
ABC

pCOS
Version 4.0

PDF Information Retrieval Tool

Copyright © 2005–2013 PDFlib GmbH. All rights reserved.

PDFlib GmbH
Franziska-Bilek-Weg 9, 80339 München, Germany
www.pdflib.com
phone +49 • 89 • 452 33 84-0
fax +49 • 89 • 452 33 84-99

If you have questions check the PDFlib mailing list and archive at tech.groups.yahoo.com/group/pdflib

Licensing contact: sales@pdflib.com
Support for commercial PDFlib licensees: support@pdflib.com (please include your license number)

This publication and the information herein is furnished as is, is subject to change without notice, and
should not be construed as a commitment by PDFlib GmbH. PDFlib GmbH assumes no responsibility or lia-
bility for any errors or inaccuracies, makes no warranty of any kind (express, implied or statutory) with re-
spect to this publication, and expressly disclaims any and all warranties of merchantability, fitness for par-
ticular purposes and noninfringement of third party rights.

PDFlib and the PDFlib logo are registered trademarks of PDFlib GmbH. PDFlib licensees are granted the
right to use the PDFlib name and logo in their product documentation. However, this is not required.

Adobe, Acrobat, PostScript, and XMP are trademarks of Adobe Systems Inc. AIX, IBM, OS/390, WebSphere,
iSeries, and zSeries are trademarks of International Business Machines Corporation. ActiveX, Microsoft,
OpenType, and Windows are trademarks of Microsoft Corporation. Apple, Macintosh and TrueType are
trademarks of Apple Computer, Inc. Unicode and the Unicode logo are trademarks of Unicode, Inc. Unix is a
trademark of The Open Group. Java and Solaris are trademarks of Sun Microsystems, Inc. HKS is a regis-
tered trademark of the HKS brand association: Hostmann-Steinberg, K+E Printing Inks, Schmincke. Other
company product and service names may be trademarks or service marks of others.

PDFlib pCOS contains modified parts of the following third-party software:
Zlib compression library, Copyright © 1995-2002 Jean-loup Gailly and Mark Adler
Cryptographic software written by Eric Young, Copyright © 1995-1998 Eric Young (eay@cryptsoft.com)
Cryptographic software, Copyright © 1998-2002 The OpenSSL Project (www.openssl.org)
Expat XML parser, Copyright © 1998, 1999, 2000 Thai Open Source Software Center Ltd
ICU International Components for Unicode, Copyright © 1995-2009 International Business Machines Cor-
poration and others

pCOS contains the RSA Security, Inc. MD5 message digest algorithm.

http://www.pdflib.com
http://tech.groups.yahoo.com/group/pdflib
mailto:sales@pdflib.com
mailto:support@pdflib.com

Contents 3

Contents
0 First Steps with pCOS 5

0.1 Installing the Software 5
0.2 Applying the pCOS License Key 6

1 pCOS Examples 9

1.1 For Starters: simple Mode 9
1.2 Extracting Data from PDF 11
1.3 For advanced Applications: extended Mode 12
1.4 For Experts: raw pCOS Paths 15
1.5 For Programmers: pCOS Library Calls 16

2 pCOS Command-Line Reference 19

2.1 Option Processing and Exit Codes 19
2.2 Option Handling 21
2.3 Input Options 22
2.4 Options for Retrieving PDF Elements 23
2.5 Advanced Retrieval Options 25
2.6 Output Options 27
2.7 Unicode Output and Binary Data 29

3 pCOS Library Language Bindings 31

3.1 Exception Handling 31
3.2 C Binding 32
3.3 C++ Binding 34
3.4 COM Binding 36
3.5 Java Binding 37
3.6 .NET Binding 39
3.7 Perl Binding 40
3.8 PHP Binding 41
3.9 Python Binding 43

4 pCOS Library API Reference 45

4.1 Option Lists 45
4.2 General Functions 46
4.3 Document Functions 47
4.4 Exception Handling 49

4 Contents

4.5 Logging 51
4.6 Option Handling 53
4.7 pCOS Query Functions 55
4.8 Unicode Conversion Function 58
4.9 PDFlib Virtual Filesystem (PVF) 60

Index 63

A pCOS Library Quick Reference 65

B Revision History 66

0.1 Installing the Software 5

0 First Steps with pCOS

0.1 Installing the Software
pCOS is delivered as an MSI installer package for Windows systems, and as a compressed
archive for all other supported operating systems. All pCOS packages contain the pCOS
command-line tool and the pCOS library/component, plus support files, documenta-
tion, and examples. After installing or unpacking pCOS the following steps are recom-
mended:

> An introduction to the pCOS features by means of various examples can be found in
Chapter 1, »pCOS Examples«, page 9.

> Users of the pCOS command-line tool can use the executable right away. It can be
found in the bin subdirectory of the installation directory. The available options are
discussed in Chapter 2, »pCOS Command-Line Reference«, page 19, and are also dis-
played when you execute the pCOS command-line tool without any options.

> Users of the pCOS library/component should read one of the sections in Chapter 3,
»pCOS Library Language Bindings«, page 31, corresponding to their environment of
choice, and review the installed examples. On Windows, the pCOS programming ex-
amples are accessible via the Start menu (for COM and .NET) or in the installation di-
rectory (for other language bindings).

If you obtained a commercial pCOS license you must enter your pCOS license key ac-
cording to the next page.

Restrictions of the evaluation version. The pCOS command-line tool and library can
be used as fully functional evaluation versions even without a commercial license. Un-
less a valid license key is applied, pCOS will support all features, but will only process
PDF documents with up to 10 pages and 1 MB size. Unlicensed versions of pCOS must
not be used for production purposes, but only for evaluating the product. Using pCOS
for production purposes requires a valid license.

6 Chapter 0: First Steps with pCOS

0.2 Applying the pCOS License Key
Using pCOS for production purposes requires a valid license key. Once you purchased a
pCOS license you must apply your license key in order to allow processing of arbitrarily
large documents. There are several methods for applying the license key; choose one of
the methods detailed below.

Note pCOS license keys are platform-dependent, and can only be used on the platform for which
they have been purchased.

Windows installer. If you are working with the Windows installer you can enter the li-
cense key when you install the product. The installer will add the license key to the reg-
istry (see below).

Working with a license file. PDFlib products read license keys from a license file,
which is a text file according to the format shown below. You can use the template
licensekeys.txt which is contained in all pCOS distributions. Lines beginning with a ’#’
character contain comments and are ignored; the second line contains version informa-
tion for the license file itself:

Licensing information for PDFlib GmbH products
PDFlib license file 1.0
pCOS 4.0 ...your license key...

The license file may contain license keys for multiple PDFlib GmbH products on sepa-
rate lines. It may also contain license keys for multiple platforms so that the same li-
cense file can be shared among platforms. License files can be configured in the follow-
ing ways:

> A file called licensekeys.txt is searched in all default locations (see »Default file search
paths«, page 7).

> You can specify the licensefile option with the set_option() API function:

p.set_option("licensefile", "/path/to/licensekeys.txt");

The licensefile option must be set immediately after instantiating the pCOS object,
i.e., after calling pCOS_new() (in C) or creating a pCOS object.

> Supply the --pcosopt option of the pCOS command-line tool and supply the licensefile
option with the name of a license file:

pcos --pcosopt "licensefile=/path/to/your/licensekeys.txt" ...

If the path name contains space characters you must enclose the path with braces:

pcos --pcosopt "licensefile={/path/to/your/license file.txt}" ...

> You can set an environment (shell) variable which points to a license file. On Win-
dows use the system control panel and choose System, Advanced, Environment
Variables; on Unix apply a command similar to the following:

export PDFLIBLICENSEFILE="/path/to/licensekeys.txt"

License keys in the registry. On Windows you can also enter the name of the license
file in the following registry key:

HKLM\SOFTWARE\PDFlib\PDFLIBLICENSEFILE

0.2 Applying the pCOS License Key 7

As another alternative you can enter the license key directly in one of the following reg-
istry keys:

HKLM\SOFTWARE\PDFlib\PCOS4\license
HKLM\SOFTWARE\PDFlib\PCOS4\4.0\license

The MSI installer will write the license key provided at install time in the last of these
entries.

Note Be careful when manually accessing the registry on 64-bit Windows systems: as usual, 64-bit
PDFlib binaries will work with the 64-bit view of the Windows registry, while 32-bit PDFlib bi-
naries running on a 64-bit system will work with the 32-bit view of the registry. If you must add
registry keys for a 32-bit product manually, make sure to use the 32-bit version of the regedit
tool. It can be invoked as follows from the Start, Run... dialog:

%systemroot%\syswow64\regedit

Default file search paths. On Unix, Linux, OS X systems some directories are searched
for files by default even without specifying any path and directory names. Before
searching and reading the UPR file (which may contain additional search paths), the fol-
lowing directories are searched:

<rootpath>/PDFlib/pCOS/4.0/resource/cmap
<rootpath>/PDFlib/pCOS/4.0/resource/codelist
<rootpath>/PDFlib/pCOS/4.0/resource/glyphlst
<rootpath>/PDFlib/pCOS/4.0/resource/fonts
<rootpath>/PDFlib/pCOS/4.0/resource/icc
<rootpath>/PDFlib/pCOS/4.0
<rootpath>/PDFlib/pCOS
<rootpath>/PDFlib

On Unix, Linux, and OS X <roothpath> will first be replaced with /usr/local and then with
the HOME directory.

Default file names for license and resource files. By default, the following file names
are searched for in the default search path directories:

licensekeys.txt (license file)
pdflib.upr (resource file)

This feature can be used to work with a license file without setting any environment
variable or runtime option.

Setting the license key in an option for the pCOS command-line tool. If you use the
pCOS command-line tool you can supply an option which contains the name of a li-
cense file or the license key itself:

pcos --pcosopt "license ...your license key..." ...more options...

Setting the license key with a pCOS API call. If you use the pCOS API you can add an
API call to your script or program which sets the license key at runtime:

> In COM/VBScript:

p.set_option "license=...your license key..."

8 Chapter 0: First Steps with pCOS

> In C:

pCOS_set_option(p, "license=...your license key...");

> In C++, .NET/C#, Java:

p.set_option("license=...your license key...");

> In Perl, Python and PHP:

p->set_option("license=...your license key...");

> In RPG:

d licensekey s 20
d licenseval s 50
c eval licenseopt='license=... your license key ...'+x'00'
c callp pCOS_set_option(p:licenseopt:0)

The license option must be set immediately after instantiating the pCOS object, i.e., after
calling pCOS_new() (in C) or creating a pCOS object.

Licensing options. Different licensing options are available for pCOS use on one or
more computers, and for redistributing pCOS with your own products. We also offer
support and source code contracts. Licensing details and the purchase order form can be
found in the pCOS distribution. Please contact us if you are interested in obtaining a
commercial license, or have any questions:

PDFlib GmbH, Licensing Department
Franziska-Bilek-Weg 9, 80339 München, Germany
www.pdflib.com
phone +49 • 89 • 452 33 84-0
fax +49 • 89 • 452 33 84-99
Licensing contact: sales@pdflib.com
Support for PDFlib licensees: support@pdflib.com

http://www.pdflib.com
mailto:sales@pdflib.com
mailto:support@pdflib.com

1.1 For Starters: simple Mode 9

1 pCOS Examples
The pCOS command-line tool allows you to query information from one or more PDF
documents without the need for any programming. In addition, it can be used as a
frontend to the pCOS interface. The pCOS command-line tool is built on top of the pCOS
library. In the following sections we will present sample calls of the pCOS tool. We will
start with simple examples and proceed to more and more complex applications. A de-
tailed list of all command-line options can be found in Chapter 2, »pCOS Command-Line
Reference«, page 19.

We will demonstrate several examples for users of the pCOS library. These examples
show how the functions pcos_get_number(), pcos_get_string(), and pcos_get_stream() can
be used to retrieve information from a PDF using the pCOS path syntax.

1.1 For Starters: simple Mode
The first command does not use any options, which means that general information
plus all document info entries are listed:

pcos file.pdf

The following command lists all fonts used in the document along with their type and
embedding status:

pcos --font file.pdf

The following command creates a hierarchical list of all form fields in the document
along with their field type and the field value:

pcos --field file.pdf

The following command creates a hierarchical list of all bookmarks in the document:

pcos --bookmark file.pdf

The following command lists the width and height of all pages as well as relevant Box
entries (e.g. CropBox) and rotation:

pcos --pagesize file.pdf

The following command emits information about the PDF/X and PDF/A status of the
document:

pcos --pdfx --pdfa file.pdf

The following command emits information about the PDF/UA status of the document:

pcos --pcospath pdfua file.pdf

The following command lists all web links on the first two pages:

pcos --firstpage 1 --lastpage 2 --weblink file.pdf

10 Chapter 1: pCOS Examples

The following command lists all digital signature fields along with relevant details:

pcos --signature file.pdf

Understanding pCOS paths in the generated output. In many cases pCOS creates out-
put which not only includes text and numbers found in the PDF document, but also
emits pCOS paths which designate an object within the PDF object hierarchy. While the
pCOS path syntax is discussed in detail in the pCOS Path Reference, here are a few im-
portant notes based on sample output.

The --weblink option creates output similar to the following line. The first column
contains the pCOS path, while the second column contains the URL. It is important to
note that in pCOS syntax page numbering starts at 0, i.e. the first page is designated as
pages[0]. Similarly, annotations are numbered starting from 0:

pages[0]/annots[0]/A/URI: http://www.pdflib.com

In extended mode (see Section 1.3, »For advanced Applications: extended Mode«, page
12) the pCOS path can be created using the PP variable in a format string.

1.2 Extracting Data from PDF 11

1.2 Extracting Data from PDF
Note Our product TET (Text Extraction Toolkit) can be used to extract text and image contents from

PDF pages. Text and images can not be extracted with pCOS.

The pCOS command-line tool can be used to extract various data items from PDF docu-
ments. The extracted data items are written to disk files with unique names (based on
the name of the input PDF, the data type, and increasing numbers). This section lists
several examples for PDF data extraction; see Section 2.4, »Options for Retrieving PDF
Elements«, page 23, for more detailed option descriptions.

The following command extracts all file attachments (on page level) in the document:

pcos --extract attachment file.pdf

The following command extracts all file attachments (on document level) in the docu-
ment:

pcos --extract embeddedfile file.pdf

The following command extracts all JavaScripts in the document. Note that a particular
script can be used in more than one places (e.g. validation scripts for form fields). In this
case the script is extracted more than once:

pcos --extract javascript file.pdf

The following command extracts the output intent ICC profile of a PDF/X or PDF/A file:

pcos --extract outputintent file.pdf

The following command extracts document-level XMP metadata to a file:

pcos --extract metadata file.pdf

12 Chapter 1: pCOS Examples

1.3 For advanced Applications: extended Mode
In this section we will present commands which use the extended output mode of pCOS
and options for advanced formatting control.

Text output. The following command lists all annotations (links and other types) with
their Subtype, destination, the target URL, and the link rectangle coordinates on the
page. Double quotes must surround the list of annotation keys since they must be sup-
plied as a single argument to the program:

pcos --extended annotation "Subtype destpage A/URI Rect" file.pdf

If you have a file with comments from a review process you can list the text in the com-
ments along with the reviewers’ name with the following command. The PP variable at
the start of the formatting string will create the corresponding pCOS path which in-
cludes the page number and the annotation number (both starting at 0). The KEY vari-
able denotes the key (name) of a dictionary entry, which usually is a PDF name object;
the VAL variable refers to the corresponding value which may have any type. The paren-
thesis around the key/value pair mean that this expression is repeated for all entries in
the annotation dictionary.

pcos --format "PP (KEY=VAL)\n" --extended annotation "Subtype Contents T" file.pdf

The following command lists all file attachments (embedded files):

pcos --format "(KEY=VAL)\n" --extended attach "Subtype Contents T Name" file.pdf

The following command lists the file name and Author for multiple files. The default
headline is disabled since we included the name of the input file (variable IF) in the for-
mat string:

pcos --headline "" --format "IF:(VAL\n)" --extended docinfo Author *.pdf

The following command lists important properties of PDFlib blocks. Double quotes are
used to avoid problems with space characters in block names:

pcos --bracket dquot --format "(KEY=VAL\n)\n" --extended block "Name Subtype Description"
file.pdf

The following command creates a table of contents from the bookmark titles and corre-
sponding page numbers; this only works if the bookmarks actually point to a page:

pcos --indent 4 --format "(VAL)\n" --extended bookmark "Title destpage" file.pdf

The following command lists the names of all named destinations along with the corre-
sponding target page. The pCOS path (variable PP) contains the destination name:

pcos --format "PP: page VAL\n" --extended destination destpage file.pdf

1.3 For advanced Applications: extended Mode 13

Tabular output for use in spreadsheet applications. Using the formatting options of
pCOS it is easy to create output which can be processed in applications such as Micro-
soft Excel. The following commands create comma-separated lists of various pieces of
information retrieved from an arbitrary number of PDF documents. The required com-
ma and newline characters are created using suitable format strings. The output can be
imported in Microsoft Excel and similar spreadsheet applications which support the
CSV (comma-separated values) format.

The following command creates a table with the pCOS path (variable PP) containing
the page number (starting at 0) in the first column, and the width and height of each
page in subsequent columns:

pcos --outfile table.csv --format "PP,(VAL,)\n" --extended pagesize "width height"
file.pdf

The following command extends the previous example for use with many files; it cre-
ates a table with the file names of all input files (variable IF) along with the pCOS path
(variable PP) and the size of all pages. It suppresses the default headline since the input
file name is already printed in the first column of each output line:

pcos --outfile table.csv --headline "" --format "IF,PP,(VAL,)\n"
--extended pagesize "width height" file.pdf

The following command creates a table of PDFlib block names, types, and position:

pcos --outfile table.csv --bracket dquot --format "(VAL,)\n"
--extended block "Name Subtype fontname Rect[0] Rect[1] Rect[2] Rect[3]" file.pdf

The following command creates a table containing the file names (created by the IF vari-
able) and various document info entries:

pcos --outfile table.csv --replace missing "" --bracket dquot --headline ""
--format "IF,(VAL,)\n" --extended docinfo "Title Author Creator Subject" *.pdf

The following command creates a table with type, name, and value of form fields. In or-
der to avoid unwanted whitespace we set the indentation to 0. A headline with the
names of the extracted field keys is placed at the top. Missing entries are designate with
a custom string:

pcos --outfile table.csv --indent 0 --headline "FT,fullname,V\n"
--replace missing "(unavailable)" --format "(VAL,)\n"
--extended field "FT fullname V" file.pdf

The following command creates a table of file names along with all fonts and their em-
bedding status. We place the input file name (variable IF) in the first column of each
line, and disable the default heading (which would place the input file name on a sepa-
rate line) by specifying an empty headline:

pcos --outfile table.csv --headline "" --bracket dquot --format "IF,(VAL,)\n"
--extended font "name type embedded" file.pdf

14 Chapter 1: pCOS Examples

The following command creates a table of all Web links (URL and position). The pCOS
path in the first column (variable PP) contains the page and annotation numbers (0-
based):

pcos --outfile table.csv --format "PP,(VAL,)\n"
--extended weblink "A/URI Rect[0] Rect[1] Rect[2] Rect[3]" file.pdf

Querying all keys in a dictionary object. Using the »xx« special key you can list all keys
which are contained in a dictionary without having to know in advance the name of the
keys.

The following command lists all entries in the PDFlib block dictionaries (generally
this is all required entries and those with a non-default value, since the PDFlib Block
plugin omits properties which have their default value):

pcos --format "(KEY=VAL\n)\n" --extended block xx file.pdf

The following command lists all entries in all font dictionaries:

pcos --bracket round --format "(KEY=VAL\n)\n" --extended font xx file.pdf

1.4 For Experts: raw pCOS Paths 15

1.4 For Experts: raw pCOS Paths
The following command prints the total number of fonts in the document; using the
pCOS paths length:bookmarks, length:pages, or length:fields you can check the number of
bookmarks, pages, or form fields, respectively:

pcos --pcospath "length:fonts" file.pdf

The following command extracts an embedded Distiller job options file:

pcos --outfile embedded.joboptions --pcospath "names/EmbeddedFiles[0]/EF/F" file.pdf

The following command dumps information about the version of PDFlib blocks on the
first page, and the version of the Block plugin used to create the blocks:

pcos --format "PP=VAL\n" --pcospath "pages[0]/PieceInfo/PDFlib/Private/Version"
--pcospath "pages[0]/PieceInfo/PDFlib/Private/PluginVersion" file.pdf

The following command prints the number of annotations on the first page:

pcos --pcospath "length:pages[0]/Annots" file.pdf

The following command extracts the first file attachment on the first page (see Section
1.5, »For Programmers: pCOS Library Calls«, page 16, for determining the total number of
file attachments on all pages):

pcos --outfile attachment.txt --pcospath "pages[0]/Annots[0]/FS/EF" file.pdf

16 Chapter 1: pCOS Examples

1.5 For Programmers: pCOS Library Calls
The pCOS Cookbook. The pCOS Cookbook, available on the Web, is a collection of pro-
gramming examples which demonstrate how to write PDF querying applications based
on the pCOS programming interface. The Cookbook contains stand-alone Java program-
ming examples which can be used as a starting point for your own programming. Since
the pCOS API is identical for all language bindings the basic logic can be applied to other
programming languages as well. The following is a partial list of programming samples
for which full source code is available in the pCOS Cookbook:

> retrieve all annotations, articles, attachments, bookmarks, form fields, named desti-
nations, etc.

> create a list of layer names
> print information about font, images, or colorspaces in the document
> retrieve page size, separation names, page labels
> retrieve XMP metadata or XFA form data
> query PDF/X or PDF/A status
> list digital signatures
> extract output intent ICC profiles, embedded files

It is strongly recommended to browse the pCOS Cookbook on the Web or download the
full pCOS Cookbook package from the following location:

www.pdflib.com/pcos-cookbook

Simple programming examples. In the following code fragments we focus on the cru-
cial path processing. Standard programming items, such as try/catch handling and doc-
ument open/close calls are not included in the samples. See the pCOS distribution and
the pCOS Cookbook for complete samples which contain the general pCOS program-
ming framework in various programming languages.

Assuming a valid pCOS object (called p in the samples below) and PDF document
handle (called doc) are available, the pCOS functions pcos_get_number(), pcos_get_
string(), and pcos_get_stream() can be used to retrieve information from a PDF using the
pCOS path syntax. Table 1.1 lists some common pCOS paths and their meaning (a nu-
merical array index is indicated by ...).

Table 1.1 pCOS paths for commonly used PDF objects

pCOS path type explanation

length:pages number number of pages

encrypt/description string encryption algorithm

/Info/Title string document info field Title

fields[...] array all form fields

/Root/Metadata stream XMP stream with the document’s metadata

fonts[...]/name string name of a font; the number of entries can be retrieved with length:fonts

fonts[...]/embedded boolean embedding status of a font

pages[...]/width number width of the visible area of the page

http://www.pdflib.com/pcos-cookbook

1.5 For Programmers: pCOS Library Calls 17

Number of pages. The following fragment queries the total number of pages:

pagecount = (int) p.pcos_get_number(doc, "length:pages");

Document info fields. The following fragment retrieves the Title document informa-
tion entry:

String objtype = p.pcos_get_string(doc, "type:/Info/Title");

if (objtype.equals("string"))
{

/* Document info key found */
System.out.println(p.pcos_get_string(doc, "/Info/Title"));

}

Page size. Although the MediaBox, CropBox, and Rotate entries of a page can directly be
obtained via pCOS, they must be evaluated in combination in order to find the visible
size of a page. Determining the page size is much easier with the width and height keys
of the pages pseudo object. The following fragment retrieves the width and height of
page 3 (note that indices for the pages pseudo object start at 0):

double width = p.pcos_get_number(doc, "pages[" + 2 + "]/width");
double height = p.pcos_get_number(doc, "pages[" + 2 + "]/height");

Retrieve XMP metadata. The following fragments checks for the existence of docu-
ment-level metadata, and fetches the XMP stream contents if available:

String objtype = p.pcos_get_string(doc, "type:/Root/Metadata");
if (objtype.equals("stream"))
{

/* XMP meta data found */
byte[] metadata = p.pcos_get_stream(doc, "", "/Root/Metadata");

}

2.1 Option Processing and Exit Codes 19

2 pCOS Command-Line Reference

2.1 Option Processing and Exit Codes
The pCOS program can be controlled via a number of command-line options. It is called
as follows for one or more input PDF files:

pcos [<options>] <filename>...

Constructing pCOS command lines. The following rules must be observed for con-
structing pCOS command lines:

> Input files are searched in all directories specified as searchpath.
> Short forms are available for some options, and can be mixed with long options.
> Long options can be abbreviated provided the abbreviation is unique (e.g. --last in-

stead of --lastpage)
> Depending on encryption status of the input file, a user or master password may be

required. This can be supplied with the --password option. pCOS will check whether
this password is sufficient for the requested operation.

pCOS checks the full command line before processing any file. If an error is encountered
in the options anywhere on the command line, no files are processed at all.

File names. File names which contain blank characters require some special handling
when used with command-line tools like pCOS. In order to process a file name with
blank characters you should enclose the complete file name with double quote " char-
acters. Wildcards can be used according to standard practice. For example, *.pdf denotes
all files in a given directory which have a .pdf file name suffix. Note that on some sys-
tems case is significant, while on others it isn’t (i.e., *.pdf may be different from *.PDF).
Also note that on Windows systems wildcards do not work for file names containing
blank characters. Wildcards are evaluated in the current directory, not any searchpath
directory.

On Windows all file name options accept Unicode strings, e.g. as a result of dragging
files from the Explorer to a command prompt window.

Response files. In addition to options supplied directly on the command-line, options
can also be supplied in a response file. The contents of a response file will be inserted in
the command-line at the location where the @filename option was found.

A response file is a simple text file with options and parameters. It must adhere to
the following syntax rules:

> Option values must be separated with whitespace, i.e. space, linefeed, return, or tab.
> Values which contain whitespace must be enclosed with double quotation marks: "
> Double quotation marks at the beginning and end of a value will be omitted.
> A double quotation mark must be masked with a backslash to use it literally: \"
> A backslash character must be masked with another backslash to use it literally: \\

Response files can be nested, i.e. the @filename syntax can be used in another response
file.

20 Chapter 2: pCOS Command-Line Reference

Exit codes. The pCOS command-line tool returns with an exit code which can be used
to check whether or not the requested operations could be successfully carried out:

> Exit code 0: all command-line options could be successfully and fully processed.
> Exit code 1 (parser warning): the parser detected a problem in the command-line op-

tions, but continued after issuing a warning (e.g. wrong verbosity number)
> Exit code 2 (parser error): the parser detected a fatal problem in the command-line

options, and stopped.
> Exit code 3: a warning was issued while processing the input, but processing contin-

ues.
> Exit code 4: an error was found while processing the input, processing stopped.

Encrypted PDF. All objects can be queried if the proper master password has been sup-
plied with the --password option. If no password or only the user password has been sup-
plied some objects are available, while others are not. Refer to the pCOS Path Reference
for details on PDF security and pCOS modes.

2.2 Option Handling 21

2.2 Option Handling
Table 2.2 lists options related to general option handling.

Table 2.1 pCOS command-line options related to input or general processing

option parameters function

-- End the list of options; this is useful in case file names start with a »-«
character.

@filename1

1. This option can be supplied more than once.

Specify a response file with options; for a syntax description see »Response
files«, page 19. Response files will only be recognized before the -- option
and before the first filename, and can not be used to replace the parame-
ter for another option.

22 Chapter 2: pCOS Command-Line Reference

2.3 Input Options
Table 2.2 lists options related to the input or general processing.

Table 2.2 pCOS command-line options related to input or general processing

option parameters function

--docopt <option list> Additional option list for pCOS_open_document() (see Table 4.1, page 48)

--firstpage 1, 2, ..., last The number of the page where page-related processing will start. The key-
word last can be used to specify the last page. Default: 1

--lastpage 1, 2, ..., last The number of the page where page-related processing will finish. The
keyword last can be used to specify the last page. Default: last

--password, -p <password> User or master password for encrypted documents

--pcosopt <option list> Additional option list for pCOS_set_option() (see Table 4.4, page 53). This
can be used to pass the license or licensefile options.

2.4 Options for Retrieving PDF Elements 23

2.4 Options for Retrieving PDF Elements
Table 2.3 lists options for simple output retrieval (there are no short option forms nor
parameters in this group). Multiple retrieval options can be provided in a single call. In
this case output will be created in the following order: first, the --general and --docinfo
options will be processed (if supplied), and then all other retrieval options in Table 2.3
and Table 2.4 in the order in which they have been specified on the command line. If no
retrieval option has been provided, the default --general --docinfo is used.

All options in Table 2.3 except --general require full pCOS mode, i.e. the master pass-
word must be provided for encrypted files.

Table 2.3 pCOS command-line options for simple output retrieval

option function

--annotation1 Contents and type of annotations. This option queries the keys Contents and Subtype in pages[...]/
annots for all pages, using the format PP/KEY: VAL\n.

--attachment1 Description and file name of file attachments on the pages (see also --embeddedfile). This option que-
ries the keys Contents, FS/F, and FS/UF in pages[...]/annots for all pages (if FS is present), using the
format PP/KEY: VAL\n.
The actual contents of a file attachment can be retrieved via --extract attachment.

--block1 Name and subtype of PDFlib Blocks for use with the PDFlib Personalization Server (PPS). This option que-
ries the keys Name and Subtype in pages[...]/PieceInfo/PDFlib/Private/Blocks for all pages, using
the format KEY: VAL\n.

--bookmark Names of bookmarks. This option queries the key Title in bookmarks[...], using the format VAL\n, and
bookmarks[...]/level for indentation.
The target page of a bookmark can be retrieved via bookmarks[...]/destpage.

--destination Names and destination pages of named destinations. This option queries all keys in names[...]/Dest
(i.e. all named destinations) and the value of the destpage subkey, using the format PP/KEY: VAL\n.

--docinfo Key and value of document info entries. This option queries all keys in /Info, using the format KEY:
VAL\n.

--embedded-
file

File name and description of named embedded files. This option queries document-level file attach-
ments, while --attachment will retrieve file attachments on the page level. This option queries the keys F,
UF, and Desc in names/EmbeddedFiles/*, using the format PP/KEY: VAL\n.
The actual contents of an embedded file can be retrieved via --extract embeddedfile.

--field Names, types, and values of form fields. This option queries the keys fullname, FT, and V in fields[...],
using the format PP/KEY: VAL\n, and fields[...]/level for indentation.

--font Names, types, and embedding status of fonts. This option queries the keys name, type, and embedded in
fonts[...], using the format PP/KEY: VAL\n.

--general File name and size, PDF version, encryption status, master/user password, linearization status, PDF/X,
PDF/A, XFA, tagged status, signature details, Reader-enabled status, PDF package (portable collection)
status, number of pages, number of fonts (page and font count are only available in full pCOS mode),
document info fields, presence of XMP metadata, PDF package status and presence of encrypted attach-
ments. This option queries various real and pseudo objects.

24 Chapter 2: pCOS Command-Line Reference

--javascript JavaScript at various locations in the document. For each script its length (in Unicode characters) is print-
ed, as well as the total number of scripts found. Depending on the location of the JavaScript in the docu-
ment, additional information is printed:
Document open actions: JavaScript which will activated when the document is opened.
Bookmarks: JavaScript for bookmark activation.
Document-level JavaScript: additional information for the trigger event (didprint, didsave, willclose,
willprint, willsave)
Page-level JavaScript: additional information for the trigger event (open, close)
JavaScript for annotation activation. Additional information: page number, annotation type
Field-level JavaScript. Additional information: form field name, trigger (activate, keystroke, format,
validate, calculate, enter, exit, down, up, focus, blur)

--layer Names of all layers in the document. This may include unused layers and layers which are not visible in
Acrobat’s user interface (e.g. layers which do not require any interaction because they are controlled by
JavaScript). This option queries the key Name in /Root/OCProperties/OCGs, using the format VAL\n.

--layer-
default

Names of layers which are presented by default in Acrobat’s layer pane (not related to the visibility of
layer contents on the page). Only layers which are presented to the user is shown, using indentation to
visualize the layer hierarchy. Text labels for grouping (which do not directly resemble a layer) will also be
printed. Use --layer to catch all layers, regardless of their presence in the user interface. This option que-
ries the key Name in /Root/OCProperties/D/Order, using the format VAL\n.

--outputintent Properties of one or more output intent ICC profiles, mostly used for PDF/X and PDF/A documents. This
option queries various keys in the /Root/OutputIntents[...] dictionary, using the format PP/
KEY: VAL\n.

--pagesize1 Width, height, and various boxes describing the page dimensions. This option queries the keys width,
height, MediaBox, CropBox, and Rotate in pages[...] for all pages, using the format PP/KEY: VAL\n.

--pdfa PDF/A version and output intent name (no validation). This option queries the part, conformance, and
amd (amendment) keys in the pdfaid section of the document’s XMP metadata (/Root/Metadata) if
present. If the file conforms to any of the PDF/A-1 standards, the corresponding keys /Root/Output-
Intents[...]/OutputConditionIdentifier and /Root/OutputIntents[...]/Info are queried as well.

--pdfx PDF/X version and output intent name (no validation). This option first queries the key /Info/GTS_
PDFXVersion. If the file conforms to any of the PDF/X standards, the corresponding keys /Root/Output-
Intents[...]/OutputConditionIdentifier and /Root/OutputIntents[...]/Info are queried as well.

--signature Signature information: name and visibility of all signature fields, signed/unsigned status, and signature
details for signed fields. This option queries the key fullname and various entries in the V dictionary in
fields[...] (if FT=Sig).

--weblink1 Contents and URL of web links. This option queries the keys Contents and A/URI in pages[...]/annots
for all pages (if A/URI is present), using the format PP/KEY: VAL\n.

--xfa Checks whether the documents contains any XFA information (eXtensible Forms Architecture). This op-
tion queries the key /Root/AcroForm/XFA.

1. This option is subject to the --firstpage and --lastpage options.

Table 2.3 pCOS command-line options for simple output retrieval

option function

2.5 Advanced Retrieval Options 25

2.5 Advanced Retrieval Options
Table 2.4 lists options for advanced output retrieval. If pCOS runs in minimum or re-
stricted mode, i.e. the master password has not been provided for an encrypted file, not
all objects may be available (see the pCOS Path Reference for details). If the path desig-
nates a simple object, its value is printed, dictionary objects are enumerated recursively
up to the level specified with --depth, and array objects are completely enumerated
recursively.

Table 2.4 pCOS command-line options for advanced output retrieval

long option parameters function

--binary Retrieved string objects are treated as binary data, i.e. will not be subject to Unicode
and EBCDIC conversions. This option is useful for binary string data, e.g.
Contents of a signature dictionary; it is not required for stream data which are al-
ways treated in binary mode.

--extended1 <type> <keys> Extended object retrieval for one of the following types:
annotation, attachment, block, bookmark, destination, docinfo, font, layer,
pagesize, signature, weblink
<keys> contains a list of keys to be retrieved from the respective object(s). Use xx to
query all existing keys (excluding pseudo keys if they exist for an object, e.g. a font
dictionary, and some low-level bookkeeping keys for maintaining tree structures).
The list of keys must be provided as a single command-line argument (in some envi-
ronments this requires surrounding double quotes).

--extract1 <type> Extract the binary data associated with one of the following types and print general
information about the items):
attachment All file attachments on page level (takes into account the --firstpage

and --lastpage options)
embeddedfile

All file attachments on document level
javascript All JavaScripts for document open action, bookmarks, document-level

scripts, page-level scripts, annotation activation, and fields.
metadata XMP document metadata (without any format conversion)
outputintent

All output intent ICC profiles
signature All certificate values, i.e. the Contents entry of signature fields. It con-

tains a PKCS#1 (rare) or PKCS#7 object (common).
Each data item is written to a separate disk file. Starting at the directory specified
with the --targetdir option, a directory is created using the name of the input PDF
(without any .pdf or .PDF suffix, and with critical characters replaced with "_").
Within this directory various subdirectories for the data items are created. The
--outfile option is ignored.
In addition to the generated data files a description of all extracted data items is cre-
ated on standard output.

26 Chapter 2: pCOS Command-Line Reference

--format
-f

<string> (Affects only --extended and --pcospath) Output format for recursion level 0. Ex-
pressions within (...) will iterate over all existing keys. Format examples can be found
in Table 2.3. The following placeholders can be used in addition to regular characters:
IF input file name
PP pCOS path of the object
KEY name of the object
VAL value of the object
\n carriage return plus linefeed on Windows; single linefeed on all other

systems
\r carriage return
\t horizontal tab
Default: PP/KEY: VAL\n for --extended, VAL\n for --pcospath (or VAL for binary da-
ta)

--pcospath1 <path>... pCOS path of an object that will be queried. Examples for object paths can be found
in Table 2.3, and a full description in the pCOS Path Reference.

1. This option can be supplied more than once.

Table 2.4 pCOS command-line options for advanced output retrieval

long option parameters function

2.6 Output Options 27

2.6 Output Options
Table 2.5 lists options for controlling details of the generated output.

Table 2.5 pCOS command-line options for controlling output details

option parameters function

--bracket
-b

<keyword> Bracketing of strings, arrays, names, dictionaries, and empty values (default: none):
none no brackets
angle < >
curly { }
round ()
squared []
dquot " "
squot ' '

--depth
-d

1, 2, ... Recursion depth for resolving dictionaries. For higher recursion levels the string sup-
plied with --replace dictionary is printed. Default: 2

--headline
-h

<string> Header line for each file. The following placeholders can be used in addition to regu-
lar characters (default: no header when a single file is processed, and \nIF:\n when
multiple files are processed):
IF input file name
OF output file name
\n carriage return plus linefeed on Windows; single linefeed on all other

systems
\r carriage return
\t horizontal tab

--help
-?

Display help with a summary of available options.

--indent 0, 1, 2, ... Indentation for hierarchical output of --bookmark, --field, and --layerdefault.
Default: 3 (use --indent 0 for creating tabular output)

--outfile
-o

<filename> Output file name (ignored for --extract). The following special names are recog-
nized (default: -):
- standard output
+ base name of the input file with .pdf replaced with .txt

--replace1

-r
<keyword> <string> Replacement strings. The following keywords are supported:

missing String for non-existing objects. Default: <not found>
dictionary String for unresolved dictionaries. Default: <dictionary>
control Replacement of control characters (U+0000-U+001F and U+007F-

U+009F). A C-style formatting expression (e.g. \%03o) is replaced with
the formatted value of the character. The replacement is performed in
textual and stream data. Default: no replacement

--separator
-s

<string> Separator string between keys and values of type dictionary for recursion levels 1 and
above. Default: =

--targetdir
-t

<dirname> Output directory name; the directory must exist. Default: .

--utf16
-u

(Ignored when writing to standard output) Convert the output to UTF-16 with BOM.
Without this option the text is output in UTF-8 format, and stream contents are out-
put without any modification.

28 Chapter 2: pCOS Command-Line Reference

--verbose
-v

0, 1, 2, 3 Verbosity level (default: 1):
0 no output at all
1 emit only warnings, errors, and banner
2 like 2, but also emit file names
3 detailed reporting

1. This option can be supplied more than once.

Table 2.5 pCOS command-line options for controlling output details

option parameters function

2.7 Unicode Output and Binary Data 29

2.7 Unicode Output and Binary Data
Conversion rules. Subject to the PDF objects retrieved, the output created by pCOS can
be plain ASCII text (e.g. most font names), Unicode text (e.g. Japanese document info en-
tries, or binary data (e.g. ICC profiles). pCOS creates output according to the following
rules:

> Name and string objects are output in UTF-8 without BOM. This means that ASCII
text will result in plain ASCII output, but Latin-1 special characters (e.g. umlauts or
accented characters) will result in two-byte UTF-8 sequences. Users must be prepared
for UTF-8 output, and must convert to other formats (e.g. WinAnsi) if required.
Lines are terminated with \r\n (carriage return plus linefeed) on Windows, and with
\n (single linefeed) on all other systems.

> If the --utf16 option has been supplied and the output channel is not stdout the com-
plete output is converted from UTF-8 to native UTF-16 with BOM (byte order mark).
This only makes sense if all output items are UTF-8 (without any binary stream ob-
jects). pCOS emits a warning at the end of the output for some critical combinations,
or if the output couldn’t be converted from UTF-8 to UTF-16 (the most likely reason
for this is that binary stream data was included in the output).

> Stream objects are output in binary format without any modification. This includes
XMP metadata streams, but these are usually stored in the PDF as UTF-8 anyway. Be
careful with the --format and --replace options since these may have undesired ef-
fects on binary data.

30 Chapter 2: pCOS Command-Line Reference

3.1 Exception Handling 31

3 pCOS Library Language Bindings
This chapter discusses specifics for the language bindings which are supplied for pCOS.
The pCOS distribution contains sample code for all supported language bindings.

3.1 Exception Handling
Errors of a certain kind are called exceptions in many languages for good reasons – they
are mere exceptions, and are not expected to occur very often during the lifetime of a
program. The general strategy is to use conventional error reporting mechanisms (read:
special error return codes) for function calls which may go wrong often times, and use a
special exception mechanism for those rare occasions which don’t justify cluttering the
code with conditionals. This is exactly the path that pCOS goes: Some operations can be
expected to go wrong rather frequently, for example:

> Trying to open a PDF document for which one doesn’t have the proper password
> Trying to open a PDF document with a wrong file name
> Trying to open a PDF document which is damaged beyond repair.

pCOS signals such errors by returning a value of –1 as documented in the API reference.
Other events may be considered harmful, but will occur rather infrequently, e.g.

> running out of virtual memory;
> supplying wrong function parameters (e.g. an invalid document handle);
> supplying malformed option lists;

When pCOS detects such a situation, an exception is thrown instead of passing a special
error return value to the caller. In languages which support native exceptions throwing
the exception is done using the standard means supplied by the language or environ-
ment. For the C language binding pCOS supplies a custom exception handling mecha-
nism which must be used by clients (see Section 3.2, »C Binding«, page 32).

It is important to understand that processing a document must be stopped when an
exception occurred. The only methods which can safely be called after an exception are
pCOS_delete(), pCOS_get_apiname(), pCOS_get_errnum(), and pCOS_get_errmsg(). Calling
any other method after an exception may lead to unexpected results. The exception
will contain the following information:

> A unique error number;
> The name of the API function which caused the exception;
> A descriptive text containing details of the problem;

Querying the reason of a failed function call. Some pCOS function calls, e.g. pCOS_
open_document() or pCOS_open_page(), can fail without throwing an exception (they
will return -1 in case of an error). In this situation the functions pCOS_get_errnum(),
pCOS_get_errmsg(), and pCOS_get_apiname() can be called immediately after a failed
function call in order to retrieve details about the nature of the problem.

32 Chapter 3: pCOS Library Language Bindings

3.2 C Binding
pCOS is written in C with some C++ modules. In order to use the C binding you can use a
static or shared library (DLL on Windows), and you need the central pCOS include file
pcoslib.h for inclusion in your client source modules.

Note Applications which use the pCOS binding for C must be linked with a C++ compiler since the li-
brary includes some parts which are implemented in C++. Using a C linker may result in unre-
solved externals unless the application is explicitly linked against the required C++ support li-
braries.

Exception handling. The pCOS API provides a mechanism for acting upon exceptions
thrown by the library in order to compensate for the lack of native exception handling
in the C language. Using the pCOS_TRY() and pCOS_CATCH() macros client code can be set
up such that a dedicated piece of code is invoked for error handling and cleanup when
an exception occurs. These macros set up two code sections: the try clause with code
which may throw an exception, and the catch clause with code which acts upon an ex-
ception. If any of the API functions called in the try block throws an exception, program
execution will continue at the first statement of the catch block immediately. The fol-
lowing rules must be obeyed in pCOS client code:

> pCOS_TRY() and pCOS_CATCH() must always be paired.
> pCOS_new() will never throw an exception; since a try block can only be started with

a valid pCOS object handle, pCOS_new() must be called outside of any try block.
> pCOS_delete() will never throw an exception, and therefore can safely be called out-

side of any try block. It can also be called in a catch clause.
> Special care must be taken about variables that are used in both the try and catch

blocks. Since the compiler doesn’t know about the transfer of control from one block
to the other, it might produce inappropriate code (e.g., register variable optimiza-
tions) in this situation.
Fortunately, there is a simple rule to avoid this kind of problem: Variables used in
both the try and catch blocks must be declared volatile. Using the volatile keyword sig-
nals to the compiler that it must not apply dangerous optimizations to the variable.

> If a try block is left (e.g., with a return statement, thus bypassing the invocation of
the corresponding pCOS_CATCH()), the pCOS_EXIT_TRY() macro must be called before
the return statement to inform the exception machinery.

> As in all pCOS language bindings document processing must stop when an excep-
tion was thrown.

The following code fragment demonstrates these rules with the typical idiom for deal-
ing with pCOS exceptions in client code (a full sample can be found in the pCOS pack-
age):

volatile int n_pages, pageno;
...
if ((p = pCOS_new()) == (pCOS *) 0)
{

printf("out of memory\n");
return(2);

}
pCOS_TRY(p)
{

...open document...

3.2 C Binding 33

n_pages = (int) pCOS_pcos_get_number(p, doc, "length:pages");
for (pageno = 1; pageno <= n_pages; ++pageno)
{
 /* process page */

if (/* error happened */)
{

pCOS_EXIT_TRY(p);
return -1;

}
}
/* statements that directly or indirectly call API functions */

}
pCOS_CATCH(p)
{

printf("Error %d in %s() on page %d: %s\n",
pCOS_get_errnum(p), pCOS_get_apiname(p), pageno, pCOS_get_errmsg(p));

}
pCOS_delete(p);

Unicode handling for name strings. The C language does not natively support Uni-
code. Some string parameters for API functions may be declared as name strings. These
are handled depending on the length parameter and the existence of a BOM at the be-
ginning of the string. In C, if the length parameter is different from 0 the string is inter-
preted as UTF-16. If the length parameter is 0 the string is interpreted as UTF-8 if it starts
with a UTF-8 BOM, or as EBCDIC UTF-8 if it starts with an EBCDIC UTF-8 BOM, or as host
encoding if no BOM is found (or ebcdic on all EBCDIC-based platforms).

Unicode handling for option lists. Strings within option lists require special attention
since they cannot be expressed as Unicode strings in UTF-16 format, but only as byte ar-
rays. For this reason UTF-8 is used for Unicode options. By looking for a BOM at the be-
ginning of an option pCOS decides how to interpret it. The BOM is used to determine
the format of the string. More precisely, interpreting a string option works as follows:

> If the option starts with a UTF-8 BOM (\xEF\xBB\xBF) it will interpreted as UTF-8.
> If no BOM is found, the string is treated as winansi (or ebcdic on EBCDIC-based plat-

forms).

Note The pCOS_convert_to_unicode() utility function can be used to create UTF-8 strings from UTF-
16 strings, which is useful for creating option lists with Unicode values.

Using pCOS as a DLL loaded at runtime. While most clients will use pCOS as a statically
bound library or a dynamic library which is bound at link time, you can also load the
DLL at runtime and dynamically fetch pointers to all API functions. This is especially
useful to load the DLL only on demand. pCOS supports a special mechanism to facilitate
this dynamic usage. It works according to the following rules:

> Include pcoslibdl.h instead of pcoslib.h.
> Use pCOS_new_dl() and pCOS_delete_dl() instead of pCOS_new() and pCOS_delete().
> Use pCOS_TRY_DL() and pCOS_CATCH_DL() instead of pCOS_TRY() and pCOS_CATCH().
> Use function pointers for all other pCOS calls.
> Compile the auxiliary module pcoslibdl.c and link your application against the result-

ing object file.

The dynamic loading mechanism is demonstrated in the dumperdl.c sample.

34 Chapter 3: pCOS Library Language Bindings

3.3 C++ Binding
Note For applications written in C++ we recommend to access the pCOS .NET DLL directly instead of

via the C++ binding (except for cross-platform applications which should use the C++ binding).
The pCOS distribution contains C++ sample code for use with .NET CLI which demonstrates this
combination.

In addition to the pcoslib.h C header file, an object-oriented wrapper for C++ is supplied
for pCOS clients. It requires the pcos.hpp header file, which in turn includes pcoslib.h.
Since pcos.hpp contains a template-based implementation no corresponding pcos.cpp
module is required. Using the C++ object wrapper replaces the functional approach with
API functions and pCOS_ prefixes in all pCOS function names with a more object-ori-
ented approach.

String handling in C++. The template-based approach in pCOS supports the following
usage patterns with respect to string handling:

> Strings of the C++ standard library type std::wstring are used as basic string type.
They can hold Unicode characters encoded as UTF-16 or UTF-32. This is the default be-
havior and the recommended approach for new applications unless custom data
types (see next item) offer a significant advantage over wstrings.

> Custom (user-defined) data types for string handling can be used as long as the cus-
tom data type is an instantiation of the basic_string class template and can be con-
verted to and from Unicode via user-supplied converter methods.

> Plain C++ strings can be used for compatibility with existing C++ applications which
have been developed against pCOS 2.0. This compatibility variant is only meant for
existing applications (see below for notes on source code compatibility).

The default interface assumes that all strings passed to and received from pCOS meth-
ods are native wstrings. Depending on the size of the wchar_t data type, wstrings are as-
sumed to contain Unicode strings encoded as UTF-16 (2-byte characters) or UTF-32 (4-
byte characters). Literal strings in the source code must be prefixed with L to designate
wide strings. Unicode characters in literals can be created with the \u and \U syntax. Al-
though this syntax is part of standard ISO C++, some compilers don’t support it. In this
case literal Unicode characters must be created with hex characters.

Error handling in C++. pCOS API functions will throw a C++ exception in case of an er-
ror. These exceptions must be caught in the client code by using C++ try/catch clauses. In
order to provide extended error information the pCOS class provides a public
pCOS::Exception class which exposes methods for retrieving the detailed error message,
the exception number, and the name of the pCOS API function which threw the excep-
tion.

Native C++ exceptions thrown by pCOS routines will behave as expected. The follow-
ing code fragment will catch exceptions thrown by pCOS:

try {
...some pCOS instructions...

} catch (pCOS::Exception &ex) {
wcerr << L"Error " << ex.get_errnum()
<< L" in " << ex.get_apiname()
<< L"(): " << ex.get_errmsg() << endl;

}

3.3 C++ Binding 35

Using pCOS as a DLL loaded at runtime. Similar to the C language binding the C++
binding allows you to dynamically attach pCOS to your application at runtime (see »Us-
ing pCOS as a DLL loaded at runtime«, page 33). Dynamic loading can be enabled as fol-
lows when compiling the application module which includes pcos.hpp:

#define PCOSCPP_DL 1

In addition you must compile the auxiliary module pcoslibdl.c and link your application
against the resulting object file. Since the details of dynamic loading are hidden in the
pCOS object it does not affect the C++ API: all method calls look the same regardless of
whether or not dynamic loading is enabled. The dynamic loading mechanism is demon-
strated in the dumperdl sample in the shipped Makefile.

36 Chapter 3: pCOS Library Language Bindings

3.4 COM Binding
Installing the pCOS COM edition. pCOS can be deployed in all environments that sup-
port COM components. Installing pCOS is an easy and straight-forward process. Please
note the following:

> If you install on an NTFS partition all pCOS users must have read permission to the
installation directory, and execute permission to
...\pCOS 4.0\COM\bin\pCOS_com.dll.

> The installer must have write permission to the system registry. Administrator or
Power Users group privileges will usually be sufficient.

Exception Handling. Exception handling for the pCOS COM component is done ac-
cording to COM conventions: when a pCOS exception occurs, a COM exception is raised
and furnished with a clear-text description of the error. In addition the memory allocat-
ed by the pCOS object is released. The COM exception can be caught and handled in the
pCOS client in whichever way the client environment supports for handling COM er-
rors.

Using the pCOS COM Edition with .NET. As an alternative to the pCOS.NET edition (see
Section 3.6, ».NET Binding«, page 39) the COM edition of pCOS can also be used with
.NET. First, you must create a .NET assembly from the pCOS COM edition using the
tlbimp.exe utility:

tlbimp pCOS_com.dll /namespace:pCOS_com /out:Interop.pCOS_com.dll

You can use this assembly within your .NET application. If you add a reference to pcos_
com.dll from within Visual Studio .NET an assembly is created automatically. The follow-
ing code fragment shows how to use the pCOS COM edition with C#:

using pCOS_com;
 ...
static pCOS_com.IpCOS p;
 ...
p = New pCOS();
 ...

All other code works as with the .NET edition of pCOS.

3.5 Java Binding 37

3.5 Java Binding
Installing the pCOS Java edition. pCOS is organized as a Java package with the name
com.pdflib.pCOS. This package relies on a native JNI library; both pieces must be config-
ured appropriately.

In order to make the JNI library available the following platform-dependent steps
must be performed:

> On Unix systems the library libpcos_java.so (on OS X: libpcos_java.jnilib) must be
placed in one of the default locations for shared libraries, or in an appropriately con-
figured directory.

> On Windows the library pdf_pcos.dll must be placed in the Windows system directo-
ry, or a directory which is listed in the PATH environment variable.

The pCOS Java package is contained in the pcos.jar file and contains a single class called
pcos. In order to supply this package to your application, you must add pcos.jar to your
CLASSPATH environment variable, add the option -classpath pcos.jar in your calls to the
Java compiler, or perform equivalent steps in your Java IDE. In the JDK you can config-
ure the Java VM to search for native libraries in a given directory by setting the
java.library.path property to the name of the directory, e.g.

java -Djava.library.path=. extractor

You can check the value of this property as follows:

System.out.println(System.getProperty("java.library.path"));

Using pCOS in J2EE application servers and Servlet containers. pCOS is perfectly suited
for server-side Java applications. The pCOS distribution contains sample code and con-
figuration for using pCOS in J2EE environments. The following configuration issues
must be observed:

> The directory where the server looks for native libraries varies among vendors. Com-
mon candidate locations are system directories, directories specific to the underly-
ing Java VM, and local server directories. Please check the documentation supplied
by the server vendor.

> Application servers and Servlet containers often use a special class loader which may
be restricted or uses a dedicated classpath. For some servers it is required to define a
special classpath to make sure that the pCOS package is found.

More detailed notes on using pCOS with specific Servlet engines and application servers
can be found in additional documentation in the J2EE directory of the pCOS distribu-
tion.

Unicode and legacy encoding conversion. For the convenience of pCOS users we list
some useful string conversion methods here. Please refer to the Java documentation for
more details. The following constructor creates a Unicode string from a byte array, us-
ing the platform’s default encoding:

String(byte[] bytes)

The following constructor creates a Unicode string from a byte array, using the encod-
ing supplied in the enc parameter (e.g. SJIS, UTF8, UTF-16):

38 Chapter 3: pCOS Library Language Bindings

String(byte[] bytes, String enc)

The following method of the String class converts a Unicode string to a string according
to the encoding specified in the enc parameter:

byte[] getBytes(String enc)

Exception handling. The pCOS language binding for Java will throw native Java excep-
tions of the class pCOSException. pCOS client code must use standard Java exception syn-
tax:

pCOS p = null;

try {

...pCOS method invocations...

} catch (pCOSException e) {
System.err.print("pCOS exception occurred:\n");
System.err.print("[" + e.get_errnum() + "] " + e.get_apiname() + ": " +

e.get_errmsg() + "\n");

} catch (Exception e) {
System.err.println(e.getMessage());

} finally {
if (p != null) {

p.delete(); /* delete the pCOS object */
}

}

Since pCOS declares appropriate throws clauses, client code must either catch all possi-
ble exceptions or declare those itself.

3.6 .NET Binding 39

3.6 .NET Binding
Note Detailed information about the various flavors and options for using pCOS with the .NET

Framework can be found in the PDFlib-in-.NET-HowTo.pdf document which is contained in the
distribution packages and also available on the PDFlib Web site.

The .NET edition of pCOS supports all relevant .NET concepts. In technical terms, the
pCOS.NET edition is a C++ class (with a managed wrapper for the unmanaged pCOS core
library) which runs under control of the .NET framework. It is packaged as a static as-
sembly with a strong name. The pCOS assembly (pCOS_dotnet.dll) contains the actual li-
brary plus meta information.

Installing the pCOS Edition for .NET. Install pCOS with the supplied Windows MSI In-
staller. The pCOS.NET MSI installer will install the pCOS assembly plus auxiliary data
files, documentation and samples on the machine interactively. The installer will also
register pCOS so that it can easily be referenced on the .NET tab in the Add Reference dia-
log box of Visual Studio .NET.

Error handling. pCOS.NET supports .NET exceptions, and will throw an exception with
a detailed error message when a runtime problem occurs. The client is responsible for
catching such an exception and properly reacting on it. Otherwise the .NET framework
will catch the exception and usually terminate the application.

In order to convey exception-related information pCOS defines its own exception
class pCOS_dotnet.pCOSException with the members get_errnum, get_errmsg, and get_api-
name.

Using pCOS with C++ and CLI. .NET applications written in C++ (based on the Common
Language Infrastructure CLI) can directly access the pCOS.NET DLL without using the
pCOS C++ binding. The source code must reference pCOS as follows:

using namespace pCOS_dotnet;

40 Chapter 3: pCOS Library Language Bindings

3.7 Perl Binding
The pCOS wrapper for Perl consists of a C wrapper and two Perl package modules, one
for providing a Perl equivalent for each pCOS API function and another one for the
pCOS object. The C module is used to build a shared library which the Perl interpreter
loads at runtime, with some help from the package file. Perl scripts refer to the shared li-
brary module via a use statement.

Installing the pCOS edition for Perl. The Perl extension mechanism loads shared li-
braries at runtime through the DynaLoader module. The Perl executable must have
been compiled with support for shared libraries (this is true for the majority of Perl con-
figurations).

For the pCOS binding to work, the Perl interpreter must access the pCOS Perl wrapper
and the modules pcoslib_pl.pm and PDFlib/pCOS.pm. In addition to the platform-specific
methods described below you can add a directory to Perl’s @INC module search path us-
ing the -I command line option:

perl -I/path/to/pcoslib dumper.pl

Unix. Perl will search pcoslib_pl.so (on OS X: pcoslib_pl.bundle), pcoslib_pl.pm and PDFlib/
pCOS.pm in the current directory, or the directory printed by the following Perl com-
mand:

perl -e 'use Config; print $Config{sitearchexp};'

Perl will also search the subdirectory auto/pcoslib_pl. Typical output of the above com-
mand looks like

/usr/lib/perl5/site_perl/5.10/i686-linux

Windows: pCOS supports the ActiveState port of Perl 5 to Windows, also known as
ActivePerl. The DLL pcoslib_pl.dll and the modules pcoslib_pl.pm and PDFlib/pCOS.pm is
searched in the current directory, or the directory printed by the following Perl com-
mand:

perl -e "use Config; print $Config{sitearchexp};"

Typical output of the above command looks like

C:\Program Files\Perl5.10\site\lib

Exception handling in Perl. When a pCOS exception occurs, a Perl exception is thrown.
It can be caught and acted upon using an eval sequence:

eval {
...some pCOS instructions...

};
die "Exception caught: $@" if $@;

3.8 PHP Binding 41

3.8 PHP Binding
Installing the pCOS Edition for PHP. pCOS is implemented as a C library which can dy-
namically be attached to PHP. pCOS supports several versions of PHP. Depending on the
version of PHP you use you must choose the appropriate pCOS library from the un-
packed pCOS archive.

Detailed information about the various flavors and options for using pCOS with
PHP, including the question of whether or not to use a loadable pCOS module for PHP,
can be found in the PDFlib-in-PHP-HowTo document which can be found on the PDFlib
Web site. Although it is mainly targeted at using PDFlib with PHP the discussion applies
equally to using pCOS with PHP.

You must configure PHP so that it knows about the external pCOS library. You have
two choices:

> Add one of the following lines in php.ini:

extension=php_pcos.dll ; for Windows
extension=php_pcos.so ; for Unix and OS X
extension=php_pcos.sl ; for HP-UX

PHP will search the library in the directory specified in the extension_dir variable in
php.ini on Unix, and in the standard system directories on Windows. You can test
which version of the PHP pCOS binding you have installed with the following one-
line PHP script:

<?phpinfo()?>

This will display a long info page about your current PHP configuration. On this page
check the section titled pCOS. If this section contains the phrase

PDFlib pCOS: PDF Information Retrieval Tool => enabled

(plus the pCOS version number) you successfully installed pCOS for PHP.
> Alternatively, you can load pCOS at runtime with one of the following lines at the

start of your script:

dl("php_pcos.dll"); # for Windows
dl("php_pcos.so"); # for Unix and OS X
dl("php_pcos.sl"); # for HP-UX

File name handling in PHP. Unqualified file names (without any path component) and
relative file names for PDF, image, font and other disk files are handled differently in
Unix and Windows versions of PHP:

> PHP on Unix systems will find files without any path component in the directory
where the script is located.

> PHP on Windows will find files without any path component only in the directory
where the PHP DLL is located.

Exception handling. Since PHP 5 supports structured exception handling, pCOS excep-
tions are propagated as PHP exceptions. You can use the standard try/catch technique to
deal with pCOS exceptions:

try {

...some pCOS instructions...

42 Chapter 3: pCOS Library Language Bindings

} catch (pCOSException $e) {
print "pCOS exception occurred:\n";
print "[" . $e->get_errnum() . "] " . $e->get_apiname() . ": "

$e->get_errmsg() . "\n";
}
catch (Exception $e) {

print $e;
}

3.9 Python Binding 43

3.9 Python Binding
Installing the pCOS edition for Python. The Python extension mechanism works by
loading shared libraries at runtime. For the pCOS binding to work, the Python interpret-
er must have access to the pCOS Python wrapper which is searched in the directories
listed in the PYTHONPATH environment variable. The name of Python wrapper de-
pends on the platform:

> Unix and OS X: pcoslib_py.so
> Windows: pcoslib_py.pyd

Error Handling in Python. The Python binding installs a special error handler which
translates pCOS errors to native Python exceptions. The Python exceptions can be dealt
with by the usual try/catch technique:

try:
...some pCOS instructions...

except pCOSException:
print("pCOS exception occurred:\n[%d] %s: %s" %

((p.get_errnum()), p.get_apiname(), p.get_errmsg()))

44 Chapter 3: pCOS Library Language Bindings

4.1 Option Lists 45

4 pCOS Library API Reference

4.1 Option Lists
Option lists are a powerful yet easy method to control PLOP operations. Instead of re-
quiring a multitude of function parameters, many API methods support option lists, or
optlists for short. These are strings which may contain an arbitrary number of options.
Optlists support various data types and composite data like arrays. In most languages
optlists can easily be constructed by concatenating the required keywords and values. C
programmers may want to use the sprintf() function in order to construct optlists. An
optlist is a string containing one or more pairs of the form

name value(s)

Names and values, as well as multiple name/value pairs can be separated by arbitrary
whitespace characters (space, tab, carriage return, newline). The value may consist of a
list of multiple values. You can also use an equal sign ’=’ between name and value:

name=value

Simple values. Simple values may use any of the following data types:
> Boolean: true or false; if the value of a boolean option is omitted, the value true is as-

sumed. As a shorthand notation noname can be used instead of name false.
> String: strings containing whitespace or ’=’ characters must be bracketed with { and }.

An empty string can be constructed with { }. The characters {, }, and \ must be preced-
ed by an additional \ character if they are supposed to be part of the string.

> Keyword: one of a predefined list of fixed keywords
> Float and integer: decimal floating point or integer numbers; point and comma can

be used as decimal separators for floating point values. Integer values can start with
x, X, 0x, or 0X to specify hexadecimal values. Some options (this is stated in the re-
spective function description) support percentages by adding a % character directly
after the value.

> Handle: several internal object handles, e.g., document or page handles. Technically
these are integer values.

Depending on the type and interpretation of an option additional restrictions may ap-
ply. For example, integer or float options may be restricted to a certain range of values;
handles must be valid for the corresponding type of object, etc. Conditions for options
are documented in their respective function descriptions. Some examples for simple
values (the first line shows a password string containing a blank character):

password={secret string}
repair=auto

List values. List values consist of multiple values, which may be simple values or list
values in turn. Lists are bracketed with { and }. Example:

searchpath={/usr/lib/pcos d:\\pcos}

Note The backslash \ character requires special handling in many programming languages

46 Chapter 4: pCOS Library API Reference

4.2 General Functions

C pCOS *pCOS_new(void)

Create a new pCOS object.

Returns A handle to a pCOS object to be used in subsequent calls. If this function doesn’t succeed
due to unavailable memory it will return NULL.

Bindings This function is not available in object-oriented language bindings since it is hidden in
the pCOS constructor.

Java void delete()
C# void Dispose()

C void pCOS_delete(pCOS *p)

Delete a pCOS object and release all related internal resources.

Details All open documents in the context are closed automatically. It is good programming
practice, however, to close documents explicitly with pCOS_close_document() when they
are no longer needed.The pCOS object must no longer be used after this function has
been called.

Bindings In object-oriented language bindings this function is generally not required since it is
hidden in the pCOS destructor. However, in Java it is available nevertheless to allow ex-
plicit cleanup in addition to automatic garbage collection. In .NET Dispose() should be
called at the end of processing to clean up unmanaged resources.

4.3 Document Functions 47

4.3 Document Functions

C++ Java C# int open_document(String filename, String optlist)
Perl PHP int open_document(string filename, string optlist)

C int pCOS_open_document(pCOS *p, const char *filename, int len, const char *optlist)

Open a PDF document.

filename (Name string, but Unicode file names are only supported on Windows) Abso-
lute or relative name of the PDF input file to be processed. The file is searched in all di-
rectories specified in the searchpath resource category. On Windows it is OK to use UNC
paths or mapped network drives.

In non-Unicode language bindings file names with len = 0 is interpreted in the cur-
rent system codepage unless they are preceded by a UTF-8 BOM, in which case they is
interpreted as UTF-8 or EBCDIC-UTF-8.

len (C language binding only) Length of filename (in bytes) for UTF-16 strings. If len = 0
a null-terminated string must be provided.

optlist An option list specifying document options according to Table 4.1.

Returns -1 (in PHP: 0) on error, or a document handle otherwise. After an error it is recommend-
ed to call pCOS_get_errmsg() to find out more details about the error.

Details If the document is encrypted its user or master password must be supplied in the
password option unless the requiredmode option has been specified.

Within a single pCOS context an arbitrary number of documents may be kept open
at the same time. However, a single pCOS context must not be used in multiple threads
simultaneously without any locking mechanism for synchronizing the access.

C++ int open_document_callback(void *opaque, size_t filesize,
size_t (*readproc)(void *opaque, void *buffer, size_t size),
int (*seekproc)(void *opaque, long offset), string optlist)

C int pCOS_open_document_callback(pCOS *p, void *opaque, size_t filesize,
size_t (*readproc)(void *opaque, void *buffer, size_t size),
int (*seekproc)(void *opaque, long offset), const char *optlist)

Open a PDF document via a user-supplied function.

opaque A pointer to some user data that might be associated with the input PDF docu-
ment. This pointer is passed as the first parameter of the callback functions, and can be
used in any way. pCOS will not use the opaque pointer in any other way.

filesize The size of the complete PDF document in bytes.

readproc A callback function which copies size bytes to the memory pointed to by
buffer. If the end of the document is reached it may copy less data than requested. The
function must return the number of bytes copied.

seekproc A callback function which sets the current read position in the document.
offset denotes the position from the beginning of the document (0 meaning the first
byte). If successful, this function must return 0, otherwise -1.

48 Chapter 4: pCOS Library API Reference

optlist An option list specifying document options according to Table 4.1.

Returns See pCOS_open_document().

Details See pCOS_open_document().

Bindings This function is only available in the C and C++ language bindings.

C++ Java C# void close_document(int doc)
Perl PHP close_document(int doc)

C void pCOS_close_document(pCOS *p, int doc)

Release a document handle and all internal resources related to that document.

doc A valid document handle obtained with pCOS_open_document*().

Details This function must be called for cleanup when processing is done, and before pCOS_
delete() is called.

Table 4.1 Document options for pCOS_open_document() and pCOS_open_document_callback()

option description

inmemory (Boolean; only for pCOS_open_document()) If true, pCOS will load the complete file into memory and
process it from there. This can result in a tremendous performance gain on some systems (especially
MVS) at the expense of memory usage. If false, individual parts of the document are read from disk as
needed. Default: false

password (String up to 32 characters; required for encrypted documents except with requiredmode) The user or
master password for encrypted documents. See the pCOS Path Reference to find out how to query a doc-
ument’s encryption status, and pCOS operations which can be applied even without knowing the user or
master password. On EBCDIC platforms the password is expected in ebcdic encoding.

repair (Keyword) Specifies how to treat damaged PDF input documents. Repairing a document takes more time
than normal parsing, but may allow processing of certain damaged PDFs. Note that some documents
may be damaged beyond repair (default: auto):
force Unconditionally try to repair the document, regardless of whether or not it has problems.
auto Repair the document only if problems are detected while opening the PDF.
none No attempt is made at repairing the document. If there are problems in the PDF the function

call will fail.

requiredmode (Keyword) The minimum pcosmode (minimum/restricted/full) which is acceptable when opening the
document. The call will fail (return -1) if the resulting pcosmode (see the pCOS Path Reference) would be
lower than the required mode. If the call succeeds it is guaranteed that the resulting pcosmode is at least
the one specified in this option. However, it may be higher; e.g. requiredmode=minimum for an unencrypt-
ed document will result in full mode. Default: full

shrug (Boolean) Access restrictions are ignored (i.e. PDF processing is allowed) in the following situation: the
document is encrypted with a master password, but only the user password (if any) has been supplied.
When permissions are ignored, the pCOS pseudo object shrug is set to true. Default: false

4.4 Exception Handling 49

4.4 Exception Handling
pCOS supplies auxiliary methods for handling library exceptions in the C language.
Other pCOS language bindings use the native exception handling system of the respec-
tive language, such as try/catch clauses. The language wrappers will pack information
about exception number, description, and API function name into the generated excep-
tion object. In the Java language binding these items can be retrieved selectively.

When a pCOS exception occurred, no other pCOS function except pCOS_delete() may
be called with the corresponding pCOS object.

The pCOS language bindings for Java and .NET define a separate pCOSException object
which offers several members to access detailed error information.

C++ Java C# int get_errnum()
Perl PHP int get_errnum()

C int pCOS_get_errnum(pCOS *p)

Get the number of the last thrown exception, or the reason for a failed function call.

Returns The exception’s error number.

Bindings In .NET this method is also available as Errnum in the pCOSException object.
In Java this method is also available as get_errnum() in the pCOSException object.

C++ Java C# String get_errmsg()
Perl PHP string get_errmsg()

C const char *pCOS_get_errmsg(pCOS *p)

Get the descriptive text of the last thrown exception, or the reason of a failed function
call.

Returns A string describing the error, or an empty string if the last API call didn’t cause any error.

Bindings In .NET this method is also available as Errmsg in the pCOSException object.
In Java this method is also available as getMessage() in the pCOSException object.

C++ Java C# String get_apiname()
Perl PHP string get_apiname()

C const char *pCOS_get_apiname(pCOS *p)

Get the name of the API function which threw the most recent exception or failed.

Returns The name of a pCOS API function.

Bindings In .NET this method is also available as Apiname in the pCOSException object.
In Java this method is also available as get_apiname() in the pCOSException object.

C pCOS_TRY(pCOS *p)

Set up an exception handling frame; must always be paired with pCOS_CATCH().

Details See »Exception handling«, page 32.

50 Chapter 4: pCOS Library API Reference

C pCOS_CATCH(pCOS *p)

Catch an exception; must always be paired with pCOS_TRY().

Details See »Exception handling«, page 32.

C pCOS_EXIT_TRY(pCOS *p)

Inform the exception machinery that a pCOS_TRY() is left without entering the corre-
sponding pCOS_CATCH() clause.

Details See »Exception handling«, page 32.

C pCOS_RETHROW(pCOS *p)

Re-throw an exception to another handler.

Details See »Exception handling«, page 32.

4.5 Logging 51

4.5 Logging
The logging feature can be used to trace API calls. The contents of the log file may be
useful for debugging purposes, or may be requested by PDFlib GmbH support. Table 4.3
lists the options for activating the logging feature with pCOS_set_option() (see Section
4.6, »Option Handling«, page 53).

The logging options can be supplied in the following ways:
> As an option list for the logging option of pCOS_set_option(), e.g.:

p.set_option("logging", "filename=debug.log remove")

> In an environment variable called PCOSLOGGING. Doing so will activate the logging
output starting with the very first call to one of the API functions.

Table 4.2 Logging-related keys for pCOS_set_option()

key explanation

logging Option list with logging options according to Table 4.3

userlog String which is copied to the log file

Table 4.3 Suboptions for the logging option of pCOS_set_option() (unsupported)

key explanation

(empty list) Enable log output after it has been disabled with disable.

disable (Boolean) Disable logging output. Default: false

enable (Boolean) Enable logging output

filename (String) Name of the log file (stdout and stderr are also acceptable). Output is appended to any existing
contents. The log file name can alternatively be supplied in an environment variable called
PCOSLOGFILENAME (in this case the option filename will always be ignored). Default: pcos.log (on Win-
dows and OS X in the / directory, on Unix in /tmp)

flush (Boolean) If true, the log file is closed after each output, and reopened for the next output to make sure
that the output will actually be flushed. This may be useful when chasing program crashes where the log
file is truncated, but significantly slows down processing. If false, the log file is opened only once.
Default: false

remove (Boolean) If true, an existing log file is deleted before writing new output. Default: false

stringlimit (Integer) Limit for the number of characters in text strings, or 0 for unlimited. Default: 0

52 Chapter 4: pCOS Library API Reference

classes (Option list) Option list where each option describes a logging class, and the corresponding value
describes the granularity level. Level 0 disables a logging class, positive numbers enable a class.
Increasing levels provide more detailed output. If no level is mentioned for a class the value 1 must be
used (initial value: api=1).
api Log all API calls with their function parameters and results. If api=2 a timestamp is created in

front of all API trace lines, and deprecated functions and options are marked. If api=3 try/
catch calls are logged (useful for debugging problems with nested exception handling).

filesearch Log all attempts related to locating files via SearchPath or PVF.
user User-specified logging output supplied with the userlog option.
warning Log all warnings, i.e. error conditions which can be ignored or fixed internally. If warning=2

messages from functions which do not throw any exception, but hook up the message text
for retrieval via pCOS_get_errmsg(), and the reason for all failed attempts at opening a file
(searching for a file in searchpath) will also be logged.

Table 4.3 Suboptions for the logging option of pCOS_set_option() (unsupported)

key explanation

4.6 Option Handling 53

4.6 Option Handling

C++ Java C# void set_option(String optlist)
Perl PHP set_option(string optlist)

C void pCOS_set_option(pCOS *p, const char *optlist)

Set one or more global options.

optlist An option list specifying global options according to Table 4.4. If an option is
provided more than once the last instance will override all previous ones. In order to
supply multiple values for a single option (e.g. searchpath) supply all values in a list ar-
gument to this option.

Details Multiple calls to this function can be used to accumulate values for those options
marked in Table 4.4. For unmarked options the new value will override the old one.

Table 4.4 Global options for pCOS_set_option()

option description

filename-
handling

(Keyword; not required on Windows) Target encoding for input file names (default: unicode on OS X, oth-
erwise honorlang):
ascii 7-bit ASCII
basicebcdic Basic EBCDIC according to code page 1047, but only Unicode values <= U+007E
basicebcdic_37

Basic EBCDIC according to code page 0037, but only Unicode values <= U+007E
honorlang The environment variables LC_ALL, LC_CTYPE and LANG are interpreted and applied to file

names if it specifies utf8, UTF-8, cpXXXX, CPXXXX, iso8859-x, or ISO-8859-x.
legacy Use auto encoding (i.e. the current system encoding) to interpret the file name and interpret

the LANG variable if the honorlang parameter is set.
unicode Unicode encoding in (EBCDIC-) UTF-8 format
all valid encoding names

Any (internal or user-defined) encoding recognized by pCOS
File names supplied in non-Unicode aware language bindings without a UTF-8 BOM and with length=0
are interpreted according to the filenamehandling option.

license (String) Set the license key. It must be set before the first call to pCOS_open_document().

licensefile (String) Set the name of a file containing the license key(s). The license file can be set only once before the
first call to pCOS_open_document(). Alternatively, the name of the license file can be supplied in an
environment variable called PDFLIBLICENSEFILE or (on Windows) via the registry.

logging1 (Option list; unsupported) An option list specifying logging output according to Table 4.3. Alternatively,
logging options can be supplied in an environment variable called PCOSLOGGING or on Windows via the
registry. An empty option list will enable logging with the options set in previous calls. If the environment
variable is set logging will start immediately after the first call to pCOS_new().

userlog (Name string) Arbitrary string which is written to the log file if logging is enabled.

54 Chapter 4: pCOS Library API Reference

searchpath1 (List of name strings) Relative or absolute path name(s) of a directory containing files to be read. The
search path can be set multiply; the entries are accumulated and used in least-recently-set order. It is
recommended to use double braces even for a single entry to avoid problems with directory names
containing space characters. An empty string list (i.e. {{}}) deletes all existing search path entries in-
cluding the default entries. On Windows the search path can also be set via a registry entry. Default:
empty

shutdown-
strategy

(Integer) Strategy for releasing global resources which are allocated once for all pCOS objects. Each global
resource is initialized on demand when it is first needed. This option must be set to the same value for all
pCOS objects in a process; otherwise the behavior is undefined (default: 0):
0 A reference counter keeps track of how many PLOP objects use the resource. When the last

pCOS object is deleted and the reference counter drops to zero, the resource is released.
1 The resource is kept until the end of the process. This may slightly improve performance, but

requires more memory after the last pCOS object is deleted.

1. Option values can be accumulated with multiple calls.

Table 4.4 Global options for pCOS_set_option()

option description

4.7 pCOS Query Functions 55

4.7 pCOS Query Functions

C++ Java C# double pcos_get_number(int doc, String path)
Perl PHP float pcos_get_number(int doc, string path)

C double pCOS_pcos_get_number(pCOS *p, int doc, const char *path, ...)

Get the value of a pCOS path with type number or boolean.

doc A valid document handle obtained with pCOS_open_document*().

path A full pCOS path for a numerical or boolean object.

Additional parameters (C language binding only) A variable number of additional pa-
rameters can be supplied if the key parameter contains corresponding placeholders (%s
for strings or %d for integers; use %% for a single percent sign). Using these parameters
will save you from explicitly formatting complex paths containing variable numerical
or string values. The client is responsible for making sure that the number and type of
the placeholders matches the supplied additional parameters.

Returns The numerical value of the object identified by the pCOS path. For Boolean values 1 is re-
turned if they are true, and 0 otherwise.

C++ Java C# String pcos_get_string(int doc, String path)
Perl PHP string pcos_get_string(int doc, string path)

C const char *pCOS_pcos_get_string(pCOS *p, int doc, const char *path, ...)

Get the value of a pCOS path with type name, number, string, or boolean.

doc A valid document handle obtained with pCOS_open_document*().

path A full pCOS path for a string, name, or boolean object.

Additional parameters (C language binding only) A variable number of additional pa-
rameters can be supplied if the key parameter contains corresponding placeholders (%s
for strings or %d for integers; use %% for a single percent sign). Using these parameters
will save you from explicitly formatting complex paths containing variable numerical
or string values. The client is responsible for making sure that the number and type of
the placeholders matches the supplied additional parameters.

Returns A string with the value of the object identified by the pCOS path. For Boolean values the
strings true or false is returned.

Details This function raises an exception if pCOS does not run in full mode and the type of the
object is string. However, the objects /Info/* (document info keys) can also be retrieved in
restricted pCOS mode if nocopy=false or plainmetadata=true, and bookmarks[...]/Title as
well as all paths starting with pages[...]/annots[...]/ can be retrieved in restricted pCOS
mode if nocopy=false.

This function assumes that strings retrieved from the PDF document are text strings.
String objects which contain binary data should be retrieved with pCOS_ pcos_get_
stream() instead which does not modify the data in any way.

56 Chapter 4: pCOS Library API Reference

Bindings C binding: The returned strings are stored in a ring buffer with up to 10 entries. If more
than 10 strings are queried, buffers are reused, which means that clients must copy the
strings if they want to access more than 10 strings in parallel. For example, up to 10 calls
to this function can be used as parameters for a printf() statement since the return
strings are guaranteed to be independent if no more than 10 strings are used at the
same time.

Bindings C language binding: The string is returned in UTF-8 format (on zSeries and i5/iSeries:
EBCDIC-UTF-8) without BOM. The returned strings are stored in a ring buffer with up to
10 entries. If more than 10 strings are queried, buffers are reused, which means that cli-
ents must copy the strings if they want to access more than 10 strings in parallel. For ex-
ample, up to 10 calls to this function can be used as parameters for a printf() statement
since the return strings are guaranteed to be independent if no more than 10 strings are
used at the same time.

C++ language binding: The string is returned as wstring in the default wstring configura-
tion of the C++ wrapper. In string compatibility mode on zSeries and i5/iSeries the result
is returned in EBCDIC-UTF-8 without BOM.

C++ Java C# final byte[] pcos_get_stream(int doc, String optlist, String path)
Perl PHP string pcos_get_stream(int doc, string optlist, string path)

C const unsigned char *pCOS_pcos_get_stream(pCOS *p, int doc, int *length, const char *optlist,
const char *path, ...)

Get the contents of a pCOS path with type stream, fstream, or string.

doc A valid document handle obtained with pCOS_open_document*().

length (C and C++ language bindings only) A pointer to a variable which will receive
the length of the returned stream data in bytes.

optlist An option list specifying options according to Table 4.5.

path A full pCOS path for a stream or string object.

Additional parameters (C language binding only) A variable number of additional pa-
rameters can be supplied if the key parameter contains corresponding placeholders (%s
for strings or %d for integers; use %% for a single percent sign). Using these parameters
will save you from explicitly formatting complex paths containing variable numerical
or string values. The client is responsible for making sure that the number and type of
the placeholders matches the supplied additional parameters.

Returns The unencrypted data contained in the stream or string. The returned data is empty (in
C and C++: NULL) if the stream or string is empty, or if the contents of encrypted attach-
ments in an unencrypted document are queried and the attachment password has not
been supplied.

If the object has type stream all filters are removed from the stream contents (i.e. the
actual raw data is returned). If the object has type fstream or string the data is delivered
exactly as found in the PDF file, with the exception of ASCII85 and ASCIIHex filters
which are removed.

In addition to decompressing the data and removing ASCII filters, text conversion
may be applied according to the convert option.

4.7 pCOS Query Functions 57

Details This function will throw an exception if pCOS does not run in full mode (see the pCOS
Path Reference). As an exception, the object /Root/Metadata can also be retrieved in re-
stricted pCOS mode if nocopy=false or plainmetadata=true. An exception will also be
thrown if path does not point to an object of type stream, fstream, or string.

Despite its name this function can also be used to retrieve objects of type string. Un-
like pCOS_pcos_get_string(), which treats the object as a text string, this function will not
modify the returned data in any way. Binary string data is rarely used in PDF, and can-
not be reliably detected automatically. The user is therefore responsible for selecting
the appropriate function for retrieving string objects as binary data or text.

Bindings COM: Most client programs will use the Variant type to hold the stream contents. Java-
Script with COM does not allow to retrieve the length of the returned variant array (but
it does work with other languages and COM).
C and C++ language bindings: The returned data buffer can be used until the next call to
this function.

Note This function can be used to retrieve embedded font data from a PDF. Users are reminded of
the fact that fonts are subject to the respective font vendor’s license agreement, and must not
be reused without the explicit permission of the respective intellectual property owners. Please
contact your font vendor to discuss the relevant license agreement.

Table 4.5 Options for pCOS_pcos_get_stream()

option description

convert (Keyword; ignored for streams which are compressed with unsupported filters) Controls whether or not
the string or stream contents are converted (default: none):
none Treat the contents as binary data without any conversion.
unicode Treat the contents as textual data (i.e. exactly as in pCOS_pcos_get_string()), and normalize

it to Unicode. In non-Unicode-aware language bindings this means the data is converted to
UTF-8 format without BOM.
This option is required for the data type »text stream« in PDF which is rarely used (e.g. it can
be used for JavaScript, although the majority of JavaScripts is contained in string objects, not
stream objects).

keepfilter (Boolean; Recommended only for image data streams; ignored for streams which are compressed with
unsupported filters) If true, the stream data is compressed with the filter which is specified in the image’s
filterinfo pseudo object (see the pCOS Path Reference). If false, the stream data is uncompressed. De-
fault: true for all unsupported filters, false otherwise

4.8 Unicode Conversion Function

C++ Java C# String convert_to_unicode(String inputformat, byte[] input, String optlist)
Perl PHP string convert_to_unicode(string inputformat, string input, string optlist)

C const char *pCOS_convert_to_unicode(pCOS *p,
const char *inputformat, const char *input, int inputlen, int *outputlen, const char *optlist)

Convert a string in an arbitrary encoding to a Unicode string in various formats.

inputformat Unicode text format or encoding name specifying interpretation of the
input string:

> Unicode text formats: utf8, ebcdicutf8, utf16, utf16le, utf16be, utf32
> An encoding name
> The keyword auto specifies the following behavior: if the input string contains a

UTF-8 or UTF-16 BOM it is used to determine the appropriate format, otherwise the
current system codepage is assumed.

input String to be converted to Unicode.

inputlen (C language binding only) Length of the input string in bytes. If inputlen=0 a
null-terminated string must be provided.

outputlen (C language binding only) C-style pointer to a memory location where the
length of the returned string (in bytes) is stored.

optlist An option list specifying options according to Table 4.6:
> Input filter options: charref, escapesequence
> Unicode conversion options: bom, errorpolicy, inflate, outputformat

Returns A Unicode string created from the input string according to the specified parameters
and options. If the input string does not conform to the specified input format (e.g. in-
valid UTF-8 string) an empty output string is returned if errorpolicy=return, and an ex-
ception is thrown if errorpolicy=exception.

Details This function may be useful for general Unicode string conversion. It is provided for the
benefit of users working in environments which do not provide suitable Unicode con-
verters.

Bindings C binding: the returned strings is stored in a ring buffer with up to 10 entries. If more
than 10 strings are converted, the buffers is reused, which means that clients must copy
the strings if they want to access more than 10 strings in parallel. For example, up to 10
calls to this function can be used as parameters for a printf() statement since the return
strings are guaranteed to be independent if no more than 10 strings are used at the
same time.

C++ binding: The parameters inputformat and optlist must be passed as wstrings as usual,
while input and returned data must have type string.
Python binding: UTF-8 results is returned as a string, Python 3: non-UTF-8 results is re-
turned as bytes.

4.8 Unicode Conversion Function 59

Table 4.6 Options for TET_convert_to_unicode()

option description

charref (Boolean) If true, enable substitution of numeric and character entity references and glyph name refer-
ences. Default: false

bom (Keyword; ignored for outputformat=utf32; for Unicode-aware language bindings only none is allowed)
Policy for adding a byte order mark (BOM) to the output string. Supported keywords (default: none):
add Add a BOM.
keep Add a BOM if the input string has a BOM.
none Don’t add a BOM.
optimize Add a BOM except if outputformat=utf8 or ebcdicutf8 and the output string contains only

characters in the range < U+007F.

errorpolicy (Keyword) Behavior in case of conversion errors (default: exception):
return The replacement character U+FFFD is used if a character reference cannot be resolved or a

builtin code or glyph ID doesn’t exist in the specified font. An empty string is returned in case
of conversion errors.

exception An exception is thrown in case of conversion errors.

escape-
sequence

(Boolean) If true, enable substitution of escape sequences in strings. Default: false

inflate (Boolean; only for inputformat=utf8; is ignored if outputformat=utf8) If true, an invalid UTF-8 input
string will not trigger an exception, but rather an inflated byte string in the specified output format is
generated. This may be useful for debugging. Default: false

output-
format

(Keyword) Unicode text format of the generated string: utf8, ebcdicutf8, utf16, utf16le, utf16be,
utf32. An empty string is equivalent to utf16. Default: utf16
Unicode-aware language bindings: the output format is forced to utf16.
C++ language binding: only the following output formats are allowed: ebcdicutf8, utf8, utf16,
utf32.

60 Chapter 4: pCOS Library API Reference

4.9 PDFlib Virtual Filesystem (PVF)

C++ void create_pvf(string filename, const void *data, size_t size, string optlist)
Java C# void create_pvf(String filename, byte[] data, String optlist)

Perl PHP create_pvf(string filename, string data, string optlist)
C void pCOS_create_pvf(pCOS *p,

const char *filename, int len, const void *data, size_t size, const char *optlist)

Create a named virtual read-only file from data provided in memory.

filename (Name string) The name of the virtual file. This is an arbitrary string which
can later be used to refer to the virtual file in other pCOS calls.

len (C language binding only) Length of filename (in bytes) for UTF-16 strings. If len=0
a null-terminated string must be provided.

data A reference to the data for the virtual file. In COM this is a variant of byte con-
taining the data comprising the virtual file. In C and C++ this is a pointer to a memory
location. In Java this is a byte array. In Perl and PHP this is a string.

size (C and C++ only) The length in bytes of the memory block containing the data.

optlist An option list according to Table 4.7. The following option can be used: copy

Details The virtual file name can be supplied to any API function which uses input files. Some
of these functions may set a lock on the virtual file until the data is no longer needed.
Virtual files is kept in memory until they are deleted explicitly with pCOS_delete_pvf(),
or automatically in pCOS_delete().

Each pCOS object will maintain its own set of PVF files. Virtual files cannot be shared
among different pCOS objects. Multiple threads working with separate pCOS objects do
not need to synchronize PVF use. If filename refers to an existing virtual file an excep-
tion is thrown. This function does not check whether filename is already in use for a reg-
ular disk file.

Unless the copy option has been supplied, the caller must not modify or free (delete)
the supplied data before a corresponding successful call to pCOS_delete_pvf(). Not obey-
ing to this rule will most likely result in a crash.

Table 4.7 Options for pCOS_create_pvf()

option description

copy (Boolean) pCOS will immediately create an internal copy of the supplied data. In this case the caller may
dispose of the supplied data immediately after this call. The copy option will automatically be set to true
in the COM, .NET, and Java bindings (default for other bindings: false). In other language bindings the
data will not be copied unless the copy option is supplied.

4.9 PDFlib Virtual Filesystem (PVF) 61

C++ Java C# int delete_pvf(String filename)
Perl PHP int delete_pvf(string filename)

C int pCOS_delete_pvf(pCOS *p, const char *filename, int len)

Delete a named virtual file and free its data structures (but not the contents).

filename (Name string) The name of the virtual file as supplied to pCOS_create_pvf().

len (C language binding only) Length of filename (in bytes) for UTF-16 strings. If len=0
a null-terminated string must be provided.

Returns -1 if the corresponding virtual file exists but is locked, and 1 otherwise.

Details If the file isn’t locked, pCOS will immediately delete the data structures associated with
filename. If filename does not refer to a valid virtual file this function will silently do
nothing. After successfully calling this function filename may be reused. All virtual files
will automatically be deleted in pCOS_delete().

The detailed semantics depend on whether or not the copy option has been supplied
to the corresponding call to pCOS_create_pvf(): If the copy option has been supplied,
both the administrative data structures for the file and the actual file contents (data) is
freed; otherwise, the contents will not be freed, since the client is supposed to do so.

C++ Java C# int info_pvf(String filename, String keyword)
Perl PHP int info_pvf(string filename, string keyword)

C int pCOS_info_pvf(pCOS *p, const char *filename, int len, const char *keyword)

Query properties of a virtual file or the PDFlib Virtual File system (PVF).

filename (Name string) The name of the virtual file. The filename may be empty if
keyword=filecount.

len (C language binding only) Length of filename (in bytes) for UTF-16 strings. If len=0 a
null-terminated string must be provided.

keyword A keyword according to Table 4.8.

Details This function returns various properties of a virtual file or the PDFlib Virtual File sys-
tem (PVF). The property is specified by keyword.

Table 4.8 Keywords for pCOS_info_pvf()

option description

filecount Total number of files in the PDFlib Virtual File system maintained for the current pCOS object. The
filename parameter is ignored.

exists 1 if the file exists in the PDFlib Virtual File system (and has not been deleted), otherwise 0

size (Only for existing virtual files) Size of the specified virtual file in bytes.

iscopy (Only for existing virtual files) 1 if the copy option was supplied when the specified virtual file was creat-
ed, otherwise 0

lockcount (Only for existing virtual files) Number of locks for the specified virtual file set internally by pCOS func-
tions. The file can only be deleted if the lock count is 0.

62 Chapter 4: pCOS Library API Reference

63

Index

A
API (Application Programming Interface)

reference 45

C
C binding 32
C++ and .NET 39
C++ binding 34
CLI 34
COM binding 36
command-line tool: see pCOS command-line tool

19
commercial license 8
cookbook 16
CSV (comma-separated values) format 13

D
dictionary: querying contained keys 14
document and page functions 47

E
evaluation version 5
examples

extended mode 12
extracting data 11
pCOS library calls 16
raw pCOS paths 15
simple 9

Excel 13
exception handling 31

functions 49
in C 32

I
installing pCOS 5

J
J2EE application servers 37
Java binding 37

L
license key 6
list values in option lists 45

N
.NET binding 39

O
option handling functions 53
option lists 45

P
pCOS

exception handling functions 49
option handling functions 53
query functions 55
Unicode conversion function 58

pCOS command-line tool 19
binary data 29
encrypted PDF 20
examples with raw pCOS paths 15
exit codes 20
extended output mode examples 12
extracting data from PDF 11
file names 19
input options 22
option handling 21
output options 27
retrieval options 23
simple output mode examples 9
Unicode output 29

pCOS Cookbook 16
pCOS library API reference 45
pCOS_CATCH() 50
pCOS_close_document() 48
pCOS_convert_to_unicode() 58
pCOS_create_pvf() 60
pCOS_delete_pvf() 61
pCOS_delete() 46
pCOS_EXIT_TRY() 32, 50
pCOS_get_apiname() 49
pCOS_get_errmsg() 49
pCOS_get_errnum() 49
pCOS_info_pvf() 61
pCOS_new() 46
pCOS_open_document_callback() 47
pCOS_open_document() 47
pCOS_pcos_get_number() 55
pCOS_pcos_get_stream() 56
pCOS_pcos_get_string() 55
pCOS_RETHROW() 50
pCOS_set_option() 53
pCOS_TRY() 49

64

Perl binding 40
PHP binding 41
Python binding 43

Q
query functions 55

R
response file 19

S
servlets 37
spreadsheets: creating output for 13

U
Unicode conversion function 58

A pCOS Library Quick Reference 65

A pCOS Library Quick Reference
The following tables contain an overview of all pCOS API functions. The prefix (C) de-
notes C prototypes of functions which are not available in the Java language binding.

Setup Functions

Exception Handling Functions

Document Functions

pCOS Query Functions

Option Handling

Unicode Conversion Function

PVF Functions

Function prototype page
(C) pCOS *pCOS_new(void) 46
void delete() 46

Function prototype page
String get_apiname() 49
String get_errmsg() 49
int get_errnum() 49

Function prototype page
int open_document(String filename, String optlist) 47
void close_document(int doc) 48

Function prototype page
double pcos_get_number(int doc, String path) 55
String pcos_get_string(int doc, String path) 55
final byte[] pcos_get_stream(int doc, String optlist, String path) 56

Function prototype page
void set_option(String optlist) 53

Function prototype page
String convert_to_unicode(String inputformat, byte[] input, String optlist) 58

Function prototype page
void create_pvf(String filename, byte[] data, String optlist) 60
int delete_pvf(String filename) 61
int info_pvf(String filename, String keyword) 61

66 Chapter B: Revision History

B Revision History

Revision history of this manual

Date Changes

August 02, 2013 > Updates for pCOS 4.0

October 29, 2010 > Updates for pCOS 3.0

July 22, 2010 > Moved the pCOS reference for pCOS interface version 6 to a separate manual for
use in multiple products

December 07, 2009 > Updates for pCOS interface 5 in PDFlib+PDI 8, PPS 8

February 01, 2009 > Updates for pCOS interface 4 in PLOP 4.0, TET 3.0, TET PDF IFilter 3.0

October 19, 2007 > Updates for pCOS interface 3 in pCOS 2.0

March 28, 2006 > Added a description of the Perl language binding

September 30, 2005 > Edition for pCOS interface 2 in pCOS 1.0

June 20, 2005 > Edition for pCOS interface 1 in TET 2.0

ABC

PDFlib GmbH
Franziska-Bilek-Weg 9
80339 München, Germany
www.pdflib.com
phone +49 • 89 • 452 33 84-0
fax +49 • 89 • 452 33 84-99

If you have questions check the PDFlib mailing list
and archive at tech.groups.yahoo.com/group/pdflib

Licensing contact
sales@pdflib.com

Support
support@pdflib.com (please include your license number)

http://tech.groups.yahoo.com/group/pdflib

	Contents
	0 First Steps with pCOS
	0.1 Installing the Software
	0.2 Applying the pCOS License Key

	1 pCOS Examples
	1.1 For Starters: simple Mode
	1.2 Extracting Data from PDF
	1.3 For advanced Applications: extended Mode
	1.4 For Experts: raw pCOS Paths
	1.5 For Programmers: pCOS Library Calls

	2 pCOS Command-Line Reference
	2.1 Option Processing and Exit Codes
	2.2 Option Handling
	2.3 Input Options
	2.4 Options for Retrieving PDF Elements
	2.5 Advanced Retrieval Options
	2.6 Output Options
	2.7 Unicode Output and Binary Data

	3 pCOS Library Language Bindings
	3.1 Exception Handling
	3.2 C Binding
	3.3 C++ Binding
	3.4 COM Binding
	3.5 Java Binding
	3.6 .NET Binding
	3.7 Perl Binding
	3.8 PHP Binding
	3.9 Python Binding

	4 pCOS Library API Reference
	4.1 Option Lists
	4.2 General Functions
	4.3 Document Functions
	4.4 Exception Handling
	4.5 Logging
	4.6 Option Handling
	4.7 pCOS Query Functions
	4.8 Unicode Conversion Function
	4.9 PDFlib Virtual Filesystem (PVF)

	Index
	A pCOS Library Quick Reference
	B Revision History

