
ABC

PLOP and PLOP DS
Version 4.1

PDF Linearization, Optimization,
Protection, and Digital Signature

Copyright © 1997–2011 PDFlib GmbH. All rights reserved.

PDFlib GmbH
Franziska-Bilek-Weg 9, 80339 München, Germany
www.pdflib.com
phone +49 • 89 • 452 33 84-0
fax +49 • 89 • 452 33 84-99

If you have questions check the PDFlib mailing list and archive at tech.groups.yahoo.com/group/pdflib

Licensing contact: sales@pdflib.com
Support for commercial PDFlib licensees: support@pdflib.com (please include your license number)

This publication and the information herein is furnished as is, is subject to change without notice, and
should not be construed as a commitment by PDFlib GmbH. PDFlib GmbH assumes no responsibility or lia-
bility for any errors or inaccuracies, makes no warranty of any kind (express, implied or statutory) with re-
spect to this publication, and expressly disclaims any and all warranties of merchantability, fitness for par-
ticular purposes and noninfringement of third party rights.

PDFlib and the PDFlib logo are registered trademarks of PDFlib GmbH. PDFlib licensees are granted the
right to use the PDFlib name and logo in their product documentation. However, this is not required.

Adobe, Acrobat, PostScript, and XMP are trademarks of Adobe Systems Inc. AIX, IBM, OS/390, WebSphere,
iSeries, and zSeries are trademarks of International Business Machines Corporation. ActiveX, Microsoft,
OpenType, and Windows are trademarks of Microsoft Corporation. Apple, Macintosh and TrueType are
trademarks of Apple Computer, Inc. Unicode and the Unicode logo are trademarks of Unicode, Inc. Unix is a
trademark of The Open Group. Java and Solaris are trademarks of Sun Microsystems, Inc. HKS is a regis-
tered trademark of the HKS brand association: Hostmann-Steinberg, K+E Printing Inks, Schmincke. Other
company product and service names may be trademarks or service marks of others.

PDFlib PLOP and PLOP DS contain modified parts of the following third-party software:
Zlib compression library, Copyright © 1995-2002 Jean-loup Gailly and Mark Adler
Cryptographic software written by Eric Young, Copyright © 1995-1998 Eric Young (eay@cryptsoft.com)
Cryptographic software, Copyright © 1998-2002 The OpenSSL Project (www.openssl.org)
Expat XML parser, Copyright © 1998, 1999, 2000 Thai Open Source Software Center Ltd
ICU International Components for Unicode, Copyright © 1995-2009 International Business Machines Cor-
poration and others

PDFlib PLOP and PLOP DS contain the RSA Security, Inc. MD5 message digest algorithm.

http://www.pdflib.com
http://tech.groups.yahoo.com/group/pdflib
mailto:sales@pdflib.com
mailto:support@pdflib.com

Contents 3

Contents
0 First Steps with PLOP and PLOP DS 5

0.1 Installing the Software 5

0.2 Applying the PLOP/PLOP DS License Key 6

1 PLOP and PLOP DS Features 9

1.1 Overview 9

1.2 Roadmap to Documentation and Samples 11

1.3 Encryption, Decryption, and Permissions 12

1.4 Web-Optimized (Linearized) PDF 13

1.5 Optimization (Size Reduction) 14

1.6 Repair Mode for damaged PDF 15

1.7 Query Document Information with pCOS 16

1.8 Inserting and Extracting Document Info Entries 17

1.9 Inserting and Extracting XMP Metadata 18

1.10 Digital Signatures with PLOP DS 20

1.11 PLOP Processing Details 21

2 PLOP and PLOP DS Command-line Tool 25

2.1 PLOP and PLOP DS Command-line Options 25

2.2 PLOP and PLOP DS Command-line Examples 29

3 PLOP and PLOP DS Library Language Bindings 31

3.1 C Binding 31

3.2 C++ Binding 34

3.3 COM Binding 36

3.4 Java Binding 37

3.5 .NET Binding 39

3.6 Perl Binding 40

3.7 PHP Binding 41

3.8 Python Binding 43

3.9 RPG Binding 44

4 PDF Security 47

4.1 PDF Security Features 47

4.2 PDF Security Features in PLOP 51

4.3 Securing PDF Documents on the Command Line 54

4 Contents

5 Digital Signatures with PLOP DS 57

5.1 Basic Digital Signature Concepts 57

5.2 Obtaining and Managing Digital IDs 58

5.3 Signing PDF Documents with PLOP DS 61

5.4 Cryptographic Properties of PLOP DS Signatures 64

5.5 Validating Digital Signatures with Acrobat 65

6 The pCOS Interface 69

7 PLOP and PLOP DS Library API Reference 71

7.1 Option Lists 71

7.2 General Functions 73

7.3 Document Input and Output Functions 76

7.4 Exception Handling 85

7.5 Option Handling 87

7.6 pCOS Functions 89

7.7 Unicode Conversion Function 92

A Combining PDFlib with PLOP or PLOP DS 95

B PLOP Library Quick Reference 96

C Revision History 97

Index 99

0.1 Installing the Software 5

0 First Steps with PLOP and PLOP DS

0.1 Installing the Software
PLOP and PLOP DS are delivered as a combined installer package for Windows systems,
and as a combined compressed archive for all other supported operating systems. The
installer and the archive contain the PLOP/PLOP DS command-line tool and the PLOP/
PLOP DS library, plus documentation and examples. After installing or unpacking the
package the following steps are recommended:

> An introduction of PLOP and PLOP DS features is available in Chapter 1, »PLOP and
PLOP DS Features«, page 9.

> Users of the PLOP/PLOP DS command-line tool can use the executable right away.
The available options are discussed in Section 2.1, »PLOP and PLOP DS Command-line
Options«, page 25, and are also displayed when you execute the PLOP command-line
tool without any options.

> Users of the PLOP/PLOP DS library/component should read one of the sections in
Chapter 3, »PLOP and PLOP DS Library Language Bindings«, page 31, corresponding to
their environment of choice, and review the installed examples. On Windows the
PLOP and PLOP DS programming examples are accessible via the Start menu (for
COM and .NET) or in the installation directory (for other language bindings).

If you obtained a commercial PLOP or PLOP DS license you must apply your license key
according to the next page.

Restrictions of the evaluation version. The PLOP/PLOP DS command-line tool and li-
brary can be used as fully functional evaluation versions even without a commercial li-
cense. Unless a valid license key is applied, PLOP will include the text unlicensed in the
output document’s metadata and will insert an extra front page at the beginning of the
document.

In some situations insertion of the front page may result in PDF output which no
longer conforms to PDF/X or PDF/A even if the input conforms to one of these stan-
dards. The non-conformance is specific to the front page, and is not an issue once a valid
license key is applied. In order to facilitate testing the front page will be suppressed if
one or both of the following conditions are true:

> Encryption with the fixed password strings demo or DEMO (options userpassword and
masterpassword).

> Applying a digital signature with a digital ID where the subject name (also called
common name, or CN) contains demo or DEMO; suitable digital IDs for testing are con-
tained in the PLOP package.

pCOS functions are restricted to small documents (less than 10 pages and less than 1 MB)
in evaluation mode.

Unlicensed versions of PLOP or PLOP DS must not be used for production purposes,
but only for evaluating the product. Using the software for production purposes re-
quires a valid license.

6 Chapter 0: First Steps with PLOP and PLOP DS

0.2 Applying the PLOP/PLOP DS License Key
Using PLOP/PLOP DS for production purposes requires a valid license key. Once you
purchased a license you must apply your license key in order to get rid of the extra front
page and enable the use of arbitrary passwords. There are several methods for applying
the license key; choose one of the methods detailed below.

If the frontpage option for PLOP_set_option() is false, an exception will be thrown in-
stead of creating the front page when no valid license key could be found.

Note PLOP/PLOP DS license keys are platform-dependent, and can only be used on the platform for
which they have been purchased. While a PLOP DS license key activates all features of PLOP, a
PLOP license key does not activate the signature features which are only available in PLOP DS.

Windows installer. Windows users can enter the license key when they install PLOP/
PLOP DS using the supplied installer. This is the recommended method on Windows. If
you do not have write access to the registry or cannot use the installer refer to one of the
alternate methods below.

Applying a license key with an API call at runtime. Add a line to your script or pro-
gram which sets the license key at runtime. The license parameter must be set immedi-
ately after instantiating the PLOP object (i.e., after PLOP_new() or equivalent call). The
exact syntax depends on your programming language:

> In COM/VBScript:

oPLOP.set_option "license=...your license key..."

> In .NET/C#:

p.set_option("license=...your license key...");

> In C and Python:

PLOP_set_option(p, "license=...your license key...");

> In C++ and Java:

p.set_option("license=...your license key...")

> In Perl and PHP:

$p->set_option("license=...your license key...")

> In RPG:

d licenseopt s 20
c eval licenseopt=%ucs2('license=... your license key ...')
c callp PLOP_set_option(PLOP:licenseopt:0)

Working with a license file. As an alternative to supplying the license key with a run-
time call, you can enter the license key in a text file according to the following format
(you can use the license file template licensekeys.txt which is contained in all PLOP distri-
butions). Lines beginning with a ’#’ character contain comments and will be ignored;
the second line contains version information for the license file itself:

Licensing information for PDFlib GmbH products
PDFlib license file 1.0
PLOP 4.1 ...your license key...

0.2 Applying the PLOP/PLOP DS License Key 7

The license file may contain license keys for multiple PDFlib GmbH products on sepa-
rate lines. It may also contain license keys for multiple platforms so that the same li-
cense file can be shared among platforms. License files can be configured in the follow-
ing ways:

> A file called licensekeys.txt will be searched in all default locations (see »Default file
search paths«, page 7).

> You can specify the licensefile parameter with the set_option() API function:

p.set_option("licensefile=/path/to/licensekeys.txt");

> Use the --plopopt option of the PLOP command-line tool and supply the licensefile op-
tion with the name of a license file:

plop --plopopt "licensefile /path/to/your/licensekeys.txt" ...

If the path name contains space characters you must enclose the path with braces:

tet --tetopt "licensefile {/path/to/your/license file.txt}" ...

> You can set an environment (shell) variable which points to a license file. On Win-
dows use the system control panel and choose System, Advanced, Environment
Variables.; on Unix apply a command similar to the following:

export PDFLIBLICENSEFILE=/path/to/licensekeys.txt

> On i5/iSeries systems the license file must be encoded in ASCII (see asciifile option).
The license file can be specified as follows (this command can be specified in the
startup program QSTRUP and will work for all PDFlib GmbH products):

ADDENVVAR ENVVAR(PDFLIBLICENSEFILE) VALUE(/PLOP/4.1/licensefile.txt) LEVEL(*SYS)

License keys in the registry. On Windows you can also enter the name of the license
file in the following registry key:

HKLM\SOFTWARE\PDFlib\PDFLIBLICENSEFILE

As another alternative you can enter the license key directly in one of the following reg-
istry keys:

HKLM\SOFTWARE\PDFlib\PLOP4\license
HKLM\SOFTWARE\PDFlib\PLOP4\4.1\license

The MSI installer will write the license key provided at install time in the last of these
entries.

Note Be careful when manually accessing the registry on 64-bit Windows systems: as usual, 64-bit
PLOP binaries will work with the 64-bit view of the Windows registry, while 32-bit PDFlib bina-
ries running on a 64-bit system will work with the 32-bit view of the registry. If you must add
registry keys for a 32-bit product manually, make sure to use the 32-bit version of the regedit
tool. It can be invoked as follows from the Start, Run... dialog:

%systemroot%\syswow64\regedit

Default file search paths. On Unix, Linux, Mac OS X and i5/iSeries systems some direc-
tories will be searched for files by default even without specifying any path and directo-
ry names. The following directories will be searched:

<rootpath>/PDFlib/PLOP/4.1/resource/cmap
<rootpath>/PDFlib/PLOP/4.1/resource/codelist
<rootpath>/PDFlib/PLOP/4.1/resource/glyphlst
<rootpath>/PDFlib/PLOP/4.1/resource/fonts
<rootpath>/PDFlib/PLOP/4.1/resource/icc
<rootpath>/PDFlib/PLOP/4.1
<rootpath>/PDFlib/PLOP
<rootpath>/PDFlib

On Unix, Linux, and Mac OS X <roothpath> will first be replaced with /usr/local and then
with the HOME directory. On i5/iSeries <roothpath> is empty.

Default file names for license and resource files. By default, the following file names
will be searched for in the default search path directories:

licensekeys.txt (license file)

This feature can be used to work with a license file without setting any environment
variable or runtime option.

Multi-system license files on i5/iSeries and zSeries. License keys for i5/iSeries and
zSeries are system-specific and therefore cannot be shared among multiple systems. In
order to facilitate resource sharing and work with a single license file which can be
shared by multiple systems, the following license file format can be used to hold multi-
ple system-specific keys in a single file:

PDFlib license file 2.0
Licensing information for PDFlib GmbH products
PLOP 4.1 ...your license key... ...serial number of machine 1...
PLOP 4.1 ...your license key... ...serial number of machine 2...

Note the changed version number in the first line and the presence of multiple license
keys, followed by the corresponding eight-digit hexadecimal serial number (on i5/iSer-
ies) or four-digit hexadecimal CPU ID (on zSeries).

Licensing options. Different licensing options are available for PLOP use on one or
more servers, and for redistributing PLOP with your own products. We also offer sup-
port and source code contracts. Please contact us if you are interested in obtaining a
commercial PLOP license or have any questions:

PDFlib GmbH, Licensing Department
Franziska-Bilek-Weg 9, 80339 München, Germany
www.pdflib.com
phone +49 • 89 • 452 33 84-0
fax +49 • 89 • 452 33 84-99
Licensing contact: sales@pdflib.com
Support for PDFlib licensees: support@pdflib.com

http://www.pdflib.com
mailto:sales@pdflib.com
mailto:support@pdflib.com

1.1 Overview 9

1 PLOP and PLOP DS Features
1.1 Overview

PLOP is available in two flavors: the PLOP base product and the extended version
PLOP DS.

PLOP features. PLOP supports the following kinds of PDF processing:
> Protection: encrypt a PDF document with a user or master password (or both); re-

move PDF encryption if you know the document’s master password; add or remove
permission settings (e.g., printing or text extraction not allowed) if you know the
document’s master password.

> Linearize PDF documents for enhanced viewer experience when retrieving PDF files
from a Web server (see below).

> Optimize the size of PDF documents by reducing redundant objects.
> Repair damaged PDF documents.
> Use the integrated pCOS interface to query information about the document’s secu-

rity status (encrypted with user or master password), permission settings, document
metadata, and many other properties.

> Insert and retrieve predefined or custom document information entries.
> Insert and retrieve XMP metadata.

PLOP DS features. PLOP DS offers all features of PLOP, plus the ability to apply digital
signatures to PDF documents. The signatures can be validated in Adobe Acrobat and
Adobe Reader.

Signatures can be created from digital IDs in the PKCS#12 and PFX certificate for-
mats. On Windows digital IDs from the Windows certificate store can be used. On Win-
dows and some other platforms cryptographic tokens with PKCS#11 support can be
used (e.g. a smartcard or USB stick).

Advantages. PDFlib PLOP and PLOP DS offer the following advantages:
> All PLOP and PLOP DS operations are PDF/X- and PDF/A-aware: if the input conforms

to one of these standards, the output is guaranteed to conform to the same standard
if possible. If this is not possible (e.g. encryption was requested for PDF/A input) the
operation will either be rejected or the standard identification removed.

> PLOP is a standalone tool which does not require any third-party software for read-
ing, encrypting, signing, or writing PDF.

> PLOP can technically and legally be deployed on a server, is fully thread-safe, and has
been checked for memory leaks. PLOP has been engineered for heavy server usage,
and can be used in Web server environments, for high-volume batch processing, etc.

> PLOP is available on many platforms and for several programming environments.
> For added flexibility, PLOP is available both as a command-line tool and a program-

ming library (component) for various development languages.

10 Chapter 1: PLOP and PLOP DS Features

PLOP/PLOP DS command-line tool or library? PLOP/PLOP DS is available both as a pro-
gramming library (component) for various development languages, and as a command-
line tool for batch operations. Both offer the same feature set, but are suitable for differ-
ent deployment tasks. Here are some guidelines for choosing among the library and the
command-line tool:

> The command-line PLOP/PLOP DS tool is suited for batch processing PDF documents.
It doesn’t require any programming, but offers powerful command-line options
which can be used to integrate it into complex workflows. The PLOP/PLOP DS com-
mand-line tool can also be called from environments which do not support the use
of the library.

> The PLOP/PLOP DS programming library integrates well into a variety of common
development environments, such as Active Server Pages (ASP), Visual Basic, Java (in-
cluding servlets), PHP, RPG, and plain C or C++ application development.

The PLOP/PLOP DS license covers both the command-line tool and the library.

1.2 Roadmap to Documentation and Samples 11

1.2 Roadmap to Documentation and Samples
Mini samples for the PLOP language bindings. The PLOP distribution contains a num-
ber of simple programming examples for all supported language bindings. These dem-
onstrate basic PLOP library programming tasks:

> The encrypt sample encrypts an unencrypted PDF document with user and master
password.

> The decrypt sample decrypts an encrypted PDF document using its master password.
> The noprint sample sets the noprint and nocopy access permissions, and encrypts the

file with a master password.
> The dumper sample uses the pCOS interface to collect general properties, informa-

tion about the encryption status of a file as well as document information and XMP
metadata.

> The insertxmp sample reads XMP metadata from a file, and inserts the XMP in a PDF
document. Sample XMP files are supplied for testing.

> The linearize sample applies linearization to an existing PDF document, and changes
a document info entry.

Optimization is implicitly demonstrated by all samples since the optimization process
is enabled by default (unless when applying digital signatures).

The following mini samples are for use with PLOP DS:
> The sign sample shows how to apply a digital signature to an existing PDF document.
> The hellosign shows how to dynamically create a document with PDFlib and pass it to

PLOP (in memory), which then applies a digital signature to it. Note that this exam-
ple requires the PDFlib product which is not included in the PLOP package. Free eval-
uation packages for PDFlib are available from our Web site, however.

Note On Windows Vista and Windows 7 the mini samples will be installed in the »Program Files« di-
rectory by default. Due to a new protection scheme in Windows Vista the PDF output files cre-
ated by these samples will only be visible under »compatibility files«. Recommended
workaround: copy the examples to a user directory.

Sample calls of the PLOP command-line tool. The PLOP command-line tool supports
various options which are documented in Section 2.1, »PLOP and PLOP DS Command-
line Options«, page 25. The remaining sections in Chapter 1, »PLOP and PLOP DS Fea-
tures«, page 9, as well as Section 2.2, »PLOP and PLOP DS Command-line Examples«, page
29 and other chapters contain sample calls of the PLOP command-line tool.

pCOS Cookbook. The pCOS Cookbook is a collection of code fragments for the pCOS in-
terface which is integrated in PLOP. It is available at the following URL:
www.pdflib.com/pcos-cookbook.

Details of the pCOS interface are documented in the pCOS Path Reference which is
included in the PLOP package.

http://www.pdflib.com/pcos-cookbook/

12 Chapter 1: PLOP and PLOP DS Features

1.3 Encryption, Decryption, and Permissions
Encrypting and decrypting PDF documents as well as permission restrictions are cov-
ered in detail in Chapter 4, »PDF Security«, page 47. In the current section we will only
provide a quick summary and some initial examples.

Querying security settings. With the pCOS programming interface, which is integrat-
ed in the PLOP library, you can query various security settings of a PDF document. The
required function calls and parameters can be seen in the dumper mini sample, which is
included in all PLOP packages. The corresponding option for the PLOP command-line
tool is --info (see Section 1.7, »Query Document Information with pCOS«, page 16, for an
example).

Encrypting documents with PLOP. You can encrypt documents by specifying the user-
password or masterpassword option (or both) for PLOP_create_file(). Note that a user pass-
word always requires a master password, but not vice versa. Sample code for encrypting
PDF documents can be seen in the encrypt mini sample, which is included in all PLOP
packages. The equivalent options for the PLOP command-line tool are --user and --
master.

Example: encrypt a file with user password demo and master password DEMO:

plop --user demo --master DEMO --outfile encrypted.pdf input.pdf
plop -u demo -m DEMO -o encrypted.pdf input.pdf

Specify permission restrictions with PLOP. You can specify the permission restrictions
in the permissions option for PLOP_create_file() which supports various keywords (see Ta-
ble 4.3, page 52). Sample code for specifying permission restrictions of PDF documents
can be seen in the noprint mini sample, which is included in all PLOP packages. The
equivalent option for the PLOP command-line tool is --permissions. Note that permission
restrictions always require a master password.

Example: encrypt a document with the master password DEMO, and disallow print-
ing the document and copying contents:

plop --master DEMO --permissions "noprint nocopy" --outfile encrypted.pdf input.pdf
plop -m DEMO --permissions "noprint nocopy" -o encrypted.pdf input.pdf

Decrypting documents with PLOP. You can decrypt documents by specifying the ap-
propriate user or master password in the password option for PLOP_create_file(). Full
sample code for decrypting PDF documents can be seen in the decrypt mini sample,
which is included in all PLOP packages. The equivalent option for the PLOP command-
line tool is --password.

Example: decrypt a single file with the master password DEMO. All access restrictions
which may have been applied to the input document will be removed (since the output
is unencrypted):

plop --password DEMO --outfile decrypted.pdf encrypted.pdf
plop -p DEMO -o decrypted.pdf encrypted.pdf

More encryption and decryption examples can be found in Section 4.3, »Securing PDF
Documents on the Command Line«, page 54.

1.4 Web-Optimized (Linearized) PDF 13

1.4 Web-Optimized (Linearized) PDF
PLOP can apply a process called linearization to PDF documents. The resulting property
is called Fast Web View in Acrobat. Linearization reorganizes the objects within a PDF file
and adds supplemental information which can be used for faster access.

While non-linearized PDFs must be fully transferred to the client, a Web server can
transfer linearized PDF documents one page at a time using a process called byte-
serving. It allows Acrobat (running as a browser plugin) to retrieve individual parts of a
PDF document separately. The result is that the first page of the document will be pre-
sented to the user without having to wait for the full document to download from the
server. This provides enhanced user experience.

Note that the Web server streams PDF data to the browser, not PLOP. Instead, PLOP
prepares the PDF files for byteserving. All of the following requirements must be met in
order to take advantage of byteserving PDFs:

> The PDF document must be linearized, which can be achieved with PLOP. Lineariza-
tion can be applied along with encryption or decryption in a single run. In Acrobat
you can check whether a file is linearized by looking at its document properties
(»Fast Web View: yes«).

> The Web server must support byteserving. The underlying byterange protocol is part
of HTTP 1.1 and therefore implemented in all current Web servers.

> The user must use Acrobat as a Browser plugin, and have page-at-a-time download
enabled in Acrobat (Acrobat 8/9/X: Edit, Preferences, [General...,] Internet, Allow fast web
view). Note that this is enabled by default.

The larger a PDF file (measured in pages or MB), the more it will benefit from lineariza-
tion when delivered over the Web.

Linearization and encryption/decryption can be applied in combination. However,
in order to linearize a protected file you must provide the proper master password (see
Table 4.2).

Note Linearizing a PDF document generally slightly increases its file size due to the additional linear-
ization information. This increase may or may not be compensated by the applied optimiza-
tion techniques (see Section 1.5, »Optimization (Size Reduction)«, page 14).

Linearizing PDF documents with PLOP. You can enable the linearization step with the
linearize option for PLOP_create_file(). Sample code for linearizing PDF documents can be
seen in the linearize mini sample, which is included in all PLOP packages.

The equivalent option for the PLOP command-line tool is --webopt. Example: linear-
ize all PDF documents in a directory (assuming these do not require any password), and
copy the resulting files to the target directory output. Verbosity level 2 prints the names
of all input and output files as they are processed:

plop --verbose 2 --webopt --targetdir output *.pdf
plop -v 2 -w -t output *.pdf

14 Chapter 1: PLOP and PLOP DS Features

1.5 Optimization (Size Reduction)
While processing PDF documents PLOP can apply file optimization in addition to other
operations:

> PLOP detects multiple instances of identical data, and removes all instances but one.
This is mostly relevant for fonts and images, but may affect other data types as well,
e.g. ICC profiles or even complete pages with identical content. An embedded font or
image will be removed if another font or image contains the exact same data; all ref-
erences to the removed data will be replaced with references to the remaining in-
stance of the font or image. For example, if a document has been assembled from
several PDFs containing parts of a document and all of these parts contain the same
embedded font, the resulting combined PDF may carry excess font data. PLOP will re-
duce the redundant font data, and keep only one instance of the font.

> Unused objects will be removed from the PDF file in a process known as garbage
collection. In some cases (when the Save menu item in Acrobat has been used, as op-
posed to Save As...) Acrobat will append changes to a file while retaining the previous
state of the document. PLOP removes all objects related to older versions of the docu-
ment.

> The output will be written using compact syntax. For example, unnecessary white-
space will be removed, certain inefficient constructs (indirect integer objects) will be
replaced with more efficient equivalents, and hexadecimal strings (e.g. color palettes
for indexed color spaces) will be replaced with more compact binary representations.

PLOP will never apply any optimization steps which could result in loss of information
(e.g. unembedding fonts, downsampling images). All relevant information for viewing
or printing the document in the exact same quality of the input will be retained in the
output.

Optimizing PDF documents with PLOP. Since optimization in PLOP is enabled by de-
fault, there is no need to supply any option to activate it. However, for extreme perfor-
mance requirements you can disable the optimization step with the optimize=none op-
tion for PLOP_create_file(). The equivalent option for the PLOP command-line tool is
--fast.

Example: optimize a document with the PLOP command-line tool:

plop --outfile optimized.pdf input.pdf
plop -o optimized.pdf input.pdf

1.6 Repair Mode for damaged PDF 15

1.6 Repair Mode for damaged PDF
PLOP implements a repair mode for damaged PDF so that even certain kinds of dam-
aged documents can be processed. However, in rare cases a damaged PDF document
may be rejected if PLOP is unable to repair it.

Repairing PDF documents with PLOP. The repair mode is activated automatically when
PLOP encounters damaged input. However, using the repair=force option of
PLOP_open_document() you can enforce the repair mode even if no problems occurred
when opening the document. The equivalent option for the PLOP command-line tool is
--inputopt repair=force. You can disable the repair mode with repair=none.

Example: force reconstruction of a document with the PLOP command-line tool:

plop --inputopt repair=force --outfile repaired.pdf damaged.pdf
plop --inputopt repair=force -o repaired.pdf damaged.pdf

Invalid XMP metadata. PLOP repairs certain kinds of problems in XMP metadata.
However, some problems cannot be repaired. For example XML parsing errors caused by
XMP metadata always imply that the XMP is unusable. PLOP provides the xmppolicy op-
tion for controlling the processing behavior when invalid XMP is encountered. See
»Dealing with invalid XMP metadata«, page 19, for more details.

16 Chapter 1: PLOP and PLOP DS Features

1.7 Query Document Information with pCOS
The pCOS interface is covered in detail in the pCOS Path Reference. In the current sec-
tion we will only provide a quick summary and some initial examples.

With the pCOS programming interface, which is integrated in the PLOP library, you
can query various properties of a PDF document. Sample code for querying document
information with pCOS can be seen in the dumper mini sample, which is included in all
PLOP packages. The corresponding option for the PLOP command-line tool is --info.

Example: display security and other information about a PDF document:

plop --info *.pdf
plop -i *.pdf

This program call will result in output similar to the following:
File name: PLOP-manual.pdf

 PDF version: 1.6

 Encryption: No encryption

 Master pw: false

 User pw: false

 nocopy: false (copying is allowed)

 nomodify: false (adding form fields and other changes is allowed)

 noannots: false (adding or changing comments or form fields is allowed)

 noassemble: false (insert/delete/rotate pages, creating bookmarks is allowed)

 noforms: false (filling form fields is allowed)

 noaccessible: false (extracting text or graphics for accessibility is allowed)

 nohiresprint: false (high-resolution printing is allowed)

 plainmetadata: true (metadata is not encrypted)

 Linearized: true

 PDF/X status: none

 PDF/A status: none

 Tagged PDF: false

 Signatures: 0

Reader-enabled: false

 No. of pages: 90

 No. of fonts: 8

 embedded Type 1 CFF font TheSans-Plain

 embedded Type 1 CFF font TheSansExtraBold-Plain

 ...more fonts...

 CreationDate: 'D:20100616003116Z'

 Subject: 'PDFlib PLOP: PDF Linearization, Optimization, Protection'

 Author: 'PDFlib GmbH'

 Creator: 'FrameMaker 7.0'

 Producer: 'Acrobat Distiller 8.1.0 (Windows)'

 ModDate: 'D:20070616021141Z'

 Title: 'PDFlib PLOP and PLOP DS Manual'

XMP meta data: is present

1.8 Inserting and Extracting Document Info Entries 17

1.8 Inserting and Extracting Document Info Entries
PDF supports two kinds of document metadata which contain general information
about a document: document info entries and XMP metadata.

Document info entries are keys with associated strings that hold some unstructured
information. The predefined info keys Subject, Title, Author, and Keywords are commonly
used, but arbitrary custom keys can be defined for specific purposes. Document infor-
mation entries are considered the old and simple kind of PDF metadata.

With PLOP you can add new document information entries or replace the values of
existing info entries. Both predefined or custom entries can be set. If the input docu-
ment contains XMP document metadata, all predefined info entries will automatically
be synchronized to the XMP metadata in order to keep the metadata consistent.

Inserting document info entries with PLOP. You can set document info entries with
the docinfo option for PLOP_create_file(). Sample code for setting document info entries
can be seen in the linearize mini sample (in addition to linearization this sample demon-
strates how to set document info), which is included in all PLOP packages.

Example: specify the predefined document info entry Subject and the custom info
entry Department; note the braces around Product Manual to protect the space character:

docinfo={Department Techdoc Subject {Product Manual}}

This option can be supplied to the PLOP command-line tool via the --outputopt option as
follows:

plop --outputopt "docinfo={Department Techdoc Subject {Product Manual}}"
--outfile output.pdf input.pdf

plop --outputopt "docinfo={Department Techdoc Subject {Product Manual}}"
-o output.pdf input.pdf

Extracting document info entries with PLOP. With the pCOS programming interface,
which is integrated in the PLOP library, you can extract document information entries
(keys and values) from a PDF document. The required function calls and parameters can
be seen in the dumper mini sample, which is included in all PLOP packages.

The corresponding option for the PLOP command-line tool is --info (see Section 1.7,
»Query Document Information with pCOS«, page 16, for an example).

18 Chapter 1: PLOP and PLOP DS Features

1.9 Inserting and Extracting XMP Metadata
XMP (Extensible Metadata Platform1) is an XML framework with many predefined proper-
ties. However, as the name implies, XMP can be extended to satisfy specific require-
ments using custom extension schemas. XMP is much more powerful than document
information entries, and is for example required in the PDF/A standard. Many industry
groups have published standards based on XMP for various vertical applications, e.g.
digital imaging or prepress data exchange.

You can find more detailed information on XMP as well as links to other resources at
www.pdflib.com/knowledge-base/xmp-metadata/.

With PLOP you can insert XMP metadata in PDF documents, or extract XMP from
PDF. Inserted XMP will be validated to make sure that valid output can be created. If the
input document conforms to the PDF/A-1 standard, the user-supplied XMP must con-
form to the XMP rules set forth in PDF/A. Again, these rules (including XMP extension
schema validation) will be checked by PLOP to make sure that PDF/A-1 input plus user-
supplied XMP will result in conforming PDF/A output.

XMP insertion with PLOP can be used in the following and many other situations
(the names of sample XMP files in the PLOP distribution are provided in parenthesis):

> Add XMP metadata to PDF/A-1 documents, including support for XMP extension
schemas as defined in the PDF/A-1 standard (machine_pdfa1.xmp).

> Add XMP metadata describing the scan process for digitized legacy documents
(engineering.xmp).

> Add XMP metadata according to the Ghent Workgroup (GWG) Ad Ticket scheme,
(gwg_ad_ticket.xmp). For more details see www.gwg.org/Jobtickets.phtml.

> Add company-specific XMP metadata (acme.xmp).

Inserting XMP metadata with PLOP. In order to insert metadata you must create a file
which contains valid XMP metadata in UTF-8 format. You can insert XMP with the
metadata option for PLOP_create_file(), which supports several suboptions. Sample code
for inserting XMP in PDF documents is available in the insertxmp mini sample, which is
included in all PLOP packages.

Example: insert XMP metadata from a file called gwg_ad_ticket.xmp, where the XMP
is validated against the XMP 2004 standard:

plop --outputopt "metadata={filename=gwg_ad_ticket.xmp validate=xmp2004}"
--outfile output.pdf input.pdf

plop --outputopt "metadata={filename=gwg_ad_ticket.xmp validate=xmp2004}"
-o output.pdf input.pdf

Extracting XMP metadata with PLOP. With the pCOS programming interface, which is
integrated in the PLOP library, you can extract XMP metadata from a PDF document.
The required function calls and parameters can be seen in the dumper mini sample,
which is included in all PLOP packages. Note that the sample code in the dumper sample
does not actually print the XMP metadata, but simply reports the size of the XMP found
in the document.

The PLOP command-line tool can not be used for extracting XMP metadata. We offer
a powerful pCOS command-line tool for extracting information from PDF.

1. See www.adobe.com/products/xmp

http://www.pdflib.com/knowledge-base/xmp-metadata/
http://www.adobe.com/products/xmp
http://www.gwg.org/Jobtickets.phtml

1.9 Inserting and Extracting XMP Metadata 19

Dealing with invalid XMP metadata. PDF documents sometime contain invalid XMP
metadata which is either invalid on the XML level or the XMP/RDF level. PLOP will by de-
fault reject such documents and stop processing. In order to provide more fine-grain
control for such input documents the xmppolicy option for PLOP_open_document() can
be used to distinguish the following cases:

> xmppolicy=rejectinvalid: by default, invalid XMP prevents PLOP from generating PDF
output.

> xmppolicy=ignoreinvalid: ignore invalid XMP and include the text of the XML parsing
error message in the generated output XMP as a debugging aid. Note that no PDF/A
or PDF/X-3/4/5 output can be created with this option.

> xmppolicy=remove: remove input XMP. This may be useful to delete unwanted meta-
data.

For example, if you don’t want invalid XMP metadata to disrupt batch processing of
documents you can ignore problems caused by invalid XMP in the input document:

plop --inputopt "xmppolicy=ignoreinvalid" --outfile output.pdf input.pdf
plop --inputopt "xmppolicy=ignoreinvalid" -o output.pdf input.pdf

20 Chapter 1: PLOP and PLOP DS Features

1.10 Digital Signatures with PLOP DS
The ability to digitally sign PDF documents is only available in PLOP DS, but not in the
PLOP base product.

Digital signatures for PDF documents are covered in detail in Chapter 5, »Digital Sig-
natures with PLOP DS«, page 57. In the current section we will only provide a quick sum-
mary and some initial examples.

Querying signature properties. With the pCOS programming interface, which is inte-
grated in the PLOP library, you can query signature settings of a PDF document. The re-
quired function calls and parameters are available in the pCOS Cookbook topic
interactive_elements/signatures. The corresponding option for the PLOP command-line
tool is --info (see Section 1.7, »Query Document Information with pCOS«, page 16).

Signing documents with PLOP DS. Applying a signature requires a digital ID, which
may be available as a file, in the Windows certificate store, or on a cryptographic token
(e.g. a smartcard or USB stick). While the former requires a password for accessing the
digital ID, the Windows certificate store is usually protected by the Windows login and
does not require any password. Cryptographic tokens are often protected by a PIN.

You can apply a digital signature with the sign option for PLOP_create_file(), which
supports several suboptions. Sample code for signing PDF documents is available in the
sign mini sample, which is included in all PLOP packages. The equivalent option for the
PLOP command-line tool is --signopt. The hellosign mini sample shows how to dynami-
cally create PDF documents with PDFlib and then apply a signature with PLOP DS.

Examples: Create an invisible signature for a PDF document using a digital ID from
the file demo2048.p12. The password for the digital ID is contained in the file pw.txt:

plop --signopt "digitalid={filename=demo2048.p12} passwordfile=pw.txt"
--outfile signed.pdf input.pdf

plop -S "digitalid={filename=demo2048.p12} passwordfile=pw.txt" -o signed.pdf input.pdf

(Windows only) Create an invisible signature for a PDF document using a certificate
from the Windows Certificate Store (from the default store My). This assumes that the
digital ID is protected by your Windows login so that no password must be supplied:

plop --signopt "engine=mscapi digitalid={certstore={store=My subject={DEMO PLOP User 2048}}}"
 --outfile signed.pdf input.pdf

plop -S "engine=mscapi digitalid={certstore={store=My subject={DEMO PLOP User 2048}}}"
 -o signed.pdf input.pdf

(Only platforms with PKCS#11 support, e.g. Windows) Create an invisible signature for a
PDF document using a digital ID from a cryptographic token. The PKCS#11 interface for
the token is implemented in the library cryptoki.dll which must be provided by the
smartcard supplier. The password for the digital ID is contained in the file pw.txt:

plop --signopt "engine=pkcs#11 digitalid={filename=cryptoki.dll} passwordfile=pw.txt"
--outfile signed.pdf input.pdf

plop -S "engine=pkcs#11 digitalid={filename=cryptoki.dll} passwordfile=pw.txt"
-o signed.pdf input.pdf

More signature examples can be found in Chapter 5.3, »Signing PDF Documents with
PLOP DS«, page 61.

http://www.pdflib.com/pcos-cookbook/interactive-elements/signatures/

1.11 PLOP Processing Details 21

1.11 PLOP Processing Details
Acceptable input documents. PLOP accepts, processes, and creates the following PDF
flavors:

> PDF 1.4 (Acrobat 5) and all older versions
> PDF 1.5 (Acrobat 6)
> PDF 1.6 (Acrobat 7)
> PDF 1.7 (Acrobat 8), technically identical to ISO 32000-1
> PDF 1.7 Adobe extension level 3 (Acrobat 9)
> PDF 1.7 Adobe extension level 8 (Acrobat X)
> PDF 2.0 as specified in ISO 32000-2

Depending on the desired operation the password will be required for encrypted docu-
ments. PLOP will attempt to repair various kinds of damaged PDF documents. See below
for restrictions which apply to certain combinations of input documents and requested
operations.

PDF version. The PDF version number of the generated output document will never be
less than the PDF version number of the input document, but it may be forced to a high-
er number as detailed below. The PDF output version can be specified with the
compatibility option of PLOP_create_file() or the --outputopt option of the PLOP com-
mand-line tool. If this option has not been specified, PLOP uses the PDF version of the
input document, modified according to the following rules:

> Encryption, i.e. any of the options userpassword, masterpassword, and permissions,
pushes the version to PDF 1.4.

> Digitally signing the document (option sign) pushes the version to PDF 1.3.
> Inserting XMP metadata (option metadata) pushes the version to PDF 1.4.
> The plainmetadata keyword for the permissions option pushes the version to PDF 1.5.

PDF/A implementation basis. The following standards and documents form the basis
of the PDF/A implementation in PLOP:

> The PDF/A standard (ISO 19005-1:2005)
> Technical Corrigendum 1 (ISO 19005-1:2005/Cor 1:2007)
> Technical Corrigendum 2 (ISO 19005-1:2005/Cor.2:2010)
> All relevant TechNotes published by the PDF/A Competence Center.

Sacrificing certain properties of the input PDF. Conflicts can arise between several PDF
document properties and certain PLOP operations. For example, PDF/A documents are
not allowed to use encryption. What should PLOP do when encryption is requested for
PDF/A input? By default it will throw an exception and refuse the operation. However,
you can use the option sacrifice for PLOP_create_file() or the --outputopt option of the
PLOP command-line tool to give the requested operation priority over the input proper-
ty. In the example above, the PDF/A conformance entry will be removed from the docu-
ment in order to allow encryption.

There are several combinations of input document properties and requested opera-
tions. In all of these combinations you can use the sacrifice option to allow an operation
by sacrificing a particular document property (see Table 7.4, page 79, for details):

> PDF/A: PLOP applies digital signatures in a PDF/A-compliant manner: input docu-
ments which conform to the PDF/A-1a or PDF/A-1b standard are guaranteed to be

22 Chapter 1: PLOP and PLOP DS Features

PDF/A-compliant after signing. However, applying encryption, i.e. any of the options
userpassword, masterpassword, and permissions, is not allowed for PDF/A documents
since PDF/A prohibits any encryption. You can sacrifice PDF/A compliance with the
sacrifice={pdfa1} option, though.

> PDF/X: PDF/X-1a/3/4/5 don’t allow encryption, or visible signature fields on the page.
In these situations PLOP will raise an exception, but you can sacrifice PDF/X compli-
ance with the sacrifice={pdfx} option.

> Existing signatures (including certification signatures) in the input document will
not be kept. In order to avoid destroying existing signatures, PLOP will refuse to sign
documents which already contain one or more signatures. You can sacrifice existing
signatures with the option sacrifice={signature} to PLOP_create_file() or the --outputopt
option of the PLOP command-line tool.

> PLOP cannot apply signatures if the document contains form fields without Appear-
ances (e.g. form fields created with PDFlib 6 or 7), and will therefore throw an excep-
tion for this kind of input. The reason is that Acrobat will have to rebuild the missing
appearance streams for form fields, which would instantly invalidate the signature.
You can sacrifice all existing form fields in this situation with the option
sacrifice={fields} to PLOP_create_file() or in the --outputopt option of the PLOP com-
mand-line tool.

> If an unencrypted document contains encrypted file attachments for which the
password is not available, processing will stop by default. You can sacrifice all en-
crypted file attachments in this situation with the option sacrifice={encryptedattach-
ments} to PLOP_create_file() or in the --outputopt option of the PLOP command-line
tool. All encrypted file attachments for which the password is not available will be
removed with this option.

Properties of the input document which are generally lost. The following properties
of the input document will be lost after applying any PLOP operation:

> If the input document is linearized, the linearization will be lost by default. In order
to linearize the output, supply the linearize option to PLOP_create_file() or the
--linearize option to the PLOP command-line tool.

> Reader-enabled documents: processing Reader-enabled PDF documents with PLOP
will result in output which is not Reader-enabled. Since Reader-enabled documents
can only be created with Adobe software there is no workaround for this.

Temporary disk space requirements. PLOP reads an input PDF document and writes an
output PDF. The output document will require roughly the same amount of disk space
as the input document (unless PLOP’s optimizing step removes redundant informa-
tion). In many cases no additional disk space will be required. However, PLOP/PLOP DS
require additional temporary disk space for its operation if linearization or digital sig-
nature are enabled.

Temporary files will be created in the current directory by default, but this can be
changed with the tempdirname option of PLOP_create_file(). The disk space for tempo-
rary data roughly equals the size of the input file. If linearization is requested in combi-
nation with in-core PDF generation (i.e., no output file name supplied), PLOP requires
temporary disk space with roughly two times the size of the input.

1.11 PLOP Processing Details 23

Large PDF Documents. Although most users won’t see any need for PDF documents in
the range of Gigabytes, some enterprise applications must create or process documents
containing a large number of, say, invoices or statements. While PLOP itself does not im-
pose any limits on the size of the generated documents, there are several restrictions
mandated by the PDF Reference and some PDF standards:

> 2 GB file size limit: PDF/A-1 and other standards limit the file size to 2 GB. If a docu-
ment gets larger than this limit, PLOP will throw an exception when creating PDF/A-
1, PDF/X-4 or PDF/X-5 output. Otherwise documents beyond 2 GB can be created.

> 10 GB file size limit: the cross-reference table in PDF documents is limited to 10 deci-
mal digits and therefore 1010-1 bytes, which equates to roughly 9.3 GB. PLOP cannot
create documents beyond this limit.

> Number of objects: while the object count in a document is not limited by PDF in
general, the PDF/A-1, PDF/X-4 and PDF/X-5 standards limit the number of indirect
objects in a document to 8.388.607. If a document requires objects beyond this limit,
PLOP will throw an exception when creating PDF/A-1, PDF/X-4 or PDF/X-5 output.
Otherwise documents with more objects can be created. The number of objects in
PDF depends on the complexity of the page contents, number of interactive ele-
ments, etc. Since typical high-volume documents with simple contents require ca.
4-10 objects per page on average, documents with ca. 1-2 million pages can be created
without exceeding the object limit.

2.1 PLOP and PLOP DS Command-line Options 25

2 PLOP and PLOP DS Command-line
Tool

2.1 PLOP and PLOP DS Command-line Options
The combined command-line tool for PLOP and PLOP DS allows you to encrypt, decrypt,
optimize, repair, and sign one or more PDF documents without the need for any pro-
gramming. In addition, it can be used to query the status of PDF documents. The PLOP
program can be controlled via a number of command-line options. It is called as follows
for one or more input PDF files (items in square brackets are optional):

plop --help
plop [<general options>] --info [--outfile <filename>] <filename> ...
plop [<general options>] <transform options> --outfile <filename> <filename>
plop [<general options>] <transform options> --targetdir <pathname> <filename>...

The PLOP command-line tool is built on top of the PLOP library. By default, PLOP will re-
pair input documents which are found to be damaged, and will optimize the output for
smallest file size. You can supply library options using the --inputopt, --outputopt, and
--plopopt options according to the option tables in Chapter 7, »PLOP and PLOP DS Library
API Reference«, page 71. Table 2.1 lists all PLOP command-line options.

Table 2.1 PLOP command-line options

option parameters function

-- End the list of options; this is useful in case file names start with a - character.

@filename1 Specify a response file with options; for a syntax description see »Response
files«, page 28. Response files will only be recognized before the -- option
and before the first filename, and can not be used to replace the parameter
for another option.

--compatibility, -c <version> Set the PDF version of the generated PDF output document:
1.4 PDF 1.4 requires Acrobat 5 or above.
1.5 PDF 1.5 requires Acrobat 6 or above.
1.6 PDF 1.6 requires Acrobat 7 or above.
1.7 PDF 1.7 is specified in ISO 32000-1 and requires Acrobat 8 or

above.
1.7ext3 PDF 1.7 extension level 3 requires Acrobat 9 or above.
1.7ext8 PDF 1.7 extension level 8 requires Acrobat X.
2.0 PDF 2.0 is specified in ISO 32000-2.
This will be used to select the appropriate encryption algorithm if the output
is encrypted. The strongest possible encryption algorithm supported by the
selected PDF version will be used (use 1.6 to force AES encryption). The select-
ed PDF version may be increased automatically by other options according to
the rules detailed in Table 7.4, page 79.
Default: the PDF version of the input document, or a higher version as man-
dated by the processing rules.

--fast, -f Disable optimization step for faster processing.

26 Chapter 2: PLOP and PLOP DS Command-line Tool

--help, -?
(or no option)

Display help with a summary of available options.

--info, -i Display status information for the input file; no PDF output will be produced.

--inmemory Load the input file(s) into memory and process it from there. This can result
in a significant performance gain on some systems.

--inputopt <option list> Additional option list for PLOP_open_document() (see Table 7.3, page 76)

--master2,3, -m <password> Output master password; missing option means no password.

--noreplace, -n If the output file already exists, it will not be overwritten and an exception
will be thrown. Default: existing output files will be overwritten.

--outfile, -o <filename> (Requires exactly one input document except with --info; one of --outfile
and --targetdir must be supplied) Output file name; input and output file
name must be different.

--outputopt <option list> Additional option list for PLOP_create_file() (see Table 7.4, page 79)

--password2, -p <password> User or master password for input document(s). This password will be used
for all input documents. Input documents which require different passwords
must be processed in separate program calls.

--permissions2,3 <permissions> (Requires --master) The access permission list for the output document. It
contains any number of the noprint, nomodify, nocopy, noannots,
noassemble, noforms, noaccessible, nohiresprint, and plainmetadata
keywords (see Table 4.3, page 52). In addition, the following keyword can be
used (default: no permission restrictions):
keep Keep the permission settings of the input document. This setting

can be amended by additional keywords in order to modify the
permission settings of the input PDF, e.g. keep noprint.

--plopopt <option list> Additional option list for PLOP_set_option() (see Table 7.7, page 87). This can
be used to pass the license or licensefile options.

--recsize, -R <blocksize> (MVS only) The record size of the output file. Default: 0 (unblocked)

--tempfilename, -T <filename> (MVS only) Full file name for a temporary file for PLOP’s internal processing. If
empty, PLOP will generate a unique temporary file name. The user is respon-
sible for deleting the temporary file when PLOP finished. Default: empty

--tempdirname <dirname> Name of a directory where temporary files needed for PLOP’s internal pro-
cessing will be created. If empty, PLOP will generate temporary files in the
current directory. Default: empty

--searchpath, -s1 <path> Name of a directory where files will be searched. The path must not start
with a minus character »-« (prepend ./ if required). Default: current directo-
ry

--signopt, -S <option list> (Only available in PLOP DS) Option list for the sign option of
PLOP_create_file() for digitally signing documents (see Table 7.6, page 82).

--targetdir, -t <dirname> (One of --outfile and --targetdir must be supplied) Output directory
name; the directory must already exist.

--user, -u2,3 <password> Output user password; missing option means no password.

Table 2.1 PLOP command-line options

option parameters function

2.1 PLOP and PLOP DS Command-line Options 27

Constructing PLOP command lines. The following rules must be obeyed for construct-
ing PLOP command lines:

> Input files will be searched in all directories specified as searchpath.
> Short forms are available for some options, and can be mixed with long options.
> Long options can be abbreviated provided the abbreviation is unique (e.g. --plop in-

stead of --plopopt).
> If an option is supplied more than once only the last instance will be taken into ac-

count. However, this rule does not hold for options which are marked as repeatable
in Table 2.1.

> Depending on the encryption status of the input file, a user or master password may
be required for processing. This must be supplied with the --password option. PLOP
will check whether this password is sufficient for the requested action (see Table 4.2),
and will throw an exception if it isn’t.

PLOP checks the full command line before processing any file. If an option syntax error
is encountered in the options anywhere on the command line, no files will be processed
at all. If a particular file cannot be processed (e.g. because the required password is miss-
ing), an error message will be created, and PLOP will continue processing the remaining
files.

File names. File names which contain blank characters require some special handling
when used with command-line tools like PLOP. In order to process a file name with
blank characters you should enclose the complete file name with double quote " charac-
ters. Wildcards can be used according to standard practice. For example, *.pdf denotes all
files in a given directory which have a .pdf file name suffix. Note that on some systems
case is significant, while on others it isn’t (i.e., *.pdf may be different from *.PDF). Also
note that on Windows systems wildcards do not work for file names containing blank
characters.

On Windows all file name options accept Unicode strings, e.g. as a result of dragging
files from the Explorer to a command prompt window.

--verbose, -v 0, 1, 2, 3 Verbosity level (default: 1):
0 no output
1 only errors
2 errors and file names
3 detailed reporting

--webopt, -w Linearize the PDF output for Web delivery. Linearization can be combined
with other processing options, or used in a stand-alone manner. Default: no
linearization

1. This option can be supplied more than once.
2. This option will be used for all input files.
3. This option triggers output encryption; if any of these is supplied PLOP will encrypt the output.

Table 2.1 PLOP command-line options

option parameters function

28 Chapter 2: PLOP and PLOP DS Command-line Tool

Response files. In addition to options supplied directly on the command-line, options
can also be supplied in a response file. The contents of a response file will be inserted in
the command-line at the location where the @filename option was found.

A response file is a simple text file with options and parameters. It must adhere to
the following syntax rules:

> Option values must be separated with whitespace, i.e. space, linefeed, return, or tab.
> Values which contain whitespace must be enclosed with double quotation marks: "
> Double quotation marks at the beginning and end of a value will be omitted.
> A double quotation mark must be masked with a backslash to use it literally: \"
> A backslash character must be masked with another backslash to use it literally: \\

Response files can be nested, i.e. @filename can be used in another response file.
Response files may contain Unicode strings for file name and password arguments.

Response files can be encoded in UTF-8, EBCDIC-UTF-8, or UTF-16 format and must start
with the corresponding BOM. If no BOM is found, the contents of the response file will
be interpreted in EBCDIC on zSeries, and in ISO 8859-1 (Latin-1) on all other systems in-
cluding i5/iSeries.

Exit codes. The PLOP command-line tool returns with an exit code which can be used
to check whether or not the requested operations could be successfully carried out:

> Exit code 0: all command-line options and input files could be successfully and fully
processed.

> Exit code 1: one or more file processing errors occurred, but processing continued.
> Exit code 2: some error was found in the command-line options. Processing stopped

at the particular bad option, and no documents have been processed.

2.2 PLOP and PLOP DS Command-line Examples 29

2.2 PLOP and PLOP DS Command-line Examples
The following examples demonstrate some useful combinations of PLOP command-
line options. All samples are shown in two variations; the first uses the long format of
all options, while the second uses the equivalent short option format. More examples
are available in the following sections:

> Chapter 1, »PLOP and PLOP DS Features«, page 9 (various sections)
> Section 4.3, »Securing PDF Documents on the Command Line«, page 54
> Section 5.3, »Signing PDF Documents with PLOP DS«, page 61.

Display security and other information about all PDF files in the current directory:

plop --info *.pdf
plop -i *.pdf

Linearize all PDF documents in a directory (assuming these do not require any pass-
word), and copy the resulting files to the target directory output. Since optimization is
enabled by default (unless digital signatures are created at the same time), linearizing a
file will at the same time optimize its size. Verbosity level 2 prints the names of all input
and output files as they are processed:

plop --verbose 2 --webopt --targetdir output *.pdf
plop -v 2 -w -t output *.pdf

Encrypt all files in the current directory with the same user password demo and master
password DEMO, and place the resulting files in the target directory output:

plop --targetdir output --user demo --master DEMO *.pdf
plop -t output -u demo -m DEMO *.pdf

Create an invisible signature for a PDF document, using a digital ID from the file
demo2048.p12. The password for the digital ID is contained in the file pw.txt:

plop --signopt "digitalid={filename=demo2048.p12} passwordfile=pw.txt"
--outfile signed.pdf input.pdf

plop -S "digitalid={filename=demo2048.p12} passwordfile=pw.txt" -o signed.pdf input.pdf

30 Chapter 2: PLOP and PLOP DS Command-line Tool

3.1 C Binding 31

3 PLOP and PLOP DS Library
Language Bindings
In this chapter we will discuss language-specific aspects of the PLOP/PLOP DS library.

3.1 C Binding
PLOP is written in C with some C++ modules. In order to use the C binding you can use a
static or shared library (DLL/SO), and you need the central PLOP include file ploplib.h for
inclusion in your client source modules. Alternatively, ploplibdl.h can be used for dy-
namically loading the PLOP DLL at runtime (see next section for details).

Note Applications which use the PLOP binding for C must be linked with a C++ compiler since the li-
brary includes some parts which are implemented in C++. Using a C linker may result in unre-
solved externals unless the application is explicitly linked against the required C++ support li-
braries.

Using PLOP as a DLL loaded at runtime. While most clients will use PLOP as a statically
bound library or a dynamic library which is bound at link time, you can also load the
DLL at runtime and dynamically fetch pointers to all API functions. This is especially
useful to load the DLL only on demand. PLOP supports a special mechanism to facilitate
this dynamic usage. It works according to the following rules:

> Include ploplibdl.h instead of ploplib.h.
> Use PLOP_new_dl() and PLOP_delete_dl() instead of PLOP_new() and PLOP_delete().
> Use PLOP_TRY_DL() and PLOP_CATCH_DL() instead of PLOP_TRY() and PLOP_CATCH().
> Use function pointers for all other PLOP calls.
> Compile the auxiliary module ploplibdl.c and link your application against the result-

ing object file.

The dynamic loading mechanism is demonstrated in the encryptdl.c sample.

Note Loading the DLL at runtime is supported on selected platforms only.

Exception handling. The PLOP API provides a mechanism for acting upon exceptions
thrown by the library in order to compensate for the lack of native exception handling
in the C language. Using the PLOP_TRY() and PLOP_CATCH() macros client code can be set
up such that a dedicated piece of code is invoked for error handling and cleanup when
an exception occurs. These macros set up two code sections: the try clause with code
which may throw an exception, and the catch clause with code which acts upon an ex-
ception. If any of the API functions called in the try block throws an exception, program
execution will continue at the first statement of the catch block immediately. The fol-
lowing rules must be obeyed in PLOP client code:

> PLOP_TRY() and PLOP_CATCH() must always be paired.
> PLOP_new() will never throw an exception; since a try block can only be started with

a valid PLOP object handle, PLOP_new() must be called outside of any try block.
> PLOP_delete() will never throw an exception, and therefore can safely be called out-

side of any try block. It can also be called in a catch clause.

32 Chapter 3: PLOP and PLOP DS Library Language Bindings

> Special care must be taken about variables that are used in both the try and catch
blocks. Since the compiler doesn’t know about the transfer of control from one block
to the other, it might produce inappropriate code (e.g., register variable optimiza-
tions) in this situation.
Fortunately, there is a simple rule to avoid this kind of problem: Variables used in
both the try and catch blocks must be declared volatile. Using the volatile keyword
signals to the compiler that it must not apply dangerous optimizations to the vari-
able.

> If a try block is left (e.g., with a return statement, thus bypassing the invocation of
the corresponding PLOP_CATCH()), the PLOP_EXIT_TRY() macro must be called before
the return statement to inform the exception machinery.

> As in all PLOP language bindings document processing must stop when an exception
was thrown.

The following code fragment demonstrates these rules with the typical idiom for deal-
ing with PLOP exceptions in client code (full samples can be found in the PLOP package):

if ((plop = PLOP_new()) == (PLOP *) 0)
{

printf("out of memory\n");
return(2);

}
PLOP_TRY(plop)
{

/* statements that directly or indirectly call API functions */
}
PLOP_CATCH(plop)
{

printf("Error %d in %s() on page %d: %s\n",
PLOP_get_errnum(plop), PLOP_get_apiname(plop),

pageno, PLOP_get_errmsg(plop));
}
PLOP_delete(plop);

Unicode handling for name strings. The C language does not natively support Uni-
code. Some string parameters for API functions may be declared as name strings. These
are handled depending on the length parameter and the existence of a BOM at the be-
ginning of the string. In C, if the length parameter is different from 0 the string will be
interpreted as UTF-16. If the length parameter is 0 the string will be interpreted as UTF-8
if it starts with a UTF-8 BOM, or as EBCDIC UTF-8 if it starts with an EBCDIC UTF-8 BOM,
or as host encoding if no BOM is found (or ebcdic on all EBCDIC-based platforms).

Unicode handling for option lists. Strings within option lists require special attention
since they cannot be expressed as Unicode strings in UTF-16 format, but only as byte ar-
rays. For this reason UTF-8 is used for Unicode options. By looking for a BOM at the be-
ginning of an option PLOP decides how to interpret it. The BOM will be used to deter-
mine the format of the string. More precisely, interpreting a string option works as
follows:

> If the option starts with a UTF-8 BOM (\xEF\xBB\xBF) it will interpreted as UTF-8.
> If the option starts with an EBCDIC UTF-8 BOM (\x57\x8B\xAB) it will be interpreted as

EBCDIC UTF-8.

3.1 C Binding 33

> If no BOM is found, the string will be treated as winansi (or ebcdic on EBCDIC-based
platforms).

Note The PLOP_convert_to_unicode() utility function can be used to create UTF-8 strings from UTF-
16 strings, which is useful for creating option lists with Unicode values.

34 Chapter 3: PLOP and PLOP DS Library Language Bindings

3.2 C++ Binding
Note For .NET applications written in C++ we recommend to access the PLOP .NET DLL directly in-

stead of via the C++ binding (except for cross-platform applications which should use the C++
binding). The PLOP distribution contains C++ sample code for use with .NET CLI which demon-
strates this combination.

In addition to the ploplib.h C header file, an object-oriented wrapper for C++ is supplied
for PLOP clients. It requires the plop.hpp header file, which in turn includes ploplib.h.
Since plop.hpp contains a template-based implementation no corresponding plop.cpp
module is required. Using the C++ object wrapper replaces the functional approach with
API functions and PLOP_ prefixes in all PLOP function names with a more object-orient-
ed approach.

Using PLOP as a DLL loaded at runtime. Similar to the C language binding the C++
binding allows you to dynamically attach PLOP to your application at runtime (see »Us-
ing PLOP as a DLL loaded at runtime«, page 31). Dynamic loading can be enabled as fol-
lows when compiling the application module which includes plop.hpp:

#define PLOPCPP_DL 1

In addition you must compile the auxiliary module ploplibdl.c and link your application
against the resulting object file. Since the details of dynamic loading are hidden in the
PLOP object it does not affect the C++ API: all method calls look the same regardless of
whether or not dynamic loading is enabled.

Note Loading the DLL at runtime is supported on selected platforms only.

String handling in C++. PLOP 4.1 introduces a new Unicode-capable C++ binding. The
new template-based approach supports the following usage patterns with respect to
string handling:

> Strings of the C++ standard library type std::wstring are used as basic string type.
They can hold Unicode characters encoded as UTF-16 or UTF-32. This is the default be-
havior in PLOP 4.1 and the recommended approach for new applications unless cus-
tom data types (see next item) offer a significant advantage over wstrings.

> Custom (user-defined) data types for string handling can be used as long as the cus-
tom data type is an instantiation of the basic_string class template and can be con-
verted to and from Unicode via user-supplied converter methods.

> Plain C++ strings can be used for compatibility with existing C++ applications which
have been developed against PLOP 4.0 or earlier versions. This compatibility variant
is only meant for existing applications (see below for notes on source code compati-
bility).

The new interface assumes that all strings passed to and received from PLOP methods
are native wstrings. Depending on the size of the wchar_t data type, wstrings are assumed
to contain Unicode strings encoded as UTF-16 (2-byte characters) or UTF-32 (4-byte char-
acters). Literal strings in the source code must be prefixed with L to designate wide
strings. Unicode characters in literals can be created with the \u and \U syntax. Al-
though this syntax is part of standard ISO C++, some compilers don’t support it. In this
case literal Unicode characters must be created with hex characters.

3.2 C++ Binding 35

Adjusting applications to the new C++ binding. Existing C++ applications which have
been developed against PLOP 4.0 or earlier versions can be adjusted to PLOP 4.1 as fol-
lows:

> Since the PLOP C++ class now lives in the pdflib namespace the class name must be
qualified. In order to avoid the pdflib::PLOP construct client applications should add
the following before using PLOP methods:

using namespace pdflib;

> Switch the application’s string handling to wstrings. This includes data from external
sources. However, string literals in the source code (including option lists) must also
be adjusted by prepending the L prefix, e.g.

const wstring docoptlist = L"password=foo";

> Suitable wstring-capable methods (wcerr etc.) must be used to process PLOP error
messages and exception strings (get_errmsg() method in the PLOP and
PLOP::Exception classes).

> The plop.cpp module is no longer required for the PLOP C++ binding. Although the
PLOP distribution contains a dummy implementation of this module, it should be
removed from the build process for PLOP applications.

Full source code compatibility with legacy applications. The new C++ binding has
been designed with application-level source code compatibility mind, but client appli-
cations must be recompiled. The following aids are available to achieve full source code
compatibility for legacy applications:

> Disable the wstring-based interface as follows before including plop.hpp:

#define PLOPCPP_PLOP_WSTRING 0

> Disable the pdflib namespace as follows before including plop.hpp:

#define PLOPCPP_USE_PDFLIB_NAMESPACE 0

Error handling in C++. PLOP API functions will throw a C++ exception in case of an er-
ror. These exceptions must be caught in the client code by using C++ try/catch clauses. In
order to provide extended error information the PLOP class provides a public
PLOP::Exception class which exposes methods for retrieving the detailed error message,
the exception number, and the name of the PLOP API function which threw the excep-
tion.

Native C++ exceptions thrown by PLOP routines will behave as expected. The follow-
ing code fragment will catch exceptions thrown by PLOP:

try {
...some PLOP instructions...

} catch (PLOP::Exception &ex) {
wcerr << L"Error " << ex.get_errnum()
<< L" in " << ex.get_apiname()
<< L"(): " << ex.get_errmsg() << endl;

}

36 Chapter 3: PLOP and PLOP DS Library Language Bindings

3.3 COM Binding
Installing the PLOP Edition for COM. Install PLOP/PLOP DS with the supplied Windows
Installer. The installer will make appropriate registry entries, and register the PLOP
component with Windows so that it can be used from any COM-compatible program.

Exception Handling in COM. The PLOP/PLOP DS component implements standard
COM exception behavior, and will throw a COM exception with an explanatory mes-
sage. PLOP users can use standard programming means to catch the exception and react
on it.

Using the PLOP COM Edition with .NET. As an alternative to PLOP.NET (see Section 3.5,
».NET Binding«, page 39) the COM edition of PLOP can also be used with .NET. First, you
must create a .NET assembly from the PLOP COM edition using the tlbimp.exe utility:

tlbimp plop_com.dll /namespace:plop_com /out:Interop.plop_com.dll

You can use this assembly within your .NET application. If you add a reference to
plop_com.dll from within Visual Studio .NET an assembly will be created automatically.

The following code fragment shows how to use the PLOP COM edition with VB.NET:

Imports plop_com
 ...
Dim p As plop_com.IPDF
 ...
p = New PLOP()
 ...
buf = p.get_buffer()

The following code fragment shows how to use the PLOP COM edition with C#:

using plop_com;
 ...
static plop_com.IPDF p;
 ...
p = New PLOP();
 ...
buf = (byte[])p.get_buffer();

The rest of your code works as with the .NET version of PLOP. Please note that in C# you
have to cast the result of get_buffer() since there is no automatic conversion from the
VARIANT data type returned by the COM object here.

3.4 Java Binding 37

3.4 Java Binding
Installing the PLOP Edition for Java. PLOP/PLOP DS has been implemented as a native
C library which attaches to Java via the JNI (Java Native Interface). Obviously, for devel-
oping Java applications you will need the JDK which includes support for the JNI. For
the PLOP binding to work, the Java VM must have access to the PLOP Java wrapper li-
brary and the PLOP Java package.

The PLOP Java package. In order to maintain a consistent look-and-feel for the Java
developer, PLOP is organized as a Java package with the following package name:

com.pdflib.plop

This package is available in the plop.jar file and contains a single class called plop. Last-
minute comments on using PLOP in various Java development environments may be
found in the readme.txt file.

In order to supply this package to your application, you must add plop.jar to your
CLASSPATH environment variable, add the option -classpath plop.jar in your calls to the
Java compiler and runtime, or perform equivalent steps in your Java IDE. You can con-
figure the Java VM to search for native libraries in a given directory by setting the
java.library.path property to the name of the directory, e.g.

java -Djava.library.path=. encrypt

You can check the value of this property as follows:

System.out.println(System.getProperty("java.library.path"));

In addition, the following platform-dependent steps must be performed:
> Unix: The library libplop_java.so must be placed in one of the default locations for

shared libraries, or in an appropriately configured directory.
> Mac OS X: The library libplop_java.jnilib must be placed in one of the default locations

for shared libraries, or in an appropriately configured directory.
> Windows: The library plop_java.dll must be placed in the Windows system directory,

or a directory which is listed in the PATH environment variable.

PLOP servlets and Java application servers. PLOP/PLOP DS is perfectly suited for serv-
er-side Java applications, especially servlets. When using PLOP with a specific servlet en-
gine the following configuration issues must be observed:

> The directory where the servlet engine looks for native libraries varies among ven-
dors. Common candidate locations are system directories, directories specific to the
underlying Java VM, and local directories of the servlet engine. Please check the doc-
umentation supplied by the vendor of your servlet engine.

> Servlets are often loaded by a special class loader which may be restricted, or use a
dedicated classpath. For some servlet engines it is required to define a special engine
classpath to make sure that the PLOP package will be found.

Examples for using PLOP within servlets are contained in the PLOP distribution.

38 Chapter 3: PLOP and PLOP DS Library Language Bindings

Exception Handling in Java. All PLOP/PLOP DS methods will throw an exception of
type PLOPException in case of an error. PLOP users can use standard Java language fea-
tures to catch the exception and react on it:

try {
plop plop;
/* ... PLOP statements ... */

} catch (PLOPException e) {
System.err.println("encrypt: PLOP Exception occurred:");
System.err.println(e.get_apiname() +": " + e.getMessage());

} finally {
/* delete the PLOP object */
if (plop != null) plop.delete();

}

3.5 .NET Binding 39

3.5 .NET Binding
Note Detailed information about the various flavors and options for using PLOP with the .NET

Framework can be found in the PDFlib-in-.NET-HowTo.pdf document which is contained in the
distribution packages and also available on the PDFlib Web site.

The .NET edition of PLOP supports all relevant .NET concepts. In technical terms, the
PLOP.NET edition is a C++ class (with a managed wrapper for the unmanaged PLOP core
library) which runs under control of the .NET framework. It is packaged as a static as-
sembly with a strong name. The PLOP assembly (PLOP_dotnet.dll) contains the actual li-
brary plus meta information.

Installing the PLOP Edition for .NET. Install PLOP with the supplied Windows MSI In-
staller. The PLOP.NET MSI installer will install the PLOP assembly plus auxiliary data
files, documentation and samples on the machine interactively. The installer will also
register PLOP so that it can easily be referenced on the .NET tab in the Add Reference dia-
log box of Visual Studio .NET.

Error Handling in .NET. PLOP.NET supports .NET exceptions, and will throw an excep-
tion with a detailed error message when a runtime problem occurs. The client is respon-
sible for catching such an exception and properly reacting on it. Otherwise the .NET
framework will catch the exception and usually terminate the application.

In order to convey exception-related information PLOP defines its own exception
class PLOP_dotnet.PLOPException with the members get_errnum, get_errmsg, and
get_apiname.

Using PLOP with C++ and CLI. .NET applications written in C++ (based on the Common
Language Infrastructure CLI) can directly access the PLOP.NET DLL without using the PLOP
C++ binding. The source code must reference PLOP as follows:

using namespace PLOP_dotnet;

40 Chapter 3: PLOP and PLOP DS Library Language Bindings

3.6 Perl Binding
The PLOP wrapper for Perl consists of a C wrapper and two Perl package modules, one
for providing a Perl equivalent for each PLOP API function and another one for the PLOP
object. The C module is used to build a shared library which the Perl interpreter loads at
runtime, with some help from the package file. Perl scripts refer to the shared library
module via a use statement.

Installing the PLOP Edition for Perl. The Perl extension mechanism loads shared li-
braries at runtime through the DynaLoader module. The Perl executable must have
been compiled with support for shared libraries (this is true for the majority of Perl con-
figurations).

For the PLOP binding to work, the Perl interpreter must access the PLOP Perl wrapper
and the modules plop_pl.pm and PDFlib/PLOP.pm. In addition to the platform-specific
methods described below you can add a directory to Perl’s @INC module search path us-
ing the -I command line option:

perl -I/path/to/plop encrypt.pl

Unix. Perl will search plop_pl.so (on Mac OS X: plop_pl.bundle), plop_pl.pm and PDFlib/
PLOP.pm in the current directory, or the directory printed by the following Perl com-
mand:

perl -e 'use Config; print $Config{sitearchexp};'

Perl will also search the subdirectory auto/plop_pl. Typical output of the above com-
mand looks like

/usr/lib/perl5/site_perl/5.10/i686-linux

Windows. PLOP supports the ActiveState port of Perl 5 to Windows, also known as
ActivePerl. The DLL plop_pl.dll and the modules plop_pl.pm and PDFlib/PLOP.pm will be
searched in the current directory, or the directory printed by the following Perl com-
mand:

perl -e "use Config; print $Config{sitearchexp};"

Typical output of the above command looks like

C:\Program Files\Perl5.10\site\lib

Exception Handling in Perl. When a PLOP exception occurs, a Perl exception is thrown.
It can be caught and acted upon using an eval sequence:

eval {
...some PLOP instructions...

};
die "Exception caught: $@" if $@;

3.7 PHP Binding 41

3.7 PHP Binding
Installing the PLOP Edition for PHP. PLOP/PLOP DS is implemented as a C library which
can dynamically be attached to PHP. PLOP supports several versions of PHP. Depending
on the version of PHP you use you must choose the appropriate PLOP library from the
unpacked PLOP archive.

Detailed information about the various flavors and options for using PLOP with PHP,
including the question of whether or not to use a loadable PLOP module for PHP, can be
found in the PDFlib-in-PHP-HowTo document which can be found on the PDFlib Web site.
Although it is mainly targeted at using PDFlib with PHP the discussion applies equally
to using PLOP with PHP.

You must configure PHP so that it knows about the external PLOP library. You have
two choices:

> Add one of the following lines in php.ini:

extension=plop_php.so ; for Unix and Mac OS X
extension=plop_php.dll ; for Windows

PHP will search the library in the directory specified in the extension_dir variable in
php.ini on Unix, and additionally in the standard system directories on Windows.
You can test which version of the PHP PLOP binding you have installed with the fol-
lowing one-line PHP script:

<?phpinfo()?>

This will display a long info page about your current PHP configuration. On this page
check the section titled plop. If this section contains the phrase

PDFlib PLOP (PDF Linearization, Optimization, Protection) => enabled

(plus the PLOP version number) you successfully installed PLOP for PHP.
> Load PLOP at runtime with one of the following lines at the start of your script:

dl("plop_php.so"); # for Unix and Mac OS X
dl("plop_php.dll"); # for Windows

File name handling in PHP. Unqualified file names (without any path component) and
relative file names for PDF, image, font and other disk files are handled differently in
Unix and Windows versions of PHP:

> PHP on Unix systems will find files without any path component in the directory
where the script is located.

> PHP on Windows will find files without any path component only in the directory
where the PHP DLL is located.

Exception handling in PHP 5. Since PHP 5 supports structured exception handling,
PLOP exceptions will be propagated as PHP exceptions. You can use the standard try/
catch technique to deal with PLOP exceptions:

try {

...some PLOP instructions...

} catch (PLOPException $e) {
print "PLOP exception occurred:\n";

42 Chapter 3: PLOP and PLOP DS Library Language Bindings

print "[" . $e->get_errnum() . "] " . $e->get_apiname() . ": "
$e->get_errmsg() . "\n";

}
catch (Exception $e) {

print $e;
}

3.8 Python Binding 43

3.8 Python Binding
Installing the PLOP edition for Python. The Python extension mechanism works by
loading shared libraries at runtime. For the PLOP binding to work, the Python interpret-
er must have access to the PLOP Python wrapper which will be searched in the directo-
ries listed in the PYTHONPATH environment variable. The name of Python wrapper de-
pends on the platform:

> Unix and Mac OS X: plop_py.so
> Windows: plop_py.pyd

Error Handling in Python. The Python binding installs a special error handler which
translates PLOP errors to native Python exceptions. The Python exceptions can be dealt
with by the usual try/catch technique:

try:
...some PLOP instructions...

except PLOPException:
print 'PLOP Exception caught!'

44 Chapter 3: PLOP and PLOP DS Library Language Bindings

3.9 RPG Binding
PLOP/PLOP DS provides a /copy module that defines all prototypes and some useful
constants needed to compile ILE-RPG programs with embedded PLOP functions.

Unicode string handling. Since all PLOP functions use Unicode strings with variable
length as parameters, you have to use the %UCS2 builtin function to convert a single-
byte string to a Unicode string. All strings returned by PLOP functions are Unicode
strings with variable length. Use the %CHAR builtin function to convert these Unicode
strings to single-byte strings.

Note The %CHAR and %UCS2 functions use the current job’s CCSID to convert strings from and to
Unicode. The examples are based on CCSID 37 (US EBCDIC). Some special characters in option
lists (e.g. { [] }) may not be translated correctly if you run the examples under other codepages.

Since all strings are passed as variable length strings you must not pass the length pa-
rameters in various functions which expect explicit string lengths (the length of a vari-
able length string is stored in the first two bytes of the string).

Compiling and binding RPG programs for PLOP. Using PLOP functions from RPG re-
quires the compiled PLOPLIB service program. To include the PLOP definitions at com-
pile time you have to specify the name in the D specs of your ILE-RPG program:

d/copy QRPGLESRC,PLOPLIB

If the PLOP source file library is not on top of your library list you have to specify the li-
brary as well:

d/copy plopsrclib/QRPGLESRC,PLOPLIB

Before you start compiling your ILE-RPG program you have to create a binding directory
that includes the PLOPLIB service program shipped with PLOP. The following example
assumes that you want to create a binding directory called PLOPLIB in the library
PLOPLIB:

CRTBNDDIR BNDDIR(PLOPLIB/PLOPLIB) TEXT('PLOPlib Binding Directory')

After creating the binding directory you need to add the PLOPLIB service program to
your binding directory. The following example assumes that you want to add the ser-
vice program PLOPLIB in the library PLOPLIB to the binding directory created earlier.

ADDBNDDIRE BNDDIR(PLOPLIB/PLOPLIB) OBJ((PLOPLIB/PLOPLIB *SRVPGM))

Now you can compile your program using the CRTBNDRPG command (or option 14 in
PDM):

CRTBNDRPG PGM(PLOPLIB/ENCRYPT) SRCFILE(PLOPLIB/QRPGLESRC) SRCMBR(*PGM) DFTACTGRP(*NO)
BNDDIR(PLOPLIB/PLOPLIB)

Error Handling in RPG. PLOP clients written in ILE-RPG can use the monitor/on-error/
endmon error handling mechanism that ILE-RPG provides. Another way to monitor for
exceptions is to use the *PSSR global error handling subroutine in ILE-RPG. If an excep-

3.9 RPG Binding 45

tion occurs, the job log shows the error number, the function that failed and the reason
for the exception. PLOP sends an escape message to the calling program.
c eval p=PLOP_new
*
c monitor
*
c eval doc=PLOP_open_document(p:%ucs2(’/tmp/my.pdf’):inputoptlist)
:
:
* Error Handling
c on-error
* Do something with this error
* don’t forget to free the PLOP object
c callp PLOP_delete(p)
c endmon

4.1 PDF Security Features 47

4 PDF Security
4.1 PDF Security Features

PDF documents can be protected with password security which offers the following pro-
tection features:

> The user password (also referred to as open password) is required to open the file for
viewing.

> The master password (also referred to as owner or permissions password) is required
to change any security settings, i.e. permissions, user or master password. Files with
user and master passwords can be opened for viewing by supplying either password.

> Permission settings restrict certain actions for the PDF document, such as printing
or extracting text.

> An attachment password can be specified to encrypt only file attachments, but not
the actual contents of the document itself.

If a PDF document uses any of these protection features it will be encrypted. In order to
display or modify a document’s security settings with Acrobat, click File, Properties...,
Security, Show Details... or Change Settings..., respectively. Figure 4.1 shows the security
settings dialog in Acrobat.

Fig. 4.1
Viewing (left) and setting (below)
standard security settings in Acrobat

48 Chapter 4: PDF Security

Encryption algorithms and key length. PDF encryption makes use of the following en-
cryption algorithms:

> RC4, a symmetric stream cipher (i.e. the same algorithm can be used to encrypt and
decrypt). RC4 is a proprietary algorithm.

> AES (Advanced Encryption Standard) specified in the standard FIPS-197. AES is a mod-
ern block cipher which is used in a variety of applications.

Since the actual encryption keys are unwieldy binary sequences, they are derived from
more user-friendly passwords which consist of plain characters. In the course of PDF
and Acrobat development the PDF encryption methods have been enhanced to use
stronger algorithms, longer encryption keys, and more sophisticated passwords. Table
4.1 details encryption, key and password characteristics for all PDF versions.

PDF encryption doesn’t use the user or master password directly for encrypting the doc-
ument contents, but calculates an encryption key from the password and other param-
eters including the permission settings. The length of the encryption key used for actu-
ally encrypting the document is independent from the length of the password (see
Table 4.1).

Passwords. PDF encryption internally works with encryption keys of 40, 128, or 256 bit
depending on the PDF version. The binary encryption key is derived from a password
provided by the user. The password is subject to length and encoding constraints:

> Up to PDF 1.7 (ISO 32000-1) passwords were restricted to a maximum length of 32
characters and could contain only characters from the Latin-1 encoding.

> PDF 1.7ext3 introduced Unicode characters and bumped the maximum length to 127
bytes in the UTF-8 representation of the password. Since UTF-8 encodes characters
with a variable length of 1-4 bytes the allowed number of Unicode characters in the
password is less than 127 if it contains non-ASCII characters. For example, since Japa-
nese characters usually require 3 bytes in UTF-8 representation, up to 42 Japanese
characters can be used in passwords.

Table 4.1 Encryption algorithms, key lengths, and passwords in PDF versions

PDF and Acrobat version,
pCOS algorithm number encryption algorithm and key length

max. password length and
password encoding

PDF 1.1 - 1.3 (Acrobat 2-4),
algorithm 1

RC4 40-bit (weak, should not be used) 32 characters (Latin-1)

PDF 1.4 (Acrobat 5), algorithm 2 RC4 128-bit 32 characters (Latin-1)

PDF 1.5 (Acrobat 6), algorithm 3 same as PDF 1.4, but different application of
encryption method

32 characters (Latin-1)

PDF 1.6 (Acrobat 7) and
PDF 1.7 = ISO 32000-1 (Acrobat 8),
algorithm 4

AES-128 32 characters (Latin-1)

PDF 1.7ext3 (Acrobat 9), algorithm 9 AES-256 with weakness in password handling 127 UTF-8 bytes (Unicode)

PDF 1.7ext8 (Acrobat X) and
PDF 2.0 = ISO32000-2,
algorithm 11

AES-256 with improved password handling 127 UTF-8 bytes (Unicode)

4.1 PDF Security Features 49

In order to avoid ambiguities, Unicode passwords are normalized by a process called
SASLprep (specified in RFC 4013 based on Stringprep in RFC 3454). This process elimi-
nates non-text characters and normalizes certain character classes (e.g. non-ASCII space
characters are mapped to the ASCII space character U+0020). The password is normal-
ized to Unicode normalization form KC, and special bidirectional processing is applied
to avoid ambiguities which may otherwise arise if right-to-left and left-to-right charac-
ters are mixed in a password.

The strength of PDF encryption is not only determined by the length of the encryp-
tion key, but also by the length and quality of the password. It is widely known that
names, plain words, etc. should not be used as passwords since these can easily be
guessed or systematically tried using a so-called dictionary attack. Surveys have shown
that a significant number of passwords are chosen to be the spouse’s or pet’s name, the
user’s birthday, the children’s nickname etc., and can therefore easily be guessed.

Permission settings. PDF can encode various restrictions on document operations
which can be granted or denied individually (some settings depend on others, though):

> Printing: If printing is not allowed, the print button in Acrobat will be disabled. Acro-
bat supports a distinction between high-resolution and low-resolution printing.
Low-resolution printing generates a bitmapped image of the page which is suitable
only for personal use, but prevents high-quality reproduction and re-distilling. Note
that bitmap printing not only results in low output quality, but will also consider-
ably slow down the printing process.

> General Editing: If this is disabled, any document modification is prohibited. Content
extraction and printing are allowed.

> Content Copying and Extraction: If this is disabled, selecting document contents and
copying it to the clipboard for repurposing the contents is prohibited. The accessibil-
ity interface also is disabled. If you need to search such documents with Acrobat you
must select the Certified Plugins Only preference in Acrobat.

> Authoring Comments and Form Fields: If this is disabled, adding, modifying, or deleting
comments and form fields is prohibited. Form field filling is allowed.

> Form Field Fill-in or Signing: If this is enabled, users can sign and fill in forms, but not
create form fields.

> Content Accessibility Enabled: Allow accessibility software (such as a screenreader) to
use the document contents. This setting is declared as deprecated in PDF 2.0; content
extraction for accessibility purposes is based on the Content Copying and Extraction
setting.

> Document Assembly: If this is disabled, inserting, deleting or rotating pages, or creat-
ing bookmarks and thumbnails is prohibited.

Specifying access restrictions for a document, such as printing prohibited will disable the
respective function in Acrobat. However, this not necessarily holds true for third-party
PDF viewers or other software. It is up to the developer of PDF tools whether or not ac-
cess permissions will be honored. Indeed, several PDF tools are known to ignore permis-
sion settings altogether; commercially available PDF cracking tools can be used to dis-
able all access restrictions. This has nothing to do with cracking the encryption; there is
simply no way that a PDF file can make sure it won’t be printed while it still remains
viewable. This is described as follows in ISO 32000-1:

50 Chapter 4: PDF Security

»Once the document has been opened and decrypted successfully, a conforming reader
technically has access to the entire contents of the document. There is nothing inherent in PDF
encryption that enforces the document permissions specified in the encryption dictionary.«

Encrypted document components. By default, PDF encryption always covers all com-
ponents of a document. However, there are use cases where it is desirable to encrypt
only some components of the document, but not others:

> PDF 1.5 (Acrobat 6) introduced a feature called plaintext metadata. With this feature
encrypted documents can contain unencrypted document XMP metadata. This is for
the benefit of search engines which can retrieve document metadata even from en-
crypted documents.

> Since PDF 1.6 (Acrobat 7) file attachments can be encrypted even in otherwise unpro-
tected documents. This way an unprotected document can be used as a container for
confidential attachments.

Security recommendations. The following should be avoided because the resulting en-
cryption is weak and could be cracked:

> Passwords consisting of 1-6 characters should be avoided since they are susceptible
to attacks which try all possible passwords (brute-force attack against the password).

> Passwords should not resemble a plain text word since the password would be sus-
ceptible to attacks which try all plaintext words (dictionary attack). Passwords
should contain non-alphabetic characters. Don’t use your spouse’s or pet’s name,
birthday, or other items which are easy to determine.

> 40-bit RC4 according to PDF 1.3 (Acrobat 4) encryption should be avoided since it is
susceptible to attacks which try all possible keys (brute-force attack against the en-
cryption key).

> The modern AES algorithm is preferable over the older RC4 algorithm.
> AES-256 according to PDF 1.7ext3 (Acrobat 9) should be avoided because it contains a

weakness in the password checking algorithm which facilitates brute-force attacks
against the password. For this reason Acrobat X and PLOP 4.1 never use Acrobat 9 en-
cryption for protecting new documents (only for decrypting existing documents).

In summary, AES-256 according to PDF 1.7ext8/PDF 2.0 or AES-128 according to PDF 1.6/
1.7 should be used, depending on whether or not Acrobat X is available. Passwords
should be longer than 6 characters and should contain non-alphabetic characters.

Protecting PDFs on the Web. When PDFs are served over the Web users can always
produce a local copy of the document with their browser. There is no way for a PDF doc-
ument to prevent users from saving a local copy.

4.2 PDF Security Features in PLOP 51

4.2 PDF Security Features in PLOP
PLOP applies or removes Acrobat standard security features to or from PDF files. PLOP
can apply user and master passwords, and set access permissions to prevent printing
the document with Acrobat, extracting text, modifying the document, etc. In order to
decrypt a document the appropriate master password is required.

Encryption algorithm and key length. The encryption algorithm and key length used
to protect a document depends on the PDF version of the generated document, which in
turn depends on the PDF version of the input document and the compatibility option of
PLOP_create_file(). The encryption algorithm will be selected as follows:

> PDF versions 1.3 and older will be pushed to PDF 1.4 if any of the protection options
userpassword, masterpassword or permissions is applied. RC4 40-bit will never be used.

> PDF 1.4 and 1.5: the respective flavor of RC4 encryption with 128-bit keys will be used.
> PDF 1.6, PDF 1.7 and PDF 1.7ext3: AES-128 will be used. Note that AES-256 according to

PDF 1.7ext3 (Acrobat 9) will never be used due to its known weaknesses.
> PDF 1.7ext8 and PDF 2.0: AES-256 according to Acrobat X will be used.

Since it is widely known that 40-bit encryption keys are not secure PLOP always uses
128-bit keys, and never applies 40-bit keys for encryption. 40-bit-encrypted documents
are acceptable as input, however.

Required passwords for various PLOP operations. In order to strictly obey the author’s
intentions as reflected by a PDF document’s permission settings, not all operations on
encrypted documents may be allowed. PLOP acts according to the following rules:

> Querying the encryption status with the pCOS pseudo object encrypt/algorithm etc. is
always possible, regardless of any password.

> Querying document properties with the pCOS interface is governed by the pCOS
mode. For example, XMP document metadata, document info fields, bookmarks, and
annotation contents can be retrieved without the master password if the document
does not require a user password (or only the user password has been supplied). The
pCOS Path Reference discusses this in more detail.

> Changing or removing the user password, master password, or permission settings
requires the master password.

> Linearizing, optimizing, repairing, or signing an encrypted document (see Section
1.4, »Web-Optimized (Linearized) PDF«, page 13) requires the master password.

Table 4.2 summarizes the requirements for all operations.

Table 4.2 Required passwords for various operations on encrypted documents

known
passwords

query encryption status
(pCOS pseudo object
»encrypt«)

query document info,
XMP metadata, book-
marks, annotation con-
tents with pCOS

change passwords
or permissions

linearize, optimize,
repair, or sign

none yes only if no user password
is set

no no

user yes yes no no

master yes yes yes yes

52 Chapter 4: PDF Security

Setting passwords with PLOP. In the PLOP library API and the PLOP command-line op-
tions we refer to the original PDF document as the input document, and the encrypted
or decrypted result as the output document (although both may end up with the same
file name). If the input document is protected, PLOP requires either the user or master
password depending on the desired operation according to Table 4.2. If the input docu-
ment could successfully be opened (either because it was unprotected or because the
appropriate password has been supplied) any combination of user password, master
password, and permission settings can be applied to the output document. However,
PLOP interacts with the client-supplied passwords for the output document in the fol-
lowing ways:

> If a user password or permission settings, but no master password has been sup-
plied, a regular user would easily be able to change the security settings, thereby de-
feating any protection. For this reason PLOP considers this situation as an error.

> If the user and master password are the same, a distinction between user and owner
of the file would no longer be possible, again defeating effective protection. PLOP
considers this situation as an error.

> Unicode passwords are allowed for AES-256. All older encryption algorithms require
passwords which are restricted to the Latin-1 character set. An exception will be
thrown for older encryption algorithms if the supplied password contains characters
outside the Latin-1 character set.

> Passwords will be truncated to 127 UTF-8 bytes for AES-256, and to 32 characters for
older encryption algorithms.

Setting permissions with PLOP. PLOP can be used to query, set or remove any of the
permission settings detailed in Table 4.3. Unless specified otherwise, all actions will be
allowed by default. Specifying access restrictions will disable the respective feature in
Acrobat. Access restrictions can be applied without setting a user password, but a mas-
ter password is required. Table 4.3 lists the supported permission keywords.

Table 4.3 Access restriction keywords for the permissions option of PLOP_create_file()
keyword explanation

noprint Acrobat will prevent printing the file.

nomodify Acrobat will prevent users from adding form fields or making any other changes.

nocopy Acrobat will prevent copying and extracting text or graphics, and will disable accessibility.

noannots Acrobat will prevent adding or changing comments or form fields.

noforms1

1. Pushes the PDF output version number to PDF 1.4 (requires Acrobat 5 or above)

(Implies noannots) Acrobat will prevent form field filling, even if noannots hasn’t been specified.

noaccessible1 (Deprecated in PDF 2.0) Acrobat will prevent extracting text or graphics for accessibility purposes.

noassemble1 (Implies nomodify) Acrobat will prevent inserting, deleting, or rotating pages and creating book-
marks and thumbnails, even if nomodify hasn’t been specified.

nohiresprint1 Acrobat will prevent high-resolution printing. If noprint hasn’t been specified printing is restrict-
ed to the »print as image« feature which prints a low-resolution rendition of the page.

plainmetadata2

2. Pushes the PDF output version number to PDF 1.5 (requires Acrobat 6 or above)

Keep document metadata unencrypted even for encrypted documents.

4.2 PDF Security Features in PLOP 53

What you can’t do with PLOP. It is important to realize that there are certain opera-
tions on encrypted documents which are technically feasible, but which are neverthe-
less unsupported in PLOP because they would violate the document author’s inten-
tions:

> PLOP is not a cracker tool – it cannot be used to gain access to protected documents
without knowing the (appropriate user or master) password.

> PLOP does not allow you to change permission settings without having the master
password.

> PLOP does not allow you to change the user or master password without knowing
the master password.

> PLOP does not read any document information fields from encrypted documents
without having either the user or master password.

> PLOP supports PDF password security, but not certificate-based encryption, or any
third-party encryption or digital rights management systems for PDF (such as Adobe
Digital Editions or FileOpen).

> PLOP is not a Digital Rights Management (DRM) system: you can’t tie a document to
individual computers, users, or CPUs.

54 Chapter 4: PDF Security

4.3 Securing PDF Documents on the Command Line
You can encrypt documents by specifying the userpassword or masterpassword option
(or both) for PLOP_create_file(). Note that a user password always requires a master pass-
word, but not vice versa. Full sample code for securing PDF documents and removing
security with the PLOP library can be seen in the encrypt and decrypt programming sam-
ples, which are included in all PLOP packages. The equivalent options for the PLOP com-
mand-line tool are --user and --master.

Permission restrictions can be specified with the permissions option for
PLOP_create_file(); the equivalent option for the command-line tool is --permissions.

Note On Windows passwords on the command line may contain Unicode characters outside the
Latin-1 character set.

Encryption examples. The sample command-line calls below are shown both with
long and abbreviated command-line options.

Encrypt a file with user password demo and master password DEMO:

plop --user demo --master DEMO --outfile encrypted.pdf input.pdf
plop -u demo -m DEMO -o encrypted.pdf input.pdf

Encrypt all files in the current directory with the same user password demo and master
password DEMO, and place the resulting files in the target directory output:

plop --targetdir output --user demo --master DEMO *.pdf
plop -t output -u demo -m DEMO *.pdf

Passwords which contain space characters must be enclosed in braces (to follow option
list syntax) and with straight quote characters (to follow shell syntax) as in the follow-
ing example: encrypt a document with the master password two words:

plop --master "{two words}" --outfile encrypted.pdf input.pdf
plop -m "{two words}" -o encrypted.pdf input.pdf

Decryption examples. Decrypt a single file with the master password DEMO. All access
restrictions which may have been applied to the input document will be removed (since
the output is unencrypted):

plop --password DEMO --outfile decrypted.pdf encrypted.pdf
plop -p DEMO -o decrypted.pdf encrypted.pdf

Re-encrypt with stronger crypto. PLOP can be used to apply stronger encryption to
documents which are encrypted with short keys or weak passwords. You must supply
the old and the new password. Selecting PDF 1.6 output compatibility activates strong
AES encryption. The following example assumes that the input is encrypted with the
master password old, and the output will be AES-encrypted with the master password
DEMO. The new password can even be the same as the old password. Of course you
should only use really strong passwords (see »Security recommendations«, page 50),
not short ones as in this example:

plop --compatibility 1.6 --password old --master DEMO --outputfile strong.pdf weak.pdf
plop -c 1.6 -p old -m DEMO -o strong.pdf weak.pdf

4.3 Securing PDF Documents on the Command Line 55

Permission settings. Apply the master password DEMO and the permission settings
noprint, nocopy, and noannots to all files in a directory, and copy the resulting files to the
target directory output. AES encryption will be used (forced by PDF version 1.6), regard-
less of the encryption used in the input documents. Verbosity level 2 prints the names
of all input and output files as they are processed:

plop --verbose 2 --compatibility 1.6 --master DEMO
--permissions "noprint nocopy noannots" --targetdir output *.pdf

plop -v 2 -c 1.6 -m DEMO --permissions "noprint nocopy noannots" -t output *.pdf

Remove all permission restrictions from a file, and copy the result to a different output
file with the same master password. This requires the master password for the input
document:

plop --password DEMO --master DEMO --outfile unrestricted.pdf protected.pdf
plop -p DEMO -m DEMO -o unrestricted.pdf protected.pdf

Re-encrypt a document (e.g. to replace weak encryption with strong AES encryption or
weak passwords with better ones), and clone the permission settings of the input docu-
ment. Copy the result to a different output file. This requires the master password for
the input document:

plop --password DEMO --master LONGPASSWORD --permissions keep
--outfile unrestricted.pdf protected.pdf

plop -p DEMO -m LONGPASSWORD --permissions keep -o unrestricted.pdf protected.pdf

5.1 Basic Digital Signature Concepts 57

5 Digital Signatures with PLOP DS
Note The ability to digitally sign PDF documents is only available in PDFlib PLOP DS, but not in the

PLOP base product.

5.1 Basic Digital Signature Concepts
Explaining the details of digital signatures is beyond the scope of this manual. Howev-
er, we will list the most important concepts which play a role when digitally signing PDF
documents with PLOP DS.

Digital signatures are based on Public Key Cryptography, also called asymmetric en-
cryption. It works with a private key which is only available to the person who signs a
document, and a public key which is available to everyone so that they can validate the
signatures.

Public keys are generally distributed in a so-called certificate file, which contains the
signer’s public key and his name and contact details. In order to avoid forged certifi-
cates this information package is again signed by a trusted third party which issues a
certificate to a person or other entity, such as an enterprise or a server. Such trusted
third parties are called Certificate Authority (CA) or Trust Center (TC). The CA’s own cer-
tificate is called the root certificate. It is usually published on the CA’s web site for ev-
eryone to download it. It is required to validate certificates issued by the CA via its fin-
gerprint (see below).

Certificates are generally stored in the X.509 format. It is important to distinguish
certificates from a package containing both the certificate and the corresponding pri-
vate key, which is called a digital ID. While certificates can freely be distributed to every-
one, digital IDs must be carefully protected. Accessing the private key in a digital ID (in
order to apply a digital signature) usually requires a password or passphrase. Common
storage formats for digital IDs are PKCS#12 and PFX. Note that certificates and digital
IDs are not always clearly distinguished; some people will talk about signing a document
with a certificate when they actually mean signing with a digital ID.

Every certificate has an associated hash value (also called fingerprint) which can be
used to double-check whether the certificate is genuine. In order to check a CA certifi-
cate manually you must read its fingerprint using suitable software, and compare it to
the CA’s fingerprint obtained via some other (trustworthy) means. Certificates are valid
for a certain period of time. They are no longer valid as soon as their expiration date has
passed, or if they have explicitly been revoked by the CA. Revoking a certificate may be
necessary because the certificate holder has left the associated organization or the pri-
vate key has been compromised.

Public Key Infrastructure (PKI) is a software environment which covers all relevant
tasks for distributing and checking the validity of certificates. Certificate checking may
involve online checks (using a protocol called Online Certificate Status Protocol, OCSP)
or revocation lists. If neither CA nor PKI are available, self-signed certificates can be
used. These require direct exchange of the certificate’s fingerprint via a trusted trans-
port, and are therefore generally only feasible for small user groups.

58 Chapter 5: Digital Signatures with PLOP DS

5.2 Obtaining and Managing Digital IDs
Crypto engines for creating digital signatures. PLOP DS supports various crypto en-
gines. A crypto engine is a piece of software which implements various cryptographic
functions that are required to generate digital signatures. The choice of a crypto engine
affects the format and storage location of digital IDs, integration with other software
and the operating system. PLOP DS supports the following crypto engines:

> The builtin engine is available on all platforms. It implements the required crypto-
graphic functions directly in the PLOP DS kernel, without any external dependen-
cies. This engine is active by default, but can also be selected explicitly with the sub-
option engine=builtin for the sign option of PLOP_create_file().

> The mscapi engine refers to the Microsoft Cryptographic API (available only on Win-
dows), which is an integrated part of the operating system. It allows PLOP DS to inter-
operate with the cryptographic infrastructure provided by Windows as well as third-
party software or hardware which is attached via a CAPI driver. The mscapi engine
can be selected with the suboption engine=mscapi for the sign option of
PLOP_create_file().

> The pkcs#11 engine refers to a software interface called PKCS#11 which provides uni-
fied access to cryptographic tokens, where token stands for a smartcard, USB stick or
other cryptographic device. Tokens offer higher security than software certificates,
and are often protected with a PIN. This engine is not available on all platforms. The
PKCS#11 engine can be selected with the suboption engine=pkcs#11 for the sign option
of PLOP_create_file().

> PLOP DS users can hook up an external crypto engine (CE). This can be used to imple-
ment custom requirements regarding certificates or signature generation, and to
hook up an existing cryptographic hardware or software module. A description of
the CE interface and the corresponding binaries are available on request. The bina-
ries in the standard PLOP DS distribution do not support the CE interface.

Supported formats for digital IDs. PLOP DS requires a digital ID for signing PDF docu-
ments. A digital ID contains the signer’s digital certificate plus the corresponding pri-
vate key, and is usually protected by a password or similar means. PLOP DS supports the
following kinds of digital IDs:

> On all platforms with engine=builtin: digital ID files in PKCS#12 format (usually .p12)
or PFX format (usually .pfx)

> On Windows with engine=mscapi: digital IDs in the Windows certificate store.
> An all platforms with PKCS#11 support with engine=pkcs#11: digital IDs stored on a

smartcard or other cryptographic token (device) attached to the computer.

Sources of digital IDs. There are various sources where you can obtain a digital ID.
Many IDs are intended for signing e-mail; these e-mail IDs can also be used in PLOP DS
for signing PDF documents. Your choice of source for a digital ID depends on the num-
ber of required IDs (e.g. one per employee or only one corporate ID) and the desired de-
gree of control:

> Obtain a digital ID from one of the public certificate authorities which issue IDs free-
ly or for a fee.

> Build your own private certificate authority so that you can create digital IDs your-
self. There are various software packages available for building a CA. Examples in-
clude the free OpenSSL software (see www.openssl.org), the keytool application which

http://www.openssl.org/

5.2 Obtaining and Managing Digital IDs 59

is part of Java, and the Certificate Services which are part of the Microsoft Windows
Server operating system.

> Create a digital ID from a self-signed certificate. You can create self-signed certifi-
cates in Acrobat as follows:
Acrobat X: Tools, Sign&Certify, More Sign & Certify, Security Settings, Digital IDs, Add ID, A
new digital ID I want to create now;
Acrobat 9: Advanced, Security Settings, Digital IDs, Add ID, A new digital ID I want to create
now;
Acrobat 8: Advanced, Security Settings, Digital IDs, Add ID, create a self-signed digital ID for
use with Acrobat
In the next step you can specify a PKCS#12 disk file or the Windows certificate store
as target. Both methods are supported in PLOP DS.

Managing the Windows certificate store. The Windows operating system can hold an
arbitrary number of certificates which are organized in several certificate stores (and
physically stored in the registry). To install a new certificate in the PFX or PKCS#12 for-
mat simply double-click on the certificate file and follow the Certificate Import Wizard.
You can try this with the demo certificates in the PLOP DS package, using the password
demo

You can view and organize certificates in Windows using the Microsoft Management
Console (MMC) as follows:

> Click on Start, Run..., type mmc, and click OK. This will start the Management Console.
> In the File menu click Add/Remove Snap-in...
> In Available Standalone Snap-ins select Certificates and click Add.
> In the next dialog select My user account and Finish. Alternatively, use Service account

or Computer account if this is the store where you keep your certificates.
> Click on OK.

Now you can browse the installed certificates. Your own certificates will be available in
the Personal category, which can be addressed in PLOP DS with the following option list
(supplied to the --signopt command-line option or the sign option of PLOP_create_file()):

Fig. 5.1
Managing the Windows certificate store with the management console MMC.

60 Chapter 5: Digital Signatures with PLOP DS

engine=mscapi digitalid={certstore={store=My subject={Demo PLOP User 2048}}}

You can view certificate details by double-clicking on a certificate in MMC. In order to
export a certificate in PFX format right-click on a certificate in the list and click All Tasks,
Export... . This will launch the Certificate Export Wizard.

Using the Management Console you can also import a certificate: right-click on a cer-
tificate store (e.g. Personal) and select All Tasks, Import... .

Windows supports the following key lengths:
> RSA algorithm: 384 bit to 16384 bit with the Microsoft Enhanced Cryptographic Pro-

vider, and 384 bits to 512 bits with the Microsoft Base Cryptographic Provider.
> DSA algorithm: 512 bit to 1024 bit (unlike Acrobat which supports DSA up to 4096 bit)

Fig. 5.2
Certificate properties in Windows

5.3 Signing PDF Documents with PLOP DS 61

5.3 Signing PDF Documents with PLOP DS
Signatures are implemented as form fields in PDF. PDF signatures always relate to the
whole document (as opposed to particular pages), and are available in two flavors:

> Invisible signatures do not occupy any space on the page. They can be viewed in Ac-
robat by bringing up the Signatures tab (Acrobat X: View, Show/Hide..., Navigation
Panes, Signatures...; Acrobat 8/9: View, Navigation Panels, Signatures...).

> Visible signatures use a rectangular form field which is located somewhere on a page
in the document. You can specify the page number, field name and field coordinates.

Additional properties can be specified for both types of signatures, e.g. location, reason
for signing, and contact information.

In order to apply a digital signature with PLOP DS you need a digital ID (see Section
5.2, »Obtaining and Managing Digital IDs«, page 58). If you work with a digital ID file or
token you will need the corresponding password. If you work with a personal (account-
specific) digital ID in the Windows certificate store the ID will be protected by your Win-
dows login.

Applying signatures with PLOP DS. The examples below show how to digitally sign
PDF documents with the PLOP DS command-line tool and library. The option list sup-
plied to the --signopt can be supplied to the PLOP DS API function PLOP_create_file() (op-
tion sign) in order to create a signature from within your own program. Full program-
ming examples for all supported language bindings are contained in the PLOP DS
package. The examples assume digital ID files demo2048.p12 and demo2048.pfx with the
password demo, and digital IDs in the Windows certificate store for the hypothetical
user name DEMO PLOP user 2048. Sample digital ID files are included in the distribution
packages.

Create an invisible signature for a PDF document, using a digital ID from the file
demo2048.p12. The password for the digital ID is contained in the file pw.txt:

plop --signopt "digitalid={filename=demo2048.p12} passwordfile=pw.txt"
--outfile signed.pdf input.pdf

plop -S "digitalid={filename=demo2048.p12} passwordfile=pw.txt" -o signed.pdf input.pdf

Create a visible signature field in the lower left part of page 1. The password demo is di-
rectly supplied, which is not recommended for multi-user systems since the command-
line with the password may be visible to other users (e.g. via the ps command on Unix
systems):

plop --signopt "appearance={fieldname=Signature1 rect={10 10 200 100} }
digitalid={filename=demo2048.p12} password={demo}" --outfile signed.pdf input.pdf

plop -S "appearance={fieldname=Signature1 rect={10 10 200 100} }
digitalid={filename=demo2048.p12} password={demo}" -o signed.pdf input.pdf

Note You must double-click and install the digital ID in the file demo2048.pfx in the Windows certifi-
cate store in order to run the Windows examples below.

(Windows only) Create an invisible signature for a PDF document, using a certificate
from the Windows Certificate Store (from the default store My). This assumes that the
digital ID is protected by your Windows login so that no password must be supplied:

plop --signopt "engine=mscapi digitalid={certstore={store=My subject={Demo PLOP User 2048}}}"
 --outfile signed.pdf input.pdf

62 Chapter 5: Digital Signatures with PLOP DS

plop -S "engine=mscapi digitalid={certstore={store=My subject={Demo PLOP User 2048}}}"
 -o signed.pdf input.pdf

(Windows only) Create an invisible signature for a PDF document, using a certificate in
the file demo2048.pfx:

plop --signopt "engine=mscapi digitalid={filename=demo2048.pfx} passwordfile=pw.txt"
--outfile signed.pdf input.pdf

plop --S "engine=mscapi digitalid={filename=demo2048.pfx} passwordfile=pw.txt"
-o signed.pdf input.pdf

Create an invisible signature and encrypt the document with the master password
SECRET for PDF encryption and password demo for accessing the digital ID:

plop --master SECRET --signopt "digitalid={filename=demo2048.p12} password={demo}"
--outfile signed.pdf input.pdf

plop --m SECRET --S "digitalid={filename=demo2048.p12} password={demo}"
-o signed.pdf input.pdf

Signing with smartcards and other cryptographic tokens. Using the PKCS#11 engine in
PLOP DS you can use certificates on a smartcard or other cryptographic token. This re-
quires a DLL or shared library which implements a token-specific protocol. The PKCS#11
DLL must be provided by the token vendor as part of the corresponding driver kit. It
must be installed on the system and must be available to PLOP DS. On Windows this
means the DLL must either be copied to the Windows system directory, a directory
which is included in the PATH environment variable, or the current directory. Note that
a PKCS#11 DLLs may depend on other DLLs. In this case all required DLLs supplied by the
token vendor must be made available to PLOP DS.

In the following examples we will refer to the vendor-specific PKCS#11 DLL as
cryptoki.dll. The name of the actual DLL may be different.

Create an invisible signature for a PDF document, using a digital ID from a token ad-
dressed via PKCS#11. The PIN for the token is contained in the file pw.txt:

plop --signopt "engine=pkcs#11 digitalid={filename=cryptoki.dll} passwordfile=pw.txt"
--outfile signed.pdf input.pdf

plop -S "engine=pkcs#11 digitalid={filename=cryptoki.dll} passwordfile=pw.txt"
-o signed.pdf input.pdf

Create an invisible signature for a PDF document, using a digital ID from a token ad-
dressed via PKCS#11. No PIN is supplied in this command; instead, the PIN for the token
must be typed into the token’s integrated keyboard:

plop --signopt "engine=pkcs#11 digitalid={filename=cryptoki.dll}"
--outfile signed.pdf input.pdf

plop -S "engine=pkcs#11 digitalid={filename=cryptoki.dll}" -o signed.pdf input.pdf

Create a visible signature field in the lower left part of page 1. The PIN 1234 for the token
is directly supplied, which is not recommended for multi-user systems since the com-
mand-line with the password may be visible to other users:

plop --signopt "appearance={fieldname=Signature1 rect={10 10 200 100} }
engine=pkcs#11 digitalid={filename=cryptoki.dll} password={1234}"
--outfile signed.pdf input.pdf

plop -S "appearance={fieldname=Signature1 rect={10 10 200 100} }

5.3 Signing PDF Documents with PLOP DS 63

engine=pkcs#11 digitalid={filename=cryptoki.dll} password={1234}"
-o signed.pdf input.pdf

Selecting a digital ID on a token. A smartcard or other cryptographic token may con-
tain multiple digital IDs, e.g. one for encrypting E-mails and another one for digitally
signing documents. In this situation you can select the target ID for the PLOP DS signa-
ture with the keyusage suboption of the sign option of PLOP_create_file(). It accepts a key-
word which selects a digital ID based on the usage flags which are encoded in the certifi-
cate’s KeyUsage extension (see RFC 3280 for a detailed description of the KeyUsage
extension). For example, if a smartcard contains two IDs where the ID with the
nonrepudiation flag must be used for signing, the following suboption list for the sign
option can be used:

digitalid={filename=cryptoki.dll keyusage={nonrepudiation=set}}

Unlocking digital IDs. Digital IDs are generally protected with a password, passphrase,
or PIN since they contain the confidential private key for creating the digital signature.
In order to unlock a digital ID for use with PLOP DS you must provide proper authenti-
cation. If you supply the wrong password PLOP DS will throw an exception.The details
of unlocking the digital ID depend on the selected crypto engine:

> With engine=builtin:You must supply the corresponding password with the password
suboption of the sign option. If you are using the PLOP DS command-line tool it is
strongly recommended to supply the password indirectly in an auxiliary file with
the passwordfile suboption. If you supply the password directly instead of in a pass-
word file other users could possibly read it since the command-line may be visible to
other users on a multi-user system.

> With engine=mscapi: Depending on your certificate settings the digital IDs in the
Windows certificate store may be protected by your Windows login, and no addition-
al password is required.

> With engine=pkcs#11: If the cryptographic token allows passwords/PINs to be submit-
ted by software you must supply the password option as with engine=builtin (see
above). If the token requires direct PIN or password entry (e.g. a smartcard reader
with attached keyboard) you can omit the password option (or supply an empty
string) and must manually type the PIN into the token’s keyboard. Details of pass-
word/PIN handling may vary among cryptographic tokens.

64 Chapter 5: Digital Signatures with PLOP DS

5.4 Cryptographic Properties of PLOP DS Signatures
Encryption algorithm and key length for signatures. The encryption algorithm and
key length for generating signatures are determined by the digital ID (they are specified
when creating the public/private key pair for the ID). PLOP DS supports the following al-
gorithms and key lengths:

> RSA with up to 4096 bit key length
> DSA with up to 4096 bit key length; DSA only supports the SHA-1 message digest.

Message digest (hash function). The message digest algorithm (hash function) used
for creating digital signatures depends on several factors. PLOP DS tries to use the se-
cure SHA-256 algorithm if possible, otherwise SHA-1.

When selecting SHA-256 or SHA-1 two aspects are relevant: the availability of a SHA-
256 implementation and the kind of generated PDF output. Availability of SHA-256 de-
pends on the selected crypto engine:

> SHA-256 is always available for engine=builtin.
> SHA-256 may or may not be available for engine=pkcs#11 depending on the capabili-

ties of the cryptographic token. Refer to the token’s documentation or contact the to-
ken vendor for information regarding the token’s cryptographic features.

> SHA-256 availability for engine=mscapi depends on the Windows version: according
to Microsoft documentation it should be available with Windows XP SP3 and newer.
However, there are cases where SHA-256 is not available in XP SP3.

If SHA-256 is available it will only be used if the generated PDF output meets one of the
following requirements:

> The PDF output version determined based on the PDF input version, requested oper-
ations and compatibility=1.6 or above.

> PDF/A-1 output is being generated. This is a special exception to the PDF 1.6 rule
above which allows secure digital signatures of PDF/A documents.

If the SHA-256 algorithm is not available or the generated PDF output does not meet the
conditions listed above, the SHA-1 algorithm will be used instead. PLOP DS never uses
the MD5 algorithm for signatures since it is not considered secure enough.

PLOP DS signature restrictions. PLOP DS does not currently support the following sig-
nature-related features:

> Certified PDF: this is a special kind of signature where an author certifies the validity
of a document which can later be modified by others.

> Incremental update and multiple signatures per document;
> Signature appearance: you cannot specify the text or images which are displayed in

a visible signature field.
> Applying a digital signature can not be combined with linearization.

5.5 Validating Digital Signatures with Acrobat 65

5.5 Validating Digital Signatures with Acrobat
PLOP DS creates standard PDF signatures according to Adobe’s documented specifica-
tion. Digital signatures created with PLOP DS do not require any third-party software
for validation, but can be validated with Acrobat Standard/Professional 8 or above and
Adobe Reader 8 or above. Third-party validation software for PDF signatures which sup-
ports standard Acrobat signatures will also be able to validate signatures created with
PLOP DS.
A signature is valid if all of the following conditions are true:

> The document has not been modified since the signature was applied.
> The certificate which has been used for signing is valid. A certificate is invalid if it is

expired (according to the expiration date in the certificate) or has been revoked (this
requires online testing or checking against a revocation list).

> The certificate belongs to a known person or entity, or has been issued by a well-
known certificate authority (see below).

Proceed as follows to validate PDF signatures with Acrobat: open the Signatures tab
(View, Navigation Panels, Signatures...) and right-click the signature, and select Validate
Signature. In the resulting dialog box Acrobat will display a validity status icon for the
signature along with additional information. Depending on the validation state, Acro-
bat uses different icons for individual signatures as well as for the signature status of a
document:

> A check mark indicates that the signature is valid, i.e. the signer has been veri-

fied and the document has not changed.

> A red X indicates that the signature is invalid, i.e. the signer’s certificate could

not be verified (e.g. it was expired or revoked), or the document has been changed.

> A triangle indicates that the document is problematic because the signer’s iden-

tity could not be verified or document updates have been applied after the signature
was applied.

Acrobat 8 also displays the signature status in the field area of a visible signature. How-
ever, Acrobat 9/X no longer display signature status icons in individual fields, but only
in the Signatures panel (near the top of the Window) and the Signatures tab (at the left
side of the window). Since this behavior may be confusing in mixed environments you
can restore the previous behavior (i.e. display the validity status icon in each field) by
setting the following registry key:

HKEY_CURRENT_USER\Software\Adobe\Adobe Acrobat\10.0\Security\cPubSec\iDisplayValidIcon

to the value 0 (digit zero). This will restore Acrobat 8 behavior in Acrobat 9/X. Acrobat
security documentation provided by Adobe contains more details on registry settings
for Acrobat.

66 Chapter 5: Digital Signatures with PLOP DS

Establishing trust for signer certificates. There are several ways how Acrobat can es-
tablish that the certificate used for signing a document should be considered trustwor-
thy:

> Certificates issued by the Certificate Authority (CA) whose certificate is built into Ac-
robat are always accepted as trustworthy. However, the built-in CA does not issue
software certificates which could be used in PLOP DS.

> Certificates issued by one of the CAs which are built into the Windows certificate
store. This is the recommended method for end users outside of your enterprise; it is
described in more detail below.

> The certificate is available in the Windows certificate store. This requires the user to
manually add the signer’s certificate to the Windows certificate store, which is gener-
ally only feasible in enterprise environments.

> You manually configure Acrobat to accept the individual signer’s certificate, or to ac-
cept all certificates signed by a certain CA. This is recommended for enterprise envi-
ronments. The required steps are described below.

Fig. 5.3
Signature properties (left) and
certificate viewer (below) in Acrobat

5.5 Validating Digital Signatures with Acrobat 67

Allowing Acrobat to access the Windows certificate store. If Acrobat is configured to
access the Windows certificate store it can validate all signatures created with a CA
which is contained in the certificate store. This could be one of the CAs which are al-
ready built into Windows (recommended for users outside of controlled enterprise en-
vironments) or a custom CA (suitable if you run your own enterprise CA and can config-
ure it in the certificate store of all users). In the management console you can locate the
certificates for these well-known CAs in the Trusted Root Certification Authorities store or
in Third-Party Root Certification Authorities.

In order to take advantage of the CAs built into Windows proceed as follows: Obtain a
digital ID from one of the commercial CAs which are built into Windows. You can review
the list of built-in CAs as follows: start the Management Console with the Signature
snap-in (see »Managing the Windows certificate store«, page 59), and navigate to Trusted
Root Certification Authorities/Certificates. Now you can see a list with dozens of commer-
cial CAs. Select a certificate from the list, and double-click on its name. In the Certificates
dialog go to Details, scroll to the Subject entry, and double-click on it. This should dis-
play enough information for contacting the CA, e.g. an E-mail address. Obtain a digital
ID from one of these CAs and use it for signing PDF documents with PLOP DS.

In order to make a custom CA known to the Windows store obtain its certificate, dou-
ble-click on it, and import it into the Windows certificate store.

In both cases above you must make sure that Acrobat will accept all certificates is-
sued by the selected CA (or any CA in the Windows certificate store). In Acrobat 8/9/X
proceed as follows (see Figure 5.4): Edit, Preferences, [General...], Security, Advanced
Preferences..., Windows Integration. In the resulting dialog, below the text Trust ALL root
certificates in the Windows Certificate Store for the following operations: check the box la-
belled Validating Signatures.

Fig. 5.4
Configure Acrobat to access the
Windows Certificate Store

68 Chapter 5: Digital Signatures with PLOP DS

Accepting an individual certificate. You can add individual certificates to the list of
trusted identities using any of the following methods (refer to the Acrobat help for de-
tails):

> Add the certificate to the Windows certificate store: double-click on the certificate
file; this will bring up a wizard for installing the certificate. In addition, you must
configure Acrobat to access the Windows certificate store (see above).

> Import a certificate from a disk file or a directory server:
In Acrobat X this can be achieved with the following steps: Tools, Sign & Certify, More
Sign & Certify, Manage Trusted Identities..., Add Contacts, Browse... .
Acrobat 8/9: Advanced, Manage Trusted Identities..., Add Contacts, Browse... Select the
certificate, click Edit Trust..., go to the Trust tab and in the Trust this certificate for:
checkbox select Signatures and as a Trusted Root.

> Import a certificate from a signed PDF: In Acrobat 8/9/X this can be achieved with
the following steps: open a signed PDF, open the Signatures tab (Acrobat X: View,
Show/Hide, Navigation Panes, Signatures), right-click on the signature and select [Show
Signature] Properties; Acrobat 8/9: View, Navigation Panels, Signatures) This will bring
up the Signature Properties dialog. In the Summary tab click on Show Certificate... , go to
the Details tab and check the certificate’s fingerprint (MD5 and/or SHA-1 digest). If
the fingerprint matches the fingerprint provided to you by the signer separately by
trusted means, go to the Trust tab, click on Use this certificate as a trusted root (Acrobat
9/X) or Add to Trusted Identities..., and finally check Signatures and as a trusted root (Ac-
robat 8).

Accepting all certificates issued by a CA. This method is recommended if you work
with documents signed by many different individuals which all use certificates issued
by the same CA (typically an enterprise CA). Obtain the CA’s certificate and import it
into Acrobat as detailed above for individual certificates, or into Windows if you allow
Acrobat to access the Windows certificate store. As a result, Acrobat will accept all signa-
tures created with certificates issued by this CA.

69

6 The pCOS Interface
The pCOS (PDFlib Comprehensive Object Syntax) interface provides a simple and elegant
facility for retrieving arbitrary information from all sections of a PDF document which
do not describe page contents, such as page dimensions, metadata, interactive ele-
ments, etc. Examples for using the pCOS interface and a description of the pCOS path
syntax are contained in the pCOS Path Reference which is available as a separate docu-
ment. Additional examples can be found in the pCOS Cookbook at
www.pdflib.com/pcos-cookbook/

http://www.pdflib.com/pcos-cookbook/
http://www.pdflib.com/pcos-cookbook/

7.1 Option Lists 71

7 PLOP and PLOP DS Library API
Reference

7.1 Option Lists
Option lists are a powerful yet easy method to control PLOP operations. Instead of re-
quiring a multitude of function parameters, many API methods support option lists, or
optlists for short. These are strings which may contain an arbitrary number of options.
Optlists support various data types and composite data like arrays. In most languages
optlists can easily be constructed by concatenating the required keywords and values. C
programmers may want to use the sprintf() function in order to construct optlists. An
optlist is a string containing one or more pairs of the form

name value(s)

Names and values, as well as multiple name/value pairs can be separated by arbitrary
whitespace characters (space, tab, carriage return, newline). The value may consist of a
list of multiple values. You can also use an equal sign ’=’ between name and value:

name=value

Simple values. Simple values may use any of the following data types:
> Boolean: true or false; if the value of a boolean option is omitted, the value true is as-

sumed. As a shorthand notation noname can be used instead of name false.
> String: strings containing whitespace or ’=’ characters must be bracketed with { and }.

An empty string can be constructed with { }. The characters {, }, and \ must be preced-
ed by an additional \ character if they are supposed to be part of the string.

> Text strings are a special kind of string for certain options. While most options of
type string accept only ASCII values, text strings may also carry Unicode values be-
yond ASCII. In Unicode-aware language bindings you can simply supply arbitrary
Unicode values for such options. In non-Unicode-aware language bindings the user
must prepend a UTF-8 BOM to text strings if the string is to be interpreted as UTF-8
(or EBCDIC UTF-8 on i5/iSeries and zSeries). If no UTF-8 BOM is present, text strings
will be interpreted in auto encoding, i.e. the current code page on Windows, the cur-
rent job’s encoding on i5/iSeries, ebcdic on zSeries, and iso8859-1 on Unix and
Mac OS X.

> Keyword: one of a predefined list of fixed keywords
> Float and integer: decimal floating point or integer numbers; point and comma can

be used as decimal separators.
> Handle: several internal object handles, e.g., document or page handles. Technically

these are integer values.

Depending on the type and interpretation of an option additional restrictions may ap-
ply. For example, integer or float options may be restricted to a certain range of values;
handles must be valid for the corresponding type of object, etc. Conditions for options
are documented in their respective function descriptions. Some examples for simple
values (the first line shows a string containing a blank character):

72 Chapter 7: PLOP and PLOP DS Library API Reference

password={secret string}
linearize=true

List values. List values consist of multiple values, which may be simple values or list
values in turn. Lists are bracketed with { and }. Example for a list value:

permissions={ noprint nocopy }

Note The backslash \ character requires special handling in many programming languages

7.2 General Functions 73

7.2 General Functions

C PLOP * PLOP_new(void)

Create a new PLOP context.

Returns A handle to the new context, or NULL if not enough memory is available. The context
must be supplied to all other API functions.

Bindings Not available in object-oriented language bindings where it will be called automatically
when a new PLOP object is created.

Java void delete()
C# void Dispose()

C void PLOP_delete(PLOP *plop)

Delete a PLOP context and release all its internal resources.

Details All open documents in the context are closed automatically. It is good programming
practice, however, to close documents explicitly with PLOP_close_document() when they
are no longer needed.

Bindings In C this function must not be called within a PLOP_TRY()/PLOP_CATCH() clause.

In Java this method will be called by the finalizer method of PLOP. However, it is
strongly recommended to explicitly call delete() for proper cleanup. The same holds
true when an exception occurred.

In Perl, PHP and COM this function will be called automatically when the PLOP object
is destroyed.

In .NET Dispose() should be called at the end of processing to clean up unmanaged re-
sources.

C++ void create_pvf(string filename, const void *data, size_t size, string optlist)
C# Java void create_pvf(String filename, byte[] data, String optlist)
Perl PHP create_pvf(string filename, string data, string optlist)

VB Sub create_pvf(filename As String, data, optlist As String)
C void PLOP_create_pvf(PLOP *plop,

const char *filename, int len, const void *data, size_t size, const char *optlist)

Create a named virtual read-only file from data provided in memory.

filename (Name string) The name of the virtual file. This is an arbitrary string which
can later be used to refer to the virtual file in other PLOP calls.

len (C language binding only) Length of filename (in bytes) for UTF-16 strings. If len=0
a null-terminated string must be provided.

data A reference to the data for the virtual file. In COM this is a variant of byte con-
taining the data comprising the virtual file. In C and C++ this is a pointer to a memory
location. In Java this is a byte array. In Perl and PHP this is a string.

74 Chapter 7: PLOP and PLOP DS Library API Reference

size (C and C++ only) The length in bytes of the memory block containing the data.

optlist An option list according to Table 7.1. The following option can be used: copy.

Details This function may be useful for repeatedly used digital IDs or XMP metadata. The virtu-
al file name can be supplied to any API function which uses input files. Some of these
functions may set a lock on the virtual file until the data is no longer needed. Virtual
files will be kept in memory until they are deleted explicitly with PLOP_delete_pvf(), or
automatically in PLOP_delete().

Each PLOP object will maintain its own set of PVF files. Virtual files cannot be shared
among different PLOP objects. Multiple threads working with separate PLOP objects do
not need to synchronize PVF use. If filename refers to an existing virtual file an excep-
tion will be thrown. This function does not check whether filename is already in use for a
regular disk file.

Unless the copy option has been supplied, the caller must not modify or free (delete)
the supplied data before a corresponding successful call to PLOP_delete_pvf(). Not obey-
ing to this rule will most likely result in a crash.

C++ int delete_pvf(string filename)
C# Java int delete_pvf(String filename)
Perl PHP int delete_pvf(string filename)

VB Function delete_pvf(filename As String) As Long
C int PLOP_delete_pvf(PLOP *plop, const char *filename, int len)

Delete a named virtual file and free its data structures (but not the contents).

filename (Name string) The name of the virtual file as supplied to PLOP_create_pvf().

len (C language binding only) Length of filename (in bytes) for UTF-16 strings. If len=0
a null-terminated string must be provided.

Returns -1 (in PHP: 0) if the corresponding virtual file exists but is locked, and 1 otherwise.

Details If the file isn’t locked, PLOP will immediately delete the data structures associated with
filename. If filename does not refer to a valid virtual file this function will silently do
nothing. After successfully calling this function filename may be reused. All virtual files
will automatically be deleted in PLOP_delete().

The detailed semantics depend on whether or not the copy option has been supplied
to the corresponding call to PLOP_create_pvf(): If the copy option has been supplied, both
the administrative data structures for the file and the actual file contents (data) will be
freed; otherwise, the contents will not be freed, since the client is supposed to do so.

Table 7.1 Options for PLOP_create_pvf()

option description

copy (Boolean) PLOP will immediately create an internal copy of the supplied data. In this case the caller may
dispose of the supplied data immediately after this call. The copy option will automatically be set to true
in the COM, .NET, and Java bindings (default for other bindings: false). In other language bindings the
data will not be copied unless the copy option is supplied.

7.2 General Functions 75

C++ double info_pvf(string filename, string keyword)
C# Java double info_pvf(String filename, String keyword)

Perl PHP float info_pvf(string filename, string keyword)
VB Function info_pvf(filename As String, keyword As String) As Double

C double PLOP_info_pvf(PDF *p, const char *filename, int len, const char *keyword)

Query properties of a virtual file or the PDFlib Virtual File system (PVF).

filename (Name string) The name of the virtual file. The filename may be empty if
keyword=filecount.

len (C language binding only) Length of filename (in bytes) for UTF-16 strings. If len=0
a null-terminated string must be provided.

keyword A keyword according to Table 7.4.

Details This function returns various properties of a virtual file or the PDFlib Virtual File sys-
tem (PVF). The property is specified by keyword.

Table 7.2 Keywords for PLOP_info_pvf()

option description

filecount Total number of files in the PDFlib Virtual File system maintained for the current PLOP object. The
filename parameter will be ignored.

exists 1 if the file exists in the PDFlib Virtual File system (and has not been deleted), otherwise 0

size (Only for existing virtual files) Size of the specified virtual file in bytes.

iscopy (Only for existing virtual files) 1 if the copy option was supplied when the specified virtual file was creat-
ed, otherwise 0

lockcount (Only for existing virtual files) Number of locks for the specified virtual file set internally be PLOP func-
tions. The file can only be deleted if the lock count is 0.

76 Chapter 7: PLOP and PLOP DS Library API Reference

7.3 Document Input and Output Functions
Note PLOP currently does not support processing of multiple documents with a single PLOP object si-

multaneously. After opening a document with one of the PLOP_open_document*() functions
you must close it before opening another document.

C++ int open_document(string filename, string optlist)
C# Java int open_document(String filename, String optlist)

Perl PHP int open_document(string filename, string optlist)
VB Function open_document(filename As String, optlist As String) As Long

C int PLOP_open_document(PLOP *plop, const char *filename, int len, const char *optlist)

Open a PDF document (which may be protected) for processing.

filename (Name string, but Unicode file names are only supported on Windows) The
full path name of the PDF file to be opened. On Windows it is OK to use UNC paths or
mapped network drives as long as you have the necessary permissions (which may not
be the case when running in ASP).

In non-Unicode language bindings file names with len = 0 will be interpreted in the
current system codepage unless they are preceded by a UTF-8 BOM, in which case they
will be interpreted as UTF-8 or EBCDIC-UTF-8.

len (C language binding only) Length of filename (in bytes) for UTF-16 strings. If len=0 a
null-terminated string must be provided.

optlist An option list (see Section 7.1, »Option Lists«, page 71) according to Table 7.3.

Returns -1 (in PHP: 0) on error, and a document handle otherwise. After an error it is recom-
mended to call PLOP_get_errmsg() to find out more details about the error.

Details If the document is encrypted its user or master password must be supplied in the
password option unless the requiredmode option has been specified.

Table 7.3 Options for PLOP_open_document*()

option description

inmemory (Boolean; only for PLOP_open_document()) If true, PLOP will load the complete file into memory and
process it from there. This can result in a tremendous performance gain on some systems (especially
MVS) at the expense of memory usage. If false, individual parts of the document will be read from disk as
needed. Default: false

password (String; required for encrypted documents except with requiredmode) The user or master password for
the document. As detailed in Table 4.2, page 51, the document’s user password, master password, or no
password may be required depending on which operation is applied to the document. On EBCDIC plat-
forms the password is expected in ebcdic encoding or EBCDIC-UTF-8.

repair (Keyword) Specifies how to treat damaged PDF input documents. Repairing a document takes more time
than normal parsing, but may allow processing of certain damaged PDFs. Note that some documents
may be damaged beyond repair (default: auto):
force Unconditionally try to repair the document, regardless of whether or not it has problems.
auto Repair the document only if problems are detected while opening the PDF.
none No attempt will be made at repairing the document. If there are problems in the PDF the

function call will fail.

7.3 Document Input and Output Functions 77

C++ int open_document_callback(void *opaque, size_t filesize,
size_t (*readproc)(void *opaque, void *buffer, size_t size),
int (*seekproc)(void *opaque, long offset), const char *optlist)

C int PLOP_open_document_callback(PLOP *plop, void *opaque, size_t filesize,
size_t (*readproc)(void *opaque, void *buffer, size_t size),
int (*seekproc)(void *opaque, long offset), const char *optlist)

Open a PDF document (which may be protected) via a user-supplied function.

opaque Pointer to some opaque data structure which will be passed to readproc. PLOP
does not use this pointer or the underlying data.

filesize The length of the document in bytes.

readproc A procedure which must be able to supply arbitrary chunks of size bytes of
the document at memory location buffer. The procedure must return the number of
bytes retrieved.

seekproc A procedure for seeking to position offset within the document. The proce-
dure must return -1 in case of error, and 0 otherwise.

optlist An option list (see Section 7.1, »Option Lists«, page 71) according to Table 7.3.

Returns -1 (in PHP: 0) on error, and a document handle otherwise. After an error it is recom-
mended to call PLOP_get_errmsg() to find out more details about the error.

Bindings Only available in the C and C++ language bindings.

requiredmode (Keyword) The minimum pcos mode (minimum/restricted/full) which is acceptable when opening
the document. The call will fail if the resulting pCOS mode would be lower than the required mode. If the
call succeeds it is guaranteed that the resulting pCOS mode is at least the one specified in this option.
However, it may be higher; e.g. requiredmode=minimum for an unencrypted document will result in full
mode. Default: full

xmppolicy (Keyword) Control treatment of invalid document-level XMP in the input document. Invalid XMP implies
that no standard identifier can be found, e.g. PDF/A documents will not be treated as such. Supported
keywords (default: rejectinvalid):
rejectinvalid

Throw an exception for invalid XMP which includes the XML parsing error message, and stop
processing.

ignoreinvalid
(Implies sacrifice={pdfa1 pdfx}) Treat invalid XMP as if there was no XMP present.
Output XMP will be generated based on document info entries; it will also include the XML
parsing error message in the <pdfx:invalid_source_XMP_exception> element.

remove Unconditionally ignore input XMP, regardless of its validity. The output XMP will be
generated from scratch. This may be useful to delete unwanted metadata. However,
standard identifiers (e.g. for PDF/A) will still be read from the input XMP and copied to the
output.

Table 7.3 Options for PLOP_open_document*()

option description

78 Chapter 7: PLOP and PLOP DS Library API Reference

C++ int create_file(string filename, string optlist)
C# Java int create_file(String filename, String optlist)

Perl PHP int create_file(string filename, string optlist)
VB Function create_file(filename As String, optlist As String) As Long

C int PLOP_create_file(PLOP *plop, const char *filename, int len, const char *optlist)

Create a PDF output document (which may be protected) in memory or on disk file.

filename (Name string, but Unicode file names are only supported on Windows) The
name of the generated output file, which should be different from the input file name
supplied to PLOP_open_document(). If this is an empty string the output will be generat-
ed in memory, and can later be fetched with PLOP_get_buffer(). On MVS systems an
empty string cannot be used in combination with the linearize option.

In non-Unicode language bindings file names with len = 0 will be interpreted in the
current system codepage unless they are preceded by a UTF-8 BOM, in which case they
will be interpreted as UTF-8 or EBCDIC-UTF-8.

len (C language binding only) Length of filename (in bytes) for UTF-16 strings. If len=0 a
null-terminated string must be provided.

optlist An option list (see Section 7.1, »Option Lists«, page 71) according to Table 7.4.

Returns -1 (in PHP: 0) on error, and a document handle otherwise. After an error it is recom-
mended to call PLOP_get_errmsg() to find out more details about the error.

Details Before calling this function one of PLOP_open_document*() functions must have been
called. The document opened with the most recent call to one of these functions will be
processed. See Section 4.2, »PDF Security Features in PLOP«, page 51, for conditions
which will be enforced for the user and master passwords.

The document will be encrypted if any of the userpassword, masterpassword, or
permissions options has been supplied. The encryption algorithm will be selected based
on the PDF version of the input document and the compatibility option (see »Encryption
algorithm and key length«, page 51).

7.3 Document Input and Output Functions 79

Table 7.4 Options for PLOP_create_file()

option description

compatibility (Keyword) Specify the PDF version of the generated PDF output document:
1.4 PDF 1.4 requires Acrobat 5 or above.
1.5 PDF 1.5 requires Acrobat 6 or above.
1.6 PDF 1.6 requires Acrobat 7 or above.
1.7 PDF 1.7 is specified in ISO 32000-1 and requires Acrobat 8 or above.
1.7ext3 PDF 1.7 extension level 3 requires Acrobat 9 or above.
1.7ext8 PDF 1.7 extension level 8 requires Acrobat X.
2.0 PDF 2.0 is specified in ISO 32000-2.
This will be used to select the appropriate encryption algorithm if the output is encrypted. The strongest
possible encryption algorithm supported by the selected PDF version will be used (use 1.6 to force AES
encryption). The selected PDF version may be increased automatically by other options according to the
following rules:
> Digitally signing the document (option sign) pushes the version to PDF 1.3.
> Encryption, i.e. any of the options userpassword, masterpassword, and permissions, pushes the ver-

sion to PDF 1.4.
> Inserting XMP metadata (option metadata) pushes the version to PDF 1.4.
> The plainmetadata keyword for the permissions option pushes the version to PDF 1.5.
Default: the PDF version of the input document, or a higher version as mandated by the rules above.

docinfo (List of pairs of text strings) Set document info entries for the output document. If the document contains
document XMP metadata, the supplied document info entries will be mirrored in the XMP. Each pair con-
tains the name of an entry and its value. The following predefined and custom keys can be supplied (de-
fault: document info entries will be copied from the input document):
Subject Subject of the document
Title Title of the document
Author Author of the document
Keywords Keywords describing the contents of the document
Trapped Indicates whether trapping has been applied to the document. Allowed values are True,

False, and Unknown. For PDF/X input Unknown is only allowed if sacrifice includes pdfx.
any name other than Creator, CreationDate, Producer, ModDate, GTS_PDFXVersion, GTS_PDFXConfor-

mance, ISO_PDFEVersion
User-defined field name (must not contain any space character). PLOP supports an arbitrary
number of fields. A custom field name should only be supplied once.

flush (Keyword) Set the flushing strategy. This is only effective for in-memory generation (i.e., an empty file-
name) and affects the amount of data returned by PLOP_get_buffer(). When the linearize option is
true, the flushing strategy must be none. (Default: none):
none The returned buffer is guaranteed to contain all data comprising the output document.
content PLOP_get_buffer() will stop every time a larger chunk of PDF content data (more specifically:

a PDF stream object) has been processed, and the returned buffer will contain only parts of
the output document.

heavy PLOP_get_buffer() will process smaller portions, and will be called more frequently.

linearize (Boolean; can not be combined with sign or metadata) If true, the output document will be linearized.
On MVS systems this option cannot be combined with in-memory generation (i.e. empty filename). De-
fault: false

master-
password1

(String) The master password for the document. If it is empty no master password will be applied. On
EBCDIC platforms the password is expected in ebcdic encoding or EBCDIC-UTF-8. Default: empty

80 Chapter 7: PLOP and PLOP DS Library API Reference

metadata (Option list; can not be combined with linearize) Supply XMP metadata for the document. PDF/A-1
and PDF/X identification entries are not allowed in the supplied XMP. The option list may contain the
following options:
filename (Name string; required) The name of a file containing well-formed XMP metadata in UTF-8

format.
validate (Keyword) The XMP metadata will be validated according to the keyword:

none No validation
xmp2004 Validation according to the XMP 2004 specification
pdfa1 Like xmp2004, plus testing for predefined properties and schemas, and extension

schema validation according to PDF/A-1.
Default: none, but will be forced to pdfa1 if the input conforms to PDF/A-1 and the sacrifice

option does not include pdfa1

optimize (Keyword) The optimization steps to be applied while processing the document (default: none if the sign
option was supplied, otherwise all):
all Apply all implemented optimizations.
none Don’t apply any optimization; this will slightly speed up processing at the expense of file size.

permissions (Keyword list; requires masterpassword) The access permission list for the output document. It contains
any number of the noprint, nomodify, nocopy, noannots, noassemble, noforms, noaccessible,
nohiresprint, and plainmetadata keywords (see Table 4.3, page 52). Default: empty

recordsize (Integer; MVS only) The record size of the output file. Default: 0 (unblocked output)

sacrifice (List of keywords) This option can be used for controlling the behavior in case of conflicts between prop-
erties of the input PDF and the requested action. By default, PLOP will not create any output if it detects
a conflict, but throw an exception instead. However, you can sacrifice some property of the document in
order to allow processing. The keywords listed in Table 7.5. are supported; they will be ignored unless
both the input and action triggers are true (default: empty list, i.e. an exception will be thrown in case of
a conflict, and no output will be created):

sign (Option list; can not be combined with linearize; only available in PLOP DS) Sign the created document
according to the suboptions listed in Table 7.6.

tempdirname (String) Name of a directory where temporary files needed for PLOP’s internal processing will be created.
If empty, PLOP will generate temporary files in the current directory. This option will be ignored if the
tempfilename option has been supplied. Default: empty

tempfilename (String; MVS only) Full file name for a temporary file needed for PLOP’s internal processing. If empty,
PLOP will generate a unique temp file name. The user is responsible for deleting the temporary file after
PLOP_close_document(). If this option is supplied the filename parameter must not be empty. Default:
empty

user-
password1

(String; requires the masterpassword option) The user password for the document. If it is empty no user
password will be applied. On EBCDIC platforms the password is expected in ebcdic encoding or EBCDIC-
UTF-8. Default: empty

1. Characters outside of Winansi encoding are only allowed in passwords if PDF 1.7 extension level 3 or higher is generated.

Table 7.4 Options for PLOP_create_file()

option description

7.3 Document Input and Output Functions 81

Table 7.5 Suboptions for the sacrifice option of PLOP_create_file()

option description

encrypted-
attachments

(Input trigger: the document is not encrypted, but contains one ore more encrypted file attachments; ac-
tion trigger: the appropriate password for the encrypted file attachment has not been supplied with the
password option). If this keyword is supplied, encrypted file attachments for which the password is not
available will be removed.

fields (Input trigger: the document contains form fields with NeedAppearances=true; action trigger: sign op-
tion). If this keyword is supplied, existing form fields (including existing signature fields which may be
present) will be removed.

pdfa1 (Input trigger: the document conforms to PDF/A-1a:2005 or PDF/A-1b:2005; action triggers: any of the
options userpassword, masterpassword, or permissions) If this keyword is supplied, PDF/A-1 input can
be encrypted, but the PDF/A-1 conformance entries will be removed (i.e. the output will no longer be
flagged as PDF/A-1).

pdfx (Input trigger: the document conforms to PDF/X-1a or PDF/X-3/4/5; action triggers: option sign with a
signature rectangle on the page, or any of the options userpassword, masterpassword, or permissions)
If this keyword is supplied, encrypting or adding a visible signature field inside the BleedBox (or the Trim-
Box/ArtBox if no BleedBox is present) will be allowed, but the PDF/X conformance entries will be re-
moved (i.e. the output will no longer be flagged as PDF/X).

signatures (Input trigger: the document contains one or more signatures; any action) If this keyword is supplied, ex-
isting signatures will be cleared (i.e. signature values, but not the corresponding form fields will be re-
moved) in order to avoid creating output with invalid signatures.

82 Chapter 7: PLOP and PLOP DS Library API Reference

Table 7.6 Suboptions for the sign option of PLOP_create_file() (only available in PLOP DS)

option description

appearance (Option list) Specifies the visual appearance of the form field which will hold the signature:
fieldname (Text string; must not end in a period ».« character) Name of the signature field. If the

document contains a signature field with this name, it will be used for the signature (and
page and rect will be ignored), otherwise the field will be created. If a field by this name
exists, but has a type other than Signature, an exception will be thrown. Default:
Signature1

page (Integer) Number of the page on which the (visible or invisible) signature field will be created.
The first page has number 1. Default: 1

rect (Rectangle) Coordinates of the lower left and upper right corners of the signature field in PDF
coordinates (one unit is 1/72 inch). Default: {0 0 0 0} which creates an invisible signature

contactinfo (Text string) Information provided by the signer to enable a recipient to contact the signer to verify the
signature (e.g. a phone number)

digitalid (Option list; required) Specifies the signer’s digital ID (certificate and private key) with exactly one of the
following suboptions:
filename (String) Name of a digital ID file in PKCS#12 (only for engine=builtin or CE interface) or PFX

format. PKCS#12 and PFX files can also be supplied as virtual files, i.e. memory data which
was assigned a file name with PLOP_create_pvf(). For engine=pkcs#11 this option contains
the name of a PKCS#11 DLL/shared library for the cryptographic token, e.g. smartcard.

certstore (Option list; only for engine=mscapi) Options for locating an ID in Windows’ certificate store:
subject (String; required) Search an ID where the »subject« entry contains the supplied

string. It will usually hold the »common name« (CN) entry of the digital ID.
store (String) Name of the certificate store (common names: My, root, trust, CA). De-

fault: My
keyusage (Option list; only for engine=pkcs#11) Criteria for selecting the target ID if multiple IDs are

present (e.g. on a smartcard). Each keyword corresponds to a bit in the KeyUsage certificate
extension. The value for each keyword specifies whether the extension bit must be 1 (set), 0
(clear), or will be ignored (ignore) when selecting the ID. PLOP DS will use the ID which
matches the specified criteria. If no matching ID was found, an exception will be thrown. The
following keywords are supported: clear, ignore, set. The default is ignore for all entries.
digitalsignature

(Keyword) One of the keywords clear/ignore/set to specify handling of the
digitalsignature key usage extension (i.e. bit 0).

nonrepudiation
(Keyword) One of the keywords clear/ignore/set to specify handling of the
nonrepudiation key usage extension (i.e. bit 1).

engine (Keyword) Specifies the crypto engine to be used for digital signatures (default: builtin):
builtin Use the built-in crypto engine; digital IDs must be fetched from a disk file (PFX or PKCS#12).
mscapi (Only on Windows) Use Microsoft Crypto API as crypto engine; digital IDs can be fetched from

the certificate store or from a disk file (PFX only).
pkcs#11 (Only on selected platforms) Use the PKCS#11 interface to fetch the certificate from a

cryptographic token. The name of the corresponding PKCS#11 DLL/shared library for the
token must be provided in the filename suboption of the digitalid option.

location (Text string) Physical location of the signing

password (String which may be empty; for engine=builtin exactly one of password or passwordfile is required;
other engines may use alternate methods) Specifies the password, pass phrase, or PIN for the digital ID.
For engine=pkcs#11 this option must contain the PIN for the cryptographic token unless the PIN must be
entered interactively on the token itself (e.g. a smartcard reader with keyboard). On EBCDIC platforms
the password is expected in ebcdic encoding.

7.3 Document Input and Output Functions 83

passwordfile (String; for engine=builtin exactly one of password or passwordfile is required; other engines may use
alternate methods) The first line of the file (excluding the line end character or characters) will be used as
password, pass phrase, or PIN for the digital ID. On EBCDIC platforms the contents of the password file
are expected in ebcdic encoding.

reason (Text string) Reason for signing the document

subfilter (Keyword) Kind of PDF signature (default: adbe.pkcs7.detached):
adbe.pkcs7.detached

No data will be encapsulated in the PKCS#7 signed-data field. This method covers dynamic
document modifications, e.g. a date field populated by JavaScript code.

adbe.pkcs7.sha1
The SHA-1 digest of the data is encapsulated in the PKCS#7 signed-data field. This method will
not cover dynamic document modifications.

Table 7.6 Suboptions for the sign option of PLOP_create_file() (only available in PLOP DS)

option description

84 Chapter 7: PLOP and PLOP DS Library API Reference

C++ const char *get_buffer(long *size)
C# Java byte[] get_buffer()

Perl PHP string get_buffer()
VB Function get_buffer() As Variant

C const char * PLOP_get_buffer(PLOP *plop, long *size)

Fetch full or partial buffer contents of the output document from memory.

size Only required in the C binding. A pointer to a memory location where the length
of the returned buffer will be stored.

Returns A buffer containing output data. In COM this is a Variant array of unsigned bytes. Java-
Script with COM does not allow to retrieve the length of the returned variant array (but
it does work with other languages and COM). The client must consume the buffer con-
tents before calling any other PLOP library function.

Details PDF output can only be fetched with this function if in-memory generation has been re-
quested by supplying an empty file name to PLOP_create_file() (otherwise output will be
written directly to a file). PLOP_get_buffer() must be called before calling
PLOP_close_document().

If the flush option of PLOP_create_file() has its default value of none the returned
buffer is guaranteed to contain all data for the output document. With flush=content
PLOP_get_buffer() will stop every time a larger chunk of PDF content data (more specifi-
cally: a PDF stream object) has been processed, and the returned buffer will contain only
a fragment of the output document. With a flush=heavy this function will process small-
er portions, and will be called more frequently.

Unless flush=none, PLOP_get_buffer() must be called in a loop until it returns an emp-
ty buffer. The client must concatenate the returned fragments in order to generate the
full output document. If flush=none a single call to PLOP_get_buffer() is sufficient.

C++ void close_document(int doc)
C# Java close_document(int doc)

Perl PHP close_document(long doc)
VB Sub close_document(doc As Long)

C void PLOP_close_document(PLOP *plop, int doc)

Close the input and output documents.

doc A valid document handle obtained with PLOP_open_document*().

Details This function must be called for cleanup when processing is done, and before
PLOP_delete() is called.

7.4 Exception Handling 85

7.4 Exception Handling
PLOP supplies auxiliary methods for handling library exceptions in the C language. Oth-
er PLOP language bindings use the native exception handling system of the respective
language, such as try/catch clauses. The language wrappers will pack information about
exception number, description, and API function name into the generated exception
object. In the Java language binding these items can be retrieved selectively.

When a PLOP exception occurred, no other PLOP function except PLOP_delete() may
be called with the corresponding PLOP object.

The PLOP language bindings for Java and .NET define a separate PLOPException object
which offers several members to access detailed error information.

C++ int get_errnum()
C# Java int get_errnum()

Perl PHP int get_errnum()
VB Function get_errnum() As Long

C int PLOP_get_errnum(PLOP *plop)

Get the number of the last thrown exception, or the reason of a failed function call.

Returns The exception’s error number.

Bindings In .NET this method is also available as Errnum in the PLOPException object.
In Java this method is also available as get_errnum() in the PLOPException object.

C++ string get_errmsg()
C# Java String get_errmsg()

Perl PHP string get_errmsg()
VB Function get_errmsg() As String

C const char *PLOP_get_errmsg(PLOP *plop)

Get the descriptive text of the last thrown exception, or the reason of a failed function
call.

Returns A string describing the error, or an empty string if the last API call didn’t cause any error.

Bindings In .NET this method is also available as Errmsg in the PLOPException object.
In Java this method is also available as getMessage() in the PLOPException object.

C++ string get_apiname()
C# Java String get_apiname()

Perl PHP string get_apiname()
VB Function get_apiname() As String

C const char *PLOP_get_apiname(PLOP *plop)

Get the name of the API function which threw the last exception or failed.

Returns The name of a PLOP API function.

86 Chapter 7: PLOP and PLOP DS Library API Reference

Bindings In .NET this method is also available as Apiname in the PLOPException object.
In Java this method is also available as get_apiname() in the PLOPException object.

C PLOP_TRY(PLOP *plop)

Set up an exception handling frame; must always be paired with PLOP_CATCH().

Details See »Exception handling«, page 31.

C PLOP_CATCH(PLOP *plop)

Catch an exception; must always be paired with PLOP_TRY().

Details See »Exception handling«, page 31.

C PLOP_EXIT_TRY(PLOP *plop)

Inform the exception machinery that a PLOP_TRY() will be left without entering the cor-
responding PLOP_CATCH() clause.

Details See »Exception handling«, page 31.

C PLOP_RETHROW(PLOP *plop)

Re-throw an exception to another handler.

Details See »Exception handling«, page 31.

7.5 Option Handling 87

7.5 Option Handling

C++ void set_option(string optlist)
C# Java void set_option(String optlist)

Perl PHP set_option(string optlist)
VB Sub set_option(optlist As String)

C void PLOP_set_option(PLOP *plop, const char *optlist)

Set one or more global options for PLOP.

optlist An option list specifying global options according to Table 7.7. If an option is
provided more than once the last instance will override all previous ones. In order to
supply multiple values for a single option (e.g. searchpath) supply all values in a list ar-
gument to this option.

Details Multiple calls to this function can be used to accumulate values for those options
marked in Table 7.7. For unmarked options the new value will override the old one.

Table 7.7 Global options for PLOP_set_option()

option description

filename-
handling

(Keyword; not required on Windows) Target encoding for file names. On Windows this option will be ap-
plied to supplied file names, but not to the names of generated files (default: unicode on Mac OS X, oth-
erwise honorlang):
ascii 7-bit ASCII
basicebcdic Basic EBCDIC according to code page 1047, but only Unicode values <= U+007E
basicebcdic_37

Basic EBCDIC according to code page 0037, but only Unicode values <= U+007E
honorlang The environment variables LC_ALL, LC_CTYPE and LANG will be interpreted and applied to file

names if it specifies utf8, UTF-8, cpXXXX, CPXXXX, iso8859-x, or ISO-8859-x.
legacy Use auto encoding (i.e. the current system encoding) to interpret the file name and interpret

the LANG variable if the honorlang parameter is set.
unicode Unicode encoding in (EBCDIC-) UTF-8 format
all valid encoding names

Any (internal or user-defined) encoding recognized by PLOP
File names supplied in non-Unicode aware language bindings without a UTF-8 BOM and with length=0
will be interpreted according to the filenamehandling option.

license (String) Set the license key. It must be set before the first call to PLOP_open_document*().

licensefile (String) Set the name of a file containing the license key(s). The license file can be set only once before the
first call to PLOP_open_document*(). Alternatively, the name of the license file can be supplied in an
environment variable called PDFLIBLICENSEFILE or (on Windows) via the registry.

frontpage (Boolean) If false, an exception will be thrown if no valid license key was found; if true, a front page will
be created in evaluation mode according to Section 0.1, »Installing the Software«, page 5. This option
must be set before the first call to PLOP_open_document*(). It doesn’t have any effect if a valid license
key was found. Default: true

searchpath1 (List of name strings) Relative or absolute path name(s) of a directory containing files to be read. The
search path can be set multiply; the entries will be accumulated and used in least-recently-set order. An
empty string deletes all existing search path entries. On Windows the searchpath can also be set via a
registry entry. Default: empty

88 Chapter 7: PLOP and PLOP DS Library API Reference

shutdown-
strategy

(Integer) Strategy for releasing global resources which are allocated once for all PLOP objects. Each global
resource is initialized on demand when it is first needed. This option must be set to the same value for all
PLOP objects in a process; otherwise the behavior is undefined (default: 0):
0 A reference counter keeps track of how many PLOP objects use the resource. When the last

PLOP object is deleted and the reference counter drops to zero, the resource is released.
1 The resource is kept until the end of the process. This may slightly improve performance, but

requires more memory after the last PLOP object is deleted.

1. Option values can be accumulated with multiple calls.

Table 7.7 Global options for PLOP_set_option()

option description

7.6 pCOS Functions 89

7.6 pCOS Functions
The full pCOS syntax for retrieving object data from a PDF is supported; see the pCOS
Path Reference for a detailed description.

C++ double pcos_get_number(int doc, string path)
C# Java double pcos_get_number(int doc, String path)

Perl PHP double pcos_get_number(long doc, string path)
VB Function pcos_get_number(doc as Long, path As String) As Double

C double PLOP_pcos_get_number(PLOP *plop, int doc, const char *path, ...)

Get the value of a pCOS path with type number or boolean.

doc A valid document handle obtained with PLOP_open_document*().

path A full pCOS path for a numerical or boolean object.

Additional parameters (C language binding only) A variable number of additional pa-
rameters can be supplied if the key parameter contains corresponding placeholders (%s
for strings or %d for integers; use %% for a single percent sign). Using these parameters
will save you from explicitly formatting complex paths containing variable numerical
or string values. The client is responsible for making sure that the number and type of
the placeholders matches the supplied additional parameters.

Returns The numerical value of the object identified by the pCOS path. For Boolean values 1 will
be returned if they are true, and 0 otherwise.

C++ string pcos_get_string(int doc, string path)
C# Java String pcos_get_string(int doc, String path)

Perl PHP string pcos_get_string(long doc, string path)
VB Function pcos_get_string(doc as Long, path As String) As String

C const char *PLOP_pcos_get_string(PLOP *plop, int doc, const char *path, ...)

Get the value of a pCOS path with type name, string, or boolean.

doc A valid document handle obtained with PLOP_open_document*().

path A full pCOS path for a string, name, or boolean object.

Additional parameters (C language binding only) A variable number of additional pa-
rameters can be supplied if the key parameter contains corresponding placeholders (%s
for strings or %d for integers; use %% for a single percent sign). Using these parameters
will save you from explicitly formatting complex paths containing variable numerical
or string values. The client is responsible for making sure that the number and type of
the placeholders matches the supplied additional parameters.

Returns A string with the value of the object identified by the pCOS path. For Boolean values the
strings true or false will be returned.

Details This function will raise an exception if pCOS does not run in full mode and the type of
the object is string. As an exception, the objects /Info/* (document info keys) can also be
retrieved in restricted pCOS mode if nocopy=false or plainmetadata=true, and

90 Chapter 7: PLOP and PLOP DS Library API Reference

bookmarks[...]/Title and annots[...]/contents can be retrieved in restricted pCOS mode if
nocopy=false.

This function assumes that strings retrieved from the PDF document are text strings.
String objects which contain binary data should be retrieved with
PLOP_pcos_get_stream() instead which does not modify the data in any way.

Bindings C and C++ language bindings: The string will be returned in UTF-8 format without BOM.
C binding: The returned string can be used until the next call to this function.

Java and .NET: the result will be provided as Unicode string. If no more text is available a
null object will be returned.

Perl and PHP language bindings: the result will be provided as UTF-8 string. If no more
text is available a null object will be returned.

RPG language binding: the result will be provided as UTF-8 string.

C++ const unsigned char *pcos_get_stream(int doc, int *length, string optlist, string path)
C# Java byte[] pcos_get_stream(int doc, String optlist, String path)

Perl PHP string pcos_get_stream(long doc, string optlist, string path)
VB Function pcos_get_stream(doc as Long, optlist As String, path As String)

C const unsigned char *PLOP_pcos_get_stream(PLOP *plop, int doc, int *length, const char *optlist,
const char *path, ...)

Get the contents of a pCOS path with type stream, fstream, or string.

doc A valid document handle obtained with PLOP_open_document*().

length (C and C++ language bindings only) A pointer to a variable which will receive
the length of the returned stream data in bytes.

optlist An option list specifying stream retrieval options according to Table 7.8.

path A full pCOS path for a stream or string object.

Additional parameters (C language binding only) A variable number of additional pa-
rameters can be supplied if the key parameter contains corresponding placeholders (%s
for strings or %d for integers; use %% for a single percent sign). Using these parameters
will save you from explicitly formatting complex paths containing variable numerical
or string values. The client is responsible for making sure that the number and type of
the placeholders matches the supplied additional parameters.

Returns The unencrypted data contained in the stream or string. The returned data will be emp-
ty (in C and C++: NULL) if the stream or string is empty.

If the object has type stream, all filters will be removed from the stream contents (i.e.
the actual raw data will be returned). If the object has type fstream or string the data will
be delivered exactly as found in the PDF file, with the exception of ASCII85 and ASCII-
Hex filters which will be removed.

Details This function will throw an exception if pCOS does not run in full mode. As an excep-
tion, the object /Root/Metadata can also be retrieved in restricted pCOS mode if
nocopy=false or plainmetadata=true. An exception will also be thrown if path does not
point to an object of type stream, fstream, or string.

7.6 pCOS Functions 91

Despite its name this function can also be used to retrieve objects of type string. Un-
like PLOP_pcos_get_string(), which treats the object as a text string, this function will not
modify the returned data in any way. Binary string data is rarely used in PDF, and can-
not be reliably detected automatically. The user is therefore responsible for selecting
the appropriate function for retrieving string objects as binary data or text.

Bindings COM: Most client programs will use the Variant type to hold the stream contents. Java-
Script with COM does not allow to retrieve the length of the returned variant array (but
it does work with other languages and COM).

C and C++ language bindings: The returned data buffer can be used until the next call to
this function.

This function can be used to retrieve embedded font data from a PDF. Users are reminded of
the fact that fonts are subject to the respective font vendor’s license agreement, and must not
be reused without the explicit permission of the respective intellectual property owners. Please
contact your font vendor to discuss the relevant license agreement.

Table 7.8 Options for PLOP_pcos_get_stream()

option description

convert (Keyword; will be ignored for streams which are compressed with unsupported filters) Controls whether
or not the string or stream contents will be converted (default: none):
none Treat the contents as binary data without any conversion.
unicode Treat the contents as textual data (i.e. exactly as in PLOP_pcos_get_string()), and normalize

it to Unicode. In non-Unicode-aware language bindings this means the data will be
converted to UTF-8 format without BOM.
This option is required for the data type »text stream« in PDF which is rarely used (e.g. it can
be used for JavaScript, although the majority of JavaScripts is contained in string objects, not
stream objects).

92 Chapter 7: PLOP and PLOP DS Library API Reference

7.7 Unicode Conversion Function

C++ string convert_to_unicode(string inputformat, string input, string optlist)
C# Java string convert_to_unicode(string inputformat, byte[] input, string optlist)

Perl PHP string convert_to_unicode(string inputformat, string input, string optlist)
VB Function convert_to_unicode(inputformat as String, input, optlist as String) As String

C const char *PLOP_convert_to_unicode(PLOP *p,
const char *inputformat, const char *input, int inputlen, int *outputlen, const char *optlist)

Convert a string in an arbitrary encoding to a Unicode string in various formats.

inputformat Unicode text format or encoding name specifying interpretation of the
input string:

> Unicode text formats: utf8, ebcdicutf8, utf16, utf16le, utf16be, utf32
> All internally known 8-bit encodings, encodings available on the host system, and

the CJK encodings cp932, cp936, cp949, cp950
> The keyword auto specifies the following behavior: if the input string contains a

UTF-8 or UTF-16 BOM it will be used to determine the appropriate format, otherwise
the current system codepage will be assumed.

input String (COM: Variant) to be converted to Unicode.

inputlen (C language binding only) Length of the input string in bytes. If inputlen = 0 a
null-terminated string must be provided.

outputlen (C language binding only) C-style pointer to a memory location where the
length of the returned string (in bytes) will be stored.

optlist An option list specifying options for input interpretation and Unicode conver-
sion:

> Input filter options according to Table 7.9: charref, escapesequence
> Unicode conversion options according to Table 7.9:

bom, errorpolicy, inflate, outputformat

Returns A Unicode string created from the input string according to the specified parameters
and options. If the input string does not conform to the specified input format (e.g. in-
valid UTF-8 string) an empty output string will be returned if errorpolicy=return, and an
exception will be thrown if errorpolicy=exception.

Details This function may be useful for general Unicode string conversion. It is provided for the
benefit of users working in environments which do not provide suitable Unicode con-
verters.

Scope any

Bindings C binding: the returned strings will be stored in a ring buffer with up to 10 entries. If
more than 10 strings are converted, the buffers will be reused, which means that clients
must copy the strings if they want to access more than 10 strings in parallel. For exam-
ple, up to 10 calls to this function can be used as parameters for a printf() statement
since the return strings are guaranteed to be independent if no more than 10 strings are
used at the same time.

7.7 Unicode Conversion Function 93

C++ string utf16_to_utf8(string utf16string)
Perl PHP string utf16_to_utf8(string utf16string)

C const char *PLOP_utf16_to_utf8(PLOP *p, const char *utf16string, int len, int *size)

Deprecated, use PLOP_convert_to_unicode()

C++ string utf8_to_utf16(string utf8string, string ordering)
Perl PHP string utf8_to_utf16(string utf8string, string ordering)

C const char *PLOP_utf8_to_utf16(PLOP *p, const char *utf8string, const char *ordering, int *size)

Deprecated, use PLOP_convert_to_unicode()

Table 7.9 Options for PLOP_convert_to_unicode()

option description

bom (Keyword; will be ignored for outputformat=utf32) Policy for adding a byte order mark (BOM) to the
output string. Supported keywords (default: none):
add Add a BOM.
keep Add a BOM if the input string has a BOM.
none Don’t add a BOM.
optimize Add a BOM except if outputformat=utf8 or ebcdicutf8 and the output string contains only

characters in the range < U+007F.

charref (Boolean) If true, enable substitution of numeric and character entity references and glyph name refer-
ences. Default: false

errorpolicy (Keyword) Behavior in case of conversion errors (default: exception):
return The replacement character will be used if a character reference cannot be resolved. An empty

string will be returned in case of conversion errors.
exception An exception will be thrown in case of conversion errors.

escape-
sequence

(Boolean) If true, enable substitution of escape sequences in strings. Default: false

inflate (Boolean; only for inputformat=utf8; will be ignored if outputformat=utf8) If true, an invalid UTF-8
input string will not trigger an exception, but rather an inflated byte string in the specified output for-
mat will be generated. This may be useful for debugging. Default: false

output-
format

(Keyword) Unicode text format of the generated string: utf8, ebcdicutf8, utf16, utf16le,
utf16be, utf32. An empty string is equivalent to utf16. Default: utf16
Unicode-aware language bindings: the output format will be forced to utf16.
C++ language binding: only the following output formats are allowed: utf8, utf16, utf32.

A Combining PDFlib with PLOP or PLOP DS 95

A Combining PDFlib with PLOP or
PLOP DS
Depending on the PDFlib version number it may make sense to combine PLOP and
PDFlib, PDFlib+PDI or PDFlib Personalization Server (PPS). Table A.1 summarizes the
availability of encryption, linearization, optimization/repair mode, and digital signa-
ture in the PDFlib family. Attaching PLOP or PLOP DS to PDFlib makes sense in all situa-
tions where you need a feature which is not supported by your PDFlib version.

PLOP has been designed for easy interoperability with PDFlib for dynamically generat-
ing and post-processing PDF. In this chapter we discuss how you can combine both
products. Although it is possible to use the PLOP command-line tool to post-process
documents generated with PDFlib, it is recommended to use the PLOP library to do so.

Note Since PDFlib 7 and 8 do not create Appearance streams for form fields, you cannot use PLOP to
sign PDFlib-generated documents containing form fields unless you remove the form fields
with the sacrifice option.

File-Based Combination. The file-based method is recommended if you deal with very
large PDF documents, or if you need to reduce the total memory requirements of the
PDFlib/PLOP combination. Simply generate a PDF file on disk with appropriate PDFlib
routines, and subsequently process it with PLOP_open_document().

Memory-Based Combination. The memory-based method is faster, but requires more
memory. It is recommended for dynamic PDF generation and signature in Web applica-
tions unless you deal with very large documents. Instead of generating a PDF file on
disk with PDFlib, use in-core PDF generation by supplying an empty file name to
PDF_begin_document(), fetch the contents of the buffer containing the generated PDF
data using PDF_get_buffer(), and create a virtual file with PLOP_create_pvf() . The file
name used for the virtual file can then be passed to PLOP/PLOP DS using
PLOP_open_document() without having to create a physical file on disk. Note that it is
not possible to fetch the PDFlib buffer contents in multiple portions since the full docu-
ment must be supplied to PLOP/PLOP DS in a single buffer. Therefore you must call
PDF_get_buffer() between PDF_end_document() and PDF_delete().

The hellosign programming sample, which is included in all PLOP packages, demon-
strates how to use PDFlib for dynamically creating a PDF document and passing it to
PLOP in memory for applying a digital signature.

Table A.1 Encryption, linearization, optimization, and signature support in various PDFlib versions

PDFlib version Encryption Linearization
Optimization and
repair mode

Digital
Signature

PDFlib/PDFlib+PDI/PPS 5 yes – – –

PDFlib/PDFlib+PDI/PPS 6 yes yes – –

PDFlib/PDFlib+PDI/PPS 7, 8 yes yes yes –

96 Chapter B: PLOP Library Quick Reference

B PLOP Library Quick Reference
The following tables contain an overview of all PLOP API functions. The prefix (C) de-
notes C prototypes of functions which are not available in the Java language binding.

General Functions

Document Input and Output

Error Handling

Option Handling

pCOS Functions

Unicode Conversion Function

Function prototype page
(C) PLOP * PLOP_new(void) 73
void delete() 73
void create_pvf(String filename, byte[] data, String optlist) 73
int delete_pvf(String filename) 74
double info_pvf(String filename, String keyword) 74

Function prototype page
int open_document(String filename, String optlist) 76
(C) int PLOP_open_document_callback(PLOP *plop, void *opaque, size_t filesize, size_t (*readproc)(void
*opaque, void *buffer, size_t size), int (*seekproc)(void *opaque, long offset), const char *optlist) 77
int create_file(String filename, String optlist) 78
close_document(int doc) 84
byte[] get_buffer() 84

Function prototype page
int get_errnum() 85
String get_errmsg() 85
String get_apiname() 85

Function prototype page
void set_option(String optlist) 87

Function prototype page
double pcos_get_number(int doc, String path) 89
String pcos_get_string(int doc, String path) 89
byte[] pcos_get_stream(int doc, String optlist, String path) 90

Function prototype page
string convert_to_unicode(string inputformat, byte[] input, string optlist) 92

C Revision History 97

C Revision History

Revision history of this manual

Date Changes

March 04, 2011 > Major overhaul for PLOP 4.1 and PLOP DS 4.1

December 05, 2008 > Updates for XMP, PVF, and PKCS#11 (smartcard) support in PLOP 4.0 and PLOP DS 4.0

July 15, 2007 > Updates for PLOP 3.0 and PLOP DS 3.0

September 27, 2004 > Updates for PLOP 2.1

December 01, 2003 > Updated for new major release PLOP 2.0

November 23, 2002 > Added a description of the Perl binding for PSP

November 7, 2002 > Added a section on the use of PSP with ILE-RPG

October 22, 2002 > Minor changes for PSP 1.0.1

September 17, 2002 > First edition for PSP 1.0.0

Index 99

Index

A
Ad Ticket scheme 18
AES encryption algorithm 48
attachment password 47

B
byteserving 13

C
C binding 31
C++ and .NET 39
C++ binding 34
certificate organization in Windows 59
certified PDF 64
CLI 34
COM binding 36
commercial license 8
crypto engines 58
cryptographic tokens 58, 62

D
damaged input PDFs 15
dictionary attack 49
digital IDs 58
digital signatures 20, 57

in the input document 22
validation in Acrobat 65

document info entries 17
DSA-based signature 64

E
electronic signatures: see digital signatures
encrypted file attachments 22, 50
encryption algorithm for digital signatures 64
evaluation version 5
exception handling 85

in C 31
exit codes 28
external crypto engine 58

F
file attachments, encrypted 50
font optimization 14
form fields in the input document 22

G
garbage collection 14
Ghent Workgroup (GWG) 18

H
hash function for digital signatures 64

I
incremental update 64
installing PLOP/PLOP DS 5
invalid XMP metadata 19

J
Java binding 37

K
key lengths for digital signatures 64
KeyUsage certificate extension 63

L
large PDF Documents 23
license key 6
linearized PDF 13

M
master password 47
message digest for digital signatures 64
Microsoft Cryptographic API (MSCAPI) 58

N
.NET binding 39
noaccessible 52
noannots 52
noassemble 52
nocopy 52
noforms 52
nohiresprint 52
nomodify 52
nonrepudiation keyusage flag 63
noprint 52

O
optimization 14
optimized PDF 13

100 Index

option lists 71
owner password 47

P
page-at-a-time download 13
password file for digital IDs 63
passwords 47, 48

for digital IDs 63
Unicode 48

pCOS 69
API functions 89
Cookbook 11

PDF version of the generated output 21
PDF/A 21

and XMP metadata 18
PDF/X 22
PDFlib and PLOP/PLOP DS 95
Perl binding 40
permission settings 49
permissions password 47
PFX format 58
PHP binding 41
PKCS#11 58, 62
PKCS#12 58
plainmetadata 52
PLOP and PLOP DS command-line tool

examples 29
exit codes 28
features 9
options 25

PLOP and PLOP DS library
API reference 71
features 9
quick reference 96

PLOP_CATCH() 86
PLOP_close_document() 84
PLOP_convert_to_unicode() 92
PLOP_create_file() 78
PLOP_create_pvf() 73
PLOP_delete() 73
PLOP_delete_pvf() 74
PLOP_EXIT_TRY() 32, 86
PLOP_get_apiname() 85
PLOP_get_buffer() 84
PLOP_get_errmsg() 85
PLOP_get_errnum() 85
PLOP_info_pvf() 75
PLOP_new() 73
PLOP_open_document() 76

PLOP_open_document_callback() 77
PLOP_pcos_get_number() 89
PLOP_pcos_get_stream() 90
PLOP_pcos_get_string() 89
PLOP_RETHROW() 86
PLOP_set_option() 87
PLOP_TRY() 86
Python binding 43

R
RC4 encryption algorithm 48
Reader-enabled PDF 22
repair mode for damaged PDFs 15
response file 28
RPG binding 44
RSA-based signature 64

S
sacrificing properties of the input document 21
SHA-1 and SHA-256 message digests 64
signatures: see digital signatures
signing PDF documents 61
smartcards 58, 62
stream optimization 14

T
temporary disk space requirements 22

U
Unicode passwords 48
unused objects 14
user password 47

V
validating digital signatures in Acrobat 65

W
web-optimized PDF 13

X
XMP metadata 17, 18

invalid 19
plaintext 50

ABC

PDFlib GmbH
Franziska-Bilek-Weg 9
80339 München, Germany
www.pdflib.com
phone +49 • 89 • 452 33 84-0
fax +49 • 89 • 452 33 84-99

If you have questions check the PDFlib mailing list
and archive at tech.groups.yahoo.com/group/pdflib

Licensing contact
sales@pdflib.com

Support
support@pdflib.com (please include your license number)

http://tech.groups.yahoo.com/group/pdflib

	Contents
	0 First Steps with PLOP and PLOP DS
	0.1 Installing the Software
	0.2 Applying the PLOP/PLOP DS License Key

	1 PLOP and PLOP DS Features
	1.1 Overview
	1.2 Roadmap to Documentation and Samples
	1.3 Encryption, Decryption, and Permissions
	1.4 Web-Optimized (Linearized) PDF
	1.5 Optimization (Size Reduction)
	1.6 Repair Mode for damaged PDF
	1.7 Query Document Information with pCOS
	1.8 Inserting and Extracting Document Info Entries
	1.9 Inserting and Extracting XMP Metadata
	1.10 Digital Signatures with PLOP DS
	1.11 PLOP Processing Details

	2 PLOP and PLOP DS Command-line Tool
	2.1 PLOP and PLOP DS Command-line Options
	2.2 PLOP and PLOP DS Command-line Examples

	3 PLOP and PLOP DS Library Language Bindings
	3.1 C Binding
	3.2 C++ Binding
	3.3 COM Binding
	3.4 Java Binding
	3.5 .NET Binding
	3.6 Perl Binding
	3.7 PHP Binding
	3.8 Python Binding
	3.9 RPG Binding

	4 PDF Security
	4.1 PDF Security Features
	4.2 PDF Security Features in PLOP
	4.3 Securing PDF Documents on the Command Line

	5 Digital Signatures with PLOP DS
	5.1 Basic Digital Signature Concepts
	5.2 Obtaining and Managing Digital IDs
	5.3 Signing PDF Documents with PLOP DS
	5.4 Cryptographic Properties of PLOP DS Signatures
	5.5 Validating Digital Signatures with Acrobat

	6 The pCOS Interface
	7 PLOP and PLOP DS Library API Reference
	7.1 Option Lists
	7.2 General Functions
	7.3 Document Input and Output Functions
	7.4 Exception Handling
	7.5 Option Handling
	7.6 pCOS Functions
	7.7 Unicode Conversion Function

	A Combining PDFlib with PLOP or PLOP DS
	B PLOP Library Quick Reference
	C Revision History
	Index

