied options, but will not actually create any output on the page. The text reference
position is assumed to be {o o}.

If errorpolicy=return this function returns o in case of an error. If errorpolicy= exception
this function throws an exception in case of an error (even for the keyword wellformed).

92 Chapters: Text and Table Formatting

Table 5.4 Shaping and typographic options for PDF fit/info_textline(), PDF add/create_textflow(), and PDF fill_

textblock()

option

features

language

script

shaping

explanation

(List of keywords) Specifies which typographic features of an OpenType font will be applied to the text,

subject to the script and language options. Keywords for features which are not present in the font will

silently be ignored. The following keywords can be supplied:

_none Apply none of the features in the font. As an exception, the vert feature must explicitly be
disabled with the novert keyword.

<name> Enable a feature by supplying its four-character OpenType name. Some common feature
names are liga, ital, tnum, smcp, swsh, zero. The full list with the names and descriptions of
all supported features can be found in the PDFlib Tutorial.

no<name> The prefix no in front of a feature name (e.g. noliga) disables this feature.
Default: _none for horizontal writing mode, vert for vertical writing mode.

(Keyword; only relevant if script is supplied) The text will be processed according to the specified lan-
guage, which is relevant for the features and shaping options. A full list of keywords can be found in the
PDFlib Tutorial, e.g. ARA (Arabic), JAN (Japanese), HIN (Hindi). Default: _none (undefined language)

(Keyword; required if shaping=true) The text will be processed according to the specified script, which is
relevant for the features, shaping, and advancedlinebreak options. The most common keywords for
scripts are the following: _none (undefined script), 1atn, grek, cyrl, armn, hebz, arab, deva, beng, guru,
gujr, orya, taml, thai, laoo, tibt, hang, kana, han. A full list of keywords can be found in the PDFlib Tuto-
rial. The keyword _auto selects the script to which the majority of characters in the text belong, where
latnand _none are ignored. _auto is only relevant for shaping and will be ignored for features and
advancedlinebreak. Default: _none

(Boolean) If true, complex script shaping and bidirectional reordering will be applied to the text accord-
ing to the script and language options. The script option must have a value different from _none and
the font must obey certain conditions (see PDFlib Tutorial). Shaping is only done for characters in the
same font. Shaping is not available for right-to-left text in Textflows (only in Textlines). Default: false

Scope any except object

Table 5.5 Keywords for PDF info_textline()

keyword explanation

angle Rotation angle of the baseline in degree, i.e. the text rotation

ascender Corresponding typographic value in user coordinates

capheight

descender

endx, endy x/y coordinates of the logical text end position in user coordinates

pathlength (Only for text on a path) Length of the path covered by the text from its starting point to the end
point. This value can be queried even if PDF fit_textline() was called in blind mode. The value
can be used for the startoffset option of PDF fit_textline() to continue labeling a path with
additional text.

perpendiculardir Unit vector perpendicular to writingdiz; for standard horizontal text this would be (0, 1), for
vertical text (1, 0)

replacedchars Number of characters which have been replaced with a slightly different glyph from the internal

list of typographically similar characters or with a glyph from a fallback font because they
couldn’t be mapped to a code in the current encoding or to a glyph in the font. This value can only
be different from o if glyphcheck=replace.

5.1 Single-Line Text with Textlines 93

Table 5.5 Keywords for PDF_info_textline()

keyword
righttoleft

scalex, scaley

scriptlist

startx, starty

textwidth,
textheight

unknownchars

unmappedchars
wellformed
writingdirx

writingdiry

xheight

explanation

1if the global output direction for the text is right-to-left, and o for left-to-right or vertical text.
The global direction will be determined based on the initial characters and any directional mark-
ers which may be present in the text (e.g. U+202D or &LRO; LEFT-TO-RIGHT OVERRIDE).

Deprecated, use fitscalex/fitscaley

String containing the space-separated list of the names of all scripts in the text. This may be use-
ful to prepare text shaping. The script names are sorted by frequency in descending order. The
scripts _none and _latn will be ignored since they are not relevant for shaping. If only _none and
_latn characters are present in the text, -1 will be returned.

x/y coordinates of the logical text start position in the user coordinate system

Width and height of the text

If glyphcheck=none: number of skipped characters. The number includes character references
which couldn’t be resolved, and characters which couldn’t be mapped to a code in the current en-
coding or to a glyph in the font.

If glyphcheck=replace: number of characters which were replaced with the specified replace-
ment character (option replacementchar). The number includes characters which couldn’t be
mapped to a code in the current encoding or to a glyph in the font, and characters which couldn't
be replaced with typographically similar characters.

The number of characters which have been skipped or replaced, i.e. the sum of replacedchars
and unknownchars.

1if the text is well-formed according to the selected font/encoding (and textformat, if applica-
ble), otherwise o.

x/y coordinates of the dominant writing direction (i.e. the direction of inline text progression)
which describes a unit vector from (startx, starty) to (endx, endy). For left-to-right horizon-
tal text the values will be (1, 0), for vertical text (0, -1), and for right-to-left horizontal text (-
1, 0). The writing direction will be determined based on the shaping and vertical options as
well as the directionality properties of the text.

xheight in user coordinates

94 Chapter 5: Text and Table Formatting

5.2 Multi-Line Text with Textflows

Cookbook A full code sample can be found in the Cookbook topic text_output/starter textflow.

C++ Java C# int add_textflow(int textflow, String text, String optlist)
Perl PHP int add_textflow(int textflow, string text, string optlist)
C int PDF_add_textflow(PDF *p, int textflow, const char *text, int len, const char *optlist)

Create a Textflow object, or add text and explicit options to an existing Textflow.

textflow Textflow handle returned by an earlier call to PDF create_textflow() or PDF _
add_textflow(), or -1 (in PHP: 0) to create a new Textflow.

text (Content string) The contents of the Textflow. The text may not contain any in- —
line options.

len (Clanguage binding only) The length of text in bytes, or o for null-terminated
strings.

optlist An option list specifying Textflow options as follows:

» General option: errorpolicy (see Table 2.1) -

» Font loading options according to Table 4.2 for implicit font loading (i.e. font option
in the text appearance group not supplied):
ascender, autosubsetting, capheight, descender, embedding, encoding, fallbackfonts,
fontname, fontstyle, keepnative, linegap, metadata, monospace, readfeatures, replace-
mentchar, subsetlimit, subsetminsize, subsetting, unicodemap, xheight

» Text filter options according to Table 4.6:
charref, escapesequence, glyphcheck, normalize, textformat

» Text appearance options according to Table 4.7:
charspacing, dasharray, decorationabove, fakebold, fillcolor, font, fontsize, gstate,
horizscaling, inittextstate, italicangle, kerning, leading, overline, shadow, strikeout,
strokecolor, strokewidth, textrendering, textrise, underline, underlineposition, underline- —
width, wordspacing

» Shaping and typographic options according to Table 5.4: —
features, language, script, shaping

» Options for Textflow formatting according to Table 5.6: —
alignment, avoidemptybegin, fixedleading, hortabmethod, hortabsize, lastalignment, leader,
leftindent, minlinecount, parindent, rightindent, ruler, tabalignment

» Options for controlling the line break algorithm according to Table 5.7:
adjustmethod, advancedlinebreak, avoidbreak, locale, maxspacing, minspacing, nofitlimit,
shrinklimit, spreadlimit

» Command options according to Table 5.8:
comment, mark, matchbox, nextline, nextparagraph, restore, resetfont, return, save, space

» Text semantics options according to Table 5.9:
charclass, charmapping, hyphenchar, tabalignchar

Returns A Textflow handle which can be used in Textflow-related function calls. The handle is -
valid until the end of the enclosing document scope, or until PDF delete_textflow() is
called with this handle.
If the textflow para