
ABC

Text Extraction Toolkit (TET)
Version 4.3

Toolkit for extracting Text, Images,
and Metadata from PDF Documents

Copyright © 2002–2014 PDFlib GmbH. All rights reserved.
Protected by European and U.S. patents.

PDFlib GmbH
Franziska-Bilek-Weg 9, 80339 München, Germany
www.pdflib.com
phone +49 • 89 • 452 33 84-0
fax +49 • 89 • 452 33 84-99

If you have questions check the PDFlib mailing list and archive at tech.groups.yahoo.com/group/pdflib

Licensing contact: sales@pdflib.com
Support for commercial PDFlib licensees: support@pdflib.com (please include your license number)

This publication and the information herein is furnished as is, is subject to change without notice, and
should not be construed as a commitment by PDFlib GmbH. PDFlib GmbH assumes no responsibility or lia-
bility for any errors or inaccuracies, makes no warranty of any kind (express, implied or statutory) with re-
spect to this publication, and expressly disclaims any and all warranties of merchantability, fitness for par-
ticular purposes and noninfringement of third party rights.

PDFlib and the PDFlib logo are registered trademarks of PDFlib GmbH. PDFlib licensees are granted the
right to use the PDFlib name and logo in their product documentation. However, this is not required.

Adobe, Acrobat, PostScript, and XMP are trademarks of Adobe Systems Inc. AIX, IBM, OS/390, WebSphere,
iSeries, and zSeries are trademarks of International Business Machines Corporation. ActiveX, Microsoft,
OpenType, and Windows are trademarks of Microsoft Corporation. Apple, Macintosh and TrueType are
trademarks of Apple Computer, Inc. Unicode and the Unicode logo are trademarks of Unicode, Inc. Unix is a
trademark of The Open Group. Java and Solaris are trademarks of Sun Microsystems, Inc. HKS is a regis-
tered trademark of the HKS brand association: Hostmann-Steinberg, K+E Printing Inks, Schmincke. Other
company product and service names may be trademarks or service marks of others.

TET contains modified parts of the following third-party software:
Zlib compression library, Copyright © 1995-2012 Jean-loup Gailly and Mark Adler
TIFFlib image library, Copyright © 1988-1997 Sam Leffler, Copyright © 1991-1997 Silicon Graphics, Inc.
Cryptographic software written by Eric Young, Copyright © 1995-1998 Eric Young (eay@cryptsoft.com)
Independent JPEG Group’s JPEG software, Copyright © 1991-1998, Thomas G. Lane
Cryptographic software, Copyright © 1998-2002 The OpenSSL Project (www.openssl.org)
Expat XML parser, Copyright © 1998, 1999, 2000 Thai Open Source Software Center Ltd
ICU International Components for Unicode, Copyright © 1995-2012 International Business Machines Corpo-
ration and others

TET contains the RSA Security, Inc. MD5 message digest algorithm.

http://www.pdflib.com
http://tech.groups.yahoo.com/group/pdflib
mailto:sales@pdflib.com
mailto:support@pdflib.com

Contents 3

Contents
0 First Steps with TET 7

0.1 Installing the Software 7
0.2 Applying the TET License Key 8

1 Introduction 11

1.1 Overview of TET Features 11
1.2 Many ways to use TET 13
1.3 Roadmap to Documentation and Samples 14

2 TET Command-Line Tool 17

2.1 Command-Line Options 17
2.2 Constructing TET Command Lines 20
2.3 Command-Line Examples 21

2.3.1 Extracting Text 21
2.3.2 Extracting Images 21
2.3.3 Generating TETML 22
2.3.4 Advanced Options 22

3 TET Library Language Bindings 23

3.1 Exception Handling 23
3.2 C Binding 24
3.3 C++ Binding 26
3.4 COM Binding 28
3.5 Java Binding 29
3.6 .NET Binding 31
3.7 Objective-C Binding 32
3.8 Perl Binding 34
3.9 PHP Binding 35
3.10 Python Binding 37
3.11 REALbasic Binding 38
3.12 Ruby Binding 39
3.13 RPG Binding 41

4 TET Connectors 43

4.1 Free TET Plugin for Adobe Acrobat 43
4.2 TET Connector for the Lucene Search Engine 45
4.3 TET Connector for the Solr Search Server 48
4.4 TET Connector for Oracle 49

4 Contents

4.5 TET PDF IFilter for Microsoft Products 52
4.6 TET Connector for the Apache TIKA Toolkit 54
4.7 TET Connector for MediaWiki 56

5 Configuration 59

5.1 Extracting Content from protected PDF 59
5.2 Resource Configuration and File Searching 61
5.3 Recommendations for common Scenarios 65

6 Text Extraction 69

6.1 PDF Document Domains 69
6.2 Page and Text Geometry 73
6.3 Chinese, Japanese, and Korean Text 79

6.3.1 CJK Encodings and CMaps 79
6.3.2 Word Boundaries for CJK Text 79
6.3.3 Vertical Writing Mode 79
6.3.4 CJK Decompositions: Narrow, wide, vertical, etc. 80

6.4 Bidirectional Arabic and Hebrew Text 82
6.4.1 General Bidi Topics 82
6.4.2 Postprocessing Arabic Text 82

6.5 Content Analysis 84
6.6 Layout Analysis 88

7 Advanced Unicode Handling 91

7.1 Important Unicode Concepts 91
7.2 Unicode Preprocessing (Filtering) 94

7.2.1 Filters for all Granularities 94
7.2.2 Filters for Granularity Word and above 95

7.3 Unicode Postprocessing 97
7.3.1 Unicode Folding 97
7.3.2 Unicode Decomposition 100
7.3.3 Unicode Normalization 104

7.4 Supplementary Characters and Surrogates 106
7.5 Unicode Mapping for Glyphs 107

8 Image Extraction 113

8.1 Image Extraction Basics 113
8.2 Image Merging and Filtering 115
8.3 Placed Images and Image Resources 117
8.4 Page-based and Resource-based Image Loops 118
8.5 Geometry of Placed Images 119
8.6 Restrictions and Caveats 121

Contents 5

9 TET Markup Language (TETML) 123

9.1 Creating TETML 123
9.2 Controlling TETML Details 127
9.3 TETML Elements and the TETML Schema 131
9.4 Transforming TETML with XSLT 134
9.5 XSLT Samples 137

10 TET Library API Reference 141

10.1 Option Lists 141
10.1.1 Option List Syntax 141
10.1.2 Basic Types 143
10.1.3 Geometric Types 146
10.1.4 Encoding Names 146

10.2 General Functions 148
10.2.1 Option Handling 148
10.2.2 Setup 151
10.2.3 PDFlib Virtual Filesystem (PVF) 152
10.2.4 Unicode Conversion Function 155
10.2.5 Exception Handling 157
10.2.6 Logging 159

10.3 Document Functions 161
10.4 Page Functions 169
10.5 Text and Metrics Retrieval Functions 177
10.6 Image Retrieval Functions 181
10.7 TET Markup Language (TETML) Functions 185
10.8 pCOS Functions 188

A TET Library Quick Reference 193

B Revision History 195

Index 197

0.1 Installing the Software 7

0 First Steps with TET

0.1 Installing the Software
TET is delivered as an MSI installer package for Windows systems, and as a compressed
archive for all other supported operating systems. All TET packages contain the TET
command-line tool and the TET library/component, plus support files, documentation,
and examples. After installing or unpacking TET the following steps are recommended:

> Users of the TET command-line tool can use the executable right away. The available
options are discussed in Section 2.1, »Command-Line Options«, page 17, and are also
displayed when you execute the TET command-line tool without any options.

> Users of the TET library/component should read one of the sections in Chapter 3,
»TET Library Language Bindings«, page 23, corresponding to their preferred develop-
ment environment, and review the installed examples. On Windows, the TET pro-
gramming examples are accessible via the Start menu (for COM and .NET) or in the
installation directory (for other language bindings).

If you obtained a commercial TET license you must enter your TET license key according
to Section 0.2, »Applying the TET License Key«, page 8.

CJK configuration. In order to extract Chinese, Japanese, or Korean (CJK) text which is
encoded with legacy encodings TET requires the corresponding CMap files for mapping
CJK encodings to Unicode. The CMap files are contained in all TET packages, and are in-
stalled in the resource/cmap directory within the TET installation directory. On Windows
systems simply choose the full installation option when installing TET. The CMap files
will be found automatically via the registry.

On other systems you must manually configure the CMap files:
> For the TET command-line tool this can be achieved by supplying the name of the di-

rectory holding the CMap files with the --searchpath option.
> For the TET library/component you can set the searchpath at runtime:

tet.set_option("searchpath={/path/to/resource/cmap}");

As an alternative method for configuring access to the CJK CMap files you can set the
TETRESOURCEFILE environment variable to point to a UPR configuration file which con-
tains a suitable searchpath definition.

Restrictions of the evaluation version. The TET command-line tool and library can be
used as fully functional evaluation versions even without a commercial license. Unli-
censed versions support all features, but will only process PDF documents with up to 10
pages and 1 MB size. Evaluation versions of TET must not be used for production pur-
poses, but only for evaluating the product. Using TET for production purposes requires
a valid TET license.

8 Chapter 0: First Steps with TET

0.2 Applying the TET License Key
Using TET for production purposes requires a valid TET license key. Once you purchased
a TET license you must apply your license key in order to allow processing of arbitrarily
large documents. There are several methods for applying the license key; choose one of
the methods detailed below.

Note TET license keys are platform-dependent, and can only be used on the platform for which they
have been purchased.

Windows installer. If you are working with the Windows installer you can enter the li-
cense key when you install the product. The installer will add the license key to the reg-
istry (see below).

Working with a license file. PDFlib products read license keys from a license file,
which is a text file according to the format shown below. You can use the template
licensekeys.txt which is contained in all TET distributions. Lines beginning with a ’#’
character contain comments and will be ignored; the second line contains version infor-
mation for the license file itself:

Licensing information for PDFlib GmbH products
PDFlib license file 1.0
TET 4.3 ...your license key...

The license file may contain license keys for multiple PDFlib GmbH products on sepa-
rate lines. It may also contain license keys for multiple platforms so that the same li-
cense file can be shared among platforms. License files can be configured in the follow-
ing ways:

> A file called licensekeys.txt will be searched in all default locations (see »Default file
search paths«, page 9).

> You can specify the licensefile option with the set_option() API function:

tet.set_option("licensefile={/path/to/licensekeys.txt}");

The licensefile option must be set immediately after instantiating the TET object, i.e.,
after calling TET_new() (in C) or creating a TET object.

> Supply the --tetopt option of the TET command-line tool and supply the licensefile
option with the name of a license file:

tet --tetopt "licensefile=/path/to/your/licensekeys.txt" ...

If the path name contains space characters you must enclose the path with braces:

tet --tetopt "licensefile={/path/to/your/license file.txt}" ...

> You can set an environment (shell) variable which points to a license file. On Win-
dows use the system control panel and choose System, Advanced, Environment
Variables; on Unix apply a command similar to the following:

export PDFLIBLICENSEFILE="/path/to/licensekeys.txt"

On i5/iSeries the license file can be specified as follows (this command can be speci-
fied in the startup program QSTRUP and will work for all PDFlib GmbH products):

ADDENVVAR ENVVAR(PDFLIBLICENSEFILE) VALUE(<... path ...>) LEVEL(*SYS)

0.2 Applying the TET License Key 9

License keys in the registry. On Windows you can also enter the name of the license
file in the following registry key:

HKLM\SOFTWARE\PDFlib\PDFLIBLICENSEFILE

As another alternative you can enter the license key directly in one of the following reg-
istry keys:

HKLM\SOFTWARE\PDFlib\TET4\license
HKLM\SOFTWARE\PDFlib\TET4\4.3\license

The MSI installer will write the license key provided at install time in the last of these
entries.

Note Be careful when manually accessing the registry on 64-bit Windows systems: as usual, 64-bit
binaries work with the 64-bit view of the Windows registry, while 32-bit binaries running on a
64-bit system work with the 32-bit view of the registry. If you must add registry keys for a 32-bit
product manually, make sure to use the 32-bit version of the regedit tool. It can be invoked as
follows from the Start, Run... dialog:

%systemroot%\syswow64\regedit

Default file search paths. On Unix, Linux, OS X and i5/iSeries systems some directories
will be searched for files by default even without specifying any path and directory
names. Before searching and reading the UPR file (which may contain additional search
paths), the following directories will be searched:

<rootpath>/PDFlib/TET/4.3/resource/cmap
<rootpath>/PDFlib/TET/4.3/resource/codelist
<rootpath>/PDFlib/TET/4.3/resource/glyphlst
<rootpath>/PDFlib/TET/4.3
<rootpath>/PDFlib/TET
<rootpath>/PDFlib

On Unix, Linux, and OS X <roothpath> will first be replaced with /usr/local and then with
the HOME directory. On i5/iSeries <roothpath> is empty.

Default file names for license and resource files. By default, the following file names
will be searched for in the default search path directories:

licensekeys.txt (license file)
tet.upr (resource file)

This feature can be used to work with a license file without setting any environment
variable or runtime option.

Setting the license key in an option for the TET command-line tool. If you use the TET
command-line tool you can supply an option which contains the name of a license file
or the license key itself:

tet --tetopt "license ...your license key..." ...more options...

10 Chapter 0: First Steps with TET

Setting the license key with a TET API call. If you use the TET API you can add an API
call to your script or program which sets the license key at runtime:

> In COM/VBScript:

oTET.set_option "license=...your license key..."

> In C:

TET_set_option(tet, "license=...your license key...");

> In C++, .NET/C#, Java, and Ruby:

tet.set_option("license=...your license key...");

> In Perl, Python and PHP:

tet->set_option("license=...your license key...");

> In RPG:

d licensekey s 20
d licenseval s 50
c eval licenseopt='license=... your license key ...'+x'00'
c callp TET_set_option(TET:licenseopt:0)

The license option must be set immediately after instantiating the TET object, i.e., after
calling TET_new() (in C) or creating a TET object.

Licensing options. Different licensing options are available for TET use on one or more
computers, and for redistributing TET with your own products. We also offer support
and source code contracts. Licensing details and the purchase order form can be found
in the TET distribution. Please contact us if you are interested in obtaining a commer-
cial license, or have any questions:

PDFlib GmbH, Licensing Department
Franziska-Bilek-Weg 9, 80339 München, Germany
www.pdflib.com
phone +49 • 89 • 452 33 84-0
fax +49 • 89 • 452 33 84-99
Licensing contact: sales@pdflib.com
Support for PDFlib licensees: support@pdflib.com

http://www.pdflib.com
mailto:sales@pdflib.com
mailto:support@pdflib.com

1.1 Overview of TET Features 11

1 Introduction
The PDFlib Text Extraction Toolkit (TET) is targeted at extracting text and images from
PDF documents, but can also be used to retrieve other information from PDF. TET can be
used as a base component for realizing the following tasks:

> search the text contents of PDF
> create a list of all words contained in a PDF (concordance)
> implement a search engine for processing large numbers of PDF files
> extract text from PDF to store, translate, or otherwise repurpose it
> convert the text contents of PDF to other formats
> process or enhance PDFs based on their contents
> compare the text contents of multiple PDF documents
> extract the raster images from PDF for repurposing
> extract metadata and other information from PDF

TET has been designed for stand-alone use, and does not require any third-party soft-
ware. It is robust and suitable for multi-threaded server use.

1.1 Overview of TET Features
Supported PDF input. TET has been tested against millions of PDF test files from vari-
ous sources. It accepts PDF 1.0 up to PDF 1.7 extension level 8 and PDF 2.0, corresponding
to Acrobat 1-XI including encrypted documents. TET attempts to repair various kinds of
malformed and damaged PDF documents.

Unicode support. TET includes a considerable number of algorithms and data to
achieve reliable Unicode mappings for all text. Although text in PDF documents is not
usually encoded in Unicode, TET will normalize the text from a PDF document to Uni-
code:

> TET converts all text contents to Unicode. In C the text will be returned in UTF-8 or
UTF-16 format; in other language bindings as native Unicode strings.

> Ligatures and other multi-character glyphs will be decomposed into a sequence of
their constituent Unicode characters.

> Vendor-specific Unicode values (Corporate Use Subarea, CUS) are identified, and will
be mapped to characters with precisely defined meanings if possible.

> Glyphs which are lacking Unicode mapping information are identified as such, and
will be mapped to a configurable replacement character.

> UTF-16 surrogate pairs for characters outside the Basic Multilingual Plane (BMP) are
properly interpreted and maintained. Surrogate pairs and UTF-32 values can be re-
trieved in all language bindings.

Some PDF documents do not contain enough information for reliable Unicode map-
ping. In order to successfully extract the text nevertheless TET offers various configura-
tion options which can be used to supply auxiliary information for proper Unicode
mappings. In order to facilitate writing the required mapping tables we make available
PDFlib FontReporter, a free plugin for Adobe Acrobat. This plugin can be used for ana-
lyzing fonts, encodings, and glyphs in PDF.

12 Chapter 1: Introduction

CJK support. TET includes full support for extracting Chinese, Japanese, and Korean
text:

> All predefined CJK CMaps (encodings) are recognized; CJK text will be converted to
Unicode. The CMap files for CJK encoding conversion are included in the TET distri-
bution.

> Special character forms (e.g. wide, narrow, prerotated glyphs for vertical text) can op-
tionally be converted (folded) to the corresponding regular forms

> Horizontal and vertical writing modes are supported.
> CJK font names are normalized to Unicode.

Support for Bidirectional Hebrew and Arabic Text. TET includes the following features
for dealing with Bidi text:

> Re-order right-to-left and Bidi text to logical ordering
> Determine dominant text direction of the page
> Normalize Arabic presentation forms and decompose ligatures
> Remove Arabic Tatweel character used for stretching words

Unicode postprocessing. TET’s Unicode postprocessing features include the following:
> Folding: preserve, replace, or remove one or more characters; affected characters can

conveniently be specified as Unicode sets;
> Decomposition: optionally apply canonical or compatibility decompositions as de-

fined in the Unicode standard. This may make the text better usable in some envi-
ronments. For example, you can keep or split accented characters, fractions, or sym-
bols like the trademark symbol.

> Normalization: convert the output to Unicode normalization formats NFC, NFD,
NFKC, or NFKD as defined in the Unicode standard. This way TET can produce the ex-
act format required as input in some environments, e.g. databases or search engines.

Image extraction. TET extracts raster images from PDF. Adjacent parts of a segmented
image will be recombined to facilitate postprocessing and re-use (e.g. multi-strip imag-
es created by some applications). Small images can be filtered in order to exclude tiny
image fragments from cluttering the output.

Images are extracted in TIFF, JPEG, JPEG 2000, or JBIG2 format.

Geometry. TET provides precise metrics for the text, such as the position on the page,
glyph widths, and text direction. Specific areas on the page can be excluded or included
in the text extraction process, e.g. to ignore headers and footers or margins.

For images the pixel size, physical size, and color space are available as well as posi-
tion and angle.

Word detection and content analysis. TET can be used to retrieve low-level glyph in-
formation, but also includes advanced algorithms for high-level content analysis:

> Detect word boundaries to retrieve words instead of characters.
> Recombine the parts of hyphenated words (dehyphenation).
> Remove duplicate instances of text, e.g. shadow and fake bold text.
> Recombine paragraphs into reading order.
> Reorder text which is scattered over the page.
> Reconstruct lines of text.
> Recognize tabular structures on the page.

1.2 Many ways to use TET 13

> Recognize superscript, subscript and dropcaps (large initial characters at the start of
a paragraph)

pCOS interface for simple access to PDF objects. TET includes pCOS (PDFlib Compre-
hensive Object System) for retrieving arbitrary PDF objects. With pCOS you can retrieve
PDF metadata, interactive elements (e.g. bookmark text, contents of form fields), or any
other information from a PDF document with a simple query interface. The syntax of
pCOS query path is described separately in the pCOS Path Reference.

TET Markup Language (TETML). The information retrieved from a PDF document can
be presented in an XML format called TET Markup Language, or TETML for processing
with standard XML tools. TETML contains text, image, and metadata information and
can optionally also contain font- and geometry-related details.

What is text? While TET deals with a large class of PDF documents, not all visible text
can successfully be extracted. The text must be encoded using PDF’s text and encoding
facilities (i.e., it must be based on a font). Although the following flavors of text may be
visible on the page they cannot be extracted with TET:

> Rasterized (pixel image) text, e.g. scanned pages;
> Text which is directly represented by vector elements without any font.

Note that metadata and text in hypertext elements (such as bookmarks, form fields,
notes, or annotations) can be retrieved with the pCOS interface. On the other hand, TET
may extract some text which is not visible on the page. This may happen in the follow-
ing situations:

> Text using PDF’s invisible attribute (however, there is an option to exclude this kind
of text from the text retrieval process)

> Text which is obscured or clipped by some other element on the page, e.g. an image.
> PDF layers are ignored; TET will retrieve the text from all layers regardless of their

visibility.

1.2 Many ways to use TET
TET is available as a programming library (component) for various development envi-
ronments, and as a command-line tool for batch operations. Both offer similar features,
but are suitable for different deployment tasks. Both the TET library and command-line
tool can create TETML, TET’s XML-based output format.

> The TET programming library can be used for integration into your desktop or server
application. Many different programming languages are supported. Examples for
using the TET library with all supported language bindings are included in the TET
package.

> The TET command-line tool is suited for batch processing PDF documents. It doesn’t
require any programming, but offers command-line options which can be used to
integrate it into complex workflows.

> TETML output is suited for XML-based workflows and developers who are familiar
with the wide range of XML processing tools and languages, e.g. XSLT.

> TET connectors are suited for integrating TET in various common software packages,
e.g. databases and search engines.

14 Chapter 1: Introduction

> The TET Plugin is a free extension for Adobe Acrobat which makes TET available for
interactive use (see Section 4.1, »Free TET Plugin for Adobe Acrobat«, page 43, for
more information).

1.3 Roadmap to Documentation and Samples
Mini samples for the TET library. The TET distribution contains programming exam-
ples for all supported language bindings. These mini samples can serve as a starting
point for your own applications, or to test your TET installation. They comprise source
code for the following applications:

> The extractor sample demonstrates the basic loop for extracting text from a PDF doc-
ument.

> The extract_images sample extracts the images on each page and reports about their
geometry and other properties.

> The image_resources sample demonstrates the basic loop for extracting images from
a PDF document in a resource-oriented way (no geometric information available).

> The dumper sample shows the use of the integrated pCOS interface for querying gen-
eral information about a PDF document.

> The fontfilter sample shows how to process font-related information, such as font
name and font size.

> The glyphinfo sample demonstrates how to retrieve detailed information about
glyphs (font, size, position, etc.) as well as text attributes such as dropcap, shadow,
hyphenation, etc.

> The tetml sample contains the prototypical code for generating TETML (TET’s XML
language for expressing PDF contents) from a PDF document.

> The get_attachments sample (not available for all language bindings) demonstrates
how to process PDF file attachments, i.e. PDF documents which are embedded in an-
other PDF document.

XSLT samples. The TET distribution contains several XSLT stylesheets. They demon-
strate how to process TETML to achieve various goals:

> concordance.xsl: create list of unique words in a document sorted by descending fre-
quency.

> fontfilter.xsl: List all words in a document which use a particular font in a size larger
than a specified value.

> fontfinder.xsl: For all fonts in a document, list all occurrences along with page number
and position information.

> fontstat.xsl: generate font and glyph statistics.
> index.xsl: create an alphabetically sorted »back-of-the-book« index.
> metadata.xsl: extract selected fields from document-level XMP metadata included in

TETML.
> solr.xsl: generate input for the Solr enterprise search server.
> table.xsl: Extract a table to a CSV file (comma-separated values).
> tetml2html.xsl: convert TETML to simple HTML.
> textonly.xsl: extract the raw text from TETML input.

TET Cookbook. The TET Cookbook is a collection of source code examples for solving
specific application problems with the TET library. The Cookbook examples are written

1.3 Roadmap to Documentation and Samples 15

in the Java language, but can easily be adjusted to other programming languages since
the TET API is almost identical for all supported language bindings. Some Cookbook
samples are written in the XSLT language.The TET Cookbook is organized in the follow-
ing groups:

> Text: samples related to text extraction
> Font: samples related to text with a focus on font properties
> Image: samples related to image extraction
> TET & PDFlib+PDI: samples which extract information from a PDF with TET and con-

struct a new PDF based on the original PDF and the extracted information. These
samples require the PDFlib+PDI product in addition to TET.

> TETML: XSLT samples for processing TETML
> Special: other samples

The TET Cookbook is available at the following URL:
www.pdflib.com/tet-cookbook.

pCOS Cookbook. The pCOS Cookbook is a collection of code fragments for the pCOS in-
terface which is integrated in TET. It is available at the following URL:
www.pdflib.com/pcos-cookbook.

Details of the pCOS interface are documented in the pCOS Path Reference which is
included in the TET package.

>

http://www.pdflib.com/tet-cookbook/
http://www.pdflib.com/pcos-cookbook/

16 Chapter 1: Introduction

2.1 Command-Line Options 17

2 TET Command-Line Tool

2.1 Command-Line Options
The TET command-line tool allows you to extract text and images from one or more PDF
documents without the need for any programming. Output can be generated in plain
text (Unicode) format or in TETML, TET’s XML-based output format. The TET program
can be controlled via a number of command-line options. The program will insert space
characters (U+0020) after each word, U+000A after each line, and U+000C after each
page. It is called as follows for one or more input PDF files:

tet [<options>] <filename>...

The TET command-line tool is built on top of the TET library. You can supply library op-
tions using the --docopt, --tetopt, --imageopt, and --pageopt options according to the op-
tion list tables in Chapter 10, »TET Library API Reference«, page 141. Table 2.1 lists all TET
command-line options (this list will also be displayed if you run the TET program with-
out any options).

Note In order to extract CJK text you must configure access to the CMap files which are shipped with
TET according to Section 0.1, »Installing the Software«, page 7.

Table 2.1 TET command-line options

option parameters function

-- End the list of options; this is useful if file names start with a - character.

@filename1 Specify a response file with options; for a syntax description see »Response files«,
page 20. Response files are only recognized before the -- option and before the
first filename. Response files can not be used to replace the parameter for another
option, but only complete option/parameter combinations.

--docopt <option list> Additional option list for TET_open_document() (see Table 10.8, page 162). The
filename suboption of the tetml option can not be used here.

--firstpage
-f

<integer> | last The number of the page where content extraction will start. The keyword last
specifies the last page, last-1 the page before the last page, etc. Default: 1

--format utf8 | utf16 Specifies the format for text output (default: utf8):
utf8 UTF-8 with BOM (byte order mark)
utf16 UTF-16 in native byte ordering with BOM
This option does not affect TETML output which will always be created in UTF-8.

--help, -?
(or no option)

Display help with a summary of available options.

--image2

-i
Extract images from the document. The naming scheme for extracted images de-
pends on the --imageloop option.

18 Chapter 2: TET Command-Line Tool

--imageloop page | resource Specifies the kind of enumeration loop for extracting images with the --image op-
tion (default: resource if --tetml is specified, otherwise page):
page Enumerate all images on the selected pages. Images which are placed

multiply are extracted multiply. Extracted images are named accor-
ding to the following pattern:
<filename>_p<pagenumber>_<imagenumber>.[tif|jpg|jpx|jbig2]

resource Enumerate all (merged) image resources in the document. Each image
resource is extracted only once, regardless of the number of occur-
rences in the document. The options --firstpage and --lastpage are
ignored. Extracted images are named according to the following
pattern:
<filename>_I<imageid>.[tif|jpg|jpx|jbig2]
Note: I<imageid> is also used in the TETML attribute Image/@id.

--imageopt <option list> Additional option list for TET_write_image_file() (see Table 10.17, page 183)

--lastpage
-l

<integer> | last The number of the page where content extraction will finish. The keyword last
specifies the last page, last-1 the page before the last page, etc. Default: last

--outfile
-o

<filename> (Not allowed if multiple input file names are supplied) File name for text or TETML
output. The file name »-« can be used to designate standard output provided only
a single input file has been supplied. Default: name of the input file, with .pdf or
.PDF replaced with .txt (for text output) or .tetml (for TETML output).

--pagecount Print the number of pages in the document, i.e. the value of the pCOS path
length:pages, to stdout or the file provided with --outfile.

--pageopt <option list> Additional option list which will be supplied to TET_open_page() if text output is
generated, or to TET_process_page() if TETML output is generated. See Table 10.10,
page 169, and Table 10.18, page 185, for a list of available options. For text output
the option granularity will always be set to page.

--password,
-p

<password> User, master or attachment password for encrypted documents. In some situa-
tions the shrug feature can be used to index protected documents without supply-
ing a password (see Section 5.1, »Extracting Content from protected PDF«, page
59).

--samedir Create output files in the same directory as the input file(s).

--searchpath1

-s
<path>... Name of one or more directories where files (e.g. CMaps) will be searched. Default:

installation-specific

--targetdir
-t

<dirname> Output directory for generated text, TETML, and image files. The directory must
exist. This option is ignored if --samedir is specified. Default: . (i.e. the current
working directory)

--tetml
-m

glyph | word |
wordplus |
line | page

(Cannot be combined with --text) Create TETML output according to the TET 3
schema containing text and image information. TETML is created in UTF-8 for-
mat. The supplied parameter selects one of several variants (see Section 9.2, »Con-
trolling TETML Details«, page 127):
glyph Glyph-based TETML with glyph geometry and font details
word Word-based TETML with word boxes
wordplus Word-based TETML with word boxes plus all glyph details
line Line-based TETML (text only)
page Page-based TETML (text only)

--tetopt <option list> Additional option list for TET_set_option() (see Table 10.2, page 148). The option
outputformat will be ignored (use --format instead).

Table 2.1 TET command-line options

option parameters function

2.1 Command-Line Options 19

--text2 (Can not be combined with --tetml) Extract text from the document (enabled by
default)

--verbose
-v

0 | 1 | 2 | 3 verbosity level (default: 1):
0 no output at all
1 emit only errors
2 emit errors and file names
3 detailed reporting

--version, -V Print the TET version number.

1. This option can be supplied more than once.
2. The option --image disables text extraction, but it can be combined with --text and --tetml.

Table 2.1 TET command-line options

option parameters function

20 Chapter 2: TET Command-Line Tool

2.2 Constructing TET Command Lines
The following rules must be observed for constructing TET command lines:

> Input files will be searched in all directories specified as searchpath.
> Short forms are available for some options, and can be mixed with long options.
> Long options can be abbreviated provided the abbreviation is unique.
> Depending on the encryption status of the input file, a user or master password may

be required for successfully extracting text. It must be supplied with the --password
option. TET will check whether this password is sufficient for text extraction, and
will generate an error if it isn’t.

TET checks the full command line before processing any file. If an error is encountered
in the options anywhere on the command line, no files will be processed at all.

File names. File names which contain blank characters require some special handling
when used with command-line tools like TET. In order to process a file name with blank
characters you should enclose the complete file name with double quote " characters.
Wildcards can be used according to standard practice. For example, *.pdf denotes all files
in a given directory which have a .pdf file name suffix. Note that on some systems case
is significant, while on others it isn’t (i.e., *.pdf may be different from *.PDF). Also note
that on Windows systems wildcards do not work for file names containing blank charac-
ters. Wildcards will be evaluated in the current directory, not any searchpath directory.

On Windows all file name options accept Unicode strings, e.g. as a result of dragging
files from the Explorer to a command prompt window.

Response files. In addition to options supplied directly on the command-line, options
can also be supplied in a response file. The contents of a response file will be inserted in
the command-line at the location where the @filename option was found.

A response file is a simple text file with options and parameters. It must adhere to
the following syntax rules:

> Option values must be separated with whitespace, i.e. space, linefeed, return, or tab.
> Values which contain whitespace must be enclosed with double quotation marks: "
> Double quotation marks at the beginning and end of a value will be omitted.
> A double quotation mark must be masked with a backslash to use it literally: \"
> A backslash character must be masked with another backslash to use it literally: \\

Response files can be nested, i.e. the @filename syntax can itself be used in a response
file.

Response files may contain Unicode strings for file name arguments. Response files
can be encoded in UTF-8, EBCDIC-UTF-8, or UTF-16 format and must start with the corre-
sponding BOM. If no BOM is found, the contents of the response file will be interpreted
in EBCDIC on zSeries, and in ISO 8859-1 (Latin-1) on all other systems.

Exit codes. The TET command-line tool returns with an exit code which can be used to
check whether or not the requested operations could be successfully carried out:

> Exit code 0: all command-line options could be successfully and fully processed.
> Exit code 1: one or more file processing errors occurred, but processing continued.
> Exit code 2: some error was found in the command-line options. Processing stopped

at the particular bad option, and no input file has been processed.

2.3 Command-Line Examples 21

2.3 Command-Line Examples
The following examples demonstrate some useful combinations of TET command-line
options. The samples are shown in two variations; the first uses the long format of all
options, while the second uses the equivalent short option format.

2.3.1 Extracting Text
Extract the text from a PDF document file.pdf in UTF-8 format and store it in file.txt:

tet file.pdf

Exclude the first and last page from text extraction:

tet --firstpage 2 --lastpage last-1 file.pdf
tet -f 2 -l last-1 file.pdf

Supply a directory where the CJK CMaps are located (required for CJK text extraction):

tet --searchpath /usr/local/cmaps file.pdf
tet -s /usr/local/cmaps file.pdf

Extract the text from a PDF in UTF-16 format and store it in file.utf16:

tet --format utf16 --outfile file.utf16 file.pdf
tet --format utf16 -o file.utf16 file.pdf

Extract the text from all PDF files in a directory and store the generated *.txt files in an-
other directory (which must already exist):

tet --targetdir out in/*.pdf
tet -t out in/*.pdf

Extract the text from all PDF files from two directories and store the generated *.txt files
in the same directory as the corresponding input document:

tet --samedir dir1/*.pdf dir2/*.pdf

Restrict text extraction to a particular area on the page; this can be achieved by supply-
ing a suitable list of page options:

tet --pageopt "includebox={{0 0 200 200}}" file.pdf

Use a response file which contains various command-line options and process all PDF
documents in the current directory (the file options contains command-line options):

tet @options *.pdf

2.3.2 Extracting Images
Extract images from file.pdf in a page-oriented manner and store them in file*.tif/file*.jpg
in the directory out:

tet --targetdir out --image file.pdf
tet -t out -i file.pdf

22 Chapter 2: TET Command-Line Tool

Extract images from file.pdf in a resource-oriented manner and store them in file*.tif/
file*.jpg in the directory out:

tet --targetdir out --image --imageloop resource file.pdf
tet -t out -i --imageloop resource file.pdf

Extract images from file.pdf without image merging; this can be achieved by supplying a
suitable list of page options which are relevant for image processing:

tet --targetdir out --image --pageopt "imageanalysis={merge={disable}}" file.pdf
tet -t out -i --pageopt "imageanalysis={merge={disable}}" file.pdf

2.3.3 Generating TETML
Generate TETML output in word mode for PDF document file.pdf and store it in file.tetml:

tet --tetml word file.pdf
tet -m word file.pdf

Generate TETML output without any Options elements; this can be achieved by supply-
ing a suitable list of document options:

tet --docopt "tetml={elements={options=false}}" --tetml word file.pdf

Generate TETML output in word mode with all glyph details and store it in file.tetml:

tet --tetml word --pageopt "tetml={glyphdetails={all}}" file.pdf
tet -m word --pageopt "tetml={glyphdetails={all}}" file.pdf

Extract images and generate TETML in a single call:

tet --image --tetml word file.pdf
tet -i -m word file.pdf

Generate TETML output with topdown coordinates:

tet --tetml word --pageopt "topdown={output}" file.pdf
tet -m word --pageopt "topdown={output}" file.pdf

2.3.4 Advanced Options
Supply the document option checkglyphlists to improve Unicode mapping for certain
kinds of TeX-generated PDF documents:

tet --docopt checkglyphlists file.pdf

Apply Unicode foldings, e.g. space folding: map all variants of Unicode space characters
to U+0020:

tet --docopt "fold={{[:blank:] U+0020}}" file.pdf

Disable punctuation as word boundary:

tet --pageopt "contentanalysis={punctuationbreaks=false}" file.pdf

3.1 Exception Handling 23

3 TET Library Language Bindings
This chapter discusses specifics for the language bindings which are supplied for the
TET library. The TET distribution contains full sample code for several small TET appli-
cations in all supported language bindings.

3.1 Exception Handling
Errors of a certain kind are called exceptions in many languages for good reasons – they
are mere exceptions, and are not expected to occur very often during the lifetime of a
program. The general strategy is to use conventional error reporting mechanisms (read:
special error return codes) for function calls which may go wrong often times, and use a
special exception mechanism for those rare occasions which don’t justify cluttering the
code with conditionals. This is exactly the path that TET goes: Some operations can be
expected to go wrong rather frequently, for example:

> Trying to open a PDF document for which one doesn’t have the proper password (but
see also the shrug feature described in Section 5.1, »Extracting Content from protect-
ed PDF«, page 59);

> Trying to open a PDF document with a wrong file name;
> Trying to open a PDF document which is damaged beyond repair.

TET signals such errors by returning a value of –1 as documented in the API reference.
Other events may be considered harmful, but will occur rather infrequently, e.g.

> running out of virtual memory;
> supplying wrong function parameters (e.g. an invalid document handle);
> supplying malformed option lists;
> a required resource (e.g. a CMap file for CJK text extract) cannot be found.

When TET detects such a situation, an exception will be thrown instead of passing a spe-
cial error return value to the caller. In languages which support native exceptions
throwing the exception will be done using the standard means supplied by the lan-
guage or environment. For the C language binding TET supplies a custom exception
handling mechanism which must be used by clients (see Section 3.2, »C Binding«, page
24).

It is important to understand that processing a document must be stopped when an
exception occurred. The only methods which can safely be called after an exception are
delete(), get_apiname(), get_errnum(), and get_errmsg(). Calling any other method after
an exception may lead to unexpected results. The exception will contain the following
information:

> A unique error number;
> The name of the API function which caused the exception;
> A descriptive text containing details of the problem;

Querying the reason of a failed function call. Some TET function calls, e.g. open_
document() or open_page(), can fail without throwing an exception (they will return -1
in case of an error). In this situation the functions get_errnum(), get_errmsg(), and get_
apiname() can be called immediately after a failed function call in order to retrieve de-
tails about the nature of the problem.

24 Chapter 3: TET Library Language Bindings

3.2 C Binding
TET is written in C with some C++ modules. In order to use the C binding you can use a
static or shared library (DLL on Windows and MVS), and you need the central TET in-
clude file tetlib.h for inclusion in your client source modules.

Note Applications which use the TET binding for C must be linked with a C++ compiler since the li-
brary includes some parts which are implemented in C++. Using a C linker may result in unre-
solved externals unless the application is linked against the required C++ support libraries.

Exception handling. The TET API provides a mechanism for acting upon exceptions
thrown by the library in order to compensate for the lack of native exception handling
in the C language. Using the TET_TRY() and TET_CATCH() macros client code can be set up
such that a dedicated piece of code is invoked for error handling and cleanup when an
exception occurs. These macros set up two code sections: the try clause with code which
may throw an exception, and the catch clause with code which acts upon an exception.
If any of the API functions called in the try block throws an exception, program execu-
tion will continue at the first statement of the catch block immediately. The following
rules must be obeyed in TET client code:

> TET_TRY() and TET_CATCH() must always be paired.
> TET_new() will never throw an exception; since a try block can only be started with a

valid TET object handle, TET_new() must be called outside of any try block.
> TET_delete() will never throw an exception, and therefore can safely be called outside

of any try block. It can also be called in a catch clause.
> Special care must be taken about variables that are used in both the try and catch

blocks. Since the compiler doesn’t know about the transfer of control from one block
to the other, it might produce inappropriate code (e.g., register variable optimiza-
tions) in this situation.
Fortunately, there is a simple rule to avoid this kind of problem: Variables used in
both the try and catch blocks must be declared volatile. Using the volatile keyword sig-
nals to the compiler that it must not apply dangerous optimizations to the variable.

> If a try block is left (e.g., with a return statement, thus bypassing the invocation of
the corresponding TET_CATCH()), the TET_EXIT_TRY() macro must be called before the
return statement to inform the exception machinery.

> As in all TET language bindings document processing must stop when an exception
was thrown.

The following code fragment demonstrates these rules with the typical idiom for deal-
ing with TET exceptions in client code (a full sample can be found in the TET package):

volatile int pageno;
...
if ((tet = TET_new()) == (TET *) 0)
{

printf("out of memory\n");
return(2);

}
TET_TRY(tet)
{

for (pageno = 1; pageno <= n_pages; ++pageno)
{
 /* process page */

3.2 C Binding 25

if (/* error happened */)
{

TET_EXIT_TRY(tet);
return -1;

}
}
/* statements that directly or indirectly call API functions */

}
TET_CATCH(tet)
{

printf("Error %d in %s() on page %d: %s\n",
TET_get_errnum(tet), TET_get_apiname(tet), pageno, TET_get_errmsg(tet));

}
TET_delete(tet);

Unicode handling for name strings. The C language does not natively support Uni-
code. Some string parameters for API functions may be declared as name strings. These
are handled depending on the length parameter and the existence of a BOM at the be-
ginning of the string. In C, if the length parameter is different from 0 the string will be
interpreted as UTF-16. If the length parameter is 0 the string will be interpreted as UTF-8
if it starts with a UTF-8 BOM, or as EBCDIC UTF-8 if it starts with an EBCDIC UTF-8 BOM,
or as auto encoding if no BOM is found (or ebcdic on all EBCDIC-based platforms).

Unicode handling for option lists. Strings within option lists require special attention
since they cannot be expressed as Unicode strings in UTF-16 format, but only as byte ar-
rays. For this reason UTF-8 is used for Unicode options. By looking for a BOM at the be-
ginning of an option TET decides how to interpret it. The BOM will be used to determine
the format of the string. More precisely, interpreting a string option works as follows:

> If the option starts with a UTF-8 BOM (\xEF\xBB\xBF) it is interpreted as UTF-8.
> If the option starts with an EBCDIC UTF-8 BOM (\x57\x8B\xAB) it is interpreted as

EBCDIC UTF-8.
> If no BOM is found, the string is treated as winansi (or ebcdic on EBCDIC-based plat-

forms).

Note The TET_convert_to_unicode() utility function can be used to create UTF-8 strings from UTF-16
strings, which is useful for creating option lists with Unicode values.

Using TET as a DLL loaded at runtime. While most clients will use TET as a statically
bound library or a dynamic library which is bound at link time, you can also load the
DLL at runtime and dynamically fetch pointers to all API functions. This is especially
useful to load the DLL only on demand, and on MVS where the library is customarily
loaded as a DLL at runtime without explicitly linking against TET. TET supports a special
mechanism to facilitate this dynamic usage. It works according to the following rules:

> Include tetlibdl.h instead of tetlib.h.
> Use TET_new_dl() and TET_delete_dl() instead of TET_new() and TET_delete().
> Use TET_TRY_DL() and TET_CATCH_DL() instead of TET_TRY() and TET_CATCH().
> Use function pointers for all other TET calls.
> Compile the auxiliary module tetlibdl.c and link your application against the result-

ing object file.

The dynamic loading mechanism is demonstrated in the extractordl.c sample.

26 Chapter 3: TET Library Language Bindings

3.3 C++ Binding
Note For applications written in C++ we recommend to access the TET .NET DLL directly instead of

via the C++ binding (except for cross-platform applications which should use the C++ binding).
The TET distribution contains C++ sample code for use with .NET CLI which demonstrates this
combination.

In addition to the tetlib.h C header file, an object-oriented wrapper for C++ is supplied
for TET clients. It requires the tet.hpp header file, which in turn includes tetlib.h. Since
tet.hpp contains a template-based implementation no corresponding tet.cpp module is
required. Using the C++ object wrapper replaces the functional approach with API func-
tions and TET_ prefixes in all TET function names with a more object-oriented ap-
proach.

String handling in C++. TET’s template-based string handling approach supports the
following usage patterns with respect to string handling:

> Strings of the C++ standard library type std::wstring are used as basic string type.
They can hold Unicode characters encoded as UTF-16 or UTF-32. This is the default be-
havior since TET 4.0 and the recommended approach for new applications unless
custom data types (see next item) offer a significant advantage over wstrings.

> Custom (user-defined) data types for string handling can be used as long as the cus-
tom data type is an instantiation of the basic_string class template and can be con-
verted to and from Unicode via user-supplied converter methods.

> Plain C++ strings can be used for compatibility with existing C++ applications which
have been developed against TET 3.0 or earlier versions. This compatibility variant is
only meant for existing applications (see below for notes on source code compatibil-
ity).

The default interface assumes that all strings passed to and received from TET methods
are native wstrings. Depending on the size of the wchar_t data type, wstrings are assumed
to contain Unicode strings encoded as UTF-16 (2-byte characters) or UTF-32 (4-byte char-
acters). Literal strings in the source code must be prefixed with L to designate wide
strings. Unicode characters in literals can be created with the \u and \U syntax. Al-
though this syntax is part of standard ISO C++, some compilers don’t support it. In this
case literal Unicode characters must be created with hex characters.

Note On EBCDIC-based systems the formatting of option list strings for the wstring-based interface
requires additional conversions to avoid a mixture of EBCDIC and UTF-16 wstrings in option
lists. Convenience code for this conversion and instructions are available in the auxiliary mod-
ule utf16num_ebcdic.hpp.

Adjusting applications to the new C++ binding. Existing C++ applications which have
been developed against TET 3.0 or earlier versions can be adjusted as follows:

> Since the TET C++ class now lives in the pdflib namespace the class name must be
qualified. In order to avoid the pdflib::TET construct client applications should add
the following before using TET methods:

using namespace pdflib;

> Switch the application’s string handling to wstrings. This includes data from external
sources. However, string literals in the source code (including option lists) must also
be adjusted by prepending the L prefix, e.g.

3.3 C++ Binding 27

const wstring pageoptlist = L"granularity=page";

> Suitable wstring-capable methods (wcerr etc.) must be used to process TET error mes-
sages and exception strings (get_errmsg() method in the TET and TET::Exception class-
es).

> The tet.cpp module is no longer required for the TET C++ binding. Although the TET
distribution contains a dummy implementation of this module, it should be re-
moved from the build process for TET applications.

Full source code compatibility with legacy applications. The new C++ binding has been
designed with application-level source code compatibility mind, but client applications
must be recompiled. The following aids are available to achieve full source code com-
patibility for legacy applications:

> Disable the wstring-based interface as follows before including tet.hpp:

#define TETCPP_TET_WSTRING 0

> Disable the pdflib namespace as follows before including tet.hpp:

#define TETCPP_USE_PDFLIB_NAMESPACE 0

Error handling in C++. TET API functions will throw a C++ exception in case of an error.
These exceptions must be caught in the client code by using C++ try/catch clauses. In or-
der to provide extended error information the TET class provides a public TET::Exception
class which exposes methods for retrieving the detailed error message, the exception
number, and the name of the TET API function which threw the exception.

Native C++ exceptions thrown by TET routines will behave as expected. The follow-
ing code fragment will catch exceptions thrown by TET:

try {
...some TET instructions...

} catch (TET::Exception &ex) {
wcerr << L"Error " << ex.get_errnum()
<< L" in " << ex.get_apiname()
<< L"(): " << ex.get_errmsg() << endl;

}

Using TET as a DLL loaded at runtime. Similar to the C language binding the C++ bind-
ing allows you to dynamically attach TET to your application at runtime (see »Using TET
as a DLL loaded at runtime«, page 25). Dynamic loading can be enabled as follows when
compiling the application module which includes tet.hpp:

#define TETCPP_DL 1

In addition you must compile the auxiliary module tetlibdl.c and link your application
against the resulting object file. Since the details of dynamic loading are hidden in the
TET object it does not affect the C++ API: all method calls look the same regardless of
whether or not dynamic loading is enabled. The dynamic loading mechanism is demon-
strated in the extractordl sample in the shipped Makefile.

28 Chapter 3: TET Library Language Bindings

3.4 COM Binding
Installing the TET COM edition. TET can be deployed in all environments that support
COM components. Installing TET is an easy and straight-forward process. Please note
the following:

> If you install on an NTFS partition all TET users must have read permission for the
installation directory, and execute permission for
...\TET 4.3 32-bit\bind\COM\bin\tet_com.dll.

> The installer must have write permission for the system registry. Administrator or
Power Users group privileges will usually be sufficient.

Exception Handling. Exception handling for the TET COM component is done accord-
ing to COM conventions: when a TET exception occurs, a COM exception will be raised
and furnished with a clear-text description of the error. In addition the memory allocat-
ed by the TET object is released. The COM exception can be caught and handled in the
TET client in whichever way the client environment supports for handling COM errors.

Using the TET COM Edition with .NET. As an alternative to the TET.NET edition (see
Section 3.6, ».NET Binding«, page 31) the COM edition of TET can also be used with .NET.
First, you must create a .NET assembly from the TET COM edition using the tlbimp.exe
utility:

tlbimp tet_com.dll /namespace:tet_com /out:Interop.tet_com.dll

You can use this assembly within your .NET application. If you add a reference to tet_
com.dll from within Visual Studio .NET an assembly will be created automatically. The
following code fragment shows how to use the TET COM edition with C#:

using TET_com;
 ...
static TET_com.ITET tet;
 ...
tet = New TET();
 ...

All other code works as with the .NET edition of TET.

3.5 Java Binding 29

3.5 Java Binding
Installing the TET Java edition. TET is organized as a Java package with the name
com.pdflib.TET. This package relies on a native JNI library; both pieces must be configured
appropriately.

In order to make the JNI library available the following platform-dependent steps
must be performed:

> On Unix systems the library libtet_java.so (on OS X: libtet_java.jnilib) must be placed
in one of the default locations for shared libraries, or in an appropriately configured
directory.

> On Windows the library tet_java.dll must be placed in the Windows system directory,
or a directory which is listed in the PATH environment variable.

The TET Java package is contained in the tet.jar file and contains a single class called tet.
In order to supply this package to your application, you must add tet.jar to your
CLASSPATH environment variable, add the option -classpath tet.jar in your calls to the
Java compiler, or perform equivalent steps in your Java IDE. In the JDK you can config-
ure the Java VM to search for native libraries in a given directory by setting the
java.library.path property to the name of the directory, e.g.

java -Djava.library.path=. extractor

You can check the value of this property as follows:

System.out.println(System.getProperty("java.library.path"));

Using TET in J2EE application servers and Servlet containers. TET is perfectly suited for
server-side Java applications. The TET distribution contains sample code and configura-
tion for using TET in J2EE environments. The following configuration issues must be ob-
served:

> The directory where the server looks for native libraries varies among vendors. Com-
mon candidate locations are system directories, directories specific to the underly-
ing Java VM, and local server directories. Please check the documentation supplied
by the server vendor.

> Application servers and Servlet containers often use a special class loader which may
be restricted or uses a dedicated classpath. For some servers it is required to define a
special classpath to make sure that the TET package will be found.

More detailed notes on using TET with specific Servlet engines and application servers
can be found in additional documentation in the J2EE directory of the TET distribution.

Unicode and legacy encoding conversion. For the convenience of TET users we list
some useful string conversion methods here. Please refer to the Java documentation for
more details. The following constructor creates a Unicode string from a byte array, us-
ing the platform’s default encoding:

String(byte[] bytes)

The following constructor creates a Unicode string from a byte array, using the encod-
ing supplied in the enc parameter (e.g. SJIS, UTF8, UTF-16):

String(byte[] bytes, String enc)

30 Chapter 3: TET Library Language Bindings

The following method of the String class converts a Unicode string to a string according
to the encoding specified in the enc parameter:

byte[] getBytes(String enc)

Javadoc documentation for TET. The TET package contains Javadoc documentation for
TET. The Javadoc contains only abbreviated descriptions of all TET API methods; please
refer to Section 10, »TET Library API Reference«, page 141, for more details.

In order to configure Javadoc for TET in Eclipse proceed as follows:
> In the Package Explorer right-click on the Java project and select Javadoc Location.
> Click on Browse... and select the path where the Javadoc (which is part of the TET

package) is located.

After these steps you can browse the Javadoc for TET, e.g. with the Java Browsing perspec-
tive or via the Help menu.

Exception handling. The TET language binding for Java will throw native Java excep-
tions of the class TETException. TET client code must use standard Java exception syntax:

TET tet = null;

try {

...TET method invocations...

} catch (TETException e) {
System.err.print("TET exception occurred:\n");
System.err.print("[" + e.get_errnum() + "] " + e.get_apiname() + ": " +

e.get_errmsg() + "\n");

} catch (Exception e) {
System.err.println(e.getMessage());

} finally {
if (tet != null) {

tet.delete(); /* delete the TET object */
}

}

Since TET declares appropriate throws clauses, client code must either catch all possible
exceptions or declare those itself.

3.6 .NET Binding 31

3.6 .NET Binding
Note Detailed information about the various flavors and options for using TET with the .NET Frame-

work can be found in the PDFlib-in-.NET-HowTo.pdf document which is contained in the distri-
bution packages and also available on the PDFlib Web site.

The .NET edition of TET supports all relevant .NET concepts. In technical terms, the
TET.NET edition is a C++ class (with a managed wrapper for the unmanaged TET core li-
brary) which runs under control of the .NET framework. It is packaged as a static assem-
bly with a strong name. The TET assembly (TET_dotnet.dll) contains the actual library
plus meta information.

Installing the TET Edition for .NET. Install TET with the supplied Windows MSI Install-
er. The TET.NET MSI installer will install the TET assembly plus auxiliary data files, docu-
mentation and samples on the machine interactively. The installer will also register TET
so that it can easily be referenced on the .NET tab in the Add Reference dialog box of Visu-
al Studio .NET.

Error handling. TET.NET supports .NET exceptions, and will throw an exception with a
detailed error message when a runtime problem occurs. The client is responsible for
catching such an exception and properly reacting on it. Otherwise the .NET framework
will catch the exception and usually terminate the application.

In order to convey exception-related information TET defines its own exception
class TET_dotnet.TETException with the members get_errnum, get_errmsg, and get_api-
name.

Using TET with C++ and CLI. .NET applications written in C++ (based on the Common
Language Infrastructure CLI) can directly access the TET.NET DLL without using the TET
C++ binding. The source code must reference TET as follows:

using namespace TET_dotnet;

32 Chapter 3: TET Library Language Bindings

3.7 Objective-C Binding
Although the C and C++ language bindings can be used with Objective-C1, a genuine lan-
guage binding for Objective-C is also available. The TET framework is available in the
following flavors:

> TET for use on OS X
> TET_ios for use on iOS

Both frameworks contain language bindings for C, C++, and Objective-C.

Installing the TET Edition for Objective-C on OS X. In order to use TET in your applica-
tion you must copy TET.framework or TET.framework to the directory /Library/Frameworks.
Installing the TET framework in a different location is possible, but requires use of Ap-
ple’s install_name_tool which is not described here. The TET_objc.h header file with TET
method declarations must be imported in the application source code:

#import "TET/TET_objc.h"

or

#import "TET_ios/TET_objc.h"

Parameter naming conventions. For TET method calls you must supply parameters ac-
cording to the following conventions:

> The value of the first parameter is provided directly after the method name, separat-
ed by a colon character.

> For each subsequent parameter the parameter’s name and its value (again separated
from each other by a colon character) must be provided. The parameter names can
be found in Chapter 10, »TET Library API Reference«, page 141, and in TET_objc.h.

For example, the following line in the API description:

int open_page(int doc, int pagenumber, String optlist)

corresponds to the following Objective-C method:

- (NSInteger) open_page: (NSInteger) doc pagenumber: (NSInteger) pagenumber optlist:
(NSString *) optlist;

This means your application must make a call similar to the following:

page = [tet open_page:doc pagenumber:pageno optlist:pageoptlist];

XCode Code Sense for code completion can be used with the TET framework.

Error handling in Objective-C. The Objective-C binding translates TET errors to native
Objective-C exceptions. In case of a runtime problem TET throws a native Objective-C
exception of the class TETException. These exceptions can be handled with the usual try/
catch mechanism:

1. See developer.apple.com/library/mac/documentation/Cocoa/Conceptual/ProgrammingWithObjectiveC/Introduction/
Introduction.html

http://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/ProgrammingWithObjectiveC/Introduction/Introduction.html
http://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/ProgrammingWithObjectiveC/Introduction/Introduction.html

3.7 Objective-C Binding 33

@try {
...some TET instructions...

}
@catch (TETException *ex) {

NSString * errorMessage =
[NSString stringWithFormat:@"TET error %d in '%@': %@",
[ex get_errnum], [ex get_apiname], [ex get_errmsg]];

NSAlert *alert = [[NSAlert alloc] init];
[alert setMessageText: errorMessage];
[alert runModal];
[alert release];

}
@catch (NSException *ex) {

NSAlert *alert = [[NSAlert alloc] init];
[alert setMessageText: [ex reason]];
[alert runModal];
[alert release];

}
@finally {

[tet release];
}

In addition to the get_errmsg method you can also use the reason field of the exception
object to retrieve the error message.

34 Chapter 3: TET Library Language Bindings

3.8 Perl Binding
The TET wrapper for Perl consists of a C wrapper and two Perl package modules, one for
providing a Perl equivalent for each TET API function and another one for the TET ob-
ject. The C module is used to build a shared library which the Perl interpreter loads at
runtime, with some help from the package file. Perl scripts refer to the shared library
module via a use statement.

Installing the TET Edition for Perl. The Perl extension mechanism loads shared librar-
ies at runtime through the DynaLoader module. The Perl executable must have been
compiled with support for shared libraries (this is true for the majority of Perl configu-
rations).

For the TET binding to work, the Perl interpreter must access the TET Perl wrapper
and the modules tetlib_pl.pm and PDFlib/TET.pm. In addition to the platform-specific
methods described below you can add a directory to Perl’s @INC module search path us-
ing the -I command line option:

perl -I/path/to/tet extractor.pl

Unix. Perl will search tetlib_pl.so (on OS X: tetlib_pl.bundle), tetlib_pl.pm and PDFlib/
TET.pm in the current directory, or the directory printed by the following Perl command:

perl -e 'use Config; print $Config{sitearchexp};'

Perl will also search the subdirectory auto/tetlib_pl. Typical output of the above com-
mand looks like

/usr/lib/perl5/site_perl/5.10/i686-linux

Windows. TET supports the ActiveState port of Perl 5 to Windows, also known as
ActivePerl. The DLL tetlib_pl.dll and the modules tetlib_pl.pm and PDFlib/TET.pm will be
searched in the current directory, or the directory printed by the following Perl com-
mand:

perl -e "use Config; print $Config{sitearchexp};"

Typical output of the above command looks like

C:\Program Files\Perl5.10\site\lib

Exception Handling in Perl. When a TET exception occurs, a Perl exception is thrown. It
can be caught and acted upon using an eval sequence:

eval {
...some TET instructions...

};
die "Exception caught: $@" if $@;

3.9 PHP Binding 35

3.9 PHP Binding
Installing the TET Edition for PHP. TET is implemented as a C library which can dynam-
ically be attached to PHP. TET supports several versions of PHP. Depending on the ver-
sion of PHP you use you must choose the appropriate TET library from the unpacked
TET archive.

Detailed information about the various flavors and options for using TET with PHP,
including the question of whether or not to use a loadable TET module for PHP, can be
found in the PDFlib-in-PHP-HowTo document which is available on the PDFlib Web site.
Although it is mainly targeted at using PDFlib with PHP the discussion applies equally
to using TET with PHP.

You must configure PHP so that it knows about the external TET library. You have
two choices:

> Add one of the following lines in php.ini:

extension=php_tet.dll ; for Windows
extension=php_tet.so ; for Unix and OS X
extension=php_tet.sl ; for HP-UX

PHP will search the library in the directory specified in the extension_dir variable in
php.ini on Unix, and additionally in the standard system directories on Windows.
You can test which version of the PHP TET binding you have installed with the fol-
lowing one-line PHP script:

<?phpinfo()?>

This will display a long info page about your current PHP configuration. On this page
check the section titled tet. If this section contains the phrase

PDFlib TET Support enabled

(plus the TET version number) you have successfully installed TET for PHP.
> Alternatively, you can load TET at runtime with one of the following lines at the start

of your script:

dl("php_tet.dll"); # for Windows
dl("php_tet.so"); # for Unix and OS X
dl("php_tet.sl"); # for HP-UX

File name handling in PHP. Unqualified file names (without any path component) and
relative file names are handled differently in Unix and Windows versions of PHP:

> PHP on Unix systems will find files without any path component in the directory
where the script is located.

> PHP on Windows will find files without any path component only in the directory
where the PHP DLL is located.

Exception handling. Since PHP 5 supports structured exception handling, TET excep-
tions will be propagated as PHP exceptions. You can use the standard try/catch tech-
nique to deal with TET exceptions:

try {

...some TET instructions...

36 Chapter 3: TET Library Language Bindings

} catch (TETException $e) {
print "TET exception occurred:\n";
print "[" . $e->get_errnum() . "] " . $e->get_apiname() . ": "

$e->get_errmsg() . "\n";
}
catch (Exception $e) {

print $e;
}

3.10 Python Binding 37

3.10 Python Binding
Installing the TET edition for Python. The Python extension mechanism works by
loading shared libraries at runtime. For the TET binding to work, the Python interpreter
must have access to the TET Python wrapper which will be searched in the directories
listed in the PYTHONPATH environment variable. The name of Python wrapper de-
pends on the platform:

> Unix and OS X: tetlib_py.so
> Windows: tetlib_py.pyd

Error Handling in Python. The Python binding translates TET exceptions to native
Python exceptions. The Python exceptions can be dealt with by the usual try/catch
technique:

try:
...some TET instructions...

except TETException:
print("TET exception occurred:\n[%d] %s: %s" %
((tet.get_errnum()), tet.get_apiname(), tet.get_errmsg()))

3.11 REALbasic Binding
Installing the TET edition for REALbasic. TET for REALbasic (TET.rbx) must be copied to a
folder called Plugins in the same folder where the REALbasic application lives. TET for
REALbasic is delivered in a single package and contains the following variants:

> OS X Carbon (PowerPC and Intel)
> Windows
> Linux

This means that you can use the OS X or Windows version to build applications for all
supported platforms. When a stand-alone application is generated, REALbasic selects
the appropriate parts of TET and includes only the platform-specific portion(s) in the
generated application.

Additional REALbasic classes. TET adds two new classes to REALbasic’s object hierar-
chy:

> The TET class contains all TET API methods.
> The TETException class, which is derived from RuntimeException, can be used to deal

with exceptions thrown by TET (see below).

TET can be used to create GUI applications as well as console applications. Since TET is
not a control it does not install a new icon in REALbasic’s control palette. However,
when TET is available, REALbasic will be aware of the TET class and its associated meth-
ods. For example, statement completion and parameter checking fully work for TET API
methods.

Error handling in REALbasic. In case of an exception TET will throw a native REALbasic
exception of the class TETException. TET Exceptions can be handled with standard REAL-
basic techniques: either use a try/catch block (this is recommended, but requires REAL-
basic 5.5 or above), or handle them in an Exception block. The latter is demonstrated in
the following code fragment:

Exception err As TETException
 MsgBox("TET exception occurred in extractor sample: [" + _
 Str(err.get_errnum()) + "] " + err.get_apiname() + ": " + err.get_errmsg())

As shown in this example, REALbasic developers can access detailed error information
by using the TETException methods for retrieving error number, error message, and the
name of the API function which raised the exception.

3.12 Ruby Binding 39

3.12 Ruby Binding
Installing the TET Ruby edition. The Ruby1 extension mechanism works by loading a
shared library at runtime. For the TET binding to work, the Ruby interpreter must have
access to the TET extension library for Ruby. This library (on Windows and Unix: TET.so;
on OS X: TET.bundle) will usually be installed in the site_ruby branch of the local ruby in-
stallation directory, i.e. in a directory with a name similar to the following:

/usr/local/lib/ruby/site_ruby/<version>/

However, Ruby will search other directories for extensions as well. In order to retrieve a
list of these directories you can use the following ruby call:

ruby -e "puts $:"

This list will usually include the current directory, so for testing purposes you can sim-
ply place the TET extension library and the scripts in the same directory.

Error Handling in Ruby. The Ruby binding installs an error handler which translates
TET exceptions to native Ruby exceptions. The Ruby exceptions can be dealt with by the
usual rescue technique:

begin
...some TET instructions...

rescue TETException => pe
 print pe.backtrace.join("\n") + "\n"
 print "Error [" + pe.get_errnum.to_s + "] " + pe.get_apiname + ": " + pe.get_errmsg
 print " on page pageno" if (pageno != 0)
 print "\n"
rescue Exception => e
 print e.backtrace.join("\n") + "\n" + e.to_s + "\n"
ensure
 tet.delete() if tet
end

Ruby on Rails. Ruby on Rails2 is an open-source framework which facilitates Web de-
velopment with Ruby. The TET extension for Ruby can be used with Ruby on Rails. Fol-
low these steps to run the TET examples for Ruby on Rails:

> Install Ruby and Ruby on Rails.
> Set up a new controller from the command line:

$ rails new tetdemo

$ cd tetdemo
$ cp <TET dir>/bind/ruby/<version>/TET.so vendor/ # use .so/.dll/.bundle

$ cp <TET dir>/bind/data/FontReporter.pdf .

$ rails generate controller home demo
$ rm public/index.html

> Edit config/routes.rb:

...

remember to delete public/index.html

1. See www.ruby-lang.org/en
2. See www.rubyonrails.org

http://www.ruby-lang.org/en
http://www.rubyonrails.org/

40 Chapter 3: TET Library Language Bindings

root :to => "home#demo"

> Edit app/controllers/home_controller.rb as follows and insert TET code for extracting
PDF contents. As a starting point you can use the code in the extractor-rails.rb sample:

class HomeController < ApplicationController
def demo
require "TET"
begin

p = TET.new
doc = tet.open_document(infilename, docoptlist)
...TET application code, see extractor-rails.rb...
...
and finally show the retrieved text
send_data text, :type => "text/plain", :disposition => "inline"
rescue TETException => pe
error handling

end
end
end

> In order to test your installation start the WEBrick server with the command

$ rails server

and point your browser to http://0.0.0.0:3000. The text extracted from the PDF docu-
ment will be displayed in the browser.

Local TET installation. If you want to use TET only with Ruby on Rails, but cannot in-
stall it globally for general use with Ruby, you can install TET locally in the vendors direc-
tory within the Rails tree. This is particularly useful if you do not have permission to in-
stall Ruby extensions for general use, but want to work with TET in Rails nevertheless.

3.13 RPG Binding 41

3.13 RPG Binding
TET provides a /copy module that defines all prototypes and some useful constants
needed to compile ILE-RPG programs with embedded TET functions.

Unicode string handling. Since all TET functions use Unicode strings with variable
length as parameters, you have to use the %ucs2 builtin function to convert a single-
byte string to a Unicode string. All strings returned by TET functions are Unicode strings
with variable length. Use the %char builtin function to convert these Unicode strings to
single-byte strings.

Note The %CHAR and %UCS2 functions use the current job’s CCSID to convert strings from and to
Unicode. The examples provided with TET are based on CCSID 37 (US EBCDIC). Some special
characters in option lists (e.g. { [] }) may not be translated correctly if you run the exam-
ples under other codepages.

Since all strings are passed as variable length strings you must not pass the length pa-
rameters in various functions which expect explicit string lengths (the length of a vari-
able length string is stored in the first two bytes of the string).

Compiling and binding RPG programs for TET. Using TET functions from RPG requires
the compiled TET service program. To include the TET definitions at compile time you
have to specify the name in the D specs of your ILE-RPG program:

d/copy QRPGLESRC,TETLIB

If the TET source file library is not on top of your library list you have to specify the li-
brary as well:

d/copy tetsrclib/QRPGLESRC,TETLIB

Before you start compiling your ILE-RPG program you have to create a binding directory
that includes the TETLIB service program shipped with TET. The following example as-
sumes that you want to create a binding directory called TETLIB in the library TETLIB:

CRTBNDDIR BNDDIR(TETLIB/TETLIB) TEXT('TETlib Binding Directory')

After creating the binding directory you need to add the TETLIB service program to your
binding directory. The following example assumes that you want to add the service pro-
gram TETLIB in the library TETLIB to the binding directory created earlier.

ADDBNDDIRE BNDDIR(TETLIB/TETLIB) OBJ((TETLIB/TETLIB *SRVPGM))

Now you can compile your program using the CRTBNDRPG command (or option 14 in
PDM):

CRTBNDRPG PGM(TETLIB/EXTRACTOR) SRCFILE(TETLIB/QRPGLESRC) SRCMBR(*PGM) DFTACTGRP(*NO)
BNDDIR(TETLIB/TETLIB)

Error Handling in RPG. TET clients written in ILE-RPG can use the monitor/on-error/
endmon error handling mechanism that ILE-RPG provides. Another way to monitor for
exceptions is to use the *PSSR global error handling subroutine in ILE-RPG. If an excep-

42 Chapter 3: TET Library Language Bindings

tion occurs, the job log shows the error number, the function that failed and the reason
for the exception. TET sends an escape message to the calling program.
c eval p=TET_new
*
c monitor
*
c callp TET_set_option(tet:globaloptlist)
c eval doc=TET_open_document(tet:%ucs2(%trim(parm1)):docoptlist)
:
:
* Error Handling
c on-error
* Do something with this error
* don’t forget to free the TET object
c callp TET_delete(tet)
c endmon

4.1 Free TET Plugin for Adobe Acrobat 43

4 TET Connectors
TET connectors provide the necessary glue code for interfacing TET with other software.
TET connectors are based on the TET library or the TET command-line tool.

4.1 Free TET Plugin for Adobe Acrobat
This section discusses the TET Plugin, a freely available packaging of TET which can be
used for testing in Adobe Acrobat and interactive use of TET with any PDF document.
The TET Plugin works with Acrobat 8/9/X/XI Standard, Pro, and Pro Extended (but not
the free Adobe Reader). It can be downloaded for free from the following location:
www.pdflib.com/products/tet-plugin.

What is the TET Plugin? The TET Plugin provides simple interactive access to TET. Al-
though the TET Plugin runs as an Acrobat plugin, the underlying content extraction fea-
tures do not use Acrobat functions, but are completely based on TET. The TET Plugin is
provided as a free tool which demonstrate the power of PDFlib TET. Since TET is more
powerful than Acrobat’s built-in text and image extraction tools and offers a number of
convenient user interface features, it is useful as a replacement for Acrobat’s built-in
copy and find features. PDFlib TET can successfully process many documents for which

Fig. 4.1
Configuration panel for the TET Plugin

http://www.pdflib.com/products/tet-plugin

44 Chapter 4: TET Connectors

Acrobat provides only garbage when trying to extract the text. The TET Plugin provides
the following functions:

> Copy the text from a PDF document in plain text to the system clipboard or a disk
file. Enhanced clipboard controls facilitate the use of copy/paste.

> Convert a PDF to TETML and place it in the clipboard or a disk file.
> Copy XMP document metadata to the clipboard or a disk file.
> Find words in the document.
> Highlight all instances of a search term on the page simultaneously.
> Extract images from the document as TIFF, JPEG, JPEG 2000, or JBIG2 files.
> Display color space and position information for images.
> Detailed configuration settings are available to adjust text and image extraction to

your requirements. Configuration sets can be saved and reloaded.

Advantages over Acrobat’s copy function. The TET Plugin offers several advantages
over Acrobat’s built-in copy facility:

> The output can be customized to match different application requirements.
> TET is able to correctly interpret the text in many cases where Acrobat copies only

garbage to the clipboard.
> Unknown glyphs (for which proper Unicode mapping cannot be established) will be

highlighted in red color, and can be replaced with a user-selected character (e.g. ques-
tion mark).

> TET processes documents much faster than Acrobat.
> Images can be selected interactively for export, or all images on the page or in the

document can be extracted.
> Tiny image fragments are merged to usable images.

4.2 TET Connector for the Lucene Search Engine 45

4.2 TET Connector for the Lucene Search Engine
Lucene is an open-source search engine. Lucene is primarily a Java project, but a C ver-
sion is also available and a version for .NET is under development. For more informa-
tion on Lucene see lucene.apache.org.

Note Protected documents can be indexed with the shrug option under certain conditions (see
Chapter 5.1, »Extracting Content from protected PDF«, page 59, for details). This is prepared in
the Connector files, but you must manually enable this option.

Requirements and installation. The TET distribution contains a TET connector which
can be used to enable PDF indexing in Lucene Java. We describe this connector for Lu-
cene Java in more detail below, assuming the following requirements are met:

> JDK 1.5 or later for Lucene 3.0.x
> A working installation of the Ant build tool
> The Lucene distribution with the Lucene core JAR file. The Ant build file distributed

with TET expects the file lucene-core-3.0.2.jar, which is part of the Lucene distribution.
> An installed TET distribution package for Unix, Linux, OS X, or Windows.

In order to implement the TET connector for Lucene perform the following steps with a
command prompt:

> cd to the directory <TET install dir>/connectors/lucene.
> Copy the file lucene-core-x.x.x.jar to this directory.
> Optionally customize the settings by adding global, document-, and page-related

TET options in TetReader.java. For example, the global option list can be used to sup-
ply a suitable search path for resources (e.g. if the CJK CMaps are installed in a direc-
tory different from the default installation).
The PdfDocument.java module demonstrates how to process PDF documents which
are stored either on a disk file or in a memory buffer (e.g. supplied by a Web crawler).
In the class com.pdflib.tet.lucene.IndexPdfFiles you can customize the target version of
the Lucene engine with the LUCENE_VERSION variable.

> Run the command ant index. This will compile the source code and run the indexer
on the PDF files contained in the directory <TET install dir>/bind/data.

> Run the command ant search to start the command-line search client where you can
enter queries in the Lucene query language.

Testing TET and Lucene with the command-line search client. The following sample
session demonstrates the commands and output for indexing with TET and Lucene, and
testing the generated index with the Lucene command-line query tool. The process is
started by running the command ant index:

devserver (1)$ ant index
Buildfile: build.xml
...
index:
 [java] adding ../data/Whitepaper-XMP-metadata-in-PDFlib-products.pdf
 [java] adding ../data/Whitepaper-PDFA-with-PDFlib-products.pdf
 [java] adding ../data/FontReporter.pdf
 [java] adding ../data/TET-PDF-IFilter-datasheet.pdf
 [java] adding ../data/PDFlib-datasheet.pdf
 [java] 1255 total milliseconds

http://lucene.apache.org

46 Chapter 4: TET Connectors

BUILD SUCCESSFUL
Total time: 2 seconds
devserver (1)$ ant search
Buildfile: build.xml

compile:

search:
 [java] Enter query:
PDFlib
 [java] Searching for: pdflib
 [java] 5 total matching documents
 [java] 1. ../data/PDFlib-datasheet.pdf
 [java] Title: PDFlib, PDFlib+PDI, Personalization Server Datasheet
 [java] 2. ../data/Whitepaper-PDFA-with-PDFlib-products.pdf
 [java] Title: Whitepaper: Creating PDF/A with PDFlib
 [java] 3. ../data/FontReporter.pdf
 [java] Title: PDFlib FontReporter 1.3 Manual
 [java] 4. ../data/TET-PDF-IFilter-datasheet.pdf
 [java] Title: PDFlib TET PDF IFilter Datasheet
 [java] 5. ../data/Whitepaper-XMP-metadata-in-PDFlib-products.pdf
 [java] Title: Whitepaper: XMP Metadata support in PDFlib Products
 [java] Press (q)uit or enter number to jump to a page.
q
 [java] Enter query:
title:FontReporter
 [java] Searching for: title:fontreporter
 [java] 1 total matching documents
 [java] 1. ../data/FontReporter.pdf
 [java] Title: PDFlib FontReporter 1.3 Manual
 [java] Press (q)uit or enter number to jump to a page.
q
 [java] Enter query:

BUILD SUCCESSFUL
Total time: 57 seconds

Two queries have been performed: one for the word PDFlib in the text, and another one
for the word FontReporter in the title field. Note that q must be entered to leave the result
paging mode before the next query can be started.

All paths and filenames in the Ant build.xml file are defined via properties so that the
file can be used with different environments, either by providing the properties on the
command line or by entering the properties to override in a file build.properties, or even
platform-specific into the files windows.properties or unix.properties. For example, to run
the sample with a Lucene JAR file which is installed under /tmp you can invoke Ant as
follows:

ant -Dlucene.jar=/tmp/lucene-core-x.x.x.jar index

Testing TET and Lucene with the demo Web application. The Lucene demo Web appli-
cation can be deployed on any Java servlet container such as Tomcat or GlassFish. The
required steps are described in the HTML documentation that comes with Lucene.

Note the step Configuration on that page. Here you must make the location of the in-
dex known to the Web application by entering it in the file configuration.jsp. The path to

4.2 TET Connector for the Lucene Search Engine 47

add here would be <TET install dir>/bind/lucene/index if Ant was run without overriding
the property for the location of the Lucene index.

Indexing metadata fields. The TET connector for Lucene indexes the following meta-
data fields:

> path (tokenized field): the pathname of the document
> modified (DateField): the date of the last modification
> contents (Reader field): the full text contents of the document
> All predefined and custom PDF document info entries, e.g. Title, Subject, Author,

etc. Document info entries can be queried with the pCOS interface which is inte-
grated in TET (see the pCOS Path Reference for more details on pCOS), e.g.

String objType = tet.pcos_get_string(tetHandle, "type:/Info/Subject");
if (!objType.equals("null"))

{
doc.add(new Field("summary", tet.pcos_get_string(tetHandle,

 "/Info/Subject"), Field.Store.YES, Field.Index.ANALYZED));
}

> font: the names of all fonts in the PDF document

You can customize metadata fields by modifying the set of indexed document info en-
tries or by adding more information based on pCOS paths in PdfDocument.java.

PDF file attachments. The Lucene connector for TET recursively processes all PDF file
attachments in a document, and feeds the text and metadata of each attachment to the
Lucene search engine for indexing. This way search hits will be generated even if the
searched text is not present in the main document but some attachment. Recursive at-
tachment traversal is especially important for PDF packages and portfolios.

48 Chapter 4: TET Connectors

4.3 TET Connector for the Solr Search Server
Solr is a high performance open-source enterprise search server based on the Lucene
search library, with XML/HTTP and JSON/Python/Ruby APIs, hit highlighting, faceted
search, caching, replication, and a web admin interface. It runs in a Java servlet contain-
er (see lucene.apache.org/solr).

Solar acts as an additional layer around the Lucene core engine. It expects the in-
dexed data in a simple XML format. Solr input can most easily be generated based on
TETML, the XML flavor produced by TET. The TET connector for Solr consists of an XSLT
stylesheet which converts TETML to the XML format expected by Solr. The TETML input
for this stylesheet can be generated with the TET library or the TET command-line tool
(see Section 9.1, »Creating TETML«, page 123).

Note Protected documents can be indexed with the shrug option under certain conditions (see
Chapter 5.1, »Extracting Content from protected PDF«, page 59, for details). In order to index
protected documents you must enable this option in the TET library or the TET command-line
tool when generating the TETML input for Solr.

Indexing metadata fields. The TET connector for Solr indexes all standard document
info fields. The key of each field will be used as the field name.

PDF file attachments. The TET connector for Solr recursively processes all PDF file at-
tachments in a document, and feeds the text and metadata of each attachment to the
search engine for indexing. This way search hits will be generated even if the searched
text is not present in the main document but some attachment. Recursive attachment
traversal is especially important for PDF packages and portfolios.

XSLT stylesheet for converting TETML. The solr.xsl stylesheet expects TETML input in
any mode except glyph. It generates the XML required to supply input data to the search
server. Document info entries are supplied as fields which carry the name of the info
entry (plus the _s suffix to indicate a string value), and the main text is supplied in a
number of text fields. PDF attachments (including PDF packages and portfolios) in the
document will be processed recursively:

<?xml version="1.0" encoding="UTF-8"?>
<add>
<doc>
<field name="id">PDFlib-FontReporter-E.pdf</field>
<field name="Author_s">PDFlib GmbH</field>
<field name="CreationDate_s">2008-07-08T15:05:39+00:00</field>
<field name="Creator_s">FrameMaker 7.0</field>
<field name="ModDate_s">2008-07-08T15:05:39+00:00</field>
<field name="Producer_s">Acrobat Distiller 7.0.5 (Windows)</field>
<field name="Subject_s">PDFlib FontReporter</field>
<field name="Title_s">PDFlib FontReporter 1.3 Manual</field>
<field name="text">PDFlib</field>
<field name="text">GmbH</field>
<field name="text">München</field>
...

http://lucene.apache.org/solr/

4.4 TET Connector for Oracle 49

4.4 TET Connector for Oracle
The TET connector for Oracle attaches TET to an Oracle database so that PDF documents
can be indexed and queried with Oracle Text. The PDF documents can be referenced via
their path name in the database, or directly stored in the database as BLOBs.

Note Protected documents can be indexed with the shrug option under certain conditions (see
Chapter 5.1, »Extracting Content from protected PDF«, page 59, for details). This is prepared in
the Connector files, but you must manually enable this option.

Requirements and installation. The TET connector has been tested with Oracle 10i and
Oracle 11g. In order use the TET connector you must specify the AL32UTF8 database char-
acter set when creating the database. This is always the case for the Universal edition of
Oracle Express (but not for the Western European edition). AL32UTF8 is the database
character set recommended by Oracle, and also works best with TET for indexing PDF
documents. However, it is also possible to connect TET to Oracle Text with other charac-
ter sets according to one of the following methods:

> Starting with Oracle Text 11.1.0.7 the database can perform the required character set
conversion. Please refer to the section »Using USER_FILTER with Charset and Format
Columns« in the Oracle Text 11.1.0.7 documentation, available at
download.oracle.com/docs/cd/B28359_01/text.111/b28304/cdatadic.htm#sthref497.

> With Oracle Text 11.1.0.6 or earlier the UTF-8 text generated by the TET filter script
must be converted to the database character set. This can be achieved by adding a
character set conversion command to tetfilter.sh:
Unix: call iconv (open-source software) or uconv (part of the free ICU Unicode library)
Windows: call a suitable code page converter in tetfilter.bat.

In order to take advantage of the TET Connector for Oracle you must make the TET filter
script available to Oracle as follows:

> Copy the TET filter script to a directory where Oracle can find it:
Unix: copy connectors/Oracle/tetfilter.sh to $ORACLE_HOME/ctx/bin
Windows: copy connectors/Oracle/tetfilter.bat to %ORACLE_HOME%\bin

> Make sure that the TETDIR variable in the TET filter script (tetfilter.sh or tetfilter.bat, re-
spectively) points to the TET installation directory.

> If required you can supply more TET options for the global, document, or page level
in the TETOPT, DOCOPT, and PAGEOPT variables (see Chapter 10, »TET Library API Refer-
ence«, page 141, for option list details). This is especially useful for supplying the TET
license key, e.g.:

TETOPT="license=aaaaaaa-bbbbbb-cccccc-dddddd-eeeeee"

See Section 0.2, »Applying the TET License Key«, page 8, for more options for supply-
ing the TET license key.

Granting privileges to the Oracle user. The examples below assume an Oracle user
with appropriate privileges to create and query an index. The following commands
grant appropriate privileges to the user HR (these commands must be issued as system
and must be adjusted as appropriate):

SQL> GRANT CTXAPP TO HR;
SQL> GRANT EXECUTE ON CTX_CLS TO HR;
SQL> GRANT EXECUTE ON CTX_DDL TO HR;

http://download.oracle.com/docs/cd/B28359_01/text.111/b28304/cdatadic.htm#sthref497

50 Chapter 4: TET Connectors

SQL> GRANT EXECUTE ON CTX_DOC TO HR;
SQL> GRANT EXECUTE ON CTX_OUTPUT TO HR;
SQL> GRANT EXECUTE ON CTX_QUERY TO HR;
SQL> GRANT EXECUTE ON CTX_REPORT TO HR;
SQL> GRANT EXECUTE ON CTX_THES TO HR;

Example A: Store path names of PDF documents in the database. This example stores
file name references to the indexed PDF documents in the database. Proceed as follows:

> Change to the following directory in a command prompt:

<TET installation directory>/connectors/Oracle

> Adjust the tetpath variable in the tetsetup_a.sql script so that it points to the directory
where TET is installed.

> Prepare the database: using Oracle’s sqlplus program create the table pdftable_a, fill
this table with path names of PDF documents, and create the index tetindex_a (note
that the contents of the tetsetup_a.sql script are slightly platform-dependent because
of different path syntax):

SQL> @tetsetup_a.sql

> Query the database using the index:

SQL> select * from pdftable_a where CONTAINS(pdffile, 'Whitepaper', 1) > 0;

> Update the index (required after adding more documents):

SQL> execute ctx_ddl.sync_index('tetindex_a')

> Optionally clean up the database (remove the index and table):

SQL> @tetcleanup_a.sql

Example B: Store PDF documents as BLOBs in the database and add metadata. This
examples stores the actual PDF documents as BLOBs in the database. In addition to the
PDF data some metadata is extracted with the pCOS interface and stored in dedicated
database columns. The tet_pdf_loader Java program stores the PDF documents as BLOBs
in the database. In order to demonstrate metadata handling the program uses the pCOS
interface to extract the document title (via the pCOS path /Info/Title) and the number of
pages in the document (via the pCOS path length:pages). The document title and the
page count will be stored in separate columns in the database. Proceed as follows to run
this example:

> Change to the following directory in a command prompt:

<TET installation directory>/connectors/Oracle

> Prepare the database: using Oracle’s sqlplus program create the table pdftable_b and
the corresponding index tetindex_b:

SQL> @tetsetup_b.sql

> Populate the database: fill the table with PDF documents and metadata via JDBC
(note that this is not possible with stored procedures). The ant build file supplied
with the TET package expects the ojdbc14.jar file for the Oracle JDBC driver in the
same directory as the tet_pdf_loader.java source code. Specify a suitable JDBC connec-
tion string with the ant command. The build file contains a description of all proper-
ties that can be used to specify options for the Ant build. You can supply values for

4.4 TET Connector for Oracle 51

these options on the command line. In the following example we use localhost as
host name, port number 1521, xe as database name, and HR as user name and pass-
word (adjust as appropriate for your database configuration):

ant -Dtet.jdbc.connection=jdbc:oracle:thin:@localhost:1521:xe
-Dtet.jdbc.user=HR -Dtet.jdbc.password=HR

> Update the index (required initially and after adding more documents):

SQL> execute ctx_ddl.sync_index('tetindex_b')

> Query the database using the index:

SQL> select * from pdftable_b where CONTAINS(pdffile, 'Whitepaper', 1) > 0;

> Optionally clean up the database (remove the index and table):

SQL> @tetcleanup_b.sql

52 Chapter 4: TET Connectors

4.5 TET PDF IFilter for Microsoft Products
This section discusses TET PDF IFilter, which is a separate product built on top of
PDFlib TET. More information and distribution packages for TET PDF IFilter are available
at www.pdflib.com/products/tet-pdf-ifilter.

TET PDF IFilter is freely available for non-commercial desktop use; commercial use
on desktop systems and deployment on servers requires a commercial license.

What is PDFlib TET PDF IFilter? TET PDF IFilter extracts text and metadata from PDF
documents and makes it available to search and retrieval software on Windows. This al-
lows PDF documents to be searched on the local desktop, a corporate server, or the Web.
TET PDF IFilter is based on the patented PDFlib Text Extraction Toolkit (TET), which is an
established developer product for reliably extracting text from PDF documents.

TET PDF IFilter is a robust implementation of Microsoft’s IFilter indexing interface. It
works with all search and retrieval products which support the IFilter interface, e.g.
SharePoint and SQL Server. Such products use format-specific filter programs – called
IFilters – for particular file formats, e.g. HTML. TET PDF IFilter is such a program, aimed
at PDF documents. The user interface for searching the documents may be the Windows
Explorer, a Web or database frontend, a query script, or a custom application. As an al-
ternative to interactive searches, queries can also be submitted programmatically with-
out any user interface.

Unique Advantages. TET PDF IFilter offers the following advantages:
> Supports Western text, Chinese, Japanese, and Korean (CJK) text and right-to-left lan-

guages such as Arabic and Hebrew
> Indexes protected documents and extracts text even from PDFs where Acrobat fails
> Supports Unicode folding, decomposition, and normalization
> Deployment: thread-safe, fast and robust, 32- and 64-bit versions
> Automatic script and language detection for improved search

Enterprise PDF Search. TET PDF IFilter is available in fully thread-safe native 32- and
64-bit versions. You can implement enterprise PDF search solutions with TET PDF IFilter
and the following products:

> Microsoft SharePoint Server and FAST server for SharePoint
> Microsoft Search Server
> Microsoft SQL Server
> Microsoft Exchange Server
> Microsoft Site Server

TET PDF IFilter can be used with all other Microsoft and third-party products which sup-
port the IFilter interface.

Desktop PDF Search. TET PDF IFilter can also be used to implement desktop PDF
search, e.g. with the following products:

> Windows Search is integrated in Windows Vista/7/8
> Windows Indexing Service

 TET PDF IFilter is free for non-commercial use on desktop operating systems, which
provides a convenient basis for test and evaluation.

http://www.pdflib.com/products/tet-pdf-ifilter/

4.5 TET PDF IFilter for Microsoft Products 53

Accepted PDF Input. TET PDF IFilter supports all relevant flavors of PDF input:
> All PDF versions up to Acrobat XI, including ISO 32000
> Protected PDFs which do not require a password for opening the document
> Damaged PDF documents will be repaired

Unicode Postprocessing. TET PDF IFilter supports various Unicode postprocessing
steps which can be used to improve the search results:

> Foldings preserve, remove or replace characters, e.g. remove punctuation or charac-
ters from irrelevant scripts.

> Decompositions replace a character with an equivalent sequence of one or more oth-
er characters, e.g. replace a Chinese character with its canonically equivalent Uni-
code character.

> Text can be converted to all four Unicode normalization forms, e.g. emit NFC form to
match the requirements of a database.

Internationalization. In addition to Western text TET PDF IFilter fully supports Chi-
nese, Japanese, and Korean (CJK) text. All CJK encodings are recognized; horizontal and
vertical writing modes are supported. Automatic detection of the locale ID (language
and region identifier) of the text improves the results of Microsoft’s word breaking and
stemming algorithms, which is especially important for East Asian text.

Right-to-left languages such as Hebrew and Arabic are also supported. Contextual
character forms are normalized and the text is delivered in logical order.

PDF is more than just a Bunch of Pages. TET PDF IFilter treats PDF documents as con-
tainers which may contain much more information than only plain pages. TET PDF IFil-
ter indexes all relevant items in PDF documents:

> Page contents
> Text in bookmarks
> Metadata (see below)
> Embedded PDFs and PDF packages/portfolios are processed recursively so that the

text in all embedded PDF documents can be searched.

XMP Metadata and Document Info. The advanced metadata implementation in TET
PDF IFilter supports the Windows property system for metadata. It indexes XMP meta-
data as well as standard or custom document info entries. Metadata indexing can be
configured on several levels:

> Document info entries, Dublin Core fields and other common XMP properties are
mapped to equivalent Windows properties, e.g. Title, Subject, Author.

> TET PDF IFilter adds useful PDF-specific pseudo properties, e.g. page size, PDF/A con-
formance level, font names.

> All relevant predefined XMP properties can be searched.
> User-defined XMP properties can be searched, e.g. company-specific classification

properties, PDF/A extension schemas.

TET PDF IFilter optionally integrates metadata in the full text index. As a result, even
full text search engines without metadata support (e.g. SQL Server) can search for meta-
data.

54 Chapter 4: TET Connectors

4.6 TET Connector for the Apache TIKA Toolkit
TIKA is an open-source »toolkit for detecting and extracting metadata and structured
text content from various documents using existing parser libraries«. For more infor-
mation about TIKA see tika.apache.org. The TET connector for Tika replaces the default
PDF parser configured in Tika and hooks up TET as parser for the PDF format. The TET
connector supplies the following items to Tika:

> unformatted text contents of all pages
> predefined and custom document info fields
> number of pages in the document

Note Protected documents can be indexed with the shrug option under certain conditions (see Chap-
ter 5.1, »Extracting Content from protected PDF«, page 59, for details). This is prepared in the
Connector files, but you must manually enable this option. TETPDFParser.java additionally pro-
vides a method for supplying a password in case the shrug option is not sufficient.

Requirements and installation. The TET distribution contains a TET connector for the
Tika toolkit. In the description below <tet-dir> stands for the directory where the TET
package was unpacked. The following requirements must be met:

> JDK 1.5 or later
> A working installation of the Ant build tool
> An installed TET distribution package for Unix, Linux, OS X, or Windows.
> A pre-built JAR file for Tika called tika-app-1.x.jar. Download information for this file

can be found at the following location:

tika.apache.org/download.html

Building and testing the TET connector for Tika. Proceed as follows to build and test
the TET connector for Tika:

> Copy tika-app-1.x.jar to the directory <tet-dir>/connectors/Tika.
> Change to <tet-dir>/connectors/Tika and build the TET connector for Tika:

ant

If your Tika jar file has a name different from tika-app-1.0.jar you must supply the
name of the jar file on the command line:

ant -Dtika-app.jar=tika-app-1.5.jar

> The build file includes a target for running a test with the TET connector for Tika:

ant test

This command should produce the contents of <tet-dir>/bind/data/FontReporter.pdf as
XHTML on the standard output. To test with a PDF file of your choice provide the Ant
property test.inputfile on the command line as follows:

ant -Dtest.inputfile=/path/to/your/file.pdf test

The ability to supply a password for protected documents can be tested as follows:

ant -Dtest.inputfile=<protected file.pdf> -Dtest.outputfile=<output file name>
-Dtest.password=<password> api-test

http://tika.apache.org

4.6 TET Connector for the Apache TIKA Toolkit 55

> To verify that the TET connector for Tika is actually used for the MIME type applica-
tion/pdf, execute the following command in the directory <tet-dir>/connectors/Tika on
Unix and OS X systems:

java -Djava.library.path=<tet-dir>/bind/java -classpath
<tet-dir>/bind/java/TET.jar:tika-app-1.0.jar:tet-tika.jar
org.apache.tika.cli.TikaCLI --list-parser-details

On Windows:

java -Djava.library.path=<tet-dir>/bind/java -classpath
<tet-dir>/bind/java/TET.jar;tika-app-1.0.jar;tet-tika.jar
org.apache.tika.cli.TikaCLI --list-parser-details

The following fragment should appear in the generated output:

com.pdflib.tet.tika.TETPDFParser
application/pdf

> For running the Tika GUI application with the TET connector, execute the following
command in the directory <tet-dir>/connectors/Tika:
On Unix and OS X systems:

java -Djava.library.path=<tet-dir>/bind/java -classpath
<tet-dir>/bind/java/TET.jar:tika-app-1.0.jar:tet-tika.jar
org.apache.tika.cli.TikaCLI

On Windows:

java -Djava.library.path=<tet-dir>\bind\java -classpath
<tet-dir>\bind\java\TET.jar;tika-app-1.0.jar;tet-tika.jar
org.apache.tika.cli.TikaCLI

Customizing the TET connector for Tika. You can customize the Tika connector as fol-
lows in the TETPDFParser.java source module:

> Add document options to the DOC_OPT_LIST variable, e.g. the shrug option for pro-
cessing protected documents;

> Add page options to the PAGE_OPT_LIST variable;
> Customize the searchpath for resources such as CJK CMaps in the SEARCHPATH vari-

able. Alternatively, the tet.searchpath property can be supplied when processing PDF
documents.

56 Chapter 4: TET Connectors

4.7 TET Connector for MediaWiki
MediaWiki is the free wiki software which is used to run Wikipedia and many other
community Web sites. More details on MediaWiki can be found at
www.mediawiki.org/wiki/MediaWiki.

Note Protected documents can be indexed with the shrug option under certain conditions (see
Chapter 5.1, »Extracting Content from protected PDF«, page 59, for details). This is prepared in
the Connector files, but you must manually enable this option.

Requirements and installation. The TET distribution contains a TET connector which
can be used to index PDF documents that are uploaded to a MediaWiki site. MediaWiki
does not support PDF documents natively, but allows you to upload PDFs as »images«.
The TET connector for MediaWiki indexes all PDF documents as they are uploaded. PDF
documents which already exist in MediaWiki will not be indexed. The following re-
quirements must be met:

> PHP 5.0 or above
> MediaWiki 1.11.2 or above (see below for older versions)
> A TET distribution package for Unix, Linux, OS X, or Windows.

In order to implement the TET connector for MediaWiki perform the following steps:
> Install the TET binding for PHP as described in Section 3.9, »PHP Binding«, page 35.
> Copy <TET install dir>/connectors/MediaWiki/PDFIndexer.php to

<MediaWiki install dir>/extensions/PDFIndexer/PDFIndexer.php.
> If you need support for CJK text, copy the CMap files in <TET install dir>/resource/cmap

to <MediaWiki install dir>/extensions/PDFIndexer/resource/cmap.
> Add the following lines to the MediaWiki configuration file LocalSettings.php:

Index uploaded PDFs to make them searchable
include("extensions/PDFIndexer/PDFIndexer.php");

> In order to avoid warnings when uploading PDF documents it is recommended to
add the following lines to <MediaWiki install dir>/includes/DefaultSettings.php in order
to make .pdf a well-known file type extension:

/**
* This is the list of preferred extensions for uploading files. Uploading files
* with extensions not in this list will trigger a warning.
*/
$wgFileExtensions = array('png', 'gif', 'jpg', 'jpeg', 'pdf');

How the TET connector for MediaWiki works. The TET connector for MediaWiki con-
sists of the PHP module PDFIndexer.php. Using one of MediaWiki’s predefined hooks it is
hooked up so that it will be called whenever a new PDF document is uploaded. It ex-
tracts text and metadata from the PDF document and appends it to the optional user-
supplied comment which accompanies the uploaded document. The text is hidden in
an HTML comment so that it will not be visible to users when they view the document
comment. Since MediaWiki indexes the full contents of the comment (including the
hidden full text) the text contents of the PDF will also be indexed. The text for the index
is constructed as follows:

> The TET connector feeds the value of all document info fields to the index.
> The text contents of all pages are extracted and concatenated.

http://www.mediawiki.org/wiki/MediaWiki

4.7 TET Connector for MediaWiki 57

> If the size of the extracted text is below a limit, it will completely be fed to the index.
The advantage of this method is that search results will display the search term in
context.

> If the size of the extracted text exceeds a limit, the text is reduced to unique words
(i.e. multiple instances of the same word are reduced to a single instance of the
word).

> If the size of the reduced text is below a limit, it will be fed to the index. Otherwise it
will be truncated, i.e. some text towards the end of the document will not be indexed.

The predefined limit is 512 KB, but this can be changed in PDFIndexer.php. If one of the
size tests described above hits the limit, a warning message will be written to Media-
Wiki’s DebugLogFile if MediaWiki logging is activated.

Searching for PDF documents. Since PDF documents are treated as images by Media-
Wiki you must search them in the Image namespace. This can be achieved by activating
the Image checkbox in the list of namespaces in the Advanced search dialog (see Figure
4.2). The Image namespace will not be searched by default. However, this setting can be
enabled in the LocalSettings.php preferences file as follows:

$wgNamespacesToBeSearchedDefault = array(
NS_MAIN => true,
NS_IMAGE => true,

}

The search results will display a list of documents which contain the search term. If the
full text has been indexed (as opposed to the abbreviated word list for long documents)
some additional terms will be displayed before and after the search term to provide
context. Since the PDF text contents are fed to the MediaWiki index in HTML form, line
numbers will be displayed in front of the text. These line numbers are not relevant for
PDF documents, and you can safely ignore them.

Indexing metadata fields. The TET connector for MediaWiki indexes all standard doc-
ument info fields. The value of each field will be fed to the index so that it can be used in
searches. Since MediaWiki does not support metadata-based searches you cannot di-
rectly search for document info entries, but only for info entries as part of the full text.

Fig. 4.2 Searching PDF documents in MediaWiki

5.1 Extracting Content from protected PDF 59

5 Configuration

5.1 Extracting Content from protected PDF
PDF security features. PDF documents can be protected with password security which
offers the following protection features:

> The user password (also referred to as open password) is required to open the file for
viewing.

> The master password (also referred to as owner or permissions password) is required
to change any security settings, i.e. permissions, user or master password. Files with
user and master passwords can be opened for viewing by supplying either password.

> Permission settings restrict certain actions for the PDF document, such as printing
or extracting text.

> An attachment password can be specified to encrypt only file attachments, but not
the actual contents of the document itself.

If a PDF document uses any of these protection features it will be encrypted. In order to
display or modify a document’s security settings with Acrobat, click File, Properties...,
Security, Show Details... or Change Settings..., respectively.

TET honors PDF permission settings. The password and permission status can be
queried with the pCOS paths encrypt/master, encrypt/user, encrypt/nocopy, etc. as demon-
strated in the dumper sample. pCOS also offers the pcosmode pseudo object which can
be used to determine which operations are allowed for a particular document.

Content extraction status. By default, text and image extraction is possible with TET if
the document can successfully be opened (this is no longer true if the requiredmode op-
tion of TET_open_document() was supplied). Depending on the nocopy permission set-
ting, content extraction may or may not be allowed in restricted pCOS mode (content
extraction is always allowed in full pCOS mode). The following condition can be used to
check whether content extraction is allowed:

if ((int) tet.pcos_get_number(doc, "encrypt/nocopy") == 0)
{

/* content extraction allowed */
}

The need for processing protected documents. PDF permission settings help docu-
ment authors to enforce their rights as creators of content, and users of PDF documents
must respect the rights of the document author when extracting text or image con-
tents. By default, TET will operate in restricted mode and refuse to extract any contents
from such protected documents. However, content extraction does not in all cases auto-
matically constitute a violation of the author’s rights. Situations where content ex-
traction may be acceptable include the following:

> Small amounts of content are extracted for quoting (»fair use«).
> Organizations may want to check incoming or outgoing documents for certain key-

words (document screening) without any further content repurposing.
> The document author himself may have lost the master password.

60 Chapter 5: Configuration

> Search engines index protected documents without making the document contents
available to the user directly (only indirectly by providing a link to the original PDF).

The last example is particularly important: even if users are not allowed to extract the
contents of a protected PDF, they should be able to locate the document in an enterprise
or Web-based search. It may be acceptable to extract the contents if the extracted text is
not directly made available to the user, but only used to feed the search engine’s index
so that the document can be found. Since the user only gets access to the original pro-
tected PDF (after the search engine indexed the contents and the hit list contained a link
to the PDF), the document’s internal permission settings will protect the document as
usual when accessed by the user.

The »shrug« feature for protected documents. TET offers a feature which can be used
to extract text and images from protected documents, assuming the TET user accepts
responsibility for respecting the document author’s rights. This feature is called shrug,
and works as follows: by supplying the shrug option to TET_open_document() the user as-
serts that he or she will not violate any document authors’ rights. PDFlib GmbH’s terms
and conditions require that TET customers respect PDF permission settings.

If all of the following conditions are true, the shrug feature will be enabled:
> The shrug option has been supplied to TET_open_document().
> The document requires a master password but it has not been supplied to TET_open_

document().
> If the document requires a user (open) password, it must have been supplied to TET_

open_document().
> Text extraction is not allowed in the document’s permission settings, i.e.

nocopy=true.

The shrug feature will have the following effects:
> Extracting content from the document is allowed despite nocopy=true. The user is re-

sponsible for respecting the document author’s rights.
> The pCOS pseudo object shrug will be set to true/1.
> pCOS runs in full mode (instead of restricted mode), i.e. the pcosmode pseudo object

will be set to 2.

The shrug pseudo object can be used according to the following idiom to determine
whether or not the contents can directly be made available to the user, or should only
be used for indexing and similar indirect purposes:

int doc = tet.open_document(filename, "shrug");
...
if ((int) tet.pcos_get_number(doc, "shrug") == 1)
{

/* only indexing allowed */
}
else
{

/* content may be delivered to the user */
}

5.2 Resource Configuration and File Searching 61

5.2 Resource Configuration and File Searching
UPR files and resource categories. In some situations TET needs access to resources
such as encoding definitions or glyph name mapping tables. In order to make resource
handling platform-independent and customizable, a configuration file can be supplied
for describing the available resources along with the names of their corresponding disk
files. In addition to a static configuration file, dynamic configuration can be accom-
plished at runtime by adding resources with TET_set_option(). For the configuration file
a simple text format called Unix PostScript Resource (UPR) is used. The UPR file format as
used by TET will be described below. TET supports the resource categories listed in Table
5.1.

The UPR file format. UPR files are text files with a very simple structure that can easily
be written in a text editor or generated automatically. To start with, let’s take a look at
some syntactical issues:

> Lines can have a maximum of 255 characters.
> A backslash ’\’ escapes newline characters. This may be used to extend lines.
> An isolated period character ’ . ’ serves as a section terminator.
> Comment lines may be introduced with a percent ’%’ character, and terminated by

the end of the line.
> Whitespace is ignored everywhere except in resource names and file names.

UPR files consist of the following components:
> A magic line for identifying the file. It has the following form:

PS-Resources-1.0

> A section listing all resource categories described in the file. Each line describes one
resource category. The list is terminated by a line with a single period character.

Table 5.1 Resource categories (all file names must be specified in UTF-8)

category format1

1. While the UPR syntax requires an equal character ’=’ between the name and value, this character is neither required nor allowed
when specifying resources with TET_set_option().

explanation

cmap key=value Resource name and file name of a CMap

codelist key=value Resource name and file name of a code list

encoding key=value Resource name and file name of an encoding

glyphlist key=value Resource name and file name of a glyph list

glyphmapping option list An option list describing a glyph mapping method according to Table 10.9,
page 166. This resource will be evaluated in TET_open_document(), and
the result will be appended after the mappings specified in the option
glyphmapping of TET_open_document().

hostfont key=value Name of a host font resource (key is the PDF font name; value is the UTF-8
encoded host font name) to be used for an unembedded font

fontoutline key=value Font and file name of a TrueType or OpenType font to be used for an un-
embedded font

searchpath value Relative or absolute path name of directories containing data files

62 Chapter 5: Configuration

> A section for each of the resource categories listed at the beginning of the file. Each
section starts with a line showing the resource category, followed by an arbitrary
number of lines describing available resources. The list is terminated by a line with a
single period character. Each resource data line contains the name of the resource
(equal signs have to be quoted). If the resource requires a file name, this name has to
be added after an equal sign. The searchpath (see below) will be applied when TET
searches for files listed in resource entries.

Sample UPR file. The following listing gives an example of a UPR configuration file:

PS-Resources-1.0
searchpath
glyphlist
codelist
encoding
.
searchpath
/usr/local/lib/cmaps
/users/kurt/myfonts
.
glyphlist
myglyphlist=/usr/lib/sample.gl
.
codelist
mycodelist=/usr/lib/sample.cl
.
encoding
myencoding=sample.enc
.

File search and the searchpath resource category. In addition to relative or absolute
path names you can supply file names without any path specification to TET. The
searchpath resource category can be used to specify a list of path names for directories
containing the required data files. When TET must open a file it will first use the file
name exactly as supplied, and try to open the file. If this attempt fails, TET will try to
open the file in the directories specified in the searchpath resource category one after
another until it succeeds. Multiple searchpath entries can be accumulated, and will be
searched in reverse order (paths set at a later point in time will searched before earlier
ones). In order to disable the search you can use a fully specified path name in the TET
functions.

On Windows TET initializes the searchpath resource category with a value read from
the following registry keys:

HKLM\SOFTWARE\PDFlib\TET4\4.3\SearchPath
HKLM\SOFTWARE\PDFlib\TET4\SearchPath
HKLM\SOFTWARE\PDFlib\SearchPath

These registry entries may contain a list of path names separated by a semicolon ’;’
character. The Windows installer initializes the SearchPath registry entry with the name
of the resource directory in the TET installation directory.

Note Be careful when manually accessing the registry on 64-bit Windows systems: as usual, 64-bit
binaries work with the 64-bit view of the Windows registry, while 32-bit binaries running on a
64-bit system work with the 32-bit view of the registry. If you must add registry keys for a 32-bit

5.2 Resource Configuration and File Searching 63

product manually, make sure to use the 32-bit version of the regedit tool. It can be invoked as
follows from the Start, Run... dialog:

%systemroot%\syswow64\regedit

On i5/iSeries the searchpath resource category is initialized with the following values:

/PDFlib/TET/4.3/resource/cmap
/PDFlib/TET/4.3/resource/codelist
/PDFlib/TET/4.3/resource/glyphlst
/PDFlib/TET/4.3
/PDFlib/TET
/PDFlib

Default file search paths. On Unix, Linux, OS X and i5/iSeries systems some directo-
ries will be searched for files by default even without specifying any path and directory
names. Before searching and reading the UPR file (which may contain additional search
paths), the following directories will be searched:

<rootpath>/PDFlib/TET/4.3/resource/cmap
<rootpath>/PDFlib/TET/4.3/resource/codelist
<rootpath>/PDFlib/TET/4.3/resource/glyphlst
<rootpath>/PDFlib/TET/4.3/resource/fonts
<rootpath>/PDFlib/TET/4.3/resource/icc
<rootpath>/PDFlib/TET/4.3
<rootpath>/PDFlib/TET
<rootpath>/PDFlib

On Unix, Linux, and OS X <roothpath> will first be replaced with /usr/local and then with
the HOME directory. On i5/iSeries <roothpath> is empty.

Default file names for license and resource files. By default, the following file names
will be searched for in the default search path directories:

licensekeys.txt (license file)
pdflib.upr (resource file)

This feature can be used to work with a license file without setting any environment
variable or runtime option.

Searching for the UPR resource file. If resource files are to be used you can specify
them via calls to TET_set_option() (see below) or in a UPR resource file. TET reads this file
automatically when the first resource is requested. The detailed process is as follows:

> If the environment variable TETRESOURCEFILE is defined TET takes its value as the
name of the UPR file to be read. If this file cannot be read an exception will be
thrown.

> If the environment variable TETRESOURCEFILE is not defined, TET tries to open a file
with the following name:

upr (on MVS; a dataset is expected)
/tet/4.3/tet.upr (on i5/iSeries)
tet.upr (Windows, Unix, and all other systems)

If this file cannot be read no exception will be thrown.
> On Windows TET will additionally try to read the following registry entry:

64 Chapter 5: Configuration

HKLM\SOFTWARE\PDFlib\TET4\4.3\resourcefile

The value of this key (which will be created with the value <installdir>/tet.upr by the
TET installer, but can also be created by other means) will be taken as the name of the
resource file to be used. If this file cannot be read an exception will be thrown.

> The client can force TET to read a resource file at runtime by explicitly setting the
resourcefile option:

set_option("resourcefile=/path/to/tet.upr");

This call can be repeated arbitrarily often; the resource entries will be accumulated.

Configuring resources at runtime. In addition to using a UPR file for the configuration,
it is also possible to directly configure individual resources at runtime via TET_set_
option(). This function takes a resource category name and pairs of corresponding re-
source names and values as it would appear in the respective section of this category in
a UPR resource file, for example:

set_option("glyphlist={myglyphnames=/usr/local/glyphnames.gl}");

Multiple resource names can be configured in a single option list for a resource category
option (but the same resource category option cannot be repeated in a single call to TET_
set_option()). Alternatively, multiple calls can be used to accumulate resource settings.

Escape sequences for text files. Escape sequences are supported in all text files except
UPR files and CMap files. Special character sequences can be used to include unprintable
characters in text files. All sequences start with a backslash ’\’ character:

> \x introduces a sequence of two hexadecimal digits (0-9, A-F, a-f), e.g. \x0D
> \nnn denotes a sequence of three octal digits (0-7), e.g. \015. The sequence \000 will be

ignored.
> The sequence \\ denotes a single backslash.
> A backslash at the end of a line will cancel the end-of-line character.

5.3 Recommendations for common Scenarios 65

5.3 Recommendations for common Scenarios
TET offers a variety of options which you can use to control various aspects of opera-
tion. In this section we provide some recommendations for typical TET application sce-
narios. Please refer to Chapter 10, »TET Library API Reference«, page 141, for details on
the functions and options mentioned below.

Optimizing performance. In some situations, particularly when indexing PDF for
search engines, text extraction speed is crucial, and may play a more important role
than optimal output. The default settings of TET have been selected to achieve the best
possible output, but can be adjusted to speed up processing. Some tips for choosing op-
tions in TET_open_page() to maximize text extraction throughput:

> docstyle=searchengine
Several internal parameters will be set to speed up operation by reducing the output
quality in a way which does not affect the indexing process for search engines.

> skipengines={image}
If image extraction is not required internal image processing can be skipped in order
to speed up operation.

> contentanalysis={merge=0}
This will disable the expensive strip and zone merging step, and reduces processing
times for typical files to ca. 60% compared to default settings. However, documents
where the contents are scattered across the pages in arbitrary order may result in
some text which is not extracted in logical order.

> contentanalysis={shadowdetect=false}
This will disable detection of redundant shadow and fake bold text, which can also
reduce processing times.

Words vs. line layout vs. reflowable text. Different applications will prefer different
kinds of output (hyphenated words will always be dehyphenated with these settings):

> Individual words (ignore layout): a search engine may not be interested in any lay-
out-related aspects, but only the words comprising the text. In this situation use
granularity=word in TET_open_page() to retrieve one word per call to TET_get_text().

> Keep line layout: use granularity=page in TET_open_page() for extracting the full text
contents of a page in a single call to TET_get_text(). Text lines will be separated with a
linefeed character to retain the existing line structure.

> Reflowable text: in order to avoid line breaks and facilitate reflowing of the extracted
text use lineseparator=U+0020 and granularity=page in TET_open_page(). The full page
contents can be fetched with a single call to TET_get_text(). Zones will be separated
with a linefeed character, and a space character will be inserted between the lines in
a zone.

Writing a search engine or indexer. Indexers are usually not interested in the position
of text on the page (unless they provide search term highlighting). In many cases they
will tolerate errors which occur in Unicode mapping, and process whatever text con-
tents they can get. Recommendations:

> Use granularity=word in TET_open_page().
> If the application knows how to process punctuation characters you can keep them

with the adjacent text by setting the following page option:
contentanalysis={punctuationbreaks=false}

66 Chapter 5: Configuration

Geometry. The geometry features may be useful for some applications:
> The TET_get_char_info() interface is only required if you need the position of text on

the page, the respective font name, or other details. If you are not interested in text
coordinates calling TET_get_text() will be sufficient.

> If you have advance information about the layout of pages you can use the include-
box and/or excludebox options in TET_open_page() to get rid of headers, footers, or
similar items which are not part of the main text.

Unknown characters. If TET is unable to determine the appropriate Unicode mapping
for one or more characters it will represent it with the Unicode replacement character
U+FFFD. If your application is not concerned about unmappable characters you can
simply discard all occurrences of this character. Applications which require more fine-
grain results could take the corresponding font into account, and use it to decide on
processing of unmappable characters. Use the following document option to replace all
unmapped characters with a question mark:

unknownchar=?

Use the following document option to remove all unmapped characters from the out-
put:

fold={{[:Private_Use:] remove} {[U+FFFD] remove} default}

Complex layouts. Some classes of documents often use very elaborate page layouts.
For example, with magazines and periodicals TET may not be able to properly deter-
mine the relationship of columns on the page. In such situations it is possible to en-
hance the extracted text at the expense of processing time. Suitable options for this
purpose are summarized in Section 6.6, »Layout Analysis«, page 88. See Table 10.12, page
174, for more details on relevant options.

Legal documents. When dealing with legal documents there is usually zero tolerance
for wrong Unicode mappings since they might alter the content or interpretation of a
document. In many cases the text position is not required, and the text must be extract-
ed word by word. Recommendations:

> Use the granularity=word option in TET_open_page().
> Use the password option with the appropriate document password in TET_open_

document() if you must process documents which require a password for opening, or
the shrug option if content extraction is not allowed in the permission settings and
you are in a legal position to extract text from the document (see »The »shrug« fea-
ture for protected documents«, page 60).

> For absolute text fidelity: stop processing as soon as the unknown field in the charac-
ter info structure returned by TET_get_char_info() is 1, or if the Unicode replacement
character U+FFFD is part of the string returned by TET_get_text(). In TETML with one
of the text modes glyph or wordplus you can identify this situation by the following
attribute in the Glyph element:

unknown="true"

Do not set the unknownchar option to any common character since you may be un-
able to distinguish it from correctly mapped characters without checking the
unknown field.

5.3 Recommendations for common Scenarios 67

> Also to ensure text fidelity you may want to disable text extraction for text which is
not visible on the page:

ignoreinvisibletext=true

Processing documents with PDFlib+PDI. When using PDFlib+PDI to process PDF docu-
ments on a per-page basis you can integrate TET for controlling the splitting or merging
process. For example, you could split a PDF document based on the contents of a page. If
you have control over the creation process you can insert separator pages with suitable
processing instructions in the text. The TET Cookbook contains examples for analyzing
documents with TET and then processing them with PDFlib+PDI.

Legacy PDF documents with missing Unicode values. In some situations PDF docu-
ments created by legacy applications must be processed where the PDF may not contain
enough information for proper Unicode mapping. Using the default settings TET may
be unable to extract some or all of the text contents. Recommendations:

> Start by extracting the text with default settings, and analyze the results. Identify
the fonts which do not provide enough information for proper Unicode mapping.

> Write custom encoding tables and glyph name lists to fix problematic fonts. Use the
PDFlib FontReporter plugin for analyzing the fonts and preparing Unicode mapping
tables.

> Configure the custom mapping tables and extract the text again, using a larger num-
ber of documents. If there are still unmappable glyphs or fonts adjust the mapping
tables as appropriate.

> If you have a large number of documents with unmappable fonts PDFlib GmbH may
be able to assist you in creating the required mapping tables.

Convert PDF documents to another format. If you want to import the page contents of
PDF documents into your application, while retaining as much information as possible
you’ll need precise character metrics. Recommendations:

> Use TET_get_char_info() to retrieve precise character metrics and font names. Even if
you use the uv field to retrieve the Unicode values of individual characters, you must
also call TET_get_text() since it fills the char_info structure.

> Use granularity=glyph or word in TET_open_page(), depending on what is better suited
for your application. Working with granularity=glyph may result in conflicts between
the visual layout of text and the processed logical text created by TET (e.g. the two
characters created by a ligature glyph may not fit into the same space as the liga-
ture).

Corporate fonts with custom-encoded logos. In many cases corporate fonts contain-
ing custom logos have missing or wrong Unicode mapping information for the logos. If
you have a large number of PDF documents containing such fonts it is recommended to
create a custom mapping table with proper Unicode values.

Start by creating a font report (see »Analyzing PDF documents with the PDFlib Font-
Reporter Plugin«, page 108) for a PDF containing the font, and locate mismapped glyphs
in the font report. Depending on the font type you can use any of the available configu-
ration tables to provide the missing Unicode mappings. See »Code list resources for all
font types«, page 109, for a detailed example of a code list for a logotype font.

68 Chapter 5: Configuration

TeX documents. PDF documents produced with the TeX documents often contain nu-
merical glyph names, Type 3 fonts and other features which prevent other products
from successfully extracting the text. TET contains many heuristics and workarounds
for dealing with such documents. However, a particular flavor of TeX documents can
only be processed with a workaround that requires more processing time, and is dis-
abled by default. You can enable more CPU-intensive font processing for these docu-
ments with the following document option:

checkglyphlists=true

6.1 PDF Document Domains 69

6 Text Extraction

6.1 PDF Document Domains
PDF documents may contain text in many other places than only the page contents.
While most applications deal with the page contents only, in many situations other
document domains may be relevant as well.

While the page contents can be retrieved with the workhorse functions TET_get_
text() and TET_get_image(), the integrated pCOS interface plays a crucial role for retriev-
ing text from other document domains.

In the remaining section we provide information on domain searching with the TET
library and TETML. In addition, we summarize how to search these document domains
with Acrobat X/XI. This is important to locate search hits in Acrobat.

Text on the page. Page contents are the main source of text in PDF. Text on a page is
rendered with fonts and encoded using one of the many encoding techniques available
in PDF.

> How to display with Acrobat: page contents are always visible
> How to search a single PDF with Acrobat X/XI: Edit, Find or Edit, [Advanced] Search. TET

may be able to process the text in documents where Acrobat does not correctly map
glyphs to Unicode values. In this situation you can use the TET Plugin which is based
on TET (see Section 4.1, »Free TET Plugin for Adobe Acrobat«, page 43). The TET Plugin
offers its own search dialog via Plug-Ins, PDFlib TET Plugin... TET Find. However, it is not
intended as a full-blown search facility.

> How to search multiple PDFs with Acrobat X/XI: Edit, [Advanced] Search and in Where
would you like to search? select All PDF Documents in, and browse to a folder with PDF
documents.

> Sample code for the TET library: extractor mini sample
> TETML element: /TET/Document/Pages/Page

Predefined document info entries. Traditional document info entries are key/value
pairs.

> How to display with Acrobat X/XI: File, Properties...
> How to search a single PDF with Acrobat X/XI: not available
> How to search multiple PDFs with Acrobat X/XI: click Edit, [Advanced] Search and Show

More Options near the bottom of the dialog. In the Look In: pull-down select a folder of
PDF documents and in the pull-down menu Use these additional criteria select one of
Date Created, Date Modified, Author, Title, Subject, Keywords.

> Sample code for the TET library: dumper mini sample
> TETML element: /TET/Document/DocInfo

Custom document info entries. Custom document info entries can be defined in addi-
tion to the standard entries.

> How to display with Acrobat X/XI: File, Properties..., Custom (not available in the free
Adobe Reader)

> How to search with Acrobat X/XI: not available

70 Chapter 6: Text Extraction

> Sample code for the TET library: dumper mini sample
> TETML element: /TET/Document/DocInfo/Custom

XMP metadata on document level. XMP metadata consists of an XML stream contain-
ing extended metadata.

> How to display with Acrobat X/XI: File, Properties..., Additional Metadata.. (not avail-
able in the free Adobe Reader)

> How to search a single PDF with Acrobat X/XI: not available
> How to search multiple PDFs with Acrobat X/XI: click Edit, [Advanced] Search and Show

More Options. In the Look In: pull-down select a folder of PDF documents and in the
pull-down menu Use these additional criteria select XMP Metadata (not available in
the free Adobe Reader).

> Sample code for the TET library: dumper mini sample
> TETML element: /TET/Document/Metadata

XMP metadata on image level. XMP metadata can be attached to document compo-
nents, such as images, pages, fonts, etc. However, XMP is commonly only found on the
image level (in addition to document level).

Fig. 6.1
Acrobat’s advanced

search dialog

6.1 PDF Document Domains 71

> How to display with Acrobat X: Tools, Content, Edit Object, select image, right-click,
Show Metadata... (not available in the free Adobe Reader)

> How to display with Acrobat XI: Tools, Content Editing, Edit Text & Images, select image,
right-click, Show Metadata... (not available in the free Adobe Reader)

> How to search with Acrobat X/XI: not available
> Sample code for the TET library: pCOS Cookbook topic image_metadata
> TETML element: /TET/Document/Pages/Resources/Images/Image/Metadata

Text in form fields. Form fields are displayed on top of the page. However, technically
they are not part of the page contents, but represented by separate data structures.

> How to display with Acrobat X/XI: Tools, Forms, Edit (not available in the free Adobe
Reader)

> How to search with Acrobat X/XI: not available
> Sample code for the TET library: pCOS Cookbook topic fields
> TETML element: not available

Text in comments (annotations). Similar to form fields, annotations (notes, com-
ments, etc.) are layered on top of the page, but are represented by separate data struc-
tures. The interesting text contents of an annotation depend on its type. For example,
for Web links the interesting part may be the URL, while for other annotation types the
visible text contents may be relevant.

> How to display with Acrobat X/XI: Comment, Comments List
> How to search a single PDF with Acrobat X/XI: Edit, Search and check the box Include

Comments, or use the Search Comments button on the Comments List toolbar
> How to search multiple PDFs with Acrobat X/XI: click Edit, [Advanced] Search and Show

More Options. In the Look In: pull-down select a folder of PDF documents and in the
pull-down menu Use these additional criteria select Comments.

> Sample code for the TET library: pCOS Cookbook topic annotations
> TETML element: not available

Text in bookmarks. Bookmarks are not directly page-related, although they may con-
tain an action which jumps to a particular page. Bookmarks can be nested to form a hi-
erarchical structure.

> How to display with Acrobat X/XI: View, Show/Hide, Navigation Panes, Bookmarks
> How to search a single PDF with Acrobat X/XI: Edit, [Advanced] Search and check the

box Include Bookmarks
> How to search multiple PDFs with Acrobat X/XI: click Edit, [Advanced] Search and Use

Advanced Search Options. In the Look In: pull-down select a folder of PDF documents
and in the pull-down menu Use these additional criteria select Bookmarks (not avail-
able in the free Adobe Reader)

> Sample code for the TET library: pCOS Cookbook topic bookmarks
> TETML element: not available

File attachments. PDF documents may contain file attachments (on document or page
level) which may themselves be PDF documents.

> How to display with Acrobat X/XI: View, Show/Hide, Navigation Panes, Attachments
> How to search with Acrobat X/XI: Use Edit, [Advanced] Search and check the box

Include Attachments (not available in the free Adobe Reader). Nested attachments will
not be searched recursively.

72 Chapter 6: Text Extraction

> Sample code for the TET library: get_attachments mini sample
> TETML element: /TET/Document/Attachments/Attachment/Document

PDF packages and portfolios. PDF packages and PDF portfolios are file attachments
with additional properties.

> How to display with Acrobat X/XI: Acrobat presents the cover sheet of the package/
portfolio and the constituent PDF documents with dedicated user interface ele-
ments for PDF packages.

> How to search a single PDF package with Acrobat X/XI: Edit, Search Entire Portfolio
> How to search multiple PDF packages with Acrobat X/XI: not available
> Sample code for the TET library: get_attachments mini sample
> TETML element: /TET/Document/Attachments/Attachment/Document

PDF standards and other PDF properties. This domain does not explicitly contain text,
but is used as a container which collects various intrinsic properties of a PDF document,
e.g. PDF/X and PDF/A status, Tagged PDF status, etc.

> Acrobat X/XI: View, Show/Hide, Navigation Panes, Standards (only present for standard-
conforming PDFs)

> How to search with Acrobat X/XI: not available
> Sample code for the TET library: dumper mini sample
> TETML elements and attributes: /TET/Document/@pdfa, /TET/Document/@pdfe,

/TET/Document/@pdfua, /TET/Document/@pdfvt, /TET/Document/@pdfx

6.2 Page and Text Geometry 73

6.2 Page and Text Geometry
Default coordinate system. By default TET represents all page and text metrics in the
standard coordinate system of PDF. However, the origin of the coordinate system
(which could be located outside the page) is adjusted to the lower left corner of the visi-
ble page. More precisely, the origin is located in the lower left corner of the CropBox if it
is present, or the MediaBox otherwise. Page rotation is applied if the page has a Rotate
key. The coordinate system uses the DTP point as unit:

1 pt = 1 inch / 72 = 25.4 mm / 72 = 0.3528 mm

The first coordinate increases to the right, the second coordinate increases upwards. All
coordinates expected or returned by TET are interpreted in this coordinate system, re-
gardless of their representation in the underlying PDF document. See the pCOS Path
Reference to learn how to determine the size of a PDF page.

Top-down coordinate system. Unlike PDF’s bottom-up coordinate system some graph-
ics environments use top-down coordinates which may be preferred by some develop-
ers. In order to facilitate the use of top-down coordinates TET supports an alternative
coordinate system in which all relevant coordinates are interpreted relative to the up-
per left corner of the page instead of the lower left corner, with y coordinates increasing
downwards. This topdown feature has been designed to make it quite natural for TET us-
ers to work in a top-down coordinate system. As an additional advantage, top-down co-
ordinates are identical to the coordinate values displayed in Acrobat (see below). The
top-down coordinate system for a page can be activated with the page option topdown=
{output}.

Visualizing coordinates in Acrobat. You can visualize page coordinates in Acrobat as
follows (see Figure 6.2):

> To display cursor coordinates in Acrobat X/XI use View, Show/Hide, Cursor Coordinates.
> The coordinates are displayed in the unit which is currently selected in Acrobat. To

change the display units to points (as used in TET) in Acrobat X/XI proceed as fol-
lows: go to Edit, Preferences, [General...], Units & Guides, Units and select Points.

Note that the coordinates displayed refer to an origin in the top left corner of the page,
and not the default coordinate system of PDF and TET with an origin in the lower left
corner. See the previous section for details on selecting a top-down coordinate system
which aligns with Acrobat’s coordinate display.

Area of text extraction. By default, TET will extract all text from the visible page area.
Using the clippingarea option of TET_open_page() (see Table 10.10, page 169) you can
change this to any of the PDF page box entries (e.g. TrimBox). With the keyword unlimi-
ted all text regardless of any page boxes can be extracted. The default value cropbox in-
structs TET to extract text within the area which is visible in Acrobat.

The area of text extraction can be specified in more detail by providing an arbitrary
number of rectangular areas in the includebox and excludebox options of TET_open_
page(). This is useful for extracting partial page content (e.g. selected columns), or for
excluding irrelevant parts (e.g. margins, headers and footers). The final clipping area is

74 Chapter 6: Text Extraction

constructed by determining the union of all rectangles specified in the includebox op-
tion, and subtracting the union of all rectangles specified in the excludebox option. A
character is considered inside the clipping area if its reference point is inside the clip-
ping area. This means that a character could be considered inside the clipping area even
if parts of it extend beyond the clipping area, or vice versa.

Glyph metrics. Using TET_get_char_info() you can retrieve font and metrics informa-
tion for the characters which are returned for a particular glyph. The following values
are available for each character in the output (see Figure 6.3 and Table 10.15):

> The uv value contains the UTF-32 Unicode value of the current character, i.e. the char-
acter for which details are retrieved. This field will always contain UTF-32, even in
language bindings that can deal only with UTF-16 strings in their native Unicode
strings. Accessing the uv field allows applications to deal with characters outside the
BMP without having to interpret surrogate pairs. Since surrogate pairs are reported
as two separate characters, the uv field of the leading surrogate value will contain the
actual Unicode value (larger than U+FFFF). The uv field of the trailing surrogate value
is treated as an artificial character, and has a uv value of 0.

> The type field specifies how the character was created. There are two groups: real and
artificial characters. The group of real characters comprises normal characters (i.e.
the complete result of a single glyph) and characters which start a multi-character
sequence that corresponds to a single glyph (e.g. the first character of a ligature). The

Fig. 6.2
Configuring coordinate display in Acrobat; use View, Cursor Coordinates to display cursor coordinates.

6.2 Page and Text Geometry 75

group of artificial characters comprises the continuation of a multi-character se-
quence (e.g. the second character of a ligature) and inserted separator characters. For
artificial characters the position (x, y) will specify the endpoint of the most recent
real character, the width is 0, and all other fields except uv are those of the most re-
cent real character. The endpoint is the point (x, y) plus the width added in direction
alpha (in horizontal writing mode) or plus the fontsize in direction -90˚ (in vertical
writing mode).

> The unknown field will usually be false (in C and C++: 0), but has a value of true (in C
and C++: 1) if the original glyph could not be mapped to Unicode and has therefore
been replaced with the character specified in the unknownchar option. Using this
field you can distinguish real document content from replaced characters if you
specified a common character as unknownchar, such as a question mark or space.

> The attributes field contains information about the subscript, superscript, dropcap,
or shadow status of the glyph as determined by TET’s content analysis algorithms.

> The (x, y) fields specify the position of the glyph’s reference point, which is the lower
left corner of the glyph rectangle in horizontal writing mode, and the top center in
vertical writing mode (see Section 6.3, »Chinese, Japanese, and Korean Text«, page 79
for details on vertical writing mode). For artificial characters, which do not corre-
spond to any glyph on the page, the point (x, y) specifies the end point of the most re-
cent real character. The value of y is subject to the topdown page option.

> The width field specifies the width of a glyph according to the corresponding font
metrics and text output parameters, such as character spacing and horizontal scal-
ing. Since these parameters control the position of the next glyph, the distance be-
tween the reference points of two adjacent glyphs may be different from width. The
width may be zero for non-spacing characters. On the other hand, the outline may
actually be wider than the glyph’s width value, e.g. for slanted text.
The width is 0 for artificial characters.

> The angle alpha provides the direction of inline text progression, specified as the de-
viation from the standard direction. The standard direction is 0˚ for horizontal writ-
ing mode, and -90˚ for vertical writing mode (see below for more details on vertical

(x, y)
width

fontsize

width

baseline

alpha

beta

(x, y)

fontsize

Fig. 6.3
Glyph metrics for horizontal and vertical writing mode

in TET’s default coordinate system (topdown=false)

76 Chapter 6: Text Extraction

writing mode). Therefore, the angle alpha is 0˚ for standard horizontal text as well as
for standard vertical text. The values of alpha and beta are subject to the topdown
page option.

> The angle beta specifies any skewing which has been applied to the text, e.g. for
slanted (italicized) text. The angle is measured against the perpendicular of alpha. It
is 0˚ for standard upright text (for both horizontal and vertical writing mode). If the
absolute value of beta is greater than 90˚ the text is mirrored at the baseline.

> The fontid field contains the pCOS ID of the font used for the glyph. It can be used to
retrieve detailed font information, such as the font name, embedding status, writing
mode (horizontal/vertical), etc. The pCOS Path Reference contains sample code for
retrieving font details.

> The fontsize field specifies the size of the text in points. It is normalized and therefore
always positive, especially with topdown={output}.

> The textrendering field specifies the kind of rendering for a glyph, e.g. stroked, filled,
or invisible. It will reflect the numerical text rendering mode as defined for PDF page
descriptions (see Table 10.15, page 179). Invisible text is extracted by default, but this
can be changed with the ignoreinvisibletext option of TET_open_page().

Font-specific metrics. TET uses the glyph and font metrics system used by PostScript
and PDF which shall be briefly discussed here.

The font size is usually chosen as the minimum distance between adjacent text lines
which is required to avoid overlapping character parts. The font size is generally larger
than individual characters in a font, since it spans ascender and descender, plus possi-
bly additional space between lines.

The capheight is the height of capital letters such as T or H in most Latin fonts. The
xheight is the height of lowercase letters such as x in most Latin fonts. The ascender is the
height of lowercase letters such as f or d in most Latin fonts. The descender is the dis-
tance from the baseline to the bottom of lowercase letters such as j or p in most Latin
fonts. The descender is usually negative. The values of xheight, capheight, ascender, and
descender are measured in thousands of the font size.

These values vary among fonts, and can be retrieved with the pCOS interface. For ex-
ample, the following code retrieves the ascender and descender values:

font size

baseline

capheight

descender

ascender

Fig. 6.4 Font-specific metrics

6.2 Page and Text Geometry 77

/* Query ascender and descender values */
path = "fonts[" + i + "]/ascender";
System.out.println("Ascender=" + p.pcos_get_number(doc, path));

path = "fonts[" + i + "]/descender";
System.out.println("Descender=" + p.pcos_get_number(doc, path));

Note that ascender and other font metrics values should only be queried after calling
TET_get_char_info() for a glyph with this font. In order words, using font ids returned by
TET_get_char_info() is safe, while enumerating all fonts in the fonts[] array does not nec-
essarily provide metrics values from embedded font data, but the possibly inaccurate
values from the PDF FontDescriptor dictionary. For more information refer to the pCOS
Path Reference.

End points of glyphs and words. In order to do proper highlighting you need the end
position of the last character in a word. Using x, y, width, and alpha returned by TET_get_
char_info() you can determine the end point of a glyph in horizontal writing mode, i.e.
the end point of the glyph’s advance vector (the lower right corner of the glyph box):

xend = lrx = x + width * cos(alpha)
yend = lry = y + width * sin(alpha)

In the common case of horizontally oriented text (i.e. alpha=0) this reduces to

xend = lrx = x + width
yend = lry = y

More generally, you can calculate the size of the glyph box by determining the coordi-
nates of the upper right corner (for beta=0, i.e. this formula does not take into account
glyph skewing):

urx = x + width * cos(alpha) - dir * height * sin(alpha)
ury = y + width * sin(alpha) + dir * height * cos(alpha)

with dir=1 in the default case topdown={output=false} and dir=-1 if topdown={output=
true} (see »Top-down coordinate system«, page 73). The value of height depends on the
fontsize and the font geometry. The following results in useful values for most com-
mon fonts (see »Font-specific metrics«, page 76, for retrieving the ascender value):

height = fontsize * ascender / 1000

In many graphical development environments the glyph transformations can be ex-
pressed as follows:

translate(x,y);
rotate(alpha);
skew(0, -beta);
if (abs(beta) > 90)

scale(1 -1);

After applying these transformations the upper right corner of the glyph box can be ex-
pressed as follows:

urx = x + width
ury = y + dir * height

78 Chapter 6: Text Extraction

Glyph calculations for vertical writing mode. For CJK text with vertical writing mode
the end point calculation works as follows:

xend = x
yend = y - fontsize

The upper left and lower right corners of the glyph box can be calculated as follows (for
beta=0):

ulx = x - width/2 * cos(alpha)
uly = y - width/2 * sin(alpha)

lrx = ulx + width * cos(alpha) + dir * fontsize * sin(alpha)
lry = uly + width * sin(alpha) - dir * fontsize * cos(alpha)

with dir=1 in the default case topdown={output=false} and dir=-1 if topdown={output=
true} (see »Top-down coordinate system«, page 73).

6.3 Chinese, Japanese, and Korean Text 79

6.3 Chinese, Japanese, and Korean Text

6.3.1 CJK Encodings and CMaps
TET supports Chinese, Japanese, and Korean (CJK) text, and converts horizontal and ver-
tical CJK text in arbitrary legacy encodings (CMaps) to Unicode. TET supports all of Ado-
be’s CJK character collections:

> Simplified Chinese: Adobe-GB1-5
> Traditional Chinese: Adobe-CNS1-5
> Japanese: Adobe-Japan1-6
> Korean: Adobe-Korea1-2

The PDF CMaps in turn cover all of the CJK character encodings which are in use today,
such as Shift-JIS, EUC, Big-5, KSC, and many others. CJK font names encoded with locale-
specific encodings (e.g. Japanese font names encoded in Shift-JIS) are normalized to Uni-
code.

Note In order to extract CJK text which is encoded with legacy encodings you must configure access
to the CMap files which are shipped with TET according to Section 0.1, »Installing the Soft-
ware«, page 7.

6.3.2 Word Boundaries for CJK Text
Word boundary detection for CJK text can be controlled with the ideographic page op-
tion:

> With ideographic=split ideographic characters always constitute a word boundary, i.e.
single ideographs are returned in granularity=word. While ideographic CJK characters
are considered as word boundaries, Katakana characters are not treated as word
boundaries.

> With ideographic=keep ideographic characters generally don’t constitute a word
boundary. Punctuation and the transition between ideographic and non-ideograph-
ic characters still constitute a word boundary. For granularity=word ideographic com-
ma U+3001 and ideographic full stop U+3002 also constitute word boundaries. For
granularity=page no line separator is inserted at the end of a line.

For compatibility reasons the default value is ideographic=split, but it is strongly recom-
mended to use ideographic=keep to improve text extraction for CJK text.

6.3.3 Vertical Writing Mode
TET supports both horizontal and vertical writing modes, and performs all metrics cal-
culations as appropriate for the respective writing mode. Keep the following in mind
when dealing with text in vertical writing mode:

> The glyph reference point in vertical writing mode is at the top center of the glyph
box. The text position will advance downwards as determined by the font size and
character spacing, regardless of the glyph width (see Figure 6.3).

> The angle alpha is 0˚ for standard vertical text. In other words, fonts with vertical
writing mode and alpha=0° progress downwards, i.e. in direction -90˚.

> Because of the differences noted above client code must take the writing mode into
account by using the following pCOS code (note that not all text which appears verti-
cally actually uses a font with vertical writing mode):

80 Chapter 6: Text Extraction

count = p.pcos_get_number(doc, "length:fonts");
for (i=0; i < count; i++)
{

if (p.pcos_get_number(doc, "fonts[" + id + "]/vertical"))
{

/* font uses vertical writing mode */
vertical = true;

}
}

> Prerotated glyphs for vertical text and punctuation are mapped to the correspond-
ing unrotated Unicode character. Use the following document option to preserve
prerotated characters:

decompose={vertical=_none}

6.3.4 CJK Decompositions: Narrow, wide, vertical, etc.
Unicode and many legacy encodings support the notion of fullwidth and halfwidth
characters (sometimes also called double-byte and single-byte characters). By default,
TET applies the Unicode decompositions wide and narrow which replace fullwidth and
halfwidth characters with the corresponding standard-width counterparts.

In order to preserve the original fullwidth and halfwidth characters you can use the
decompose document option and disable the respective decompositions:

decompose={wide=_none narrow=_none}

Similarly, the small, square, and vertical decompositions also affect CJK characters. Since
all these decompositions (including wide and narrow) are enabled by default, the char-
acters are converted to their normal counterparts. Disable the respective decomposi-
tions in order to preserve the original characters. The following document option dis-
ables all decompositions:

decompose={none}

Table 6.1 demonstrates the CJK decompositions along with examples. See Section 7.3.2,
»Unicode Decomposition«, page 100, for more information on decompositions.

6.3 Chinese, Japanese, and Korean Text 81

Table 6.1 CJK compatibility decomposition examples (suboptions for the decompose option)

decomposition
name description affected Unicode characters

decompositions
enabled (default)

decompositions
disabled

narrow Narrow (hankaku)
compatibility char-
acters

U+FF61-U+FFDC,
U+FFE8-U+FFEE

small Small forms for CNS
11643 compatibility

U+FE50-U+FE6B

square CJK squared font
variants

U+3250,
U+32CC-U+32CF,
U+3300-U+3357,
U+3371-U+33DF,
U+337B-U+337F,
U+33FF,
U+1F131-U+1F14E,
U+1F190,
U+1F200,
U+1F210-U+1F231

vertical Vertical layout pre-
sentation forms

U+309F,
U+30FF,
U+FE10-U+FE19
U+FE30-U+FE48

wide Wide (zenkaku) com-
patibility forms

U+3000,
U+FF01-U+FF60,
U+FFE0-U+FFE6

U+30F2 U+FF66

U+002C U+FE50

U+30AD U+30ED U+3314

U+FE37 U+007B

£
U+00A3

£
U+FFE1

82 Chapter 6: Text Extraction

6.4 Bidirectional Arabic and Hebrew Text
TET applies additional processing to correctly extract text from documents with right-
to-left scripts such as Arabic and Hebrew. Since these scripts often contain left-to-right
text inserts (e.g. numbers), such documents are called bidirectional. Extracting bidirec-
tional text involves one or more of the processing steps mentioned below.

6.4.1 General Bidi Topics

Reorder right-to-left and bidirectional text. Right-to-left sequences and left-to-right
sequences must be reordered to form the correct sequence of logical text. In granularity
word or higher TET delivers text in logical order with the following page option (which
is the default setting):

contentanalysis={bidi=logical}

Bidi processing can explicitly be disabled with the following page option:

contentanalysis={bidi=visual}

Determine the dominant text direction of the page. Not only the characters within a
word and words within a line are affected by Bidi reordering, but also other aspects of
page layout recognition. In some cases mixed Bidi lines cannot safely be reordered
without taking into account the fact that the page is an overall right-to-left or left-to-
right page. In order to make this decision automatically TET checks the dominant text
direction of the page and adjusts its algorithms depending on whether the page must
be considered mostly left-to-right or mostly right-to-left.

This decision can be overridden with the bidilevel option. For example, the following
option list forces right-to-left handling even on pages where the majority of text runs
left-to-right:

contentanalysis={bidilevel=rtl}

Glyph ordering. The glyph information returned by TET_get_char_info() and the Glyph
elements in TETML are always ordered according to visual order, i.e. from left to right
for plain horizontal baselines. This left-to-right glyph ordering ensures that client appli-
cations receive glyph coordinates in deterministic ordering without having to check the
Bidi status of the text. This behavior reflects the fact that the glyphs in Arabic and He-
brew fonts generally have the reference point at the left edge and advance to the right,
despite the fact that the actual text direction is right-to-left.

6.4.2 Postprocessing Arabic Text

Normalize Arabic presentation forms and decompose ligatures. Arabic characters ex-
ist in up to four different forms for isolated use, at the beginning, in the middle, or at
the end of a word. These forms can have different Unicode values although semantical-
ly they represent the same character. By default, TET converts all presentation forms to
the corresponding canonical forms. As shown in Table 6.2 the decompose option can be
used to preserve presentation forms (see Section 7.3.2, »Unicode Decomposition«, page
100).

6.4 Bidirectional Arabic and Hebrew Text 83

Since the PDF document may map presentation forms either to the isolated Unicode
character or one of the presentation forms (e.g. in the document’s ToUnicode CMap),
TET cannot guarantee that the output contains presentation forms even when decom-
positions are disabled.

Remove Arabic Tatweel character. The Tatweel character U+0640 (also called kashida)
is often used in Arabic text to stretch words so that they completely fill the line. Since
the Tatweel doesn’t carry any text information itself it is usually not required in the ex-
tracted text. By default, TET removes Tatweel characters from the extracted text. As
shown in Table 6.3 the fold option can be used to preserve Tatweel characters (see Sec-
tion 7.3.1, »Unicode Folding«, page 97).

Table 6.2 Processing Arabic presentation forms with the decompose option

description and option list
before
decomposition

after decomposition
(in logical order)

Decompose final, initial, isolated, and medial presentation forms:
no decompose option (default) or
decompose=none
or
decompose=
{final=_all medial=_all initial=_all isolated=_all}

Preserve final, initial, isolated, and medial presentation forms:
decompose=
{final=_none medial=_none initial=_none isolated=_none}

Table 6.3 Processing the Tatweel character U+0640 with the fold option

description and option list before folding after folding
Remove Arabic Tatweel characters: no fold option (default) or
fold={{[U+0640] remove}} or fold={default} n/a

Preserve Arabic Tatweel characters (which are removed by default):
fold={{[U+0640] preserve}}

U+FEB2

U+FEB3

U+FD0E

U+FEB4

U+0633

U+0633

U+0633 U+0631

U+0633

U+FEB2

U+FEB3

U+FD0E

U+FEB4

U+FEB2

U+FEB3

U+FD0E

U+FEB4

U+0640

U+0640 U+0640

84 Chapter 6: Text Extraction

6.5 Content Analysis
PDF documents provide the semantics (Unicode mapping) of individual text characters
as well as their position on the page. However, they generally do not convey informa-
tion about words, lines, columns or other high-level text units. The fragments compris-
ing text on a page may contain individual characters, syllables, words, lines, or an arbi-
trary mixture thereof, without any explicit marks designating the start or end of a
word, line, or column.

To make matters worse, the ordering of text fragments on the page may be different
from the logical (reading) order. There are no rules for the order in which portions of
text are placed on the page. For example, a page containing two columns of text could
be produced by creating the first line in the left column, followed by the first line of the
right column, the second line of the left column, the second line of the right column etc.
However, logical order requires all text in the left column to be processed before the
text in the right column is processed. Extracting text from such documents by simply
replaying the instructions on the PDF page generally provides undesirable results since
the logical structure of the text is lost.

TET’s content analysis engine analyzes the contents, position, and relationship of
text fragments in order to achieve the following goals:

> create words from characters, and insert separator characters between words if de-
sired

> remove redundant text, such as duplicates which are only present to create a shadow
effect

> recombine the parts of hyphenated words which span more than one line
> identify text columns (zones)
> sort text fragments within a zone, as well as zones within a page

These operations are discussed in more detail below, as well as options which provide
some control over content processing.

Text granularity. The granularity option of TET_open_page() specifies the amount of
text which is returned by a single call to TET_get_text():

> With granularity=glyph each fragment contains the result of mapping one glyph,
which may be more than one character (e.g. for ligatures). In this mode content anal-
ysis is disabled. TET will return the original text fragments on the page in their origi-
nal order. Although this is the fastest mode, it is only useful if the TET client intends
to do sophisticated postprocessing (or is only interested in the text position, but not
in its logical structure) since the text may be scattered all over the page.

> With granularity=word the Wordfinder algorithm will group characters into logical
words. Each fragment contains a word. Isolated punctuation characters (comma, co-
lon, question mark, quotes, etc.) are returned as separate fragments by default, while
multiple sequential punctuation characters are grouped as a single word (e.g. a series
of period characters which simulates a dotted line). However, punctuation treat-
ment can be changed (see »Word boundary detection for Western text« below).

> With granularity=line the words identified by the Wordfinder are grouped into lines.
If dehyphenation is enabled (which is the default) the parts of hyphenated words at
the end of a line are combined, and the full dehyphenated word is part of the line.

> With granularity=page all words on the page are returned in a single fragment.

6.5 Content Analysis 85

Separator characters are inserted between multiple words, lines, or zones if the chosen
granularity is larger than the respective unit. For example, with granularity=word there’s
no need to insert separator characters since each call to TET_get_text() will return exact-
ly one word.

The separator characters can be specified with the wordseparator, lineseparator op-
tions of TET_open_page() (use U+0000 to disable a separator), for example:

lineseparator=U+000A

By default, all content processing operations are disabled for granularity=glyph, and en-
abled for all other granularity settings. However, more fine-grain control is possible via
separate options (see below).

Word boundary detection for Western text. The Wordfinder, which is enabled for all
granularity modes except glyph, creates logical words from multiple glyphs which may
be scattered all over the page in no particular order. Word boundaries for Western text
are identified by two criteria:

> A sophisticated algorithm analyzes the geometric relationship among glyphs to find
character groups which together form a word. The algorithm takes into account a va-
riety of properties and special cases in order to accurately identify words even in
complicated layouts and for arbitrary text ordering on the page.

> Some characters, such as space and punctuation characters (e.g. colon, comma, full
stop, parentheses) are considered a word boundary, regardless of their width and po-
sition. If the punctuationbreaks option in TET_open_page() is set to false, the Word-
finder will no longer treat punctuation characters as word boundaries:

contentanalysis={punctuationbreaks=false}

Ignoring punctuation characters for word boundary detection can, for example, be use-
ful for maintaining Web URLs where period and slash characters are usually considered
part of a word (see Figure 6.5).

Note Word boundary detection for text with ideographic characters works differently; see Section
6.3.2, »Word Boundaries for CJK Text«, page 79, for more information.

Fig. 6.5
The default setting punctuationbreaks=true
will separate the parts of URLs (top), while
punctuationbreaks=false will keep the parts
together (bottom).

86 Chapter 6: Text Extraction

Dehyphenation. Hyphenated
words at the end of a line are usu-
ally not desired for applications
which process the extracted text
on a logical level. TET will there-
fore dehyphenate, or recombine
the parts of a hyphenated word.
More precisely, if a word at the
end of a line ends with a hyphen
character and the first word on
the next line starts with a lower-
case character, the hyphen is re-
moved and the first part of the
word is combined with the part on the next line, provided there is at least one more line
in the same zone. Dash characters (as opposed to hyphens) are left unmodified. The
parts of a hyphenated word will not be modified, only the hyphen is removed. De-
hyphenation can be disabled with the following option list for TET_open_page():

contentanalysis={dehyphenate=false}

Shadow and fake bold text removal. PDF documents sometimes include redundant
text which does not contribute to the semantics of a page, but creates certain visual ef-
fects only. Shadow text effects are usually achieved by placing two or more copies of the
actual text on top of each other, where a small displacement is applied. Applying
opaque coloring to each layer of text provides a visual appearance where the majority
of the text in lower layers is obscured, while the visible portions create a shadow effect.

Similarly,
word processing
applications
sometimes sup-
port a feature for
creating artificial bold text. In order to create bold text appearance even if a bold font is
not available, the text is placed repeatedly on the page in the same color. Using a very
small displacement the appearance of bold text is simulated.

Shadow simulation, artificial bold text, and similar visual artifacts create severe
problems when reusing the extracted text since redundant text contents which contrib-
ute only to the visual appearance is processed although the text does not contribute to
the page contents.

If the Wordfinder is enabled, TET will identify and remove such redundant visual ar-
tifacts by default. Shadow removal can be disabled with the following option list for
TET_open_page():

contentanalysis={shadowdetect=false}

Accented characters. In many languages accents and other diacritical marks are
placed close to other characters to form combined characters. Some typesetting pro-
grams, most notably TeX, emit two characters (base character and accent) separately to
create a combined character. For example, to create the character ä first the letter a is
placed on the page, and then the dieresis character ¨ is placed on top of it. TET detects

6.5 Content Analysis 87

this situation and recombines both characters to form the appropriate combined char-
acter.

88 Chapter 6: Text Extraction

6.6 Layout Analysis
TET analyses the layout of text on the page in order to determine the best possible order
of text extraction. This automatic process can be assisted by several options. If you have
advance knowledge of the nature of the processed documents you can improve the text
extraction results by supplying suitable options.

Document styles. Several internal parameters are available for processing documents
of different layout and style. For example, newspaper pages tend to contain lots of text
in multiple columns, while business reports often contain comments in the margins,
etc. TET contains predefined settings for several types of document. These settings can
be activated with an option list for TET_open_page() which looks similar to the follow-
ing:

docstyle=papers

If the type of input documents is known it is strongly recommended to supply suitable
values of the docstyle page option and (if applicable) also the layouthint page option.
Supplying the docstyle option activates an advanced layout recognition algorithm.
However, supplying an unsuitable value for this option may actually create worse re-
sults.

The following types are available for the docstyle option (Table 6.4 contains typical
examples for some document styles):

> Book: typical book layouts with regular pages
> Business: business documents
> Cad: technical or architectural drawings which are typically heavily fragmented
> Fancy: fancy pages with complex and sometimes irregular layout
> Forms: structured forms
> Generic: the most general document class without any further qualification
> Magazines: magazine articles, usually with three or more columns and interspersed

images and graphics
> Papers: newspapers with many columns, large pages and small type
> Science: scientific articles, usually with two or more columns and interspersed imag-

es, formulae, tables, etc.
> Search engine: this class does not refer to a specific type of input document, but rath-

er optimizes TET for the typical requirements of indexers for search engines. Some
layout detection features are disabled to deliver only the raw text and speed up pro-
cessing. For example, table and page structure recognition are disabled.

> Space grid: this class is targeted at list-oriented reports which are often generated on
mainframe systems. The characteristic of this document class is that the visual lay-
out is generated with space characters instead of explicit positioning of text. When
processing this kind of document text extraction can be accelerated since some pro-
cessing steps (e.g. shadow detection) can be skipped.

Choosing the most appropriate document style can speed up processing and enhance
text extraction results.

Complex layouts. Some classes of documents often use very elaborate page layouts.
For example, with magazines and periodicals TET may not be able to properly deter-
mine the relationship of columns on the page. In such situations it is possible to en-

6.6 Layout Analysis 89

Table 6.4 Document styles

docstyle=book docstyle=business docstyle=fancy

docstyle=magazines docstyle=papers docstyle=science

docstyle=spacegrid docstyle=cad

90 Chapter 6: Text Extraction

hance the extracted text at the expense of processing time. This can be controlled with
the structureanalysis and layoutanalysis page options, e.g.

structureanalysis={list=true bullets={{fontname=ZapfDingbats}}}
layoutanalysis = {layoutrowhint={full separation=preservecolumns}}
layoutdetect=2
layouteffort=high

Table detection. TET detects tabular structures on the page and structures the table
contents in rows, columns and cells. Information about tables detected on the page is
not provided directly by the API, but is only available in TETML output as in the follow-
ing example:

<Table>
 <Row>
 <Cell colSpan="5">
 <Para>
 <Word>
 <Text>5</Text>
 <Box llx="317.28" lly="637.14" urx="324.59" ury="650.29"/>
 </Word>
 <Word>
 <Text>.</Text>
 <Box llx="324.60" lly="637.14" urx="328.25" ury="650.29"/>
 </Word>
 <Word>
 <Text>REFERENCES</Text>
 <Box llx="335.04" lly="637.14" urx="407.64" ury="647.47"/>
 </Word>
 </Para>
 </Cell>
 </Row>
...
</Table>

7.1 Important Unicode Concepts 91

7 Advanced Unicode Handling
7.1 Important Unicode Concepts

This section provides basic information about Unicode since text handling in TET heav-
ily relies on the Unicode standard. The Unicode Web site provides a wealth of additional
information:

www.unicode.org

Characters and glyphs. When dealing with text it is important to clearly distinguish
the following concepts:

> Characters are the smallest units which convey information in a language. Common
examples are the letters in the Latin alphabet, Chinese ideographs, and Japanese syl-
lables. Characters have a meaning: they are semantic entities.

> Glyphs are different graphical variants which represent one or more particular char-
acters. Glyphs have an appearance: they are representational entities.

There is no one-to-one relationship between characters and glyphs. For example, a liga-
ture is a single glyph which is represented by two or more separate characters. On the
other hand, a specific glyph may be used to represent different characters depending on
the context (some characters look identical, see Figure 7.1).

Unicode postprocessing in TET can change the relationship of glyphs and resulting
characters even more. For example, decompositions may convert a single character into
multiple characters, and foldings may remove characters. For these reasons you must
not assume any specific relationship of characters and glyphs.

BMP and PUA. The following terms occur frequently in Unicode-based environments:
> The Basic Multilingual Plane (BMP) comprises the code points in the Unicode range

U+0000...U+FFFF. The Unicode standard contains many more code points in the sup-
plementary planes, i.e. in the range U+10000...U+10FFFF.

U+0067 LATIN SMALL LETTER G

Characters Glyphs

U+0066 LATIN SMALL LETTER F +
U+0069 LATIN SMALL LETTER I

U+2126 OHM SIGN or
U+03A9 GREEK CAPITAL LETTER OMEGA

U+2167 ROMAN NUMERAL EIGHT or
U+0056 V U+0049 I U+0049 I U+0049 I

Fig. 7.1
Relationship of glyphs
and characters

http://www.unicode.org

92 Chapter 7: Advanced Unicode Handling

> A Private Use Area (PUA) is one of several ranges which are reserved for private use.
PUA code points cannot be used for general interchange since the Unicode standard
does not specify any characters in this range. The Basic Multilingual Plane includes a
PUA in the range U+E000...U+F8FF. Plane fifteen (U+F0000... U+FFFFD) and plane six-
teen (U+100000...U+10FFFD) are completely reserved for private use.

Unicode encoding forms (UTF formats). The Unicode standard assigns a number (code
point) to each character. In order to use these numbers in computing, they must be rep-
resented in some way. In the Unicode standard this is called an encoding form (former-
ly: transformation format); this term should not be confused with font encodings. Uni-
code defines the following encoding forms:

> UTF-8: This is a variable-width format where code points are represented by 1-4 bytes.
ASCII characters in the range U+0000...U+007F are represented by a single byte in
the range 00...7F. Latin-1 characters in the range U+00A0...U+00FF are represented by
two bytes, where the first byte is always 0xC2 or 0xC3 (these values represent Â and Ã
in Latin-1).

> UTF-16: Code points in the Basic Multilingual Plane (BMP) are represented by a single
16-bit value. Code points in the supplementary planes, i.e. in the range U+10000...
U+10FFFF, are represented by a pair of 16-bit values. Such pairs are called surrogate
pairs. A surrogate pair consists of a high-surrogate value in the range D800...DBFF
and a low-surrogate value in the range DC00...DFFF. High- and low-surrogate values
can only appear as parts of surrogate pairs, but not in any other context.

> UTF-32: Each code point is represented by a single 32-bit value.

Unicode encoding schemes and the Byte Order Mark (BOM). Computer architectures
differ in the ordering of bytes, i.e. whether the bytes constituting a larger value (16- or
32-bit) are stored with the most significant byte first (big-endian) or the least significant
byte first (little-endian). A common example for big-endian architectures is PowerPC,
while the x86 architecture is little-endian. Since UTF-8 and UTF-16 are based on values
which are larger than a single byte, the byte-ordering issue comes into play here. An en-
coding scheme (note the difference to encoding form above) specifies the encoding
form plus the byte ordering. For example, UTF-16BE stands for UTF-16 with big-endian
byte ordering. If the byte ordering is not known in advance it can be specified by means
of the code point U+FEFF, which is called Byte Order Mark (BOM). Although a BOM is not
required in UTF-8, it may be present as well, and can be used to identify a stream of
bytes as UTF-8. Table 7.1 lists the representation of the BOM for various encoding forms.

Table 7.1 Byte order marks for various Unicode encoding forms

Encoding form Byte order mark (hex) graphical representation in WinAnsi1

1. The black square ■ denotes a null byte.

UTF-8 EF BB BF ï»¿

UTF-16 big-endian FE FF þÿ

UTF-16 little-endian FF FE ÿþ

UTF-32 big-endian 00 00 FE FF ■ ■ þÿ

UTF-32 little-endian FF FE 00 00 ÿþ■ ■

7.1 Important Unicode Concepts 93

Composite characters and sequences. Some glyphs map to a sequence of multiple
characters. For example, ligatures will be mapped to multiple characters according to
their constituent characters. However, composite characters (such as the Roman nu-
meral in Figure 7.1) may or may not be split, subject to information in the font and PDF
as well as the decompose document option (see Section 7.3, »Unicode Postprocessing«,
page 97).

If appropriate, TET will split composite characters into a sequence of constituent
characters. The corresponding sequence will be part of the text returned by TET_get_
text(). For each character, details of the underlying glyph(s) can be obtained via TET_get_
char_info(), including the information whether the character is the start or continua-
tion of a sequence. Position information will only be returned for the first character of a
sequence. Subsequent characters of a sequence will not have any associated position or
width information, but must be processed in combination with the first character.

Characters without any corresponding glyph. Although every glyph on the page will
be mapped to one or more corresponding Unicode characters, not all characters deliv-
ered by TET actually correspond to a glyph. Characters which correspond to a glyph are
called real characters, others are called artificial characters. There are several classes of
artificial characters which will be delivered although a directly corresponding glyph is
not available:

> A composite character (see above) will map to a sequence of multiple Unicode char-
acters. While the first character in the sequence corresponds to the actual glyph, the
remaining characters do not correspond to any glyph.

> Separator characters inserted via the lineseparator/wordseparator options are artifacts
without any corresponding glyph.

94 Chapter 7: Advanced Unicode Handling

7.2 Unicode Preprocessing (Filtering)
TET applies several filters to remove text which is unlikely to be useful. These filters
modify the text before applying any Unicode postprocessing steps. While some filters
are always active, others require the Wordfinder and are therefore active only for
granularity=word or above.

7.2.1 Filters for all Granularities
The following filters can be used with all granularities.

Text in unwieldy font sizes. Very small or very large text can optionally be ignored, e.g.
large characters in the background of the page. The limits can be controlled with the
fontsizerange page option. By default, text in all font sizes will be extracted.

The following page option limits the range of font sizes for extracted text from 10 to
50 points; text in other font sizes will be ignored:

fontsizerange={10 50}

Invisible text. Invisible text (i.e. text with textrendering=3) is extracted by default. Note
that text in PDF may be invisible for various other reasons than the textrendering prop-
erty, e.g. the text color is identical to the background color, the text may be obscured by
other objects on the page, etc. The behavior described here relates only to text with
textrendering=3. This PDF technique is commonly used for the results of OCR where the
text sits invisibly »behind« the scanned raster image.

Invisible text can be identified with the textrendering member of the TET_char_info
structure returned by TET_get_char_info() (see Table 10.15, page 179), or with the Glyph/
@textrendering attribute in TETML.

Use the following page option if you want to ignore invisible text:

ignoreinvisibletext=true

Completely ignore text with certain font names or font types. In some situations it
may be useful to completely ignore text in one ore more fonts specified by name, e.g. a
symbolic font which does not contribute any meaningful text. As an alternative, the
problematic fonts can also be specified by font type. This is mainly useful for Type 3
fonts which are sometimes used for ornaments. This filter can be controlled via the
remove suboption of the glyphmapping document option.

E.g. ignore all text in Type 3 fonts:

glyphmapping={{fonttype={Type3} remove}}

Ignore all text in the Webdings, Wingdings, Wingdings 2, and Wingdings 3 fonts:

glyphmapping={{fontname=Webdings remove} {fontname=Wingdings* remove}}

The conditions for font name and font type can also be combined, e.g. ignore text in all
Type 3 fonts starting with the letter A:

glyphmapping={{fonttype={Type3} fontname=A* remove}}

7.2 Unicode Preprocessing (Filtering) 95

7.2.2 Filters for Granularity Word and above
The following filters can be used only for granularity=word, line, and page.

Dehyphenation. Dehyphenation removes hyphen characters and combines the parts
of a hyphenated word.

Hyphens used for splitting words across lines can be identified with the attributes
member of the TET_char_info structure (see Table 10.15, page 179), or with the Glyph/
@hyphenation attribute in TETML.

Dehyphenation can be disabled with the following page option:

contentanalysis={dehyphenate=false}

Hyphen reporting. If dehyphenation is enabled you can decide whether or not the hy-
phen characters between the parts of hyphenated words will be reported in the generat-
ed glyph lists or not, i.e. the list of glyphs returned by TET_get_char_info() and the Glyph
elements in TETML. By default, hyphens will be removed.

However, some applications may need to know the exact location of the hyphen on
the page. For example, the highlight_search_terms and search_and_replace_text topics in
the TET Cookbook take the hyphen glyph into account when placing an annotation or
replacement text on top of the original word. In this situation you can instruct TET to
include all hyphens which have been detected by the dehyphenation process with the
following page option:

contentanalysis={keephyphenglyphs=true}

The hyphens can be identified by the TET_ATTR_DEHYPHENATION_ARTIFACT flag of the at-
tributes member in the TET_char_info structure returned by TET_get_char_info() (see Ta-
ble 10.15, page 179), or in TETML with the Glyph/@dehyphenation attribute with value
artifact.

Shadow removal. Redundant text which creates only visual artifacts such as shadow
effects or artificial bold text will be removed.

Shadow and artificial bold text can be identified with the attributes member of the
TET_char_info structure (see Table 10.15, page 179), or with the Glyph/@shadow attribute
in TETML.

Shadow removal can be disabled with the following page option:

contentanalysis={shadowdetect=false}

Unmapped glyphs. Glyphs which cannot be mapped to Unicode are replaced with a
character in the Private Use Area (see section »Unmappable glyphs«, page 107). In some
cases PDF documents do not contain enough information (or only inconsistent infor-
mation for assigning a usable Unicode value to a glyph. In such cases the characters
specified in the unknownchar document option will be assigned.

All PUA characters will be replaced with the Unicode unknown character U+FFFD by
default. This behavior can be changed with the fold document option. The following op-
tion list removes all unknown characters, i.e. PUA characters and characters for which
no usable Unicode value could be determined:

fold={{[:Private_Use:] remove} {[U+FFFD] remove} default}

96 Chapter 7: Advanced Unicode Handling

Unmapped glyphs (i.e. characters which are visible on the page, but cannot be extracted
by TET) can be identified with the unknown member of the TET_char_info structure (see
Table 10.15, page 179), or with the Glyph/@unknown attribute in TETML.

7.3 Unicode Postprocessing 97

7.3 Unicode Postprocessing
TET offers various controls for fine-tuning the Unicode characters comprising the ex-
tracted text. The postprocessing steps discussed in this chapter are defined in the Uni-
code standard. They are available in TET and will be processed in the following order:

> Foldings are controlled by the fold document option and preserve, remove, or replace
certain characters. Examples: remove hyphens which are used to split words, remove
Arabic Tatweel characters.

> Decomposition is controlled by the decompose document option and replaces a char-
acter with one ore more equivalent characters. Examples: split ligatures, map full-
width ASCII and symbol variants to the corresponding non-fullwidth characters.

> Normalization is controlled by the normalize document option and converts the text
to one of the normalized Unicode forms. Examples: combine base character and dia-
critical character to a common character; map Ohm sign to Greek Omega.

7.3.1 Unicode Folding
Foldings process one or more Unicode characters and apply a certain action on each of
the characters. The following actions are available:

> preserve the character;
> remove the character;
> replace it with a another (fixed) character.

Foldings are not chained: the output of a folding will not be processed again by the
available foldings. Foldings affect only the Unicode text output, but not the set of
glyphs reported in the TET_char_info structure or the <Glyph> elements in TETML. For ex-
ample, if a folding removes certain Unicode characters, the corresponding glyphs which
created the initial characters will still be reported.

In order to improve readability the examples in the tables below list isolated subop-
tions of the fold option list. Keep in mind that these suboptions must be combined to a
single large fold option list if you want to apply multiple foldings; do not supply the
fold option more than once. For example, the following is wrong:

fold={ {[:blank:] U+0020} } fold={ {_dehyphenation remove} } WRONG!

The following option list shows the correct syntax for multiple foldings:

fold={ {[:blank:] U+0020 } {_dehyphenation remove} }

98 Chapter 7: Advanced Unicode Handling

Folding examples. Table 7.2 lists examples for the fold option which demonstrate vari-
ous folding applications. The sample options must be supplied in the option list for
TET_open_document(). TET can apply foldings to a selected subset of all Unicode charac-
ters. These are called Unicode sets; their syntax is discussed in »Unicode sets«, page 144.

Table 7.2 Examples for the fold option

description and option list before folding after folding
Remove all characters in a Unicode set
Keep only characters in ISO 8859-1 (Latin-1) in the output, i.e. remove all characters
outside the Basic Latin Block:
fold={{[^U+0020-U+00FF] remove}}

n/a

Remove all non-alphabetic characters (e.g. punctuation, numbers):
fold={{[:Alphabetic=No:] remove}} n/a

Remove all characters except numbers:
fold={{[^[:General_Category=Decimal_Number:]] remove}}

n/a

Remove all unknown characters, i.e. PUA characters and characters for which no
usable Unicode value could be determined (the remaining default foldings are re-
enabled): fold={{[:Private_Use:] remove} {[U+FFFD] remove} default}

n/a

Remove all dashed punctuation characters:
fold={{[:General_Category=Dash_Punctuation:] remove}} n/a

Remove all Bidi control characters:
fold={{[:Bidi_Control:] remove}} n/a

Replace all characters in a Unicode set with a specific character
Space folding: map all variants of Unicode space characters to U+0020:
fold={{[:blank:] U+0020}}

Dashes folding: map all variants of Unicode dash characters to U+002D:
fold={{[:Dash:] U+002D}}

Replace all unassigned characters (i.e. Unicode code points to which no character
is assigned) with U+FFFD: fold={{[:Unassigned:] U+FFFD}}

Special handling for individual characters
Preserve all hyphen characters at line breaks while keeping the remaining default
foldings. Since these characters are identified internally in TET (as opposed to hav-
ing a fixed Unicode property) the keyword _dehyphenation is used to identify the
folding’s domain: fold={{_dehyphenation preserve}}
Preserve Arabic Tatweel characters (which are removed by default):
fold={{[U+0640] preserve}}

Replace various punctuation characters with their ASCII counterparts:
fold={ {[U+2018] U+0027} {[U+2019] U+0027} {[U+201C] U+0022}
{[U+201D] U+0022}}

U+0104

U+0037

U+0041 U+0041

U+0037

U+0041

U+0037

U+FFFF

U+002D

U+200E

U+00A0 U+0020

U+2011 U+002D

U+03A2 U+FFFD

U+002D U+002D

U+0640 U+0640

U+201C U+002DU+0022

7.3 Unicode Postprocessing 99

Default foldings. Except for granularity=glyph TET applies all of the foldings listed in
Table 7.3 by default. In order to combine custom foldings with the internal default fold-
ings, the keyword default must be supplied after the custom folding options, e.g.

fold={ {_dehyphenation preserve} default }

Adding the keyword default to the fold option list is recommended in most cases unless
you want to explicitly disable all default foldings.

Table 7.3 Default values for the fold option

description and option list sample input output
Space folding: map all variants of Unicode space characters to U+0020:
fold={{[:blank:] U+0020}}

Map all characters in the Private Use Area (PUA) to the unknown character (by de-
fault this is U+FFFD, but it can be changed with unknownchar option):
fold={{[:Private_Use:] unknownchar}}

Remove all hyphens in dehyphenated words:
fold={{_dehyphenation remove}} n/a

Remove the Arabic Tatweel character:
fold={{[U+0640] remove}} n/a

Remove all control characters as well as characters which are not assigned in Uni-
code (these foldings will always be performed after all other foldings when creat-
ing TETML output):
fold={{[:Control:] remove} {[:Unassigned:] remove}}

n/a

U+00A0 U+0020

U+E001 U+FFFD

U+002D

U+0640

U+000C U+03A2

100 Chapter 7: Advanced Unicode Handling

7.3.2 Unicode Decomposition
Decompositions replace a character with an equivalent sequence of one or more other
characters. A Unicode character is called (either compatibility or canonical) equivalent
to another character or a sequence of characters if they actually mean the same, but for
historical reasons (mostly related to round tripping with legacy encodings) are encoded
separately in Unicode. Decompositions destroy information. This is useful if you are
not interested in the difference between the original character and its equivalent. If you
are interested in the difference, however, the respective decomposition should not be
applied. For a full discussion of Unicode decomposition see

www.unicode.org/versions/Unicode5.2.0/ch03.pdf#G729.

Note The term »decomposition« is used here as defined in the Unicode standard, although many de-
compositions do not actually split a character into multiple parts, but convert a single charac-
ter to another character.

Canonical decomposition. Characters or character sequences which are canonically
equivalent represent the same abstract character and should therefore always have the
same appearance and behavior. Common examples include precomposed characters

(e.g.) vs. combining sequences (e.g.): both representations are canoni-

cally equivalent. Switching from one representation to the other does not remove infor-
mation. Canonical decompositions replace one representation with another which is
considered the canonical representation.

In the Unicode code charts1 (but not the character tables) canonical mappings are

marked with the symbol IDENTICAL TO . The decomposition name <canonical> is

implicitly assumed. Table 7.4 contains several examples.

1. See www.unicode.org/Public/5.2.0/charts/

Table 7.4 Canonical decomposition: suboption for the decompose option (canonically equivalent characters are

marked with the symbol IDENTICAL TO in the Unicode code charts)

decomposition
name description

before
decomposition after decomposition

canonical1

1. By default this decomposition is not applied to all characters in order to preserve certain characters; see »Default decompo-
sitions«, page 103, for details.

Canonical decomposition

U+00C4 U+0041 U+0308

U+00C4U+2261

U+00C4U+2261

U+00C0

U+F9F4

U+2126

U+3070

U+FB2F

U+0041 U+0300

U+6797

U+03A9

U+2126U+306F U+2126U+306FU+3099

U+05D0 U+05B8

http://www.unicode.org/Public/5.2.0/charts/
http://www.unicode.org/versions/Unicode5.2.0/ch03.pdf#G729.

7.3 Unicode Postprocessing 101

Compatibility decomposition. Characters which are compatibility equivalent repre-
sent the same abstract character, but may differ in appearance or behavior. Examples

include isolated forms of Arabic characters (e.g.) vs. context-specific shaped forms

(e.g. , ,). Compatibility equivalent characters differ in formatting. Re-

moving this formatting information implies loss of information, but may simplify pro-
cessing for certain types of applications (e.g. searching). Compatibility decompositions
remove the formatting information.

In the Unicode code charts compatibility mappings are marked with the symbol

ALMOST EQUAL TO , followed by the decomposition name (or »tag«) in angle

brackets, e.g. <noBreak>. If no tag name is provided, <compat> is assumed. The tag names
are identical to the option names in Table 7.5. As can be seen in some of the examples,
the result of a decomposition may convert a single character to a sequence of multiple
characters.

Note While all entries in Table 7.5 describe compatibility decompositions, the »compat« tag includes
only »other« compatibility decompositions, i.e. those without a specific name.

Note Keep in mind that PDF documents may already map glyphs to the decomposed sequence in-
stead of the non-decomposed Unicode value. In this situation the decompose option will not af-
fect the output.

Decomposition examples. Decompositions in TET can be controlled with the docu-
ment option decompose. A decomposition can be restricted to operate only on some, but
not all Unicode characters. The subset on which a decomposition operates is called its
domain. Table 7.5 lists the suboptions for all Unicode decompositions along with exam-
ples.

The following examples for the decompose option must be supplied in the option list
for TET_open_document(). The decomposition names in the decompose option list are
taken from Table 7.5.

Disable all decompositions:

decompose={none}

Preserve wide (double-byte or zenkaku) and hankaku (narrow) characters:

decompose={wide=_none narrow=_none}

Map all canonical equivalents to their counterparts:

decompose={canonical=_all}

The following option list enables the circle decomposition, but disables all other decom-
positions:

decompose={none circle=_all}

U+0633

U+FEB2 U+FEB4 U+FEB3

U+00C4U+2248

102 Chapter 7: Advanced Unicode Handling

Table 7.5 Compatibility decomposition: suboptions for the decompose option (canonically equivalent characters

are marked with the symbol ALMOST EQUAL TO in the Unicode code charts)

decomposition
name description

before
decomposition

after decomposition
(in logical order)

circle Encircled characters

compat1 Other compatibility decompositions, e.g. common
ligatures

final Final presentation forms, especially Arabic

font Font variants, e.g. mathematical set letters, Hebrew
ligatures

fraction1 Vulgar fraction forms

initial Initial presentation forms, especially Arabic

isolated Isolated presentation forms, especially Arabic

medial Medial presentation forms, especially Arabic

narrow Narrow (hankaku) compatibility characters

nobreak Non-breaking characters

none Disable all decompositions which are not explicitly
specified in the decompose option list.

(leaves all characters unmodified)

small Small forms for CNS 11643 compatibility

square CJK squared font variants

sub1 Subscript forms

super1 Superscript forms

vertical Vertical layout presentation forms

wide Wide (zenkaku) compatibility forms

1. By default this decomposition is not applied to all characters in order to preserve certain characters; see »Default decompo-
sitions«, page 103, for details.

U+00C4U+2248

㉑
U+3251 U+0032 U+0031

U+FB01 U+0066 U+0069

U+FEB2 U+0633

U+2102 U+0043

U+00BC U+0031 U+2044 U+0034

U+FEB3 U+0633

U+FD0E U+0633 U+0631

U+FEB4 U+0633

U+FF66 U+30F2

U+00A0 U+0020

U+FE50 U+002C

U+3314 U+30AD U+30ED

U+2081 U+0031

U+00AA

U+2122

U+0061

U+0054 U+004D

U+FE37 U+007B

£
U+FFE1

£
U+00A3

7.3 Unicode Postprocessing 103

In contrast, the following option list enables all decompositions (since omitting the oth-
er options activates the default):

decompose={circle=_all}

Default decompositions. By default, all decompositions except fraction are enabled.
While most default decompositions operate on the _all domain (i.e. they will be applied
to all characters), some operate on smaller default domains according to Table 7.6. A
straightforward way of dealing with decompositions is via normalization (see Section
7.3.3, »Unicode Normalization«, page 104). Since Unicode postprocessing is completely
disabled for granularity=glyph no decompositions are active in this case.

Table 7.6 Default domains for Unicode decompositions (suboptions for the decompose option).

decomposition default in TET

canonical canonical={[U+0374 U+037E U+0387 U+1FBE U+1FEF U+1FFD U+2000 U+2001 U+2126 U+212A
U+212B U+2329-U+232A]}

The default domain includes canonical duplicates (singletons), but not other canonically equiva-

lent characters. The default is not _all in order to preserve characters like .

compat compat={[U+FB00-U+FB17]}

The default domain includes Latin and Armenian ligatures, but not other compatibility charac-

ters. The default is not _all in order to preserve characters like .

fraction fraction=_none

Fractions are not decomposed by default because this would lead to undesired sequences of the
digits for integer and fractional parts, e.g. client applications would wrongly interpret the se-

quence (representing the numerical value 9.5) as which

represents the numerical value (91)/2=45.5.

sub
super

sub={[U+208A-U+208E]}
super={[U+207A-U+207E]}

The default domain includes only mathematical signs. Superscript and subscript digits are not de-
composed by default to avoid problems with the numerical interpretation similar to those men-

tioned above for fraction. Characters such as the trademark sign will not be decomposed

to by default.

all others circle=_all final=_all ... vertical=_all wide=_all

All other decompositions are enabled for all characters by default.

U+00C4

U+0132

U+0039 U+00BD U+0039 U+0031 U+2044 U+0032

U+2122

U+0054 U+004D

104 Chapter 7: Advanced Unicode Handling

7.3.3 Unicode Normalization
The Unicode standard defines four normalization forms which are based on the notions
of canonical equivalence and compatibility equivalence (these are discussed in Section
7.3.2, »Unicode Decomposition«, page 100). All normalization forms put combining
marks in a specific order and apply decomposition and composition in different ways:

> Normalization Form C (NFC) applies canonical decomposition followed by canonical
composition.

> Normalization Form D (NFD) applies canonical decomposition.
> Normalization Form KC (NFKC) applies compatibility decomposition followed by ca-

nonical composition.
> Normalization Form KD (NFKD) applies compatibility decomposition.

The normalization forms are specified in Unicode Standard Annex #15 »Unicode Nor-
malization Forms« (see www.unicode.org/versions/Unicode5.2.0/ch03.pdf#G21796 and
www.unicode.org/reports/tr15/).

TET supports all four Unicode normalization forms. Unicode normalization can be
controlled via the normalize document option, e.g.

normalize=nfc

TET does not apply normalization by default. Because of the possible interaction be-
tween the decompose and normalize options, setting the normalize option to a value dif-
ferent from none disables the default decompositions.

The choice of normalization form depends on the application’s requirements. For
example, some databases expect text in NFC which also the preferred format for Uni-
code text on the Web. Table 7.7 demonstrates the effect of Normalization on various
characters.

Table 7.7 Unicode normalization forms: examples

before
normalization NFC NFD NFKC NFKD

U+00C4 U+00C4 U+0041 U+0308 U+00C4 U+0041 U+0308

U+0041 U+0308 U+00C4 U+0041 U+0308 U+00C4 U+0041 U+0308

U+0308 U+0041 U+0308 U+0041 U+0308 U+0041 U+0308 U+0041 U+0308 U+0041

U+FB01 U+FB01 U+FB01 U+0066 U+0069 U+0066 U+0069

U+0033 U+2075 U+0033 U+2075 U+0033 U+2075 U+0033 U+0035 U+0033 U+0035

U+212B U+00C5 U+0041 U+030A U+00C5 U+0041 U+030A

U+2122 U+2122 U+2122 U+0054 U+004D U+0054 U+004D

7.3 Unicode Postprocessing 105

Table 7.7 Unicode normalization forms: examples

before
normalization NFC NFD NFKC NFKD

U+2163 U+2163 U+2163 U+0049 U+0056 U+0049 U+0056

U+FB48 U+05E8 U+05BC U+05E8 U+05BC U+05E8 U+05BC U+05E8 U+05BC

U+AC00 U+AC00 U+1100 U+1161 U+AC00 U+1100 U+1161

U+FB48U+3062 U+FB48U+3062 U+3061 U+3099 U+FB48U+3062 U+3061 U+3099

U+32C9 U+32C9 U+32C9 U+0031 U+0030 U+6708 U+0031 U+0030 U+6708

106 Chapter 7: Advanced Unicode Handling

7.4 Supplementary Characters and Surrogates
Supplementary characters outside Unicode’s Basic Multilingual Plane (BMP), i.e. those
with Unicode values above U+FFFF, cannot be expressed as a single UTF-16 value, but re-
quire a pair of UTF-16 values called a surrogate pair. Examples of supplementary charac-
ters include certain mathematical and musical symbols at U+1DXXX as well as thousands
of CJK extension characters starting at U+20000.

TET interprets and maintains supplementary characters and provides access to the
corresponding UTF-32 value even in language bindings where native Unicode strings
support only UTF-16. The uv field returned by TET_get_char_info() for the leading surro-
gate value contains the corresponding UTF-32 value. This allows direct access to the
UTF-32 value of a supplementary character even if you are working in a UTF-16 environ-
ment without any support for UTF-32.

Leading (high) surrogates and trailing (low) surrogates are maintained. The string re-
turned by TET_get_text() contains two UTF-16 values.

7.5 Unicode Mapping for Glyphs 107

7.5 Unicode Mapping for Glyphs
While text in PDF can be represented with a variety of font and encoding schemes, TET
abstracts from glyphs and normalizes all text to Unicode characters, regardless of the
original text representation in the PDF. Converting the information found in the PDF to
the corresponding Unicode values is called Unicode mapping, and is crucial for under-
standing the semantics of the text (as opposed to rendering a visual representation of
the text on screen or paper). In order to provide proper Unicode mapping TET consults
various data structures which are found in the PDF document, embedded or external
font files, as well as builtin and user-supplied tables. In addition, it applies several
methods to determine the Unicode mapping for non-standard glyph names.

Despite all efforts there are still PDF documents where some text cannot be mapped
to Unicode. In order to deal with these cases TET offers a number of configuration fea-
tures which can be used to control Unicode mapping for problematic PDF files.

Unmappable glyphs. There are several reasons why text in a PDF cannot reliably be
mapped to Unicode. For example, Type 1 fonts may contain unknown glyph names, and
TrueType, OpenType, or CID fonts may be addressed with glyph ids without any Uni-
code values in the font or PDF. TET assigns a code point in the Private Use Area to such
unmapped characters. The P UA values can be removed or replaced with the fold option.
By default, PUA characters will be mapped to U+FFFD, the Unicode unknown character.
Your code should be prepared for this character. If you don’t care about Unicode map-
ping problems you can simply ignore U+FFFD, or use the following document option to
remove it:

fold={ {[:Private_Use:] remove} }

In order to check for unmappable glyphs you can use the unknown field returned by
TET_get_char_info().

Summary of Unicode mapping controls. While TET implements many workarounds in
order to process PDF documents which actually don’t contain Unicode values so that it
can successfully extract the text nevertheless. However, there are still documents where
the text cannot be extracted since not enough information is available in the PDF and
relevant font data structures. TET contains various configuration features which can be
used to supply additional Unicode mapping information. These features are detailed in
this section.

Using the glyphmapping option of TET_open_document() (see Section 10.3, »Document
Functions«, page 161) you can control Unicode mapping for glyphs in several ways. The
following list gives an overview of available methods (which can be combined). These
controls can be applied on a per-font basis or globally for all fonts in a document:

> The suboption forceencoding can be used to completely override all occurrences of
the predefined PDF encodings WinAnsiEncoding or MacRomanEncoding.

> The suboptions codelist and tounicodecmap can be used to supply Unicode values in a
simple text format (a codelist resource).

> The suboption glyphlist can be used to supply Unicode values for non-standard glyph
names.

> The suboption glyphrule can be used to define a rule which will be used to derive Uni-
code values from numerical glyph names in an algorithmic way. Several rules are al-

108 Chapter 7: Advanced Unicode Handling

ready built into TET. The option encodinghint can be used to control the internal
rules.

> In addition to dozens of predefined encodings, custom encodings can be defined for
use with the encodinghint option or the encoding suboption of the glyphrule option.

> External fonts can be configured to provide Unicode mapping information if the
PDF does not provide enough information and the font is not embedded in the PDF.

Analyzing PDF documents with the PDFlib FontReporter Plugin1. In order to obtain
the information required to create appropriate Unicode mapping tables you must ana-
lyze the problematic PDF documents.

PDFlib GmbH provides a free companion product to TET which assists in this situa-
tion: PDFlib FontReporter is an Adobe Acrobat plugin for easily collecting font, encod-
ing, and glyph information. The plugin creates detailed font reports containing the ac-
tual glyphs along with the following information:

> The corresponding code: the first hex digit is given in the left-most column, the sec-
ond hex digit is given in the top row. For CID fonts the offset printed in the header
must be added to obtain the code corresponding to the glyph.

> The glyph name if present.
> The Unicode value(s) corresponding to the glyph (if Acrobat can determine them).

These pieces of information play an important role for TET’s glyph mapping controls.
Figure 7.2 shows two pages from a sample font report. Font reports created with the
FontReporter plugin can be used to analyze PDF fonts and create mapping tables for
successfully extracting the text with TET. It is highly recommended to take a look at the
corresponding font report if you want to write Unicode mapping tables or glyph name
heuristics to control text extraction with TET.

1. The PDFlib FontReporter plugin is available for free download at www.pdflib.com/products/fontreporter

http://www.pdflib.com/products/fontreporter

7.5 Unicode Mapping for Glyphs 109

Precedence rules. TET will apply the glyph mapping controls in the following order:
> Codelist and ToUnicode CMap resources will be consulted first.
> If the font has an internal ToUnicode CMap it will be considered next.
> For glyph names TET will apply an external or internal glyph name mapping rule if

one is available which matches the font and glyph name.
> Lastly, a user-supplied glyph list will be applied.

Code list resources for all font types. Code lists are similar to glyph lists except that
they specify Unicode values for individual codes instead of glyph names. Although
multiple fonts from the same foundry may use identical code assignments, codes (also
called glyph ids) are generally font-specific. As a consequence, separate code lists will be
required for individual fonts. A code list is a text file where each line describes a Unicode
mapping for a single code according to the following rules:

> Text after a percent sign ’%’ will be ignored; this can be used for comments.
> The first column contains the glyph code in decimal or hexadecimal notation. This

must be a value in the range 0-255 for simple fonts, and in the range 0-65535 for CID
fonts.

> The remainder of the line contains up to 7 Unicode code points for the code. The val-
ues can be supplied in decimal notation or (with the prefix x or 0x) in hexadecimal
notation. UTF-32 is supported, i.e. surrogate pairs can be used.

Fig. 7.2
Sample font reports created with the PDFlib FontReporter plugin for Adobe Acrobat

110 Chapter 7: Advanced Unicode Handling

By convention, code lists use the file name suffix .cl. Code lists can be configured with
the codelist resource. If no code list resource has been specified explicitly, TET will search
for a file named <mycodelist>.gl (where <mycodelist> is the resource name) in the search-
path hierarchy (see Section 5.2, »Resource Configuration and File Searching«, page 61 for
details). In other words: if the resource name and the file name (without the .cl suffix)
are identical you don’t have to configure the resource since TET will implicitly do the
equivalent of the following call (where name is an arbitrary resource name):

set_option("codelist {name name.cl}");

The following sample demonstrates the use of code lists. Consider the mismapped logo-
type glyphs in Figure 7.3 where a single glyph of the font actually represents multiple
characters, and all characters together create the company logotype. However, the
glyphs are wrongly mapped to the characters a, b, c, d, and e. In order to fix this you
could create the following code list:

% Unicode mappings for codes in the GlobeLogosOne font

x61 x0054 x0068 x0065 x0020 % The
x62 x0042 x006F % Bo
x63 x0073 x0074 x006F x006E x0020 % ston
x64 x0047 x006C x006F % Glo
x65 x0062 x0065 % be

Then supply the codelist with the following option to TET_open_document() (assuming
the code list is available in a file called GlobeLogosOne.cl and can be found via the search
path):

glyphmapping {{fontname=GlobeLogosOne codelist=GlobeLogosOne}}

ToUnicode CMap resources for all font types. PDF supports a data structure called
ToUnicode CMap which can be used to provide Unicode values for the glyphs of a font.
If this data structure is present in a PDF file TET will use it. Alternatively, a ToUnicode
CMap can be supplied in an external file. This is useful when a ToUnicode CMap in the
PDF is incomplete, contains wrong entries, or is missing. A ToUnicode CMap will take
precedence over a code list. However, code lists use an easier format the ToUnicode
CMaps so they are the preferred format.

By convention, CMaps don’t use any file name suffix. ToUnicode CMaps can be con-
figured with the cmap resource (see Section 5.2, »Resource Configuration and File
Searching«, page 61). The contents of a cmap resource must adhere to the standard CMap

syntax.1 In order to apply a ToUnicode CMap to all fonts in the Warnock family use the
following option to TET_open_document():

1. See partners.adobe.com/public/developer/en/acrobat/5411.ToUnicode.pdf

Fig. 7.3
The font report for a logotype font shows that the font contains wrong Unicode mappings.
A custom code list can correct such mappings.

http://partners.adobe.com/public/developer/en/acrobat/5411.ToUnicode.pdf

7.5 Unicode Mapping for Glyphs 111

glyphmapping {{fontname=Warnock* tounicodecmap=warnock}}

Glyph list resources for simple fonts. Glyph lists (short for: glyph name lists) can be
used to provide custom Unicode values for non-standard glyph names, or override the
existing values for standard glyph names. A glyph list is a text file where each line de-
scribes a Unicode mapping for a single glyph name according to the following rules:

> Text after a percent sign ’%’ will be ignored; this can be used for comments.
> The first column contains the glyph name. Any glyph name used in a font can be

used (i.e. even the Unicode values of standard glyph names can be overridden). In or-
der to use the percent sign as part of a glyph name the sequence \% must be used
(since the percent sign serves as the comment introducer).

> At most one mapping for a particular glyph name is allowed; multiple mappings for
the same glyph name will be treated as an error.

> The remainder of the line contains up to 7 Unicode code points for the glyph name.
The values can be supplied in decimal notation or (with the prefix x or 0x) in hexa-
decimal notation. UTF-32 is supported, i.e. surrogate pairs can be used.

> Unprintable characters in glyph names can be inserted by using escape sequences
for text files (see Section 5.2, »Resource Configuration and File Searching«, page 61)

By convention, glyph lists use the file name suffix .gl. Glyph lists can be configured with
the glyphlist resource. If no glyph list resource has been specified explicitly, TET will
search for a file named <myglyphlist>.gl (where <myglyphlist> is the resource name) in the
searchpath hierarchy (see Section 5.2, »Resource Configuration and File Searching«, page
61, for details). In other words: if the resource name and the file name (without the .gl
suffix) are identical you don’t have to configure the resource since TET will implicitly do
the equivalent of the following call (where name is an arbitrary resource name):

set_option("glyphlist {name name.gl}");

Due to the precedence rules for glyph mapping, glyph lists will not be consulted if the
font contains a ToUnicode CMap. The following sample demonstrates the use of glyph
lists:

% Unicode values for glyph names used in TeX documents

precedesequal 0x227C
similarequal 0x2243
negationslash 0x2044
union 0x222A
prime 0x2032

In order to apply a glyph list to all font names starting with CMSY use the following op-
tion for TET_open_document():

glyphmapping {{fontname=CMSY* glyphlist=tarski}}

Rules for interpreting numerical glyph names in simple fonts. Sometimes PDF docu-
ments contain glyphs with names which are not taken from some predefined list, but
are generated algorithmically. This can be a »feature« of the application generating the
PDF, or may be caused by a printer driver which converts fonts to another format: some-
times the original glyph names get lost in the process, and are replaced with schematic
names such as G00, G01, G02, etc. TET contains builtin glyph name rules for processing

112 Chapter 7: Advanced Unicode Handling

numerical glyph names created by various common applications and drivers. Since the
same glyph names may be created for different encodings you can provide the
encodinghint option to TET_open_document() in order to specify the target encoding for
schematic glyph names encountered in the document. For example, if you know that
the document contains Russian text, but the text cannot successfully be extracted for
lack of information in the PDF, you can supply the option encodinghint= cp1250 to speci-
fy a Cyrillic codepage.

In addition to the builtin rules for interpreting numerical glyph names you can de-
fine custom rules with the fontname and glyphrule suboptions of the glyphmapping op-
tion of TET_open_document(). You must supply the following pieces of information:

> The full or abbreviated name of the font to which the rule will be applied (fontname
option)

> A prefix for the glyph names, i.e. the characters before the numerical part (prefix sub-
option)

> The base (decimal or hexadecimal) in which the numbers will be interpreted (base
suboption)

> The encoding in which to interpret the resulting numerical codes (encoding subop-
tion)

For example, if you determined (e.g. using PDFlib FontReporter) that the glyphs in the
fonts T1, T2, T3, etc. are named c00, c01, c02, ..., cFF where each glyph name corresponds to
the WinAnsi character at the respective hexadecimal position (00, ..., FF) use the follow-
ing option for TET_open_document():

glyphmapping {{fontname=T* glyphrule={prefix=c base=hex encoding=winansi} }}

External font files and system fonts. If a PDF does not contain sufficient information
for Unicode mapping and the font is not embedded, you can configure additional font
data which TET will use to derive Unicode mappings. Font data may come from a True-
Type or OpenType font file on disk, which can be configure with the fontoutline resource
category. As an alternative on OS X and Windows systems, TET can access fonts which
are installed on the host operating system. Access to these host fonts can be disabled
with the usehostfonts option in TET_open_document().

In order to configure a disk file for the WarnockPro font use the following call:

set_option("fontoutline {WarnockPro WarnockPro.otf}");

See Section 5.2, »Resource Configuration and File Searching«, page 61, for more details
on configuring external font files.

8.1 Image Extraction Basics 113

8 Image Extraction

8.1 Image Extraction Basics
Image formats. TET extracts raster images from PDF pages and stores the extracted
images in one of the following formats:

> TIFF (.tif) images are created in most cases. Most TIFF images created by TET can be
used in the majority of TIFF viewers and consumers. However, some advanced TIFF
features are not supported by all image viewers. We regard Adobe Photoshop as
benchmark for the validity of TIFF images. Note that the Windows XP image viewer
does not support the common Flate compression method in TIFF. In order to work
around this viewer restriction you can enable LZW compression with the option
preferredtiffcompression=lzw in TET_write_image_file() or TET_get_TET_image_data().

> JPEG (.jpg) is created for images which are compressed with the JPEG algorithm
(DCTDecode filter) in PDF. However, in some cases DCT-compressed images must be
extracted as TIFF since not all aspects of PDF color handling can be expressed in JPEG.

> JPEG 2000 (.jpx) is created for images which are compressed with the JPEG 2000 algo-
rithm (JPXDecode filter) in PDF.

> JBIG2 (.jbig2) is created for images which are compressed with the JBIG2 algorithm
(JBIG2Decode filter) in PDF. JBIG2 files are created with »sequential organization« ac-
cording to ISO 14492.

Extracting images to disk or memory. The TET API can deliver the images extracted
from PDF documents in two different ways:

> The TET_write_image_file() API function creates an image file on disk. The base file
name of this image file must be specified in the filename option. TET will automati-
cally add a suitable suffix depending on the image type.

> The TET_get_image_data() API function delivers the image data in memory. This is
convenient if you want to pass on the image data to another processing component
without having to deal with disk files.

Details depend on your image extraction requirements (see Section 8.4, »Page-based
and Resource-based Image Loops«, page 118). In both cases you can determine the type
of the extracted image (see next section).

Determine the file type of extracted images. The image file type is reported in the
Image/@extractedAs attribute in TETML. At the API level you can use the following idiom
to determine the type of an extracted image.

int imageType = tet.write_image_file(doc, tet.imageid, "typeonly");

/* Map the numerical image type to a format */
String imageFormat;
switch (imageType) {
case 10:

imageFormat = "TIFF";
break;

case 20:

114 Chapter 8: Image Extraction

imageFormat = "JPEG";
break;

case 30:
imageFormat = "JPEG2000";
break;

case 40:
imageFormat = "RAW";
break;

case 50:
imageFormat = "JBIG2";
break;

default:
System.err.println("write_image_file() returned unknown value "

+ imageType + ", skipping image, error: "
+ tet.get_errmsg());

}

XMP metadata for images. PDF uses the XMP format to attach metadata to the whole
document or parts of it. You can find more information about XMP and its use in PDF at
the following location: www.pdflib.com/knowledge-base/xmp-metadata/

An image object may have XMP metadata associated with it in the PDF document. If
XMP metadata is present, TET will by default embed it in the extracted image for the
output formats JPEG and TIFF. This behavior can be controlled with the keepxmp option
of TET_write_image_file() and TET_get_image_data(). If this option has been set to false,
TET will ignore image metadata when generating the image output file.

The image_metadata topic in the pCOS Cookbook shows how to extract image meta-
data with the pCOS interface directly, without generating any image file.

ICC profiles. An image in PDF may have an associated ICC profile which allows precise
color reproduction. By default, TET processes attached ICC profiles and embeds them in
the generated TIFF or JPEG image files. You can disable ICC profile embedding with the
option keepiccprofile=false in TET_write_image_file() and TET_get_image_data(). This will
reduce the size of the image files at the expense of color fidelity. Disabling ICC profile
embedding is therefore not recommended for workflows which require precise color
representation.

http://www.pdflib.com/knowledge-base/xmp-metadata/

8.2 Image Merging and Filtering 115

8.2 Image Merging and Filtering
Image merging. Sometimes it is not desirable to extract images exactly as they are
represented in the PDF document: in many situations what appears to be a single image
is actually a collection of several smaller images which are placed close to each other.
There are some common reasons for this image fragmentation:

> Some applications and drivers convert multi-strip TIFF images to fragmented PDF
images. The number of strips can range from dozens to hundreds.

> Some scanning software divides scanned pages in smaller fragments (strips or tiles).
The number of fragments is usually not more than a few dozen.

> Some applications break images into small pieces when generating print or PDF out-
put. In extreme cases, especially documents created with Microsoft Office applica-
tions, a page may contain thousands of small image fragments.

TET’s image merging engine detects this situation and recombines the image parts to
form a larger and more useful image. Several conditions must be met in order for imag-
es to be considered as candidates for merging:

> The image fragments are oriented horizontally or vertically (but not at arbitrary an-
gles), and form a rectangular grid of sub-images.

> The number of bits per component must be the same.
> The colorspace must be the same or compatible.
> Some combinations of colorspace and compression scheme (in particular, JPEG 2000

and JBIG2 compression) prevent image merging.

If the merging candidates can be combined to a larger image, they will be merged.
Merged images can be identified as such by the images[]/mergetype pCOS pseudo object:
it will have the value 1 (artificial) for merged images and 2 (consumed) for images which
have been consumed by the merging process. Consumed images should generally be ig-
nored by the receiving application.

In order to disable image merging use the following page option:

imageanalysis={merge={disable}}

Fig. 8.1
Although this
image consists of
many little strips,
TET extracts it as
a single reusable
image.

116 Chapter 8: Image Extraction

When are images merged? Analyzing and merging images on a page are triggered by
the corresponding call to TET_open_page(). This leads to the following important conse-
quences:

> The number of entries in the pCOS images[] array, i.e. the value of the length:images
pseudo object, may increase: as more pages are processed, artificial images which re-
sult from image merging are added to the array. In order to extract all merged imag-
es you must therefore open all pages in the document before querying length:images
and extracting image data. Artificial (merged) images are marked with the corre-
sponding flag artificial (numerical value 1) in the images[]/mergetype pseudo object.

> On the other hand, elements in the images[] array may only be used as parts of
merged images. However, entries are never removed from the images[] array, but the
consumed entries are marked with the corresponding flag consumed (numerical val-
ue 2) in the images[]/mergetype pseudo object.

How many images are in a document? Surprisingly, there is no simple answer to this
simple question. The answer depends on the following decisions:

> Do you want to count image resources or placed images?
> Do you want to take images into account which are only used as parts of merged im-

ages, but are never placed isolated?

Using TET and pCOS pseudo objects you can determine all variants of the image count
answer. The image_count topic in the TET Cookbook demonstrates various possibilities
of image counting. It generates output like the following:

No of raw image resources before merging: 82
No of placed images: 12
No of images after merging (all types): 83
 normal images: 1
 artificial (merged) images: 1
 consumed images: 81
No of relevant (normal or artificial) image resources: 2

Small image filtering. TET ignores very small images if may of those is present on the
page. Since the image merging process often combines many small images to a larger
image, small image removal is performed after image merging. Only images which can
not be merged to form a larger image will be candidates for small image removal. In ad-
dition, they must satisfy the conditions for size and count which can be specified in the
maxarea and maxcount suboptions of the smallimages suboption of the imageanalysis
page option. In order to completely disable small image removal use the following page
option:

imageanalysis={smallimages={disable}}

8.3 Placed Images and Image Resources 117

8.3 Placed Images and Image Resources
TET distinguishes between placed images and image resources.

> A placed image corresponds to an image on a page. A placed image has geometric
properties: it is placed at a certain location and has a size (measured in points, milli-
meters, or some other absolute unit). In most cases the image is visible on the page,
but in some cases it may be invisible because it is obscured by other objects on the
page, is placed outside the visible page area, is fully or partially clipped, etc. Placed
images are represented by the PlacedImage element in TETML.

> An image resource is a resource which represents the actual pixel data, colorspace and
number of components, number of bits per component, etc. Unlike placed images,
image resources don’t have any intrinsic geometry. However, they do have width
and height properties (measured in pixels). Each image resource has a unique ID
which can be used to extract its pixel data. Image resources are represented by the
Image element in TETML.

An image resource may be used as the basis for an arbitrary number of placed images in
the document. Commonly each image resource will be placed exactly once, but it could
also be placed repeatedly on the same page or on multiple pages. For example, consider
an image for a company logo which is used repeatedly on the header of each page in the
document. Each logo on a page constitutes a placed image, but all those placed images
may be associated with the same image resource in an optimized PDF. On the other
hand, in a non-optimized PDF each placed logo could be based on its own copy of the
same image resource. This would result in the same visual appearance, but a larger PDF
document. Non-optimized PDF documents may even contain image resources which
are not even referenced on any page (i.e. unused resources).

Table 8.1 compares various properties of placed images and image resources.

Table 8.1 Comparison of placed images and image resources

property placed images image resources
TETML element PlacedImage Image
affected by image merging yes yes
associated with a page yes –
width and height in pixels yes yes
width and height in points yes –
position on the page yes –
number of appearances 1 0, 1, or more
unique ID no: the imageid member returned by TET_

get_image_info() and the PlacedImage/
@image attribute in TETML identify only the
underlying image resource

yes: imageid member returned by
TET_get_image_info() Image/@id
attribute in TETML

file naming convention in
the TET command-line tool

<filename>_p<pagenumber>_
<imagenumber>.[tif|jpg|jpx|jbig2]

<filename>_I<imageid>.
[tif|jpg|jpx|jbig2]

118 Chapter 8: Image Extraction

8.4 Page-based and Resource-based Image Loops
The distinction between placed images and image resources gives rise to two funda-
mentally different approaches to image extraction: page-based and resource-based im-
age extraction loops. Both methods can be used to extract images to a disk file or to
memory.

Page-based image extraction loop. In this case the application is interested in the ex-
act page layout and placed images, but doesn’t care about duplicated image data. Ex-
tracting images with a page-based loop creates an image file for each placed image, and
may result in the same image data for more than one extracted placed image. The appli-
cation can avoid image duplication by checking for duplicate image IDs. However,
unique image resources can more easily be extracted with the resource-based image ex-
traction loop (see below).

The page-based image extraction loop can be activated in the TET command-line
tool with the option --imageloop page. Code for page-based image extraction at the API
level is demonstrated in the images_per_page and images_in_memory topics in the TET
Cookbook. The images_per_page Cookbook topic and the image_extractor mini sample in
the TET packages also show how to retrieve the image geometry.

Details of the page-based image extraction loop (please refer to the sample code
mentioned above): TET_get_image_info() retrieves geometric information about a
placed image as well as the pCOS image ID (in the imageid field) of the underlying image
data. This ID can be used to retrieve more image details with TET_pcos_get_number(),
such as the color space, width and height in pixels, etc., as well as the actual pixel data
with TET_write_image_file() or TET_get_image_data(). TET_get_image_info() does not
touch the actual pixel data of the image. If the same image is referenced multiply on
one or more pages, the corresponding IDs will be the same.

Resource-based image extraction loop. In this case the application is interested in the
image resources of the document, but doesn’t care which image is used on which page.
Image resources which are placed more than once (on one or more pages) are extracted
only once. On the other hand, image resources which are not placed at all on any page
will also be extracted.

The resource-based image extraction loop can be activated in the TET command-line
tool with the option --imageloop resource. Code for resource-based image extraction at
the API level is demonstrated in the image_resources mini sample and Cookbook topic.
The pCOS Path Reference contains more information regarding the pCOS interface.

Details of the resource-based image extraction loop (please refer to the sample code
mentioned above): all pages are opened before extracting image resources to make sure
that image merging is activated; if image merging is not relevant this step can be
skipped. In order to extract an image, the corresponding image ID is required. The code
enumerates all values from 0 to the highest image ID, which is queried with TET_pcos_
get_number() as the value of the pCOS path length:images. In order to skip the consumed
parts of merged images (e.g. the strips of a multi-strip image), the type of each image re-
source is examined with the mergetype pCOS pseudo object. This allows us to skip image
parts which have been consumed by the image merging process (since we are only in-
terested in the resulting merged image). Once an image ID has been determined, one of
the functions TET_write_image_file() or TET_get_image_data() can be called to write the
image data to a disk file or pass the pixel data in memory, respectively.

8.5 Geometry of Placed Images 119

8.5 Geometry of Placed Images
Using TET_get_image_info() you can retrieve geometric information for a placed image.
The following values are available for each image in the image_info structure (see Figure
8.2):

> The x and y fields are the coordinates of the image reference point. The reference
point is usually the lower left corner of the image. However, coordinate system
transformations on the page may result in a different reference point. For example,
the image may be mirrored horizontally with the result that the reference point be-
comes the upper left corner of the image. The value of y is subject to the topdown
page option.

> The width and height fields correspond to the physical dimensions of the placed im-
age on the page. They are provided in points (i.e. 1/72 inch).

> The angle alpha describes the direction of the pixel rows. This angle will be in the
range -180˚ < alpha ³ +180˚. The angle alpha rotates the image at its reference point.
For upright images alpha will be 0˚. The values of alpha and beta are subject to the
topdown page option.

> The angle beta describes the direction of the pixel columns, relative to the perpen-
dicular of alpha. This angle will be in the range -180˚ < beta ³ +180˚, but different
from ±90˚. The angle beta skews the image, and beta=180˚ mirrors the image at the x
axis. For upright images beta will be in the range -90˚ < beta < +90˚. If abs(beta) > 90˚
the image is mirrored at the baseline.

> The imageid field contains the pCOS ID of the image. It can be used to retrieve de-
tailed image information with pCOS functions and the actual image pixel data with
TET_write_image_file() or TET_get_image_data().

As a result of image transformations, the orientation of the extracted images may ap-
pear wrong since the extracted image data is based on the image object in the PDF. Any
rotation or mirror transformations applied to the placed image on the PDF page will not
be applied to the pixel data, but the original pixel data will be extracted.

Image resolution. In order to calculate the image resolution in dpi (dots per inch) you
must divide the image width in pixels by the image width in points and multiply by 72:

while (tet.get_image_info(page) == 1) {
String imagePath = "images[" + tet.imageid + "]";
int width = (int) tet.pcos_get_number(doc, imagePath + "/Width");
int height = (int) tet.pcos_get_number(doc, imagePath + "/Height");

width

alpha

beta

(x, y)

height

Fig. 8.2
Image geometry

120 Chapter 8: Image Extraction

double xDpi = 72 * width / tet.width;
double yDpi = 72 * height / tet.height;
...

}

Note that dpi values for rotated or skewed images may be meaningless. Full code for im-
age dpi calculations can be found in the determine_image_resolution topic in the TET
Cookbook.

The dpi option of TET_write_image_file() can be used to record resolution values in
generated TIFF images. TET does not do this automatically since a particular image may
have been placed more than once, each time with different size and therefore apparent
resolution.

8.6 Restrictions and Caveats 121

8.6 Restrictions and Caveats
Image color fidelity. TET does not degrade image quality when extracting images:

> Raster images are never downsampled.
> The color space of an image will be retained in the output. TET never applies any

CMYK-to-RGB or similar color conversion.
> The number of color components will always be unchanged. For example, RGB imag-

es will not be changed to grayscale if they contain only gray colors.

Image workarounds. In some situations the color appearance of the extracted image
may be different from the visual appearance of the PDF page. While the image shape is
preserved, the colors may appear different because of the following reasons:

> Image masks are applied.
> Colorized grayscale images are extracted without the color, but as grayscale images.
> Since DeviceN color is not supported in TIFF, images with the DeviceN colorspace are

extracted as grayscale, RGB, or CMYK images for N=1, 3, and 4, respectively. For N>4
CMYK TIFF images with one or more alpha channels are generated.

> Images with Separation colorspace are extracted as grayscale images. The spot color
used to colorize the image will be lost.

> Images with Indexed ICCBased colorspace: the ICC profile will be ignored.

Unexpected results when extracting images. In some cases the shape of extracted im-
ages may appear different from the PDF page:

> Images may appear mirrored horizontally (upside down) or vertically. This is caused
by the fact that TET extracts the original pixel data of the image, without respect to
any transformation which may have been applied to the image on the PDF page.

> Since image masks are ignored, masking effects will not be reflected in the extracted
image.

Unsupported image types. The following types of PDF images can not be extracted, i.e.
TET_write_image_file() returns -1 in these cases:

> PDF inline images: this is a rare flavor of PDF images which is sometimes used for
small raster images.

> Images with Indexed Lab colorspace.

9.1 Creating TETML 123

9 TET Markup Language (TETML)

9.1 Creating TETML
As an alternative to supplying the contents of a PDF document via a programming in-
terface, TET can create XML output which represents the same information. We refer to
the XML output created by TET as TET Markup Language (TETML). TETML contains the
text contents of the PDF pages plus optional information such as text position, font,
font size, etc. If TET detects table-like structures on the page the tables will be expressed
in TETML as a hierarchy of table, row, and cell elements. Note that table information is
not available via the TET programming interface, but only through TETML. TETML also
contains information about images and colorspaces.

You can convert PDF documents to TETML with the TET command-line tool or the
TET library. In both cases there are various options available for controlling details of
TETML generation.

Creating TETML with the TET command-line tool. Using the TET command-line tool
you can generate TETML output with the --tetml option. The following command will
create a TETML output document file.tetml:

tet --tetml word file.pdf

You can use various options to convert only some pages of the document, supply pro-
cessing options, etc. Refer to Section 2.1, »Command-Line Options«, page 17, for more de-
tails.

Creating TETML with the TET library. Using a simple sequence of API calls you can gen-
erate TETML output with the TET library. The tetml sample program demonstrates the
canonical sequence for programmatically generating TETML. This sample program is
available in all supported language bindings.

TETML output can be generated on a disk file or in memory. The generated TETML
stream can be parsed into a XML tree using the XML support provided by most modern
programming languages. Processing the TETML tree is also demonstrated in the tetml
sample programs.

What’s included in TETML? TETML output is encoded in UTF-8 (on zSeries with USS or
MVS: EBCDIC-UTF-8, see www.unicode.org/reports/tr16), and includes the following infor-
mation (some of these items are optional):

> general document information; encryption status, PDF standards, Tagged PDF etc.
> document info fields and XMP metadata
> text contents of each page (words or paragraphs; optionally lines)
> font and geometry for the glyph (font name, size, coordinates)
> layout attributes for the glyph (sub/superscript, dropcap, shadow)
> hyphenation attributes
> structure information, e.g. tables
> information about placed images on the page
> resource information, i.e. fonts, colorspaces, and images
> error messages if an exception occurred during PDF processing

http://www.unicode.org/reports/tr16

124 Chapter 9: TET Markup Language (TETML)

Various elements and attributes in TETML are optional. See Section 9.2, »Controlling
TETML Details«, page 127, for details.

TETML examples. The following shortened document shows the most important parts
of a TETML document:

<?xml version="1.0" encoding="UTF-8"?>
<!-- Created by the PDFlib Text Extraction Toolkit TET (www.pdflib.com) -->
<TET xmlns="http://www.pdflib.com/XML/TET3/TET-3.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.pdflib.com/XML/TET3/TET-3.0
 http://www.pdflib.com/XML/TET3/TET-3.0.xsd"
 version="4.2">
<Creation platform="Linux-x86_64" tetVersion="4.3" date="2013-01-27T11:16:43+01:00" />
<Document filename="FontReporter.pdf" pageCount="9" filesize="132437" linearized="true"

pdfVersion="1.6">
<DocInfo>
<Author>PDFlib GmbH</Author>
<CreationDate>2010-07-06T22:51:50+00:00</CreationDate>
<Creator>FrameMaker 7.0</Creator>
<ModDate>2010-07-06T23:07:59+02:00</ModDate>
<Producer>Acrobat Distiller 9.3.3 (Windows)</Producer>
<Subject>PDFlib FontReporter</Subject>
<Title>PDFlib FontReporter Manual</Title>
</DocInfo>
<Metadata>
<x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="Adobe XMP Core 4.2.1-c043 52.372728, 2009/
01/18-15:08:04 ">
 <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
 ...XMP metadata...
 </rdf:RDF>
</x:xmpmeta>
</Metadata>
<Options>tetml={} </Options>
<Pages>
<Page number="1" width="485" height="714">
<Options>tetml={} granularity=word </Options>
<Content granularity="word" dehyphenation="false" dropcap="false" font="false"
geometry="false" shadow="false" sub="false" sup="false">
<Para>
 <Word>
 <Text>FontReporter</Text>
 <Box llx="28.32" lly="613.53" urx="214.98" ury="643.53"/>
 </Word>
</Para>
<Para>
 <Word>
 <Text>Version</Text>
 <Box llx="28.32" lly="582.87" urx="100.24" ury="604.83"/>
 </Word>
 <Word>
 <Text>1.4</Text>
 <Box llx="105.05" lly="582.87" urx="128.79" ury="604.83"/>
 </Word>
</Para>
 ...more page content...
</Content>
</Page>

9.1 Creating TETML 125

...more pages...
<Resources>
<Fonts>
 <Font id="F0" name="PDFlibLogo-Regular" fullname="MMOHKN+PDFlibLogo-Regular"

type="TrueType" embedded="true" ascender="1000" capheight="700" italicangle="0"
descender="0" weight="400" xheight="500"/>

 <Font id="F1" name="ThesisAntiqua-Bold" fullname="MMOHKO+ThesisAntiqua-Bold"
type="Type 1 CFF" embedded="true" ascender="741" capheight="679" italicangle="0"
descender="-250" weight="606" xheight="505"/>

 ...more fonts...
</Fonts>
<Images>
 <Image id="I0" extractedAs=".tif" width="595" height="750" colorspace="CS3"

bitsPerComponent="8"/>
 <Image id="I1" extractedAs=".tif" width="595" height="750" colorspace="CS3"

bitsPerComponent="8"/>
</Images>
<ColorSpaces>
 <ColorSpace id="CS0" name="DeviceGray" components="1"/>
 <ColorSpace id="CS1" name="DeviceCMYK" components="4"/>
...more color spaces...

</ColorSpaces>
</Resources>
</Pages>
</Document>
</TET>

Depending on the selected TETML mode more details can be expressed in TETML. TETML
modes are discussed in more detail in »Selecting the text mode«, page 127; here is a vari-
ation of the sample above with more glyph details. The Glyph element contains font and
position information:

<Word>
 <Text>PDFlib</Text>
 <Box llx="111.48" lly="636.33" urx="161.14" ury="654.33">
 <Glyph font="F1" size="18" x="111.48" y="636.33" width="9.65">P</Glyph>
 <Glyph font="F1" size="18" x="121.12" y="636.33" width="11.88">D</Glyph>
 <Glyph font="F1" size="18" x="133.00" y="636.33" width="8.33">F</Glyph>
 <Glyph font="F1" size="18" x="141.33" y="636.33" width="4.88">l</Glyph>
 <Glyph font="F1" size="18" x="146.21" y="636.33" width="4.88">i</Glyph>
 <Glyph font="F1" size="18" x="151.08" y="636.33" width="10.06">b</Glyph>
 </Box>
 </Word>
 <Word>
 <Text>GmbH</Text>
 <Box llx="165.06" lly="636.33" urx="214.84" ury="654.33">
 <Glyph font="F1" size="18" x="165.06" y="636.33" width="12.06">G</Glyph>
 <Glyph font="F1" size="18" x="177.12" y="636.33" width="15.44">m</Glyph>
 <Glyph font="F1" size="18" x="192.56" y="636.33" width="10.06">b</Glyph>
 <Glyph font="F1" size="18" x="202.61" y="636.33" width="12.22">H</Glyph>
 </Box>
 </Word>
 <Word>
 <Text>München</Text>
 <Box llx="218.75" lly="636.33" urx="292.23" ury="654.33">
 <Glyph font="F1" size="18" x="218.75" y="636.33" width="15.77">M</Glyph>
 <Glyph font="F1" size="18" x="234.52" y="636.33" width="10.19">ü</Glyph>
 <Glyph font="F1" size="18" x="244.70" y="636.33" width="10.22">n</Glyph>

126 Chapter 9: TET Markup Language (TETML)

 <Glyph font="F1" size="18" x="254.92" y="636.33" width="7.52">c</Glyph>
 <Glyph font="F1" size="18" x="262.44" y="636.33" width="10.22">h</Glyph>
 <Glyph font="F1" size="18" x="272.66" y="636.33" width="9.34">e</Glyph>
 <Glyph font="F1" size="18" x="282.00" y="636.33" width="10.22">n</Glyph>
 </Box>
 </Word>

9.2 Controlling TETML Details 127

9.2 Controlling TETML Details
TETML text modes. TETML can be generated in various text modes which include dif-
ferent amounts of font and geometry information, and differ regarding the grouping of
text into larger units (granularity). The text mode can be specified individually for each
page. However, in most situations TETML files will contain the data for all pages in the
same mode. The following text modes are available:

> Glyph mode is a low-level flavor which includes the text, font, and coordinates for
each glyph, without any word grouping or structure information. It is intended for
debugging and analysis purposes since it represents the original text information on
the page.

> Word mode groups text into words and adds Box elements with the coordinates of
each word. No font information is available. This mode is suitable for applications
which operate on word basis. Punctuation characters will by default be treated as in-
dividual words, but this behavior can be changed with a page option (see »Word
boundary detection for Western text«, page 85). Lines of text can optionally be iden-
tified with the Line element; this is controlled via the tetml page option.

> Wordplus mode is similar to word mode, but adds font and coordinate details for all
glyphs in a word. The coordinates are expressed relative to the lower left or upper
left corner subject to the topdown page option. Wordplus mode makes it possible to
analyze font usage and track changes of font, font size, etc. within a word. Since
wordplus is the only text mode which contains all relevant TETML elements it is suit-
ed for all kinds of processing tasks. On the other hand, it creates the largest amount
of output due to the wealth of information contained in the TETML.

> Line mode includes all text which comprises a line in a separate Line element. In addi-
tion, multiple lines may be grouped in a Para element. Line mode is recommended
only in situations where the page content is known to be grouped into lines, or the
receiving application can only deal with line-based text input.

> Page mode includes structure information starting at the paragraph level, but does
not include any font or coordinate details.

Table 9.1 lists the TETML elements which are present in the text modes.

Selecting the text mode. With the TET command-line tool (see Section 2.1, »Com-
mand-Line Options«, page 17) you can specify the desired page mode as a parameter for
the --tetml option. The following command generates TETML output in wordplus mode:

Table 9.1 TETML elements in various text mode

text mode structure tables text position text details

glyph – – – Glyph

word Para, Word
optionally: Line

Table, Row, Cell Box –

wordplus Para, Word
optionally: Line

Table, Row, Cell Box Glyph

line Para, Line – – –

page Para Table, Row, Cell – –

128 Chapter 9: TET Markup Language (TETML)

tet --tetml wordplus file.pdf

With the TET library the text mode cannot be specified directly, but as a combination of
options:

> You can specify the amount of text in the smallest element with the granularity op-
tion of TET_process_page().

> For granularity=glyph or word you can additionally specify the amount of glyph de-
tails. With the glyphdetails suboption of the tetml option you can omit some parts of
the glyph information if you don’t need it.

The following page option list generates TETML output in wordplus mode with all glyph
details:

granularity=word tetml={ glyphdetails={all} }

Table 9.2 summarizes the options for creating page modes.

Document options for controlling TETML output. In this section we will summarize the
effect of various options which directly control the generated TETML output. All other
document options can be used to control processing details. The complete description
of document options can be found in Table 10.8.

Document-related options must be supplied to the --docopt command-line option or
to the TET_open_document() function.

The tetml option controls general aspects of TETML. The elements suboption can be
used to suppress certain TETML elements if they are not required. The following docu-
ment option list will suppress document-level XMP metadata in the generated TETML
output:

tetml={ elements={nodocxmp} }

The skipengines option can be used to disable the text and image extraction engines. The
following option list instructs TET to process text contents, but disable image process-
ing:

skipengines={image}

Table 9.2 Creating TETML text modes with the TET library

text mode
granularity option of
TET_process_page() tetml option of TET_process_page()

glyph granularity=glyph tetml={glyphdetails={all}}

word granularity=word –

wordplus granularity=word tetml={glyphdetails={all}}

word with Line
elements

granularity=word tetml={elements={line}}

wordplus with Line
elements

granularity=word tetml={glyphdetails={all} elements={line}}

line granularity=line –

page granularity=page –

9.2 Controlling TETML Details 129

All document options which have been supplied when creating TETML will be recorded
in the /TET/Document/Options element unless disabled with the following document op-
tion:

tetml={ elements={nooptions} }

Page options for controlling TETML output. The complete description of page options
can be found in Table 10.10. Page-related options must be supplied to the --pageopt com-
mand-line option or to the TET_process_page() function.

The tetml option enables or disables coordinate- and font-related information in the
Glyph element. The following page option list enables font details in the Glyph element,
but suppresses other glyph attributes:

tetml={ glyphdetails={font} }

The following page option list adds Line elements to the TETML output:

tetml={ glyphdetails={font} elements={line} }

The following page option adds sub and sup attributes to the Glyph element to designate
subscripts and superscripts:

tetml={ glyphdetails={sub sup} }

The following page option uses all to generate all possible attributes to the Glyph ele-
ment:

tetml={ glyphdetails={all} }

The following page option requests topdown coordinates instead of the default bottom-
up coordinates:

topdown={output}

The following page option list instructs TET to combine punctuation characters with
the adjacent words, i.e. punctuation characters are no longer treated as individual
words:

contentanalysis={nopunctuationbreaks}

The following page option makes sense only for granularity=page. It changes the default
separator character from linefeed to space:

lineseparator=U+0020

All page options which have been supplied when creating TETML will be recorded in the
/TET/Document/Pages/Page/Options elements (individually for each page) unless dis-
abled with the following document option:

tetml={ elements={nooptions} }

Exception handling. If an error happens during PDF parsing TET will generally try to
repair or ignore the problem if possible, or throw an exception otherwise. However,
when generating TETML output with TET PDF parsing problems will usually be reported
as an Exception element in the TETML:

130 Chapter 9: TET Markup Language (TETML)

<Exception errnum="4506">Object ’objects[49]/Subtype’ does not exist</Exception>

Applications should be prepared to deal with Exception elements instead of the expected
elements when processing TETML output.

Problems which prevent the generation of the TETML output file (e.g. no write per-
mission for the output file) will still trigger an exception, and no valid TETML output
will be created.

9.3 TETML Elements and the TETML Schema 131

9.3 TETML Elements and the TETML Schema
A formal XML schema description (XSD) for all TETML elements and attributes as well as
their relationships is contained in the TET distribution. The TETML namespace is the fol-
lowing:

http://www.pdflib.com/XML/TET3/TET-3.0

The schema can be downloaded from the following URL on the Web:

http://www.pdflib.com/XML/TET3/TET-3.0.xsd

Both TETML namespace and schema location are present in the root element of each
TETML document.

Table 9.3 describes the role of all TETML elements. Attributes which have been intro-
duced with TET 4.0 or above are marked. Figure 9.1 visualizes the XML hierarchy of TET-
ML elements.

Table 9.3 TETML elements and attributes

TETML element description and attributes

Attachment For PDF attachments describes the contents in a nested Document element. For non-PDF attach-
ments only the name will be listed, but no contents.
Attributes: name, level, pagenumber

Attachments Container of Attachment elements

Box Describes the coordinates of a Word. The attributes llx and lly describe the lower left corner, urx
and ury describe the upper right corner of the Box in standard PDF coordinates. If the Box rep-
resents a rectangle with edges parallel to the page edges, the four values llx,lly, urx,ury de-
scribe the lower left and upper right corners; otherwise the coordinates of all four corners are
present. A word may contain multiple Box elements, e.g. a hyphenated word which spans multi-
ple lines of text, or a word which starts with a large character.
Attributes: llx, lly1, urx, ury1, ulx, uly1, lrx, lry1

Cell Describes the contents of a single table cell.
Attribute: colSpan

ColorSpace Describes a PDF colorspace.
Attributes: alternate, base, components, id, name

ColorSpaces Container of ColorSpace elements

Content Describes the page contents as a hierarchical structure.
Attributes: granularity, dehyphenation (TET 4.0), dropcap (TET 4.0), font, geometry, shadow
(TET 4.0), sub (TET 4.0), sup (TET 4.0)

Creation Describes the date and operating system platform for the TET execution, plus the version number
of TET.
Attributes: platform, tetVersion, date

DocInfo Predefined and custom document info entries

Document Describes general document information including PDF file name and size, PDF version number.
Attributes: filename, pageCount, filesize, linearized, pdfVersion, pdfa (TET 4.0: new values
for PDF/A-2; TET 4.1: new values for PDF/A-3), pdfe (TET 4.0; TET 4.1: new values for PDF/E-2),
pdfua (TET 4.1), pdfvt (TET 4.1), pdfx (TET 4.1: enumerated values), tagged

132 Chapter 9: TET Markup Language (TETML)

Encryption Describes various security settings.
Attributes: keylength, algorithm (TET 4.1: new values 8-11), attachment (TET 4.1), description
(TET 4.1: new values for algorithms 8-11), masterpassword, userpassword, noprint, nomodify,
nocopy, noannots, noassemble, noforms, noaccessible, nohiresprint, plainmetadata

Exception Error message and number associated with an exception which was thrown by TET. The
Exception element may replace other elements if not enough information can be extracted from
the input because of malformed PDF data structures.
Attribute: errnum

Font Describes a font resource. The required name attribute contains the canonical font name, while
the optional fullname attribute contains the font name including subset prefix.
Attributes: ascender (TET 4.1), capheight (TET 4.1), descender (TET 4.1), embedded, fullname (TET
4.0), id, italicangle (TET 4.1), type, name, vertical, weight (TET 4.1), xheight (TET 4.1)

Fonts Container of Font elements

Glyph Describes font and geometry details for a single glyph. The element content holds the Unicode
character(s) produced by this glyph. A single glyph may produce more than one character, e.g. for
ligatures. The Glyph elements for a word are grouped within one or more Box elements.
Attributes: x, y1, width, alpha1, beta1, shadow (TET 4.0), dropcap (TET 4.0), font, size, sub (TET
4.0), sup (TET 4.0), textrendering, unknown, dehyphenation (TET 4.0)

Image Describes an image resource, i.e. the actual pixel array comprising the image.
Attributes: bitsPerComponent, colorspace, extractedAs (TET 4.0, additional value introduced
with TET 4.2), height, id, mergetype, width

Images Container of Image elements

Line Text for a single line. TET 4.0: Line may also contain Word elements.

Metadata XMP metadata which can be associated with the document, a font, or an image

Options Document or page options used for generating the TETML

Page Contents of a single page.
Attributes: number, height, width, topdown (TET 4.0)

Pages Container of Page elements

Para Text comprising a single paragraph

PlacedImage Describes an instance of an image placed on the page.
Attributes: alpha1, beta1, height, image, width, x, y1

Resources Colorspace, font, and image resources

Row One or more table cells

Table One or more table rows

TET Root element. Attribute: version

Text Text contents of a word or other element

Word Single word

1. All vertical coordinates and angles are expressed relative to the lower left or upper left corner subject to the topdown page option.

Table 9.3 TETML elements and attributes

TETML element description and attributes

9.3 TETM
L Elem

ents and the TETM
L Schem

a
133

Fig. 9.1
TETML element hierarchy. Optional elements are enclosed
with dashed boxes; elements in stroked boxes are required.

134 Chapter 9: TET Markup Language (TETML)

9.4 Transforming TETML with XSLT
Very short overview of XSLT. XSLT (which stands for eXtensible Stylesheet Language
Transformations) is a language for transforming XML documents to other documents.
While the input is always an XML document (a TETML document in our case), the output
does not necessarily have to be XML. XSLT can also perform arbitrary calculations and
produce plain text or HTML output. We will use XSLT stylesheets to process TETML in-
put in order to generate a new dataset (provided in text, XML, CSV, or HTML format)
based on the input which in turn reflects the contents of a PDF document. The TETML
document has been created with the TET command-line tool or the TET library as ex-
plained in Section 9.1, »Creating TETML«, page 123.

While XSLT is very powerful, it is considerably different from conventional program-
ming languages. We do not attempt to provide an introduction to XSLT programming
in this section; please refer to the wide variety of printed and Web resources on this top-
ic. We restrict our samples to XSLT 1.0. Although XSLT 2.0 implementations are avail-
able, they are not yet in widespread use compared to XSLT 1.0. The XSLT 1.0 specification
can be found at www.w3.org/TR/xslt.

However, we do want to assist you in getting XSLT processing of TETML documents
up and running quickly. This section describes the most important environments for
running XSLT stylesheets, and lists common software for this purpose. In order to apply
XSLT stylesheets to XML documents you need an XSLT processor. There are various free
and commercial XSLT processors available which can be used either in a stand-alone
manner or in your own programs with the help of a programming language.

XSLT stylesheets can make use of parameters which are passed from the environ-
ment to the stylesheet in order to control processing details. Since some of our XSLT
samples make use of stylesheet parameters we will also supply information about pass-
ing parameters to stylesheets in various environments.

Common XSLT processors which can be used in various packagings include the fol-
lowing:

> Microsoft’s XML implementation called MSXML
> Microsoft’s .NET Framework 2.0 XSLT implementation
> Saxon, which is available in free and commercial versions
> Xalan, an open-source project (available in C++ and Java implementations) hosted by

the Apache foundation
> The open-source libxslt library of the GNOME project
> Sablotron, an open-source XSLT toolkit

XSLT on the command line. Applying XSLT stylesheets from the command-line pro-
vides a convenient development and testing environment. The examples below show
how to apply XSLT stylesheets on the command-line. All samples process the input file
FontReporter.tetml with the stylesheet tetml2html.xsl while setting the XSLT parameter
toc-generate (which is used in the stylesheet) to the value 0, and send the generated out-
put to FontReporter.html:

> The Java-based Saxon processor (see www.saxonica.com) can be used as follows:

java -jar saxon9.jar -o FontReporter.html FontReporter.tetml tetml2html.xsl
toc-generate=0

> The xsltproc tool is included in most Linux distributions, see xmlsoft.org/XSLT. Use the
following command to apply a stylesheet to a TETML document:

http://www.w3.org/TR/xslt
http://xmlsoft.org/XSLT
http://www.saxonica.com

9.4 Transforming TETML with XSLT 135

xsltproc --output FontReporter.html --param toc-generate 0 tetml2html.xsl
FontReporter.tetml

> Xalan C++ provides a command-line tool which can be invoked as follows:

Xalan -o FontReporter.html -p toc-generate 0 FontReporter.tetml tetml2html.xsl

> On Windows systems with the MSXML parser you can use the free msxsl.exe program
provided by Microsoft. The program (including source code) is available at the fol-
lowing location:

www.microsoft.com/en-us/download/details.aspx?displaylang=en&id=21714

Run the program as follows:

msxsl.exe FontReporter.tetml tetml2html.xsl -o FontReporter.html toc-generate=0

XSLT within your own application. If you want to integrate XSLT processing in your
application, the choice of XSLT processor obviously depends on your programming lan-
guage and environment. The TET distribution contains sample code for various import-
ant environments. The runxslt samples demonstrate how to load a TETML document,
apply an XSLT stylesheet with parameters, and write the generated output to a file. If
the programs are executed without any arguments they will exercise all XSLT samples
supplied with the TET distribution. Alternatively, you can supply parameters for the
TETML input file name, XSLT stylesheet name, output file name and parameter/value
pairs. You can use the runxslt samples as a starting point for integrating XSLT processing
into your application:

> Java developers can use the methods in the javax.xml.transform package. This is
demonstrated in the runxslt.java sample. You can also execute Java-based XSLT in the
ant build tool without any coding. The build.xml file in the TET distribution contains
XSLT tasks for all samples.

> .NET developers can use the methods in the System.Xml.Xsl.XslTransform namespace.
This is demonstrated in the runxslt.ps1 PowerShell script. Similar code can be used
with C# and other .NET languages.

> All Windows-based programming languages which support COM automation can
use the methods of the MSXML2.DOMDocument automation class supplied by the
MSXML parser. This is demonstrated in the runxslt.vbs sample. Similar code can be
used with other COM-enabled languages.

XSLT extensions are available for many other modern programming languages as well,
e.g. Perl.

XSLT on the Web server. Since XML-to-HTML conversion is a common XSLT use case,
XSLT stylesheets are often run on a Web server. Some important scenarios:

> Windows-based Web servers with ASP or ASP.NET can make use of the COM or .NET
interfaces mentioned above.

> Java-based Web servers can make use of the javax.xml.transform package.
> PHP-based Web servers can make use of the Sablotron processor, see www.php.net/

manual/en/intro.xsl.php.

XSLT in the Web browser. XSLT transformations are also supported by most modern
browsers. In order to instruct the browser to apply an XSLT stylesheet to a TETML docu-
ment add a line with a suitable processing instruction after the first line of the TETML

http://www.php.net/manual/en/intro.xsl.php
http://www.php.net/manual/en/intro.xsl.php
http://www.microsoft.com/en-us/download/details.aspx?displaylang=en&id=21714

136 Chapter 9: TET Markup Language (TETML)

document containing the xml processing instruction and before the root element. You
can then load it in the browser which will apply the stylesheet and display the resulting
output (note that Internet Explorer requires the file name suffix .xml when processing
files from the local disk):

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="tetml2html.xsl" version="1.0"?>
<TET xmlns="http://www.pdflib.com/XML/TET3/TET-3.0"
...

The browser will apply the XSLT stylesheet to the TETML document and then display the
resulting text, HTML, or XML output. As an alternative, XSLT processing in the browser
can also be initiated from JavaScript code.

With Firefox you can supply parameters to the XSLT stylesheet with the xslt-param
processing instruction:

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="tetml2html.xsl" version="1.0"?>
<?xslt-param name="toc-generate" value="0"?>
<TET xmlns="http://www.pdflib.com/XML/TET3/TET-3.0"
...

9.5 XSLT Samples 137

9.5 XSLT Samples
The TET distribution includes several XSLT stylesheets which demonstrate the power of
XSLT applied to TETML, and can be used as a starting point for TETML applications. This
section provides an overview of the XSLT samples and presents sample output. Section
9.4, »Transforming TETML with XSLT«, page 134 discusses many options for deploying
the XSLT stylesheets. More details regarding the functionality and inner workings of the
stylesheets can be found in comments in the XSLT code. Some general aspects of the
stylesheet samples:

> Most XSLT samples support parameters which can used to control various process-
ing details. These parameters can be set within the XSLT code or overridden from the
environment (e.g. ant).

> Most XSLT samples require TETML input in a certain text mode (e.g. word mode, see
»TETML text modes«, page 127, for details). In order to protect themselves from
wrong input, they check whether the supplied TETML input conforms to the require-
ment, and report an error otherwise.

> Some XSLT samples recursively process PDF attachments in the document (this is
mentioned in the descriptions below). Most samples ignore PDF attachments,
though. They are written in a way so that they can easily be expanded to process at-
tachments as well. It is sufficient to select the interesting elements within the
Attachments element; the relevant xsl:template elements themselves don’t have to be
modified.

> All XSLT samples work with XSLT 1. While some samples could be simplified using
features from XSLT 2, we wanted to stick to XSLT 1 for better usability.

Create a concordance. The concordance.xsl stylesheet expects TETML input in word or
wordplus mode. It creates a concordance, i.e. a list of unique words in a document sorted
by descending frequency. This may be useful to create a concordance for linguistic anal-
ysis, cross-references for translators, consistency checks, etc.

List of words in the document along with the number of occurrences:

the 207
font 107
of 100
a 92
in 83
and 75
fonts 64
PDF 60
FontReporter 58
...

Font filtering. The fontfilter.xsl stylesheet expects TETML input in glyph or wordplus
mode. It lists all words in a document which use a particular font in a size larger than a
specified value. This may be useful to detect certain font/size combinations or for qual-
ity control. The same concept can be used to create a table of contents based on text por-
tions which use a large font size.

Text containing font 'TheSansBold-Plain' with size greater than 10:

[TheSansBold-Plain/24] Contents

138 Chapter 9: TET Markup Language (TETML)

[TheSansBold-Plain/13.98] 1
[TheSansBold-Plain/13.98] Installing
[TheSansBold-Plain/13.98] PDFlib
[TheSansBold-Plain/13.98] FontReporter
[TheSansBold-Plain/13.98] 2
[TheSansBold-Plain/13.98] Working
[TheSansBold-Plain/13.98] with
[TheSansBold-Plain/13.98] FontReporter
[TheSansBold-Plain/13.98] A
[TheSansBold-Plain/13.98] Revision
[TheSansBold-Plain/13.98] History
[TheSansBold-Plain/24] 1
[TheSansBold-Plain/24] Installing
[TheSansBold-Plain/24] PDFlib
[TheSansBold-Plain/24] FontReporter
...

Searching for font usage. The fontfinder.xsl stylesheet expects TETML input in glyph or
wordplus mode. For all fonts in a document, it lists all occurrences of text using this par-
ticular font along with page number and the position on the page. This may be useful
for detecting unwanted fonts and checking consistency, locating use of a particular bad
font size, etc.

TheSansExtraBold-Plain used on:
page 1:
(111, 636), (165, 636), (219, 636), (292, 636), (301, 636), (178, 603), (221, 603), (226,
603),
(272, 603), (277, 603), (102, 375), (252, 375), (261, 375), (267, 375)

TheSans-Plain used on:
page 1:
(102, 266), (119, 266), (179, 266), (208, 266), (296, 266), (346, 266), (367, 266)
...

Font statistics. The fontstat.xsl stylesheet expects TETML input in glyph or wordplus
mode. It generates font and glyph statistics. This may be useful for quality control and
even accessibility testing since unmapped glyphs (i.e. glyphs which cannot be mapped
to any Unicode character) will also be reported for each font.

19894 total glyphs in the document; breakdown by font:

68.71% ThesisAntiqua-Normal: 13669 glyphs
22.89% TheSans-Italic: 4553 glyphs
6.38% TheSansBold-Plain: 1269 glyphs
0.9% TheSansMonoCondensed-Plain: 179 glyphs
0.49% TheSansBold-Italic: 98 glyphs
0.27% TheSansExtraBold-Plain: 54 glyphs
0.21% TheSerif-Caps: 42 glyphs
0.15% TheSans-Plain: 29 glyphs
0.01% Gen_TheSans-Plain: 1 glyphs

Create an index. The index.xsl stylesheet expects TETML input in word or wordplus
mode. It generates a back-of-the-book index, i.e. an alphabetically sorted list of words in
the document and the corresponding page numbers. Numbers and punctuation charac-
ters will be ignored.

9.5 XSLT Samples 139

Alphabetical list of words in the document along with their page number:

A
about 2 7 8
access 8 12
accessible 11
achieving 9 12
Acrobat 2 5 7 8 9 10 11 14 15 17
ActiveX 2
actual 9 12
actually 11 12 14
addition 9
Additional 12
additions 17
address 9 12
addressed 9
addressing 9
Adobe 2 5 8 12 14
...

Extract XMP metadata. The metadata.xsl stylesheet expects TETML input in any mode.
It targets XMP metadata on the document level, and extracts some metadata properties
from the XMP. PDF attachments (including PDF packages and portfolios) in the docu-
ment will be processed recursively:

dc:creator = PDFlib GmbH
xmp:CreatorTool = FrameMaker 7.0

Extract table contents in CSV format. The table.xsl stylesheet expects TETML input in
word, wordplus, or page mode. It extracts the contents of a specified table and creates a
CSV file (comma-separated values) which contains the table contents. CSV files can be
opened with all spreadsheet applications. This may be useful to repurpose the contents
of tables in PDF documents.

Convert TETML to HTML. The tetml2html.xsl stylesheet expects TETML input in
wordplus mode. It converts TETML to HTML which can be displayed in a browser. The
converter does not attempt to generate an identical visual representation of the PDF
document, but demonstrates the following aspects:

> Create heading elements (H1, H2, etc.) based on configurable font sizes.
> Map table elements in TETML to the corresponding HTML table constructs to visual-

ize tables in the browser.
> Create a table of contents at the beginning of the HTML page, where each entry is

based on some heading in the document and contains an active link which jumps to
the corresponding heading.

> Create a list of images for each page where the images are linked to the correspond-
ing image file, using the image file names created by the TET command-line tool in
the resource imageloop mode (e.g. tet --image --tetml file.pdf).

Extract raw text from TETML. The textonly.xsl stylesheet expects TETML input in any
mode. It extracts the raw text contents by fetching all Text elements while ignoring all
other elements. PDF attachments (including PDF packages and portfolios) in the docu-
ment will be processed recursively.

10.1 Option Lists 141

10 TET Library API Reference

10.1 Option Lists
Option lists are a powerful yet easy method for controlling API function calls. Instead of
requiring a multitude of function parameters, many API methods support option lists,
or optlists for short. These are strings which can contain an arbitrary number of options.
Option lists support various data types and composite data like lists. In most language
bindings optlists can easily be constructed by concatenating the required keywords and
values.

Bindings C language binding: you may want to use the sprintf() function for constructing optlists.

Bindings .NET language binding: C# programmers should keep in mind that the AppendFormat()
StringBuilder method uses the { and } braces to represent format items which will be re-
placed by the string representation of arguments. On the other hand, the Append()
method does not impose any special meaning on the brace characters. Since the option
list syntax makes use of the brace characters, care must be taken in selecting the
AppendFormat() or Append() method appropriately.

10.1.1 Option List Syntax

Formal option list syntax definition. Option lists must be constructed according to fol-
lowing rules:

> All elements (keys and values) in an option list must be separated by one or more of
the following separator characters: space, tab, carriage return, newline, equal sign ’=’.

> An outermost pair of enclosing braces is not part of the element. The sequence { }
designates an empty element.

> Separators within the outermost pair of braces no longer split elements, but are part
of the element. Therefore, an element which contains separators must be enclosed
with braces.

> An element which contains braces at the beginning or end must be enclosed with
braces.

> If an element contains unbalanced braces, these must be protected with a preceding
backslash character. A backslash in front of the closing brace of an element must also
be preceded by a backslash character.

> Option lists must not contain binary zero values.

An option may have a list value according to its documentation in this PDFlib Refer-
ence. List values contain one or more elements (which may themselves be lists). They
are separated according to the rules above, with the only difference that the equal sign
is no longer treated as a separator.

Simple option lists. In many cases option lists will contain one or more key/value
pairs. Keys and values, as well as multiple key/value pairs must be separated by one or

142 Chapter 10: TET Library API Reference

more whitespace characters (space, tab, carriage return, newline). Alternatively, keys
can be separated from values by an equal sign ’=’:

key=value
key = value
key value
key1 = value1 key2 = value2

To increase readability we recommend to use equal signs between key and value and
whitespace between adjacent key/value pairs.

Since option lists will be evaluated from left to right an option can be supplied mul-
tiply within the same list. In this case the last occurrence will overwrite earlier ones. In
the following example the first option assignment will be overridden by the second,
and key will have the value value2 after processing the option list:

key=value1 key=value2

List values. Lists contain one or more separated values, which may be simple values or
list values in turn. Lists are bracketed with { and } braces, and the values in the list must
be separated by whitespace characters. Examples:

searchpath={/usr/lib/tet d:\tet} (list containing two directory names)

A list may also contain nested lists. In this case the lists must also be separated from
each other by whitespace. While a separator must be inserted between adjacent } and {
characters, it can be omitted between braces of the same kind:

fold={ {[:Private_Use:] remove} {[U+FFFD] remove} } (list containing two lists)

If the list contains exactly one list the braces for the nested list must not be omitted:

fold={ {[:Private_Use:] remove} } (list containing one nested list)

Nested option lists and list values. Some options accept the type option list or list of
option lists. Options of type option list contain one or more subordinate options. Options
of type list of option lists contain one or more nested option lists. When dealing with
nested option lists it is important to specify the proper number of enclosing braces.
Several examples are listed below.

The value of the option contentanalysis is an option list which itself contains a single
option punctuationbreaks:

contentanalysis={punctuationbreaks=false}

The value of the option glyphmapping in the following example is a list of option lists
containing a single option list:

glyphmapping={ {fontname=GlobeLogosOne codelist=GlobeLogosOne} }

The value of the option glyphmapping in the following example is a list of option lists
containing two option lists:

glyphmapping { {fontname=CMSY* glyphlist=tarski} {fontname=ZEH* glyphlist=zeh}}

10.1 Option Lists 143

List containing one option list with a fontname value that includes spaces and therefore
requires an additional pair of braces:

glyphmapping={ {fontname={Globe Logos One} codelist=GlobeLogosOne} }

List containing two keywords:

fonttype={Type1 TrueType}

List containing different types – the inner lists contain a Unicode set and a keyword, the
outer list contains two option lists and the keyword default:

fold={ {[:Private_Use:] remove} {[U+FFFD] remove} default }

List containing one rectangle:

includeboxes={{10 20 30 40}}

Common traps and pitfalls. This paragraph lists some common errors regarding op-
tion list syntax.

Braces are not separators; the following is wrong:

key1 {value1}key2 {value2} WRONG!

This will trigger the error message Unknown option 'value2'. Similarly, the following are
wrong since the separators are missing:

key{value} WRONG!
key={{value1}{value2}} WRONG!

Braces must be balanced; the following is wrong:

key={open brace {} WRONG!

This will trigger the error message Braces aren't balanced in option list 'key={open brace {}'.
A single brace as part of a string must be preceded by an additional backslash character:

key={closing brace \} and open brace \{} CORRECT!

A backslash at the end of a string value must be preceded by another backslash if it is
followed by a closing brace character:

key={\value\} WRONG!
key={\value\\} CORRECT!

10.1.2 Basic Types

String. Strings are plain ASCII strings (or EBCDIC strings on EBCDIC platforms) which
are generally used for non-localizable keywords. Strings containing whitespace or ’=’
characters must be bracketed with { and }:

password={ secret string } (string value contains three blanks)
contents={length=3mm} (string value containing one equal sign)

The characters { and } must be preceded by an additional \ character if they are sup-
posed to be part of the string:

144 Chapter 10: TET Library API Reference

password={weird\}string} (string value contains a right brace)

A backslash in front of the closing brace of an element must be preceded by a backslash
character:

filename={C:\path\name\\} (string ends with a single backslash)

An empty string can be constructed with a pair or braces:

{}

Content strings, hypertext strings and name strings: these can hold Unicode content in
various formats. Single bytes can be expressed by an escape sequence if the parameter
escapesequence is set. For details on these string types and encoding choices for string
options see the PDFlib Tutorial.

Non-Unicode capable language bindings: if an option list starts with a [EBCDIC-]UTF-
8 BOM, each content, hypertext or name string of the option list will be interpreted as a
[EBCDIC-]UTF-8 string.

Unichar. A Unichar is a single Unicode value where several syntax variants are sup-
ported: decimal values ¹ 10 (e.g. 173), hexadecimal values prefixed with x, X, 0x, 0X, or U+
(xAD, 0xAD, U+00AD), numerical references, character references, and glyph name refer-
ences but without the ’&’ and ’;’ decoration (shy, #xAD, #173). Example:

unknownchar=? (literal)
unknownchar=63 (decimal)
unknownchar=x3F (hexadecimal)
unknownchar=0x3F (hexadecimal)
unknownchar=U+003F (Unicode notation)
lineseparator={CRLF} (standard glyph name reference)

Single characters which happen to be a number are treated literally, not as decimal Uni-
code values:

replacementchar=3 (U+0033 THREE, not U+0003!)

Unichars must be in the hexadecimal range 0-0x10FFFF (decimal 0-1114111).

Unicode sets. Unicode sets and can be constructed with the following building blocks:
> Patterns are a series of characters bounded by square brackets that contain lists of

Unicode characters and Unicode property sets.
> Lists are a sequence of Unicode characters that may have ranges indicated by a '-' be-

tween two characters, as in U+FB00-U+FB17. The sequence specifies the range of all
characters from the left to the right, in Unicode order. Multiple Unicode characters
must not be separated by whitespace, but must directly follow each other, e.g.
U+0048U+006C.

> Unicode characters in lists can be specified as follows:
ASCII characters can be specified as literals
Exactly 4 hex digits: \uhhhh or U+hhhh
Exactly 5 hex digits: U+hhhhh
1-6 hex digits: \x{hhhhhh}
Exactly 8 hex digits: \Uhhhhhhhh

10.1 Option Lists 145

escaped backslash: \\
> Unicode property sets are specified by a Unicode property. The syntax for specifying

the property names is an extension of POSIX and Perl syntax, where type represents
the name of a Unicode property (see www.unicode.org/Public/UNIDATA/
PropertyAliases.txt) and value the corresponding value (see www.unicode.org/Public/
UNIDATA/PropertyValueAliases.txt):
POSIX-style syntax: [:type=value:]
POSIX-style syntax with negation: [:^type=value:]
Perl-style syntax: \p{type=value}
Perl-style syntax with negation: \P{type=value}
The type= can be omitted for the Category and Script properties, but is required for
other properties.

> Set operations can be applied to patterns:
To build the union of two sets, simply concatenate them: [[:letter:] [:number:]]
To intersect two sets, use the '&' operator: [[:letter:] & [U+0061-U+007A]]
To take the set difference of two sets, use the '-' operator: [[:letter:]-[U+0061-U+007A]]
To invert a set, place a '^' immediately after the opening '[': [^U+0061-U+007A]. In any
other location, the '^' does not have a special meaning.

See Table 10.1 for examples of Unicode sets. You can use the following Web site for inter-
actively testing Unicode set expressions:

unicode.org/cldr/utility/list-unicodeset.jsp

Boolean. Booleans have the values true or false; if the value of a Boolean option is
omitted, the value true is assumed. As a shorthand notation noname can be used instead
of name=false:

usehostfonts (equivalent to usehostfonts=true)
nousehostfonts (equivalent to usehostfonts=false)

Table 10.1 Unicode set examples

specification of Unicode set characters in the Unicode set

[U+0061-U+007A] lower case letters a through z

[U+0640] single character Arabic Tatweel

[\x{0640}] single character Arabic Tatweel

[U+FB00-U+FB17] Latin and Armenian ligatures

[^U+0061-U+007A] all characters except a through z

[:Lu:]
[:UppercaseLetter:]

all uppercase letters (short and long forms of the Unicode
set)

[:L:]
[:Letter:]

all Unicode categories starting with L (short and long
forms of the Unicode set)

[:General_Category=Dash_Punctuation:] all characters in the general category Dash_Punctuation

[:Alphabetic=No:] all non-alphabetic characters

[:Private_Use:] all characters in the Private Use Area (PUA)

http://unicode.org/cldr/utility/list-unicodeset.jsp

146 Chapter 10: TET Library API Reference

Keyword. An option of type keyword can hold one of a predefined list of fixed key-
words. Example:

clippingarea=cropbox

For some options the value hold either a number or a keyword.

Number. Option list support several numerical types.
Integer types can hold decimal and hexadecimal integers. Positive integers starting
with x, X, 0x, or 0X specify hexadecimal values:

-12345
0
0xFF

Floats can hold decimal floating point or integer numbers; period and comma can be
used as decimal separators for floating point values. Exponential notation is also sup-
ported. The following values are all equivalent:

size = -123.45
size = -123,45
size = -1.2345E2
size = -1.2345e+2

10.1.3 Geometric Types

Rectangle. A rectangle is a list of four float values specifying the x and y coordinates of
the lower left and upper right corners of a rectangle. The coordinate system for inter-
preting the coordinates (default or user coordinate system) varies depending on the op-
tion, and is documented separately. Example:

includebox = {{0 0 500 100} {0 500 500 600}}^

10.1.4 Encoding Names
Various options and parameters support the names of encodings, e.g. the filename-
handling option of TET_set_option(), the forceencoding option of TET_open_document(),
and the inputformat parameter of TET_convert_to_unicode(). The following keywords can
be supplied as encoding names:

> The keyword auto specifies the most natural encoding for certain environments:
> On Windows: the current system code page
> On Unix and OS X: iso8859-1
> On i5/iSeries: the current job’s encoding (IBMCCSID000000000000)
> On zSeries: ebcdic

> winansi (=cp1252)
> iso8859-1 - iso8859-10, iso8859-13 - iso8859-14
> cp1250 - cp1258
> macroman, macroman_euro (replaces currency with Euro), macroman_apple, (replaces

currency with Euro and includes additional mathematical/greek symbols)
> adobesymbol designates the Adobe Symbol encoding
> U+XXXX (256 characters starting at the specified value)
> ebcdic (=code page 1047), ebcdic_37 (=code page 037)
> CJK encodings cp932, cp936, cp949, cp950

10.1 Option Lists 147

> on the following systems all encodings available on the host system can be used:
> cpXXXX on Windows
> any Coded Character Set Identifier without the CCSID prefix on i5/iSeries
> any Coded Character Set Identifier (CCSID) on zSeries

> custom encodings can be defined as resources and referenced by their resource
name

148 Chapter 10: TET Library API Reference

10.2 General Functions
10.2.1 Option Handling

C++ void set_option(wstring optlist)
C# Java void set_option(String optlist)
Perl PHP set_option(string optlist)

VB RB Sub set_option(optlist As String)
C void TET_set_option(TET *tet, const char *optlist)

Set one or more global options for TET.

optlist An option list specifying global options according to Table 10.2. If an option is
provided more than once the last instance will override all previous ones. In order to
supply multiple values for a single option (e.g. searchpath) supply all values in a list ar-
gument to this option.

The following options can be used: asciifile, cmap, codelist, encoding, filenamehandling,
fontoutline, glyphlist, license, licensefile, logging, userlog, outputformat, resourcefile,
searchpath

Details Multiple calls to this function can be used to accumulate values for those options
marked in Table 10.2. For unmarked options the new value will override the old one.

Table 10.2 Global options for TET_set_option()

option description

asciifile (Boolean; Only supported on i5/iSeries and zSeries). Expect text files (e.g. UPR configuration files, glyph
lists, code lists) in ASCII encoding. Default: true on i5/iSeries; false on zSeries

cmap1, 2 (List of name strings) A list of string pairs, where each pair contains the name and value of a CMap re-
source (see Section 5.2, »Resource Configuration and File Searching«, page 61).

codelist1, 2 (List of name strings) A list of string pairs, where each pair contains the name and value of a codelist re-
source (see Section 5.2, »Resource Configuration and File Searching«, page 61).

encoding1, 2 (List of name strings) A list of string pairs, where each pair contains the name and value of an encoding
resource (see Section 5.2, »Resource Configuration and File Searching«, page 61).

10.2 General Functions 149

filename-
handling

(Keyword; not required on Windows) Target encoding for file names. On Windows this option will be ap-
plied to supplied file names, but not to the names of generated files (default: unicode on OS X, auto on
i5/iSeries, otherwise honorlang):
ascii 7-bit ASCII
basicebcdic Basic EBCDIC according to code page 1047, but only Unicode values <= U+007E
basicebcdic_37

Basic EBCDIC according to code page 0037, but only Unicode values <= U+007E
honorlang (Not supported on i5/iSeries) The environment variables LC_ALL, LC_CTYPE and LANG will be

interpreted and applied to file names if it specifies utf8, UTF-8, cpXXXX, CPXXXX, iso8859-x, or
ISO-8859-x.

legacy Use auto encoding (i.e. the current system encoding) to interpret the file name and interpret
the LANG variable if the honorlang parameter is set.

unicode Unicode encoding in (EBCDIC-) UTF-8 format
all names of 8-bit and CJK encodings

Encoding name according to Section 10.1.4, »Encoding Names«, page 146
File names supplied in non-Unicode aware language bindings without a UTF-8 BOM and with length=0
are interpreted according to the filenamehandling option.

fontoutline1, 2 (List of name strings) A list of string pairs, where each pair contains the name and value of a FontOutline
resource (see Section 5.2, »Resource Configuration and File Searching«, page 61).

glyphlist1, 2 (List of name strings) A list of string pairs, where each pair contains the name and value of a glyphlist re-
source (see Section 5.2, »Resource Configuration and File Searching«, page 61).

hostfont1, 2 (List of name strings) A list of string pairs, where each pair contains a PDF font name and the UTF-8 en-
coded name of a host font to be used for an unembedded font.

license (String) Set the license key. It must be set before the first call to TET_open_document*().

licensefile (String) Set the name of a file containing the license key(s). The license file can be set only once before the
first call to TET_open_document*(). Alternatively, the name of the license file can be supplied in an
environment variable called PDFLIBLICENSEFILE or (on Windows) via the registry.

logging1 (Option list; unsupported) An option list specifying logging output according to Table 10.7. Alternatively,
logging options can be supplied in an environment variable called TETLOGGING or on Windows via the
registry. An empty option list will enable logging with the options set in previous calls. If the environment
variable is set logging will start immediately after the first call to TET_new().

userlog (Name string; unsupported) Arbitrary string which will be written to the log file if logging is enabled.

output-
format

(Keyword; only for the C, Ruby, Perl, Python, and PHP language bindings) Specifies the format of the text
returned by TET_get_text():
utf8 Strings are returned in (in C: null-terminated) UTF-8 format .
utf16 Strings are returned in UTF-16 format in the machine’s native byte ordering.
utf32 Strings are returned in UTF-32 format in the machine’s native byte ordering.
ebcdicutf8 (Only available on EBCDIC-based systems) Strings are returned in null-terminated EBCDIC-

encoded UTF-8 format. Code page 37 is used on i5/iSeries, code page 1047 on zSeries.
Default: utf8 for C, Ruby, Perl, Python, PHP, and ebcdicutf8 for C on i5/iSeries and zSeries

resourcefile (Name string) Relative or absolute file name of the UPR resource file. The resource file will be loaded
immediately. Existing resources will be kept; their values will be overridden by new ones if they are set
again. Explicit resource options will be evaluated after entries in the resource file.
The resource file name can also be supplied in the environment variable TETRESOURCEFILE or with a
Windows registry key (see Section 5.2, »Resource Configuration and File Searching«, page 61). Default:
tet.upr (on MVS: upr)

Table 10.2 Global options for TET_set_option()

option description

150 Chapter 10: TET Library API Reference

searchpath1 (List of name strings) Relative or absolute path name(s) of a directory containing files to be read. The
search path can be set multiply; the entries will be accumulated and used in least-recently-set order (see
Section 5.2, »Resource Configuration and File Searching«, page 61). It is recommended to use double
braces even for a single entry to avoid problems with directory names containing space characters. An
empty string list (i.e. {{}}) deletes all existing search path entries including the default entries. On
Windows the search path can also be set via a registry entry. Default: platform-specific, see »File search
and the searchpath resource category«, page 62.

shutdown-
strategy

(Integer) Strategy for releasing global resources which are allocated once for all TET objects. Each global
resource is initialized on demand when it is first needed. This option must be set to the same value for all
TET objects in a process; otherwise the behavior is undefined (default: 0):
0 A reference counter keeps track of how many PLOP objects use the resource. When the last

TET object is deleted and the reference counter drops to zero, the resource is released.
1 The resource is kept until the end of the process. This may slightly improve performance, but

requires more memory after the last TET object is deleted.

1. Option values can be accumulated with multiple calls.
2. Unlike the UPR syntax an equal character ’=’ between the name and value is neither required nor allowed.

Table 10.2 Global options for TET_set_option()

option description

10.2 General Functions 151

10.2.2 Setup

C TET *TET_new(void)

Create a new TET object.

Returns A handle to a TET object to be used in subsequent calls. If this function doesn’t succeed
due to unavailable memory it will return NULL.

Bindings This function is not available in object-oriented language bindings since it is hidden in
the TET constructor.

Java void delete()
C# void Dispose()

C void TET_delete(TET *tet)

Delete a TET object and release all related internal resources.

Details Deleting a TET object automatically closes all of its open documents. The TET object
must no longer be used in any function after it has been deleted.

Bindings In object-oriented language bindings this function is generally not required since it is
hidden in the TET destructor. However, in Java it is available nevertheless to allow ex-
plicit cleanup in addition to automatic garbage collection. In .NET Dispose() should be
called at the end of processing to clean up unmanaged resources.

152 Chapter 10: TET Library API Reference

10.2.3 PDFlib Virtual Filesystem (PVF)

C++ void create_pvf(wstring filename, const void *data, size_t size, wstring optlist)
C# Java void create_pvf(String filename, byte[] data, String optlist)
Perl PHP create_pvf(string filename, string data, string optlist)

VB RB Sub create_pvf(filename As String, data, optlist As String)
C void TET_create_pvf(TET *tet,

const char *filename, int len, const void *data, size_t size, const char *optlist)

Create a named virtual read-only file from data provided in memory.

filename (Name string) The name of the virtual file. This is an arbitrary string which
can later be used to refer to the virtual file in other TET calls.

len (C language binding only) Length of filename (in bytes) for UTF-16 strings. If len=0
a null-terminated string must be provided.

data A reference to the data for the virtual file. In COM this is a variant of byte con-
taining the data comprising the virtual file. In C and C++ this is a pointer to a memory
location. In Java this is a byte array. In Perl and PHP this is a string.

size (C and C++ only) The length in bytes of the memory block containing the data.

optlist An option list according to Table 10.3. The following option can be used: copy

Details The virtual file name can be supplied to any API function which uses input files. Some
of these functions may set a lock on the virtual file until the data is no longer needed.
Virtual files will be kept in memory until they are deleted explicitly with TET_delete_
pvf(), or automatically in TET_delete().

Each TET object will maintain its own set of PVF files. Virtual files cannot be shared
among different TET objects. Multiple threads working with separate TET objects do not
need to synchronize PVF use. If filename refers to an existing virtual file an exception
will be thrown. This function does not check whether filename is already in use for a reg-
ular disk file.

Unless the copy option has been supplied, the caller must not modify or free (delete)
the supplied data before a corresponding successful call to TET_delete_pvf(). Not obey-
ing to this rule will most likely result in a crash.

Table 10.3 Options for TET_create_pvf()

option description

copy (Boolean) TET will immediately create an internal copy of the supplied data. In this case the caller may
dispose of the supplied data immediately after this call. The copy option will automatically be set to true
in the COM, .NET, and Java bindings (default for other bindings: false). In other language bindings the
data will not be copied unless the copy option is supplied.

10.2 General Functions 153

C++ int delete_pvf(wstring filename)
C# Java int delete_pvf(String filename)
Perl PHP int delete_pvf(string filename)

VB RB Function delete_pvf(filename As String) As Long
C int TET_delete_pvf(TET *tet, const char *filename, int len)

Delete a named virtual file and free its data structures (but not the contents).

filename (Name string) The name of the virtual file as supplied to TET_create_pvf().

len (C language binding only) Length of filename (in bytes) for UTF-16 strings. If len=0
a null-terminated string must be provided.

Returns -1 if the corresponding virtual file exists but is locked, and 1 otherwise.

Details If the file isn’t locked, TET will immediately delete the data structures associated with
filename. If filename does not refer to a valid virtual file this function will silently do
nothing. After successfully calling this function filename may be reused. All virtual files
will automatically be deleted in TET_delete().

The detailed semantics depend on whether or not the copy option has been supplied
to the corresponding call to TET_create_pvf(): If the copy option has been supplied, both
the administrative data structures for the file and the actual file contents (data) will be
freed; otherwise, the contents will not be freed, since the client is supposed to do so.

C++ int info_pvf(wstring filename, wstring keyword)
C# Java int info_pvf(String filename, String keyword)
Perl PHP int info_pvf(string filename, string keyword)

VB RB Function info_pvf(filename As String, keyword As String) As Long
C int TET_info_pvf(TET *tet, const char *filename, int len, const char *keyword)

Query properties of a virtual file or the PDFlib Virtual File system (PVF).

filename (Name string) The name of the virtual file. The filename may be empty if
keyword=filecount.

len (C language binding only) Length of filename (in bytes) for UTF-16 strings. If len=0 a
null-terminated string must be provided.

keyword A keyword according to Table 10.4.

Details This function returns various properties of a virtual file or the PDFlib Virtual File sys-
tem (PVF). The property is specified by keyword.

Table 10.4 Keywords for TET_info_pvf()

option description

filecount Total number of files in the PDFlib Virtual File system maintained for the current TET object. The
filename parameter will be ignored.

exists 1 if the file exists in the PDFlib Virtual File system (and has not been deleted), otherwise 0

size (Only for existing virtual files) Size of the specified virtual file in bytes.

154 Chapter 10: TET Library API Reference

iscopy (Only for existing virtual files) 1 if the copy option was supplied when the specified virtual file was creat-
ed, otherwise 0

lockcount (Only for existing virtual files) Number of locks for the specified virtual file set internally by TET functions.
The file can only be deleted if the lock count is 0.

Table 10.4 Keywords for TET_info_pvf()

option description

10.2 General Functions 155

10.2.4 Unicode Conversion Function

C++ string convert_to_unicode(wstring inputformat, string input, wstring optlist)
C# Java String convert_to_unicode(String inputformat, byte[] input, String optlist)
Perl PHP string convert_to_unicode(string inputformat, string input, string optlist)

VB RB Function convert_to_unicode(inputformat As String, input As String, optlist As String) As String
C const char *TET_convert_to_unicode(TET *tet,

const char *inputformat, const char *input, int inputlen, int *outputlen, const char *optlist)

Convert a string in an arbitrary encoding to a Unicode string in various formats.

inputformat Unicode text format or encoding name specifying interpretation of the
input string:

> Unicode text formats: utf8, ebcdicutf8, utf16, utf16le, utf16be, utf32
> An encoding name according to Section 10.1.4, »Encoding Names«, page 146
> The keyword auto specifies the following behavior: if the input string contains a

UTF-8 or UTF-16 BOM it will be used to determine the appropriate format, otherwise
the current system codepage is assumed.

input String to be converted to Unicode.

inputlen (C language binding only) Length of the input string in bytes. If inputlen=0 a
null-terminated string must be provided.

outputlen (C language binding only) C-style pointer to a memory location where the
length of the returned string (in bytes) will be stored.

optlist An option list specifying options according to Table 10.5:
> Input filter options: charref, escapesequence
> Unicode conversion options: bom, errorpolicy, inflate, outputformat

Returns A Unicode string created from the input string according to the specified parameters
and options. If the input string does not conform to the specified input format (e.g. in-
valid UTF-8 string) an empty output string will be returned if errorpolicy=return, and an
exception will be thrown if errorpolicy=exception.

Details This function may be useful for general Unicode string conversion. It is provided for the
benefit of users working in environments which do not provide suitable Unicode con-
verters.

Bindings C binding: the returned strings will be stored in a ring buffer with up to 10 entries. If
more than 10 strings are converted, the buffers will be reused, which means that clients
must copy the strings if they want to access more than 10 strings in parallel. For exam-
ple, up to 10 calls to this function can be used as parameters for a printf() statement
since the return strings are guaranteed to be independent if no more than 10 strings are
used at the same time.

C++ binding: The parameters inputformat and optlist must be passed as wstrings as usual,
while input and returned data must have type string.
Python binding: UTF-8 results will be returned as a string, Python 3: non-UTF-8 results
will be returned as bytes.

156 Chapter 10: TET Library API Reference

Table 10.5 Options for TET_convert_to_unicode()

option description

charref (Boolean) If true, enable substitution of numeric and character entity references and glyph name refer-
ences. Default: false

bom (Keyword; ignored for outputformat=utf32; for Unicode-aware language bindings only none is allowed)
Policy for adding a byte order mark (BOM) to the output string. Supported keywords (default: none):
add Add a BOM.
keep Add a BOM if the input string has a BOM.
none Don’t add a BOM.
optimize Add a BOM except if outputformat=utf8 or ebcdicutf8 and the output string contains only

characters in the range < U+007F.

errorpolicy (Keyword) Behavior in case of conversion errors (default: exception):
return The replacement character U+FFFD will be used if a character reference cannot be resolved or

a builtin code or glyph ID doesn’t exist in the specified font. An empty string will be returned
in case of conversion errors.

exception An exception will be thrown in case of conversion errors.

escape-
sequence

(Boolean) If true, enable substitution of escape sequences in strings. Default: false

inflate (Boolean; only for inputformat=utf8; will be ignored if outputformat=utf8) If true, an invalid UTF-8
input string will not trigger an exception, but rather an inflated byte string in the specified output for-
mat will be generated. This may be useful for debugging. Default: false

output-
format

(Keyword) Unicode text format of the generated string: utf8, ebcdicutf8, utf16, utf16le, utf16be,
utf32. An empty string is equivalent to utf16. Default: utf16
Unicode-aware language bindings: the output format will be forced to utf16.
C++ language binding: only the following output formats are allowed: ebcdicutf8, utf8, utf16,
utf32.

10.2 General Functions 157

10.2.5 Exception Handling

C++ wstring get_apiname()
C# Java String get_apiname()
Perl PHP string get_apiname()

VB RB Function get_apiname() As String
C const char *TET_get_apiname(TET *tet)

Get the name of the API function which caused an exception or failed.

Returns The name of the function which threw an exception, or the name of the most recently
called function which failed with an error code. An empty string will be returned if
there was no error.

C++ wstring get_errmsg()
C# Java String get_errmsg()
Perl PHP string get_errmsg()

VB RB Function get_errmsg() As String
C const char *TET_get_errmsg(TET *tet)

Get the text of the last thrown exception or the reason for a failed function call.

Returns Text containing the description of the last exception thrown, or the reason why the
most recently called function failed with an error code. An empty string will be returned
if there was no error.

C++ int get_errnum()
C# Java int get_errnum()
Perl PHP long get_errnum()

VB RB Function get_errnum() As Long
C int TET_get_errnum(TET *tet)

Get the number of the last thrown exception or the reason for a failed function call.

Returns The number of an exception, or the error code of the most recently called function
which failed with an error code. This function will return 0 if there was no error.

C TET_TRY(tet)
C TET_CATCH(tet)
C TET_RETHROW(tet)
C TET_EXIT_TRY(tet)

Set up an exception handling block; catch or rethrow an exception; or inform the excep-
tion machinery that a TET_TRY() block will be left without entering the corresponding

158 Chapter 10: TET Library API Reference

TET_CATCH() block. TET_RETHROW() can be used to throw an exception again to a higher-
level function after catching it.

Details (C language binding only) See Section 3.2, »C Binding«, page 24.

10.2 General Functions 159

10.2.6 Logging
The logging feature can be used to trace API calls. The contents of the log file may be
useful for debugging purposes, or may be requested by PDFlib GmbH support. Table
10.6 lists the options for activating the logging feature with TET_set_option() (see Sec-
tion 10.2.1, »Option Handling«, page 148).

The logging options can be supplied in the following ways:
> As an option list for the logging option of TET_set_option(), e.g.:

tet.set_option("logging={filename={debug.log} remove}")

> In an environment variable called TETLOGGING. Doing so will activate the logging
output starting with the very first call to one of the API functions.

Table 10.6 Logging-related keys for TET_set_option()

key explanation

logging Option list with logging options according to Table 10.7

userlog String which will be copied to the log file

Table 10.7 Suboptions for the logging option of TET_set_option()

key explanation

(empty list) Enable log output after it has been disabled with disable.

disable (Boolean) Disable logging output. Default: false

enable (Boolean) Enable logging output

filename (String) Name of the log file (stdout and stderr are also acceptable). Output will be appended to any ex-
isting contents. The log file name can alternatively be supplied in an environment variable called TET-
LOGFILENAME (in this case the option filename will always be ignored). Default: tet.log (on Windows
and OS X in the / directory, on Unix in /tmp)

flush (Boolean) If true, the log file will be closed after each output, and reopened for the next output to make
sure that the output will actually be flushed. This may be useful when chasing program crashes where
the log file is truncated, but significantly slows down processing. If false, the log file will be opened only
once. Default: false

remove (Boolean) If true, an existing log file will be deleted before writing new output. Default: false

stringlimit (Integer) Limit for the number of characters in text strings, or 0 for unlimited. Default: 0

160 Chapter 10: TET Library API Reference

classes (Option list) List containing options of type integer, where each option describes a logging class and the
corresponding value describes the granularity level. Level 0 disables a logging class, positive numbers en-
able a class. Increasing levels provide more and more detailed output. The following options are support-
ed (default: {api=1 warning=1}):
api Log all API calls with their function parameters and results. If api=2 a timestamp is created in

front of all API trace lines, and deprecated functions and options will be marked. If api=3 try/
catch calls are logged (useful for debugging problems with nested exception handling).

filesearch Log all attempts related to locating files via SearchPath or PVF.
resource Log all attempts at locating resources via Windows registry, UPR definitions as well as the

results of the resource search.
user User-specified logging output supplied with the userlog option.
warning Log all warnings, i.e. error conditions which can be ignored or fixed internally. If warning=2

messages from functions which do not throw any exception, but hook up the message text
for retrieval via TET_get_errmsg(), and the reason for all failed attempts at opening a file
(searching for a file in searchpath) will also be logged.

Table 10.7 Suboptions for the logging option of TET_set_option()

key explanation

10.3 Document Functions 161

10.3 Document Functions

C++ int open_document(wstring filename, wstring optlist)
C# Java int open_document(String filename, String optlist)
Perl PHP long open_document(string filename, string optlist)

VB RB Function open_document(filename As String, optlist As String) As Long
C int TET_open_document(TET *tet, const char *filename, int len, const char *optlist)

Open a disk-based or virtual PDF document for content extraction.

filename (Name string) Absolute or relative name of the PDF input file to be processed.
The file will be searched in all directories specified in the searchpath resource category.
On Windows it is OK to use UNC paths or mapped network drives. In PHP Unicode file-
names must be UTF-8.

In non-Unicode language bindings file names with len = 0 will be interpreted in the
current system codepage unless they are preceded by a UTF-8 BOM, in which case they
will be interpreted as UTF-8 or EBCDIC-UTF-8.

len (Only C language binding) Length of filename (in bytes) for UTF-16 strings. If len = 0
a null-terminated string must be provided.

optlist An option list specifying document options according to Table 10.8. The follow-
ing options can be used:checkglyphlists, decompose, encodinghint, fold, glyphmapping,
lineseparator, normalize, inmemory, password, repair, requiredmode, shrug, tetml, usehostfonts,
wordseparator,

Returns -1 on error, or a document handle otherwise. For example, it is an error if the input doc-
ument or the TETML output file cannot be opened. If -1 is returned it is recommended to
call TET_get_errmsg() to find out more details about the error.

Details Within a single TET object an arbitrary number of documents may be kept open at the
same time. However, a single TET object must not be used in multiple threads simulta-
neously without any locking mechanism for synchronizing the access.

Encryption: if the document is encrypted its user password must be supplied in the
password option if the permission settings allow content extraction. The document’s
master password must be supplied if the permission settings do not allow content ex-
traction. If the requiredmode option has been specified, documents can be opened even
without the appropriate password, but operations are restricted. The shrug option can
be used to enable content extraction from protected documents under certain condi-
tions (see Section 5.1, »Extracting Content from protected PDF«, page 59).

Supported file systems on i5/iSeries: TET has been tested with PC type file systems
only. Therefore input and output files should reside in PC type files in the IFS (Integrat-
ed File System). The QSYS.lib file system for input files has not been tested and is not
supported. Since QSYS.lib files are mostly used for record-based or database objects, un-
predictable behavior may be the result if you use TET with QSYS.lib objects. TET file I/O is
always stream-based, not record-based.

162 Chapter 10: TET Library API Reference

Table 10.8 Document options for TET_open_document() and TET_open_document_callback()

option description

check-
glyphlists

(Boolean) If true, TET will check all builtin glyphmapping rules with condition=allfonts before text ex-
traction starts. Otherwise the global glyphmapping rules will not be applied. This option slows down
processing, but is useful for certain kinds of TeX documents with glyph names which cannot be mapped
to Unicode by default. Default: false

decompose (Keyword or option list) Unicode decompositions which will be applied to all characters which have a
specified Unicode decomposition tag and are part of the specified Unicode set. These conditions are pro-
vided in the suboption name and value. Decompositions can be used to either remove or preserve the dis-
tinction between equivalent Unicode characters (see Section 7.3, »Unicode Postprocessing«, page 97).
Default:see »Default decompositions«, page 103. However, if the normalize option has a value other
than none, all default decompositions are disabled, i.e. setting the normalize option sets the default to
decompose=none. However, user-specified decompositions can still be applied.
The following keywords can be supplied instead of a list:
none No decompositions will be applied.
default The default decompositions (see »Default decompositions«, page 103) will be applied before

other specified decompositions.
The following suboptions for decompositions are supported:
canonical, circle, compat, final, font, fraction, initial, isolated, medial, narrow, nobreak, small, square,
sub, super, vertical, wide
Each of these suboptions accepts a string or keyword which specifies the decomposition’s domain, i.e. the
set of Unicode characters to which the decomposition will be applied. A string specifies a Unicode set for
the domain. This can be used to restrict decompositions to subsets of the characters with the specified
decomposition tag. Characters outside the domain will not be modified.
As an alternative to a string for a Unicode set the following keywords can be supplied:
_all The set of all Unicode characters, i.e. the decomposition will be applied to all characters with

the specified decomposition tag.
_none The empty set, i.e. the decomposition will not be applied at all.

encodinghint (String1) The name of an encoding which will be used to determine Unicode mappings for glyph names
which cannot be mapped by standard rules, but only by a predefined internal glyph mapping rule. The
keyword none can be used to disable all predefined rules. Default: winansi

10.3 Document Functions 163

fold (Keyword or list of lists; the first element of each inner list is a Unicode set or keyword, the second ele-
ment is a Unichar or a keyword) Apply a post-folding (equivalence mapping) to all characters in a folding
domain specified as a Unicode set. The foldings will be applied to all text except separator characters
added by the lineseparator or wordseparator options (see see Section 7.3, »Unicode Postprocessing«,
page 97). Default: see Table 7.3, page 99.
The following keyword can be supplied instead of a list:
none No foldings will be applied.
The following keyword can be supplied instead of a sublist:
default The default foldings will be applied before other specified foldings.
The first element of each list specifies the folding’s domain, i.e. the set of Unicode characters to which the
folding will be applied. A string specifies a Unicode set for the domain. If a character is included in multi-
ple sets specified within the fold option, the first matching set definition has priority over all others. In
order to avoid unexpectedresults it is recommended to use disjoint sets.
As an alternative to a Unicode set the following keyword can be supplied:
_dehyphenation

The folding will be applied to hyphen characters which have been found within hyphenated
words at line breaks. These characters will be flagged in the attributes member returned by
TET_get_char_info() and the @dehyphenation attribute in TETML.

The second element in each list contains the target character or action for the folding. It is specified with
one of the following variants:
(Unichar) Replace all characters in the domain with the specified Unicode character.
remove All characters in the domain will be removed.
preserve The characters in the domain will not be modified.
shift Shift all characters in the folding’s domain by the specified value (which may be negative).
unknownchar

Replace all characters in the domain with the character specified in the unknownchar option.

glyphmapping (List of option lists) A list of option lists where each option list describes a glyph mapping method for one
or more font/encoding combinations which cannot reliably be mapped with standard methods. The
mappings will be used in least-recently-set order. If the last option list contains the font name wildcard
»*«, preceding mappings will no longer be used. Each rule consists of an option list according to Table
10.9. All glyph mappings which match a particular font name will be applied to this font. (default: pre-
defined internal glyph rules will be applied).
Note that glyph mapping rules can also be specified as an external resource in the UPR file (see Section
5.2, »Resource Configuration and File Searching«, page 61).

lineseparator (Unichar; Only for granularity=page) Character to be inserted between lines2. Default: U+000A

normalize (Keyword) Normalize the text output to one of the Unicode normalization forms (default: none):
none Do not apply any normalization.
nfc Normalization Form C (NFC): canonical decomposition followed by canonical composition
nfd Normalization Form D (NFD): canonical decomposition
nfkc Normalization Form KC (NFKC): compatibility decomposition followed by canonical composi-

tion
nfkd Normalization Form KD (NFKD): compatibility decomposition
Since the Unicode normalization forms involve canonical and compatibility decompositions, combina-
tions of the options decompose and normalize must be constructed carefully. Setting the normalize op-
tion to a value different from none sets the decomposition default to decompose=none. The normalize
option is processed after the decompose option.

Table 10.8 Document options for TET_open_document() and TET_open_document_callback()

option description

164 Chapter 10: TET Library API Reference

inmemory (Boolean; Only for TET_open_document()) If true, TET will load the complete file into memory and pro-
cess it from there. This can result in a tremendous performance gain on some systems (especially MVS) at
the expense of memory usage. If false, individual parts of the document will be read from disk as need-
ed. Default: false

password (String) The user, master or attachment password for encrypted documents. If the document’s permission
settings allow text copying then the user password is sufficient, otherwise the master password must be
supplied.
See the pCOS Path Reference to find out how to query a document’s encryption status, and pCOS opera-
tions which can be applied even without knowing the user or master password.
The shrug option can be used to enable content extraction from protected documents under certain con-
ditions (see Section 5.1, »Extracting Content from protected PDF«, page 59).

repair (Keyword) Specifies how to treat damaged PDF documents. Repairing a document takes more time than
normal parsing, but may allow processing of certain damaged PDFs. Note that some documents may be
damaged beyond repair (default: auto):
force Unconditionally try to repair the document, regardless of whether or not it has problems.
auto Repair the document only if problems are detected while opening the PDF.
none No attempt will be made at repairing the document. If there are problems in the PDF the

function call will fail.

requiredmode (Keyword) The minimum pcosmode (minimum/restricted/full) which is acceptable when opening the
document. The call will fail if the resulting pcosmode (see the pCOS Path Reference) would be lower than
the required mode. If the call succeeds it is guaranteed that the resulting pcosmode is at least the one
specified in this option. However, it may be higher; e.g. requiredmode=minimum for an unencrypted docu-
ment will result in full mode. Default: full

shrug (Boolean) If true, the shrug feature will be activated to enable content extraction from protected docu-
ments under certain conditions (see Chapter 5.1, »Extracting Content from protected PDF«, page 59). By
using the shrug option you assert that you will honor the PDF document author’s rights. Default: false

tetml (Option list) TETML output will be initiated, and can be created page by page with TET_process_page().
The following suboptions are supported:
elements (List of Boolean) Specify whether certain TETML elements will be included in the output

(default: all true):
docinfo The /TET/Document/DocInfo element
docxmp The /TET/Document/Metadata element
options The elements /TET/Document/Options and /TET/Document/Pages/Page/Options

encodingname
(Keyword) The name to use in the XML encoding declaration of the text declaration of the
generated TETML. The output will always be created in UTF-8 (default: UTF-8):
_none No encoding declaration will be created; the output will still be in UTF-8 format.
UTF-8 The declaration encoding="UTF-8" will be created.
Any other encoding name will be used literally in the encoding declaration. The client is
responsible for supplying a suitable encoding name and converting the generated TETML
(which is UTF-8) to the specified encoding after TET finished TETML output.

filename (String) The name of the TETML file. If no filename is supplied, output will be created in
memory, and can be retrieved with TET_get_xml_data(). If the function call fails (i.e. the PDF
input document could not successfully be opened), no TETML output will be created.

Table 10.8 Document options for TET_open_document() and TET_open_document_callback()

option description

10.3 Document Functions 165

unknown-
char

(Unichar) Character to be used as a replacement for characters which cannot be mapped to Unicode be-
cause of inconsistent or missing information in the PDF document. U+0000 means that unknown char-
acters will be removed. Default: U+FFFD (Replacement Character)
Related options: use fold={{[:Private_Use:] unknownchar}} to also replace unknown (PUA) charac-
ters with the specified unknownchar, or fold={{[:Private_Use:] remove}} to remove them.

usehostfonts (Boolean) If true, data for fonts which are not embedded, but are required for determining Unicode
mappings will be searched on the OS X or Windows host operating system. Default: true

wordseparator (Unichar; Only for granularity=line and page) Character to be inserted between words2. Default:
U+0020

1. See footnote 1 in Table 10.9
2. Use U+0000 to disable the separator.

Table 10.8 Document options for TET_open_document() and TET_open_document_callback()

option description

166 Chapter 10: TET Library API Reference

Table 10.9 Suboptions for the glyphmapping option of TET_open_document() and TET_open_document_callback()

option description

codelist (String) Name of a codelist resource to be applied to the font. It will have higher priority than an embed-
ded ToUnicode CMap or encoding entry.

fontname (Name string) Partial or full name of the font(s) which will be selected for the rule. If a subset prefix has
been supplied only the specified subset is selected. If no subset prefix has been supplied, all fonts where
the name (without any subset prefix) matches are selected. The wildcard character »*« can be used to
specify multiple similar font names. Default: *

fonttype (List of keywords) The glyphmapping will only be applied to the specified font types: * (designates all font
types), Type1, MMType1, TrueType, CIDFontType2, CIDFontType0, Type3. Default: *

force-
encoding

(List with one or two strings1, If there are two names, the first must be winansi, macroman, or Custom)
Fonts with an 8-bit encoding: Replace the first encoding with the encoding resource specified by the sec-
ond name. If only one entry is supplied, the specified encoding will be used to replace all instances of
MacRoman, WinAnsi, and MacExpert encoding. If this option matches a font no other glyph mappings will
be applied to the same font.
CID fonts: Only the single value unicode is supported. It interprets CID values as Unicode values.

forcettsymbol-
encoding

(Keyword or string1) The name of an encoding which will be used to determine Unicode mappings for em-
bedded pseudo TrueType symbol fonts which are actually text fonts, or one of the following keywords
(default: none):
auto If the font’s builtin encoding (see below) contains at least one Unicode character in the

symbolic range U+F000-U+F0FF, the encoding specified in the encodinghint option will be
used to map the pseudo symbol characters to real text characters. Otherwise encodinghint
will not be used, and the characters will be mapped according to the builtin keyword.

builtin Use the font’s builtin encoding, which results from the Unicode mappings of the glyph names
in the font’s post table.

none No encoding is enforced.
The well-known TrueType fonts Wingdings* and Webdings* are always treated as symbol fonts.

globalglyphlist (Boolean) If true, the specified glyph list will be kept in memory until the end of the TET object, i.e. it can
be applied to more than one document. Default: false

glyphlist (String) Name of a glyphlist resource to be applied

glyphrule (Option list) Mapping rule for numerical glyph names (in addition to the predefined rules). The option list
must contain the following suboptions:
prefix (String; may be empty) Prefix of the glyph names to which the rule will be applied. The wild-

card character »?« can be used. It matches exactly one character provided this character is dif-
ferent from 0-9.

base (Keyword) Specifies the interpretation of glyph names:
ascii Single-byte glyphnames will be interpreted as the corresponding literal ASCII

character (e.g. 1 will be mapped to U+0031).
auto Automatically determine whether glyph names represent decimal or hexadecimal

values. If the result is not unique, decimal will be assumed.
dec The glyphnames will be interpreted as a decimal representation of a code.
hex The glyphnames will be interpreted as a hexadecimal representation of a code.

encoding (String) Name of an encoding resource which will be used for this rule, or the keyword none to
disable the rule.

ignoreto-
unicodecmap

(Boolean) If true, a ToUnicode CMap for the font will be ignored. Default: false

override (Boolean; only reasonable together with the glyphlist or glyphrule option) If true, the glyphmapping
rule is applied before the standard (builtin) glyph name mappings (i.e. the new mappings have priority
over the builtin ones), otherwise the rule is applied after the builtin mappings. Default: true

10.3 Document Functions 167

C++ int open_document_callback(void *opaque, size_t filesize,
size_t (*readproc)(void *opaque, void *buffer, size_t size),
int (*seekproc)(void *opaque, long offset),
wstring optlist)

C int TET_open_document_callback(TET *tet, void *opaque, size_t filesize,
size_t (*readproc)(void *opaque, void *buffer, size_t size),
int (*seekproc)(void *opaque, long offset),
const char *optlist)

Open a PDF document from a custom data source for content extraction.

opaque A pointer to some user data that might be associated with the input PDF docu-
ment. This pointer will be passed as the first parameter of the callback functions, and
can be used in any way. TET will not use the opaque pointer in any other way.

filesize The size of the complete PDF document in bytes.

readproc A C callback function which copies size bytes to the memory pointed to by
buffer. If the end of the document is reached it may copy less data than requested. The
function must return the number of bytes copied.

seekproc A C callback function which sets the current read position in the document.
offset denotes the position from the beginning of the document (0 meaning the first
byte). If successful, this function must return 0, otherwise -1.

optlist An option list specifying document options according to Table 10.8.

Returns See TET_open_document().

Details See TET_open_document().

Bindings This function is only available in the C and C++ language bindings.

C++ void close_document(int doc)
C# Java void close_document(int doc)
Perl PHP close_document(long doc)

VB RB Sub close_document(doc As Long)
C void TET_close_document(TET *tet, int doc)

Release a document handle and all internal resources related to that document.

doc A valid document handle obtained with TET_open_document*().

remove (Boolean) If true, all text which uses the specified font name(s) and/or font type(s) will be removed from
the retrieved text.

tounicode-
cmap

(String) Name of a ToUnicode CMap resource to be applied to the font; it will have higher priority than an
embedded ToUnicode CMap or encoding entry.

1. Encoding name according to Section 10.1.4, »Encoding Names«, page 146

Table 10.9 Suboptions for the glyphmapping option of TET_open_document() and TET_open_document_callback()

option description

168 Chapter 10: TET Library API Reference

Details Closing a document automatically closes all of its open pages. All open documents and
pages will be closed automatically when TET_delete() is called. It is good programming
practice, however, to close documents explicitly when they are no longer needed.
Closed document handles must no longer be used in any function call.

10.4 Page Functions 169

10.4 Page Functions

C++ int open_page(int doc, int pagenumber, wstring optlist)
C# Java int open_page(int doc, int pagenumber, String optlist)
Perl PHP long open_page(long pagenumber, string optlist)

VB RB Function open_page(doc As Long, pagenumber As Long, optlist As String) As Long
C int TET_open_page(TET *tet, int doc, int pagenumber, const char *optlist)

Open a page for content extraction.

doc A valid document handle obtained with TET_open_document*().

pagenumber The physical number of the page to be opened. The first page has page
number 1. The total number of pages can be retrieved with TET_pcos_get_number() and
the pCOS path length:pages.

optlist An option list specifying page options according to Table 10.10. The following
options can be used: clippingarea, contentanalysis, docstyle, excludebox, fontsizerange,
granularity, ignoreinvisibletext, imageanalysis, includebox, layoutanalysis, layouteffort,
skipengines, structureanalysis, topdown.

Returns A handle for the page, or -1 in case of an error. If -1 is returned it is recommended to call
TET_get_errmsg() to find out more details about the error.

Details Within a single document an arbitrary number of pages may be kept open at the same
time. The same page may be opened multiply with different options. However, options
can not be changed while processing a page.

Layer definitions (optional content groups): the contents of all visible layers on the
page will be extracted.

Table 10.10 Page options for TET_open_page() and TET_process_page()

option description

clippingarea (Keyword; will be ignored if includebox is specified) Specifies the area from which text will be extracted
(default: cropbox):
mediabox Use the MediaBox (which is always present)
cropbox Use the CropBox (the area visible in Acrobat) if present, else MediaBox
bleedbox Use the BleedBox if present, else use cropbox
trimbox Use the TrimBox if present, else use cropbox
artbox Use the ArtBox if present, else use cropbox
unlimited Consider all text, regardless of its location

content-
analysis

(Option list; not for granularity=glyph) List of suboptions according to Table 10.11 for controlling high-
level content analysis and text processing.

170 Chapter 10: TET Library API Reference

docstyle (Keyword) A hint which will be used by the layout detection engine to select various parameters. These
parameters optimize layout detection for situations where the document belongs to one of the classes
below. If the document is known to fall into one of these classes layout detection results can be improved
significantly by supplying a suitable value for this option. This option activates advanced layout recogni-
tion (default: none):
book Typical book
business Business documents
cad Technical or architectural drawings which are typically heavily fragmented
fancy Fancy pages with complex layout
forms Structured forms
generic The most general document class without any further qualification.
magazines Magazine articles
none No specific document style is known and advanced layout recognition will be disabled.
native Disable layout recognition and return the contents in native page content ordering. This may

be useful for layouts such as forms where text is placed all over the page and column
detection is not desired, but rather row-by-row text retrieval.

papers Newspaper
science Scientific article
searchengine

The application is a search engine indexer or similar application, and mainly interested in
retrieving the word list for the page as fast as possible. Table and page structure recognition
are disabled.

spacegrid List-oriented report (often generated on mainframe systems) where the visual layout is
generated using space characters. Since many heuristics like shadow detection and
sophisticated word boundary detection are not required for this class of documents text
extraction can be accelerated with this option.

excludebox (List of rectangles) Exclude the combined area of the specified rectangles from text extraction. Default:
empty

fontsize-
range

(List of two floats) Two numbers specifying the minimum and maximum font size of text. Text with a size
outside of this interval will be ignored. The maximum can be specified with the keyword unlimited,
which means that no upper limit will be active. Default: { 0 unlimited }

granularity (Keyword) The granularity of the text fragments returned by TET_get_text(); all modes except glyph will
enable the Wordfinder. See »Text granularity«, page 84, for more details (default: word).
glyph A fragment contains the result of mapping one glyph, but may contain more than one

character (e.g. for ligatures).
word A fragment contains a word as determined by the Wordfinder.
line A fragment contains a line of text, or the closest approximation thereof. Word separators will

be inserted between two consecutive words.
page A fragment contains the contents of a single page. Word, line, and zone separators will be

inserted as appropriate.

ignore-
invisibletext

(Boolean) If true, text with rendering mode 3 (invisible) will be ignored. Default: false (since invisible
text is mainly used for image+text PDFs containing scanned pages and the corresponding OCR text)

image-
analysis

(Option list) List of suboptions according to Table 10.13 for controlling high-level image processing.

includebox (List of rectangles) Restrict text extraction to the combined area of the specified rectangles. Default: the
complete clipping area

Table 10.10 Page options for TET_open_page() and TET_process_page()

option description

10.4 Page Functions 171

layout-
analysis

(Option list; not for granularity=glyph) List of suboptions according to Table 10.12 for controlling layout
detection features.

layouteffort (Keyword) Controls the quality/performance trade-off of layout recognition. Layout recognition can be
improved by spending more effort, but this may slow down operation. The layout recognition effort can
be controlled with the keywords none, low, medium, high, and extra. Default: low

layouthint (Option list) Inform the layout recognition engine about the presence of certain page layout elements:
subsummary

(Keyword) Informs the engine about the presence of subsummaries (marginalia) and possibly
also their position. Supported keywords (default: none):
auto No subsummary detection
left Try to detect subsummaries on the left side of the page.
none Try to detect subsummaries automatically.
right Try to detect subsummaries on the right side of the page.

header (Boolean) If true, the engine tries to detect page headers (default: false).
footer (Boolean) If true, the engine tries to detect page footers (default: false).

skipengines (List of keywords) Skip some of the available parsers for the page contents. A skipped engine never returns
any data for this page. Skipping an engine which is not required improves performance for applications
which don’t need the data delivered by this engine (default: all engines are active):
text (Keyword) Skip the text extraction engine.
image (Keyword) Skip the image extraction engine.

structure-
analysis

(Option list; not for granularity=glyph) List of suboptions according to Table 10.14 for controlling page
structure analysis.

topdown (Option list) Specify a coordinate system with the origin in the top left corner of the visible page, and y
coordinates which increase downwards; otherwise the default coordinate system with the origin in the
lower left corner will be used. Enabling topdown coordinates enables the same coordinate system which
is displayed in Acrobat. Supported suboptions:
input (Boolean) If true, enable coordinates for the following items (default: false):

page options includebox, excludebox
output (Boolean) If true, enable coordinates for the following items (default: false):

TET_char_info: y, alpha, beta
TET_image_info: y, alpha, beta
TETML: Glyph/@y, Glyph/@alpha, Glyph/@beta, Box/@lly, Box/@ury, PlacedImage/@y,
PlacedImage/@alpha, PlacedImage/@beta

Table 10.10 Page options for TET_open_page() and TET_process_page()

option description

172 Chapter 10: TET Library API Reference

Table 10.11 Suboptions for the contentanalysis option of TET_open_page() and TET_process_page()

option description

bidi (Keyword; will be ignored for granularity=glyph; has an effect only if right-to-left characters are pres-
ent on the page) Control the inverse Bidi algorithm which reorders right-to-left and left-to-right text in a
chunk (default: logical):
visual Keep RTL and LTR characters in a chunk in visual order, i.e. do not apply the inverse Bidi

algorithm
logical Apply the inverse Bidi algorithm to bring the characters in a chunk in logical order.

bidilevel (Keyword) Specify the page’s base level (i.e. the main direction of text progression) for the inverse Bidi al-
gorithm (default: auto):
auto Determine the main direction of text progression heuristically based on the content.
ltr Assume left-to-right as main direction of text progression (e.g. Latin documents)
rtl Assume right-to-left as main direction of text progression (e.g. Hebrew or Arabic documents)

dehyphenate (Boolean) If true, hyphenated words will be identified and the text fragments surrounding the hyphen
will be combined. The hyphen itself will be treated according to the keephyphens option. Default: true

dropcapsize (Float) The minimum size at which large glyphs will be recognized as a drop cap. Drop caps are large
characters at the beginning of a zone that are enlarged to »drop« down several lines. They will be
merged with the remainder of the zone and form part of the first word in the zone. Default: 35

dropcapratio (Float) The minimum ratio of the font size of drop caps and neighboring text. Large characters will be rec-
ognized as drop caps if their size exceeds dropcapsize and the font size quotient exceeds dropcapratio.
In other words, this is the number of text lines spanned by drop caps. Default: 4 (drop caps spanning
three lines are very common, but additional line spacing must be taken into account)

ideographic (Keyword) Control word boundary detection for ideographic characters. It is recommended to set this op-
tion to keep although the default is split for compatibility reasons (default: split):
keep Ideographic characters generally don’t constitute a word boundary. Punctuation and the

transition between ideographic and non-ideographic characters still constitute a word
boundary. For granularity=word ideographic comma U+3001 and ideographic full stop
U+3002 also constitute word boundaries. For granularity=page no line separator will be
inserted at the end of a line.

split Ideographic characters always constitute a word boundary.

includebox-
order

(Integer) When multiple include boxes have been supplied (see option includebox), this option controls
how the order of boxes affects the Wordfinder (default: 0):
0 Ignore include box ordering when analyzing the page contents. The result will be the same as

if all the text outside the include boxes was deleted. This is useful for eliminating unwanted
text (e.g. headers and footers) while not affecting the Wordfinder in any way.

1 Take include box ordering into account when creating words and zones, but not for zone
ordering. A word will never belong to more than one box. The resulting zones will be sorted in
logical order. In case of overlapping boxes the text will belong to the box which is earlier in
the list. Other than that, the ordering of include boxes in the option list doesn’t matter. This
setting is useful for extracting text from forms, extracting text from tables, or when include
boxes overlap for complicated layouts.

2 Consider include box ordering for all operations. The contents of each include box will be
treated independently from other boxes, and the resulting text will be concatenated
according to the order of the include boxes. This is useful for extracting text from forms in a
particular ordering, or extracting article columns in a magazine layout in a predefined order.
In these cases advance knowledge about the page layout is required in order to specify the
include boxes in appropriate order.

10.4 Page Functions 173

keephyphen-
glyphs

(Boolean) If true and dehyphenate=true the hyphen glyph between parts of dehyphenated words will
be kept in the list of glyphs returned by TET_get_char_info() and the Glyph element in TETML. This is use-
ful for applications which need detailed information about the position of hyphens, e.g. exactly replac-
ing text on the page. Note that this is different from fold={{_dehyphenation remove} which only re-
moves hyphens from the logical text returned by TET_get_text(), but does not affect glyphs. Default:
false

linespacing (Keyword) Specify the typical vertical distance between text lines within a paragraph: small, medium, or
large (default: medium)

maxwords (Integer or keyword) If the number of words on the page is not greater than the specified number (the
keyword unlimited means that no limit will be active) the detected zones on the page will be merged
appropriately and sorted. If the number of words on the page is greater than the specified number, no
zones will be built, and words will be retrieved in page content reading order. Processing will be faster in
the latter case, but the ordering of the retrieved words may not be optimal. Setting this option to
unlimited is recommended for large pages with many words, such as newspapers. Default: 5000

merge (Integer) Controls strip and zone merging (default: 2):
0 No merging after strip creation. This can significantly increase processing speed, but may

create less than optimal output, and prevent some shadows from being detected properly.
1 Simple strip-into-zone merging: strips will be merged into a zone if they overlap this

particular zone, but don’t overlap strips other than the next one (to avoid zone overlapping
for non-shadow cases).

2 Advanced zone merging for out-of-sequence text: in addition to merge=1, multiple
overlapping zones will be combined into a single zone, provided the text contents of both
zones do not overlap.

numeric-
entities

(Keyword) Control word boundary detection for numeric entities such as numbers, fractions, and time
(default: keep):
split Split the entity according to the punctuationbreaks suboption.
keep Keep the entity as a whole word.

shadow-
detect

(Boolean) If true, redundant instances of overlapping text fragments which create a shadow or fake bold
text will be detected and removed. Default: true

punctuation-
breaks

(Boolean; only for granularity=word) If true, punctuation characters which are placed close to a letter
will be treated as word boundaries, otherwise they will be included in the adjacent word. For example,
this option affects treatment of URLs and mail addresses Default: true

superscript (Integer) Controls subscript and superscript detection (default: 2):
0 No subscript and superscript detection
1 Simple subscript and superscript detection
2 Advanced algorithm for subscript and superscript detection

Table 10.11 Suboptions for the contentanalysis option of TET_open_page() and TET_process_page()

option description

174 Chapter 10: TET Library API Reference

Table 10.12 Suboptions for the layoutanalysis option of TET_open_page() and TET_process_page()

option description

layout-
astable

(Boolean) If true, the layout recognition engine will treat the zones on the page as one or more tables.
The minimum number of columns which is required to consider the sequence as a table depends on the
document style. If false, supertable recognition will be disabled (default: true).

layout-
columnhint

(Keyword) This option may improve zone reading order detection for complex layouts. Supported key-
words (default: multicolumn):
multicolumn

The page contains multi-column text; zones will be sorted column by column.
none No hint available; zone ordering will be determined by page content order.
singlecolumn

The page contains single-column text; zones will be sorted row by row. This keyword should
be used with layouteffort=low.

layoutdetect (Integer) Specifies the depth of recursive layout recognition (default: 1):
0 No layout recognition.
1 Layout recognition for the whole page. This is sufficient for the vast majority of documents.
2 Layout recognition for the results of level 1. This is required for layouts with different multi-

column sublayouts and titles on different parts of the page as well as multi-paragraph tables.
3 Layout recognition for the results of level 2. This is required only for very complex layouts.

layoutrow-
hint

(Option list) Control layout row processing. Supported options (default: none):
full Enable layout row processing.
none Disable layout row processing.
separation (Keyword) Enable layout row processing, but disable it if layout recognition suspects a

supertable. The following suboptions can be supplied:
preservecolumns

Try to keep vertical columns based on the geometric relationship between zones.
This is recommended if zones within columns are separated by large gaps (e.g.
caused by images).

thick Try to combine neighboring zones and place them in the same layout row. This re-
sults in a smaller number of larger layout rows. This is recommended for complex
layouts, such as magazines and papers where paragraphs within columns are sep-
arated from each other by more than the font size, and for layouts with several
multi-column articles one under the other.

thin Try to separate neighboring zones and place them in different layout rows. This re-
sults in a larger number of smaller layout rows.

Example: layoutanalysis = {layoutrowhint={full separation=thick}}

mergetables (Integer) Tables with a single row will be skipped during table recognition, and treated as regular zones. If
two sequential zones are tables (even with only a single row) they can be combined. (default: none):
down Combine downstairs only.
none Don’t merge.
up Combine upstairs only.
updown Combine in both directions.

splithint (Keyword or option list) Activate special treatment of double-page spreads (or even pages consisting of
more spreads). The page may be divided vertically or horizontally in two or more sections. The keyword
includebox means that the split areas will be defined by the includebox option. Alternatively the fol-
lowing options can be supplied:
x (Float) Divider for the x axis, e.g. 0.5 for a double-page spread, 0.33 for a three-page spread.
y (Float) Divider for y axis.

standalone-
fontsize

(Float) Minimum font size for huge glyphs. Huge glyphs form single-glyph strips, and will not be com-
bined with other zones (default: 70).

10.4 Page Functions 175

supertable-
columns

(Integer; only if layoutastable=true) Minimum number of columns in a layout row to consider the se-
quence of zones as a supertable. When a table is created from paragraphs, these columns are recognized
as separate zones instead of being combined. As a consequence of this, layout recognition can identify
these zone sequences as a table (default: 4).

tabledetect (Integer) Specifies the depth of recursive table recognition (default: 1):
0 No table recognition.
1 Table recognition for each zone.
2 Table recognition for each table cell detected in level 1. This is required for nested tables and

resolving row spans.

Table 10.13 Suboptions for the imageanalysis option of TET_open_page() and TET_process_page()

option description

smallimages (Option list) Control small image removal. Small images must often be ignored since they are artifacts
and not real images. Supported options:
disable (Boolean) If true, small image removal is disabled. Default: false
maxarea (Float) Maximum area (=width x height) in pixels of an image to be considered as a small

image. Default: 500
maxcount (Integer) Maximum allowed number of small images. If more small images are found all of

them are removed. Default: 50

merge (Option list) Control image merging. This process combines adjacent images which together may form a
single larger image. This is useful for multi-strip images where the individual strips have been preserved
in the PDF, and for background images which are broken into a large number of very small images.
Supported options:
disable (Boolean) If true, image merging will be disabled. Default: false
gap (Float) Maximum gap in points between two images to be considered for merging. Default:

1.0 (not 0.0 because of unavoidable inaccuracies in the position calculations)

Table 10.14 Suboptions for the structureanalysis option of TET_open_page() and TET_process_page()

option description

bullets (List of option lists; only if list=true) Specifies combinations of Unicode characters and font names
which are used as bullet characters in lists. Supported suboptions:
bulletchars

(List of Unicode values) One or more Unicode values for the bullet characters. If this suboption
is not supplied, all characters using the specified fontname will be treated as bullet characters.

fontname (String) Name of the font from which bullet characters are drawn. If this suboption is not
supplied, the characters specified in the bulletchars suboption will always be treated as
bullet characters.

Examples:
bullets={{fontname=ZapfDingbats}}
bullets={{bulletchars={U+2022}}}
bullets={{fontname=KozGoPro-Medium bulletchars={U+2460 U+2461 U+2462 U+2463 U+2464}}}

list (Boolean) Enable list recognition (default: false). If false, no information about list structure will be de-
termined.

Table 10.12 Suboptions for the layoutanalysis option of TET_open_page() and TET_process_page()

option description

176 Chapter 10: TET Library API Reference

C++ void close_page(int page)
C# Java void close_page(int page)
Perl PHP close_page(long page)

VB RB Sub close_page(page As Long)
C void TET_close_page(TET *tet, int page)

Release a page handle and all related resources.

page A valid page handle obtained with TET_open_page().

Details All open pages of the document will be closed automatically when TET_close_document()
is called. It is good programming practice, however, to close pages explicitly when they
are no longer needed. Closed page handles must no longer be used in any function call.

10.5 Text and Metrics Retrieval Functions 177

10.5 Text and Metrics Retrieval Functions

C++ wstring get_text(int page)
C# Java String get_text(int page)
Perl PHP string get_text(long page)

VB RB Function get_text(page As Long) As String
C const char *TET_get_text(TET *tet, int page, int *len)

Get the next text fragment from a page’s content.

page A valid page handle obtained with TET_open_page().

len (C language binding only) A pointer to a variable which will hold the length of the
returned string depending on the outputformat option of TET_set_option():

If outputformat=utf8 the length is reported as number of Unicode characters. The
number of bytes in the null-terminated string (which is identical to the number of 8-bit
code units) can be determined with the strlen() function.

If outputformat=utf16 the length is reported as number of 16-bit code units; surrogate
pairs are counted as two code units. The number of bytes in the string is 2*len.

If outputformat=utf32 the length is reported as number of 32-bit code units (which is
identical to the number of Unicode characters). The number of bytes in the string is
4*len.

Returns A string containing the next text fragment on the page. The length of the fragment is
determined by the granularity option of TET_open_page(). Even for granularity=glyph the
string may contain more than one character (see Section 7.1, »Important Unicode Con-
cepts«, page 91).

If all text on the page has been retrieved an empty string or null object will be re-
turned (see below). In this case TET_get_errnum() should be called to find out whether
there is no more text because of an error on the page, or because the end of the page has
been reached.

Bindings C language binding: the result is provided as null-terminated UTF-8 (default) or UTF-16/
UTF-32 string according to the outputformat option of TET_set_option(). On i5/iSeries and
zSeries EBCDIC-encoded UTF-8 can also be selected, and is enabled by default. The re-
turned data buffer can be used until the next call to this function. If no more text is
available a NULL pointer and *len=0 will be returned.

C++ and COM: the result is provided as Unicode string in UTF-16 format (wstring in C++).
If no more text is available an empty string will be returned.

Java, .NET and Objective-C: the result is provided as Unicode string. If no more text is
available a null (nil in Objective-C) object will be returned.

Perl, PHP, Python and Ruby language bindings: the result is provided as UTF-8 (default)
or UTF-16/UTF-32 string according to the outputformat option of TET_set_option(). In Py-
thon 3 UTF-16/UTF-32 results are returned as bytes. If no more text is available a null ob-
ject will be returned.

REALbasic: the result is provided as Unicode string. If no more text is available an empty
string will be returned.

178 Chapter 10: TET Library API Reference

RPG language binding: the result is provided as Unicode string. If no more text is avail-
able NULL will be returned.

C++ const TET_char_info *get_char_info(int page)
C# Java int get_char_info(int page)
Perl PHP object get_char_info(long page)

VB RB Function get_char_info(int page) As Long
C const TET_char_info *TET_get_char_info(TET *tet, int page)

Get detailed information for the next glyph in the most recent text chunk.

page A valid page handle obtained with TET_open_page().

Note The name of this function is a misnomer. It should better be called TET_get_glyph_info() since
it reports information about visual glyphs on the page, not the corresponding Unicode
characters.

Returns If no more glyphs are available for the most recent text fragment returned by TET_get_
text(), a binding-specific value will be returned. See section Bindings below for more de-
tails.

Details This function can be called one or more times after TET_get_text(). It will advance to the
next glyph for the current text chunk associated with the supplied page handle (or re-
turn nothing if there are no more glyphs), and provide detailed information for this
glyph. There will be N > 0 successful calls to this function (corresponding to N glyphs)
for a text chunk with M logical characters. The relationship between N and M depends
on the granularity:

> For granularity=glyph each text chunk corresponds to a single glyph, i.e. N = 1. One
glyph corresponds to one character in many cases, i.e. M = 1. However, for ligature
glyphs multiple characters correspond to a single glyph, i.e. M > 1 and TET_get_char_
info() must be called more than once.

> For granularities other than glyph a sequence of glyphs results in a sequence of char-
acters, where each glyph may contribute to 0, 1, or more characters. The sequence of
glyphs serves as raw material for the sequence of Unicode characters. In other words,
there is no known relationship between N and M. The relationship between N and M
may be influenced by content analysis (e.g. hyphens are removed by the dehyphen-
ation process) or Unicode postprocessing (e.g. characters are added or deleted be-
cause of a folding).

For granularities other than glyph this function advances to the next glyph which con-
tributes to the chunk returned by the most recent call to TET_get_text(). This way it is
possible to retrieve glyph metrics when the Wordfinder is active and a text chunk may
contain more than one character. In order to retrieve all glyph details for the current
text chunk this function must be called repeatedly until it returns no more info.
The glyph details in the structure or properties/fields are valid until the next call to TET_
get_char_info() or TET_close_page() with the same page handle (whichever occurs first).
Since there is only a single set of glyph info properties/fields per TET object, clients
must retrieve all glyph info before they call TET_get_char_info() again for the same or
another page or document.

10.5 Text and Metrics Retrieval Functions 179

Bindings C and C++ language bindings: If no more glyphs are available for the most recent text
chunk returned by TET_get_text(), a NULL pointer will be returned. Otherwise, a pointer
to a TET_char_info structure containing information about a single glyph will be re-
turned. The members of the data structure are detailed in Table 10.15.

COM, Java, .NET, and Objective-C language bindings: -1 will be returned if no more
glyphs are available for the most recent text chunk returned by TET_get_text(), other-
wise 1. Individual glyph info can be retrieved from the TET properties/public fields ac-
cording to Table 10.15. All properties/fields contain the value -1 (the unknown field con-
tains false) if they are accessed although the function returned -1.

Perl and Python language bindings: 0 will be returned if no more glyphs are available
for the most recent text chunk returned by TET_get_text(), otherwise a hash containing
the keys listed in Table 10.15. Individual glyph info can be retrieved with the keys in this
hash.

PHP language binding: an empty (null) object will be returned if no more glyphs are
available for the most recent text chunk returned by TET_get_text(), otherwise an object
containing the fields listed in Table 10.15. Individual glyph info can be retrieved from
the member fields of this object. Integer fields in the glyph info object are implemented
as long in the PHP language binding.

REALbasic binding: nil will be returned if no more glyphs are available for the most re-
cent text chunk returned by TET_get_text(), otherwise a TET_char_info object containing
the members listed in Table 10.15. Individual glyph info can be retrieved with the keys in
this object. The attributes field is called attrs in the REALbasic binding to work around a
REALbasic interface problem.

Ruby binding: nil (null object) will be returned if no more glyphs are available, and a
TET_char_info object otherwise.

Table 10.15 Members of the TET_char_info structure (C, C++, Ruby), equivalent public fields (Java, PHP, Objective-C), keys
(Perl) or properties (COM and .NET) with their type and meaning. See »Glyph metrics«, page 74, and Figure 6.3 for more
details.

property/
field name explanation

uv (Integer) UTF-32 Unicode value for the current glyph. For granularities other than glyph this may be an
artificial or intermediate value which has no relationship to the final text chunk. For granularity=glyph
the sequence of Unicode values for the glyphs is identical to the logical text, but for other granularities it
may be modified by various processing steps.

type (Integer) Type of the character. The following types describe real characters which correspond to a glyph
on the page. The values of all other properties/fields are determined by the corresponding glyph:
0 Normal character which corresponds to exactly one glyph
1 Start of a sequence (e.g. ligature)
The following types describe artificial characters which do not correspond to a glyph on the page. The x
and y fields will specify the most recent real character’s endpoint, the width field will be 0, and all other
fields except uv will contain the values corresponding to the most recent real character:
10 Continuation of a sequence (e.g. ligature)
11 (Deprecated and unused)
12 Inserted word, line, or zone separator

180 Chapter 10: TET Library API Reference

attributes1 (Integer) Glyph attributes expressed as bits which can be combined:
bit 0 Geometric or semantic subscript
bit 1 Geometric or semantic superscript
bit 2 Drop cap character (initial large character at the start of a paragraph)
bit 3 Glyph- or word-based shadow duplicate of this glyph has been removed
bit 4 Glyph represents last character before hyphenation point
bit 5 Hyphenation artifact (i.e. the hyphen character) which was removed unless

contentanalysis={keephyphenglyphs=true} was specified.
bit 6 Glyph represents the character after hyphenation point

unknown (Boolean, in C, C++ and Perl: integer) Usually false (0), but will be true (1) if the original glyph could not
be mapped to Unicode and has been replaced with the character specified as unknownchar.

x, y (Double) Position of the glyph’s reference point. The reference point is the lower left corner of the glyph
box for horizontal writing mode, and the top center point for vertical writing mode. For artificial charac-
ters the x, y coordinates will be those of the end point of the most recent real character.

width (Double) Width of the corresponding glyph (for both horizontal and vertical writing mode). For artificial
characters (i.e. inserted separators with type=12 and hyphenation artifacts with attribute bit 5 set) the
width is 0.

alpha (Double) Direction of inline text progression in degrees measured counter-clockwise (or clockwise for top-
down coordinates). For horizontal writing mode this is the direction of the text baseline; for vertical writ-
ing mode it is the digression from the standard vertical direction. The angle will be in the range
-180° < alpha ³ +180°. For standard horizontal text as well as for standard text in vertical writing mode
the angle will be 0°.

beta (Double) Text slanting angle in degrees measured counter-clockwise (or clockwise for topdown coordi-
nates), relative to the perpendicular of alpha. The angle will be 0° for upright text, and negative for itali-
cized (slanted) text (positive for topdown coordinates). The angle will be in the range -180° < beta ³ 180°,
but different from ±90°. If abs(beta) > 90° the text is mirrored at the baseline.

fontid (Integer) Index of the font in the fonts[] pseudo object (see the pCOS Path Reference). fontid is never
negative.

fontsize (Double) Size of the font (always positive); the relation of this value to the actual height of glyphs is not
fixed, but may vary with the font design. For most fonts the font size is chosen such that it encompasses
all ascenders (including accented characters) and descenders.

textrendering (Integer) Text rendering mode:
0 fill text
1 stroke text (outline)
2 fill and stroke text
3 invisible text (often used for OCR results)
4 fill text and add it to the clipping path
5 stroke text and add it to the clipping path
6 fill and stroke text and add it to the clipping path
7 add text to the clipping path

1. In the REALbasic binding this field is called attrs.

Table 10.15 Members of the TET_char_info structure (C, C++, Ruby), equivalent public fields (Java, PHP, Objective-C), keys
(Perl) or properties (COM and .NET) with their type and meaning. See »Glyph metrics«, page 74, and Figure 6.3 for more
details.

property/
field name explanation

10.6 Image Retrieval Functions 181

10.6 Image Retrieval Functions

C++ const TET_image_info *get_image_info(int page)
C# Java int get_image_info(int page)
Perl PHP object image_info get_image_info(long page)

VB RB Function get_image_info(int page) As Long
C const TET_image_info *TET_get_image_info(TET *tet, int page)

Retrieve information about the next image on the page (but not the actual pixel data).

page A valid page handle obtained with TET_open_page().

Returns If no more images are available on the page, a binding-specific value will be returned,
otherwise image details are available in a binding-specific manner. See section Bindings
below for more details.

Details This function advances to the next image associated with the supplied page handle (or
return 0 or NULL if there are no more images) and provides detailed information for
this image. This function also returns artificial images created by the image merging
mechanism. However, the consumed images used to create artificial images will not be
returned.

The image details in the structure or properties/fields are valid until the next call to
TET_get_image_info() or TET_close_page() with the same page handle (whichever occurs
first). Since there is only a single set of image info properties/fields per TET object, cli-
ents must retrieve all image info before they call TET_get_image_info() again for the
same or another page or document.

Bindings C and C++ language bindings: If no more images are available on the page a NULL point-
er will be returned. Otherwise, a pointer to a TET_image_info structure containing infor-
mation about the image. The members of the data structure are detailed in Table 10.16.

COM, Java, .NET, and Objective-C language bindings: -1 will be returned if no more imag-
es are available on the page, otherwise 1. Individual image info can be retrieved from the
TET properties/fields according to Table 10.16. All properties/fields contain the value -1
if they are accessed although the function returned -1.

Perl and Python language bindings: 0 will be returned if no more images are available
on the page, otherwise a hash containing the keys listed in Table 10.16. Individual image
info can be retrieved with the keys in this hash.

PHP language binding: an empty (null) object will be returned if no more images are
available on the page, otherwise an object of type TET_image_info. Individual image info
can be retrieved from its fields according to Table 10.16. Integer fields in the image info
object are implemented as long in the PHP language binding.

REALbasic binding: nil will be returned if no more images are available on the page, oth-
erwise a TET_image_info object containing the members listed in Table 10.16. Individual
image info can be retrieved with the member of this object.

Ruby binding: nil (null object) will be returned if no more images are available, and a
TET_image_info object otherwise.

182 Chapter 10: TET Library API Reference

Table 10.16 Members of the TET_image_info structure (C, C++, Ruby), equivalent public fields (Java, PHP, Objective-C), and
properties (COM and .NET) with their type and meaning. See »Image Extraction Basics«, page 113, for more details.

property/
field name explanation

x, y (Double) Position of the image’s reference point. The reference point is the lower left corner of the image.

width,
height

(Double) Width and height of the image on the page in points, measured along the image’s edges

alpha (Double) Direction of the pixel rows. The angle will be in the range -180° < alpha ³ +180°. For upright im-
ages alpha will be 0°.

beta (Double) Direction of the pixel columns, relative to the perpendicular of alpha. The angle will be in the
range -180° < beta ³ +180°, but different from ±90°. For upright images beta will be in the range -90° <
beta < +90°. If abs(beta) > 90° the image will be mirrored at the baseline.

imageid (Integer) Index of the image in the pCOS pseudo object images[]. Detailed image properties can be re-
trieved via the entries in this pseudo object (see the pCOS Path Reference).

10.6 Image Retrieval Functions 183

C++ int write_image_file(int doc, int imageid, wstring optlist)
C# Java int write_image_file(int doc, int imageid, String optlist)
Perl PHP long write_image_file(long doc, long imageid, string optlist)

VB RB Function write_image_file(doc As Long, imageid As Long, optlist As String) As Long
C int TET_write_image_file(TET *tet, int doc, int imageid, const char *optlist)

Write image data to disk.

doc A valid document handle obtained with TET_open_document*().

imageid The pCOS ID of the image. This ID can be retrieved from the imageid field after
a successful call to TET_get_image_info(), or by looping over all entries in the images
pseudo object (there are length:images entries in this array).

optlist An option list specifying page options according to Table 10.17. The following
options can be used: compression, dpi, filename, keepiccprofile, keepxmp, typeonly.

Returns -1 on error, or a value greater than 0 otherwise. If -1 is returned it is recommended to call
TET_get_errmsg() to find out more details about the error. No image output will be creat-
ed in case of an error. The rare case of images in an unsupported format will also be re-
ported as an error. If the return value is different from -1 it indicates that the image can
be extracted in the file format indicated by the return value:

> -1: an error occurred; no image will be extracted
> 10: image extracted as TIFF (.tif)
> 20: image extracted as JPEG (.jpg)
> 30: image extracted as JPEG 2000 (.jpx)
> 40: image extracted as raw pixel data (.raw)
> 50: image extracted as JBIG2 (.jbig2)

Details This function will convert the pixel data for the image with the specified pCOS ID to one
of several image formats, and write the result to a disk file. If the typeonly option has
been supplied, only the image type will be returned, but no image file will be generated.

Bindings C/C++: macros for the return values are available in tetlib.h.

Table 10.17 Options for TET_write_image_file() and TET_get_image_data()

option description

compression (Keyword) The algorithm for compressing the pixel data (default: auto):
auto select a suitable compression algorithm automatically
none (Only relevant for TIFF images) Write the pixel data without any compression if possible.

dpi (List of one or two non-negative float values) One or two values specifying the image resolution in pixels
per inch in horizontal and vertical direction. If a single value is supplied it is used for both dimensions. The
supplied values are recorded in generated TIFF images. They don’t change the number of pixels in the im-
age (i.e.no downsampling). See »Image resolution«, page 119, for details about determining image reso-
lution. If one or two values are zero no resolution entry will be written.

filename1 (String; required unless typeonly is also supplied) The name of the image file on disk. A suffix will be add-
ed to the filename to indicate the image file format.
The following file name pattern is recommended to match the Image/@id attribute in TETML:
I<imageid>

Here imageid is the decimal representation of the imageid parameter.

184 Chapter 10: TET Library API Reference

C++ const char *get_image_data(int doc, size_t *length, int imageid, wstring optlist)
C# Java final byte[] get_image_data(int doc, int imageid, String optlist)
Perl PHP string get_image_data(long doc, long imageid, string optlist)

VB RB Function get_image_data(doc As Long, imageid As Long, optlist As String)
C const char * TET_get_image_data(TET *tet, int doc, size_t *length, int imageid, const char *optlist)

Retrieve image data from memory.

doc A valid document handle obtained with TET_open_document*().

length (C and C++ language bindings only) C-style pointer to a memory location where
the length of the returned data in bytes will be stored.

imageid The pCOS ID of the image. This ID can be retrieved from the imageid field after
a successful call to TET_get_image_info(), or by looping over all entries in the images
pCOS array (there are length:images entries in this array).

optlist An option list specifying image-related options according to Table 10.17. The
following options can be used: compression, keepxmp

Returns The data representing the image according to the specified options. In case of an error
(including images which cannot be extracted) a NULL pointer will be returned in C and
C++, and empty data in other language bindings. If an error happens it is recommended
to call TET_get_errmsg() to find out more details about the error.

Details This function will convert the pixel data for the image with the specified pCOS ID to one
of several image formats, and make the data available in memory.

Bindings COM: Most client programs will use the Variant type to hold the image data.

C and C++ language bindings: The returned data buffer can be used until the next call to
this function.

REALbasic: the result will be provided as REALbasic string with encoding -1 (binary data).
If no more text is available an empty string will be returned.

keepiccprofile (Boolean) If true and an ICC profile is assigned to the image, the ICC profile is embedded in extracted TIFF
and JPEG images. Setting this option to false may result in smaller image files, but sacrifices color man-
agement.Default: true

keepxmp (Boolean) If true and the image has associated XMP metadata in the PDF, the metadata will be embed-
ded in extracted TIFF and JPEG images. Default: true

preferredtiff-
compression

(Keyword) Compression scheme used for most extracted TIFF images (default: flate):
lzw LZW compression (TIFF compression scheme 5)
flate Flate compression, also called Adobe Deflate or zlib compression (TIFF compression scheme 8)

typeonly1 (Boolean) The image type will be determined according to the supplied options, but no image file will be
written. This is useful for determining the type of image returned by TET_get_image_data(), which does
not return the image type itself. Default: false

1. Only for TET_write_image_file()

Table 10.17 Options for TET_write_image_file() and TET_get_image_data()

option description

10.7 TET Markup Language (TETML) Functions 185

10.7 TET Markup Language (TETML) Functions

C++ int process_page(int doc, int pagenumber, wstring optlist)
C# Java int process_page(int doc, int pagenumber, String optlist)
Perl PHP long process_page(long doc, long pagenumber, string optlist)

VB RB Function process_page(doc As Long, pagenumber As Long, optlist As String) As Int
C int TET_process_page(TET *tet, int doc, int pagenumber, const char *optlist)

Process a page and create TETML output.

doc A valid document handle obtained with TET_open_document*().

pagenumber The physical number of the page to be processed. The first page has page
number 1. The total number of pages can be retrieved with TET_pcos_get_number() and
the pCOS path length:pages. The pagenumber parameter may be 0 if trailer=true.

optlist An option list specifying options from the following groups:
> General page-related options according to Table 10.10 (these will be ignored if

pagenumber=0): clippingarea, contentanalysis, excludebox, fontsizerange, granularity,
ignoreinvisibletext, imageanalysis, includebox, layoutanalysis, skipengines

> Option specifying processing details according to Table 10.18: tetml

Returns -1 on error, or 1 otherwise. However, in TETML mode this function will always succeed
since problems will be reported in a TETML Exception element.

Table 10.18 Additional options for TET_process_page()

option description

tetml (Option list) Controls details of TETML. The following options are available:
elements (Option list) Specify optional TETML elements:

line (Boolean; only for granularity=word) If true, TETML output includes Line ele-
ments between Para and Word levels. Default: false

glyphdetails
(Option list; only for granularity=glyph and word) Specify which glyph attributes will be
reported for each Glyph element (default for all suboptions: false):
all (Boolean) Enable all attribute suboptions
dehyphenation

(Boolean) Emit attribute dehyphenation to indicate hyphenated words.
dropcap (Boolean) Emit attribute dropcap to indicate large initial characters at the start

of a paragraph.
geometry (Boolean) Emit attributes x, y, width, alpha, beta.
font (Boolean) Emit attributes font, size, textrendering, unknown.
sub (Boolean) Emit attribute sub to indicate subscripts.
sup (Boolean) Emit attribute sup to indicate superscripts.

trailer (Boolean) If true, document trailer data, i.e. data after the last page, will be emitted (it must
be appended to the page-specific data emitted earlier). This option is required in the last call
to this function in order to emit trailer data. If pagenumber=0 only trailer data (without any
page-specific data) will be emitted. Once trailer=true has been supplied, no more calls to
TET_process_page() are allowed for the same document. Default: false

186 Chapter 10: TET Library API Reference

Details This function will open a page, create output according to the format-related options
supplied to TET_open_document*(), and close the page. The generated data can be re-
trieved with TET_get_xml_data().

This function must only be called if the option tetml has been supplied in the corre-
sponding call to TET_open_document*(). Header data, i.e. document-specific data before
the first page, will be created by TET_open_document*() before the first page data. It can
be retrieved separately by calling TET_get_xml_data() before the first call to TET_process_
page(), or in combination with page-related data.

Trailer data, i.e. document-specific data after the last page, must be requested with
the trailer suboption when this function is called for the last time for a document. Trail-
er data can be created with a separate call after the last page (pagenumber=0), or togeth-
er with the last page (pagenumber is different from 0). Pages can be retrieved in any or-
der, and any subset of the document’s pages can be retrieved.

It is an error to call TET_close_document() without retrieving the trailer, or to call TET_
process_page() again after retrieving the trailer.

C++ const char *get_xml_data(int doc, size_t *length, wstring optlist)
C# Java final byte[] get_xml_data(int doc, String optlist)
Perl PHP string get_xml_data(long doc, string optlist)

VB RB Function get_xml_data(doc As Long, optlist As String)
C const char * TET_get_xml_data(TET *tet, int doc, size_t *length, const char *optlist)

Retrieve TETML data from memory.

doc A valid document handle obtained with TET_open_document*().

length (C and C++ language binding only) A pointer to a variable which will hold the
length of the returned string in bytes. length does not count the terminating null byte.

optlist (Currently there are no supported options.)

Returns A byte array containing the next chunk of data according to the specified options. If the
buffer is empty an empty string will be returned (in C: a NULL pointer and *len=0).

Details This functions retrieves TETML data which has been created by TET_open_document*()
and one or more calls to TET_process_page(). The TETML data will always be encoded in
UTF-8, regardless of the outputformat option. The internal buffer will be cleared by this
call. It is not required to call TET_get_xml_data() after each call to TET_process_page().
The client may accumulate the data for one or more pages or for the whole document in
the buffer.

In TETML mode this function must be called at least once before TET_close_
document() since otherwise the data would no longer be accessible. If TET_get_xml_
data() is called exactly once (such a single call must happen between the last call to TET_
process_page() and TET_close_document()) the buffer is guaranteed to contain well-
formed TETML output for the whole document. This function must not be called if the
filename suboption has been supplied to the tetml option of TET_open_document*().

Bindings C and C++ language bindings: the result will be provided as null-terminated UTF-8. On
i5/iSeries and zSeries EBCDIC-encoded UTF-8 will be returned. The returned data buffer
can be used until the next call to TET_get_xml_data().

10.7 TET Markup Language (TETML) Functions 187

Java and .NET language bindings: the result will be provided as a byte array containing
UTF-8 data.

COM: Most client programs will use the Variant type to hold the UTF-8 data.

REALbasic: The result will be returned as REALbasic String with encoding UTF-8.

PHP language binding: the result will be provided as UTF-8 string.

Python: the result will be returned as 8-bit string (Python 3: bytes).

RPG language binding: the result will be returned as null-terminated EBCDIC UTF-8.

188 Chapter 10: TET Library API Reference

10.8 pCOS Functions
The full pCOS syntax for retrieving object data from a PDF is supported. For a detailed
description please refer to the pCOS Path Reference which is available as a separate doc-
ument.

C++ double pcos_get_number(int doc, wstring path)
C# Java double pcos_get_number(int doc, String path)
Perl PHP float pcos_get_number(int doc, string path)

VB RB Function pcos_get_number(doc as Long, path As String) As Double
C double TET_pcos_get_number(TET *tet, int doc, const char *path, ...)

Get the value of a pCOS path with type number or boolean.

doc A valid document handle obtained with TET_open_document*().

path A full pCOS path for a numerical or boolean object.

Additional parameters (C language binding only) A variable number of additional pa-
rameters can be supplied if the key parameter contains corresponding placeholders (%s
for strings or %d for integers; use %% for a single percent sign). Using these parameters
will save you from explicitly formatting complex paths containing variable numerical
or string values. The client is responsible for making sure that the number and type of
the placeholders matches the supplied additional parameters.

Returns The numerical value of the object identified by the pCOS path. For Boolean values 1 will
be returned if they are true, and 0 otherwise.

C++ wstring pcos_get_string(int doc, wstring path)
C# Java String pcos_get_string(int doc, String path)
Perl PHP string pcos_get_string(int doc, string path)

VB RB Function pcos_get_string(doc as Long, path As String) As String
C const char *TET_pcos_get_string(TET *tet, int doc, const char *path, ...)

Get the value of a pCOS path with type name, number, string, or boolean.

doc A valid document handle obtained with TET_open_document*().

path A full pCOS path for a string, name, or boolean object.

Additional parameters (C language binding only) A variable number of additional pa-
rameters can be supplied if the key parameter contains corresponding placeholders (%s
for strings or %d for integers; use %% for a single percent sign). Using these parameters
will save you from explicitly formatting complex paths containing variable numerical
or string values. The client is responsible for making sure that the number and type of
the placeholders matches the supplied additional parameters.

Returns A string with the value of the object identified by the pCOS path. For Boolean values the
strings true or false will be returned.

Details This function raises an exception if pCOS does not run in full mode and the type of the
object is string. However, the objects /Info/* (document info keys) can also be retrieved in

10.8 pCOS Functions 189

restricted pCOS mode if nocopy=false or plainmetadata=true, and bookmarks[...]/Title as
well as all paths starting with pages[...]/annots[...]/ can be retrieved in restricted pCOS
mode if nocopy=false.

This function assumes that strings retrieved from the PDF document are text strings.
String objects which contain binary data should be retrieved with TET_pcos_get_stream()
instead which does not modify the data in any way.

Bindings C language binding: The string will be returned in UTF-8 format (on zSeries and i5/
iSeries: EBCDIC-UTF-8) without BOM. The returned strings will be stored in a ring buffer
with up to 10 entries. If more than 10 strings are queried, buffers will be reused, which
means that clients must copy the strings if they want to access more than 10 strings in
parallel. For example, up to 10 calls to this function can be used as parameters for a
printf() statement since the return strings are guaranteed to be independent if no more
than 10 strings are used at the same time.

C++ language binding: The string will be returned as wstring in the default wstring con-
figuration of the C++ wrapper. In string compatibility mode on zSeries and i5/iSeries the
result will be returned in EBCDIC-UTF-8 without BOM.

Java and .NET bindings: the result will be provided as Unicode string. If no more text is
available a null object will be returned.

Perl, PHP and Python language bindings: the result will be provided as UTF-8 string. If
no more text is available a null object will be returned.

RPG language binding: the result will be provided as EBCDIC-UTF-8 string.

C++ const unsigned char *pcos_get_stream(int doc, int *length, string optlist, wstring path)
C# Java final byte[] pcos_get_stream(int doc, String optlist, String path)
Perl PHP string pcos_get_stream(int doc, string optlist, string path)

VB RB Function pcos_get_stream(doc as Long, optlist As String, path As String)
C const unsigned char *TET_pcos_get_stream(TET *tet, int doc, int *length, const char *optlist,

const char *path, ...)

Get the contents of a pCOS path with type stream, fstream, or string.

doc A valid document handle obtained with TET_open_document*().

length (C and C++ language bindings only) A pointer to a variable which will receive
the length of the returned stream data in bytes.

optlist An option list specifying stream retrieval options according to Table 10.19.

path A full pCOS path for a stream or string object.

Additional parameters (C language binding only) A variable number of additional pa-
rameters can be supplied if the key parameter contains corresponding placeholders (%s
for strings or %d for integers; use %% for a single percent sign). Using these parameters
will save you from explicitly formatting complex paths containing variable numerical
or string values. The client is responsible for making sure that the number and type of
the placeholders matches the supplied additional parameters.

190 Chapter 10: TET Library API Reference

Returns The unencrypted data contained in the stream or string. The returned data will be emp-
ty (in C and C++: NULL) if the stream or string is empty, or if the contents of encrypted
attachments in an unencrypted document are queried and the attachment password
has not been supplied.

If the object has type stream all filters will be removed from the stream contents (i.e.
the actual raw data will be returned) unless keepfilter=true. If the object has type fstream
or string the data will be delivered exactly as found in the PDF file, with the exception of
ASCII85 and ASCIIHex filters which will be removed.

In addition to decompressing the data and removing ASCII filters, text conversion
may be applied according to the convert option.

Details This function will throw an exception if pCOS does not run in full mode (see the pCOS
Path Reference). As an exception, the object /Root/Metadata can also be retrieved in re-
stricted pCOS mode if nocopy=false or plainmetadata=true. An exception will also be
thrown if path does not point to an object of type stream, fstream, or string.

Despite its name this function can also be used to retrieve objects of type string. Un-
like TET_pcos_get_string(), which treats the object as a text string, this function will not
modify the returned data in any way. Binary string data is rarely used in PDF, and can-
not be reliably detected automatically. The user is therefore responsible for selecting
the appropriate function for retrieving string objects as binary data or text.

Bindings COM: Most client programs will use the Variant type to hold the stream contents. Java-
Script with COM does not allow to retrieve the length of the returned variant array (but
it does work with other languages and COM).

C and C++ language bindings: The returned data buffer can be used until the next call to
this function.

Python: the result will be returned as 8-bit string (Python 3: bytes).

Note This function can be used to retrieve embedded font data from a PDF. Users are reminded of
the fact that fonts are subject to the respective font vendor’s license agreement, and must not
be reused without the explicit permission of the respective intellectual property owners. Please
contact your font vendor to discuss the relevant license agreement.

Table 10.19 Options for TET_pcos_get_stream()

option description

convert (Keyword; ignored for streams which are compressed with unsupported filters) Controls whether or not
the string or stream contents will be converted (default: none):
none Treat the contents as binary data without any conversion.
unicode Treat the contents as textual data (i.e. exactly as in TET_pcos_get_string()), and normalize it

to Unicode. In non-Unicode-aware language bindings this means the data will be converted
to UTF-8 format without BOM.
This option is required for the data type »text stream« in PDF which is rarely used (e.g. it can
be used for JavaScript, although the majority of JavaScripts is contained in string objects, not
stream objects).

keepfilter (Boolean; Recommended only for image data streams; will be ignored for streams which are compressed
with unsupported filters) If true, the stream data will be compressed with the filter which is specified in
the image’s filterinfo pseudo object (see the pCOS Path Reference). If false, the stream data will be
uncompressed. Default: true for all unsupported filters, false otherwise

10.8 pCOS Functions 191

A TET Library Quick Reference 193

A TET Library Quick Reference
The following tables contain an overview of all TET API functions. The prefix (C) denotes
C prototypes of functions which are not available in the Java language binding.

Setup Functions

PVF Functions

Unicode Conversion Function

Exception Handling Functions

Document Functions

Page Functions

Text and Metrics Retrieval Functions

Function prototype page
(C) TET *TET_new(void) 151
void delete() 151

Function prototype page
void create_pvf(String filename, byte[] data, String optlist) 152
int delete_pvf(String filename) 153
int info_pvf(String filename, String keyword) 153

Function prototype page
String convert_to_unicode(String inputformat, byte[] input, String optlist) 155

Function prototype page
String get_apiname() 157
String get_errmsg() 157
int get_errnum() 157

Function prototype page
int open_document(String filename, String optlist) 161
(C) int TET_open_document_callback(TET *tet, void *opaque, size_t filesize, size_t (*readproc)(void
*opaque, void *buffer, size_t size), int (*seekproc)(void *opaque, long offset), const char *optlist) 167
void close_document(int doc) 167

Function prototype page
int open_page(int doc, int pagenumber, String optlist) 169
void close_page(int page) 176

Function prototype page
String get_text(int page) 177
int get_char_info(int page) 178

194 Chapter A: TET Library Quick Reference

Image Retrieval Functions

TET Markup Language (TETML) Functions

Option Handling

pCOS Functions

Function prototype page
int get_image_info(int page) 181
int write_image_file(int doc, int imageid, String optlist) 183
final byte[] get_image_data(int doc, int imageid, String optlist) 184

Function prototype page
int process_page(int doc, int pagenumber, String optlist) 185
final byte[] get_xml_data(int doc, String optlist) 186

Function prototype page
void set_option(String optlist) 148

Function prototype page
double pcos_get_number(int doc, String path) 188
String pcos_get_string(int doc, String path) 188
final byte[] pcos_get_stream(int doc, String optlist, String path) 189

B Revision History 195

B Revision History

Revision history of this manual

Date Changes
May 26, 2014 > Updates for TET 4.3
May 17, 2013 > Updates for TET 4.2
April 04, 2012 > Updates for TET 4.1p1
February 20, 2012 > Updates for TET 4.1
September 22, 2010 > Updates for TET 4.0p2
July 27, 2010 > Updates for TET 4.0
February 01, 2009 > Updates for TET 3.0
January 16, 2008 > Updated the manual for TET 2.3
January 23, 2007 > Minor additions for TET 2.2
December 14, 2005 > Additions and corrections for TET 2.1.0; added descriptions for the PHP and RPG

language bindings
June 20, 2005 > Expanded and reorganized the manual for TET 2.0.0
October 14, 2003 > Updated the manual for TET 1.1
November 23, 2002 > Added the description of TET_open_doc_callback() and a code sample for deter-

mining the page size for TET 1.0.2
April 4, 2002 > First edition for TET 1

197

Index

A
annotations 71
API reference 141
Arabic 82
area of text extraction 73
ascender 76
attachment password 59

B
Basic Multilingual Plane 91
bidirectional text 82
BMP 91
bookmarks 71
Boolean values in option lists 145
Byte Order Mark (BOM) 92

C
C binding 24
C++ and .NET 31
C++ binding 26
canonical decomposition 100
capheight 76
categories of resources 61
characters and glyphs 91
CJK (Chinese, Japanese, Korean) 12, 79

compatibility forms 80
configuration 7
word boundaries 79

CLI 26
codelist 109
COM binding 28
command-line tool 17
comments 71
commercial license 10
compatibility decomposition 101
composite characters 93
concordance (XSLT sample) 137
connector 43
content analysis 84
coordinate system 73
CSV format 139

D
decomposition 100
dehyphenation 86
descender 76
Dispose() 151
document and page functions 161

document domains 69
document info entries 69
document styles 88
double-byte variants 80

E
end points of glyphs and words 77
evaluation version 7
examples

text extraction status 59
XSLT 137

exception handling 23
in C 24

F
fake bold removal 86
file attachments 71
file search 62
float and integer values in option lists 146
folding 97
font filtering (XSLT sample) 137
font statistics (XSLT sample) 138
FontReporter plugin 11, 108
form fields 71
fullwidth variants 80

G
geometry of images 119
glyph metrics 74
glyph rules 111
glyphlist 111
glyphs 91
granularity 84

H
halfwidth variants 80
Hebrew 82
highlighting 77
HTML converter (XSLT sample) 139

I
ideographic text

word oundaries 79
IFilter for Microsoft products 52
images

color fidelity 121
determining type 113

198

extract to disk or memory 113
extracting 113
formats 113
geometry 119
merging 115
number of images in a document 116
page-based extraction loop 118
placed images 117
resolution 119
resource-based extraction loop 118
resources 117
small image removal 116
unsupported types 121
XMP metadata 114

inch 73
index (XSLT sample) 138
installing TET 7

J
J2EE application servers 29
Java binding 29
Javadoc 30
JBIG2 113
JPEG 113
JPEG 2000 113

K
keywords in option lists 146

L
license key 8
ligatures 93
list values in option lists 142
logging 159
Lucene search engine 45

M
master password 59
MediaWiki 56
millimeters 73
mini samples 14

N
nested option lists 142
.NET binding 31
normalization 104
numbers in option lists 146

O
Objective-C binding 32
optimizing performance 65
option list syntax 141
option lists 141
Oracle Text 49

owner password 59

P
packages 72
page boxes 73
page-based image extraction loop 118
passwords 59
pCOS

API functions 188
Cookbook 15

PDF versions 11
performance optimization 65
Perl binding 34
permissions password 59
PHP binding 35
placed images 117
points 73
portfolios 72
postprocessing 94
preprocessing 94
prerotated glyphs 80
Private Use Area 92
protected documents 59
PUA 92
Python Binding 37

R
raw text extraction (XSLT sample) 139
REALbasic binding 38
rectangles in option lists 146
resource configuration 61
resource-based image extraction loop 118
resourcefile parameter 64
response file 20
roadmap to documentation and samples 14
RPG binding 41
Ruby binding 39

S
schema 131
searching for font usage (XSLT sample) 138
searchpath 62
sequences 93
servlets 29
shadow removal 86
shrug feature 59
single-byte variants 80
small image removal 116
Solr search server 48
strings in option lists 143
surrogates 92
syntax of option lists 141

T
table detection 90
table extraction (XSLT sample) 139

199

TET command-line tool 17
TET connector 43

for Lucene 45
for MediaWiki 56
for Microsoft products 52
for Oracle 49
for Solr 48
for TIKA 54

TET Cookbook 14
TET features 11
TET Markup Language (TETML) 123
TET plugin for Adobe Acrobat 43
TET_CATCH() 157
TET_close_document() 167
TET_close_page() 176
TET_convert_to_unicode() 155
TET_create_pvf() 152
TET_delete_pvf() 153
TET_delete() 151
TET_EXIT_TRY() 24, 157
TET_get_apiname() 157
TET_get_char_info() 178
TET_get_errmsg() 157
TET_get_errnum() 157
TET_get_image_data() 184
TET_get_image_info() 181
TET_get_text() 177
TET_get_xml_data() 186
TET_info_pvf() 153
TET_new() 151
TET_open_document_callback() 167
TET_open_document() 161
TET_open_page() 169
TET_pcos_get_number() 188
TET_pcos_get_stream() 189
TET_pcos_get_string() 188
TET_RETHROW() 157
TET_set_option() 148
TET_TRY() 157
TET_write_image_file() 183
tet.upr 63
TETML 123

schema 131
TETRESOURCEFILE environment variable 63
TeX documents 68
text extraction status 59

text filtering 94
TIFF 113
TIKA toolkit 54
ToUnicode CMap 110

U
Unichar values in option lists 144
Unicode

BOM 92
concepts 91
decomposition 100
encoding forms 92
encoding schemes 92
folding 97
in option lists 144
normalization 104
postprocessing 97
pre- and postprocessing 94
preprocessing 94
sets 144

units 73
unmappable glyphs 107
UPR file format 61
user password 59
UTF formats 92
UTF-32 106

V
vertical writing mode 79

W
word boundary detection 85
Wordfinder 85

X
xheight 76
XMP metadata 70

for images 114
XSLT sample 139

XSD schema for TETML 131
XSLT 134

samples 14, 137

ABC

PDFlib GmbH
Franziska-Bilek-Weg 9
80339 München, Germany
www.pdflib.com
phone +49 • 89 • 452 33 84-0
fax +49 • 89 • 452 33 84-99

If you have questions check the PDFlib mailing list
and archive at tech.groups.yahoo.com/group/pdflib

Licensing contact
sales@pdflib.com

Support
support@pdflib.com (please include your license number)

http://tech.groups.yahoo.com/group/pdflib

	Contents
	0 First Steps with TET
	0.1 Installing the Software
	0.2 Applying the TET License Key

	1 Introduction
	1.1 Overview of TET Features
	1.2 Many ways to use TET
	1.3 Roadmap to Documentation and Samples

	2 TET Command-Line Tool
	2.1 Command-Line Options
	2.2 Constructing TET Command Lines
	2.3 Command-Line Examples
	2.3.1 Extracting Text
	2.3.2 Extracting Images
	2.3.3 Generating TETML
	2.3.4 Advanced Options

	3 TET Library Language Bindings
	3.1 Exception Handling
	3.2 C Binding
	3.3 C++ Binding
	3.4 COM Binding
	3.5 Java Binding
	3.6 .NET Binding
	3.7 Objective-C Binding
	3.8 Perl Binding
	3.9 PHP Binding
	3.10 Python Binding
	3.11 REALbasic Binding
	3.12 Ruby Binding
	3.13 RPG Binding

	4 TET Connectors
	4.1 Free TET Plugin for Adobe Acrobat
	4.2 TET Connector for the Lucene Search Engine
	4.3 TET Connector for the Solr Search Server
	4.4 TET Connector for Oracle
	4.5 TET PDF IFilter for Microsoft Products
	4.6 TET Connector for the Apache TIKA Toolkit
	4.7 TET Connector for MediaWiki

	5 Configuration
	5.1 Extracting Content from protected PDF
	5.2 Resource Configuration and File Searching
	5.3 Recommendations for common Scenarios

	6 Text Extraction
	6.1 PDF Document Domains
	6.2 Page and Text Geometry
	6.3 Chinese, Japanese, and Korean Text
	6.3.1 CJK Encodings and CMaps
	6.3.2 Word Boundaries for CJK Text
	6.3.3 Vertical Writing Mode
	6.3.4 CJK Decompositions: Narrow, wide, vertical, etc.

	6.4 Bidirectional Arabic and Hebrew Text
	6.4.1 General Bidi Topics
	6.4.2 Postprocessing Arabic Text

	6.5 Content Analysis
	6.6 Layout Analysis

	7 Advanced Unicode Handling
	7.1 Important Unicode Concepts
	7.2 Unicode Preprocessing (Filtering)
	7.2.1 Filters for all Granularities
	7.2.2 Filters for Granularity Word and above

	7.3 Unicode Postprocessing
	7.3.1 Unicode Folding
	7.3.2 Unicode Decomposition
	7.3.3 Unicode Normalization

	7.4 Supplementary Characters and Surrogates
	7.5 Unicode Mapping for Glyphs

	8 Image Extraction
	8.1 Image Extraction Basics
	8.2 Image Merging and Filtering
	8.3 Placed Images and Image Resources
	8.4 Page-based and Resource-based Image Loops
	8.5 Geometry of Placed Images
	8.6 Restrictions and Caveats

	9 TET Markup Language (TETML)
	9.1 Creating TETML
	9.2 Controlling TETML Details
	9.3 TETML Elements and the TETML Schema
	9.4 Transforming TETML with XSLT
	9.5 XSLT Samples

	10 TET Library API Reference
	10.1 Option Lists
	10.1.1 Option List Syntax
	10.1.2 Basic Types
	10.1.3 Geometric Types
	10.1.4 Encoding Names

	10.2 General Functions
	10.2.1 Option Handling
	10.2.2 Setup
	10.2.3 PDFlib Virtual Filesystem (PVF)
	10.2.4 Unicode Conversion Function
	10.2.5 Exception Handling
	10.2.6 Logging

	10.3 Document Functions
	10.4 Page Functions
	10.5 Text and Metrics Retrieval Functions
	10.6 Image Retrieval Functions
	10.7 TET Markup Language (TETML) Functions
	10.8 pCOS Functions

	A TET Library Quick Reference
	B Revision History
	Index

