
ABC

pCOS Path Reference
PDF Information Retrieval Tool

pCOS Interface 13

Copyright © 2005–2021 PDFlib GmbH. All rights reserved.

PDFlib GmbH
Franziska-Bilek-Weg 9, 80339 München, Germany
www.pdflib.com
phone +49 • 89 • 452 33 84-0

sales@pdflib.com
support@pdflib.com (please include your license number)

This publication and the information herein is furnished as is, is subject to change without notice, and
should not be construed as a commitment by PDFlib GmbH. PDFlib GmbH assumes no responsibility or lia-
bility for any errors or inaccuracies, makes no warranty of any kind (express, implied or statutory) with re-
spect to this publication, and expressly disclaims any and all warranties of merchantability, fitness for par-
ticular purposes and noninfringement of third party rights.

PDFlib and the PDFlib logo are registered trademarks of PDFlib GmbH. PDFlib licensees are granted the
right to use the PDFlib name and logo in their product documentation. However, this is not required.

https://www.pdflib.com
mailto:sales@pdflib.com
mailto:support@pdflib.com

Contents 3

Contents
1 Introduction 5

1.1 What is pCOS? 5
1.2 Roadmap to Documentation and Samples 5
1.3 Availability of the pCOS Interface 6

2 pCOS Examples 7

2.1 pCOS Functions 7
2.2 Document 9
2.3 Pages 11
2.4 Fonts 12
2.5 Raster Images 13
2.6 ICC Profiles 14
2.7 Interactive Elements 15

3 pCOS Data Types 17

3.1 Basic PDF Data Types 17
3.2 Composite Data Structures 19
3.3 Object Identifiers (IDs) 21

4 pCOS Path Reference 23

4.1 pCOS Paths 23
4.2 Universal Pseudo Objects 26
4.3 Pseudo Objects for PDF Standard Identification 29
4.4 Pseudo Objects for Pages 30
4.5 Pseudo Objects for PDF Objects and interactive Elements 31
4.6 Pseudo Objects for Signatures 33
4.7 Pseudo Objects for ICC Profiles 34
4.8 Pseudo Objects for PDF Resources 35

5 pCOS Security Model 39

A Revision History 41

Index 43

1.1 What is pCOS? 5

1 Introduction
1.1 What is pCOS?

The pCOS (PDFlib Comprehensive Object Syntax) interface provides a simple facility for re-
trieving information from all sections of a PDF document which do not describe page
contents, such as page dimensions, metadata, interactive elements, etc. pCOS users are
assumed to have some basic knowledge of internal PDF structures and dictionary keys,
but do not have to deal with PDF syntax and parsing details. We strongly recommend
that pCOS users obtain a copy of the PDF Reference. Since the standardization of PDF 1.7
in 2008 the PDF Reference is available as ISO 32000-1.The PDF 2.0 standard is available
as ISO 32000-2.

1.2 Roadmap to Documentation and Samples
We provide the material listed below to assist you in using pCOS successfully.

Mini sample for all language bindings. The dumper mini sample (in PDFlib: starter_
pcos) is available in all packages and for all language bindings. It provides minimal sam-
ple code for using pCOS. The mini sample is useful for testing your pCOS installation
and for getting a quick overview of pCOS applications.

pCOS Path Reference. The pCOS Path Reference (this manual) contains examples and a
concise description of the pCOS path syntax which forms the heart of the pCOS inter-
face. Since the pCOS interface is included in several PDFlib GmbH products, the pCOS
Path Reference can be used with all products that include pCOS.

Corresponding Product Manual. The pCOS interface is available as an integrated part
the following PDFlib GmbH products:

> PDFlib+PDI
> PDFlib Personalization Server (PPS)
> PDFlib TET (Text and Image Extraction Toolkit)
> PDFlib TET PDF IFilter
> PDFlib PLOP
> PDFlib PLOP DS

Each product comes with one or more additional product-specific manuals which de-
scribe the use of the respective programming library and the corresponding command-
line tool if applicable. The product manual covers the programming languages which
are supported by a product and discusses the API in detail.

The PLOP/PLOP DS package also contains the pCOS command-line tool which allows
you to use pCOS without any programming. It is discussed in a separate manual.

pCOS Cookbook. The pCOS Cookbook is a collection of code fragments for the pCOS in-
terface. It is available at the following URL:

www.pdflib.com/pcos-cookbook/

https://www.pdflib.com/pcos-cookbook/

6 Chapter 1: Introduction

The pCOS Cookbook details the use of pCOS for a variety of applications. It is highly rec-
ommended because it serves as a repository of useful pCOS programming idioms.

1.3 Availability of the pCOS Interface
As the pCOS interface is extended and new features are added, the pCOS interface num-
ber is increased. Table 1.1 details the pCOS interface numbers which are implemented in
various product versions

Some aspects of the pCOS interface are available only in the TET product, but not in oth-
er products. These features are explicitly marked in this manual.

Table 1.1 pCOS interface versions implemented in PDFlib GmbH products

pCOS
interface PDFlib GmbH product name and version

12 PLOP 5.3/5.4, PLOP DS 5.3/5.4
TET 5.2/5.3, TET PDF IFilter 5.2/5.3

13 PDFlib+PDI 10, PPS 10

2.1 pCOS Functions 7

2 pCOS Examples
This chapter provides examples for pCOS paths which can be used to retrieve the corre-
sponding values from PDF documents. More elaborate examples which require addi-
tional program logic are available in the pCOS Cookbook on the PDFlib Web site.

Except where noted otherwise all programming examples are presented in the Java
language. However, with the obvious changes (mostly of syntactic nature) the examples
can be used with all programming languages supported by pCOS.

The examples shown in this chapter are not comprehensive. Many more pCOS appli-
cations are possible by using other PDF objects.

2.1 pCOS Functions
Basic pCOS function calls. The following functions are the workhorses for querying
PDF documents with pCOS:

> pcos_get_number() retrieves objects of type number or boolean;
> pcos_get_string() retrieves objects of type name, number, string, or boolean;
> pcos_get_stream() retrieves objects of type stream, fstream, or string.

These functions can be used to retrieve information from a PDF document using the
pCOS path syntax. The basic structure of a pCOS application looks as follows:

/* Open the PDF document */
int doc = p.open_document(filename, "");
if (doc == -1)

throw new Exception("Error: " + p.get_errmsg());

/* Retrieve the value of a pCOS pseudo object */
System.out.println(" PDF version: " + p.pcos_get_string(doc, "pdfversionstring"));

p.close_document(doc);

The parameters for the pCOS functions are the same in all products. They are docu-
mented in the respective product reference manuals.

Adding program logic. Many pCOS objects consist of arrays of some length. The length
can be retrieved with the length: prefix. The array can then be indexed with integer val-
ues in the range 0 up to length-1. The following code queries the number of fonts in a
document and emits the type and name of each font:

count = (int) p.pcos_get_number(doc, "length:fonts");

for (i = 0; i < count; i++) {
 String fonts;

 System.out.print(p.pcos_get_string(doc, "fonts[" + i + "]/type") + " font ");
 System.out.println(p.pcos_get_string(doc, fonts[" + i + "]/name));
}

Formatting placeholders in C. The C language binding offers a convenience feature to
facilitate the use of parameters within a pCOS path. Analogous to the formatting pa-
rameters of the printf() family of functions you can use %s and %d placeholders for

8 Chapter 2: pCOS Examples

string and integer parameters, respectively. The values of these parameters must be
added as additional function parameters after the pCOS path. pCOS will replace the
placeholders with the actual values. This feature is particularly useful for paths contain-
ing array indices.

For example, the Java idiom above for listing all fonts can be written in C as follows:

count = (int) PDF_pcos_get_number(p, doc, "length:fonts");

for (i = 0; i < count; i++)
{
 printf("%s font ", PDF_pcos_get_string(p, doc, "fonts[%d]/type", i));
 printf("%s\n", PDF_pcos_get_string(p, doc, "fonts[%d]/name", i));
}

Since modern programming languages offer more sophisticated string handling func-
tions this feature is only available in the C language binding, but not any other lan-
guage binding.

2.2 Document 9

2.2 Document
Table 2.1 lists pCOS paths for general and document-related objects.

Encryption status and pCOS mode. You can query the pcosmodename pseudo object to
determine the pCOS mode for the document. This is important to avoid an exception
when an attempt is made at retrieving information for which no access is granted (e.g.
because the document is encrypted and no suitable password has been supplied). The
following general structure based on values of pcosmodename is recommended for all
pCOS applications:

/* Open the PDF document */
int doc = p.open_document(filename, "requiredmode=minimum");
if (doc == -1)

throw new Exception("Error: " + p.get_errmsg());

String pcosmode = (int) p.pcos_get_string(doc, "pcosmodename");
boolean plainmetadata = p.pcos_get_number(doc, "encrypt/plainmetadata") != 0;

// Retrieve universal pseudo objects which are always available
System.out.println(" PDF version: " + p.pcos_get_string(doc, "pdfversionstring"));
System.out.println(" Encryption: " + p.pcos_get_string(doc, "encrypt/description"));

// encrypted document, but suitable password or digital ID was not supplied
if (pcosmode.equals("minimum"))
{
 System.out.println("Minimum mode: no more information available\n");
 p.delete();
 return;
}

// otherwise query more information
System.out.println("PDF/A status: " + p.pcos_get_string(doc, "pdfa"));

// no master password supplied; we cannot retrieve metadata
if (pcosmode.equals("restricted") &&

!plainmetadata && p.pcos_get_number(doc, "encrypt/nocopy") != 0)

Table 2.1 pCOS paths for document-related items

pCOS path type explanation

pcosmodename string pCOS mode of the document, i.e. its encryption status (see Chapter 5,
»pCOS Security Model«, page 39)

pdfversionstring string string representing the PDF version number of the document

/Info/Title string Document info field Title; The following field names are predefined in
PDF and can be used in a similar manner:
Title, Author, Subject, Keywords, Creator, Producer,
CreationDate, ModDate, Trapped

/Info/ArticleNumber string custom document info field ArticleNumber (document info entries can
use arbitrary names)

/Root/Metadata stream XMP stream with the document’s metadata

pdfa, pdfe, pdfua,
pdfvt, pdfx

string PDF/A, PDF/E, PDF/UA, PDF/VT or PDF/X standard conformance status

10 Chapter 2: pCOS Examples

{
 System.out.print("Restricted mode: no more information available");
 p.delete();
 return;
}

// otherwise we can query document information fields and XMP metadata
...

p.close_document(doc);

PDF version. The following code fragment emits the PDF version number of a docu-
ment:

System.out.println(" PDF version: " + p.pcos_get_string(doc, "pdfversionstring"));

Document info fields. Document information fields can be retrieved with the follow-
ing code sequence. In order to make sure that an object actually exists in the PDF docu-
ment and has the expected type we first check its type. If the object is present and has
type string we can retrieve it:

objtype = p.pcos_get_string(doc, "type:/Info/Title");
if (objtype.equals("string"))
{

/* Document info key found */
title = p.pcos_get_string(doc, "/Info/Title");

}

XMP metadata. A stream containing XMP metadata can be retrieved with the follow-
ing code sequence:

objtype = p.pcos_get_string(doc, "type:/Root/Metadata");
if (objtype.equals("stream"))
{

/* XMP meta data found */
metadata = p.pcos_get_stream(doc, "", "/Root/Metadata");

}

PDF standards. The PDF/A, PDF/E, PDF/UA, PDF/VT or PDF/X standard conformance
status can be queried with simple pCOS pseudo objects as follows:

System.out.println("PDF/A status: " + p.pcos_get_string(doc, "pdfa"));
System.out.println("PDF/E status: " + p.pcos_get_string(doc, "pdfe"));
System.out.println("PDF/UA status: " + p.pcos_get_string(doc, "pdfua"));
System.out.println("PDF/VT status: " + p.pcos_get_string(doc, "pdfvt"));
System.out.println("PDF/X status: " + p.pcos_get_string(doc, "pdfx"));

2.3 Pages 11

2.3 Pages
Table 2.2 lists pCOS paths for page-related objects.

Number of pages. The total number of pages in a document can be queried as follows:

pagecount = p.pcos_get_number(doc, "length:pages");

Page size. Although the MediaBox, CropBox, and Rotate entries of a page can directly be
obtained via pCOS, they must be evaluated in combination in order to find the actual
size of a page. Determining the page size is much easier with the width and height keys
of the pages pseudo object. The following code retrieves the width and height of page 3
(note that indices for the pages pseudo object start at 0):

pagenum = 2; // page 3 (0-based)
width = p.pcos_get_number(doc, "pages[" + pagenum + "]/width");
height = p.pcos_get_number(doc, "pages[" + pagenum + "]/height");

Transparency. Page transparency may be relevant for printing and other processes.
You can identify pages with transparent elements with the usespagetransparency key of
the pages pseudo object:

pagenum = 0; // page 1 (0-based)
if (p.pcos_get_number(doc, "pages[" + pagenum + "]/usespagetransparency"))
{

...page contains transparent elements...
}

Table 2.2 pCOS paths for page-related items

pCOS path type explanation

length:pages number number of pages in the document

pages[...]/width
pages[...]/height

number width and height of the page indexed in the array (keep in mind that array
index are 0-based)

12 Chapter 2: pCOS Examples

2.4 Fonts
Table 2.3 lists pCOS paths for objects related to fonts.

Listing all fonts. The following sequence creates a list of all fonts in a document along
with their embedding status:

count = p.pcos_get_number(doc, "length:fonts");
for (i=0; i < count; i++)
{

fontname = p.pcos_get_string(doc, "fonts[" + i + "]/name");
 embedded = p.pcos_get_number(doc, "fonts[" + i + "]/embedded");

/* ... */
}

Writing mode. The following code fragment checks whether a font uses vertical writ-
ing mode. The font is identified via its id, i.e. the index in the fonts array. This id can be
obtained by enumerating all possible index values:

count = p.pcos_get_number(doc, "length:fonts");
for (i=0; i < count; i++)
{

if (p.pcos_get_number(doc, "fonts[" + id + "]/vertical"))
{

/* font uses vertical writing mode */
vertical = true;

}
}

TET The TET product also provides font IDs with the get_char_info() function.

Font metrics. Fonts in PDF may contain a font descriptor dictionary with metrics val-
ues and other information about the font:

count = p.pcos_get_number(doc, "length:fonts");
for (i=0; i < count; i++)
{

ascender = p.pcos_get_number(doc, "fonts[" + i + "]/ascender");
 descender = p.pcos_get_number(doc, "fonts[" + i + "]/descender");

/* ... */
}

Table 2.3 pCOS paths for font-related properties

pCOS path type explanation

length:fonts number number of fonts in the document

fonts[...]/name string name of a font

fonts[...]/vertical boolean check a font for vertical writing mode

fonts[...]/embedded boolean embedding status of a font

fonts[...]/ascender
fonts[...]/descender

number ascender/descender value of a font (not always available, see code sample
below)

2.5 Raster Images 13

2.5 Raster Images
Table 2.4 lists pCOS paths for objects related to raster images.

Listing all images. Similar to the font list you can create a list of all images in the docu-
ment:

count = p.pcos_get_number(doc, "length:images");
for (i=0; i < count; i++)
{

width = p.pcos_get_string(doc, "images[" + i + "]/Width");
 height = p.pcos_get_number(doc, "images[" + i + "]/Height");

bpc = p.pcos_get_number(doc, "images[" + i + "]/bpc");
}

Table 2.4 pCOS paths for image-related properties

pCOS path type explanation

length:images number number of raster images in the document

images[...]/Width number image width in pixels

images[...]/Height number image height in pixels

14 Chapter 2: pCOS Examples

2.6 ICC Profiles
Table 2.5 lists some pCOS paths for objects related to ICC profiles. See Table 4.9 for the
full list.

Listing all ICC profiles. You can report details about all ICC profiles in the document as
follows:

count = (int) p.pcos_get_number(doc, "length:iccprofiles");
for (int i = 0; i < count; i++)
{

System.out.print("profile " + i + ":");

errmsg = p.pcos_get_string(doc, "iccprofiles[" + i + "]/errormessage");

/* Check for ICC profile parsing problems */
if (!errmsg.equals(""))
{

System.out.println(" " + errmsg);
continue;

}

System.out.print(" name='" +
p.pcos_get_string(doc, "iccprofiles[" + i + "]/profilename") + "',");

System.out.print(" cs='" +
p.pcos_get_string(doc, "iccprofiles[" + i + "]/profilecs") + "',");

System.out.print(" class='" +
p.pcos_get_string(doc, "iccprofiles[" + i + "]/deviceclass") + "',");

System.out.print(" version=" +
p.pcos_get_string(doc, "iccprofiles[" + i + "]/iccversion"));

System.out.println();
}

The output looks similar to the following:

profile 0: name='ISO Coated v2 300% (ECI)', cs='CMYK', class='prtr', version=2.0
profile 1: name='eciRGB v2', cs='RGB ', class='mntr', version=2.4
profile 2: name='Adobe RGB (1998)', cs='RGB ', class='mntr', version=2.1
profile 3: name='sRGB IEC61966-2.1', cs='RGB ', class='mntr', version=2.1
profile 4: name='PSO Uncoated ISO12647 (ECI)', cs='CMYK', class='prtr', version=2.4

Table 2.5 pCOS paths for properties related to ICC profiles

pCOS path type explanation

length:iccprofiles number number of ICC profiles in the document (output intent, color spaces and
transparency groups)

iccprofiles[...]/profilename string Internal name of the ICC profile

iccprofiles[...]/deviceclass string Device class of the ICC profile (display device, output device, etc.)

2.7 Interactive Elements 15

2.7 Interactive Elements
Table 2.6 lists pCOS paths for objects related to interactive elements.

Bookmarks. The following code fragment queries the bookmarks in the document. For
each bookmark its nesting level, destination (target) page and Title are shown:

int count = (int) p.get_number(doc, "length:bookmarks");

for (int i = 0; i < count; ++i) {
 int level = (int) p.get_number(doc, "bookmarks[" + i + "]/level");
 int destpage = (int) p.get_number(doc, "bookmarks[" + i + "]/destpage");

 for (int j = 0; j < level * 4; j += 1) {
System.out.print(" ");

 }

 System.out.print(p.get_string(doc, "bookmarks[" + i + "]/Title"));

 if (destpage != -1) {
System.out.print(": page " + destpage);

 }
}

Table 2.6 pCOS paths for various PDF objects

pCOS path type explanation

length:bookmarks number number of bookmarks in the document

bookmarks[...]/Title string bookmark text

bookmarks[...]/destpage number number of the target page when the bookmark is activated, or -1 if the
bookmark does not jump to any page in the document

pages[...]/annots[...]/A/URI string target URL of the Web links on all pages

length:fields number number of form fields in the document

16 Chapter 2: pCOS Examples

3.1 Basic PDF Data Types 17

3 pCOS Data Types
3.1 Basic PDF Data Types

pCOS offers the three functions pcos_get_number(), pcos_get_string(), and pcos_get_
stream(). These can be used to retrieve all basic data types which may appear in PDF doc-
uments. Refer to the PDF Reference to find out the data type of a particular object in
PDF.

Numbers. Objects of type integer and real can be queried with pcos_get_number(). pCOS
doesn’t make any distinction between integer and floating point numbers. Example:

/* get number of pages in the document */
int n_pages = (int) p.pcos_get_number(doc, "length:pages");

Names and strings. Objects of type name and string can be queried with pcos_get_
string(). Example:

string title = p.pcos_get_string(doc, "/Info/Title");

String objects in PDF may be encoded in PDFDocEncoding, UTF-16BE with BOM or (start-
ing with PDF 2.0) UTF-8 with BOM. pCOS detects the encoding and applies the appropri-
ate conversion.

Name objects in PDF may contain non-ASCII characters and the #xx syntax (hexadec-
imal value with prefix) to include certain special characters. pCOS deals with PDF names
as follows:

> Name objects are undecorated (i.e. the #xx syntax is resolved)..
> Name objects are returned as Unicode strings in most language bindings. In the C

language binding they are returned as UTF-8 values without BOM.

Since the majority of strings in PDF are text strings, pcos_get_string() will treat them as
such. However, in rare situations strings in PDF are used to carry binary information. In
this case strings should be retrieved with the function pcos_get_stream() which pre-
serves binary strings and does not modify the contents in any way. Example:

byte[] signature = p.pcos_get_stream(doc, "", "signaturefields[0]/V/Contents");

Booleans. Objects of type boolean can be queried with pcos_get_number() and are re-
turned as 1 (true) or 0 (false). Example:

int linearized_i = p.pcos_get_number(doc, "linearized");

pcos_get_string() can also be used to query Boolean objects; in this case they are re-
turned as one of the strings true and false. Example:

string linearized_s = p.pcos_get_string(doc, "linearized");

Streams. Objects of type stream can be queried with pcos_get_stream(). Example:

byte[] contents = p.pcos_get_stream(doc, "", "/Root/Metadata");

18 Chapter 3: pCOS Data Types

Stream data in PDF may be preprocessed with one or more compression filters. Depend-
ing on the pCOS data type (stream or fstream) the contents are compressed or uncom-
pressed. Using the keepfilter option of pcos_get_stream() the client can retrieve com-
pressed data even for type stream.

The list of filters present at the stream can be queried from the stream dictionary; for
images this information is much easier accessible in the image’s filterinfo dictionary. If a
stream’s filter chain contains only supported filters its type is stream. When retrieving
the contents of a stream object, pcos_get_stream() will remove all filters and return the
resulting unfiltered data.

Note pCOS does not support the JBIG2 stream compression filter.

If there is an unsupported filter in a stream’s filter chain, the object type is reported as
fstream (filtered stream). When retrieving the contents of an fstream object, pcos_get_
stream() will remove the supported filters at the beginning of a filter chain, but will
keep the remaining unsupported filters and return the stream data with the remaining
unsupported filters still applied. The list of applied filters can be queried from the
stream dictionary, and the filtered stream contents can be retrieved with pcos_get_
stream(). Note that the names of supported filters are not removed when querying the
names of the stream’s filters, so the client should ignore the names of supported filters.

Streams in PDF generally contain binary data. However, in rare cases (text streams)
they may contain textual data instead (e.g. JavaScript streams). In order to trigger the
appropriate text conversion, use the convert=unicode option in pcos_get_stream().

Stream objects are implicitly also dictionary objects, i.e. the entries in the dictionary
which is associated with the PDF stream object can be queried by appending the dictio-
nary key (e.g. /Length) to the pCOS path of the stream object.

3.2 Composite Data Structures 19

3.2 Composite Data Structures
Objects with one of the basic data types can be arranged in two kinds of composite data
structures: arrays and dictionaries. pCOS does not offer specific functions for retrieving
composite objects. Instead, the objects which are contained in a dictionary or array can
be addressed and retrieved individually.

Arrays. Arrays are one-dimensional collections of any number of objects, where each
object may have arbitrary type. Since an array may contain nested arrays multi-dimen-
sional data structures can be represented as well.

The contents of an array can be enumerated by querying the number N of elements
it contains (using the length prefix in front of the array’s path) and then iterating over
all elements from index 0 to N-1.

Dictionaries. Dictionaries (also called associative arrays) contain an arbitrary number
of object pairs. The first object in each pair has the type name and is called the key. The
second object is called the value, and may have an arbitrary type except null.

The contents of a dictionary can be enumerated by querying the number N of ele-
ments it contains (using the length prefix in front of the dictionary’s path) and then it-
erating over all elements from index 0 to N-1. Enumerating dictionaries will provide all
dictionary keys in the order in which they are stored in the PDF using the .key suffix at
the end of the dictionary’s path. Similarly, the corresponding values can be enumerated
with the .val suffix. Inherited values (see below) and pseudo objects will not be visible
when enumerating dictionary keys, and will not be included in the length count.

Some page-related dictionary entries in PDF can be inherited across a tree-like data
structure, which makes it difficult to retrieve them. For example the MediaBox for a
page is not guaranteed to be contained in the page dictionary, but may be inherited
from an arbitrarily complex page tree. pCOS eliminates this problem by transparently
inserting all inherited keys and values into the dictionaries in the pages[] pseudo ob-
ject. In other words, pCOS users can assume that all inheritable entries are available di-
rectly in a dictionary, and don’t have to search all relevant parent entries in the tree.
This merging of inherited entries is only available when accessing the pages tree via the
pages[] pseudo object; accessing the /Pages tree, the objects[] pseudo object, or enumer-
ating the keys via pages[][] will return the actual entries which are present in the re-
spective dictionary, without any inheritance applied.

Reading dictionary entries. The following example enumerates the key/value pairs in
the document info dictionary:

count = (int) p.pcos_get_number(doc, "length:/Info");

for (i = 0; i < count; i++) {
String info;
String key;

info = "type:/Info[" + i + "]";
objtype = p.pcos_get_string(doc, info);

info = "/Info[" + i + "].key";
key = p.pcos_get_string(doc, info);
System.out.print(key + ": ");

20 Chapter 3: pCOS Data Types

/* Info entries can be stored as string or name objects */
if (objtype.equals("name") || objtype.equals("string"))
{

info = "/Info[" + i + "]";
System.out.println("'" + p.pcos_get_string(doc, info) + "'");

}
}

3.3 Object Identifiers (IDs) 21

3.3 Object Identifiers (IDs)
pCOS IDs for dictionaries and arrays. Unlike PDF object IDs, pCOS IDs are guaranteed
to provide a unique identifier for an element addressed via a pCOS path (since arrays
and dictionaries can be nested an object can have the same PDF object ID as its parent
array or dictionary). pCOS IDs can be retrieved with the pcosid prefix in front of the dic-
tionary’s or array’s path.

The pCOS ID can therefore be used as a shortcut for repeatedly accessing elements
without the need for explicit path addressing. This improves the performance when
looping over all elements of a large array. Use the objects[] pseudo object to retrieve the
contents of an element identified by a particular ID.

4.1 pCOS Paths 23

4 pCOS Path Reference
4.1 pCOS Paths

Path syntax. The backbone of the pCOS interface is a simple path syntax for address-
ing and retrieving any object contained in a PDF document. In addition to the object
data itself pCOS can retrieve information about an object, e.g. its type or length. De-
pending on the object type (which itself can be queried) one of the methods pcos_get_
number(), pcos_get_string(), and pcos_get_stream() can be used to obtain the value of an
object. The general syntax for pCOS paths is as follows:

[<prefix>:][pseudoname[<index>]]/<name>[<index>]/<name>[<index>] ... [.key|.val]

The meaning of the various path components is as follows:
> The optional prefix can be used to query various attributes of an object (as opposed

to its value). Table 4.1 lists all supported prefixes.
> The optional pseudo object name may contain the name of a pseudo object. Pseudo

objects are not present in PDF, but are supported in pCOS to provide convenient
shortcuts to information which cannot easily be accessed by reading a single value
in the PDF document. The entries in pseudo objects of type dict cannot be enumerat-
ed.

> The name components are dictionary keys found in the document. Multiple names
are separated with a / character. pCOS paths start with an entry in the document’s
Trailer dictionary or some artificial object, called pseudo object, added by pCOS to
simplify access to various data structures (e.g. pages). Each name must be a dictio-
nary key present in the preceding dictionary. Full paths describe the chain of dictio-
nary keys from the initial dictionary (which may be the Trailer or a pseudo object) to
the target object.

> Paths or path components specifying an array or dictionary can include a numerical
index which must be specified in decimal format between brackets. Nested arrays or
dictionaries can be addressed with multiple index entries. The first entry in an array
or dictionary has index 0.

> Paths or path components specifying a dictionary can include an index plus one of
the suffixes .key or .val. This can be used to retrieve a particular dictionary key or the
corresponding value of the indexed dictionary entry, respectively. If a path for a dic-
tionary object includes an index but none of these suffixes, .val is assumed.

Encoding for pCOS paths. Most pCOS paths contain only plain ASCII characters. How-
ever, in a few cases (e.g. PDFlib Block names) non-ASCII characters may be required.
pCOS paths must be encoded according to the following rules:

> In Unicode-aware language bindings the path consists of a Unicode string which
may contain ASCII and non-ASCII characters.

> In non-Unicode-aware language bindings the path must be supplied in UTF-8. A
BOM may be placed at the start of the path or at the start of individual path compo-
nents (i.e. after a slash character). On EBCDIC systems the path must be supplied in
EBCDIC-UTF-8 with optional BOM.

24 Chapter 4: pCOS Path Reference

Processing keys with the special characters /, [,] and #. In some situations the key in
a dictionary or name tree may contain the special characters /, [,], or # which play a role
in the pCOS path syntax. Common examples for user-defined strings as keys are custom
document info entries (in the /Info dictionary) and named destinations (in the names/
Dests pseudo dictionary). This situation can be handled in two ways:

> Avoid the conflict by enumerating all dictionary entries numerically. This is demon-
strated in the dumper/starter_pcos sample for document info entries.

> In order to retrieve a single particular entry by name the pCOS path must be con-
structed carefully in order to avoid the conflict: if a path component contains any of
the characters /, [,], or #, these must be expressed (»quoted«) by a number sign # fol-
lowed by a two-digit hexadecimal ASCII code, i.e. #2F, #5B, #5D. Quoting is not al-
lowed if the special character is used as syntax element, i.e. for separating path com-
ponents or bracketing a numerical index. The # character itself can be represented as
#23. For example, the literal sequence #2F must be quoted as #232F. As a convenience
feature for C users the %q placeholder (pCOS interface 12) in pCOS API functions can
be used. It operates similar to the %s placeholder for strings, but additionally applies
the # quoting syntax to all special characters in the supplied string.

For example, retrieving a document info entry called number/sku would require the
pCOS path /Info/number/sku where the / character in the name of the key conflicts with

Table 4.1 pCOS path prefixes

prefix explanation

length (Number; not for pseudo objects of type dictionary) Length of an object, which depends on the
object’s type:
array Number of elements in the array
dict Number of key/value pairs in the dictionary
stream Number of key/value pairs in the stream dictionary (not the stream length; use the

Length key to determine the length of compressed stream; retrieve the stream data to
determine the length of the uncompressed stream)

fstream Same as stream
other 0

pcosid (Number; not for pseudo objects) Unique pCOS ID for an object of type dictionary or array.
If the path describes an object which doesn’t exist in the PDF the result is -1. This can be used to
check for the existence of an object and at the same time obtaining an ID if it exists.

type (Number or string) Type of the object as number or string:
0, null Null object or object not present (use to check existence of an object). This value is also

returned if a PDF syntax error was encountered while trying to access the object
specified in the path.

1, boolean Boolean object
2, number Integer or floating point number
3, name Name object
4, string String object
5, array Array object
6, dict Dictionary object (but not stream)
7, stream Stream object which uses only supported filters
8, fstream Stream object which uses one or more unsupported filters
Enums for the numerical type identifiers are available for the convenience of C and C++ develop-
ers (pcos_ot_null etc.).

4.1 pCOS Paths 25

the / character as path separator. Instead, the quoted string /Info/number#2Fsku must be
used. In the C language binding this can be achieved as follows:

PDF_pcos_get_string(p, doc, "/Info/%q", "number/sku");

In other language bindings the quoting can be achieved with common string replace-
ment methods.

26 Chapter 4: pCOS Path Reference

4.2 Universal Pseudo Objects
Universal pseudo objects are available for all pcosmode levels, i.e. regardless of encryp-
tion and password availability. Table 4.2, Table 4.3, and Table 4.4 together list all univer-
sal pseudo objects.

4.2.1 General Document Information

Table 4.2 Universal pseudo objects for general document information

object name explanation

encrypt (Dictionary) Dictionary with keys describing the encryption status of the document:
length (Number) Length of the file encryption key in bits
algorithm (Number)
description (String) pCOS encryption algorithm number or description:

-1 Unknown encryption
0 No encryption
1 40-bit RC4 (Acrobat 2-4) (deprecated)
2 128-bit RC4 (Acrobat 5) (deprecated)
3 128-bit RC4 (Acrobat 6) (deprecated)
4 128-bit AES (Acrobat 7)
5 Public key on top of 128-bit RC4 (Acrobat 5) (deprecated)
6 Public key on top of 128-bit AES (Acrobat 7)
7 Adobe Policy Server (Acrobat 7)1 (proprietary)
8 Adobe Digital Editions (EBX)1 (proprietary)
9 256-bit AES (Acrobat 9) (deprecated)
10 Public key on top of 256-bit AES (Acrobat 9)
11 256-bit AES (Acrobat X/XI/DC)
12 Public key on top of 128-bit RC4 (Acrobat 6) (deprecated)

master (Boolean) True if the document is password-protected and requires a master password to
change security settings (permissions, user or master password), false otherwise

user (Boolean) True if the document is password-protected and requires a user password for
opening, false otherwise

attachment
(Boolean) True if the document requires a password for extracting attachments (but not for
opening), false otherwise

noaccessible, noannots, noassemble, nocopy, noforms, nohiresprint, nomodify, noprint
(Boolean) True if the respective access protection is set, false otherwise. In full pCOS mode all
values are false; in pCOS minimum mode all values are true.
Certificate security: These values apply to the recipient digital ID which has been supplied for
opening the document and all other recipients in the same group.

plainmetadata
(Boolean) True if the document is encrypted with password or certificate security, but
contains unencrypted metadata, false otherwise

recipients (Array of strings) Each string contains a CMS object with encrypted keys for a group of one or
more recipients with identical permissions. If length:encrypt/recipients is different from 0
the document is encrypted with certificate security (algorithm 5, 6, 10, or 12) and requires a
suitable digital ID for opening in restricted or full pCOS mode. Since each CMS object may
contain one or more recipients the array length does not necessarily indicate the total
number of recipients.

filename (String) Name of the PDF file

filesize (Number) Size of the PDF file in bytes

linearized (Boolean) True if the PDF document is linearized, false otherwise

4.2 Universal Pseudo Objects 27

4.2.2 PDF Version Information

In pCOS minimum mode (i.e. a required user password is not available for an encrypted
file) the ExtensionLevel may be missing from the version information (e.g. 1.7 is reported
instead of 1.7ext3) because information about the Extension Level cannot be decrypted.

pcosmode
pcosmode-
name

(Number or string) pCOS mode as number or string:
0, minimum
1, restricted
2, full

revisions (Number) Number of document revisions included in the PDF, where each revision is described by an in-
cremental PDF update section. If a document contains multiple signatures each signature is applied in a
separate update section, but an update section may also contain other changes, e.g. annotations added
or deleted, form fields filled in, etc. The first signature does not necessarily add an incremental PDF up-
date.

shrug (Boolean; only in the products TET, PDFlib+PDI, PPS, PLOP, PLOP DS) True if and only if security settings
were ignored when opening the PDF document; the client must take care of honoring the document au-
thor’s intentions. The value is true if the following conditions are true:
> Shrug mode has been enabled with the shrug option.
> Password security: the document has a master password but this has not been supplied, and the user

password (if required for the document) has been supplied.
> Certificate security: a suitable recipient digital ID has been supplied for opening the document, but the

document does not set master permission for this ID.
> TET product only: content extraction is not allowed in the document’s permission settings.

1. Documents encrypted with this algorithm can be identified, but actual decryption is not supported.

Table 4.3 Universal pseudo objects for PDF version information

object name explanation

extension-
level

(Number) Adobe Extension Level based on ISO 32000, or 0 (zero) if no extension level is present. Acrobat 9
creates extension level 3; Acrobat X/XI/DC create extension level 8.

fullpdf-
version

(Number) Numerical value for the PDF version number as 100 * BaseVersion + ExtensionLevel, e.g.
150 PDF 1.5 (Acrobat 6)
160 PDF 1.6 (Acrobat 7)
170 PDF 1.7 (Acrobat 8) = ISO 32000-1
173 PDF 1.7 Adobe Extension Level 3 (Acrobat 9)
178 PDF 1.7 Adobe Extension Level 8 (Acrobat X/XI/DC)
200 PDF 2.0 = ISO 32000-2

pdfversion (Number) PDF version number multiplied by 10, e.g. 17 for PDF 1.7

pdfversion-
string

(String) Full PDF version string in the form expected by various API functions for setting the PDF output
compatibility, e.g. 1.5, 1.6, 1.7, 1.7ext3, 1.7ext8, 2.0

Table 4.2 Universal pseudo objects for general document information

object name explanation

28 Chapter 4: pCOS Path Reference

4.2.3 Library Identification
The pseudo objects in this section do not require any valid document handle.

Table 4.4 Universal pseudo objects for library identification

object name explanation

major
minor
revision

(Number) Major, minor, or revision number of the library, respectively

pcosinterface (Number) Interface version number of the underlying pCOS implementation. See Section 1.3, »Availability
of the pCOS Interface«, page 6, to learn which version of the pCOS interface is implemented in a particu-
lar product version.

version (String) Full library version string in the format <major>.<minor>.<revision>, possibly suffixed with ad-
ditional qualifiers such as beta

4.3 Pseudo Objects for PDF Standard Identification 29

4.3 Pseudo Objects for PDF Standard Identification
Table 4.5 lists pseudo objects for PDF standard identification. The values of these pseudo
objects are created based on the respective standard identification entries in the docu-
ment. They do not apply any validation against the standard.

Table 4.5 Pseudo objects for PDF standard identification

object name explanation

pdfa (String) PDF/A (ISO 19005) conformance level. Possible values:
none

PDF/A-1a:2005, PDF/A-1b:2005
PDF/A-2a, PDF/A-2b, PDF/A-2u
PDF/A-3a, PDF/A-3b, PDF/A-3u
PDF/A-4, PDF/A-4f, PDF/A-4e (pCOS interface 12)

pdfe (String) PDF/E (ISO 24517-1 and 24517-2) conformance level. Possible values:
none

PDF/E-1

pdfua (String) PDF/UA (ISO 14289) conformance level. Possible values:
none

PDF/UA-1

PDF/UA-2 (pCOS interface 12)

pdfvcr (String; pCOS interface 12) PDF/VCR (ISO 16613-1) conformance level. Possible values:
PDF/VCR-1

PDF/VCR-2

pdfvt (String) PDF/VT (ISO 16612-2) conformance level. Possible values:
none

PDF/VT-1

PDF/VT-2

PDF/VT-3 (pCOS interface 12)

pdfx (String) PDF/X (ISO 15930-1 etc.) conformance level. Possible values:
none

PDF/X-1:2001, PDF/X-1a:2001, PDF/X-1a:2003
PDF/X-2:2003

PDF/X-3:2002, PDF/X-3:2003
PDF/X-4, PDF/X-4p
PDF/X-5g, PDF/X-5n, PDF/X-5pg
PDF/X-6, PDF/X-6n, PDF/X-6p (pCOS interface 12)

30 Chapter 4: pCOS Path Reference

4.4 Pseudo Objects for Pages
Table 4.6 lists the pseudo objects for page information.

Table 4.6 Pseudo object for pages

object name explanation

pages (Array of dictionaries) Each array element addresses a page of the document. Indexing it with the deci-
mal representation of the page number minus one addresses that page (the first page has index 0). Using
the length prefix the number of pages in the document can be determined. The /MediaBox and /Rotate
entries are guaranteed to be present. In addition to standard PDF dictionary entries the following pseudo
entries are available for each page:
colorspaces, extgstates, fonts, images, patterns, properties, shadings, templates

(Arrays of dictionaries) Page resources according to Table 4.10.
annots (Array of dictionaries) In addition to the standard PDF keys in the Annots array pCOS supports

the following pseudo key for dictionaries in the annots array:
destpage (Number; only for Subtype=Link and if a Dest entry or a GoTo action is present)

Number of the target page (first page is 1)
blocks (Dictionary of dictionaries, or array of dictionaries) Shorthand for pages[]/PieceInfo/

PDFlib/Private/Blocks, i.e. the page’s list of Blocks for use with PDFlib Personalization
Server (PPS). In addition to the existing PDF keys pCOS supports the following pseudo key for
dictionaries in the blocks array:
rect (Rectangle) Similar to Rect, except that it takes into account any relevant

CropBox/MediaBox and Rotate entries and normalizes coordinate ordering.
An individual Block in the blocks pseudo object can be addressed numerically or via its name.
For example, assuming Block 5 (remember that Block indices are 0-based) has the name
zipcode it can be addressed as pages[...]/blocks[5] or pages[...]/blocks/zipcode.

height (Number) Height of the page in points. The MediaBox or CropBox (if present) is used to
determine the height. Rotate entries are also applied.

fields (Array of dictionaries) Array with dictionaries for the form fields on the page. The same pseu-
do dictionary keys as for the global fields[] array are supported (see Table 4.7, page 31). For
signature fields the same pseudo dictionary keys as for the signaturefields[] array are also
supported (Table 4.8, page 33).

isempty (Boolean) True if the page is empty
label (String) The page label of the page (including any prefix which may be present). Labels are

displayed as in Acrobat. If no label is present the string contains the decimal page number.
Roman numbers are created in Acrobat style (e.g. VL), not in classical style which is different
(e.g. XLV).

usespagetransparency1

(Boolean) True if the page contents include any transparent elements, false otherwise.
usesanytransparency1

(Boolean) True if the page contents or any annotation on the page includes any transparent
elements, false otherwise.

width (Number) Width of the page in points (same rules as for height)
The following entries are inherited: CropBox, MediaBox, Resources, Rotate.

1. These checks report transparency found in the resources of a page (e.g. Form XObjects, images), regardless of whether or not these
resources are actually used for creating visible page content. Transparency is defined as in the PDF/VT standard.

4.5 Pseudo Objects for PDF Objects and interactive Elements 31

4.5 Pseudo Objects for PDF Objects and interactive
Elements
Table 4.7 lists pseudo objects which can be used for retrieving PDF objects or serve as
shortcuts to various interactive elements.

Table 4.7 Pseudo objects for PDF objects and interactive elements

object name explanation

articles (Array of dictionaries) Array containing article thread dictionaries for the document. In addition to the
standard PDF keys pCOS supports the following pseudo key for dictionaries in the articles array:
beads (Array of dictionaries) Bead directory with the standard PDF keys, plus the following:

destpage (Number) Number of the target page (first page is 1)

bookmarks (Array of dictionaries) Array containing the bookmark (outlines) dictionaries for the document. In addi-
tion to the standard PDF keys pCOS supports the following pseudo keys for dictionaries in the bookmarks
array:
destpage (Number; only if a Dest entry or a GoTo action is present) Number of the target page (first

page is 1) if the bookmark contains a destination or GoTo action which points to a page in the
same document, -1 otherwise.

level (Number) Indentation level in the bookmark hierarchy

destpage (Number) Number of the target page (first page is 1) which is displayed when the document is opened.
The value is taken from the destination in the document’s open action if present, otherwise 1

fields (Array of dictionaries) Array containing the form field dictionaries for the document. In addition to the
standard PDF keys in the field dictionary and the keys in the associated Widget annotation dictionary
pCOS supports the following pseudo keys for dictionaries in the fields array:
exportvalue1(String) Export value of the field
fullname (String) Complete name of the form field. For unnamed fields the name of the parent field is

used. If there are multiple unnamed siblings on the same level, the name is suffixed with #N,
where N is a consecutive integer starting at 0.

level (Number) Level in the field hierarchy (determined by ».« as separator)
parent (Number) Index of the field’s parent node in the fields[] array; if the field doesn’t have a

parent field, this value is -1
type (String) Field type: barcode, container (node in the form tree which does not represent a field

on its own, but only serves as a container for other fields which are not radio buttons),
checkbox, combobox, listbox, pushbutton, radiobutton, radiogroup (container of radio
buttons), signature, textfield

value1 (Various types) Field value obtained from the V key or from the Opt array for radio buttons
and checkboxes

visible (Boolean) True if the field is visible.

32 Chapter 4: pCOS Path Reference

names (Dictionary containing dictionaries) A dictionary where each entry provides simple access to a name tree
as dictionary. The following name trees are supported: AP, AlternatePresentations, Dests, Embed-
dedFiles, IDS, JavaScript, Pages, Renditions, Templates, URLS.
The elements in each name tree dictionary can be enumerated using its length. For each element in a
name tree, e.g. names/Dests[0], the key and the corresponding value can be retrieved, e.g.:
names/Dests[0].key retrieves the name of a destination
names/Dests[0].val retrieves the corresponding destination dictionary
The value corresponding to a known key can be retrieved directly, e.g. names/Dests/D.1234.
In addition to standard PDF dictionary entries the following pseudo key for dictionaries in the Dests
names tree is supported:
destpage (number) Number of the target page (first page is 1) if the destination points to a page in the

same document or a remote document (for GoToR actions), -1 otherwise.
In order to retrieve other name tree entries these must be queried directly via /Root/Names/Dests etc.
since they are not present in the name tree pseudo objects.

objects (Array) Address an element for which a pCOS ID has been retrieved earlier using the pcosid prefix. The ID
must be supplied as array index in decimal form; as a result, the PDF object with the supplied ID is ad-
dressed. The length prefix cannot be used with this array.

tagged (Boolean) True if the PDF document is tagged, false otherwise

1. This pseudo object is not always available. Its existence must be checked with the type prefix.

Table 4.7 Pseudo objects for PDF objects and interactive elements

object name explanation

4.6 Pseudo Objects for Signatures 33

4.6 Pseudo Objects for Signatures
Table 4.8 lists pseudo objects which can be used for retrieving signature-related infor-
mation. Since pCOS always processes the final state of a PDF document with incremen-
tal updates, it ignores signatures which have been applied in earlier incremental up-
dates.

Table 4.8 Pseudo objects for signatures

object name explanation

signaturefields (Array of dictionaries) Array containing all signed and unsigned signature field dictionaries in the docu-
ment. The array contains all signed fields in the order of signing, and then all unsigned fields. In addition
to the entries in the signature field’s corresponding entry in the fields[] pseudo object pCOS supports
the following pseudo keys for dictionaries in this array:
cades (Boolean) True if the field is signed and contains a CAdES signature, otherwise false
field (Integer) Index of the corresponding form field in the fields[] array
fillablefields

(Boolean; only for sigtype=certification) True if the certification signature protects form
fields, otherwise false

permissions (String; only for sigtype=certification) Document changes which are allowed without
invalidating the certification signature: nochanges, formfilling, formsandannotations

preventchanges
(Boolean; only for sigtype=certification)True if the certification signature instructs Acro-
bat to hide user interface elements which would invalidate the signature if used

sigtype (String) Type of signature: none (for unsigned fields), approval, certification, or doctime-
stamp

usagerights (Boolean) True if the document contains signed usage rights; such documents are also known as Reader-
enabled.

34 Chapter 4: pCOS Path Reference

4.7 Pseudo Objects for ICC Profiles
Table 4.9 lists pseudo objects for embedded and referenced ICC profiles.

Table 4.9 Pseudo objects for embedded and referenced ICC profiles

object name explanation

iccprofiles (Array of dictionaries) Array containing all embedded and referenced ICC profiles in the document. The
profiles are collected from document and page output intents, color spaces and page transparency
groups. The index into this array can be obtained with the following pCOS pseudo objects:
colorspaces[]/iccprofileid
pages[]/colorspaces[]/iccprofileid

/Root/OutputIntents[]/DestOutputProfile/iccprofileid

/Root/OutputIntents[]/DestOutputProfileRef/iccprofileid

pages[]/OutputIntents[]/DestOutputProfile/iccprofileid (pCOS interface 13)
pages[]/OutputIntents[]/DestOutputProfileRef/iccprofileid (pCOS interface 13)
pCOS supports the following keys for dictionaries in this array:
checksum1 (String) Hexadecimal representation of the MD5 checksum of the profile according to the ICC

4.2 algorithm. If an external profile is referenced as output intent, the checksum is taken from
the PDF entry CheckSum which is defined as plain MD5 hash, i.e. different from the ICC 4.2
method.

deviceclass1,2

(String) Device class of the profile: mntr (display device), prtr (output device, such as printer
or printing process), scnr (input device such as scanner or digital camera) or spac (for
converting to a device-independent color space)

embedded (Boolean) True if the profile data is embedded in the PDF, false for referenced profiles (only
for output intent profiles)

errormessage
(String) Text of the exception which may have occurred while parsing the ICC profile. This
string is usually empty, but will be populated if the profile is damaged.

fromCIE1,2 (Boolean) True if the BtoA1 tag is present in the profile. This tag must be present in profiles
used for a color space or an output intent.

iccversion1 (String) Internal profile version number as string, e.g. 4.2
profilecs1 (String) Internal colorspace of the profile: »GRAY«, »RGB «, »CMYK«, or »Lab «. Note that the

trailing space character is not removed. For a referenced PDF/X-5n output intent profile the
value »xCLR«is returned where x denotes the hexadecimal number of colorants.

profilename1

(String) Internal name of the profile
toCIE1,2 (Boolean) True if the AtoB1 tag is present in the profile. This tag must be present in profiles

used for a transparency group; it may optionally be present in profiles used for an output
intent for print proofing (simulated output device).

1. Only available if errormessage is empty.
2. Only available for embedded profiles.

4.8 Pseudo Objects for PDF Resources 35

4.8 Pseudo Objects for PDF Resources
PDF resources are a key concept for managing various kinds of data which are required
for completely describing the contents of a page. The resource concept in PDF is very
powerful and efficient, but complicates access with various technical concepts, such as
recursion and inheritance. pCOS greatly simplifies resource retrieval and supplies sev-
eral groups of pseudo objects which can be used to directly query resources. Some of
these pseudo resource dictionaries contain entries in addition to the standard PDF keys
in order to further simplify resource information retrieval. pCOS pseudo resources re-
flect resources from the user’s point of view, and differ from native PDF resources:

> Some entries may have been added (e.g. inline images, simple color spaces) or delet-
ed (e.g. fonts which are not used on any page).

> In addition to the original PDF dictionary keys pCOS resource dictionaries may con-
tain some user-friendly keys for auxiliary information (e.g. embedding status of a
font, number of components of a color space).

pCOS supports two groups of pseudo objects for resource retrieval. Global resource ar-
rays contain all resources of a given type in a PDF document, while page-based resourc-
es contain only the resources used by a particular page. The corresponding pseudo ar-
rays are available for all resource types listed in Table 4.10:

> A list of all resources in the document is available in the global resource array (e.g.
images[]). Retrieving the length of one of the global resource pseudo arrays results in
a resource scan for all pages.

> A list of resources on each page is available in the page-based resource array (e.g.
pages[]/images[]). Accessing the length of one of a page’s resource pseudo arrays re-
sults in a resource scan for that page (to collect all resources which are actually used
on the page, and to merge images on that page).

The document option pcosengines can be used to disable collection of some or all re-
source types (see corresponding product manual for details). In this case the arrays cor-
responding to a disabled engine will be empty.

36 Chapter 4: pCOS Path Reference

Table 4.10 Pseudo objects for resources; each resource category P creates two resource arrays P[] and pages[]/P[].

object name explanation

colorspaces (Array of dictionaries; however, for name=ICCBased the type is stream; in the rare case of device-depen-
dent color spaces as resources the type is name) Array containing dictionaries or streams for all color spac-
es on the page or in the document. Color space resources include all color spaces which are referenced
from any type of object, including the color spaces which do not require native PDF resources (i.e.
DeviceGray, DeviceRGB, and DeviceCMYK). In addition to the standard PDF keys in color space dictionar-
ies (if the color space is represented by a dictionary in PDF) and ICC profile stream dictionaries the follow-
ing pseudo keys are supported:
alternateid (Integer; only for name=Separation and DeviceN) Index of the underlying alternate color

space in the colorspaces[] pseudo object
baseid (Integer; only for name=Indexed and Pattern) Index of the underlying base color space in the

colorspaces[] pseudo object
colorantname

(Name; only for name=Separation) Name of the spot color.
colorantnames

(Array of names; only for name=DeviceN) Names of the spot colors
components

(Integer) Number of components of the color space
iccprofileid (Integer; only for name=ICCBased) Index of the corresponding ICC profile in the

iccprofiles[] pseudo object
name (String) Name of the color space: CalGray, CalRGB, DeviceCMYK, DeviceGray, DeviceN,

DeviceRGB, ICCBased, Indexed, Lab, Pattern, Separation
csarray (Array; not for name=DeviceGray/RGB/CMYK) Array describing the underlying native color

space, i.e. the native color space object in the PDF. This pseudo object is not available for JPX-
compressed images without any PDF colorspace.

extgstates (Array of dictionaries) Array containing the dictionaries for all extended graphics states (ExtGStates) on
the page or in the document

fonts (Array of dictionaries) Array containing dictionaries for all fonts on the page or in the document. In addi-
tion to the standard PDF keys in font dictionaries the following pseudo keys are supported:
ascender (Float) Ascender of the font. Depending on the availability the value is taken from the

FontDescriptor dictionary in PDF or an estimated value. The value is expressed relative to a
font scaling factor of 1000, i.e. 1000 units refer to the full fontsize.

TET product: in addition to dictionary values in PDF, embedded fonts and fonts installed on
the Mac or Windows system are parsed in order to determine font metrics values. Results of
font parsing are only available after calling TET_get_char_info() with a glyph in this font. In
other words, using font ids returned by TET_get_char_info() is safe, while enumerating all
fonts in the fonts[] array does not necessarily provide metrics values from embedded font
data, but the possibly inaccurate values from the PDF font descriptor.

capheight (Float) Capheight of the font; see ascender
italicangle (Float) Italic (slant) angle of the font in degrees
name (String) PDF name of the font without any subset prefix.
descender (Float) Descender of the font; see ascender
embedded (Boolean) Embedding status of the font
fullname (String) PDF name of the font including subset prefix if present.
type (String) Font type: (unknown), Composite, OpenType, TrueType, TrueType (CID), Type 1, Type

1 (CID), Type 1 CFF, Type 1 CFF (CID), Type 3
vertical (Boolean) true for fonts with vertical writing mode, false otherwise
weight (Float) Font weight in the range 0...900: 0=no information available, 400=normal, 700=bold
xheight (Float) X height of the font; see ascender

4.8 Pseudo Objects for PDF Resources 37

images (Array of streams) Array containing dictionaries for all images on the page or in the document. The TET
product adds merged (artificial) images to the images[] array. In addition to the standard PDF keys the
following pseudo keys are supported:
bpc (Integer) Number of bits per component. This entry is identical to the PDF key BitsPer-

Component, but unlike this it is guaranteed to be available. For JPX-compressed images the
bpc value is derived from the compressed data and may report values outside the set of
values which are allowed in PDF image dictionaries (i.e. 1/2/4/8/16).

colorspaceid
(Integer) Index of the image’s color space in the colorspaces[] pseudo object. It can be used
to retrieve detailed color space properties. If no PDF colorspace is present for a JPX-
compressed image, the internal JPEG 2000 colorspace is reported. The reported colorspace
may be inaccurate since ICC profiles are ignored for JPX images. Internal JPEG 2000 color-
spaces are mapped to one of Lab/DeviceGray/RGB/CMYK.
For mask images the id of DeviceGray is returned.

filterinfo (Dictionary) Describes the remaining filter for streams with unsupported filters or when
retrieving stream data with the keepfilter option set to true. If there is no such filter no
filterinfo dictionary is available. The dictionary contains the following entries:
name (Name) Name of the filter
supported (Boolean) True if the filter is supported
decodeparms

(Dictionary) DecodeParms dictionary if present for the filter
inline (Boolean; pCOS interface 12; only available in TET) True for inline images, otherwise false, i.e.

Image XObjects and artificial images.
maskid (Integer; only available in TET) Index of the image’s mask in the images[] pseudo object if

the image has a Mask or SMask entry; otherwise -1. It can be used to identify masked images
and to retrieve properties of the mask.

mergetype (Integer; only available in TET) The following types describe the status of the image:
0 (normal) The image corresponds to an image in the PDF.
1 (artificial) The image is the result of merging multiple consumed images (i.e. im-

ages with mergetype=2) into a single image. The resulting artificial image does
not exist in the PDF data structures as an object.

2 (consumed) The image should be ignored since it has been merged into a larger
image. Although the image exists in the PDF, it usually should not be extracted
because it is part of an artificial image (i.e. an image with mergetype=1).

small (Boolean; only available in TET) Describes whether the image has been filtered by size (too
small or too large). The decision depends on TET options.

stencilmask (Boolean; only available in TET) The image's stencil mask flag. Merged images have this flag
set if all consumed images also have it set. This flag is identical to the PDF key ImageMask if
present, but unlike this key it is guaranteed to be always available.

patterns (Array of dictionaries) Array containing dictionaries for all patterns on the page or in the document

properties (Array of dictionaries) Array containing dictionaries for all properties on the page or in the document

shadings (Array of dictionaries) Array containing dictionaries for all shadings on the page or in the document. In
addition to the standard PDF keys in shading dictionaries the following pseudo key is supported:
colorspaceid

(Integer) Index of the underlying color space in the colorspaces[] pseudo object

templates (Array of streams) Array containing dictionaries for all templates (Form XObjects) on the page or in the
document

Table 4.10 Pseudo objects for resources; each resource category P creates two resource arrays P[] and pages[]/P[].

object name explanation

38 Chapter 4: pCOS Path Reference

 39

5 pCOS Security Model
Protected PDF documents and pCOS mode. pCOS supports encrypted and unencrypt-
ed PDF documents as input. However, full object retrieval for encrypted documents re-
quires the appropriate master password or digital ID to be supplied when opening the
document. Depending on the availability of these credentials encrypted documents
can be processed in one of the pCOS modes described below.

Full pCOS mode (mode 2). Unencrypted documents are always opened in full pCOS
mode. Documents protected with password security can be processed without any re-
striction if the master password has been supplied upon opening the file. All objects are
returned unencrypted.

If an unencrypted document contains encrypted file attachments, but the attach-
ment password has not been supplied, retrieving the following pCOS paths (i.e. the at-
tachment contents) results in an empty return value (in C and C++: NULL):

pages[...]/annots[...]/FS/EF/F
names/EmbeddedFiles[...]/EF/F

(pCOS interface 11) Documents protected with certificate security are opened in full
pCOS mode if a suitable digital ID has been supplied and the document sets master per-
mission for this ID.

Restricted pCOS mode (mode 1). If the document has been opened without the appro-
priate master password and does not require a user password (or only the user pass-
word has been supplied) objects with type string, stream, or fstream cannot be retrieved.
As an exception, if extraction of page contents is allowed, i.e. if nocopy=false the objects
listed in Table 5.1 are also accessible.

Table 5.1 Objects which are accessible in restricted pCOS mode if text extraction is allowed, i.e. if nocopy=false

object pCOS path

document metadata1

1. These objects can also be retrieved if plainmetadata=true

/Root/Metadata (XMP Metadata)
/Root/Lang

/Info/* (document info fields)

bookmarks bookmarks[...]/Title

annotation contents all paths starting with pages[...]/annots[...]

document-level file attachments all paths starting with names/EmbeddedFiles[...]

form field contents
(pCOS interface 12)

all paths starting with one of the following strings:
fields[...]

pages[...]/fields[...]

signaturefields[...]

page labels (pCOS interface 12) all paths starting with pages[...]/label

40 Chapter 5: pCOS Security Model

(pCOS interface 11) Documents protected with certificate security are opened in restrict-
ed pCOS mode if a suitable digital ID has been supplied and the document does not set
master permission for this ID.

Minimum pCOS mode (mode 0). Regardless of encryption status and availability of
passwords, the universal pCOS pseudo objects listed in Table 4.2, Table 4.3, and Table 4.4
are always available. For example, the encrypt pseudo object can be used to query a doc-
ument’s encryption status. Encrypted objects can not be retrieved in minimum pCOS
mode.

(pCOS interface 11) Documents protected with certificate security are opened in min-
imum pCOS mode if no suitable digital ID has been supplied, i.e. no digital ID with a pri-
vate key corresponding to one of the recipients’ public keys.

In pCOS minimum mode the ExtensionLevel may be missing from the version infor-
mation reported by the extensionlevel, fullpdfversion, pdfversion, and pdfversionstring
pseudo objects (e.g. 1.7 is reported instead of 1.7ext3) or the reported version may be too
low because information about the Extension Level cannot be decrypted.

Summary of password combinations. Table 5.2 lists the resulting pCOS modes for pro-
tected documents and various combinations of available credentials. Depending on the
document’s encryption status and the credentials supplied when opening the file, PDF
object paths may be available in minimum, restricted, or full pCOS mode. Trying to re-
trieve a pCOS path which is inappropriate for the respective mode triggers an excep-
tion.

Table 5.2 Resulting pCOS modes for protected documents and various combinations of available credentials

If you know or have... ...pCOS operates in...

password security

none of the passwords > document requires user password: minimum pCOS mode
> document does not require user password: restricted pCOS mode
> document contains encrypted file attachments: full pCOS mode,

but attachments cannot be retrieved

user password restricted pCOS mode

master password, or attachment password for doc-
uments with encrypted file attachments

full pCOS mode

certificate security

no suitable digital ID minimum pCOS mode

a suitable digital ID for which the document does
not set master permission

restricted pCOS mode

a suitable digital ID for which the document sets
master permission

full pCOS mode

A Revision History 41

A Revision History

Revision history of this manual

Date Changes

October 21, 2021 > Minor changes for pCOS interface 13 in PDFlib+PDI 10, PPS 10

April 27, 2021 > Minor changes for pCOS interface 12 in TET 5.3 and TET PDF IFilter 5.3

May 04, 2020 > Minor corrections for pCOS interface 12 in PLOP/PLOP DS 5.4

July 18, 2019 > Updates for TET 5.2 and TET PDF IFilter 5.2

July 26, 2018 > Updates for pCOS interface 12 in PLOP/PLOP DS 5.3

May 22, 2017 > Republished for TET 5.1 and TET PDF IFilter 5.1

February 15, 2017 > Republished for PLOP/PLOP DS 5.2

April 12, 2016 > Updates for pCOS interface 11 in PLOP/PLOP DS 5.1 (certificate security)

October 23, 2015 > Updates for pCOS interface 10 in TET 5.0 and TET PDF IFilter 5.0

December 04, 2014 > Updates for pCOS interface 9 in PLOP/PLOP DS 5.0

August 1, 2013 > Bundled with pCOS 4.0; no major changes in content

May 16, 2013 > Bundled with TET 4.2 and TET PDF IFilter 4.2; no major changes in content

March 14, 2013 > Updates for PDFlib+PDI 9.0.0

February 13, 2012 > Updated to pCOS interface 8

March 04, 2011 > Mentioned PLOP 4.1 for pCOS interface 7

November 29, 2010 > Republished edition for pCOS interface 5 for PDFlib 8.0.2

October 29, 2010 > Updates for pCOS interface 7 in pCOS 3.0

July 22, 2010 > Reorganized the reference for pCOS interface 6 for use in multiple products

December 07, 2009 > Updates for pCOS interface 5 in PDFlib+PDI 8, PPS 8

February 01, 2009 > Updates for pCOS interface 4 in PLOP 4.0, TET 3.0, TET PDF IFilter 3.0

October 19, 2007 > Updates for pCOS interface 3 in pCOS 2.0

March 28, 2006 > Added a description of the Perl language binding

September 30, 2005 > Edition for pCOS interface 2 in pCOS 1.0

June 20, 2005 > Edition for pCOS interface 1 in TET 2.0

Chapter : 43

Index

A
arrays in pCOS paths 19

B
bookmarks 15
booleans in pCOS paths 17

C
certificate security 26

D
dictionaries in pCOS paths 19
document info fields 10
documentation roadmap 5
document-related paths 9

E
encoding for pCOS paths 23
encrypted PDF documents 39
encryption status 9

F
font-related paths 12
fonts in a document 12
formatting placeholders in C 7

I
ICC profiles 14
image-related paths 13
images 13
interactive elements 15

N
names in pCOS paths 17
number of pages 11
numbers in pCOS paths 17

O
object identifiers (IDs) in pCOS paths 21

P
page size 11
page-related paths 11
path prefixes 26

path syntax 23
pCOS

availability in products 6
data types 17
path syntax 23

pCOS cookbook 5
pCOS functions 7
pCOS interface versions 6
pCOS mode 9, 39
pCOS paths

for document-related objects 9
for fonts 12
for ICC profiles 14
for interactive elements 15
for page-related objects 11
for raster images 13

PDF version 10
prefixes 26
profile-related paths 14
protected PDF documents 39
pseudo objects 23

for PDF objects, pages, and interactive
elements 30, 31
for resources 35
universal 26

R
raster image paths 13
Reader-enabled documents 33
recipients for certificate security 26

S
streams in pCOS paths 17
strings in pCOS paths 17

T
transparency 11

U
universal pseudo objects 26

W
writing mode 12

X
XMP metadata 10

ABC

PDFlib GmbH
Franziska-Bilek-Weg 9
80339 München, Germany
www.pdflib.com
phone +49 • 89 • 452 33 84-0

Licensing contact
sales@pdflib.com

Support
support@pdflib.com (please include your license number)

	Contents
	1 Introduction
	1.1 What is pCOS?
	1.2 Roadmap to Documentation and Samples
	1.3 Availability of the pCOS Interface

	2 pCOS Examples
	2.1 pCOS Functions
	2.2 Document
	2.3 Pages
	2.4 Fonts
	2.5 Raster Images
	2.6 ICC Profiles
	2.7 Interactive Elements

	3 pCOS Data Types
	3.1 Basic PDF Data Types
	3.2 Composite Data Structures
	3.3 Object Identifiers (IDs)

	4 pCOS Path Reference
	4.1 pCOS Paths
	4.2 Universal Pseudo Objects
	4.2.1 General Document Information
	4.2.2 PDF Version Information
	4.2.3 Library Identification

	4.3 Pseudo Objects for PDF Standard Identification
	4.4 Pseudo Objects for Pages
	4.5 Pseudo Objects for PDF Objects and interactive Elements
	4.6 Pseudo Objects for Signatures
	4.7 Pseudo Objects for ICC Profiles
	4.8 Pseudo Objects for PDF Resources

	5 pCOS Security Model
	A Revision History
	Index

