
ABC

pCOS Path Reference
PDF Information Retrieval Tool

pCOS Interface Version 8

Copyright © 2005–2013 PDFlib GmbH. All rights reserved.

PDFlib GmbH
Franziska-Bilek-Weg 9, 80339 München, Germany
www.pdflib.com
phone +49 • 89 • 452 33 84-0
fax +49 • 89 • 452 33 84-99

If you have questions check the PDFlib mailing list and archive at tech.groups.yahoo.com/group/pdflib

Licensing contact: sales@pdflib.com
Support for commercial PDFlib licensees: support@pdflib.com (please include your license number)

This publication and the information herein is furnished as is, is subject to change without notice, and
should not be construed as a commitment by PDFlib GmbH. PDFlib GmbH assumes no responsibility or lia-
bility for any errors or inaccuracies, makes no warranty of any kind (express, implied or statutory) with re-
spect to this publication, and expressly disclaims any and all warranties of merchantability, fitness for par-
ticular purposes and noninfringement of third party rights.

PDFlib and the PDFlib logo are registered trademarks of PDFlib GmbH. PDFlib licensees are granted the
right to use the PDFlib name and logo in their product documentation. However, this is not required.

Adobe, Acrobat, PostScript, and XMP are trademarks of Adobe Systems Inc.

http://www.pdflib.com
http://tech.groups.yahoo.com/group/pdflib
mailto:sales@pdflib.com
mailto:support@pdflib.com

Chapter : 3

Contents
1 Introduction 5

1.1 What is pCOS? 5
1.2 Roadmap to Documentation and Samples 5
1.3 Availability of the pCOS Interface 6

2 pCOS Examples 7

2.1 pCOS Functions 7
2.2 Document 9
2.3 Pages 11
2.4 Fonts 12
2.5 Raster Images 13
2.6 Interactive Elements 14

3 pCOS Data Types 15

3.1 Basic PDF Data Types 15
3.2 Composite Data Structures 17
3.3 Object Identifiers (IDs) 19

4 pCOS Path Reference 21

4.1 pCOS Path Syntax 21
4.2 Path Prefixes 22
4.3 Universal Pseudo Objects 23

4.3.1 General Document Information 23
4.3.2 PDF Version Information 24
4.3.3 Library Identification 24

4.4 Pseudo Objects for PDF Standard Identification 25
4.5 Pseudo Objects for Pages 26
4.6 Pseudo Objects for interactive Elements 27
4.7 Pseudo Objects for Resources 28
4.8 Protected PDF Documents and pCOS Mode 31

A pCOS Function Reference 33

B Revision History 34

Index 35

1.1 What is pCOS? 5

1 Introduction
1.1 What is pCOS?

The pCOS (PDFlib Comprehensive Object Syntax) interface provides a simple and elegant
facility for retrieving technical information from all sections of a PDF document which
do not describe page contents, such as page dimensions, metadata, interactive ele-
ments, etc. pCOS users are assumed to have some basic knowledge of internal PDF
structures and dictionary keys, but do not have to deal with PDF syntax and parsing de-
tails. We strongly recommend that pCOS users obtain a copy of the PDF Reference. Since
the standardization of PDF 1.7 in 2008 the PDF Reference is available as ISO 32000-1. This
standard document can be purchased from www.iso.org. If you don’t want to purchase
the official version you can download a free edition which is identical in content:

Document Management – Portable Document Format – Part 1: PDF 1.7, First Edition
Downloadable PDF from www.adobe.com/devnet/pdf/pdf_reference.html.

1.2 Roadmap to Documentation and Samples
We provide the material listed below to assist you in using pCOS successfully.

Mini samples for all language bindings. The dumper mini sample is available in all
packages and for all language bindings. It provides minimal sample code for using
pCOS. The mini sample is useful for testing your pCOS installation and for getting a
quick overview of writing pCOS applications.

pCOS Path Reference. The pCOS Path Reference (this manual) contains examples and a
concise description of the pCOS path syntax which forms the heart of the pCOS inter-
face. Since the pCOS interface is included in various other PDFlib GmbH products, the
pCOS Path Reference can be used with all products that include pCOS.

Corresponding Product Manual. The pCOS interface is available as a stand-alone prod-
uct as well as an integrated part of other PDFlib GmbH products. Each product comes
with one or more additional product-specific manuals which describe the use of the re-
spective programming library (e.g. pCOS or TET) and the corresponding command-line
tool if applicable. The product manual covers the various programming languages
which are supported by a product, and discusses the API in detail.

pCOS Cookbook. The pCOS Cookbook is a collection of code fragments for the pCOS in-
terface. It is available at the following URL:

www.pdflib.com/pcos-cookbook/

The pCOS Cookbook details the use of pCOS for a variety of applications. It is highly rec-
ommended because it serves as a repository of useful pCOS programming idioms.

http://www.pdflib.com/pcos-cookbook/
http://www.adobe.com/devnet/pdf/pdf_reference.html

6 Chapter 1: Introduction

1.3 Availability of the pCOS Interface
The pCOS interface is available as a separate product called PDFlib pCOS. It is also of-
fered as an integrated feature in several other PDFlib GmbH products. As the interface is
extended and support for newer PDF input versions is added, the pCOS interface num-
ber is increased. Table 1.1 details the pCOS interface numbers which are implemented in
various product versions

Some aspects of the pCOS interface are available only in the TET product, but not in oth-
er PDFlib GmbH products. These features are explicitly marked in this manual.

Table 1.1 pCOS interface versions implemented in PDFlib GmbH products

pCOS
interface

supported PDF input version /
corresponding Acrobat version PDFlib GmbH product name and version

1 PDF 1.6 / Acrobat 7 TET 2.0, 2.1

2 PDF 1.6 / Acrobat 7 pCOS 1.0

3 PDF 1.7 / Acrobat 8
Identical to ISO 32000-1

PDFlib+PDI 7, PPS 7,
TET 2.2, pCOS 2.0, PLOP 3.0, TET 2.3

4 PDF 1.7 extension level 3 / Acrobat 9
excluding AES-256 encryption

PLOP 4.0, TET 3.0, TET PDF IFilter 3.0

5 PDF 1.7 extension level 3 / Acrobat 9 PDFlib+PDI 8, PPS 8

6 PDF 1.7 extension level 3 / Acrobat 9 TET 4.0, TET PDF IFilter 4.0

7 PDF 1.7 extension level 8 / Acrobat X
Syntax and encryption method identical to
ISO 32000-2, also called PDF 2.0

pCOS 3.0, PLOP 4.1,
PDFlib+PDI 8.1, PPS 8.1

8 PDF 1.7 extension level 8 / Acrobat X/XI
Syntax and encryption method identical to
ISO 32000-2, also called PDF 2.0

TET 4.1, TET PDF IFilter 4.1
PDFlib+PDI 9.0, PPS 9.0
TET 4.2, TET PDF IFilter 4.2

2.1 pCOS Functions 7

2 pCOS Examples
This chapter provides examples for pCOS paths which can be used to retrieve the corre-
sponding values from PDF documents. More elaborate examples which require addi-
tional programming logic are available in the pCOS Cookbook on the PDFlib Web site.

Except where noted otherwise all programming examples are presented in the Java
language. However, with the obvious changes (mostly of syntactic nature) the examples
can be used with all programming languages supported by pCOS.

The examples shown in this chapter are not comprehensive. Many more pCOS appli-
cations are possible by using other PDF objects.

2.1 pCOS Functions
Basic pCOS function calls. The following functions are the workhorses for querying
PDF documents with pCOS:

> pcos_get_number() retrieves objects of type number or boolean;
> pcos_get_string() retrieves objects of type name, number, string, or boolean;
> pcos_get_stream() retrieves objects of type stream, fstream, or string.

These functions can be used to retrieve information from a PDF document using the
pCOS path syntax. The basic structure of a pCOS application looks as follows:

/* Open the PDF document */
int doc = p.open_document(filename, "");
if (doc == -1)

throw new Exception("Error: " + p.get_errmsg());

/* Retrieve the value of a pCOS pseudo object */
System.out.println(" PDF version: " + p.pcos_get_string(doc, "pdfversionstring"));

p.close_document(doc);

The parameters for the pCOS functions are the same in all products. They are docu-
mented in the respective product reference manuals; a quick overview of pCOS func-
tion prototypes is available in Appendix A, »pCOS Function Reference«.

Adding programming logic. Many pCOS objects consist of arrays of some length. The
length can be retrieved with the length: prefix. The array can then be indexed with inte-
ger values in the range 0 up to length-1. The following code queries the number of fonts
in a document and prints the type and name of each font:

count = (int) p.pcos_get_number(doc, "length:fonts");

for (i = 0; i < count; i++) {
 String fonts;

 System.out.print(p.pcos_get_string(doc, "fonts[" + i + "]/type") + " font ");
 System.out.println(p.pcos_get_string(doc, fonts[" + i + "]/name));
}

8 Chapter 2: pCOS Examples

Formatting placeholders in C. The C language binding offers a convenience feature to
facilitate the use of parameters within a pCOS path. Analogous to the formatting pa-
rameters of the printf() family of functions you can use %s and %d placeholders for
string and integer parameters, respectively. The values of these parameters must be
added as additional function parameters after the pCOS path. pCOS will replace the
placeholders with the actual values. This feature is particularly useful for paths contain-
ing array indices.
For example, the Java idiom above for listing all fonts can be written in C as follows:

count = (int) PDF_pcos_get_number(p, doc, "length:fonts");

for (i = 0; i < count; i++)
{
 printf("%s font ", PDF_pcos_get_string(p, doc, "fonts[%d]/type", i));
 printf("%s\n", PDF_pcos_get_string(p, doc, "fonts[%d]/name", i));
}

Since modern programming languages offer more sophisticated string handling func-
tions this feature is only available in the C language binding, but not any other lan-
guage binding.

2.2 Document 9

2.2 Document
Table 2.1 lists pCOS paths for general and document-related objects.

Encryption status and pCOS mode. You can query the pcosmode pseudo object to de-
termine the pCOS mode for the document. This is important to avoid exception when
later an attempt is made at retrieving information for which no access is granted (e.g.
because the password is encrypted and no suitable password has been supplied). The
following general structure based on values of pcosmode is recommended for all pCOS
applications:

/* Open the PDF document */
int doc = p.open_document(filename, "requiredmode=minimum");
if (doc == -1)

throw new Exception("Error: " + p.get_errmsg());

int pcosmode = (int) p.pcos_get_number(doc, "pcosmode");
boolean plainmetadata = p.pcos_get_number(doc, "encrypt/plainmetadata") != 0;

// Retrieve universal pseudo objects which are always available
System.out.println(" PDF version: " + p.pcos_get_string(doc, "pdfversionstring"));
System.out.println(" Encryption: " + p.pcos_get_string(doc, "encrypt/description"));

// encrypted document, but password was not supplied
if (pcosmode == 0) {
 System.out.println("Minimum mode: no more information available\n");
 p.delete();
 return;
}

// otherwise query more information
System.out.println("PDF/A status: " + p.pcos_get_string(doc, "pdfa"));

// no master password supplied; we cannot retrieve metadata
if (pcosmode == 1 && !plainmetadata && p.pcos_get_number(doc, "encrypt/nocopy") != 0) {
 System.out.print("Restricted mode: no more information available");
 p.delete();

Table 2.1 pCOS paths for document-related items

pCOS path type explanation

pcosmode number pCOS mode of the document, i.e. its encryption status (see Section 4.8,
»Protected PDF Documents and pCOS Mode«, page 31)

pdfversionstring string string representing the PDF version number of the document

/Info/Title string Document info field Title; The following field names are predefined in
PDF and can be used in a similar manner:
Title, Author, Subject, Keywords, Creator, Producer,
CreationDate, ModDate, Trapped

/Info/ArticleNumber string custom document info field ArticleNumber (document info entries can
use arbitrary names)

/Root/Metadata stream XMP stream with the document’s metadata

pdfa, pdfe, pdfua,
pdfvt, pdfx

string PDF/A, PDF/E, PDF/UA, PDF/VT or PDF/X standard conformance status

10 Chapter 2: pCOS Examples

 return;
}

// otherwise we can query document information fields and XMP metadata
...

p.close_document(doc);

PDF version. The following code fragment prints the PDF version number of a docu-
ment:

System.out.println(" PDF version: " + p.pcos_get_string(doc, "pdfversionstring"));

Document info fields. Document information fields can be retrieved with the follow-
ing code sequence. In order to make sure that an object actually exists in the PDF docu-
ment and has the expected type we first check its type. If the object is present and has
type string we can retrieve it:

objtype = p.pcos_get_string(doc, "type:/Info/Title");
if (objtype.equals("string"))
{

/* Document info key found */
title = p.pcos_get_string(doc, "/Info/Title");

}

XMP metadata. A stream containing XMP metadata can be retrieved with the follow-
ing code sequence:

objtype = p.pcos_get_string(doc, "type:/Root/Metadata");
if (objtype.equals("stream"))
{

/* XMP meta data found */
metadata = p.pcos_get_stream(doc, "", "/Root/Metadata");

}

PDF standards. The PDF/A, PDF/E, PDF/UA, PDF/VT or PDF/X standard conformance
status can be queried with simple pCOS pseudo objects as follows:

System.out.println("PDF/A status: " + p.pcos_get_string(doc, "pdfa"));
System.out.println("PDF/E status: " + p.pcos_get_string(doc, "pdfe"));
System.out.println("PDF/UA status: " + p.pcos_get_string(doc, "pdfua"));
System.out.println("PDF/VT status: " + p.pcos_get_string(doc, "pdfvt"));
System.out.println("PDF/X status: " + p.pcos_get_string(doc, "pdfx"));

2.3 Pages 11

2.3 Pages
Table 2.2 lists pCOS paths for page-related objects.

Number of pages. The total number of pages in a document can be queried as follows:

pagecount = p.pcos_get_number(doc, "length:pages");

Page size. Although the MediaBox, CropBox, and Rotate entries of a page can directly be
obtained via pCOS, they must be evaluated in combination in order to find the actual
size of a page. Determining the page size is much easier with the width and height keys
of the pages pseudo object. The following code retrieves the width and height of page 3
(note that indices for the pages pseudo object start at 0):

pagenum = 2 // page 3 (0-based)
width = p.pcos_get_number(doc, "pages[" + pagenum + "]/width");
height = p.pcos_get_number(doc, "pages[" + pagenum + "]/height");

Transparency. Page transparency may be relevant for printing and other processes.
You can identify pages with transparent elements with the usespagetransparency key of
the pages pseudo object:

pagenum = 0 // page 1 (0-based)
if (p.pcos_get_number(doc, "pages[" + pagenum + "]/usespagetransparency"))
{

...page contains transparent elements...
}

Table 2.2 pCOS paths for page-related items

pCOS path type explanation

length:pages number number of pages in the document

pages[...]/width
pages[...]/height

number width and height of the page indexed in the array (keep in mind that array
index are 0-based)

12 Chapter 2: pCOS Examples

2.4 Fonts
Table 2.3 lists pCOS paths for objects related to fonts.

Listing all fonts. The following sequence creates a list of all fonts in a document along
with their embedding status:

count = p.pcos_get_number(doc, "length:fonts");
for (i=0; i < count; i++)
{

fontname = p.pcos_get_string(doc, "fonts[" + i + "]/name");
 embedded = p.pcos_get_number(doc, "fonts[" + i + "]/embedded");

/* ... */
}

Writing mode. The following code fragment checks whether a font uses vertical writ-
ing mode. The font is identified via its id, i.e. the index in the fonts array. This id can be
obtained by enumerating all possible index values:

count = p.pcos_get_number(doc, "length:fonts");
for (i=0; i < count; i++)
{

if (p.pcos_get_number(doc, "fonts[" + id + "]/vertical"))
{

/* font uses vertical writing mode */
vertical = true;

}
}

TET The TET product also provides font IDs with the get_char_info() function.

Font metrics. Fonts in PDF may contain a font descriptor dictionary with metrics val-
ues and other information about the font. Since not all fonts contain a font descriptor
you must first query its existence:

count = p.pcos_get_number(doc, "length:fonts");
for (i=0; i < count; i++)
{

ascender = p.pcos_get_number(doc, "fonts[" + i + "]/ascender");
 descender = p.pcos_get_number(doc, "fonts[" + i + "]/descender");

/* ... */
}

Table 2.3 pCOS paths for font-related properties

pCOS path type explanation

length:fonts number number of fonts in the document

fonts[...]/name string name of a font

fonts[...]/vertical boolean check a font for vertical writing mode

fonts[...]/embedded boolean embedding status of a font

fonts[...]/ascender
fonts[...]/descender

number ascender/descender value of a font (not always available, see code sample
below)

2.5 Raster Images 13

2.5 Raster Images
Table 2.4 lists pCOS paths for objects related to raster images.

Listing all images. Similar to the font list you can create a list of all images in the docu-
ment:

count = p.pcos_get_number(doc, "length:images");
for (i=0; i < count; i++)
{

width = p.pcos_get_string(doc, "images[" + i + "]/Width");
 height = p.pcos_get_number(doc, "images[" + i + "]/Height");

bpc = p.pcos_get_number(doc, "images[" + i + "]/bpc");
}

Table 2.4 pCOS paths for image-related properties

pCOS path type explanation

length:images number number of raster images in the document

images[...]/Width number image width in pixels

images[...]/Height number image height in pixels

14 Chapter 2: pCOS Examples

2.6 Interactive Elements
Table 2.5 lists pCOS paths for objects related to interactive elements.

Bookmarks. The following code fragment queries the number of bookmarks in the
document. For each bookmark its nesting level, destination (target) page and Title are
shown:

int count = (int) p.get_number(doc, "length:bookmarks");

for (int i = 0; i < count; ++i) {
 int level = (int) p.get_number(doc, "bookmarks[" + i + "]/level");
 int destpage = (int) p.get_number(doc, "bookmarks[" + i + "]/destpage");

 for (int j = 0; j < level * 4; j += 1) {
System.out.print(" ");

 }

 System.out.print(p.get_string(doc, "bookmarks[" + i + "]/Title"));

 if (destpage != -1) {
System.out.print(": page " + destpage);

 }
}

Table 2.5 pCOS paths for various PDF objects

pCOS path type explanation

length:bookmarks number number of bookmarks in the document

bookmarks[...]/Title string bookmark text

bookmarks[...]/destpage number number of the target page when the bookmark is activated, or -1 if the
bookmark does not jump to any page in the document

pages[...]/annots[...]/A/URI string target URL of the Web links on all pages

3.1 Basic PDF Data Types 15

3 pCOS Data Types
3.1 Basic PDF Data Types

pCOS offers the three functions pcos_get_number(), pcos_get_string(), and pcos_get_
stream(). These can be used to retrieve all basic data types which may appear in PDF doc-
uments. Refer to the PDF Reference to find out the data type of a particular object in
PDF.

Numbers. Objects of type integer and real can be queried with pcos_get_number(). pCOS
doesn’t make any distinction between integer and floating point numbers. Example:

/* get number of pages in the document */
int n_pages = (int) p.pcos_get_number(doc, "length:pages");

Names and strings. Objects of type name and string can be queried with pcos_get_
string(). Example:

string title = p.pcos_get_string(doc, "/Info/Title");

Name objects in PDF may contain non-ASCII characters and the #xx syntax (hexadeci-
mal value with prefix) to include certain special characters. pCOS deals with PDF names
as follows:

> Name objects will be undecorated (i.e. the #xx syntax will be resolved) before they
are returned.

> Name objects will be returned as Unicode strings in most language bindings. How-
ever, in the C language binding they will be returned as UTF-8 values without BOM.

Since the majority of strings in PDF are text strings, pcos_get_string() will treat them as
such. However, in rare situations strings in PDF are used to carry binary information. In
this case strings should be retrieved with the function pcos_get_stream() which pre-
serves binary strings and does not modify the contents in any way. Example:

byte[] signature = p.pcos_get_stream(doc, "", "fields[0]/V/Contents");

Booleans. Objects of type boolean can be queried with pcos_get_number() and will be
returned as 1 (true) or 0 (false). Example:

string linearized_s = p.pcos_get_string(doc, "linearized");

pcos_get_string() can also be used to query Boolean objects; in this case they will be re-
turned as one of the strings true and false. Example:

int linearized_i = p.pcos_get_number(doc, "linearized");

Streams. Objects of type stream can be queried with pcos_get_stream(). Example:

byte[] contents = p.pcos_get_stream(doc, "", "/Root/Metadata");

Stream data in PDF may be preprocessed with one or more compression filters. Depend-
ing on the pCOS data type (stream or fstream) the contents will be compressed or uncom-

16 Chapter 3: pCOS Data Types

pressed. Using the keepfilter option of pcos_get_stream() the client can retrieve com-
pressed data even for type stream.

The list of filters present at the stream can be queried from the stream dictionary; for
images this information is much easier accessible in the image’s filterinfo dictionary. If a
stream’s filter chain contains only supported filters its type will be stream. When re-
trieving the contents of a stream object, pcos_get_stream() will remove all filters and re-
turn the resulting unfiltered data.

Note pCOS does not support the following stream filters: JBIG2 and JPX.

If there is at least one unsupported filter in a stream’s filter chain, the object type will be
reported as fstream (filtered stream). When retrieving the contents of an fstream object,
pcos_get_stream() will remove the supported filters at the beginning of a filter chain,
but will keep the remaining unsupported filters and return the stream data with the re-
maining unsupported filters still applied. The list of applied filters can be queried from
the stream dictionary, and the filtered stream contents can be retrieved with pcos_get_
stream(). Note that the names of supported filters will not be removed when querying
the names of the stream’s filters, so the client should ignore the names of supported fil-
ters.

Streams in PDF generally contain binary data. However, in rare cases (text streams)
they may contain textual data instead (e.g. JavaScript streams). In order to trigger the
appropriate text conversion, use the convert=unicode option in pcos_get_stream().

3.2 Composite Data Structures 17

3.2 Composite Data Structures
Objects with one of the basic data types can be arranged in two kinds of composite data
structures: arrays and dictionaries. pCOS does not offer specific functions for retrieving
composite objects. Instead, the objects which are contained in a dictionary or array can
be addressed and retrieved individually.

Arrays. Arrays are one-dimensional collections of any number of objects, where each
object may have arbitrary type.

The contents of an array can be enumerated by querying the number N of elements
it contains (using the length prefix in front of the array’s path) and then iterating over
all elements from index 0 to N-1.

Dictionaries. Dictionaries (also called associative arrays) contain an arbitrary number
of object pairs. The first object in each pair has the type name and is called the key. The
second object is called the value, and may have an arbitrary type except null.

The contents of a dictionary can be enumerated by querying the number N of ele-
ments it contains (using the length prefix in front of the dictionary’s path) and then it-
erating over all elements from index 0 to N-1. Enumerating dictionaries will provide all
dictionary keys in the order in which they are stored in the PDF using the .key suffix at
the end of the dictionary’s path. Similarly, the corresponding values can be enumerated
with the .val suffix. Inherited values (see below) and pseudo objects will not be visible
when enumerating dictionary keys, and will not be included in the length count.

Some page-related dictionary entries in PDF can be inherited across a tree-like data
structure, which makes it difficult to retrieve them. For example the MediaBox for a
page is not guaranteed to be contained in the page dictionary, but may be inherited
from an arbitrarily complex page tree. pCOS eliminates this problem by transparently
inserting all inherited keys and values into the final dictionary. In other words, pCOS
users can assume that all inheritable entries are available directly in a dictionary, and
don’t have to search all relevant parent entries in the tree. This merging of inherited en-
tries is only available when accessing the pages tree via the pages[] pseudo object; ac-
cessing the /Pages tree, the objects[] pseudo object, or enumerating the keys via
pages[][] will return the actual entries which are present in the respective dictionary,
without any inheritance applied.

Reading dictionary entries. The following example enumerates the key/value pairs in
the document info dictionary:

for (i = 0; i < count; i++) {
String info;
String key;

info = "type:/Info[" + i + "]";
objtype = p.pcos_get_string(doc, info);

info = "/Info[" + i + "].key";
key = p.pcos_get_string(doc, info);
System.out.print(key + ": ");

/* Info entries can be stored as string or name objects */
if (objtype.equals("name") || objtype.equals("string"))
{

18 Chapter 3: pCOS Data Types

info = "/Info[" + i + "]";
System.out.println("'" + p.pcos_get_string(doc, info) + "'");

}
}

3.3 Object Identifiers (IDs) 19

3.3 Object Identifiers (IDs)
pCOS IDs for dictionaries and arrays. Unlike PDF object IDs, pCOS IDs are guaranteed
to provide a unique identifier for an element addressed via a pCOS path (since arrays
and dictionaries can be nested an object can have the same PDF object ID as its parent
array or dictionary). pCOS IDs can be retrieved with the pcosid prefix in front of the dic-
tionary’s or array’s path.

The pCOS ID can therefore be used as a shortcut for repeatedly accessing elements
without the need for explicit path addressing. For example, this will improve perfor-
mance when looping over all elements of a large array. Use the objects[] pseudo object to
retrieve the contents of an element identified by a particular ID.

20 Chapter 3: pCOS Data Types

4.1 pCOS Path Syntax 21

4 pCOS Path Reference
4.1 pCOS Path Syntax

The backbone of the pCOS interface is a simple path syntax for addressing and retriev-
ing any object contained in a PDF document. In addition to the object data itself pCOS
can retrieve information about an object, e.g. its type or length. Depending on the ob-
ject type (which itself can be queried) one of the functions pcos_get_number(), pcos_get_
string(), and pcos_get_stream() can be used to obtain the value of an object. The general
syntax for pCOS paths is as follows:

[<prefix>:][pseudoname[<index>]]/<name>[<index>]/<name>[<index>] ... [.key|.val]

The meaning of the various path components is as follows:
> The optional prefix can attain the values listed in Table 4.1.
> The optional pseudo object name may contain the name of a pseudo object. Pseudo

objects are not present in PDF, but are supported in pCOS to provide convenient
shortcuts to information which cannot easily be accessed by reading a single value
in the PDF document. Pseudo objects of type dict can not be enumerated.

> The name components are dictionary keys found in the document. Multiple names
are separated with a / character. An empty path, i.e. a single / denotes the docu-
ment’s Trailer dictionary. Each name must be a dictionary key present in the preced-
ing dictionary. Full paths describe the chain of dictionary keys from the initial dic-
tionary (which may be the Trailer or a pseudo object) to the target object.

> Paths or path components specifying an array or dictionary can have a numerical in-
dex which must be specified in decimal format between brackets. Nested arrays or
dictionaries can be addressed with multiple index entries. The first entry in an array
or dictionary has index 0.

> Paths or path components specifying a dictionary can have an index qualifier plus
one of the suffixes .key or .val. This can be used to retrieve a particular dictionary key
or the corresponding value of the indexed dictionary entry, respectively. If a path for
a dictionary has an index qualifier it must be followed by one of these suffixes.

Encoding for pCOS paths. In most cases pCOS paths will contain only plain ASCII char-
acters. However, in a few cases (e.g. PDFlib Block names) non-ASCII characters may be re-
quired. pCOS paths must be encoded according to the following rules:

> When a path component contains any of the characters /, [,], or #, these must be ex-
pressed by a number sign # followed by a two-digit hexadecimal number.

> In Unicode-aware language bindings the path consists of a regular Unicode string
which may contain ASCII and non-ASCII characters.

> In non-Unicode-aware language bindings the path must be supplied in UTF-8. The
string may or may not contain a BOM, but this doesn't make any difference. A BOM
may be placed at the start of the path, or at the start of individual path components
(i.e. after a slash character).
On EBCDIC systems the path must generally be supplied in ebcdic encoding. Charac-
ters outside the ASCII character set must be supplied as EBCDIC-UTF-8 (with or with-
out BOM).

22 Chapter 4: pCOS Path Reference

4.2 Path Prefixes
Prefixes can be used to query various attributes of an object (as opposed to its actual
value). Table 4.1 lists all supported prefixes.

The length prefix and content enumeration via indices are only applicable to plain
PDF objects and pseudo objects of type array, but not any other pseudo objects. The
pcosid prefix cannot be applied to pseudo objects. The type prefix is supported for all
pseudo objects.

Table 4.1 pCOS path prefixes

prefix explanation

length (Number) Length of an object, which depends on the object’s type:
array Number of elements in the array
dict Number of key/value pairs in the dictionary
stream Number of key/value pairs in the stream dict (not the stream length; use the Length key to

determine the length of stream data in bytes)
fstream Same as stream
other 0

pcosid (Number) Unique pCOS ID for an object of type dictionary or array.
If the path describes an object which doesn’t exist in the PDF the result will be -1. This can be used to
check for the existence of an object, and at the same time obtaining an ID if it exists.

type (String or number) Type of the object as number or string:
0, null Null object or object not present (use to check existence of an object)
1, boolean Boolean object
2, number Integer or real number
3, name Name object
4, string String object
5, array Array object
6, dict Dictionary object (but not stream)
7, stream Stream object which uses only supported filters
8, fstream Stream object which uses one or more unsupported filters
Enums for these types are available for the convenience of C and C++ developers.

4.3 Universal Pseudo Objects 23

4.3 Universal Pseudo Objects
Universal pseudo objects are available for all pcosmode levels, i.e. regardless of encryp-
tion and password availability. Table 4.2, Table 4.3, and Table 4.4 together list all univer-
sal pseudo objects.

4.3.1 General Document Information

Table 4.2 Universal pseudo objects for general document information

object name explanation

encrypt (Dict) Dictionary with keys describing the encryption status of the document:
length (Number) Length of the encryption key in bits
algorithm (Number)
description(String) Encryption algorithm number or description:

-1 Unknown encryption
0 No encryption
1 40-bit RC4 (Acrobat 2-4)
2 128-bit RC4 (Acrobat 5)
3 128-bit RC4 (Acrobat 6)
4 128-bit AES (Acrobat 7)
5 Public key on top of 128-bit RC4 (Acrobat 5)1

6 Public key on top of 128-bit AES (Acrobat 7)1

7 Adobe Policy Server (Acrobat 7)1

8 Adobe Digital Editions (EBX)1

9 (pCOS interface 5) 256-bit AES (Acrobat 9)
10 (pCOS interface 5) Public key on top of 256-bit AES (Acrobat 9)1

11 (pCOS interface 7) 256-bit AES (Acrobat X)
master (Boolean) True if the PDF requires a master password to change security settings

(permissions, user or master password), false otherwise
user (Boolean) True if the PDF requires a user password for opening, false otherwise
attachment

(Boolean; pCOS interface 8) True if the PDF requires a password for extracting attachments
(but not for opening), false otherwise

noaccessible, noannots, noassemble, nocopy, noforms, nohiresprint, nomodify, noprint
(Boolean) True if the respective access protection is set, false otherwise

plainmetadata
(Boolean) True if the PDF contains unencrypted meta data, false otherwise

filename (String) Name of the PDF file.

filesize (Number) Size of the PDF file in bytes

linearized (Boolean) True if the PDF document is linearized, false otherwise

pcosmode
pcosmode-
name

(Number/string) pCOS mode as number or string:
0 minimum
1 restricted
2 full

24 Chapter 4: pCOS Path Reference

4.3.2 PDF Version Information

4.3.3 Library Identification

shrug (Boolean; only in the products TET, PDFlib+PDI, PPS) True if and only if security settings were ignored
when opening the PDF document; the client must take care of honoring the document author’s inten-
tions. The value is true if all of the following conditions are true:
> Shrug mode has been enabled with the shrug option.
> The document has a master password but this has not been supplied.
> The user password (if required for the document) has been supplied.
> TET product only: content extraction is not allowed in the document’s permission settings.

1. Documents encrypted with this algorithm can be identified, but actual decryption is not supported.

Table 4.3 Universal pseudo objects for PDF version information

object name explanation

extension-
level

(Number) Adobe Extension Level based on ISO 32000, or 0 (zero) if no extension level is present. Acrobat 9
creates documents with extension level 3; Acrobat X creates extension level 8.

fullpdf-
version

(Number) Numerical value for the PDF version number. The numbers increase with each PDF/Acrobat ver-
sion. The value 100 * BaseVersion + ExtensionLevel will be returned, e.g.
150 PDF 1.5 (Acrobat 6)
160 PDF 1.6 (Acrobat 7)
170 PDF 1.7 (Acrobat 8) = ISO 32000-1
173 PDF 1.7 Adobe Extension Level 3 (Acrobat 9)
178 (pCOS interface 5) PDF 1.7 Adobe Extension Level 8 (Acrobat X)
200 (pCOS interface 5) PDF 2.0 = ISO 32000-2

pdfversion (Number) PDF version number multiplied by 10, e.g. 16 for PDF 1.6

pdfversion-
string

(String) Full PDF version string in the form expected by various API functions for setting the PDF output
compatibility, e.g. 1.5, 1.6, 1.7, 1.7ext3, 1.7ext8

Table 4.4 Universal pseudo objects for library identification

object name explanation

major
minor
revision

(Number) Major, minor, or revision number of the library, respectively

pcosinterface (Number) Interface version number of the underlying pCOS implementation. See Section 1.3, »Availability
of the pCOS Interface«, page 6, to learn which version of the pCOS interface is implemented in a particu-
lar PDFlib GmbH product version.

version (String) Full library version string in the format <major>.<minor>.<revision>, possibly suffixed with addi-
tional qualifiers such as beta, rc, etc.

Table 4.2 Universal pseudo objects for general document information

object name explanation

4.4 Pseudo Objects for PDF Standard Identification 25

4.4 Pseudo Objects for PDF Standard Identification
Table 4.5 lists pseudo objects for PDF standard identification. The values of these pseudo
objects are created based on the respective standard identification entries in the docu-
ment. They do not apply any validation against the standard.

Table 4.5 Pseudo objects for PDF standard identification

object name explanation

pdfa (String) PDF/A (ISO 19005-1 and 19005-2) conformance level of the document. Possible values:
none

PDF/A-1a:2005, PDF/A-1b:2005
PDF/A-2a, PDF/A-2b, PDF/A-2u
PDF/A-3a, PDF/A-3b, PDF/A-3u (pCOS interface 8)

pdfe (String; pCOS interface 5) PDF/E (ISO 24517-1 and 24517-2) conformance level of the document. Possible
values:
none

PDF/E-1

PDF/E-2 (pCOS interface 7)

pdfua (String; pCOS interface 7) PDF/UA (ISO 14289) conformance level of the document. Possible values:
none

PDF/UA-1

pdfvt (String; pCOS interface 7) PDF/VT (ISO 16612-2) conformance level of the document. Possible values:
none

PDF/VT-1

PDF/VT-2

pdfx (String) PDF/X (ISO 15930-1 etc.) conformance level of the document. Possible values:
none

PDF/X-1:2001, PDF/X-1a:2001, PDF/X-1a:2003
PDF/X-2:2003

PDF/X-3:2002, PDF/X-3:2003
PDF/X-4, PDF/X-4p
PDF/X-5g, PDF/X-5n, PDF/X-5p

26 Chapter 4: pCOS Path Reference

4.5 Pseudo Objects for Pages
Table 4.6 lists the pseudo objects for page information.

Table 4.6 Pseudo object for pages

object name explanation

pages (Array of dicts) Each array element addresses a page of the document. Indexing it with the decimal repre-
sentation of the page number minus one addresses that page (the first page has index 0). Using the
length prefix the number of pages in the document can be determined. A page object addressed this way
will incorporate all attributes which are inherited via the /Pages tree. The /MediaBox and /Rotate en-
tries are guaranteed to be present. In addition to standard PDF dictionary entries the following pseudo
entries are available for each page:
colorspaces, extgstates, fonts, images, patterns, properties, shadings, templates

(Arrays of dicts) Page resources according to Table 4.8.
annots (Array of dicts) In addition to the standard PDF keys in the Annots array pCOS supports the

following pseudo key for dictionaries in the annots array:
destpage (Number; only for Subtype=Link and if a Dest entry is present) Number of the tar-

get page (first page is 1)
blocks (Dict of dicts) Shorthand for pages[]/PieceInfo/PDFlib/Private/Blocks, i.e. the page’s

list of Blocks for use with PDFlib Personalization Server (PPS). In addition to the existing PDF
keys pCOS supports the following pseudo key for dictionaries in the blocks array:
rect (Rectangle) Similar to Rect, except that it takes into account any relevant

CropBox/MediaBox and Rotate entries and normalizes coordinate ordering.
height (Number) Height of the page. The MediaBox or the CropBox (if present) will be used to

determine the height. Rotate entries will also be applied.
isempty (Boolean) True if the page is empty, and false if the page is not empty
label (String) The page label of the page (including any prefix which may be present). Labels will be

displayed as in Acrobat. If no label is present (or the PageLabel dictionary is malformed), the
string will contain the decimal page number. Roman numbers will be created in Acrobat’s
style (e.g. VL), not in classical style which is different (e.g. XLV). If /Root/PageLabels doesn’t
exist, the document doesn’t contain any page labels.

usespagetransparency1

(Boolean; pCOS interface 8) True if the page contents include any transparent elements,
false otherwise. Transparency is defined as in the PDF/VT standard.

usesanytransparency1

(Boolean; pCOS interface 8) True if the page contents or any annotation on the page includes
any transparent elements, false otherwise. Transparency is defined as in the PDF/VT
standard.

width (Number) Width of the page (same rules as for height)
The following entries will be inherited: CropBox, MediaBox, Resources, Rotate.

1. These checks will report transparency found in resources (e.g. Form XObjects, images) referenced on the page, regardless of whether
or not these resources are actually used for creating visible page content.

4.6 Pseudo Objects for interactive Elements 27

4.6 Pseudo Objects for interactive Elements
Table 4.6 lists pseudo objects which can be used for retrieving PDF objects or serve as
shortcuts to various interactive elements.

Table 4.7 Pseudo objects for PDF objects and interactive elements

object name explanation

articles (Array of dicts) Array containing the article thread dictionaries for the document. The array will have
length 0 if the document does not contain any article threads. In addition to the standard PDF keys pCOS
supports the following pseudo key for dictionaries in the articles array:
beads (Array of dicts) Bead directory with the standard PDF keys, plus the following:

destpage (Number) Number of the target page (first page is 1)

bookmarks (Array of dicts) Array containing the bookmark (outlines) dictionaries for the document. In addition to
the standard PDF keys pCOS supports the following pseudo keys for dictionaries in the bookmarks array:
level (Number) Indentation level in the bookmark hierarchy
destpage (Number) Number of the target page (first page is 1) if the bookmark points to a page in the

same document, -1 otherwise.

fields (Array of dicts) Array containing the form fields dictionaries for the document. A form field object ad-
dressed this way will incorporate all attributes which are inherited via the form field hierarchy. In addi-
tion to the standard PDF keys in the field dictionary and the entries in the associated Widget annotation
dictionary pCOS supports the following pseudo keys for dictionaries in the fields array:
level (Number) Level in the field hierarchy (determined by ».« as separator)
fullname (String) Complete name of the form field. The same naming conventions as in Acrobat 7 will

be applied.

names (Dict) A dictionary where each entry provides simple access to a name tree. The following name trees are
supported: AP, AlternatePresentations, Dests, EmbeddedFiles, IDS, JavaScript, Pages, Renditions,
Templates, URLS.
Each name tree can be accessed by using the name as a key to retrieve the corresponding value, e.g.:
names/Dests[0].key retrieves the name of a destination
names/Dests[0].val retrieves the corresponding destination dictionary
In addition to standard PDF dictionary entries the following pseudo keys for dictionaries in the Dests
names tree are supported:
destpage (number) Number of the target page (first page is 1) if the destination points to a page in the

same document, -1 otherwise.
In order to retrieve other name tree entries these must be queried directly via /Root/Names/Dests etc.
since they are not present in the name tree pseudo objects.

objects (Array) Address an element for which a pCOS ID has been retrieved earlier using the pcosid prefix. The ID
must be supplied as array index in decimal form; as a result, the PDF object with the supplied ID will be
addressed. The length prefix cannot be used with this array.

tagged (Boolean) True if the PDF document is tagged, false otherwise

28 Chapter 4: pCOS Path Reference

4.7 Pseudo Objects for Resources
Resources are a key concept for managing various kinds of data which are required for
completely describing the contents of a page. The resource concept in PDF is very pow-
erful and efficient, but complicates access with various technical concepts, such as re-
cursion and resource inheritance. pCOS greatly simplifies resource retrieval and sup-
plies several groups of pseudo objects which can be used to directly query resources.
Some of these pseudo resource dictionaries contain entries in addition to the standard
PDF keys in order to further simplify resource information retrieval. pCOS pseudo re-
sources reflect resources from the user’s point of view, and differ from native PDF re-
sources:

> Some entries may have been added (e.g. inline images, simple color spaces) or delet-
ed (e.g. listed fonts which are not used on any page).

> In addition to the original PDF dictionary keys resource dictionaries may contain
some user-friendly keys for auxiliary information (e.g. embedding status of a font,
number of components of a color space).

pCOS supports two groups of pseudo objects for resource retrieval. Global resource ar-
rays contain all resources of a given type in a PDF document, while page-based resourc-
es contain only the resources used by a particular page. The corresponding pseudo ar-
rays are available for all resource types listed in Table 4.8:

> A list of all resources in the document is available in the global resource array (e.g.
images[]). Retrieving the length of one of the global resource pseudo arrays results in
a resource scan (see below) for all pages.

> A list of resources on each page is available in the page-based resource array (e.g.
pages[]/images[]). Accessing the length of one of a page’s resource pseudo arrays re-
sults in a resource scan for that page (to collect all resources which are actually used
on the page, and to merge images on that page).

4.7 Pseudo Objects for Resources 29

Table 4.8 Pseudo objects for resources; each resource category P creates two resource arrays P[] and pages[]/P[].

object name explanation

colorspaces (Array of dicts; however, for name=ICCBased the type is stream) Array containing dictionaries or streams
for all color spaces on the page or in the document. Color space resources include all color spaces which
are referenced from any type of object, including the color spaces which do not require native PDF re-
sources (i.e. DeviceGray, DeviceRGB, and DeviceCMYK). In addition to the standard PDF keys in color
space dictionaries (if the color space is represented by a dictionary in PDF) and ICC profile stream dictio-
naries the following pseudo keys are supported:
alternateid (Integer; only for name=Separation and DeviceN) Index of the underlying alternate color

space in the colorspaces[] pseudo object.
baseid (Integer; only for name=Indexed) Index of the underlying base color space in the

colorspaces[] pseudo object.
colorantname

(Name; only for name=Separation) Name of the colorant. Non-ASCII CJK color names will be
converted to Unicode.

colorantnames
(Array of names; only for name=DeviceN) Names of the colorants

components
(Integer) Number of components of the color space

name (String) Name of the color space: CalGray, CalRGB, DeviceCMYK, DeviceGray, DeviceN,
DeviceRGB, ICCBased, Indexed, Lab, Separation

csarray (Array; not for name=DeviceGray/RGB/CMYK) Array describing the underlying native color
space, i.e. the original color space object in the PDF.

extgstates (Array of dicts) Array containing the dictionaries for all extended graphics states (ExtGStates) on the page
or in the document

fonts (Array of dicts) Array containing dictionaries for all fonts on the page or in the document. In addition to
the standard PDF keys in font dictionaries, the following pseudo keys are supported:
ascender (Float; pCOS interface 6) Ascender value of the font. Depending on the availability the value

will be taken from the FontDescriptor dictionary in PDF, or an estimated value. The value is
expressed relative to a font scaling factor of 1000, i.e. 1000 units refer to the full fontsize.

TET product: in addition to dictionary values in PDF, embedded fonts and fonts installed on
the Mac or Windows system will be parsed in order to determine font metrics values. Results
of font parsing are only available after calling TET_get_char_info() with a glyph in this
particular font. In other words, using font ids returned by TET_get_char_info() is safe, while
enumerating all fonts in the fonts[] array does not necessarily provide metrics values from
embedded font data, but the possibly inaccurate values from the PDF FontDescriptor
dictionary.

capheight (Float; pCOS interface 6) capheight value of the font; see ascender
italicangle (Float; pCOS interface 6) Italic (slant) angle value of the font; see ascender
name (String) PDF name of the font without any subset prefix. Non-ASCII CJK font names will be

converted to Unicode.
descender (Float; pCOS interface 6) Descender value of the font; see ascender
embedded (Boolean) Embedding status of the font
fullname (String; pCOS interface 5) PDF name of the font including subset prefix if present. Non-ASCII

CJK font names will be converted to Unicode.
type (String) Font type: (unknown), Composite, Multiple Master, OpenType, TrueType, TrueType

(CID), Type 1, Type 1 (CID), Type 1 CFF, Type 1 CFF (CID), Type 3
vertical (Boolean) true for fonts with vertical writing mode, false otherwise
weight (Float; pCOS interface 6) Font weight in the range 0...900: 0=no information available,

400=normal, 700=bold
xheight (Float; pCOS interface 6) Xheight value of the font; see ascender

30 Chapter 4: pCOS Path Reference

images (Array of streams) Array containing dictionaries for all images on the page or in the document. The TET
product will add merged (artificial) images to the images[] array.
In addition to the standard PDF keys the following pseudo keys are supported:
bpc (Integer) The number of bits per component. This entry is usually the same as

BitsPerComponent, but unlike this it is guaranteed to be available. For JPEG2000 images it
may be -1 since the number of bits per component may not be available in the PDF structures.

colorspaceid
(Integer) Index of the image’s color space in the colorspaces[] pseudo object. This can be
used to retrieve detailed color space properties. For JPEG 2000 images the color space id may
be -1 since the color space may not be encoded in the PDF structures.

filterinfo (Dict) Describes the remaining filter for streams with unsupported filters or when retrieving
stream data with the keepfilter option set to true. If there is no such filter no filterinfo
dictionary will be available. The dictionary contains the following entries:
name (Name) Name of the filter
supported (Boolean) True if the filter is supported
decodeparms

(Dict) The DecodeParms dictionary if one is present for the filter
mergetype (Integer; only in the TET product) The following types describe the status of the image:

0 (normal) The image corresponds to an image in the PDF.
1 (artificial) The image is the result of merging multiple consumed images (i.e. im-

ages with mergetype=2) into a single image. The resulting artificial image does
not exist in the PDF data structures as an object.

2 (consumed) The image should be ignored since it has been merged into a larger
image. Although the image exists in the PDF, it usually should not be extracted
because it is part of an artificial image (i.e. an image with mergetype=1).

This entry reflects information regarding all pages processed so far. It may change its value
while processing other pages in the document. If final (constant) information is required, all
pages in the document must have been processed, or the value of the pCOS path
length:images must have been retrieved.

patterns (Array of dicts) Array containing dictionaries for all patterns on the page or in the document

properties (Array of dicts) Array containing dictionaries for all properties on the page or in the document

shadings (Array of dicts) Array containing dictionaries for all shadings on the page or in the document. In addition
to the standard PDF keys in shading dictionaries the following pseudo key is supported:
colorspaceid

(Integer) Index of the underlying color space in the colorspaces[] pseudo object.

templates (Array of dicts) Array containing dictionaries for all templates (Form XObjects) on the page or in the doc-
ument

Table 4.8 Pseudo objects for resources; each resource category P creates two resource arrays P[] and pages[]/P[].

object name explanation

4.8 Protected PDF Documents and pCOS Mode 31

4.8 Protected PDF Documents and pCOS Mode
pCOS supports encrypted and unencrypted PDF documents as input. However, full ob-
ject retrieval for encrypted documents requires the appropriate master password to be
supplied when opening the document. Depending on the availability of user and mas-
ter password, encrypted documents can be processed in one of the pCOS modes de-
scribed below.

Full pCOS mode (mode 2). Unencrypted documents will always be opened in full pCOS
mode. Documents with encrypted contents can be processed without any restriction if
the master password has been supplied upon opening the file. All objects will be re-
turned unencrypted.

If an unencrypted document contains encrypted file attachments, but the attach-
ment password has not been supplied, retrieving the following pCOS paths (i.e. the at-
tachment contents) will result in an empty return value (in C and C++: NULL):

pages[...]/annots[...]/FS/EF/F
names/EmbeddedFiles[...]/EF/F

Restricted pCOS mode (mode 1). If the document has been opened without the appro-
priate master password and does not require a user password (or only the user pass-
word has been supplied) objects with type string, stream, or fstream can not be retrieved.
As an exception, if extraction of page contents is allowed, i.e. if nocopy=false the objects
listed in Table 4.9 are also accessible.

Minimum pCOS mode (mode 0). Regardless of the encryption status and the availabil-
ity of passwords, the universal pCOS pseudo objects listed in Table 4.2, Table 4.3, and Ta-
ble 4.4 are always available. For example, the encrypt pseudo object can be used to query
a document’s encryption status. Encrypted objects can not be retrieved in minimum
pCOS mode.

Summary of password combinations. Table 4.10 lists the resulting pCOS modes for
protected documents and various password combinations. Depending on the docu-
ment’s encryption status and the password supplied when opening the file, PDF object
paths may be available in minimum, restricted, or full pCOS mode. Trying to retrieve a
pCOS path which is inappropriate for the respective mode will trigger an exception.

Table 4.9 Objects which are accessible in restricted pCOS mode if text extraction is allowed, i.e. if nocopy=false

object pCOS path

document metadata1

1. These objects can also be retrieved if plainmetadata=true

/Root/Metadata (XMP Metadata)
/Root/Lang (pCOS interface 8)
/Info/* (document info fields)

bookmarks bookmarks[...]/Title

annotation contents all paths starting with pages[...]/annots[...]

document-level
file attachments
(pCOS interface 7)

all paths starting with names/EmbeddedFiles[...]

32 Chapter 4: pCOS Path Reference

Table 4.10 Resulting pCOS modes for various password combinations and documents with encryption

If you know... ...pCOS will run in...

none of the passwords > document requires user password: minimum pCOS mode
> document does not require user password: restricted pCOS mode
> document contains encrypted file attachments: full pCOS mode,

but attachments can not be retrieved

user password restricted pCOS mode

master password, or attachment password for doc-
uments with encrypted file attachments

full pCOS mode

A pCOS Function Reference 33

A pCOS Function Reference
The following table contains an overview of the pCOS API functions. Please refer to the
corresponding product manual for more details and information for specific program-
ming languages.

pCOS function prototypes

double pcos_get_number(int doc, String path)
String pcos_get_string(int doc, String path)
final byte[] pcos_get_stream(int doc, String optlist, String path)

34 B Revision History

B Revision History

Revision history of this manual

Date Changes

May 16, 2013 > Bundled with TET 4.2 and TET PDF IFilter 4.2; no major changes in content

March 14, 2013 > Updates for PDFlib 9.0.0

February 13, 2012 > Updated to pCOS interface 8

March 04, 2011 > Mentioned PLOP 4.1 for pCOS interface 7

November 29, 2010 > Republished edition for pCOS interface 5 for PDFlib 8.0.2

October 29, 2010 > Updates for pCOS interface 7 in pCOS 3.0

July 22, 2010 > Reorganized the reference for pCOS interface 6 for use in multiple products

December 07, 2009 > Updates for pCOS interface 5 in PDFlib+PDI 8, PPS 8

February 01, 2009 > Updates for pCOS interface 4 in PLOP 4.0, TET 3.0, TET PDF IFilter 3.0

October 19, 2007 > Updates for pCOS interface 3 in pCOS 2.0

March 28, 2006 > Added a description of the Perl language binding

September 30, 2005 > Edition for pCOS interface 2 in pCOS 1.0

June 20, 2005 > Edition for pCOS interface 1 in TET 2.0

Chapter : 35

Index

A
arrays in pCOS paths 17

B
bookmarks 14
booleans in pCOS paths 15

D
dictionaries in pCOS paths 17
document info fields 10

E
encoding for pCOS paths 21
encrypted PDF documents 31
encryption status 9

F
fonts in a document 12

I
images 13

N
names in pCOS paths 15
number of pages 11
numbers in pCOS paths 15

O
object identifiers (IDs) in pCOS paths 19

P
page size 11
path prefixes 22
path syntax 21
pCOS

data types 15
path syntax 21

pCOS mode 9, 31
PDF version 10
prefixes 22
protected PDF documents 31
pseudo objects 21

for PDF objects, pages, and interactive
elements 26, 27
for resources 28
universal 23

S
streams in pCOS paths 15
strings in pCOS paths 15

T
transparency 11

U
universal pseudo objects 23

W
writing mode 12

X
XMP metadata 10

ABC

PDFlib GmbH
Franziska-Bilek-Weg 9
80339 München, Germany
www.pdflib.com
phone +49 • 89 • 452 33 84-0
fax +49 • 89 • 452 33 84-99

If you have questions check the PDFlib mailing list
and archive at tech.groups.yahoo.com/group/pdflib

Licensing contact
sales@pdflib.com

Support
support@pdflib.com (please include your license number)

http://tech.groups.yahoo.com/group/pdflib

	Contents
	1 Introduction
	1.1 What is pCOS?
	1.2 Roadmap to Documentation and Samples
	1.3 Availability of the pCOS Interface

	2 pCOS Examples
	2.1 pCOS Functions
	2.2 Document
	2.3 Pages
	2.4 Fonts
	2.5 Raster Images
	2.6 Interactive Elements

	3 pCOS Data Types
	3.1 Basic PDF Data Types
	3.2 Composite Data Structures
	3.3 Object Identifiers (IDs)

	4 pCOS Path Reference
	4.1 pCOS Path Syntax
	4.2 Path Prefixes
	4.3 Universal Pseudo Objects
	4.3.1 General Document Information
	4.3.2 PDF Version Information
	4.3.3 Library Identification

	4.4 Pseudo Objects for PDF Standard Identification
	4.5 Pseudo Objects for Pages
	4.6 Pseudo Objects for interactive Elements
	4.7 Pseudo Objects for Resources
	4.8 Protected PDF Documents and pCOS Mode

	A pCOS Function Reference
	B Revision History
	Index

