
®

General Edition for
Cobol, C, C++, Java, Perl,

PHP, Python, RPG, Ruby, and Tcl

PDFlib GmbH München, Germany

www.pdflib.com

Version 7.0.5

Reference for
PDFlib, PDI, and PPS

A library for generating PDF on the fly

http://www.pdflib.com

Copyright © 1997–2010 PDFlib GmbH and Thomas Merz. All rights reserved.
PDFlib users are granted permission to reproduce printed or digital copies of this manual for internal use.

PDFlib GmbH
Franziska-Bilek-Weg 9, 80339 München, Germany
www.pdflib.com
phone +49 • 89 • 452 33 84-0
fax +49 • 89 • 452 33 84-99

If you have questions check the PDFlib mailing list and archive at tech.groups.yahoo.com/group/pdflib

Licensing contact: sales@pdflib.com
Support for commercial PDFlib licensees: support@pdflib.com (please include your license number)

This publication and the information herein is furnished as is, is subject to change without notice, and
should not be construed as a commitment by PDFlib GmbH. PDFlib GmbH assumes no responsibility or lia-
bility for any errors or inaccuracies, makes no warranty of any kind (express, implied or statutory) with re-
spect to this publication, and expressly disclaims any and all warranties of merchantability, fitness for par-
ticular purposes and noninfringement of third party rights.

PDFlib and the PDFlib logo are registered trademarks of PDFlib GmbH. PDFlib licensees are granted the
right to use the PDFlib name and logo in their product documentation. However, this is not required.

Adobe, Acrobat, PostScript, and XMP are trademarks of Adobe Systems Inc. AIX, IBM, OS/390, WebSphere,
iSeries, and zSeries are trademarks of International Business Machines Corporation. ActiveX, Microsoft,
OpenType, and Windows are trademarks of Microsoft Corporation. Apple, Macintosh and TrueType are
trademarks of Apple Computer, Inc. Unicode and the Unicode logo are trademarks of Unicode, Inc. Unix is a
trademark of The Open Group. Java and Solaris are trademarks of Sun Microsystems, Inc. HKS is a regis-
tered trademark of the HKS brand association: Hostmann-Steinberg, K+E Printing Inks, Schmincke. Other
company product and service names may be trademarks or service marks of others.

PANTONE® colors displayed in the software application or in the user documentation may not match
PANTONE-identified standards. Consult current PANTONE Color Publications for accurate color. PANTONE®
and other Pantone, Inc. trademarks are the property of Pantone, Inc. © Pantone, Inc., 2003.
Pantone, Inc. is the copyright owner of color data and/or software which are licensed to PDFlib GmbH to
distribute for use only in combination with PDFlib Software. PANTONE Color Data and/or Software shall
not be copied onto another disk or into memory unless as part of the execution of PDFlib Software.

PDFlib contains modified parts of the following third-party software:
ICClib, Copyright © 1997-2002 Graeme W. Gill
GIF image decoder, Copyright © 1990-1994 David Koblas
PNG image reference library (libpng), Copyright © 1998-2004 Glenn Randers-Pehrson
Zlib compression library, Copyright © 1995-2002 Jean-loup Gailly and Mark Adler
TIFFlib image library, Copyright © 1988-1997 Sam Leffler, Copyright © 1991-1997 Silicon Graphics, Inc.
Cryptographic software written by Eric Young, Copyright © 1995-1998 Eric Young (eay@cryptsoft.com)
Independent JPEG Group’s JPEG software, Copyright © 1991-1998, Thomas G. Lane
Cryptographic software, Copyright © 1998-2002 The OpenSSL Project (www.openssl.org)
Expat XML parser, Copyright © 1998, 1999, 2000 Thai Open Source Software Center Ltd
Reference sRGB ICC color profile data, Copyright (c) 1998 Hewlett-Packard Company

PDFlib contains the RSA Security, Inc. MD5 message digest algorithm.

Author: Thomas Merz
Design and illustrations: Alessio Leonardi
Quality control (manual): Katja Schnelle-Romaus, Kurt Stützer
Quality control (software): a cast of thousands

http://www.pdflib.com
http://tech.groups.yahoo.com/group/pdflib
mailto:sales@pdflib.com
mailto:support@pdflib.com

Contents 3

Contents
1 PDFlib Programming Concepts 5

1.1 Data Types 5

1.2 Option Lists 6

1.3 Function Scopes 10

1.4 Limits 11

2 General Functions 13

2.1 Parameter Handling 13

2.2 Setup 15

2.3 Document Functions 16

2.4 Page Functions 22

2.5 PDFlib Virtual File System (PVF) 27

2.6 Exception Handling 29

2.7 Logging 31

3 Text Functions 33

3.1 Font Handling 33

3.2 Type 3 Font Definition 40

3.3 Encoding Definition 42

3.4 Simple Text Output 43

3.5 Unicode Conversion Functions 47

4 Formatting Functions 49

4.1 Single-Line Text with Textlines 49

4.2 Multi-Line Text with Textflows 56

4.3 Table Formatting 70

4.4 Matchboxes 77

5 Graphics Functions 81

5.1 Graphics State 81

5.2 Saving and Restoring Graphics States 84

5.3 Coordinate System Transformations 85

5.4 Explicit Graphics States 87

5.5 Path Construction 89

5.6 Path Painting and Clipping 92

5.7 Layers 94

4 Contents

6 Color Functions 97

6.1 Setting Color and Color Space 97

6.2 ICC Profiles 100

6.3 Patterns and Shadings 103

7 Image and Template Functions 107

7.1 Images 108

7.2 Templates 115

7.3 Thumbnails 116

8 PDF Import Functions (PDI) 117

8.1 Document and Page 117

8.2 pCOS Functions 122

8.3 Other PDI Processing 124

8.4 Deprecated PDI Parameters 125

9 Personalization Functions (PPS) 127

10 Interactive Features 131

10.1 Parameters for Interactive Elements 131

10.2 Actions 131

10.3 Named Destinations 135

10.4 Annotations 137

10.5 Form Fields 144

10.6 Bookmarks 150

11 Multimedia Features (3D Artwork) 153

12 Document Interchange 157

12.1 Document Information Fields 157

12.2 XMP Metadata 159

12.3 Tagged PDF 160

A List of all Functions 163

B List of all Parameters 165

C List of all Options 167

D Revision History 177

Index 179

1.1 Data Types 5

1 PDFlib Programming Concepts

1.1 Data Types
This manual documents the function/method prototypes for various language bind-
ings. The main difference between language bindings is that in object-oriented lan-
guage bindings the PDFlib methods do not have the PDF_ prefix in the name, while in
other language bindings the PDF_ prefix is part of all function names. Also, the PDF con-
text parameter must be supplied as the first argument to all functions in non-object
oriented language bindings. In contrast, the object-oriented language bindings hide the
PDF context in an object created by the language wrapper.

Table 1.2 details the use of the PDF document type and the string data type in all lan-
guage bindings. See the PDFlib Tutorial for more details on text and string handling. The
data types integer, long, and double are not mentioned since there is an obvious map-
ping of these types in all bindings.

Table 1.1 Data types in the language bindings

language binding p parameter? PDF_ prefix? string data type binary data type

C yes yes const char * 1

1. C language NULL string values and empty strings are considered equivalent.

const char *

C++ no no string2

2. NULL string values must not be used in the C++ binding.

char *

Cobol yes no3

3. Cobol programs must use abbreviated names for the PDFlib functions.

STRING STRING

Java no no String byte[]

Perl yes yes string string

PHP yes yes string string

PHP 5 (object-oriented) no no string string

Python yes yes string string

RPG yes yes string, but must add x’00’ data

Ruby no no string string

Tcl yes yes string byte array

6 Chapter 1: PDFlib Programming Concepts

1.2 Option Lists
Option lists are a powerful yet easy method for controlling PDFlib API function calls. In-
stead of requiring a multitude of function parameters, many API methods support op-
tion lists, or optlists for short. These are strings which may contain an arbitrary number
of options. Option lists support various data types and composite data like arrays. In
most language bindings optlists can easily be constructed by concatenating the re-
quired keywords and values. C programmers may want to use the sprintf() function to
construct optlists. Table 1.2 lists various examples.

Option list syntax. An optlist is a string containing one or more key/value pairs.
Keys and values, as well as multiple key/value pairs can be separated by arbitrary
whitespace characters (space, tab, carriage return, newline). Alternatively, keys can be
separated from values by an equal sign ’=’:

key value
key=value

Table 1.2 Examples for options

option type example

Float opacityfill=0.75

Percentage leading=150%

Boolean embedding (equivalent to embedding=true)

Boolean nokerning (equivalent to kerning=false)

String password { secret string } (the string value contains three blanks)

String password {weird\}string} (the string value contains a right brace)

Unichar replacementchar=space (equivalent to replacementchar=0x20)

Keyword blendmode=overlay

Rectangle cropbox={ 0 0 500 600 }

List containing three numbers dasharray={ 11 22 33 }

List containing two keywords position { center bottom }

List containing a list polylinelist={ {10 20 30 40 } }

Color backgroundcolor={ cmyk 0 1 0 0 }

List containing a single action action={ activate { 0 1 2 } }

List containing three actions action={ keystroke=0 format=1 validate=2 }

Option list metadata={ filename=info.xmp }

List containing one option list fill={ { area=table fillcolor={rgb 1 0 0} } }

List containing two option lists fill = { { area=rowodd fillcolor={rgb 0 1 0} }
{ area=roweven fillcolor={rgb 1 0 0} } }

List containing one option list with
a value which includes spaces

attachments={ {filename={foo bar.xml}} }

1.2 Option Lists 7

If the value is a string containing whitespace characters or equal signs you must sur-
round the string with braces:

key={ multiple words }
key={ value=containing=equal=signs }

Since option lists will be evaluated from left to right an option can be supplied multiply
within the same list. In this case the last occurrence will overwrite earlier ones. In the
following example the first option assignment will be overridden by the second, and
key will have the value 2 after processing the option list:

key=1 key=2

Option lists support the following data types which are discussed in more detail below:
> Simple values: boolean, string, content/hypertext/name string, unichar, keyword,

float, integer, handle
> Composite values: lists, rectangles, action lists, color

For options of type list the list must be surrounded by braces, and the elements of the
list must be separated by whitespace:

key={ value1 value2 value3 }

If an option list contains multiple key/value pairs make sure to insert whitespace be-
fore opening braces and after closing braces (you can also use an equal character be-
tween the option name and the opening brace):

key1={ ...values... } key2={ ...values... }

Some options of type list accept the type option list or list of option lists. Options of type
option list contain one or more subordinate options. Options of type list of option lists
contain one or more nested option lists. When dealing with nested option lists it is im-
portant to specify the proper number of enclosing braces; see Table 1.2 for examples.

Simple Values. Simple values may use any of the following data types:
> Boolean: true or false; if the value of a boolean option is omitted, the value true is as-

sumed. As a shorthand notation noname can be used instead of name=false.
> String: these are plain ASCII strings which are generally used for non-localizable key-

words. Strings containing whitespace or ’=’ characters must be bracketed with { and }.
An empty string can be constructed with { }. The characters { and } must be preceded
by an additional \ character if they are supposed to be part of the string. The se-
quence \\ will result in a single backslash character \.

> Content strings, hypertext strings and name strings: these can hold Unicode content
in various formats; for details on these string types and encoding choices for string
options see the PDFlib Tutorial.

> Unichar: these are single Unicode values where several syntax variants are support-
ed: decimal values (e.g. 173), hexadecimal values prefixed with x, X, 0x, 0X, or U+ (xAD,
0xAD, U+00AD), numerical references, character references, and glyph name refer-
ences but without the ’&’ and ’;’ decoration (shy, #xAD, #173). Alternatively, literal
characters can be supplied. Unichars must be in the range 0-65535 (0-0xFFFF).

> Keyword: one of a predefined list of fixed keywords

8 Chapter 1: PDFlib Programming Concepts

> Float and integer: decimal floating point or integer numbers; point and comma can
be used as decimal separators for floating point values. Integer values can start with
x, X, 0x, or 0X to specify hexadecimal values. Some options (this is stated in the re-
spective documentation) support percentages by adding a % character directly after
the value.

> Handle: various types of object handles, e.g. font, image, or action handles. Techni-
cally these are integer values.

Depending on the type and interpretation of an option additional restrictions may ap-
ply. For example, integer or float options may be restricted to a certain range of values;
handles must be valid for the corresponding type of object, etc. Conditions for options
are documented in their respective function descriptions.

List Values. List values consist of multiple values, which may be simple values or list
values in turn. Lists are bracketed with { and }.

Rectangles. A rectangle is a list of four float values specifying the coordinates of the
lower left and upper right corners of a rectangle. The coordinate system for interpreting
the rectangle coordinates (standard or user coordinate system) varies depending on the
option, and is documented separately.

Action Lists. An action list specifies one or more actions. Each entry in the list consists
of an event keyword (trigger) and a list of action handles which must have been created
with PDF_create_action(). Actions will be performed in the listed order. The set of al-
lowed events (e.g. docopen) and the type of actions (e.g. JavaScript) are documented sep-
arately for the respective options.

Color. A color option is a list consisting of a color space keyword and a list with a vari-
able number of float values depending on the particular color space. Color space key-
words are the same as for PDF_setcolor() (see Section 6.1, »Setting Color and Color Space«,
page 97). Table 1.3 contains specific descriptions and examples. As detailed in the respec-
tive function descriptions, a particular option list may only supply a subset of the key-
words presented above.

Cookbook A full code sample can be found in the Cookbook topic color/starter_color.

Table 1.3 Keywords for the color data type in option lists

keyword additional values example

gray single float value for the grayscale color space { gray 0.5 }

rgb three float values for the RGB color space { rgb 1 0 0 }

cmyk four float values for the CMYK color space { cmyk 0 1 0 0 }

lab three float values for the Lab color space { lab 100 50 30 }

spot spot color handle and a float specifying the tint value { spot 1 0.8 }

spotname spot color name and a float specifying the tint value { spotname {PANTONE 281 U} 0.5 }

http://www.pdflib.com/pdflib-cookbook/color/starter-color

1.2 Option Lists 9

spotname Similar to the simple form of spotname above, but a color value
can be added to specify the alternate color for a custom spot color
(i.e. a spot color name which is not known internally to PDFlib). If
multiple options define the same custom spot color name all defi-
nitions must be consistent (i.e. define the same alternate color).

{ spotname {PDFlib Blue} 0.5
{ lab 100 50 30 } }

iccbasedgray single float value { iccbasedgray 0.5 }

iccbasedrgb three float values { iccbasedrgb 1 0 0 }

iccbasedcmyk four float values { iccbasedcmyk 0 1 0 0 }

pattern pattern handle { pattern 1 }

none specifies the absence of color none

Table 1.3 Keywords for the color data type in option lists

keyword additional values example

10 Chapter 1: PDFlib Programming Concepts

1.3 Function Scopes
PDFlib applications must obey certain structural rules which are easy to understand.
For example, you obviously begin a document before ending it. Since the PDFlib API is
very closely modelled after the document/page paradigm, generating documents the
»natural« way usually leads to well-formed PDFlib client programs.

PDFlib enforces correct ordering of function calls with a strict scoping system. The
scope definitions can be found in Table 1.4. Figure 1.1 depicts the nesting of scopes. The
function descriptions specify the allowed scope for each function. Calling a function
outside of the allowed scopes will trigger a PDFlib exception. You can query the current
scope with the scope parameter.

Cookbook A full code sample can be found in the Cookbook topic general/function_scopes.

Table 1.4 Function scope definitions

scope name definition

path started by one of PDF_moveto(), PDF_circle(), PDF_arc(), PDF_arcn(), or PDF_rect();
terminated by any of the functions in Section 5.6, »Path Painting and Clipping«, page 92

page between PDF_begin_page() and PDF_end_page() but outside of path scope

template between PDF_begin_template_ext() and PDF_end_template(), but outside of path scope

pattern between PDF_begin_pattern() and PDF_end_pattern() , but outside of path scope

font between PDF_begin_font() and PDF_end_font(), but outside of glyph scope

glyph between PDF_begin_glyph() and PDF_end_glyph(), but outside of path scope

document between PDF_begin_document() and PDF_end_document(,) but outside of page, template, pattern,
and font scope

object in object-oriented language bindings: the lifetime of the pdflib object, but outside of document scope;
in other bindings between PDF_new() and PDF_delete(), but outside of document scope

null outside of object scope

page page page page

pathpath

template pattern

document

. . .

. . .

objectnull

path path

font

page page page page

pathpath

template pattern

document

. . .

path path

font
glyph

glyph glyph glyph

Fig. 1.1
Nesting of scopes

http://www.pdflib.com/pdflib-cookbook/general-programming/function-scopes

1.3 Function Scopes 11

any when a function description mentions »any« scope it actually means any except null, since a PDFlib ob-
ject doesn’t even exist in null scope.

Table 1.4 Function scope definitions

scope name definition

12 Chapter 1: PDFlib Programming Concepts

1.4 Limits
PDFlib imposes various limits on certain entities in order to create PDF output which
conforms to the limitations imposed by the PDF Reference and Acrobat. These limits are
documented below.

The following limits will be enforced by suitable modifying the values:
> Smallest absolute floating point value in PDF: 0.000015. Numbers with a smaller ab-

solute value will be replaced with 0.
> Largest absolute floating point value in PDF: 32768.0. Numbers with a larger absolute

value will be be replaced with the closest integer.

Violation of the following limits will result in an exception:
> Largest allowed numerical value in PDF: 2 147 483 647.
> Maximum length of hypertext strings: 65535.
> Maximum length of text strings on the page: 32763 bytes (i.e. 16381 characters for CID

fonts) if kerning=false and wordspacing=0; otherwise 4095 characters
> The following options are limited to a maximum of 8191 list entries:

views, namelist, polylinelist, fieldnamelist, itemnamelist, itemtextlist, children, group
> Maximum number of indirect objects in a PDF document: 8 388 607

2.1 Parameter Handling 13

2 General Functions
Cookbook A full code sample can be found in the Cookbook topic general/starter_basic.

2.1 Parameter Handling
PDFlib’s operation can be controlled by a variety of global parameters. There are string
parameters and numerical values for controlling PDFlib and the appearance of the PDF
output. Four functions are available for setting and retrieving numerical and string pa-
rameters. At the beginning of each section the relevant parameter key names and val-
ues are described; a summary of all supported parameters is available in Appendix B,
»List of all Parameters«.

These parameters will retain their settings across the life span of the PDFlib object, or
until they are explicitly changed by the client. However, some parameters will explicitly
be reset at the beginning of each page (this is mentioned in the respective descriptions).

C++ Java double get_value(String key, double modifier)
Perl PHP float PDF_get_value(resource p, string key, float modifier)

C double PDF_get_value(PDF *p, const char *key, double modifier)

Get the value of some PDFlib parameter with numerical type.

key The name of the parameter to be queried.

modifier An optional modifier to be applied to the parameter. Whether a modifier is
required and what it relates to is explained in the various parameter tables. If the modi-
fier is unused it must be 0. Many parameters require handles to be passed as modifier.

Returns The numerical value of the parameter.

Scope Depends on key.

C++ Java void set_value(String key, double value)
Perl PHP PDF_set_value(resource p, string key, float value)

C void PDF_set_value(PDF *p, const char *key, double value)

Set the value of some PDFlib parameter with numerical type.

key The name of the parameter to be set.

value The new value of the parameter to be set.

Scope Depends on key.

http://www.pdflib.com/pdflib-cookbook/general-programming/starter-basic

14 Chapter 2: General Functions

C++ Java String get_parameter(String key, double modifier)
Perl PHP string PDF_get_parameter(resource p, string key, float modifier)

C const char * PDF_get_parameter(PDF *p, const char *key, double modifier)

Get the contents of some PDFlib parameter with string type.

key The name of the parameter to be queried.

modifier An optional modifier to be applied to the parameter. Whether a modifier is
required and what it relates to is explained in the various parameter tables. If the modi-
fier is unused it must be 0.

Returns The string value of the parameter as a hypertext string. The returned string can be used
until the end of the surrounding document scope. If no information is available an emp-
ty string will be returned.

Scope Depends on key.

Bindings C and C++: C and C++ clients must not free the returned string. PDFlib manages all string
resources internally.

C++ Java void set_parameter(String key, String value)
Perl PHP PDF_set_parameter(resource p, string key, string value)

C void PDF_set_parameter(PDF *p, const char *key, const char *value)

Set some PDFlib parameter with string type.

key The name of the parameter to be set.

value (Name string) The new value of the parameter to be set.

Scope Depends on key.

2.2 Setup 15

2.2 Setup
Table 2.1 and Table 2.2 list relevant parameter and value key names for PDFlib setup (see
Section 2.1, »Parameter Handling«, page 13).

Table 2.1 Setup-related keys for PDF_get/set_parameter()

key explanation

any resource
category
name

Entries in any of the resource categories. PDF_get_parameter(): Modifier contains the index of the entry
(starting with 1). If there are no more entries an empty string will be returned. See PDFlib Tutorial for a
list of category names. Scope: any

asciifile (Only supported on iSeries and zSeries). Expect text files (PFA, AFM, UPR, encodings) in ASCII encoding.
Default: true on iSeries; false on zSeries. Scope: any

honorlang If true, the environment variable LANG will be interpreted and applied to file names if it specifies utf8,
UTF-8, cp1252, CP1252, iso8859-x, or ISO-8859-x. Default: false. Scope: object

license1

1. Only for PDF_set_parameter()

Set the license key for PDFlib, PDFlib+PDI, or PPS.The key can be set before the first call to PDF_begin_
document(). Scope: object

licensefile Set the name of a file containing the license key.The license file can only be set once before the first call to
PDF_begin_document(). Scope: object

nodemo-
stamp

If true, an exception will be thrown when no valid license key was found; if false, a demo stamp will be
created on all pages. This option must be set before the first call to PDF_begin_document(). Default:
false. Scope: object

resourcefile Relative or absolute file name of the PDFlib UPR resource file. The resource file will be loaded immediate-
ly. Existing resources will be kept; their values will be overridden by new ones if they are set again. Scope:
any

scope2

2. Only for PDF_get_parameter()

Name of the current scope (see Table 1.4). Scope: any

SearchPath Relative or absolute path name of a directory containing files to be read. The SearchPath can be set mul-
tiply; the entries will be accumulated and used in least-recently-set order. An empty string deletes all en-
tries from the SearchPath list (including the default entries).
PDF_get_parameter(): Modifier contains the index of the entry (starting with 1). If there are no more en-
tries an empty string will be returned. The returned string will be encoded in UTF-8. Scope: any

string2 Return a string identified by the string index supplied in the modifier. The returned string is valid until
the next call to any API function. Scope: any

version2 Full PDFlib version string in the format <major>.<minor>.<revision>, possibly suffixed with additional
qualifiers such as beta, rc, etc. Scope: any, null3

3. May be called with a PDF * argument of NULL or 0

Table 2.2 Setup-related keys for PDF_get/set_value()

key explanation

compress Compression level from 0=no compression, 1=best speed, etc. to 9=best compression. This parameter
does not affect image data handled in passthrough mode. Default: 6. Scope: page, document

major minor
revision1

Major, minor, or revision number of PDFlib, respectively. Scope: any, null2

maxfile-
handles

(Unsupported; implemented on Windows only) New maximum for the number of simultaneously open
files (in the C runtime). The number must be greater or equal than 20 and less or equal than 2048. An ex-
ception will be thrown if the new value is not accepted by the C runtime. Scope: object

16 Chapter 2: General Functions

Perl PHP resource PDF_new()
C PDF *PDF_new(void)

Create a new PDFlib object.

Details This function creates a new PDFlib object, using PDFlib’s internal default error handling
and memory allocation routines.

Returns A handle to a PDFlib object which is to be used in subsequent PDFlib calls. If this func-
tion doesn’t succeed due to unavailable memory it will return NULL (in C) or throw an
exception.

Scope null; this function starts object scope, and must always be paired with a matching PDF_
delete() call.

Bindings The data type used for the opaque PDFlib object handle varies among language bind-
ings. This doesn’t really affect PDFlib clients, since all they have to do is pass the PDF
handle as the first argument to all functions.

C: In order to load the PDFlib DLL dynamically at runtime use PDF_new_dl(). PDF_new_
dl() will return a pointer to a PDFlib_api structure filled with pointers to all PDFlib API
functions. If the DLL cannot be loaded, or a mismatch of major or minor version num-
ber is detected, NULL will be returned.
C++, Java, PHP 5: this function is not available since it is hidden in the PDFlib construc-
tor.

C PDF *PDF_new2(void (*errorhandler)(PDF *p, int errortype, const char *msg),
void* (*allocproc)(PDF *p, size_t size, const char *caller),
void* (*reallocproc)(PDF *p, void *mem, size_t size, const char *caller),
void (*freeproc)(PDF *p, void *mem),
void *opaque)

Create a new PDFlib object with client-supplied error handling and memory allocation
routines.

errorhandler Pointer to a user-supplied error-handling function. The error handler
will be ignored in PDF_TRY/PDF_CATCH blocks.

allocproc Pointer to a user-supplied memory allocation function.

reallocproc Pointer to a user-supplied memory reallocation function.

freeproc Pointer to a user-supplied free function.

opaque Pointer to some user data which may be retrieved later with PDF_get_
opaque().

Returns A handle to a PDFlib object which is to be used in subsequent PDFlib calls. If this func-
tion doesn’t succeed due to unavailable memory it will return NULL (in C) or throw an
exception.

1. Only for PDF_get_value()
2. May be called with a PDF * argument of NULL or 0

2.2 Setup 17

Details This function creates a new PDFlib object with client-supplied error handling and mem-
ory allocation routines. Unlike PDF_new(), the caller may optionally supply own proce-
dures for error handling and memory allocation. The function pointers for the error
handler, the memory procedures, or both may be NULL. PDFlib will use default routines
in these cases. Either all three memory routines must be provided, or none.

Scope null; this function starts object scope, and must always be paired with a matching PDF_
delete() call. No other PDFlib function with the same PDFlib object must be called after
calling this function.

Bindings C++: this function is indirectly available via the PDF constructor. Not all function argu-
ments must be given since default values of NULL are supplied. All supplied functions
must be »C« style functions, not C++ methods.

Perl PHP PDF_delete(resource p)
C void PDF_delete(PDF *p)

Delete a PDFlib object and free all internal resources.

Details This function deletes a PDF object and frees all document-related PDFlib-internal re-
sources. Although not necessarily required for single-document generation, deleting
the PDF object is heavily recommended for all server applications when they are done
producing PDF. This function must only be called once for a given PDF object. PDF_
delete() should also be called for cleanup when an exception occurred. PDF_delete() it-
self is guaranteed to not throw any exception. If more than one PDF document will be
generated it is not necessary to call PDF_delete() after each document, but only when
the complete sequence of PDF documents is done.

Scope any; this function starts null scope, i.e. no more API function calls are allowed.

Bindings C: If the PDFlib DLL has been loaded dynamically at runtime with PDF_new_dl(), use
PDF_delete_dl() to delete the PDFlib object.

C++: this function is indirectly available via the PDF destructor.
Java: this function is automatically called by the wrapper code. However, it can explicit-
ly be called from client code in order to overcome shortcomings in Java’s finalizer sys-
tem.
PHP: this function will automatically be called for the object-oriented PHP 5 interface
when the PDFlib object goes out of scope.

18 Chapter 2: General Functions

2.3 Document Functions

C++ Java int begin_document(String filename, String optlist)
Perl PHP int PDF_begin_document(resource p, string filename, string optlist)

C int PDF_begin_document(PDF *p, const char *filename, int len, const char *optlist)

C++ void begin_document_callback(size_t (*writeproc) (PDF *p, void *data, size_t size), string optlist)
C void PDF_begin_document_callback(PDF *p,

size_t (*writeproc) (PDF *p, void *data, size_t size), const char *optlist)

Create a new PDF document subject to various options.

filename (Name string, but Unicode file names are only supported on Windows) Abso-
lute or relative name of the PDF output file to be generated. If filename is empty, the PDF
document will be generated in memory instead of on file, and the generated PDF data
must be fetched by the client with the PDF_get_buffer() function. The special file name
»–« can be used for generating PDF on the stdout channel. On Windows it is OK to use
UNC paths or mapped network drives.

len (C language binding only) Length of filename (in bytes) for UTF-16 strings. If len=0
a null-terminated string must be provided.

writeproc (Only for C and C++) C callback function which will be called by PDFlib in or-
der to submit (portions of) the generated PDF data.

optlist An option list specifying document options according to Table 2.3. Options
specified in PDF_end_document() have precedence over identical options specified in
PDF_begin_document(). The following options can be used:
attachmentpassword, attachments, autoxmp, compatibility, destination, errorpolicy, filemode,
flush, groups, hypertextencoding, inmemory, labels, lang, linearize, masterpassword,
metadata, moddate, openmode, optimize, pagelayout, pdfa, pdfx, permissions, recordsize,
search, tagged, tempdirname, tempfilenames, uri, userpassword, viewerpreferences

Returns -1 (in PHP: 0) on error, and 1 otherwise. If filename is empty this function will always suc-
ceed, and never return the -1 (in PHP: 0) error value.

Details This function creates a new PDF file using the supplied filename. PDFlib will attempt to
open a file with the given name, and close the file when the PDF document is finished.

PDF_begin_document_callback() opens a new PDF document in memory, without
writing to a disk file. The callback function supplied as writeproc must return the num-
ber of bytes written. If the return value doesn’t match the size argument supplied by
PDFlib, an exception will be thrown. The frequency of writeproc calls is configurable
with the flush option.

Scope object; this function starts document scope if the file could successfully be opened, and
must always be paired with a matching PDF_end_document() call.

Bindings C, C++, Java, JScript: take care of properly escaping the backslash path separator. For ex-
ample, the following denotes a file on a network drive: \\\\malik\\rp\\foo.pdf.
PDF_begin_document_callback() is only available in C and C++. The supplied writeproc
must be a C-style function, not a C++ method.

2.3 Document Functions 19

C++ Java void end_document(String optlist)
Perl PHP PDF_end_document(resource p, string optlist)

C void PDF_end_document(PDF *p, const char *optlist)

Close the generated PDF document and apply various options.

optlist An option list specifying document options according to Table 2.3. Options
specified in PDF_end_document() have precedence over identical options specified in
PDF_begin_document(). The following options can be used:
action, attachmentpassword, attachments, autoxmp, destination, destname, hypertext-
encoding, labels, metadata, moddate, openmode, pagelayout, search, uri, viewerpreferences

Details This function finishes the generated PDF document, frees all document-related resourc-
es, and closes the output file if the PDF document has been opened with PDF_begin_
document(). This function must be called when the client is done generating pages, re-
gardless of the method used to open the PDF document.

When the document was generated in memory (as opposed to on file), the document
buffer will still be kept after this function is called (so that it can be fetched with PDF_
get_buffer()), and will be freed in the next call to PDF_begin_document(), or when the
PDFlib object goes out of scope in PDF_delete().

Scope document; this function terminates document scope, and must always be paired with a
matching call to one of PDF_begin_document() or PDF_begin_document_callback().

Table 2.3 Document options for PDF_begin_document() and PDF_end_document()

option description

action1 (Action list; not allowed for PDF/A) List of document actions for one or more of the following events. De-
fault: empty list.
open Actions to be performed when the document is opened. Due to the execution order in Acrobat

document-level JavaScript must not be used for open actions.
didprint/didsave/willclose/willprint/willsave

(PDF 1.4) JavaScript actions to be performed after printing/after saving/before closing/before
printing/ before saving the document.

attachment-
password2

(String; PDF 1.6; will be ignored if userpassword or masterpassword are set; can not be combined with
the linearize and optimize options) File attachments will be encrypted using the supplied string as
password. The rest of the document will not be encrypted.

attachments (List of option lists) Specifies document-level file attachments (as opposed to attachment annotations
which are bound to a particular location on a page). It is ok to supply file attachments both in PDF_
begin_document() and PDF_end_document(). Supported options:
description (Hypertext string; PDF 1.6) Descriptive text associated with the file.
filename (Hypertext string; required) Name of the file. UTF-16 file names are supported.
mimetype (String) MIME type of the file; Acrobat will use it for launching the appropriate application

when the attachement is activated.
name (Hypertext string) Name of the attachment (default: filename)

autoxmp (Boolean; will be forced to true in PDF/A mode) If true, PDFlib will create XMP document metadata from
document info fields (see Section 12.2, »XMP Metadata«, page 159). Default: false

compatibility2 (Keyword) Set the document’s PDF version to one of the strings 1.3, 1.4, 1.5, 1.6, or 1.7 for Acrobat 4, 5,
6, 7, or 8. This option will be ignored if one of the pdfx or pdfa options is used. Default: 1.6

20 Chapter 2: General Functions

destination (Option list; will be ignored if an open action has been specified) An option list specifying the document
open action according to Table 10.3.

destname1 (Hypertext string; will be ignored if the destination option has been specified) The name of a destina-
tion which has been defined with PDF_add_nameddest(), and will be used as the document open action.

errorpolicy2 (Keyword) Controls the behavior in case of an error (see Section 2.6, »Exception Handling«, page 29)

filemode2 (String, MVS only) Parameter string for setting the file mode of the document file and any temporary file
(e.g. with the linearize option). The supplied string will be appended to the default file mode of »wb,«.
The option recordsize must be consistent with the parameters specified in this option. Example string:
recfm=fb,lrecl=80,space=(cyl,(1,5),rlse. Default: empty, or recfm=v for unblocked output.

flush2 (Keyword; only for PDF_begin_document_callback()) Set the flushing strategy. Default: page.
none flush only once at the end of the document
page flush at the end of each page
content flush after all fonts, images, file attachments, and pages
heavy always flush when the internal 64 KB document buffer is full

groups2 (List of strings) Define the names and ordering of the page groups used in the document. Page groups
keep pages together (useful e.g. for attaching page labels); pages can be assigned to one of the page
groups defined in the document, and referenced within the respective group. If page groups are defined
for a document, all pages must be assigned to a page group.

hypertext-
encoding

(Keyword) Specifies the encoding for the destname option (see PDFlib Tutorial). An empty string is equiv-
alent to unicode. Default: value of the global hypertextencoding parameter.

inmemory2 (Boolean; not for PDF_begin_document_callback()) If true and the linearize or optimize option is
true as well, PDFlib will not create any tempory files for linearization, but will process the file in memory.
This can result in tremendous performance gains on some systems (especially MVS), but requires memo-
ry twice the size of the document. If false, a temporary file will be created for linearization and optimiza-
tion. Default: false

labels (List of option lists) A list containing one or more option lists according to Table 2.4 specifying symbolic
page names. The page name will be displayed as a page label (instead of the page number) in Acrobat’s
status line. The combination of style/prefix/start values must be unique within a document. Default:
none

lang2 (String; recommended if tagged=true) Set the natural language of the document as a two-character
ISO 639 language code (examples: DE, EN, FR, JA), optionally followed by a hyphen and a two-character
ISO 3166 country code (examples: EN-US, EN-GB, ES-MX). Case is not significant.
The language specification can be overridden for individual items on all levels of the structure tree, but
must be set initially for the document as a whole.

linearize2 (Boolean; not for PDF_begin_document_callback()) If true, the output document will be linearized. On
MVS systems this option cannot be combined with in-core generation (i.e. an empty filename). Default:
false

master-
password2

(String; required if permissions has been specified; not for PDF/A and PDF/X) The master password for
the document. If it is empty no master password will be applied. Default: empty

metadata (Option list; PDF 1.4) Supply XMP document metadata (see Section 12.2, »XMP Metadata«, page 159). The
XMP will overwrite document info entries supplied with PDF_set_info(). In PDF/A mode the supplied
XMP metadata must conform to additional requirements (see PDFlib Tutorial).

moddate (Boolean) If true, the ModDate (modification date) document info key will be created for compliance with
some preflight tools. Default: false

Table 2.3 Document options for PDF_begin_document() and PDF_end_document()

option description

2.3 Document Functions 21

openmode (Keyword) Set the appearance when the document is opened. Default: bookmarks if the document con-
tains any bookmarks, otherwise none.
none Open with no additional panel visible.
bookmarks Open with the bookmark panel visible.
thumbnails Open with the thumbnail panel visible.
fullscreen Open in fullscreen mode (does not work in the browser).
layers (PDF 1.5) Open with the layer panel visible.
attachments (PDF 1.6) Open with the attachments panel visible.

optimize2 (Boolean) If true, the output document will be optimized in a separate pass after generating it. Optimi-
zation reduces file size by eliminating redundant duplicate objects. On MVS systems this option cannot
be combined with in-core generation (i.e. an empty filename). Default: false

pagelayout (Keyword) The page layout to be used when the document is opened. Default: default.
default The default setting of the Acrobat viewer.
singlepage Display one page at a time.
onecolumn Display the pages continously in one column.
twocolumnleft Display the pages in two columns, odd pages on the left.
twocolumnright Display the pages in two columns, odd pages on the right
twopageleft (PDF 1.5) Display the pages two at a time, with odd-numbered pages on the left.
twopageright (PDF 1.5) Display the pages two at a time, with odd-numbered pages on the right.

pdfa2 (Keyword) Set the PDF/A conformance level to one of PDF/A-1a:2005, PDF/A-1b:2005, or none. The value
»PDF/A-1a:2005« will automatically enable Tagged PDF mode. Default: none

pdfx2 (Keyword) Set the PDF/X conformance level to one of PDF/X-1a:2001, PDF/X-1a:2003, PDF/X-2:2003,
PDF/X-3:2002, PDF/X-3:2003, or none. Default: none

permissions2 (Keyword list; not for PDF/A and PDF/X) The access permission list for the output document. It contains
any number of the following keywords (default: empty):
noprint Acrobat will prevent printing the file.
nohiresprint(PDF 1.4) Acrobat will prevent high-resolution printing. If noprint isn’t set, printing is

restricted to the »print as image« feature which prints a low-resolution rendition of the page.
nomodify Acrobat will prevent editing or cropping pages and creating or changing form fields.
noassemble (PDF 1.4; implies nomodify) Acrobat will prevent inserting, deleting, or rotating pages and

creating bookmarks and thumbnails.
noannots Acrobat will prevent creating or changing annotations and form fields.
noforms (PDF 1.4; implies nomodify and noannots) Acrobat will prevent form field filling.
nocopy Acrobat will prevent copying and extracting text or graphics; the accessibility interface will

be controlled by noaccessible.
noaccessible(PDF 1.4) Acrobat will prevent extracting text or graphics for accessibility purposes (such as a

screenreader program).
plainmetadata

(PDF 1.5) Keep XMP document metadata unencrypted even for encrypted documents.

recordsize2 (Integer; MVS only) The record size of the output file, and any temporary file which may have to be creat-
ed for the linearize and optimize options. Default: 0 (unblocked output)

Table 2.3 Document options for PDF_begin_document() and PDF_end_document()

option description

22 Chapter 2: General Functions

search (Option list) Instruct Acrobat to attach a search index when opening the document. The following subop-
tions are supported:
filename (Hypertext string; required) The name of a file containing a search index. The file name of the

index may be relative to the document, but the user is responsible for supplying correct index
file names.

indextype (Name string) The type of the index; must be PDX for Acrobat. Default: PDX

tagged2 (Boolean; PDF 1.4) If true, generate Tagged PDF output. Proper structure information must be provided
by the client in Tagged PDF mode (see Section 12.3, »Tagged PDF«, page 160). If the pdfa option has the
value »PDF/A-1a:2005« this option will automatically be forced to true. Default: false

tempdirname2 (String; not for PDF_begin_document_callback()) Name of a directory where temporary files required for
the linearize and optimize options will be created. If empty, PDFlib will generate temporary files in the
current directory. This option will be ignored if the tempfilenames option has been supplied. Default:
empty

temp-
filenames2

(List of two strings; only on MVS and for PDF_begin_document()) Full file names for two temporary files
required for the linearize and optimize options. If empty, PDFlib will generate unique temporary file
names. The user is responsible for deleting the temporary files after PDF_end_document(). If this option
is supplied the filename parameter must not be empty. Default: empty

uri (String) Set the document’s base URL. This is useful when a document with relative Web links to other
documents is moved to a different location. Setting the base URL to the »old« location makes sure that
relative links will still work. Default: none

user-
password2

(String; not for PDF/A and PDF/X) The user password for the document. If it is empty no user password
will be applied. Default: empty

viewer-
preferences

(Option list) Option list specifying various viewer preferences according to Table 2.5. Default: empty

1. Only for PDF_end_document()
2. Only for PDF_begin_document() and PDF_begin_document_callback()

Table 2.4 Suboptions for the labels option in PDF_begin/end_document() and label option in PDF_begin/end_page_ext()

option description

group (String; only for PDF_begin_document(); required if the document uses page groups, but not allowed
otherwise) The label will be applied to all pages in the specified group and all pages in all subsequent
groups until a new label is applied. The group name must have been defined with the groups option in
PDF_begin_document().

hypertext-
encoding

(Keyword) Specifies the encoding for the prefix option. An empty string is equivalent to unicode. De-
fault: value of the global hypertextencoding parameter.

pagenumber (Integer; only for PDF_end_document(); required if the document does not use page groups, but not al-
lowed otherwise) The label will be applied to the specified page and subsequent pages until a new label
is applied.

prefix (Hypertext string) The label prefix for all labels in the range. Default: none

start (Integer >= 1) Numeric value for the first label in the range. Subsequent pages in the range will be num-
bered sequentially starting with this value. Default: 1

Table 2.3 Document options for PDF_begin_document() and PDF_end_document()

option description

2.3 Document Functions 23

style (Keyword) The numbering style to be used. Default: none.
none no page number; labels will only consist of the prefix.
D decimal arabic numerals (1, 2, 3, ...)
R uppercase roman numerals (I, II, III, ...)
r lowercase roman numerals (i, ii, iii, ...)
A uppercase letters (A, B, C, ..., AA, BB, CC, ...)
a lowercase letters (a, b, c, ..., aa, bb, cc, ...)

Table 2.5 Suboptions for the viewerpreferences option in PDF_begin_document() and PDF_end_document()

option description

centerwindow (Boolean) Specifies whether to position the document’s window in the center of the screen. Default:
false

direction (Keyword) The reading order of the document, which affects the scroll ordering in double-page view (de-
fault l2r):
l2r Left to right
r2l Right to left (including vertical writing systems)

displaydoctitle (Boolean) Specifies whether to display the Title document info field in Acrobat’s title bar (true) or the
file name (false). Default: false

duplex (Keyword; PDF 1.7) Paper handling option for the print dialog (default: none):
DuplexFlipShortEdge

Duplex and flip on the short edge of the sheet.
DuplexFlipLongEdge

Duplex and flip on the long edge of the sheet.
none No paper handling specified.
Simplex Print single-sided.

fitwindow (Boolean) Specifies whether to resize the document’s window to the size of the first page. Default: false

hidemenubar (Boolean) Specifies whether to hide Acrobat’s menu bar. Default: false

hidetoolbar (Boolean) Specifies whether to hide Acrobat’s tool bars. Acrobat 5 ignores this setting when viewing PDFs
in a browser. Default: false

hidewindowui (Boolean) Specifies whether to hide Acrobat’s window controls. Default: false

nonfullscreen-
pagemode

(Keyword; only relevant if the openmode option is set to fullscreen) Specifies how to display the docu-
ment on exiting full-screen mode. Default: none
bookmarks display page and bookmark pane
thumbnails display page and thumbnail pane
layers display page and layer pane
none display page only

numcopies (Integer in the range 1-5, PDF 1.7) The number of copies for the print dialog. Default: viewer-specific

picktrayby-
pdfsize

(Boolean; PDF 1.7; no effect on Mac OS) Specifies whether the PDF page size is used to select the input pa-
per tray in the print dialog. Default: viewer-specific

printscaling (Keyword; PDF 1.6) Page scaling option to be selected when a print dialog is presented for the document.
Supported keywords (default: appdefault):
none No page scaling; this may be useful for printing page contents at their exact sizes.
appdefault Use the current print scaling as specified in Acrobat.

Table 2.4 Suboptions for the labels option in PDF_begin/end_document() and label option in PDF_begin/end_page_ext()

option description

24 Chapter 2: General Functions

C++ const char *get_buffer(long *size)
Java byte[] get_buffer()

Perl PHP string PDF_get_buffer(resource p)
C const char * PDF_get_buffer(PDF *p, long *size)

Get the contents of the PDF output buffer.

size (C and C++ language bindings only) C-style pointer to a memory location where
the length of the returned data in bytes will be stored.

Returns A buffer full of binary PDF data for consumption by the client. It returns a language-spe-
cific data type for binary data according to Table 1.2. The returned buffer must be used
by the client before calling any other PDFlib function. Remember to copy the data if you
want to use it while calling other PDFlib functions (in particular, before calling PDF_
create_pvf() to create a PVF file containing the data).

Details Fetch the full or partial buffer containing the generated PDF data. If this function is
called between page descriptions, it will return the PDF data generated so far. If generat-
ing PDF into memory, this function must at least be called after PDF_end_document(),
and will return the remainder of the PDF document. It can be called earlier to fetch par-
tial document data. If there is only a single call to this function which happens after
PDF_end_document() the returned buffer is guaranteed to contain the complete PDF
document in a contiguous buffer.

Since PDF output contains binary characters, client software must be prepared to ac-
cept non-printable characters including null values.

Scope object, document (in other words: after PDF_end_page_ext() and before PDF_begin_page_
ext(), or after PDF_end_document() and before PDF_delete(). This function can only be
used if an empty filename has been supplied to PDF_begin_document().

If the linearize option in PDF_begin_document() has been set to true, the scope is re-
stricted to object, i.e. this function can only be called after PDF_end_document().

Bindings C and C++: the size parameter is only used for C and C++ clients.

Other bindings: an object of appropriate length will be returned, and the size parameter
must be omitted.

printpage-
range

(List with pairs of integers; PDF 1.7) Page numbers for the print dialog. Each pair denotes the start and
end page numbers of a page range to be printed (first page is 1). Default: viewer-specific

printarea
printclip
viewarea
viewclip

(Keyword; for PDF/X only media and bleed are allowed) The type of the page boundary box representing
the area of a page to be displayed or clipped when viewing the document on screen or printing it. Acro-
bat ignores this setting, but it may be useful for other applications. Supported keywords (default: crop):
art Use the ArtBox
bleed Use the BleedBox
crop Use the CropBox
media Use the MediaBox
trim Use the TrimBox

Table 2.5 Suboptions for the viewerpreferences option in PDF_begin_document() and PDF_end_document()

option description

2.4 Page Functions 25

2.4 Page Functions
Table 2.6 and Table 2.7 list relevant parameter and value key names for this section (see
Section 2.1, »Parameter Handling«, page 13).

C++ Java void begin_page_ext(double width, double height, String optlist)
Perl PHP PDF_begin_page_ext(resource p, float width, float height, string optlist)

C void PDF_begin_page_ext(PDF *p, double width, double height, const char *optlist)

Add a new page to the document and specify various options.

width, height The width and height parameters are the dimensions of the new page in
points (or user units, if the userunit option has been specified). They can be overridden
by the options with the same name (the dummy value 0 can be used for the parameters
in this case). A list of commonly used page formats can be found in Table 2.8. See also
Table 2.9 for more details (options width and height).

optlist An option list according to Table 2.9. These options have lower priority than
identical options specified in PDF_end_page_ext(). The following options can be used:
action, artbox, bleedbox, cropbox, defaultcmyk, defaultgray, defaultrgb, duration, group,
height, label, mediabox, metadata, pagenumber, rotate, separationinfo, taborder, topdown,
transition, transparencygroup, trimbox, userunit, width

Details This function will reset all text, graphics, and color state parameters for the new page to
their defaults.

Table 2.6 Page-related keys for PDF_get/set_parameter()

key explanation

topdown If true, the origin of the coordinate system at the beginning of a page, pattern, or template will be as-
sumed in the top left corner of the page, and y coordinates will increase downwards; otherwise the de-
fault coordinate system will be used. See PDFlib Tutorial for details. Scope: document. Default: false

Table 2.7 Page-related keys for PDF_get/set_value()

key explanation

pagewidth
pageheight

Get the page size of the current page (dimensions of the MediaBox). Scope: page, path

Table 2.8 Common standard page size dimensions in points1

1. More information about ISO, Japanese, and U.S. standard formats can be found at the following URLs:
home.inter.net/eds/paper/papersize.html, www.cl.cam.ac.uk/~mgk25/iso-paper.html

format width height format width height format width height

a0 2380 3368 a4 595 842 letter 612 792

a1 1684 2380 a5 421 595 legal 612 1008

a2 1190 1684 a6 297 421 ledger 1224 792

a3 842 1190 11x17 792 1224

http://home.inter.net/eds/paper/papersize.html
http://www.cl.cam.ac.uk/~mgk25/iso-paper.html

26 Chapter 2: General Functions

Scope document; this function starts page scope, and must always be paired with a matching
PDF_end_page_ext() call.

C++ Java void end_page_ext(String optlist)
Perl PHP PDF_end_page_ext(resource p, string optlist)

C void PDF_end_page_ext(PDF *p, const char *optlist)

Finish a page and apply various options.

optlist An option list according to Table 2.9. Options specified in PDF_end_page_ext()
have priority over identical options specified in PDF_begin_page_ext(). The following
options can be used:
action, artbox, bleedbox, cropbox, defaultcmyk, defaultgray, defaultrgb, duration, group,
height, label, mediabox, metadata, rotate, taborder, transition, transparencygroup, trimbox,
userunit, width

Scope page; this function terminates page scope, and must always be paired with a matching
PDF_begin_page_ext() call.

Table 2.9 Options for PDF_begin_page_ext() and PDF_end_page_ext()

option description

action (Action list) List of page actions for one or more of the following events (default: empty list):
open Actions to be performed when the page is opened.
close Actions to be performed when the page is closed.

artbox
bleedbox
cropbox

(Rectangle) Specify the ArtBox, BleedBox, or CropBox for the current page, respectively. The coordinates
are specified in the default coordinate system. Default: no box entries

defaultgray
defaultrgb
defaultcmyk

(ICC handle) Set a default gray, RGB, or CMYK color space for the page according to the supplied profile
handle.

duration (Float) Set the page display duration in seconds for the current page if openmode=fullscreen (see Table
2.3). Default: 1

group1 (String; required if the document uses page groups, but not allowed otherwise) Name of the page group
to which the page will belong. This name can be used to keep pages together in a page group and to ad-
dress pages with PDF_resume_page(). The group name must have been defined with the groups option
in PDF_begin_document().

height (Float or keyword; not allowed if the topdown option or parameter is true) The dimensions of the new
page in points (or user units, if the userunit option has been specified). In order to produce landscape
pages use width > height or the rotate option. PDFlib uses width and height to construct the page’s
MediaBox, but the MediaBox can also explicitly be set using the mediabox option. The width and height
options will override the parameters with the same name.
The following symbolic page size names can be used as keywords by appending .width or .height (e.g.
a4.width, a4.height):
a0, a1, a2, a3, a4, a5, a6, b5, letter, legal, ledger, 11x17

label (Option list) An option list according to Table 2.4 specifying symbolic page names. The page name will be
displayed as a page label (instead of the page number) in Acrobat’s status line. The specified numbering
scheme will be used for the current and subsequent pages until it is changed again. The combination of
style/prefix/start values must be unique within a document.

2.4 Page Functions 27

mediabox (Rectangle; not allowed if the topdown option or parameter is true) Change the MediaBox for the cur-
rent page. The coordinates are specified in the default coordinate system. By default, the MediaBox will
be created by using the width and height parameters. The mediabox option will override the width and
height options and parameters.

metadata (Option list; PDF 1.4) Supply metadata for the page (see Section 12.2, »XMP Metadata«, page 159)

pagenumber1 (Integer) If this option is specified with a value n, the page will be inserted before the existing page n
within the page group specified in the group option (or the document if the document doesn’t use page
groups). If this option is not specified the page will be inserted at the end of the group.

rotate (Integer) The page rotation value. The rotation will affect page display, but does not modify the coordi-
nate system. Possible values are 0, 90, 180, 270. Default: 0

separation-
info1

(Option list) An option list containing color separation details for the current page. This will be ignored in
Acrobat, but may be useful in third-party software for identifying and correctly previewing separated
pages in a preseparated workflow:
pages (Integer; required for the first page of a set of separation pages, but not allowed for subse-

quent pages of the same set) The number of pages which belong to the same set of separa-
tion pages comprising the color data for a single composite page. All pages in the set must
appear sequentially in the file.

spotname (String; required unless spotcolor has been supplied) The name of the colorant for the
current page.

spotcolor (Spot color handle) A color handle describing the colorant for the current page.

taborder (Keyword; PDF 1.5) Keyword specifying the tab order for form fields and annotations on the page (De-
fault: none):
column Form fields and annotations are visited column by column from top to bottom, where

columns are ordered as specified by the direction suboption of the viewerpreferences
option of PDF_begin/end_document().

none The tab order is unspecified.
structure Form fields and annotations are visited in the order in which they appear in the structure

tree. The order for annotations that are not included in the structure tree is unspecified.
row Form fields and annotations are visited row by row starting at the topmost row, where the

direction within a row is as specified by the direction suboption of the viewerpreferences
option of PDF_begin/end_document().

topdown1 (Boolean) If true, the origin of the coordinate system at the beginning of the page will be assumed in the
top left corner of the page, and y coordinates will increase downwards; otherwise the default coordinate
system will be used. Default: false

Table 2.9 Options for PDF_begin_page_ext() and PDF_end_page_ext()

option description

28 Chapter 2: General Functions

C++ Java void suspend_page(String optlist)
Perl PHP PDF_suspend_page(resource p, string optlist)

C void PDF_suspend_page(PDF *p, const char *optlist)

Suspend the current page so that it can later be resumed.

optlist An option list for future use.

Details The full graphics (graphics, color, text, etc.) and layer state of the current page will be
saved internally. It can later be resumed with PDF_resume_page() to add more content.
Suspended pages must be resumed before they can be closed.

Scope page; this function starts document scope, and must always be paired with a matching
PDF_resume_page() call. This function must not be used in Tagged PDF mode.

transition (Keyword) Set the page transition for the current page in order to achieve special effects which may be
useful when displaying the PDF in Acrobat’s fullscreen mode as presentations if openmode=fullscreen
(see Table 2.3). Default: replace
split Two lines sweeping across the screen reveal the page
blinds Multiple lines sweeping across the screen reveal the page
box A box reveals the page
wipe A single line sweeping across the screen reveals the page
dissolve The old page dissolves to reveal the page
glitter The dissolve effect moves from one screen edge to another
replace The old page is simply replaced by the new page
fly (PDF 1.5) The new page flies into the old page.
push (PDF 1.5) The new page pushes the old page off the screen
cover (PDF 1.5) The new page slides on to the screen and covers the old page.
uncover (PDF 1.5) The old page slides off the screen and uncovers the new page.
fade (PDF 1.5) The new page gradually becomes visible through the old one.

transparency
group

(Option list; PDF 1.4; not allowed for PDF/A and PDF/X) Specifies transparency group attributes for the
page or template. Supported options:
CS (Keyword; required) Specifies the color space of the transparancy group with one of the

following keywords: DeviceGray, DeviceRGB, DeviceCMYK.
I (Boolean) Specifies whether the transparency group is isolated. Default: false
K (Boolean) Specifies whether the transparency group is a knockout group. Default: false
Default: if a page contains image masks with more than 1 bit or the opacityfill/opacitystroke op-
tions of PDF_create_gstate() the following option list will automatically be created to improve output
quality: transparencygroup={CS=DeviceRGB}

trimbox (Rectangle) Specify the TrimBox for the current page. The coordinates are specified in the default coordi-
nate system. Default: no TrimBox entry

userunit (Float or keyword; PDF 1.6) A number in the range 1..75 000 specifying the size of a user unit in points, or
one of the keywords mm, cm, or m which scales to the respective unit. User units don’t change the actual
page contents; they are only a hint to Acrobat which is used when printing the page or using the mea-
surement tools. Default: 1 (i.e. one unit is one point)

width (Float or keyword; not allowed if the topdown option or parameter is true) See height option above.

1. Only for PDF_begin_page_ext()

Table 2.9 Options for PDF_begin_page_ext() and PDF_end_page_ext()

option description

2.4 Page Functions 29

C++ Java void resume_page(String optlist)
Perl PHP PDF_resume_page(resource p, string optlist)

C void PDF_resume_page(PDF *p, const char *optlist)

Resume a page to add more content to it.

optlist An option list according to Table 2.10. The following options can be used:
group, pagenumber

Details The page must have been suspended with PDF_suspend_page(). It will be opened again
so that more content can be added. All suspended pages must be resumed before they
can be closed, even if no more content has been added.

Scope document; this function starts page scope, and must always be paired with a matching
PDF_suspend_page() call.

Table 2.10 Options for PDF_resume_page()

option description

group (String; required if the document uses page groups, but not allowed otherwise) Name of the page group
of the resumed page. The group name must have been defined with the groups option in PDF_begin_
document().

pagenumber (Integer) If this option is supplied, the page with the specified number within the page group chosen in
the group option (or in the document if the document doesn’t use page groups) will be resumed. If this
option is missing the last page in the group will be resumed.

30 Chapter 2: General Functions

2.5 PDFlib Virtual File System (PVF)
Cookbook A full code sample can be found in the Cookbook topic general/starter_pvf.

C++ void create_pvf(string filename, const void *data, size_t size, string optlist)
Java void create_pvf(String filename, byte[] data, String optlist)

Perl PHP PDF_create_pvf(resource p, string filename, string data, string optlist)
C void PDF_create_pvf(PDF *p,

const char *filename, int len, const void *data, size_t size, const char *optlist)

Create a named virtual read-only file from data provided in memory.

filename (Name string) The name of the virtual file. This is an arbitrary string which
can later be used to refer to the virtual file in other PDFlib calls.

len (C language binding only) Length of filename (in bytes) for UTF-16 strings. If len=0
a null-terminated string must be provided.

data A reference to the data for the virtual file. In C and C++ this is a pointer to a mem-
ory location. In Java this is a byte array. In Perl, Python, and PHP this is a string.

size (C and C++ only) The length in bytes of the memory block containing the data.

optlist An option list according to Table 2.11. The following options can be used: copy

Details The virtual file name can be supplied to any API function which uses input files (virtual
files cannot be used for the generated PDF output; use an empty file name in PDF_begin_
document() to achieve this). Some of these functions may set a lock on the virtual file
until the data is no longer needed. Virtual files will be kept in memory until they are de-
leted explicitly with PDF_delete_pvf(), or automatically in PDF_delete().

Each PDFlib object will maintain its own set of PVF files. Virtual files cannot be
shared among different PDFlib objects, but they can be used for creating multiple docu-
ments with the same PDFlib object. Multiple threads working with separate PDFlib ob-
jects do not need to synchronize PVF use. If filename refers to an existing virtual file an
exception will be thrown. This function does not check whether filename is already in
use for a regular disk file.

Unless the copy option has been supplied, the caller must not modify or free (delete)
the supplied data before a corresponding successful call to PDF_delete_pvf(). Not obey-
ing to this rule will most likely result in a crash.

Scope any

Table 2.11 Options for PDF_create_pvf()

option description

copy (Boolean) PDFlib will immediately create an internal copy of the supplied data. In this case the caller may
dispose of the supplied data immediately after this call. The copy option will automatically be set to true
in the COM, .NET, and Java bindings (default for other bindings: false). In other language bindings the
data will not be copied unless the copy option is supplied.

http://www.pdflib.com/pdflib-cookbook/general-programming/starter-pvf

2.5 PDFlib Virtual File System (PVF) 31

C++ Java int delete_pvf(String filename)
Perl PHP int PDF_delete_pvf(resource p, string filename)

C int PDF_delete_pvf(PDF *p, const char *filename, int len)

Delete a named virtual file and free its data structures (but not the contents).

filename (Name string) The name of the virtual file as supplied to PDF_create_pvf().

len (C language binding only) Length of filename (in bytes) for UTF-16 strings. If len=0
a null-terminated string must be provided.

Returns -1 (in PHP: 0) if the corresponding virtual file exists but is locked, and 1 otherwise.

Details If the file isn’t locked, PDFlib will immediately delete the data structures associated with
filename. If filename does not refer to a valid virtual file this function will silently do
nothing. After successfully calling this function filename may be reused. All virtual files
will automatically be deleted in PDF_delete().

The detailed semantics depend on whether or not the copy option has been supplied
to the corresponding call to PDF_create_pvf(): If the copy option has been supplied, both
the administrative data structures for the file and the actual file contents (data) will be
freed; otherwise, the contents will not be freed, since the client is supposed to do so.

Scope any

32 Chapter 2: General Functions

2.6 Exception Handling
Table 2.12 lists relevant parameter key names for this section (see Section 2.1, »Parameter
Handling«, page 13).

C++ Java int get_errnum()
Perl PHP int PDF_get_errnum(resource p)

C int PDF_get_errnum(PDF *p)

Get the number of the last thrown exception or the reason for a failed function call.

Returns The number of an exception, or the reason code of the most recently called function
which failed with an error code.

Scope Between an exception thrown by PDFlib and the death of the PDFlib object. Alternative-
ly, this function may be called after a function returned a -1 (in PHP: 0) error code, but
before calling any other function except those listed in this section.

Bindings In C++, Java, and PHP 5 this function is also available as get_errnum() in the PDFlibExcep-
tion object.

C++ Java String get_errmsg()
Perl PHP string PDF_get_errmsg(resource p)

C const char *PDF_get_errmsg(PDF *p)

Get the text of the last thrown exception or the reason for a failed function call.

Returns Text containing the description of the last exception thrown, or the reason why the
most recently called function failed with an error code.

Table 2.12 Exception-related keys for PDF_get/set_parameter()

key explanation

errorpolicy (Keyword) Controls the behavior of various functions in case of an error. This setting can be overridden
by the errorpolicy option of many functions, and serves as default for the option with the same name.
Supported keywords (default: legacy; scope: any):
legacy The behavior of the functions is the same as in PDFlib 6 (controlled by various *warning

parameters and options which are deprecated in PDFlib 7). This setting provides compatibility
for applications which have been developed with PDFlib 6 or older.

return If an error occurs the function will return. Functions which can return an error code (e.g. PDF_
load_image()) will return -1 (in PHP: 0). Application developers must check the return value
against -1 (in PHP: 0) in order to detect error situations. In case of an error a detailed
description of the problem can be queried with PDF_get_errmsg(). All *warning parameters
and options will be ignored. This setting is recommended for new applications, and for
bringing existing applications up to date.

exception If an error occurs, the function will throw an exception. The (partial) PDF output document
will be unusable.

warning Deprecated; warnings no longer trigger exceptions, but are only accessible via logging (see Section 2.7,
»Logging«, page 31)

2.6 Exception Handling 33

Scope Between an exception thrown by PDFlib and the death of the PDFlib object. Alternative-
ly, this function may be called after a function returned a -1 (in PHP: 0) error code, but
before calling any other function except those listed in this section.

Bindings In C++, Java, and PHP 5 this function is also available as get_errmsg() in the PDFlibExcep-
tion object.

C++ Java String get_apiname()
Perl PHP string PDF_get_apiname(resource p)

C const char *PDF_get_apiname(PDF *p)

Get the name of the API function which threw the last exception or failed.

Returns The name of the function which threw an exception, or the name of the most recently
called function which failed with an error code.

Scope Between an exception thrown by PDFlib and the death of the PDFlib object. Alternative-
ly, this function may be called after a function returned a -1 (in PHP: 0) error code, but
before calling any other function except those listed in this section.

Bindings In C++, Java, and PHP 5 this function is also available as get_apiname() in the
PDFlibException object.

C++ void *get_opaque()
C void *PDF_get_opaque(PDF *p)

Fetch the opaque application pointer stored in PDFlib.

Returns The opaque application pointer stored in PDFlib which has been supplied in the call to
PDF_new2().

Details PDFlib never touches the opaque pointer, but supplies it unchanged to the client. This
may be used in multi-threaded applications for storing private thread-specific data
within the PDFlib object. It is especially useful for thread-specific exception handling.

Scope any

Bindings Only available in the C and C++ bindings.

34 Chapter 2: General Functions

2.7 Logging
The logging feature can be used to trace API calls. The contents of the log file may be
useful for debugging purposes, or may be requested by PDFlib GmbH support. Table 2.13
lists the parameter key names for the logging feature (see Section 2.1, »Parameter Han-
dling«, page 13).

The logging options can be supplied in the following ways:
> As an option list for the logging option of PDF_set_parameter(), e.g.:

p.set_parameter("logging", "filename=debug.log remove")

> In an environment variable called PDFLIBLOGGING. Doing so will activate the log out-
put starting with the very first call to one of the API functions.

Table 2.13 Logging-related keys for PDF_set_parameter()

key explanation

logging Option list with logging options according to Table 2.14

logmsg String which will be copied to the log file

Table 2.14 Options for the logging parameter

key explanation

(empty list) Enable log output

disable (Boolean) Disable logging output

enable (Boolean) Enable logging output

filename (String) Name of the log file; stdout and stderr will be recognized as special names. On CICS this option
will be ignored, and logging output will always be written to stderr. Output will be appended to any ex-
isting contents. Default:
pdflog on MVS
PDFlib.log on Mac and iSeries
\PDFlib.log on Windows
/tmp/PDFlib.log on all other systems
The log file name can alternatively be supplied in an environment variable called PDFLIBLOGFILE.

flush (Boolean) If true, the log file will be closed after each output, and reopened for the next output to make
sure that the output will actually be flushed. This may be useful when chasing program crashes where
the log file is truncated, but significantly slows down processing. If false, the log file will be opened only
once. Default: false

remove (Boolean) If true, an existing log file will be deleted before writing new output. Default: false

stringlimit (Integer) Limit for the number of characters per line, or 0 for unlimited. Default: 0

2.7 Logging 35

classes (Option list) List containing options of type integer, where each option describes a logging class and the
corresponding value describes the granularity level. Level 0 disables a logging class, positive numbers en-
able a class. Increasing levels provide more and more detailed output. The following options are provided
(default: {api=1 warning=1}):
api Log all API calls with their function parameters and results. If api=2 a timestamp will be

created in front of all API trace lines, and deprecated functions and options will be marked. If
api=3 try/catch calls will be logged (useful for debugging problems with nested exception
handling).

filesearch Log all attempts related to locating files via SearchPath or PVF.
resource Log all attempts at locating resources via Windows registry, UPR definitions as well as the

results of the resource search.
user User-specified logging output supplied with the logmsg parameter.
warning Log all PDFlib warnings, i.e. error conditions which can be ignored or fixed internally. If

warning=2 messages from functions which do not throw any exception, but hook up the
message text for retrieval via PDF_get_errmsg(), and the reason for all failed attempts at
opening a file (searching for a file in searchpath) will also be logged.

Table 2.14 Options for the logging parameter

key explanation

36 Chapter 2: General Functions

3.1 Font Handling 33

3 Text Functions

3.1 Font Handling
Table 3.1 and Table 3.2 list relevant parameter and value key names for this section (see
Section 2.1, »Parameter Handling«, page 13).

C++ Java int load_font(String fontname, String encoding, String optlist)
Perl PHP int PDF_load_font(resource p, string fontname, string encoding, string optlist)

C int PDF_load_font(PDF *p, const char *fontname, int len, const char *encoding, const char *optlist)

Search for a font and prepare it for later use.

fontname (Name string) The real or alias name of the font. It will be used to find font
data. Case is significant. On Windows, font style names can be appended to the font
name after a comma (see PDFlib Tutorial for details).

len (C language binding only) Length of fontname in bytes for UTF-16 strings. If len = 0
a null-terminated string must be provided.

encoding The encoding to be used with the font (case is significant):
> unicode for Unicode-based addressing;
> one of the predefined 8-bit encodings winansi, macroman, macroman_apple, ebcdic,

ebcdic_37, pdfdoc, iso8859-X, cpXXXX, or U+XXXX;
> host or auto for an automatically selected encoding;

Table 3.1 Font-related keys for PDF_get/set_parameter()

key and explanation

Encoding, FontAFM, FontPFM, FontOutline, HostFont
The corresponding resource file line as it would appear for the respective category in a UPR file. Multiple calls add new
entries to the internal list. (See also resourcefile in Table 2.1.) Scope: any

fontwarning
Deprecated, use errorpolicy

ascenderfaked, capheightfaked, descenderfaked, fontencoding, fontname, fontstyle, xheightfaked
Deprecated, use PDF_info_font().

autocidfont, autosubsetting, unicodemap
Deprecated, use the corresponding option in PDF_load_font().

Table 3.2 Font-related keys for PDF_get/set_value()

key and explanation

fontmaxcode, capheight, ascender, descender, xheight, monospace
Deprecated, use PDF_info_font().

subsetlimit, subsetminsize
Deprecated, use the corresponding option in PDF_load_font().

34 Chapter 3: Text Functions

> the name of a user-defined encoding loaded from file or defined via PDF_encoding_
set_char();

> cp932, cp936, cp949, or cp950 for CJK codepages (on Windows the system code pages
will be used; on all other systems the corresponding CMaps must be available);

> glyphid for glyph id addressing;
> builtin to select the font’s internal encoding (mostly for symbolic fonts);
> the name of a standard CMap;
> Identity-H or Identity-V for CID addressing with standard CJK fonts and OpenType CID

fonts; 2 bytes in native byte ordering must be supplied per glyph; these encodings
are mainly useful for creating CJK character collection tables;

> an encoding name known to the operating system (not available on all platforms).

The encoding must be compatible with the chosen font. Table 3.3 details the allowed
combinations of encodings and font types.

optlist An option list according to Table 3.4. The following options can be used:
autocidfont, autosubsetting, capheight, descender, dropcorewidths, embedding, errorpolicy,
fontstyle, keepnative, kerning, linegap, metadata, monospace, replacementchar, subsetlimit,
subsetminsize, subsetting, unicodemap, vertical, xheight

Returns A font handle for later use with PDF_info_font(), text output functions, and the font op-
tion of various functions. By default, this function returns an error code of -1 (in PHP: 0)
if the requested font/encoding combination cannot be loaded, and does not throw an
exception. However, this behavior can be changed with the errorpolicy parameter or op-
tion. If the function returns -1 (in PHP: 0) you can request the reason of the failure with
PDF_get_errmsg().

The returned number doesn’t have any significance to the user other than serving as
a font handle. For example, requesting the same font/encoding combination in differ-
ent documents may result in different font handles.

Details This function prepares a font for later use. The metrics will be loaded from memory,
from the system (for host fonts), or from a (virtual or disk-based) metrics file. If the re-

Table 3.3 Allowed encodings for different font types

font format unicode
8-bit
encodings

CMaps,
cp936 etc.1

1. The font must support the selected CMap or codepage, otherwise it will be rejected. CMap access must be configured since CMaps are
required for text output.

builtin glyphid

PostScript Type 1 yes2

2. A maximum of 256 different glyphs can be addressed.

yes – yes –

Type 3 yes2 yes – – –

Western OpenType with PostScript outlines (SID) yes3

3. The font will be embedded by default, but font embedding can be prevented by setting embedding=false.

yes3 – yes yes3

TrueType and OpenType with TrueType outlines yes3 yes3 yes3, 4

4. The font cannot be used in form fields.

Symbol
fonts only

yes3

CJK OpenType with PostScript outlines (CID) yes – yes – yes

Standard CJK font without embedding yes – yes5

5. Standard CJK font with non-Unicode CMap can be used in Textflow if keepnative=false, and can be used in form fields if keep-
native=true. Standard CJK fonts with non-Unicode CMap can not be used both in Textflow and form fields.

– –

3.1 Font Handling 35

quested font/encoding combination cannot be used due to a configuration problem
(e.g. a font, metrics, or encoding file could not be found, or a mismatch was detected), an
error code will be returned or an exception raised (subject to errorpolicy). Otherwise, the
value returned by this function can be used as font handle when calling other font-re-
lated functions.

Repeated calls: when calling this function again with the same font name the same
font handle as in the first call will be returned unless a different encoding parameter has
been supplied, or one of the fontstyle, monospace, or vertical options is different.

Conflicting options: when a font is loaded (directly via PDF_load_font() or indirectly
via PDF_add/create_textflow() or PDF_fill_textblock()) with the embedding option, but al-
ready has been loaded earlier without this option, the call will not succeed. With
errorpolicy=legacy a warning will be logged, with errorpolicy=return the value -1 (in PHP: 0)
will be returned, and with errorpolicy=exception an exception will be thrown. This situa-
tion usually points to a problem in the application.

Scope font, document, page, path, pattern, template, glyph

Params See Table 3.1 and Table 3.2.

Table 3.4 Options for PDF_load_font()

option description

ascender (Integer between -2048 and 2048) Force the corresponding typographic property to the specified value.
This will override any values found in the font, and is especially useful if the font does not contain any
such information (e.g. Type 3 fonts). Default: the value in the font if present, or an estimated value other-
wise (which can be queried with PDF_info_font())

autocidfont (Boolean) If true, TrueType fonts with 8-bit encoding except winansi, macroman, builtin, and OpenType
fonts without glyph names will automatically be stored as CID fonts. This avoids problems with certain
non-accessible glyphs outside winansi encoding. Default: true

auto-
subsetting

(Boolean) Dynamically decide whether or not the font will be subset, subject to the subsetlimit and
subsetminsize options and the actual usage of glyphs. This option will be ignored if the subsetting op-
tion has been supplied. Default: true

capheight (Integer between -2048 and 2048) See ascender above.

descender (Integer between -2048 and 2048) See ascender above.

dropcore-
widths

(Boolean; unsupported; will be forced to false in PDF/A and PDF/X mode) The widths for unembedded
core fonts will not be emitted in the generated PDF. The slightly reduces output file size, but may create
incorrect text rendering for certain characters. It is strongly recommended to keep this option at its de-
fault value. Default: false

embedding (Boolean; must be true for PDF/A and PDF/X) Controls whether or not the font will be embedded. If a
font is to be embedded, the font outline file must be available in addition to the metrics information (this
is irrelevant for TrueType and OpenType fonts), and the actual font outline definition will be included in
the PDF output. If a font is not embedded, only general information about the font is included in the PDF
output.
Default: generally false, but true for TrueType/OpenType fonts with encoding=unicode and other en-
codings which result in conversion to a CID font (see Table 3.3). Although PDFlib will automatically em-
bed such fonts, font embedding can be prevented by setting embedding to false. In this case the font
must be installed on the system where the PDF documents are viewed or printed.
This option does not have any effect on Type 3 fonts.

errorpolicy (Keyword) Controls the behavior in case of an error (see Section 2.6, »Exception Handling«, page 29)

36 Chapter 3: Text Functions

fontstyle (Keyword) Controls the creation of artificial font styles. Possible keywords are normal, bold, italic, bold-
italic. For TrueType (not TTC) and OpenType fonts which are not embedded the artificial font style will
be created by Acrobat, otherwise by PDFlib (using the same emboldening method as in the fakebold pa-
rameter or option). In the latter case the slanting angle can be controlled with the italicangle parame-
ter or option. If this option is applied to one of the core fonts, the appropriate bold, italic, or bolditalic
font variant will be chosen instead of creating an artificial font style. If no such font is available (e.g. ap-
plying bold to Times-Bold), the option will be ignored. Default: normal

fontwarning Deprecated, use errorpolicy

keepnative (Boolean; only relevant for standard CJK fonts with a non-Unicode CMap; will be ignored for other fonts;
will be forced to false if embedding=true) If false, text in this font will be converted to Unicode (using
glyphid addressing and Identity-H encoding) when creating PDF output. This does not affect the text
supplied to API functions which must still match the selected CMap (e.g. Shift-JIS). However, the font can
be used in Textflow and all simple text output functions (but not in form fields).
If true, text in this font will be written to the PDF output in its native format according to the specified
CMap. The font can be used in form fields and all simple text output functions, but not in Textflow.
Default: true if embedding=false, and false if embedding=true

kerning (Boolean) Controls whether or not kerning values will be read from the font. Default: false

linegap (Integer between -2048 and 2048) See ascender above.

metadata (Option list; PDF 1.4) Supply metadata for the font (see Section 12.2, »XMP Metadata«, page 159)

monospace (Integer between 1 and 2048; not for PDF/A) Forces all glyphs in the font to use the specified width (in the
font coordinate system: 1000 units equal the font size). For Type 3 fonts all glyph widths which are differ-
ent from 0 will be modified. This option is only recommended for standard CJK fonts, and not supported
for core fonts; it will be ignored if the font is embedded. Default: absent (metrics from the font will be
used)

replace-
mentchar

(Unichar; only relevant if glyphcheck=replace) Glyphs which are not available in the selected font and
which cannot be substituted will be replaced with the specified Unicode value (or the specified code in
case of builtin encoding). U+0000 can be used to specify the font’s »missing glyph« symbol. Default: no
replacement character

skippost-
table

(Boolean; unsupported; only relevant for TrueType and OpenType fonts) Specifies whether the post table
of TT/OT fonts will be parsed to determine glyph names. Setting this option to true can speed up font
loading, but glyph name references to glyphs with non-standard names will not work for the font (this
mainly affects symbolic fonts, but usually not text fonts). Default: false

subsetlimit (Float or percentage; will be ignored for Type 3 fonts) Automatic font subsetting will be disabled if the
percentage of glyphs used in the document related to the total number of glyphs in the font exceeds the
provided percentage. Default: 100%

subsetminsize (Float; will be ignored for Type 3 fonts) Automatic font subsetting will be disabled if the size of the origi-
nal font file is less than the provided value in KB. Default: 50

subsetting (Boolean) Controls whether or not the font will be subset. Subsetting for Type 3 fonts requires a two-pass
definition of the font (see PDFlib Tutorial) , and the subsetting option must be provided in the first call
to PDF_load_font(). Default: false

unicodemap (Boolean; must not be set to false for pdfa=PDF/A-1a:2005) Controls the generation of ToUnicode
CMaps. This option will be ignored in Tagged PDF mode. Default: true

vertical (Boolean; only for TrueType and OpenType fonts; will be ignored if a predefined CMap is specified, and
will be forced to true if the font name starts with @) If true, the font will be prepared for vertical writing
mode.

xheight (Integer between -2048 and 2048) See ascender above.

Table 3.4 Options for PDF_load_font()

option description

3.1 Font Handling 37

C++ Java double info_font(int font, String keyword, String optlist)
Perl PHP float PDF_info_font(resource p, int font, string keyword, string optlist)

C double PDF_info_font(PDF *p, int font, const char *keyword, const char *optlist)

Query detailed information about a loaded font.

font A font handle returned by PDF_load_font().

keyword A keyword specifying the requested information according to Table 3.5.

optlist An option list according to Table 3.5. The following options can be used:
ascender, capheight, cidfont, code, descender, encoding, fontfile, fontname, fontstyle, glyphid,
glyphname, hostfont, italicangle, keepnative, kerningpairs, linegap, maxcode, metricsfile,
monospace, numcids, numglyphs, replacementchar, standardfont, supplement, symbolfont,
unicode, unicodefont, unmappedglyphs, vertical, weight, willembed, willsubset, xheight

Returns The value of some font property as requested by keyword and in some cases auxiliary
options. For unspecified combinations of keyword and options -1 will be returned. Some
keywords will return a string indirectly by returning its string index. The corresponding
string can be retrieved via PDF_get_parameter() and the string parameter (see Table 2.1).

Scope any except object

Table 3.5 Keywords and options for PDF_info_font()

keyword explanation

ascender Metrics value for the ascender. Supported options (default: fontsize=1000):
faked (Boolean) 1 if the value had to be estimated because it was not available in the font or metrics

file, otherwise 0
fontsize (Float) Value will be scaled to the specified font size

capheight Metrics value for the capheight. See ascender.

cidfont 1 if the font will be embedded as a CID font, otherwise 0

code (Only for fonts with 8-bit encoding) Number in the range 0...255 specifying an encoding slot characterized
by one of the following options, or -1 if no such slot could be found:
unicode (Unichar) Unicode character
glyphname (String) Slot with the specified glyph name

descender Metrics value for the descender. See ascender.

encoding String index of the name of the font’s encoding or CMap. Supported options (default: actual):
api (Boolean) If true, the encoding name as specified in the API
actual (Boolean) If true, the name of the actual encoding used for the font

fontfile String index of the path name for the font outline file, or -1 if unavailable

fontname String index of the font name, or -1 if unavailable. Supported options (default: acrobat):
api (Boolean) If true, the font name as specified in the API
full (Boolean) If true, the /FontName entry in the PDF font descriptor
acrobat (Boolean) If true, the font name as displayed in Acrobat

fontstyle String index for the value of the fontstyle option (normal, bold, italic, or bolditalic). Supported op-
tion:
faked 1 if fontstyle will be realized by PDFlib, 0 if fontstyle will be realized by Acrobat

38 Chapter 3: Text Functions

glyphid (For fonts with 8-bit encoding, Symbol fonts with encoding=builtin, and fonts with encoding=
unicode) Number in the range 0...65535 specifying the font-internal glyph id (GID) characterized by one
of the following options, or -1 if no such glyph could be found:
code (Number in the range 0...255; only for fonts with 8-bit encoding and Symbol fonts with

encoding=builtin) Encoding slot
unicode (Unichar; only for fonts with encoding=unicode) Slot with the specified Unicode character

glyphname (For all fonts except Symbol fonts with encoding=builtin and fonts with a standard CMap) String index
of the name of the glyph specified by one of the following options, or -1 if no such glyph could be found:
code (Number in the range 0...255; only for fonts with 8-bit encoding) Encoding slot
glyphid (Number in the range 0...65535; only for TT/OT fonts with encoding=unicode and fonts with

encoding=glyphid) Internal glyph id
unicode1 (Unichar) Slot with the specified Unicode character

hostfont 1 if the font is a host font, 0 otherwise

italicangle Italic angle of the font (ItalicAngle in the PDF font descriptor)

keepnative The value of the keepnative option.

kerningpairs Number of kerning pairs in the font

linegap Metrics value for the linegap. See ascender.

maxcode Highest code value for the font’s encoding

metricsfile String index of the path name for the font metrics file (AFM or PFM), or -1 if unavailable

monospace The value of the monospace option, or 0 if it hasn’t been supplied.

numcids Number of CIDs if the font uses a standard CMap, otherwise -1

numglyphs Number of glyphs in the font

replacement
char

Unicode value (for Unicode-compatible fonts) or code value (for Symbol fonts) of the replacement charac-
ter of the font

standardfont 1 if the font is a PDF core font or a standard CJK font, otherwise 0

supplement Supplement number of the character collection for fonts with a standard CJK CMap, otherwise 0

symbolfont 1 if the font is a symbolic font, 0 otherwise (symbol flag in the PDF font descriptor; decision is based on
font data)

unicode (For all fonts except Symbol fonts with encoding=builtin) Unicode UTF-32 value for the glyph specified
by one of the following options, or -1 if no Unicode value could be found:
cid (Number; only for fonts with a standard CMap) CID value of the glyph
code (Number in the range 0...255; only for fonts with 8-bit encoding) Encoding slot
glyphid (Number in the range 0...65535; only for TT/OT fonts with encoding=unicode and fonts with

encoding=glyphid) Internal glyph id
glyphname1 (String; only for fonts with 8-bit encoding) Name of the glyph for which to determine a

Unicode value

unicodefont 1 if the font was loaded with an encoding that allows Unicode text (builtin, glyphid, and non-Uni-
code CMaps do not allow Unicode text), otherwise 0

unmapped-
glyphs

Number of glyphs in the font/encoding combination which couldn’t be mapped to Unicode (glyphs with
PUA values are considered unmappable)

vertical 1 if the font is for vertical writing mode, otherwise 0

Table 3.5 Keywords and options for PDF_info_font()

keyword explanation

3.1 Font Handling 39

weight Font weight in the range 100...900; 400=normal, 700=bold

willembed 1 if the font will be embedded (via the embedding option or forced font embedding), otherwise 0

willsubset 1 if a font subset will be created (if autosubsetting=true, the subsetlimit must be reached for subset-
ting to be activated), otherwise 0

xheight Metrics value for the xheight. See ascender.

1. The keyword glyphname and option unicode (and vice versa) can be used to determine the relationship of glyph names and Unicode
values for fonts with an 8-bit encoding. However, this combination can also be used to determine these mappings based on PDFlib’s
internal mapping tables independently from any specific 8-bit encoding. For this scenario a font handle for a font without any 8-bit
encoding must be supplied.

Table 3.5 Keywords and options for PDF_info_font()

keyword explanation

40 Chapter 3: Text Functions

3.2 Type 3 Font Definition
Cookbook A full code sample can be found in the Cookbook topic fonts/starter_type3font.

C++ Java void begin_font(String fontname,
double a, double b, double c, double d, double e, double f, String optlist)

Perl PHP PDF_begin_font(resource p, string fontname,
float a, float b, float c, float d, float e, float f, string optlist)

C void PDF_begin_font(PDF *p, char *fontname, int reserved,
double a, double b, double c, double d, double e, double f, const char *optlist)

Start a Type 3 font definition.

fontname (Name string) The name under which the font will be registered, and can
later be used with PDF_load_font().

reserved (C language binding only) Reserved, must be 0.

a, b, c, d, e, f (Will be ignored in the second pass of the font definition for Type 3 font
subsets) The elements of the font matrix. This matrix defines the coordinate system in
which the glyphs will be drawn. The six values make up a matrix in the same way as in
PostScript and PDF (see references). In order to avoid degenerate transformations, a*d
must not be equal to b*c. A typical font matrix for a 1000 x 1000 coordinate system is
[0.001, 0, 0, 0.001, 0, 0].

optlist (Ignored in the second pass for subset fonts) An option list according to Table
3.6. The following options can be used: colorized, familyname, stretch, weight, widthsonly

Details This function will reset all text, graphics, and color state parameters to their defaults.
The font may contain an arbitrary number of glyphs, but only 256 glyphs can be access-
ed via an encoding. The font can be used until the end of the current document scope.

Scope document, page; this function starts font scope, and must always be paired with a
matching PDF_end_font() call. For the second pass of subsetted fonts only document
scope is allowed.

Table 3.6 Options for PDF_begin_font()

option description

colorized (Boolean) If true, the font may explicitly specify the color of individual characters. If false, all characters
will be drawn with the current color (at the time the font is used, not when it is defined), and the glyph
definitions must not contain any color operators or images other than masks. Default: false

familyname1 (String; PDF 1.5) Name of the font family

stretch1 (Keyword; PDF 1.5) The font stretch value. Keywords: ultracondensed, extracondensed, condensed,
semicondensed, normal, semiexpanded, expanded, extraexpanded, ultraexpanded. Default: normal

weight1 (Integer or keyword; PDF 1.5) The font weight. Possible numbers or equivalent keywords are 100=thin,
200=extralight, 300=light, 400=normal, 500=medium, 600=semibold, 700=bold, 800=extrabold,
900=black. Default: normal

http://www.pdflib.com/pdflib-cookbook/fonts-and-encodings/starter-type3font

3.2 Type 3 Font Definition 41

C++ Java void end_font()
Perl PHP PDF_end_font(resource p)

C void PDF_end_font(PDF *p)

Terminate a Type 3 font definition.

Scope font; this function terminates font scope, and must always be paired with a matching
PDF_begin_font() call.

C++ Java void begin_glyph(String glyphname, double wx, double llx, double lly, double urx, double ury)
Perl PHP PDF_begin_glyph(resource p, string glyphname, float wx, float llx, float lly, float urx, float ury)

C void PDF_begin_glyph(PDF *p,
char *glyphname, double wx, double llx, double lly, double urx, double ury)

Start a glyph definition for a Type 3 font.

glyphname The name of the glyph. This name must be used in any encoding which
will be used with the font. Glyph names within a font must be unique.

wx (Will be ignored in the second pass of the font definition for Type 3 font subsets)
The width of the glyph in the glyph coordinate system, as specified by the font’s matrix.

llx, lly, urx, ury (Will be ignored in the second pass of the font definition for Type 3
font subsets) If the font’s colorized option is false (which is default), the coordinates of
the lower left and upper right corners of the glyph’s bounding box. The bounding box
values must be correct in order to avoid problems with PostScript printing. If the font’s
colorized option is true, all four values must be 0.

Details The glyphs in a font can be defined using text, graphics, and image functions. Images,
however, can only be used if the font’s colorized option is true, or the image has been
opened with the mask option. It is strongly suggested to use the inline image feature for
defining bitmaps in Type 3 fonts.

Since the complete graphics state of the surrounding page will be inherited for the
glyph definition when the colorized option is true, the glyph definition should explicitly
set any aspect of the graphics state which is relevant for the glyph definition (e.g.
linewidth).

Scope page, font; this function starts glyph scope, and must always be paired with a matching
PDF_end_glyph() call. If widthsonly=true in PDF_begin_font() all API function calls
between PDF_begin_glyph() and PDF_end_glyph() will be ignored.

widthsonly (Boolean) If true (pass 1 for Type 3 font subsetting), only the metrics of the font and glyphs will be de-
fined. No other API functions should be called between PDF_begin_glyph() and PDF_end_glyph(). If oth-
er functions are called nevertheless, they will not have any effect on the PDF output, and will not raise
any exception.
If widthsonly=false (pass 2 for Type 3 font subsetting) the actual glyph outlines can be defined. This
two-pass definition enables PDFlib to perform subsetting on Type 3 fonts. Default: false

1. These options are strongly recommended when creating Tagged PDF, and will be ignored otherwise.

Table 3.6 Options for PDF_begin_font()

option description

42 Chapter 3: Text Functions

C++ Java void end_glyph()
Perl PHP PDF_end_glyph(resource p)

C void PDF_end_glyph(PDF *p)

Terminate a glyph definition for a Type 3 font.

Scope glyph; this function terminates glyph scope, and must always be paired with a matching
PDF_begin_glyph() call.

3.3 Encoding Definition 43

3.3 Encoding Definition

C++ Java void encoding_set_char(String encoding, int slot, String glyphname, int uv)
Perl PHP PDF_encoding_set_char(resource p, string encoding, int slot, string glyphname, int uv)

C void PDF_encoding_set_char(PDF *p, const char *encoding, int slot, const char *glyphname, int uv)

Add a glyph name and/or Unicode value to a custom 8-bit encoding.

encoding The name of the encoding. This is the name which must be used with PDF_
load_font(). The encoding name must be different from any built-in encoding and all
previously used encodings.

slot The position of the character to be defined, with 0 <= slot <= 255. A particular slot
must only be filled once within a given encoding.

glyphname The character’s name.

uv The character’s Unicode value.

Details This function is only required for specialized applications which must work with non-
standard 8-bit encodings. It can be called multiply to define up to 256 character slots in
an encoding. More characters may be added to a particular encoding until it has been
used for the first time; otherwise an exception will be raised. Not all code points must be
specified; undefined slots will be filled with .notdef and U+0000.

There are three possible combinations of glyph name and Unicode value:
> glyphname supplied, uv=0: this parallels an encoding file without Unicode values;
> uv supplied, but no glyphname supplied: this parallels a codepage file;
> glyphname and uv supplied: this parallels an encoding file with Unicode values.

The defined encoding can be used until the end of the current object scope.

Scope object, document, page, pattern, template, path, font, glyph

44 Chapter 3: Text Functions

3.4 Simple Text Output
Note All text supplied to the functions in this section must match the encoding selected with PDF_

load_font() and the specified textformat. Due to restrictions in Acrobat, text strings must not
exceed 32 KB in length.

Table 3.7 and Table 3.8 lists relevant parameters and values for this section (see Section
2.1, »Parameter Handling«, page 13).

Table 3.7 Text-related keys for PDF_get/set_parameter()

key explanation

autospace If true and the current font is Unicode-compatible, PDFlib will automatically add a space character
(0x20) after each text output generated with a show operation. This may be useful for generating
Tagged PDF. Note that adding spaces changes the current text position after the show operation. De-
fault: false. Scope: any

charref If true, enable substitution of numeric and character entity references and glyph name references. De-
fault: false

escape-
sequence

If true, enable substitution of escape sequences in content strings, hypertext strings, and name strings.
Default: false

fakebold If true, simulate bold font by triple overprinting. It is strongly recommended to use bold font variations
for emphasis; this parameter will create text output which is inferior to real bold text, and may inhibit
text extraction. Default: false

glyphcheck The default glyph checking policy (see Table 4.1). Default: replace. Scope: any

glyphwarning Deprecated, use errorpolicy

kerning If true, enable kerning for fonts which have been opened with the kerning option; disable if false. De-
fault: true. Scope: any

textformat (Only for non Unicode-compatible language bindings) The format in which the text output functions will
expect the client-supplied strings. Possible values are bytes, utf8, ebcdicutf8 (only on iSeries and
zSeries), utf16, utf16le, utf16be, and auto. Default: auto. Scope: any

underline
overline
strikeout

The current underline, overline, and strikeout modes, which are retained until they are explicitly chan-
ged, or a new page is started. Theses modes can be set independently from each other, and are reset to
false at the beginning of each page. Default: false. Scope: page, pattern, template, glyph
true underline/overline/strikeout text
false do not underline/overline/strikeout text

Table 3.8 Text-related keys for PDF_get/set_value()

key explanation

charspacing Character spacing, i.e. the shift of the current point after placing individual characters in a string. It is
specified in units of the user coordinate system, and is reset to the default of 0 at the beginning and end
of each page. In order to spread characters apart use positive values for horizontal writing mode, and
negative values for vertical writing mode. Scope: page, pattern, template, glyph, document

font1 Identifier of the current font which has been set with PDF_setfont(), or -1 (in PHP: 0) if no font is set.
Scope: page, pattern, template, glyph

fontsize1 Size of the current font which must have been previously set with PDF_setfont(). Scope: page, pattern,
template, glyph

3.4 Simple Text Output 45

horizscaling Horizontal text scaling to the given percentage (must be different from 0). Text scaling shrinks or ex-
pands the text by a given percentage. It is set to the default of 100 at the beginning and end of each
page. Text scaling always relates to the horizontal coordinate. Scope: page, pattern, template, glyph,
document

italicangle The italic (slant) angle of text in degrees (between -90° and 90°). Negative values can be used to simulate
italic text when only a regular font is available, especially for CJK fonts . Default: 0 (this parameter will be
reset at the beginning and end of each page). Scope: page, pattern, template, glyph, document

leading Leading, which is the distance between baselines of adjacent lines of text. The leading is used for PDF_
continue_text(). It is set to the value of the font size when a new font is selected using PDF_setfont().
Setting the leading equal to the font size results in dense line spacing (leading = 0 will result in overprint-
ing lines). However, ascenders and descenders of adjacent lines will generally not overlap. Scope: page,
pattern, template, glyph

textrendering Current text rendering mode. It is set to the default of 0 at the beginning of each page. Scope: page,
pattern, template, glyph. Supported text rendering modes:
0 fill text
1 stroke text (outline)
2 fill and stroke text
3 invisible text
4 fill text and add it to the clipping path
5 stroke text and add it to the clipping path
6 fill and stroke text and add it to the clipping path
7 add text to the clipping path

textrise Text rise parameter, which specifies the distance between the desired text position and the default base-
line. Positive values of text rise move the text up. The text rise always relates to the vertical coordinate.
This may be useful for superscripts and subscripts. The text rise is set to the default value of 0 at the be-
ginning of each page. Scope: page, pattern, template, glyph

textx1

texty1
x or y coordinate of the current text position. Default: 0. Scope: page, pattern, template, glyph

underline-
position

Position of the stroked line for underlined text, relative to the baseline (as a fraction of the font size). The
value 1000000 can be supplied to set a font-specific value which will be retrieved from the font metrics
or outline file. Default: 1000000

underline-
width

Absolute line width for text underlines. The value 0 uses a font-specific value from the font metrics or
outline file if available, otherwise 5% of the fontsize. Default: 0

wordspacing Word spacing, i.e. the shift of the current point after placing individual words in a line. In other words,
the current point is moved horizontally after each space character (U+0020). The spacing value is given
in text space units, and is reset to the default of 0 at the beginning and end of each page. Scope: page,
pattern, template, glyph, document

1. Only for PDF_get_value()

Table 3.8 Text-related keys for PDF_get/set_value()

key explanation

46 Chapter 3: Text Functions

C++ Java void PDF_setfont(int font, double fontsize)
Perl PHP PDF_setfont(resource p, int font, float fontsize)

C void PDF_setfont(PDF *p, int font, double fontsize)

Set the current font in the specified size.

font A font handle returned by PDF_load_font().

fontsize Size of the font, measured in units of the current user coordinate system. The
font size must not be 0; a negative font size will result in mirrored text relative to the
current transformation matrix.

Details The font must be set on each page before calling any of the simple text output func-
tions. Font settings will not be retained across pages. The current font can be changed
an arbitrary number of times per page. In all text formatting functions (see Chapter 4,
»Formatting Functions«, page 49). the font can be specified using the font and fontsize
options.

Scope page, pattern, template, glyph

Params This function automatically sets the leading parameter to fontsize.

C++ Java void set_text_pos(double x, double y)
Perl PHP PDF_set_text_pos(resource p, float x, float y)

C void PDF_set_text_pos(PDF *p, double x, double y)

Set the position for text output on the page.

x, y The current text position to be set.

Details The text position is set to the default value of (0, 0) at the beginning of each page. The
current point for graphics output and the current text position are maintained sepa-
rately.

Scope page, pattern, template, glyph

Params See Table 3.7 and Table 3.8.

C++ Java void show(String text)
Perl PHP PDF_show(resource p, string text)

C void PDF_show(PDF *p, const char *text)
C void PDF_show2(PDF *p, const char *text, int len)

Print text in the current font and size at the current text position.

text (Content string) The text to be printed. In C text must not contain null characters
when using PDF_show(), since it is assumed to be null-terminated; use PDF_show2() for
strings which may contain null characters.

len (Only for PDF_show2()) Length of text (in bytes) for UTF-16 strings. If len = 0 a null-
terminated string must be provided.

3.4 Simple Text Output 47

Details The font must have been set before with PDF_setfont(). The current text position is
moved to the end of the printed text.

Scope page, pattern, template, glyph

Params See Table 3.7 and Table 3.8.

Bindings PDF_show2() is only available in C since in all other bindings arbitrary string contents
can be supplied with PDF_show().

C++ Java void xshow(String text, const double *xadvancelist)
C void PDF_xshow(PDF *p, const char *text, int len, const double *xadvancelist)

Print text in the current font and size, using individual horizontal positions.

text (Content string) The text to be printed.

len (Only for the C language binding) Length of text (in bytes) for UTF-16 strings. If
len = 0 a null-terminated string must be provided.

xadvancelist An array of x advance values for the glyphs in text. Each value specifies
the relative horizontal displacement (in user coordinates) after a glyph has been placed.
The array length must be equal to the number of glyphs in text (not necessarily equal to
len, which is the the number of bytes!).

Details The font must have been set before with PDF_setfont().

Scope page, pattern, template, glyph

Params See Table 3.7 and Table 3.8.

Bindings Only available in the C and C++ language bindings. Other bindings can use the
xadvancelist option in PDF_fit_textline() to achieve the same functionality.

C++ Java void show_xy(String text, double x, double y)
Perl PHP PDF_show_xy(resource p, string text, float x, float y)

C void PDF_show_xy(PDF *p, const char *text, double x, double y)
C void PDF_show_xy2(PDF *p, const char *text, int len, double x, double y)

Print text in the current font.

text (Content string) The text to be printed. In C text must not contain null characters
when using PDF_show_xy(), since it is assumed to be null-terminated; use PDF_show_
xy2() for strings which may contain null characters.

x, y The position in the user coordinate system where the text will be printed.

len (Only for PDF_show_xy2()) Length of text (in bytes) for UTF-16 strings. If len = 0 a
null-terminated string must be provided.

Details The font must have been set before with PDF_setfont(). The current text position is
moved to the end of the printed text.

Scope page, pattern, template, glyph

Params See Table 3.7 and Table 3.8.

Bindings PDF_show_xy2() is only available in C since in all other bindings arbitrary string con-
tents can be supplied with PDF_show_xy().

C++ Java void continue_text(String text)
Perl PHP PDF_continue_text(resource p, string text)

C void PDF_continue_text(PDF *p, const char *text)
C void PDF_continue_text2(PDF *p, const char *text, int len)

Print text at the next line.

text (Content string) The text to be printed. If this is an empty string, the text position
will be moved to the next line anyway. In C text must not contain null characters when
using PDF_continue_text(), since it is assumed to be null-terminated; use PDF_continue_
text2() for strings which may contain null characters.

len (Only for PDF_continue_text2()) Length of text (in bytes) for UTF-16 strings. If
len = 0 a null-terminated string must be provided as in PDF_continue_text().

Details The positioning of text (x and y position) and the spacing between lines is determined
by the leading parameter and the most recent call to PDF_fit_textline(), PDF_show_xy() or
PDF_set_text_pos(). The current point will be moved to the end of the printed text; the x
position for subsequent calls of this function will not be changed.

Scope page, pattern, template, glyph; this function should not be used in vertical writing mode.

Params See Table 3.7 and Table 3.8.

Bindings PDF_continue_text2() is only available in C since in all other bindings arbitrary string
contents can be supplied with PDF_continue_text().

C++ Java double stringwidth(String text, int font, double fontsize)
Perl PHP float PDF_stringwidth(resource p, string text, int font, float fontsize)

C double PDF_stringwidth(PDF *p, const char *text, int font, double fontsize)
C double PDF_stringwidth2(PDF *p, const char *text, int len, int font, double fontsize)

Calculate the width of text in an arbitrary font.

text (Content string) The text for which the width will be queried. In C text must not
contain null characters when using PDF_stringwidth(), since it is assumed to be null-ter-
minated; use PDF_stringwidth2() for strings which may contain null characters.

len (Only for PDF_stringwidth2()) Length of text (in bytes) for UTF-16 strings. If len = 0 a
null-terminated string must be provided.

font A font handle returned by PDF_load_font().

fontsize Size of the font, measured in units of the user coordinate system (see PDF_
setfont()).

Returns The width of text in a font which has been selected with PDF_load_font() and the sup-
plied fontsize. The returned width value may be negative (e.g. when negative horizontal
scaling has been set). In vertical writing mode the width of the widest glyph will be re-
turned (use PDF_info_textline() to determine the actual height of the text).

3.4 Simple Text Output 49

Details The width calculation takes the current values of the following text parameters into ac-
count: horizscaling, kerning, charspacing, and wordspacing.

Scope font, page, pattern, template, path, glyph, document

Params See Table 3.7 and Table 3.8.

Bindings PDF_stringwidth2() is only available in C since in all other bindings arbitrary string con-
tents can be supplied with PDF_stringwidth().

50 Chapter 3: Text Functions

3.5 Unicode Conversion Functions
These functions may be useful for Unicode string conversion. They are provided for the
benefit of users working with language environments that are not Unicode-aware.

C++ string utf16_to_utf8(string utf16string)
Perl PHP string PDF_utf16_to_utf8(resource p, string utf16string)

C const char *PDF_utf16_to_utf8(PDF *p, const char *utf16string, int len, int *size)

Convert a string from UTF-16 format to UTF-8.

utf16string The string to be converted. A Byte Order Mark (BOM) in the string will be
interpreted. If it is missing the platform’s native byte ordering is assumed.

len (C language binding only) Length of utf16string in bytes.

size (C language binding only) C-style pointer to a memory location where the length
of the returned string (in bytes) will be stored. If the pointer is NULL it will be ignored.

Returns The converted UTF-8 string. The generated UTF-8 string will start with the UTF-8 BOM
(\xEF\xBB\xBF). On EBCDIC platforms the conversion result including the BOM will final-
ly be converted to EBCDIC. The returned string is valid until the next call to any PDFlib
function, or until an exception is thrown. Clients must copy the string if they need it
longer. The memory used for the converted string will be managed by PDFlib.

Scope any

Bindings This function is not available in Unicode-capable language bindings.

C++ string utf8_to_utf16(string utf8string, string ordering)
Perl PHP string PDF_utf8_to_utf16(resource p, string utf8string, string ordering)

C const char *PDF_utf8_to_utf16(PDF *p, const char *utf8string, const char *ordering, int *size)

Convert a string from UTF-8 format to UTF-16.

utf8string The string to be converted, which must contain a valid UTF-8 sequence (on
EBCDIC platforms it must be encoded in EBCDIC). If a Byte Order Mark (BOM) is present,
it will be removed.

ordering Specifies the byte ordering of the result string:
> utf16 or an empty string: the converted string will not have any BOM, and will be

stored in the platform’s native byte order.
> utf16le: the converted string will be formatted in little endian format, and will be pre-

fixed with the little-endian BOM (\xFF\xFE).
> utf16be: the converted string will be formatted in big endian format, and will be pre-

fixed with the big-endian BOM (\xFE\xFF).

size (C language binding only) C-style pointer to a memory location where the length
of the returned string (in bytes) will be stored.

Returns The converted UTF-16 string. The returned string is valid until the next call to any
PDFlib function, or until an exception is thrown. Clients must copy the string if they
need it longer. The memory used for the converted string will be managed by PDFlib.

3.5 Unicode Conversion Functions 51

Scope any

Bindings This function is not available in Unicode-capable language bindings.

C++ string utf32_to_utf16(string utf32string, string ordering)
Perl PHP string PDF_utf32_to_utf16(resource p, string utf32string, string ordering)

C const char *PDF_utf32_to_utf16(PDF *p, const char *utf32string, int len, const char *ordering, int *size)

Convert a string from UTF-32 format to UTF-16.

utf32string The string to be converted, which must contain a valid UTF-32 sequence. If
a Byte Order Mark (BOM) is present, it will be interpreted

len (C language binding only) Length of utf32string in bytes.

ordering Specifies the byte ordering of the result string:
> utf16 or an empty string: the converted string will not have any BOM, and will be

stored in the platform’s native byte order.
> utf16le: the converted string will be formatted in little endian format, and will be pre-

fixed with the little-endian BOM (\xFF\xFE).
> utf16be: the converted string will be formatted in big endian format, and will be pre-

fixed with the big-endian BOM (\xFE\xFF).

size (C language binding only) C-style pointer to a memory location where the length
of the returned string (in bytes) will be stored.

Returns The converted UTF-16 string. The returned string is valid until the next call to any
PDFlib function other than PDF_utf16_to_utf8(), PDF_utf8_to_utf16(), and PDF_utf32_to_
utf16(), or until an exception is thrown. Clients must copy the string if they need it long-
er. The memory used for the converted string will be managed by PDFlib.

Scope any

Bindings This function is not available in Unicode-capable language bindings.

52 Chapter 3: Text Functions

4.1 Single-Line Text with Textlines 49

4 Formatting Functions

4.1 Single-Line Text with Textlines
Cookbook A full code sample can be found in the Cookbook topic text_output/starter_textline.

C++ Java void fit_textline(String text, double x, double y, String optlist)
Perl PHP PDF_fit_textline(resource p, string text, float x, float y, string optlist)

C void PDF_fit_textline(PDF*p, const char *text, int len, double x, double y, const char *optlist)

Place a single line of text at position (x, y) subject to various options.

text (Content string) The text to be printed.

len (C language binding only) Length of text (in bytes) for UTF-16 strings. If len = 0 a
null-terminated string must be provided.

x, y The coordinates of the reference point in the user coordinate system where the
text will be placed, subject to various options.

optlist An option list specifying options according to Table 4.1. The following options
can be used:

> Font-related options: encoding, font, fontname, fontsize
Both of the options fontname and encoding (corresponding to the same-named pa-
rameters of PDF_load_font()) can be used to select a font. Alternatively, the font op-
tion can be used to supply a font handle which has been created with an earlier call
to PDF_load_font(). If font is specified, the fontname and encoding options will be ig-
nored. The fontsize option is required.

> All options for PDF_load_font() (see Table 3.4). These options will only be used if both
the fontname and encoding options are supplied (but not with the font option):
ascender, autocidfont, autosubsetting, capheight, descender, embedding, fontstyle,
keepnative, kerning, linegap, metadata, monospace, replacementchar, subsetlimit,
subsetminsize, subsetting, unicodemap, vertical, xheight

> Formatting: alignchar, boxsize, fitmethod, leader, margin, orientate, position, rotate,
stamp, xadvancelist

> Appearance: charref, charspacing, dasharray, escapesequence, fakebold, fillcolor,
glyphcheck, horizscaling, italicangle, kerning, matchbox, overline, showborder, shrinklimit,
strikeout, strokecolor, strokewidth, textformat, textrendering, textrise, underline, underline-
position, underlinewidth, wordspacing

Details The current text and graphics state parameters will be used to control the appearance of
the text output unless they are explicitly overridden by options. On the other hand, the
current text and graphics state will not be modified by this function (in particular, the
current font will be unaffected). However, the textx/texty parameters will be adjusted to
point to the end of the generated text output.

Scope page, pattern, template, glyph; this function should not be used in vertical writing mode.

Params See Table 3.7 and Table 3.8.

http://www.pdflib.com/pdflib-cookbook/text-output/starter-textline

50 Chapter 4: Formatting Functions

Table 4.1 Options for PDF_fit_textline() and PDF_info_textline()

key explanation

alignchar (Unichar or keyword) If the specified character is found in the text, its lower left corner will be aligned at
the reference point. For horizontal text with orientate=north or south the first value supplied in the
position option defines the position. For horizontal text with orientate=west or east the second value
supplied in the position option defines the position.
This option will be ignored if the specified alignment character is not present in the text. If the specified
character cannot be found in the font or encoding, an exception will be thrown if glyphcheck=error. For
other values of glyphcheck the alignchar option will silently be ignored if the character is not available.
The value 0 and the keyword none suppress alignment characters. The specified fitmethod will be ap-
plied, although the text cannot be placed within the fitbox because of the forced positioning of
alignchar. Default: none

boxsize (List of floats) Two values specifying the width and height of a box, relative to which the text will be
placed and possibly scaled. The lower left corner of the box coincides with the reference point (x, y). Plac-
ing the text and fitting it into the box is controlled by the position and fitmethod options. If width=0,
only the height is considered; If height=0, only the width is considered. In these cases the fitmethod op-
tion will be ignored and the text will be placed relative to the vertical line from (x, y) to (x, y+height), or
the horizontal line from (x, y) to (x+width, y), according to the relevant value of the position option. De-
fault: {0 0}

charref (Boolean) If true, enable substitution of numeric and character entity references and glyph name refer-
ences. Default: the global charref parameter

charspacing (Float or percentage) The character spacing (see Table 3.8). Percentages are based on fontsize. Default1
for PDF_add/create_textflow(): 0

dasharray (List of two floats) The lengths of dashes and gaps for stroked (outline) text and decoration. Default:
{0 0} (i.e. a solid line)

encoding (String; must be used with the fontname option; will be ignored if font is specified) Encoding name

errorpolicy (Keyword) Controls the behavior in case of an error (see Section 2.6, »Exception Handling«, page 29)

escape-
sequence

(Boolean) If true, enable substitution of escape sequences in content strings, hypertext strings, and
name strings. Default: the global escapesequence parameter

fakebold If true, simulate bold font by triple overprinting. It is strongly recommended to use bold font variations
for emphasis; this option will create text output which is inferior to real bold text, and may inhibit text
extraction. Default1: false

fillcolor (Color) Fill color of the text. Default for PDF_fit_textline(): the corresponding parameter in the current
graphics state. Default: {gray 0} (in PDF/A mode: {lab 0 0 0})

4.1 Single-Line Text with Textlines 51

fitmethod (Keyword) Specifies the method used to fit the text into the specified box. This option will be ignored if no
box has been specified. Default: nofit. Supported keywords:
nofit Position the text only, without any scaling or clipping.
clip Position the text, and clip it at the edges of the box.
meet Position the text according to the position option, and scale it such that it entirely fits into

the box while preserving its aspect ratio. Generally at least two edges of the text will meet the
corresponding edges of the box.

auto This method tries to fit the text into the box automatically. In detail: Same as nofit if the text
fits into the box. Otherwise a scaling factor is calculated such that the text fits into the box. If
this factor is larger than the shrinklimit option the text is distorted to fit into the box,
otherwise the meet method is applied.

slice Position the text according to the position option, and scale it such that it entirely covers the
box, while preserving the aspect ratio and making sure that at least one dimension of the
text is fully contained in the box. Generally parts of the text’s other dimension will extend
beyond the box, and will therefore be clipped.

entire Position the text according to the position option, and scale it such that it entirely covers the
box. Generally this method will distort the text. The scale option will be ignored.

font (Font handle) A font handle returned by PDF_load_font(). Default: the current font

fontname (Name string; must be used with the encoding option; will be ignored if font is specified) Name of font.
Using the font option instead of fontname offers performance benefits.

fontsize (Float, percentage or option list; must not be 0; required if the font option is provided) Size of the font,
measured in units of the current user coordinate system. In PDF_fit_textline() percentages relate to the
box width (for orientate=north and south) or height (for orientate=east and west). With Textflows
percentages relate to the size of the preceding text. Default: the current font size.
If an option list is provided it must contain a keyword and a number. The keyword describes the desired
font metric, and the number contains the desired size value:
ascender The number will be interpreted as ascender height.
bodyheight The number will be interpreted as minimum distance between baselines, i.e. descenders and

ascenders of adjacent lines may exactly touch if this value is used as leading. This is the
default behavior if no keyword is provided.

capheight The number will be interpreted as capital letter height.
xheight The number will be interpreted as lowercase letter height.

glyphcheck (Keyword) Specifies the glyph checking policy: what happens if text contains codes which cannot be
mapped to a glyph in the selected font. Default1: replace. Supported keywords:
none No checking
error An exception will be thrown for unavailable glyphs. A detailed error message can be retrieved

with PDF_get_errmsg().
replace PDFlib will try to replace unavailable glyphs with appropriate replacement glyphs; ligatures

will be decomposed. If a suitable replacement is not available, the glyph will be replaced with
replacementchar.

glyphwarning Deprecated, use errorpolicy

horizscaling (Float or percentage; must be different from 0) The horizontal text scaling (see Table 3.8). Default1 for
PDF_add/create_textflow(): 100

italicangle (Float) Specifies the italic (slant) angle of text in degrees. Default1 for PDF_add/create_textflow(): 0

kerning (Boolean) Kerning behavior (see Table 3.7). Default: the global kerning parameter

Table 4.1 Options for PDF_fit_textline() and PDF_info_textline()

key explanation

52 Chapter 4: Formatting Functions

leader (Option list; will be ignored if boxsize is not specified or the width of the box is 0) Specifies filler text (e.g.
dot leaders) which will be inserted repeatedly between the border of the text box and the text (default:
no leader):
alignment (One or two keywords) The first keyword specifies the alignment of the leader between the

left border of the fitbox and the textline; the second keyword specifies the alignment of the
leader between the textline and the right border of the fitbox. If only one keyword is specified
it will be used for the leader between the textline and the right border of the fitbox.
Supported keywords (default: {none grid}):
center The leader is justified between the textline and the border of the fitbox.
grid PDFlib snaps the position of the leader text to the next multiple of one half of the

width of the leader text to the left or right of the textline. This may result in a gap
between the textline and the leader text which spans at most 50% of the width of
the leader text.

justify The leader is justified between the textline and the border of the fitbox by apply-
ing a suitable character spacing.

left The leader is repeated starting from the left border of the fitbox or the end of the
textline, respectively. This may result in a gap at the start of the textline or the
right border of the fitbox, respectively.

none No leader
right The leader is repeated starting from the right border of the fitbox or the begin-

ning of the textline, respectively. This may result in a gap at the end of the textline
or the left border of the fitbox, respectively.

encoding (String; must be used with fontname; will be ignored if font is specified) Encoding name
fillcolor (Color) Color of the leader. Default: color of the text line
font (Font handle) Handle for the font to be used for the leader. Default: font of the text line
fontname (Name string; must be used with encoding; will be ignored if font is specified) Name of the

font for the leader
fontsize (Float or option list) Size of the leader. Default: font size of the textline
text (Content string) The text which will be used for the leader. Default: U+002E ’.’ (period)
yposition (Float or keyword) Specifies the vertical position of the leader relative to the baseline as a

numerical value or as one of the keywords fontsize, ascender, xheight, baseline,
descender, textrise. Default: baseline

In addition, all options of PDF_load_font() can be supplied.

locallink Deprecated; use the matchbox feature to create links in the text (see Section 4.4, »Matchboxes«, page 77)

margin (List of floats) One or two float values describing additional horizontal and vertical extensions of the text
box. Default: 0

matchbox (Option list) Option list with matchbox details according to Table 4.13

orientate (Keyword) Specifies the desired orientation of the text when it is placed. Default: north.
north upright
east pointing to the right
south upside down
west pointing to the left

overline (Boolean) Overline mode (see Table 3.7). Default1 for PDF_add/create_textflow(): false

Table 4.1 Options for PDF_fit_textline() and PDF_info_textline()

key explanation

4.1 Single-Line Text with Textlines 53

position (List of floats or keywords) Alignment control: one or two values specifying the position of the reference
point (x, y) within the text’s bounding box, with {0 0} being the lower left corner of the text box, and
{100 100} the upper right corner. If the boxsize option has been specified, the position option also spec-
ifies the positioning of the target box. The values are expressed as percentages of the text width and
height. If both percentages are equal it is sufficient to specify a single float value.
The keywords left, center, right (in x direction) or bottom, center, top (in y direction) can be used as
equivalents for the values 0, 50, and 100. If only one keyword has been specified, the corresponding key-
word for the other direction will be added. Default: {left bottom}. Examples:
{0 50} or {left center} left-justified text
{50 50} or {center} results in centered text
{100 50} or {right center} results in right-justified text

rotate (Float) Rotate the coordinate system, using the reference point as center and the specified value as rota-
tion angle in degrees. This results in the box and the text being rotated. The rotation will be reset when
the text has been placed. Default: 0

showborder (Boolean) If true, the border of the fitbox will be stroked (using the current graphics state). If a stamp is
created, the bounding box of the stamp will also be stroked. This may be useful for development and de-
bugging. Default: false

shrinklimit (Float or percentage) The lower limit of the shrinkage factor which will be applied to fit text with
fitmethod=auto. Default: 0.75

stamp (Keyword; will be ignored if boxsize is not specified) This option can be used to create a diagonal stamp
within the box specified in the boxsize option. The text comprising the stamp will be as large as possible.
The options position, fitmethod, and orientate (only north and south) will be honored when placing
the stamp text in the box. Default: none.
ll2ur The stamp will run diagonally from the lower left corner to the upper right corner.
ul2lr The stamp will run diagonally from the upper left corner to the lower right corner.
none No stamp will be created.

strikeout (Boolean) Strikeout mode (see Table 3.7). Default1 for PDF_add/create_textflow(): false

strokecolor (Color; only effective if textrendering is set to stroke text) Stroke color of the text. Default: {gray 0} (in
PDF/A mode: {lab 0 0 0})

strokewidth (Float, percentage, or keyword; only effective if textrendering is set to outline text) Line width for out-
line text (in user coordinates or as a percentage of the fontsize). The keyword auto or the value 0 uses a
built-in default. Default: auto

textformat (Keyword; only for non Unicode compatible language bindings) Format used to interpret the supplied
text. Default: the global textformat parameter.

textrendering (Integer) Text rendering mode (see Table 3.8). Default1 for PDF_add/create_textflow(): 0

textrise (Float or percentage) Text rise mode (see Table 3.8). Percentages are based on fontsize. Default1 for
PDF_add/create_textflow(): 0

underline (Boolean) Underline mode (see Table 3.7). Default1 for PDF_add/create_textflow(): false

underline-
position

(Float, percentage, or keyword) Position of the stroked line for underlined text relative to the baseline
(absolute values or relative to the fontsize; a typical value is -10%). The keyword auto specifies a font-spe-
cific value which will be retrieved from the font metrics or outline file. Default: auto

underline-
width

(Float, percentage, or keyword) Line width for underlined text (absolute value or relative to the fontsize;
a typical value is 5%). The keyword auto or the value 0 specifies a font-specific value which will be re-
trieved from the font metrics or outline file. Default: auto

Table 4.1 Options for PDF_fit_textline() and PDF_info_textline()

key explanation

54 Chapter 4: Formatting Functions

C++ Java double info_textline(String text, String keyword, String optlist)
Perl PHP float PDF_info_textline(resource p, string text, string keyword, string optlist)

C double PDF_info_textline(PDF *p, const char *text, int len, const char *keyword, const char *optlist)

Perform textline formatting and query the resulting metrics.

text (Content string) The contents of the textline.

len (C language binding only) The length of text in bytes, or 0 for null-terminated
strings.

keyword A keyword specifying the requested information according to Table 4.2.

optlist An option list specifying textline options according to Table 4.1. Options which
are not relevant for calculating the size of the text will silently be ignored.

Returns The value of some text metric value as requested by keyword.

Details This function will perform all calculations required for placing the text according to the
supplied options, but will not actually create any output on the page. The text reference
position is assumed to be {0 0}.

If errorpolicy=return this function will return 0 in case of an error. If errorpolicy=
exception this function will throw an exception in case of an error (even for the keyword
wellformed).

Scope any except object

weblink Deprecated; use the matchbox option in PDF_fit_textline() and PDF_create_annotation() to create links
in the text (see Section 4.4, »Matchboxes«, page 77).

wordspacing (Float or percentage) Word spacing (see Table 3.8). Percentages are based on fontsize. Default1 for PDF_
add/create_textflow(): 0

xadvancelist (List of floats) Specifies the advance width of all glyphs in the text in user coordinates. The length of the
list must be less or equal than the number of glyphs in the text. The xadvance values will be used instead
of the standard glyph widths. Other effects, such as kerning and character spacing, are unaffected.

1. Default for PDF_fit_textline() and PDF_info_textline(): the parameter with the same name as the option (see Table 3.7 and Table
3.8)

Table 4.2 Keywords for PDF_info_textline()

keyword explanation

angle Rotation angle of the baseline in degree, i.e. the text rotation

ascender
capheight
descender

Corresponding typographic value in user coordinates

endx, endy x/y coordinates of the text end position in the user coordinate system

height Height of the text string according to the boxheight specification of the matchbox

perpendiculardir Unit vector perpendicular to writingdir; for standard horizontal text this would be (0, 1), for ver-
tical text (1, 0)

Table 4.1 Options for PDF_fit_textline() and PDF_info_textline()

key explanation

4.1 Single-Line Text with Textlines 55

replacedchars1 Number of characters which couldn’t be mapped to a code in the current encoding or to a glyph
in the font, and which will be replaced with typographically similar characters (if glyphcheck=
replace)

scalex, scaley Horizontal and vertical scaling factors. If these are different from 1 the text had to be scaled to fit
into the box.

startx, starty x/y coordinates of the text start position in the user coordinate system

unknownchars1 Number of characters which couldn’t be mapped to a code in the current encoding or to a glyph
in the font, and which cannot be replaced with typographically similar characters (if glyph-
check=replace), but will be replaced with the specified replacement character (option replace-
mentchar).

unmappedchars1 Number of characters which cannot be mapped to a code in the current encoding or to a glyph in
the font (glyphs with PUA values are considered unmappable).

unmappedglyphs Deprecated, use unmappedchars

wellformed 1 if the text is wellformed according to the font/encoding (and textformat, if applicable) selected
in the corresponding options, otherwise 0.

width Width of the text string (in horizontal writing mode) or width of the widest glyph (in vertical
writing mode)

writingdirx
writingdiry

x/y coordinates of the writing direction (direction of inline text progression), i.e. unit vector from
(startx, starty) to (endx, endy). For standard horizontal text this would be (1, 0), for vertical text
(0, -1)

xheight Corresponding typographic value in user coordinates

1. unmappedchars = replacedchars + unknownchars

Table 4.2 Keywords for PDF_info_textline()

keyword explanation

56 Chapter 4: Formatting Functions

4.2 Multi-Line Text with Textflows
Cookbook A full code sample can be found in the Cookbook topic text_output/starter_textflow.

C++ Java int add_textflow(int textflow, String text, String optlist)
Perl PHP int PDF_add_textflow(resource p, int textflow, string text, string optlist)

C int PDF_add_textflow(PDF *p, int textflow, const char *text, int len, const char *optlist)

Create a Textflow object, or add text and explicit options to an existing Textflow.

textflow Textflow handle returned by an earlier call to PDF_create_textflow() or PDF_
add_textflow(), or -1 (in PHP: 0) to create a new Textflow.

text (Content string) The contents of the Textflow. The text may not contain any in-
line options.

len (C language binding only) The length of text in bytes, or 0 for null-terminated
strings.

optlist An option list specifying Textflow options according to Table 4.1 and Table 4.3.
The following options can be used:

> General: errorpolicy
> Font-related options: encoding, font, fontname, fontsize

Both of the options fontname and encoding (corresponding to the same-named pa-
rameters of PDF_load_font()) can be used to select a font. Alternatively, the font op-
tion can be used to supply a font handle which has been created with an earlier call
to PDF_load_font(). If font is specified, the fontname and encoding options will be ig-
nored. Using the font option instead of fontname offers performance benefits. The
fontsize option is required. If fontsize is specified as a percentage, it will be interpret-
ed as a percentage of the previous fontsize; the initial value is 1.

> All options for PDF_load_font() (see Table 3.4). These options will only be used if both
the fontname and encoding options are supplied (but not with the font option):
ascender, autocidfont, autosubsetting, capheight, descender, embedding, fontstyle,
keepnative, kerning, linegap, metadata, monospace, replacementchar, subsetlimit,
subsetminsize, subsetting, unicodemap, vertical, xheight

> The following appearance options for PDF_fit_textline() (see Table 4.1):
charref, charspacing, dasharray, escapesequence, fakebold, fillcolor, font, fontsize,
glyphcheck, horizscaling, italicangle, kerning, matchbox, overline, strikeout, strokecolor,
strokewidth, textformat, textrendering, textrise, underline, underlineposition, underline-
width, wordspacing

> Text semantics: charclass, charmapping, hyphenchar, tabalignchar
> Text formatting: alignment, avoidemptybegin, fixedleading, hortabsize, hortabmethod,

lastalignment, leader, leading, leftindent, minlinecount, parindent, rightindent, ruler,
tabalignment

> Options for controlling the line breaking algorithm: adjustmethod, avoidbreak, max-
spacing, minspacing, nofitlimit, shrinklimit, spreadlimit

> Options which work as commands: comment, mark, nextline, nextparagraph, resetfont,
return, space

http://www.pdflib.com/pdflib-cookbook/text-output/starter-textflow

4.2 Multi-Line Text with Textflows 57

Returns A Textflow handle which can be used in calls to PDF_add_textflow(), PDF_fit_textflow(),
PDF_info_textflow(), and PDF_delete_textflow(). The handle is valid until the end of the
enclosing document scope, or until PDF_delete_textflow() is called with this handle.

If the textflow parameter is -1, a new Textflow will be created and the corresponding
handle will be returned. Otherwise the handle supplied in the textflow parameter will be
returned. By default, this function returns -1 (in PHP: 0) in case of an error. However, this
behavior can be changed with the errorpolicy parameter or option. In case of an error the
handle supplied in the textflow parameter can no longer be used in subsequent func-
tion calls (except in PDF_delete_textflow() if it was different from -1).

Details This function processes the supplied text and creates an internal data structure from it.
It determines text portions (e.g. words) which will later be used by the formatter, con-
verts the text to Unicode if possible, determines potential line breaks, and calculates the
width of text portions based on font and text options.

As opposed to PDF_create_textflow(), which expects all text contents and options in a
single call, this function is useful for supplying the text contents and options for a Text-
flow in separate calls. It will add the supplied text and optlist to a new or existing Text-
flow. Options specified in optlist will be evaluated before processing text. Both text and
optlist may be empty.

If textflow=-1 this function is almost equivalent to PDF_create_textflow(). However,
unlike PDF_create_textflow() this function will not search for inline options in text. It is
therefore not necessary to redefine the start character for inline option lists or to speci-
fy the length of the text with an inline option (not even for non-Unicode text and UTF-
16 text).

This function does not create any output in the generated PDF document, but only
prepares the text. Use PDF_fit_textflow() to create output with the preprocessed Text-
flow handle.

By default, a new line will be forced by the characters U+000B (VT), U+2028 (LS),
U+000A (LF), U+000D (CR), CRLF, U+0085 (NEL), U+2029 (PS), and U+000C (FF) in Uni-
code-compatible fonts. All of these except VT and LS force a new paragraph (which
means that the parindent option will be effective). FF immediately stops the process of
fitting text to the current fitbox (the function PDF_fit_textflow() will be exited with a re-
turn string of _nextpage).

A horizontal tab character (HT) sets a new start position for subsequent text. The de-
tails of this are controlled by the hortabmethod and hortabsize options.

Soft hyphen characters (SHY) will be replaced with the character specified in the
hyphenchar option if there is a line break after the soft hyphen.

Vertical writing mode is not supported.

Scope any except object

58 Chapter 4: Formatting Functions

Table 4.3 Options for PDF_create_textflow(), PDF_add_textflow(), and inline options in PDF_create_textflow()

option explanation

adjustmethod (Keyword) Method used to adjust a line when a text portion doesn’t fit into a line after compressing or
expanding the distance between words subject to the limits specified by the minspacing and
maxspacing options. Default: auto.
auto The following methods are applied in order: shrink, spread, nofit, split.
clip Same as nofit, except that the long part at the right edge of the fitbox (taking into account

the rightindent option) will be clipped.
nofit The last word will be moved to the next line provided the remaining (short) line will not be

shorter than the percentage specified in the nofitlimit option. Even justified paragraphs
may look slightly ragged.

shrink If a word doesn’t fit in the line the text will be compressed subject to shrinklimit. If it still
doesn’t fit the nofit method will be applied.

split The last word will not be moved to the next line, but will forcefully be split after the last
character in the box. For text fonts a hyphen character will be inserted, but not for symbol
fonts or if hyphenchar=none.

spread The last word will be moved to the next line and the remaining (short) line will be justified
by increasing the distance between characters in a word, subject to spreadlimit. If
justification still cannot be achieved the nofit method will be applied.

alignment (Keyword) Specifies formatting for lines in a paragraph. Default: left.
left Left-aligned, starting at leftindent+parindent (for the first line of a paragraph) and at

leftindent (for all other lines)
center Centered between leftindent and rightindent
right Right-aligned, ending at rightindent
justify Left- and right-aligned

avoidbreak1 (Boolean) If true, line breaking opportunities (e.g. at space characters) will be ignored – except at soft
hyphens –until avoidbreak is reset to false. Mandatory line breaks (e.g. at a newline) and methods de-
fined by adjustmethod will be still performed. Default: false

avoid-
emptybegin

(Boolean) If true, empty lines at the beginning of a fitbox will be deleted. Default: false

charclass1 (List of pairs, where the first element in each pair is a keyword, and the second element is either a uni-
char or a list of unichars) The specified unichars will be classified by the specified keyword to determine
the line breaking behaviour of those character(s):
letter behave like a letter (e.g. a B)
punct behave like a punctuation character (e.g. + / ; :)
open behave like an open parenthesis (e.g. [)
close behave like a close parenthesis (e.g.])
default reset all character classes to PDFlib’s builtin defaults
Example: charclass={ close » open « letter={/ : =} punct & }

4.2 Multi-Line Text with Textflows 59

charmapping1 (List of pairs, where each pair either contains two unichars or a unichar and a list of unichar and integer)
Replace individual characters with one or more instances of another character. The option list contains
one or more pairs of Unichars. The first character in each pair will be replaced with the second character.
Instead of one-to-one mapping the second element in each pair may be an option list containing a uni-
char and a count:
count > 0 The replacement character will be repeated count times.
count < 0 A sequence of multiple instances of the character will be reduced to the absolute value of

the specified number.
count = 0 The character will be deleted.
Examples:
charmapping={ hortab space CRLF space LF space CR space }
charmapping={ shy {shy 0} }
charmapping={ hortab {space 4} }

comment (String) Arbitrary text which will be ignored; useful for commenting option lists or macros

encoding (String; must be used with the fontname option; will be ignored if font is specified) Encoding name

errorpolicy (Keyword) Controls the behavior in case of an error (see Section 2.6, »Exception Handling«, page 29)

fixedleading (Boolean) If true, the first leading value found in each line will be used. Otherwise the maximum of all
leading values in the line will be used. fixedleading will be forced to true if the wrap option of PDF_fit_
textflow() or the createwrapbox suboption of the matchbox option will be used to wrap the text
around shapes. Default: false

fontname (Name string; must be used with the encoding option; will be ignored if font is specified) Name of the
font; remember to put { and } around font names which contain space characters.

hortabsize1 (Float or percentage) Width of a horizontal tab2. The interpretation depends on the hortabmethod op-
tion. Default: 7.5%

hortabmethod1 (Keyword) Treatment of horizontal tabs in the text. If the calculated position is to the left of the current
text position, the tab will be ignored. Default: relative.
relative The position will be advanced by the amount specified in hortabsize.
typewriter The position will be advanced to the next multiple of hortabsize.
ruler The position will be advanced to the n-th tab value in the ruler option, where n is the

number of tabs found in the line so far. If n is larger than the number of tab positions the
relative method will be applied.

hyphenchar1 (Unichar or keyword) Character which replaces a soft hyphen at line breaks. The value 0 and the key-
word none completely suppress hyphens. Default: U+00AD (soft hyphen) if available in the font,
U+002D (hyphen-minus) otherwise

lastalignment (Keyword) Formatting for the last line in a paragraph. All keywords of the alignment option are sup-
ported, plus the following (default: auto):
auto Use the value of the alignment option unless it is justify. In the latter case left will be

used.

Table 4.3 Options for PDF_create_textflow(), PDF_add_textflow(), and inline options in PDF_create_textflow()

option explanation

60 Chapter 4: Formatting Functions

leader (Option list) Specifies filler text (e.g. dot leaders) which will be inserted repeatedly. Leaders will be insert-
ed until the next tab position, or the end of the line if no tab is available. Leaders never span more than
one line (default: no leader):
alignment (Keyword) Alignment of the leader (default: grid):

center The leader is centered between the last text fragment (or the start of the line if
there is no text) and the tab position (or the end of the line if there is no tab).

grid PDFlib will snap the position of the first leader character to the next multiple of
one half of the width of the leader text. This may result in a gap between the
text and the leader of at most 50% of the width of the leader.

justify The leader is justified between the last text fragment (or the start of the line if
there is no text) and the tab position (or the end of the line if there is no tab) by
applying a suitable character spacing.

left The leader is repeated starting from the left border of the fitbox or the end of the
text fragment, respectively. This may result in a gap at the start of the text frag-
ment or the right border of the fitbox, respectively.

right The leader is repeated starting from the right border of the fitbox or the begin-
ning of the text fragment, respectively. This may result in a gap at the end of the
text fragment or the left border of the fitbox, respectively.

The following suboptions of the leader option in PDF_fit_textline() are also supported (see Table 4.1):
encoding, fillcolor, font, fontname, fontsize, text, yposition.

leading (Float or percentage) Distance between adjacent text baselines3. The actual value will be determined as
follows: if there are option lists at the beginning of a line, the leading will be determined by the last rel-
evant option (font, fontsize, leading, etc.). If there are additional option lists on the same line, any
options relevant for leading will only be taken into account if fixedleading=false. If there are no op-
tion lists in the line at all, the previous leading value will be taken into account. Default: 100%

leftindent (Float or percentage) Left indent of text lines2. If leftindent is specified within a line and the resulting
position is to the left of the current text position, this option will be ignored for this line. Default: 0

mark (Integer) Store the supplied number internally as a mark. The mark which has been stored least recently
can later be retrieved with PDF_info_textflow(). This may be useful for determining which portions of
text have already been placed on the page.

matchbox (Option list) Option list with matchbox details according to Table 4.13

maxspacing1

minspacing1
(Float or percentage; only relevant with alignment=justify) Maximum or minimum distance between
words (in user coordinates, or as a percentage of the width of the space character). The calculated word
spacing is limited by the provided values (but the wordspacing option will still be added). Defaults:
minspacing=50%, maxspacing=500%

minlinecount (Integer) Minimum number of lines in the last paragraph in the fitbox. If there are fewer lines they will
be placed in the next fitbox. The value 2 can be used to prevent single lines of a paragraph at the end of
a fitbox (»orphans«). Default: 1

nextline
nextparagraph

(Boolean) Force a new line or paragraph, even in fonts which are not Unicode-compatible.

nofitlimit (Float or percentage; only relevant with alignment=justify) Lower limit for the length of a line with
the nofit method2. Default: 75%.

parindent (Float or percentage) Left indent of the first line of a paragraph2. The amount will be added to
leftindent. Specifying this option within a line will act like a tab. Default: 0

resetfont (Boolean) Reset font and fontsize to the most recently values which were different from the current
settings (either different font or font size). This may be useful to reset the font after inserts, such as italic
text. The font option has precedence over this option. This command only makes sense after the second
setting of any font-related parameters, that differ from the first setting, and will be ignored otherwise.

Table 4.3 Options for PDF_create_textflow(), PDF_add_textflow(), and inline options in PDF_create_textflow()

option explanation

4.2 Multi-Line Text with Textflows 61

Macros for Textflow options. Option lists for Textflows (either in the optlist parameter
of PDF_create_textflow() or PDF_add_textflow(), or inline in the text supplied to PDF_
create_textflow()) may contain macro definitions and macro calls according to Table 4.4.
Macros may be useful for having a central definition of multiply used option values,
such as font names, indentation amounts, etc. Before parsing an option list each con-
tained macros will be substituted with the contents of the corresponding option list
provided in the macro definition. The resulting option list will then be parsed. The fol-
lowing example demonstrates a macro definition for two macros:

<macro {
comment { The following macros are used as paragraph styles }
H1 {fontname=Helvetica-Bold encoding=winansi fontsize=14 }
body {fontname=Helvetica encoding=winansi fontsize=12 }

}>

These macros could be used as follows in an option list:

<&H1>Chapter 1
<&body>This chapter talks about...

The following rules apply to macro definition and use:
> Macros may be nested to an arbitrary depth (macro definitions may contain calls to

other macros).

return (String; must not start with an underscore _ character) Exit PDF_create_textflow() or PDF_add_
textflow() with the supplied string as return value.

rightindent (Float or percentage) Right indent of text lines2. Default: 0

ruler1 (List of floats or percentages) List of absolute tab positions for hortabmethod=ruler2. The list may con-
tain up to 32 non-negative entries in ascending order. Default: integer multiples of hortabsize

shrinklimit (Percentage) Lower limit for compressing text with adjustmethod=shrink; the calculated shrinking fac-
tor is limited by the provided value, but will be multiplied with the horizscaling option. Default: 85%

space (Float or percentage) The text position will be advanced by the provided value3. This also works in fonts
which are not Unicode-compatible.

spreadlimit1 (Float or percentage) Upper limit for the distance between characters for the spread method3; the cal-
culated distance will be added to the value of the charspacing option. Default: 0

tabalignchar1 (Unichar) Character at which decimal tabs will be aligned. Default: U+002E ’.’

tabalignment1 (List of keywords; only with hortabmethod=ruler) Alignment for tab stops. Each entry in the list defines
the alignment for the corresponding entry in the ruler option. Default: left.
center Text will be centered at the tab position.
decimal The first instance of tabalignchar will be left-aligned at the tab position. If no tabalign-

char is found, right alignment will be used instead.
left Text will be left-aligned at the tab position.
right Text will be right-aligned at the tab position.

textwarning Deprecated, use errorpolicy

1. This option does not affect text in fonts which are not Unicode-compatible.
2. In user coordinates, or as a percentage of the width of the fitbox
3. In user coordinates, or as a percentage of the font size

Table 4.3 Options for PDF_create_textflow(), PDF_add_textflow(), and inline options in PDF_create_textflow()

option explanation

62 Chapter 4: Formatting Functions

> Macros can not be used in the same option list where they are defined. In PDF_create_
textflow() a new inline option list which uses the macro can be started immediately
after the end of the inline option list in which the macro is defined. When using PDF_
add_textflow() one function call is required to define the macro, and another one to
use it (since PDF_add_textflow() accepts only a single option list at a time).

> Macro names are case-insensitive.
> Undefined macros will result in an exception.
> Macros can be redefined at any time.

C++ Java int create_textflow(String text, String optlist)
Perl PHP int PDF_create_textflow(resource p, string text, string optlist)

C int PDF_create_textflow(PDF *p, const char *text, int len, const char *optlist)

Create a Textflow object from text contents, inline options, and explicit options.

text (Content string) The contents of the Textflow. It may contain text in various en-
codings, macros (see »Macros for Textflow options«, page 57), and inline option lists ac-
cording to Table 4.3 and Table 4.5 (see also »Inline option lists for Textflows«, page 63). If
text is an empty string, a valid Textflow handle will be returned nevertheless.

len (C language binding only) The length of text in bytes, or 0 for null-terminated
strings.

optlist An option list specifying Textflow options. Options specified in the optlist pa-
rameter will be evaluated before those in inline option lists in text so that inline options
have precedence over options provided in the optlist parameter. The following options
can be used:

> All options of PDF_add_textflow() (see option list of PDF_add_textflow() and Table 4.3)
> Options for controlling inline option list processing according to Table 4.5:

begoptlistchar, endoptlistchar, fixedtextformat, textlen

Returns A Textflow handle which can be used in calls to PDF_add_textflow(), PDF_fit_textflow(),
PDF_info_textflow(), and PDF_delete_textflow(). The handle is valid until the end of the
enclosing document scope, or until PDF_delete_textflow() is called with this handle. By

Table 4.4 Option list macro definitions and calls for PDF_add/create_textflow() and PDF_ fit_textflow()

option explanation

comment (String) Arbitrary text which will be ignored; useful for commenting macros

macro (List of pairs) Each pair describes the name and definition of a macro as follows:
name (string) The name of the macro which can later be used for macro calls. Macros which have

already been defined can be redefined later. The special name comment will be ignored.
suboptlist An option list which will literally replace the macro name when the macro is called. Leading

and trailing whitespace will be ignored.

&name The macro with the specified name will be expanded, and the macro name (including the & character)
will be replaced by the macro’s contents, i.e. the suboptlist which has been defined for the macro (with-
out the surrounding braces). The macro name is terminated by whitespace, {, }, =, or &. Therefore, these
characters can not be used as part of a macro name.
Nested macros will be expanded without any nesting limit. Macros contained in string options will also
be expanded. Macro substitution must result in a valid option list.

4.2 Multi-Line Text with Textflows 63

default this function returns -1 (in PHP: 0) in case of an error. However, this behavior
can be changed with the errorpolicy parameter or option.

Details This function accepts options and text to be prepared for Textflow. Unlike PDF_add_
textflow() the text may contain inline options. Searching for inline option lists can be
disabled for parts or all of the text by supplying the textlen option in the optlist parame-
ter (see »Inline option lists for Textflows«, page 63).

This function does not create any output in the generated PDF document, but only
prepares the text according to the supplied options. Use PDF_fit_textflow() to create out-
put with the resulting Textflow handle.

See the Details section of PDF_add_textflow() for more information regarding special
characters, line breaking, etc.

Scope any except object

Inline option lists for Textflows. The content provided in the text parameter of PDF_
create_textflow() (but not PDF_add_textflow()) may include an arbitrary number of op-
tion lists (inline options) specifying Textflow options according to Table 4.3. All of these
options can alternatively be provided in the optlist parameter of PDF_create_textflow()
and PDF_add_textflow(). The same option can be specified multiply in a single option
list; in this case only the last occurrence of an option will be taken into account.

Inline option lists must be enclosed with the characters specified in the begoptlist-
char and endoptlistchar options (by default: < and >). Obviously, conflicts could arise if
the character used for starting inline option lists must also be used in the actual text.
There are several methods to resolve this conflict, depending on whether or not the text

Table 4.5 Additional options for inline option list processing in PDF_create_textflow()

option explanation

begoptlistchar (Unichar or keyword) Character which starts inline option lists. Replacing the default character may be
useful if this character appears in the text literally (see »Inline option lists for Textflows«, page 63). If
textlen is not specified, the begoptlistchar character in the text must be encoded in the same text
format and encoding as the preceding text. This means that the Unicode value of begoptlistchar must
be chosen such that it is contained in the encoding of the preceding text. The keyword none can be used
to completely disable the search for option lists. Default: U+003C (<)

endoptlistchar (Unichar; U+007D ’}’ is not allowed) Character which terminates inline option lists. Default: U+003F (>)

fixedtextformat (Boolean; will be ignored in Unicode-aware language bindings; this option doesn’t make sense in inline
option lists, and can only be used in the optlist parameter) If true, all text fragments and inline op-
tions lists will use the same textformat, which must be one of utf8, utf16, utf16be, or utf16le. This is
useful if text and inline options come from the same source.
If false, inline option lists including the delimiters must be encoded in textformat=bytes, regardless of
the format used for the actual text. This allows the combination e.g. of UTF-16 text with ASCII-encoded
inline option lists (the text may come from a Unicode database, while inline options are constructed as
ASCII text within the application). Default: false

textlen (Integer or keyword; required for text in fonts which are not Unicode-compatible, or for text fragments
with fixedtextformat=false and textformat=utf16xx in non-Unicode aware languages) Number of
bytes or (in Unicode-aware languages) characters before the next inline option list (see »Inline option
lists for Textflows«, page 63). The characters are counted before character references are resolved, e.g.
<textlen=8>①<...>. The keyword all specifies all of the remaining text. Default: the text will
be searched for the next occurrence of begoptlistchar.

64 Chapter 4: Formatting Functions

contains any inline option lists. Remember that PDF_add_textflow() completely sepa-
rates text and options, so the conflict doesn’t arise there.

If the text does not contain any inline options lists you can completely disable the
search for inline option lists by one of the following methods:

> Set begoptlistchar=none in the optlist parameter of PDF_create_textflow().
> Set the textlen option in the optlist parameter of PDF_create_textflow() to the length

of the full text.

If the text actually contains inline option lists you can avoid the conflict between text
contents and the begoptlistchar for starting an inline option list by using one of the fol-
lowing methods:

> Replace all occurrences of the < character in the text with the corresponding numeric
or character entity reference (< or <) and start inline option lists with the lit-
eral < character:

A<B<fontname=Helvetica encoding=winansi>

> Set the begoptlistchar option in the optlist parameter of PDF_create_textflow() or an
inline option list to a character which is not used in the text (e.g. $), and use this char-
acter to start inline option lists:

<begoptlistchar=$>A<B$fontname=Helvetica encoding=winansi>

> Specify the length of the next text fragment (until the start of the next inline option
list) in the preceding inline option list using the textlen option:

<textlen=3>A<B<fontname=Helvetica encoding=winansi>

Note If an inline option list is provided immediately after another option list, they are assumed to
enclose a text fragment of zero length. This is important when supplying the textlen option in
the first option list.

C++ Java String fit_textflow(int textflow, double llx, double lly, double urx, double ury, String optlist)
Perl PHP string PDF_fit_textflow(resource p, int textflow, float llx, float lly, float urx, float ury, string optlist)

C const char *PDF_fit_textflow(PDF *p,
int textflow, double llx, double lly, double urx, double ury, const char *optlist)

Format the next portion of a Textflow into a rectangular area.

textflow A Textflow handle returned by a call to PDF_create_textflow() or PDF_add_
textflow().

llx, lly, urx, ury x and y coordinates of the lower left and upper right corners of the tar-
get rectangle (the fitbox) in user coordinates. The corners can also be specified in reverse
order. Shapes other than a rectangle can be filled with the wrap option.

optlist An option list specifying processing options according to Table 4.6. The follow-
ing options can be used:
blind, featherlimit, firstlinedist, fitmethod, fontscale, lastlinedist, linespreadlimit, maxlines,
minfontsize, orientate, returnatmark, rewind, rotate, showborder, showtabs, verticalalign, wrap

Returns A string which specifies the reason for returning from the function:
> _stop: all text in the Textflow has been processed. If the text was empty, _stop will al-

ways be returned, even if the return or mark/returnatmark option was supplied.

4.2 Multi-Line Text with Textflows 65

> _nextpage: Waiting for the next page (caused by a form feed character U+000C). An-
other call to PDF_fit_textflow() is required for processing the remaining text.

> _boxfull: No more space is available in the fitbox, or the maximum number of lines
(as specified via the maxlines option) has been placed in the fitbox, or fitmethod=auto
and minfontsize has been specified but the text didn’t fit into the fitbox. Another call
to PDF_fit_textflow() is required for processing the remaining text.

> _boxempty: The box doesn’t contain any text at all after processing. This may happen
if the size of the fitbox is too small to hold any text. No more calls to PDF_fit_
textflow() with the same fitbox should be issued in order to avoid infinite loops.

> _mark#: The option returnatmark has been specified with the number #, and the
mark with the number specified in this option has been placed.

> Any other string: The string supplied to the return command in an inline option list.

If there are multiple simultaneous reasons for returning, the first in the list (from top to
bottom) will be reported. The returned string is valid until the next call to this function.

Details The current text and graphics states do not influence the text output created by this
function (this is different from PDF_fit_textline()). Use fillcolor, strokecolor and other ap-
pearance options (see Table 4.1) in PDF_create_textflow() or PDF_add_textflow() to con-
trol the appearance of the text. After returning from this function the text state will be
unchanged. However, the textx/texty parameters will be adjusted to point to the end of
the generated text output (unless the blind option has been set to true).

Scope page, pattern, template, glyph

Table 4.6 Options for PDF_fit_textflow()

option explanation

blind (Boolean) If true, no output will be generated, but all calculations will be performed and the formatting
results can be checked with PDF_info_textflow(). Default: false

firstlinedist (Float, percentage, or keyword) Distance between the top of the fitbox and the baseline for the first line
of text, specified in user coordinates, as a percentage of the relevant font size (the first font size in the line
if fixedleading=true, and the maximum of all font sizes in the line otherwise), or as a keyword. Default:
leading.
leading The leading value determined for the first line; typical diacritical characters such as À will

touch the top of the fitbox.
ascender The ascender value determined for the first line; typical characters with larger ascenders, such

as d and h will touch the top of the fitbox.
capheight The capheight value determined for the first line; typical capital uppercase characters such as

H will touch the top of the fitbox.
xheight The xheight value determined for the first line; typical lowercase characters such as x will

touch the top of the fitbox.
If fixedleading=false the maximum of all leading, ascender, xheight, or capheight values found in
the first line will be used.

fitmethod (Keyword) Specifies the method used to fit the text into the fitbox. Default: clip
auto PDF_fit_textflow() will repeatedly be called in blind mode with reduced font size and other

font-related options (see fontscale) until the text fits into the fitbox (but see also option
minfontsize)

clip The text will be truncated at the bottom of the fitbox.
nofit The text can extend beyond the bottom of the fitbox.

66 Chapter 4: Formatting Functions

fontscale (Float or percentage) Values of fontsize and absolute values (but not percentages) of leading, min-
spacing, maxspacing, spreadlimit, and space will be multiplied with the supplied scaling factor or per-
centage. Default: 1 if rewind=0, otherwise the value supplied with the corresponding call to PDF_fit_
textflow().

lastlinedist (Float, percentage, or keyword; will be ignored for fitmethod=nofit) Minimum distance between the
baseline for the last line of text and the bottom of the fitbox, specified in user coordinates, as a percent-
age of the font size (the first font size in the line if fixedleading=true, and the maximum of all font sizes
in the line otherwise), or as a keyword. Default: 0, i.e. the bottom of the fitbox will be used as baseline,
and typical descenders will extend below the fitbox. The following keyword can be used:
descender The descender value determined for the last line; typical characters with descenders, such as g

and j will touch the bottom of the fitbox.
If fixedleading=false the maximum of all descender values found in the last line will be used.

linespread-
limit

(Float or percentage; only for verticalalign=justify) Maximum amount in user coordinates or as per-
centage of the leading for increasing the leading for vertical justification. Default: 200%

maxlines (Integer or keyword) Maximum number of lines in the fitbox, or the keyword auto which means that as
many lines as possible will be placed in the fitbox. When the maximum number of lines has been placed
PDF_fit_textflow() will return the string _boxfull. Default: auto

minfontsize (Float or percentage) Minimum font size allowed when text is scaled down to fit into the fitbox, especial-
ly for fitmethod=auto. The limit is specified in user coordinates or as a percentage of the height of the fit-
box. If the limit is reached and the text still does not fit the string _boxfull will be returned. Default:
0.1%

orientate (Keyword) Specifies the desired orientation of the text when it is placed. Default: north.
north upright
east pointing to the right
south upside down
west pointing to the left

returnatmark (Integer) PDF_fit_textflow() will return prematurely at the text position where option mark is defined
with the specified number. The return reason string will be _mark#, where # is the number specified in
this option.

rewind (Integer: -2, -1, 0, or 1) State of the supplied Textflow is reset to the state before some other call to PDF_
fit_textflow() with the same Textflow handle. Default: 0.
1 Rewind to the state before the first call to PDF_fit_textflow().

0 Don’t reset the Textflow.
-1 Rewind to the state before the last call to PDF_fit_textflow().
-2 Rewind to the state before the second last call to PDF_fit_textflow().

rotate (Float) Rotate the coordinate system, using the lower left corner of the fitbox as center and the specified
value as rotation angle in degrees. This results in the fitbox and the text being rotated. The rotation will
be reset when the text has been placed. Default: 0

showborder (Boolean) If true, the border of the fitbox will be stroked (using the current graphics state). This may be
useful for development and debugging. Default: false

showtabs (Keyword) Tab stops and left indents will be visualized with vertical lines as a debugging aid. The lines
will be drawn according to the graphics state which was active before calling PDF_fit_textflow() (de-
fault: none):
none no lines will be drawn
fitbox lines will be drawn over the full height of the fitbox
validarea lines will be drawn only in vertical area where they are valid

Table 4.6 Options for PDF_fit_textflow()

option explanation

4.2 Multi-Line Text with Textflows 67

verticalalign (Keyword) Vertical alignment of the text in the fitbox; the firstlinedist and lastlinedist options will
be taken into account as appropriate (default: top):
top Formatting will start at the first line, and continue downwards. If the text doesn’t fill the

fitbox there may be whitespace below the text.
center The text will be vertically centered in the fitbox. If the text doesn’t fill the fitbox there may be

whitespace both above and below the text.
bottom Formatting will start at the last line, and continue upwards. If the text doesn’t fill the fitbox

there may be whitespace above the text.
justify The text will be aligned with top and bottom of the fitbox. In order to achieve this the leading

will be increased up to the limit specified by linespreadlimit. The height of the first line will
only be increased if firstlinedist=leading.

wrap (Option list according to Table 4.7) The text will run around the areas specified with the suboptions listed
in Table 4.7. This can be used to place graphics within the Textflow and wrap the text around it, or to fill
arbitrary shapes with text. The fitbox will be filled according to the even-odd-rule, starting at the border
of the fitbox.
By default, the specified areas will not contain any text (except where they overlap), i.e. the text is
wrapped around the shapes. This can be used to place graphics inside the shape.
Using the addfitbox and inversefill options the opposite effect can be achieved: the specified areas
will be filled with text, and the rest of the fitbox will remain empty. This can be used to fill arbitrary
shapes (and not only rectangles) with text.
Absolute coordinate values will be interpreted in the user coordinate system; percentages will be inter-
preted in the fitbox coordinate system, i.e. the lower left corner of the fitbox is (0, 0) and the upper right
corner is (100, 100). Up to 256 values can be supplied as percentage. Examples:
Exclude the upper right quarter of the fitbox: wrap={ boxes={{50% 50% 100% 100%}} }
Fill a triangular shape: wrap={ addfitbox polygons={{50% 80% 30% 40% 70% 40% 50% 80%}} }
Exclude the area of an image with a matchbox called image1: wrap={ usematchboxes={{ image1 }}}

Table 4.7 Suboptions for the wrap option of PDF_fit_textflow()

option explanation

addfitbox (Boolean) If true, the fitbox will be added to the wrap area. As a result, the shapes specified with other
wrapping options will be filled with text instead of wrapping the text around the shapes. Default: false

boxes (List of rectangles) One or more rectangles which describe the wrap area

fillrule (Keyword) Specifies the method for determining the interior of overlapping wrap shapes (default: even-
odd):

evenodd Use the even-odd rule.
winding Use the non-zero winding number rule.
Use fillrule=winding to process the interior of overlapping circles (i.e. to avoid »doughnut holes«) , or
to process the union of overlapping shapes (instead of the intersection).

inversefill (Boolean) If true, wrap shape processing starts at the first intersection of the text line with the border of
a wrap element inside the fitbox. If false, processing starts at the fitbox border. If fillrule=evenodd,
the option inversefill=true has the same effect as addfitbox=true. If fillrule=winding, the option
addfitbox=true leads to an empty or a full fitbox (for inversefill=false or true, respectively).

lineheight (List with two elements, each being a positive float or a keyword) Defines the vertical extent of the text
line to be used for calculating the intersection with wrap areas. Two keywords/floats specify the extent
above and below the text baseline. Supported keywords:
none (no extent), xheight, descender, capheight, ascender, fontsize, leading, textrise
Default: {ascender descender}

Table 4.6 Options for PDF_fit_textflow()

option explanation

68 Chapter 4: Formatting Functions

C++ Java double info_textflow(int textflow, String keyword)
Perl PHP float PDF_info_textflow(resource p, int textflow, string keyword)

C double PDF_info_textflow(PDF *p, int textflow, const char *keyword)

Query the current state of a Textflow after a call to PDF_fit_textflow().

textflow A Textflow handle returned by a call to PDF_add/create_textflow() or PDF_fill_
textblock() with the textflowhandle option.

keyword A keyword specifying the requested information according to Table 4.8.

Returns The value of some Textflow parameter as requested by keyword. This function returns
correct geometry information even in blind mode (unlike the textx/texty parameters).

Scope any except object

usematch-
boxes

(List of string lists) The first element in each list is a name string which specifies a matchbox. The second
element is either an integer specifying the number of the desired rectangle, or the keyword all to speci-
fy all rectangles referring to the selected matchbox. If the second element is missing, it defaults to all.
The bounding box of each rectangle will be used as shape for text wrapping.

offset (Float or percentage) Horizontal distance between the text and the contour of the wrap area, supplied
in user coordinates or as a percentage of the width of the fitbox. This can be used to horizontally extend
the wrap area. Default: 0

polygons (List of polylines) One or more polylines which describe the wrap area (not necessarily closed)

Table 4.8 Keywords for PDF_info_textflow()

keyword explanation

boxlinecount Number of lines in the last fitbox

firstparalinecount Number of lines in the first paragraph of the fitbox

firstlinedist Distance between the first text baseline and the fictitious baseline above (if verticalalign=top
this will be the upper border of the fitbox)

lastmark Number of the last mark found in the processed part of the Textflow in the last fitbox (marks can
be set with the mark option)

lastlinedist Distance between the last text baseline and the fictitious baseline below, assuming unmodified
leading (if verticalalign=bottom this will be the lower border of the fitbox)

lastparalinecount Number of lines in the last paragraph of the fitbox

leading The current value of the leading option, as determined by the text and options within the Text-
flow

leftlinex1, leftliney1 The x and y coordinates of the line with the leftmost start in the most recently filled fitbox, in cur-
rent user coordinates

maxlinelength Length of the longest text line in the most recently filled fitbox

maxliney1 The y coordinate of the baseline of the longest text line in the most recently filled fitbox, in cur-
rent user coordinates

minlinelength Length of the shortest text line in the most recently filled fitbox

Table 4.7 Suboptions for the wrap option of PDF_fit_textflow()

option explanation

4.2 Multi-Line Text with Textflows 69

C++ Java void delete_textflow(int textflow)
Perl PHP PDF_delete_textflow(resource p, int textflow)

C void PDF_delete_textflow(PDF *p, int textflow)

Delete a Textflow and all associated data structures.

textflow A Textflow handle returned by a call to PDF_create_textflow() or PDF_add_
textflow().

Details Textflows which have not been deleted with this function will be deleted automatically
at the end of the enclosing document scope. However, failing to call PDF_delete_
textflow() may significantly slow down the application if many Textflows are generat-
ed.

Scope any

minliney1 The y coordinate of the baseline of the shortest text line in the most recently filled fitbox, in cur-
rent user coordinates

remainchars (Deprecated) Number of characters not yet processed. This count does not include the number of
characters in inline option lists and character references. The value may be unreliable because of
various text substitution processes (e.g. CR/NL combinations).

returnreason String index which can be used with the string parameter in PDF_get_parameter() (see Table
2.1) to retrieve the return reason of the most recent direct or indirect call to PDF_fit_textflow().
The retrieved return reason will be one of the return strings of PDF_fit_textflow(). This is useful
for querying the result of indirect Textflow calls issued internally by PDF_fill_textblock().

rightlinex1, rightliney1 The x and y coordinates of the line with the rightmost end in the most recently filled fitbox, in
current user coordinates

split Specifies whether word splitting occurred in the last fixbox:
0 No word had to be split.
1 At least one word had to be split.

textendx, textendy The x or y coordinate of the current text position after the most recently filled fitbox in current
user coordinates

textheight Height of the bounding box of the whole text (taking firstlinedist and lastlinedist into ac-
count) in current user coordinates

textwidth Width of the bounding box of the whole text in current user coordinates

used Percentage of text (0...100) which has been placed so far

x1, y1, ... , x4, y4 Coordinates of the bounding box of the whole text (taking firstlinedist and lastlinedist
into account) in current user coordinates

1. If rotate is different from 0 this value refers to the rotated system.

Table 4.8 Keywords for PDF_info_textflow()

keyword explanation

70 Chapter 4: Formatting Functions

4.3 Table Formatting
Cookbook A full code sample can be found in the Cookbook topic tables/starter_table.

C++ Java int add_table_cell(int table, int column, int row, string text, string optlist)
Perl PHP int PDF_add_table_cell(resource p, int table, int column, int row, string text, string optlist)

C int PDF_add_table_cell(PDF *p,
int table, int column, int row, const char *text, int len, const char *optlist)

Add a cell to a new or existing table.

table A valid table handle retrieved with another call to PDF_add_table_cell(), or -1 (in
PHP: 0) for the first call. The table handle must not yet have been used in a call to PDF_
fit_table(), i.e. all table contents must be defined before placing the table on the page.

column, row Number of the column and row containing the cell. If the cell spans mul-
tiple columns and/or rows the numbers of the leftmost column and the topmost row
must be supplied. The first column/row has number 1.

text (Content string) Text for filling the cell. If text is not empty it will be used for fill-
ing the cell with PDF_fit_textline().

len (C language binding only) Length of text (in bytes) for UTF-16 strings. If len = 0 a
null-terminated string must be provided.

optlist An option list specifying table cell formatting details according to Table 4.9.
The following options can be used:

> General: errorpolicy
> Column and row definition: colwidth, colscalegroup, minrowheight, return, rowheight,

rowjoingroup, rowscalegroup
> Cell definition: checkwordsplitting, colspan, margin, marginleft, marginbottom,

marginright, margintop, matchbox, rowspan
> Cell contents: fittextline, textflow, fittextflow, image, fitimage, pdipage, fitpdipage

Returns A table handle which can be used in subsequent table-related calls. If errorpolicy=return
the caller must check for a return value of -1 (in PHP: 0) since it signals an error. In case
of an error only the last cell definition will be discarded; no contents will be added to the
table, but the table handle is still valid. The returned table handle can not be reused
across multiple PDF output documents.

Details A table cell can be filled with images, imported PDF pages, Textflows, or textlines. Multi-
ple content types can be specified for a particular cell in a single function call.

Column widths must be supplied uniformly either in user coordinates, or as per-
centages. PDFlib will calculate unspecified column widths based on the width of the ta-
ble’s first fitbox: all columns with unspecified widths will have the same widths, so that
the table completely spans the fitbox’s width. Exception: if a column contains one or
more textlines (not Textflows), PDFlib will use the maximum of the text widths in a col-
umn as the width of that column.

For vertical text the width of the widest character will be used as column width. For
text orientated to west or east twice the text height will be used. The text height is the
height of textline matchbox; the default matchbox extends from baseline to capheight.

http://www.pdflib.com/pdflib-cookbook/tables/starter-table

4.3 Table Formatting 71

Row heights will be calculated analogously to column widths. If a row contains only
Textflow cells, the default calculation of the row height may start with a height which is
too large. This can be avoided by specifying a smaller initial row height using the
rowheight option. PDFlib will adjust this initial row height to the Textflow if necessary. A
similar recommendation holds for columns which contain only Textflow oriented to
the west or east.

Scope any except object

Table 4.9 Options for PDF_add_table_cell()

key explanation

checkword-
splitting

(Boolean; only relevant for Textflow cells) If true, the table formatter will check whether the Textflow re-
quires at least one forced word splitting when fitting the text into the table cell. If so, the cell width will
be increased in an attempt to avoid word splittings. Default: true

colscale-
group1

(String) Name of a column group to which the column will be added. All columns in a group will be scaled
uniformly if one of the columns in the group must be enlarged to completely hold long text. If a cell
spans multiple columns the affected columns form a scale group automatically.

colspan (Integer) Number of columns spanned by the cell. Default: 1

colwidth1 (Float or percentage) Width of the column specified in the column parameter, specified in user coordi-
nates2, or as a percentage of the width of the table’s first fitbox (see PDF_fit_table()). If percentages are
used this option is required, and all column widths must be specified as percentages.

errorpolicy (Keyword) Controls the behavior in case of an error (see Section 2.6, »Exception Handling«, page 29)

fitimage (Option list; only relevant for images) Option list for PDF_fit_image(). This option list will be applied to
place the supplied image in the cell. The lower left corner of the inner cell box will be used as the refer-
ence point.
Default: boxsize={<width> <height>} fitmethod=meet position=center, where <width> and
<height> are the calculated width and height of the inner cell box. This calculated option list will be
prepended to the user-specified option list. The box size will be calculated automatically; any boxsize
option in the supplied option list will be ignored.

fitpdipage (Option list; only relevant for PDI pages) Option list for PDF_fit_pdi_page(). This option list will applied
to place the supplied page in the cell. The lower left corner of the inner cell box will be used as the refer-
ence point.
Default: boxsize={<width> <height>} fitmethod=meet position=center, where <width> and
<height> are the calculated width and height of the inner cell box. This calculated option list will be
prepended to the user-specified option list. The box size will be calculated automatically and will be ig-
nored in the supplied option list.

fittextflow (Option list; only relevant for Textflows) Option list for PDF_fit_textflow(). This option list will be applied
to place the supplied Textflow in the cell. The inner cell box will be used as fitbox.
Default: verticalalign=center lastlinedist=descender. This option list will be prepended to the
user-specified option list.

fittextline (Option list; only relevant for textlines) Option list for PDF_fit_textline(). This option list will be applied
to fit the supplied text into the cell. The lower left corner of the inner cell box will be used as the reference
point. Options which have not been specified will be replaced with the respective defaults; the current
text state is not taken into account.
Default: boxsize={<width> <height>} fitmethod=nofit position=center, where <width> and
<height> are the calculated width and height of the inner cell box. This calculated option list will be
prepended to the supplied option list. The box size will be calculated automatically; any boxsize option
in the supplied option list will be ignored.

image (Image handle) The image associated with the handle will be placed in the inner cell box.

72 Chapter 4: Formatting Functions

C++ Java String fit_table(int table, double llx, double lly, double urx, double ury, String optlist)
Perl PHP string PDF_fit_table(resource p, int table, float llx, float lly, float urx, float ury, string optlist)

C const char *PDF_fit_table(PDF *p,
int table, double llx, double lly, double urx, double ury, const char *optlist)

Fully or partially place a table on the page.

table A valid table handle retrieved with a call to PDF_add_table_cell().

llx, lly, urx, ury Coordinates of the lower left and upper right corners of the target rect-
angle for the table instance (the fitbox) in user coordinates. The corners can also be
specified in reverse order.

optlist An option list specifying filling details according to Table 4.10. The following
options can be used:

> General options: blind, errorpolicy, horshrinklimit, rewind, vertshrinklimit
> Table contents: fill, header, footer, stroke

margin
marginleft
marginbottom
marginright
margintop

(Float or percentage) Left/bottom/right/top cell margins in user coordinates (must be greater than or
equal to 0) or as a percentage of the cell width or height (must be less than 100%). The specified margins
define the inner cell box which serves as the fitbox for the cell contents. Default for margin: 0; Default for
all others: margin

matchbox (Option list) Option list with matchbox details according to Table 4.13.

minrow-
height1

(Float or percentage) If a row cannot completely be placed in a table instance, this option specifies
whether the row can be split and how small the fragments can get. The minimum fragment height can
be specified in user coordinates or as a percentage of the row height. Default: 100%, i.e. no splitting

pdipage (Page handle) The imported PDF page associated with the handle will be placed in the inner cell box. De-
fault: none

return1 (String) PDF_fit_table() will stop after placing the specified row, and will return the specified string. The
string must not start with an underscore character ’_’ . If the specified row is part of a join group it must
be the last row of the group; otherwise an error will occur.

rowheight1 (Float or percentage) Height of the row specified in the row parameter, specified in user coordinates2, or
as a percentage of the height of the table’s first fitbox (see PDF_fit_table()). If percentages are used this
option is required, and all row heights must be specified as percentages. With Textflow cells PDFlib will
adjust this initial row height to the Textflow if necessary.

rowscale-
group1

(String) Name of a row group to which the row will be added. All rows in a group will be scaled uniformly
if one of the rows in the group must be enlarged to completely hold long text. If a cell spans multiple
rows the affected rows form a scale group automatically.

rowjoin-
group1

(String) Name of a row group to which the row will be added. All rows in the group will be kept together
in a table instance. The rows in a group must be numbered consecutively. If a cell spans multiple rows the
affected rows do not automatically form a join group.

rowspan (Integer) Number of rows spanned by the cell. Default: 1

textflow (Textflow handle) The Textflow associated with the handle will be placed in the inner cell box. A Textflow
handle can only be used once in a table, and must not be used outside that table. Default: none

1. The last specification of this option is dominant; earlier specifications for the same row or column will be ignored.
2. More precisely, the coordinate system which is in effect when PDF_fit_table() is called for placing the first table instance.

Table 4.9 Options for PDF_add_table_cell()

key explanation

4.3 Table Formatting 73

> Visualization aids for development and debugging: debugshow, showborder, show-
cells, showgrid

Returns A string which specifies the reason for returning from the function:
> _stop: all rows in the table have been processed.
> _boxfull: there are still rows to be placed, but not enough space is available in the ta-

ble’s fitbox; another call to PDF_fit_table() is required for processing the remaining
rows.

> _error: an error occurred; call PDF_get_errmsg() to obtain details about the problem.
> Any other string: the string supplied to the return option in a call to PDF_add_table_

cell().

Details Place the table on the page. The table cells must have been filled with prior calls to PDF_
add_table_cell(). If the full table doesn’t fit in the fitbox, the first table instance will be
placed; more table instances can be placed with subsequent calls to this function de-
pending on the return value. The contents of a table cell will be placed in the following
order:

> Shading: the areas specified with the fill option will be filled in the following order:
table, colother, colodd, coleven, col#, collast, rowother, rowodd, roweven, row#, rowlast,
header, footer.

> Matchbox shading: single cell areas which are defined by a matchbox definition.
> Contents: the specified cell contents will be placed in the following order: image, im-

ported PDF page, Textflow, textline.
> Matchbox ruling: single cell areas which are defined by a matchbox definition.
> Ruling: the lines specified with the stroke option will be stroked according to the

linecap and linejoin suboptions of the stroke option in the following order: other,
horother, hor#, horlast, vertother, vert#, vertlast, frame. Cells which span multiple rows
or columns will not be intersected by strokes. Similarly, lines will not be stroked
around cells with a matchbox which specifies border decoration (unless the match-
box uses the inner cell box). The table border lines vert0, hor0, vertN, and horN will be
suppressed if frame is specified.

> Named matchboxes: these can be filled with other elements like annotations, form
fields, images etc. outside of the table functions.

Scope page, pattern, template, glyph

Table 4.10 Options for PDF_fit_table()

key explanation

blind (Boolean) If true, all calculations will be performed, but no output will be created. The formatting results
can be checked with PDF_info_table(). Default: false

debugshow (Boolean) If true, all errors for tables which are too high, too wide, or where the cells get too small will be
suppressed and logged instead. The resulting table instance will be created as a debugging aid although
the table is damaged. Default: false

errorpolicy (Keyword) Controls the behavior in case of an error (see Section 2.6, »Exception Handling«, page 29)

74 Chapter 4: Formatting Functions

fill (List of option lists) This option can be used to fill rows or columns with color (the matchbox option can be
used to fill single cells with color, see Section 4.4, »Matchboxes«, page 77). The following suboptions are
supported:
area (Keyword) Table area(s) to be filled:

col# column number # in the table
collast last column
coleven all columns with even numbers (according to col in PDF_add_table_cell())
colodd all columns with odd numbers
colother all unspecified columns
row# row number # in the table
rowlast last body row in the table instance
roweven all rows with even numbers (according to row in PDF_add_table_cell())
rowodd all rows with odd numbers
header all rows in the header group
footer all rows in the footer group
rowother all unspecified body rows
table complete table area (i.e. all rows in the table)

fillcolor (Color; required) Color for the fill area
Examples:
fill all rows in the table with red: fill = { {area=table fillcolor={rgb 1 0 0}} }
fill odd-numbered rows with green and even-numbered rows with red:
fill = { {area=rowodd fillcolor={rgb 0 1 0}} {area=roweven fillcolor={rgb 1 0 0}} }

footer (Integer) Number of final (footer) rows in the table definition which will be repeated at the bottom of the
table instance. Default: 0 (no footer rows)

header (Integer) Number of initial (header) rows in the table definition which will be repeated at the top of the
table instance. Default: 0 (no header rows)

horshrinklimit (Float or percentage) Lower limit for the horizontal shrinking factor which will be used when the table is
shrunk to fit in the table’s fitbox (if a percentage is supplied) or the absolute difference between the table
width and the width of the fitbox (if a float is supplied). Default: 50%

rewind (Integer: -1, 0, or 1) State of the table is reset to the state before some other call to PDF_fit_table(). Cur-
rently the following values are supported. Default: 0.
1 Rewind to the state before the first call to PDF_fit_table().
0 Don’t reset the table.
-1 Rewind to the state before the last call to PDF_fit_table() (the one before the current call)

showborder (Boolean) If true, the outer border of the table will be stroked using the current graphics state. Default:
false

showcells (Boolean) If true, the border of each inner cell box will be stroked using the current graphics state. De-
fault: false

showgrid (Boolean) If true, the vertical and horizontal boundary of all columns and rows will be stroked. Default:
false

Table 4.10 Options for PDF_fit_table()

key explanation

4.3 Table Formatting 75

C++ Java double info_table(int table, String keyword)
Perl PHP float PDF_info_table(resource p, int table, string keyword)

C double PDF_info_table(PDF *p, int table, const char *keyword)

Retrieve table information related to the most recently placed table instance.

table A valid table handle retrieved with a call to PDF_add_table_cell(). The table han-
dle must already have been used in at least one call to PDF_fit_table() since the returned
values are meaningful only after placing a table instance on the page.

keyword A keyword specifying the requested information according to Table 4.11.

Returns The value of some table parameter as requested by keyword. This function returns cor-
rect geometry information even in blind mode.

Scope any except object

stroke (List of option lists) This option can be used to create stroked lines at the cell borders. The following sub-
options are supported:
line (Keyword) Table line(s) to be stroked:

vert# vertical line at the right border of column number #; vert0 is the left table border
vertfirst first vertical line (equivalent to vert0)
vertlast last vertical line
vertother all unspecified vertical lines
hor# horizontal line at the bottom of row number # in the table; row0 is the top border
horfirst first horizontal line in the table instance
horother all unspecified horizontal lines
horlast last horizontal line in the table instance
frame outer border of the table
other all unspecified lines

linejoin (Integer or keyword) Shape at the corners of paths (see PDF_setlinejoin()); must be 0, 1, or 2,
or one of the corresponding keywords miter, round, or bevel. Default: miter

linecap (Integer or keyword) Shape at the end of a path (see PDF_setlinecap()); must be 0, 1, or 2, or
one of the corresponding keywords butt, round, or projecting. Default: projecting

linewidth (Float) Line width, where 0 means no line. Default: 1
strokecolor (Color) Line color. Default: black
dasharray (List of floats) 0-8 values for defining a dash pattern (see PDF_setdashpattern()). Default: { }

(empty list, i.e. stroked line)
dashphase (Float) Distance into the dash pattern at which to start the dash (see PDF_setdashpattern()).

Default: 0
Examples:
stroke all lines with black and linewidth 1: stroke = {line=other}
stroke the outer border lines with linewidth 0.5: stroke = { {line=frame linewidth=0.5} }
stroke the outer border lines with linewidth 0.5, and all other lines with linewidth 0.1:
stroke = { {line=frame linewidth=0.5} {line=other linewidth=0.1} }

vertshrink-
limit

(Float or percentage) The lower limit for the vertical shrinking factor which will be used when the table is
shrunk to fit the table’s fitbox (if a percentage is supplied) or the absolute difference between the height
of the table instance and the height of the fitbox (if a float is supplied). Default: 90%

Table 4.10 Options for PDF_fit_table()

key explanation

76 Chapter 4: Formatting Functions

C++ Java void delete_table(int table, String optlist)
Perl PHP PDF_delete_table(resource p, int table, string optlist)

C void PDF_delete_table(PDF *p, int table, const char *optlist)

Delete a table and all associated data structures.

table A valid table handle retrieved with a call to PDF_add_table_cell().

optlist An option list specifying cleanup options according to Table 4.12.

Details Tables which have not been deleted with this function will be deleted automatically at
the end of the enclosing document scope.

Scope any

Table 4.11 Keywords for PDF_info_table()

keyword explanation

firstbodyrow Number of the first body row in the most recently placed table instance

height Height of the table instance

horboxgap Difference between the width of the table instance and the width of the fitbox. If the table had to be
shrunk the value will specify the deviation from the width of the fitbox (i.e. a negative value).

horshrinking Horizontal shrinking factor as a percentage of the calculated table width. If the table had to be shrunk
horizontally the value will specify the shrinking percentage, ortherwise it will be 100.

lastbodyrow Number of the last body row in the most recently placed table instance

returnreason String index of the return reason

rowcount Number of rows in the most recently placed table instance (including headers and footers)

rowsplit 1 if the last row had to be split, 0 otherwise

vertboxgap Difference between the height of the most recently generated table instance and the height of the fitbox.
If the table had to be shrunk, the value will specify the deviation from the height of the fitbox (i.e. a neg-
ative value).

vert-
shrinking

Vertical shrinking factor as a percentage of the calculated table height. If the table had to be shrunk ver-
tically the value will specify the shrinking percentage, ortherwise it will be 100.

width Width of the table instance

x1, y1, ... ,
x4, y4

Coordinates of the corners of the table instance in user coordinates, counterclockwise starting at the low-
er left corner

xvertline# x coordinate of the vertical line with number #. xvertline0 is the left table border.

yhorline# x coordinate of the horizontal line with number #. yhorline0 is the top table border.

Table 4.12 Options for PDF_delete_table()

key explanation

keephandles (Boolean) If false, all handles supplied to the textflow, image, and pdipage options of PDF_add_table_
cell() will automatically be deleted. Default: false

4.4 Matchboxes 77

4.4 Matchboxes
Matchboxes are not defined with a dedicated function, but with the matchbox option in
the function call which creates the actual element:

> text lines: PDF_fit_textline(), PDF_fill_textblock() with the textflow property set to false
> Textflow fragments: PDF_create_textflow(), PDF_add_textflow(), PDF_fill_textblock()

with the textflow property set to true
> imported PDF pages: PDF_fit_pdi_page(), PDF_fill_pdf_block()
> images and templates: PDF_fit_image(), PDF_fill_image_block()
> table cells: PDF_add_table_cell()

Matchboxes are defined with the matchbox option of these functions. It expects an op-
tion list which supports the suboptions listed in Table 4.13. Details of the rectangles cor-
responding to a matchbox can be queried with PDF_info_matchbox().

Table 4.13 Suboptions for the matchbox option of various functions

option explanation

fillcolor (Color) Fill color for the rectangle. Default: none

strokecolor (Color) Stroke color for the rectangle’s border. Default: black

borderwidth (Float) Line width for the rectangle’s border. If you set borderwidth to a value greater than 0 all rectangle
borders will be stroked. To prevent the upper, lower, left, or right border from being stroked, set the corre-
sponding drawtop, drawbottom, drawleft, or drawright option to false. Default: 0

boxheight (List with two elements, each being a positive float or a keyword; only for textline and Textflow) Defines
the vertical extent of the text box. Two values can be specified numerically or via keywords for the extent
above and below the baseline:
none (no extent), xheight, descender, capheight, ascender, fontsize, leading, textrise
With Textflows the values corresponding to the text at the beginning of the matchbox will be used.
Default: {capheight none}

boxwidth (Float; only for Textflow) Width of the matchbox. If this option is supplied, horizontal space of the speci-
fied width will be inserted between the matchbox option and the next text fragment or the matchbox end
specification. This may be useful to reserve space for inserting an image, template, or PDF page in the
Textflow. Default: 0

clipping (List of 4 floats or 4 percentages; only for images and imported PDF pages; will be ignored if the innerbox
option has been specified) Coordinates of the lower left and upper right corner of a rectangle within the
image or page specifying which part should be displayed. With images, the clipping rectangle can be
specified in pixels or as a percentage of the width/height. With PDF pages, the clipping rectangle can be
specified in default units or as a percentage of the width/height of the page’s crop box. Default: {0% 0%
100% 100%}

create-
wrapbox

(Boolean; only for Textflow) If true, the rectangle(s) comprising the matchbox will be inserted as wrap
areas in the Textflow after they have been calculated. The subsequent lines after the lines containing the
matchbox will be wrapped around the rectangle(s). Default: false

dasharray (Float list) List 0f 0-8 values for defining a dash pattern for the rectangle border in user coordinates (see
PDF_setdashpattern()). Default: { }

dashphase (Float) Distance into the dash pattern at which to start the dash for the rectangle’s border (see PDF_
setdashpattern()). Default: 0

drawleft
drawbottom
drawright
drawtop

(Boolean) If true, the corresponding border of the rectangle will be drawn provided that the
borderwidth is set to a value greater than 0. Default: true

78 Chapter 4: Formatting Functions

C++ Java double info_matchbox(String boxname, int num, String keyword)
Perl PHP float PDF_info_matchbox(resource p, string boxname, int num, string keyword)

C double PDF_info_matchbox(PDF *p,const char *boxname, int len, int num, const char *keyword)

Query information about a matchbox on the current page.

boxname (Name string) Name of the matchbox. The name must have been defined
with the name suboption of the matchbox option when the matchbox was defined.

Alternatively, the name ’*’ (single asterisk character) can be used to enumerate all
matchboxes on the page.

len (C language binding only) Length of name in bytes for UTF-16 strings. If len = 0 a
null-terminated string must be provided.

num Number of the requested matchbox rectangle (the first has number 1). See Table
4.14 for the special case num=0.

end (Boolean; only for Textflow) Specifies the end of the matchbox. If true, all other suboptions for the cur-
rent matchbox definition will be ignored. Matchboxes in Textflows cannot be nested. The width of a Tex-
tflow matchbox is defined by the option boxwidth (if specified) and the extent of the text enclosed in the
options matchbox and matchbox= end. If the end option has not been specified, the matchbox will end af-
ter the last character in the Textflow.

innerbox (Boolean; only for table cells, and TIFF and JPEG images) Table cells: If true, the cell box will be reduced by
the margins defined for the cell; otherwise the full cell box will be used.
TIFF and JPEG images: If true and the image contains a clipping path the bounding box of the clipping
path will be used instead of the full image.
Default: false

linecap (Integer or keyword) Shape at the end of a path (see PDF_setlinecap()); must be 0, 1, or 2, or one of the
corresponding keywords butt, round, or projecting. Default: butt

linejoin (Integer or keyword) Shape at the corners of paths (see PDF_setlinejoin()); must be 0, 1, or 2, or one of the
corresponding keywords miter, round, or bevel. Default: miter

margin (Float or percentage) Additional margin for the matchbox rectangle, specified in user coordinates (must
be greater than or equal to 0) or as a percentage of the rectangle width or height (must be less than
100%). This option will be ignored for an edge for which offset* has been supplied. Default: 0

name (Name string) Name of the matchbox. If the name has already been assigned to a matchbox, another
rectangle for this name will be created. This means that a matchbox may consist of more than one rect-
angle. The name can be used in PDF_info_matchbox(). Various functions support the option
usematchbox to reference one or more rectangles of a matchbox, e.g. to add an annotation with PDF_
create_annotation(). Matchbox names can be used until the end of the current page. Default: no name

offsetleft
offsetbottom
offsetright
offsettop

(Float or percentage) User-defined offset from the left/right/bottom/top edge of the calculated rectan-
gle and the desired box. The values are specified in user coordinates or as a percentage of the rectangle’s
width (for offsetleft/offsetright) or height (for offsetbottom/offsettop). Negative values are al-
lowed, and can be used to extend the matchbox. Default of offsetleft/offsetbottom: margin; De-
fault of offsetright/offsettop: -margin

openrect (Boolean; only for Textflow and table cells) Textflow: If true and a matchbox rectangle is split to the next
line, the right border of the first rectangle and the left border of the second rectangle will not be drawn.
Table cells: If true and a table row is split to the next table instance the bottom border of the first part
and the top border of the second part will not be drawn. Default: false

Table 4.13 Suboptions for the matchbox option of various functions

option explanation

4.4 Matchboxes 79

keyword A keyword specifying the requested information according to Table 4.14.

Returns The value of some matchbox parameter as requested by keyword. If a matchbox with the
specified name or a matchbox rectangle with the specified number does not exist on
the current page, all keywords will return the value 0.

Details Named matchboxes within a Textflow can only be queried after calling PDF_fit_
textflow().

Scope page, pattern, template, glyph, path, font

Table 4.14 Keywords for PDF_info_matchbox()

keyword explanation

count (The num parameter will be ignored)
If boxname contains the name of a matchbox: Number of rectangles for this matchbox on the page
If boxname=*: number of matchboxes with at least one rectangle on the page

exists If boxname contains the name of a matchbox: 1 if the rectangle exists, 0 otherwise.
With boxname=* this keyword can be used to enumerate all matchboxes on the page:

if num=0: 1 if a matchbox exists at all, 0 otherwise
otherwise: 1 if a matchbox with number num exists

height1

1. This keyword will be ignored if boxname=*.

Height of the rectangle in user coordinates

name String index for the name of the matchbox with number num. The corresponding string can be retrieved
via PDF_get_parameter() and the string parameter (see Table 2.1).

width1 Width of the rectangle in user coordinates

x1, y1, ... ,
x4, y41

Position of the i-th rectangle corner (i=1, 2, 3, 4) in user coordinates. In the coordinate system of the re-
spective fit element (image, text, etc.), x1, y1 correspond to the lower left, x2, y2 to the lower right, x3,
y3 to the upper right and x4, y4 to the upper left corner.

5.1 Graphics State 81

5 Graphics Functions
Cookbook A full code sample can be found in the Cookbook topic graphics/starter_graphics.

5.1 Graphics State
All graphics state parameters are restored to their default values at the beginning of a
page. The default values are documented in the respective function descriptions. Func-
tions related to the text state are listed in Chapter 3, »Text Functions«, page 33.

Note None of the graphics state functions must be used in path scope.

C++ Java void setdash(double b, double w)
Perl PHP PDF_setdash(resource p, float b, float w)

C void PDF_setdash(PDF *p, double b, double w)

Set the current dash pattern.

b, w The number of alternating black and white units. b and w must be non-negative
numbers.

Details In order to produce a solid line, set b=w=0. The dash parameter is set to solid at the be-
ginning of each page.

Scope page, pattern, template, glyph

C++ Java void setdashpattern(String optlist)
Perl PHP PDF_setdashpattern(resource p, string optlist)

C void PDF_setdashpattern(PDF *p, const char *optlist)

Set a dash pattern defined by an option list.

optlist An option list according to Table 5.1. An empty list will generate a solid line. The
following options can be used:
dasharray, dashphase

Details The dash parameter is set to a solid line at the beginning of each page.

Scope page, pattern, template, glyph

Table 5.1 Options for PDF_setdashpattern()

option description

dasharray (List of floats) List of 2-8 alternating values for the lengths of dashes and gaps for stroked paths (mea-
sured in the user coordinate system). The array values must be greater than zero. They will be cyclically
reused until the complete path is stroked.

dashphase (Float) Distance into the dash pattern at which to start the dash. Default: 0

http://www.pdflib.com/pdflib-cookbook/graphics/starter-graphics

82 Chapter 5: Graphics Functions

C++ Java void setflat(double flatness)
Perl PHP PDF_setflat(resource p, float flatness)

C void PDF_setflat(PDF *p, double flatness)

Set the flatness tolerance.

flatness A positive number which describes the maximum distance (in device pixels)
between the path and an approximation constructed from straight line segments.

Details The flatness tolerance is set to the default value of 1 at the beginning of each page.

Scope page, pattern, template, glyph

C++ Java void setlinejoin(int linejoin)
Perl PHP PDF_setlinejoin(resource p, int linejoin)

C void PDF_setlinejoin(PDF *p, int linejoin)

Set the linejoin style.

linejoin Specifies the shape at the corners of paths that are stroked, see Table 5.2.

Details The linejoin style is set to the default value of 0 at the beginning of each page.

Scope page, pattern, template, glyph

C++ Java void setlinecap(int linecap)
Perl PHP PDF_setlinecap(resource p, int linecap)

C void PDF_setlinecap(PDF *p, int linecap)

Set the linecap parameter.

linecap Controls the shape at the end of a path with respect to stroking, see Table 5.3.

Details The linecap parameter is set to the default value of 0 at the beginning of each page.

Scope page, pattern, template, glyph

Table 5.2 Values of the linejoin style

value description (from the PDF reference) examples

0 Miter joins: the outer edges of the strokes for the two segments are continued un-
til they meet. If the extension projects too far, as determined by the miter limit, a
bevel join is used instead.

1 Round joins: a circular arc with a diameter equal to the line width is drawn
around the point where the segments meet and filled in, producing a rounded cor-
ner.

2 Bevel joins: the two path segments are drawn with butt end caps (see the discus-
sion of the linecap parameter), and the resulting notch beyond the ends of the
segments is filled in with a triangle.

5.1 Graphics State 83

C++ Java void setmiterlimit(double miter)
Perl PHP PDF_setmiterlimit(resource p, float miter)

C void PDF_setmiterlimit(PDF *p, double miter)

Set the miter limit.

miter A value greater than or equal to 1 which controls
the spike produced by miter joins.

Details If the linejoin style is set to 0 (miter join), two line segments
joining at a small angle will result in a sharp spike. This
spike will be replaced by a straight end (i.e. the miter join
will be changed to a bevel join) when the ratio of the miter
length and the line width exceeds the miter limit. The miter limit is set to the default
value of 10 at the beginning of each page. This corresponds to an angle of roughly 11.5
degrees.

Scope page, pattern, template, glyph

C++ Java void setlinewidth(double width)
Perl PHP PDF_setlinewidth(resource p, float width)

C void PDF_setlinewidth(PDF *p, double width)

Set the current line width.

width The line width in units of the current user coordinate system.

Details The width parameter is set to the default value of 1 at the beginning of each page.

Scope page, pattern, template, glyph

C++ Java void initgraphics()
Perl PHP PDF_initgraphics(resource p)

C void PDF_initgraphics(PDF *p)

Reset all color and graphics state parameters to their defaults.

Details The fill and stroke colors, line width, line cap style, line join style, miter limit, dash pat-
tern, and flatness tolerance settings, and the coordinate system (but not the text state

Table 5.3 Values of the linecap parameter

value description (from the PDF reference) examples

0 Butt end caps: the stroke is squared off at the endpoint of the path.

1 Round end caps: a semicircular arc with a diameter equal to the line width is
drawn around the endpoint and filled in.

2 Projecting square end caps: the stroke extends beyond the end of the line by a dis-
tance which is half the line width and is squared off.

Miter
length

Line width

84 Chapter 5: Graphics Functions

parameters) are reset to their respective defaults. The current clipping path is not af-
fected.

This function may be useful in situations where the program flow doesn’t allow for
easy use of PDF_save()/PDF_restore().

Scope page, pattern, template, glyph

5.2 Saving and Restoring Graphics States 85

5.2 Saving and Restoring Graphics States

C++ Java void save()
Perl PHP PDF_save(resource p)

C void PDF_save(PDF *p)

Save the current graphics state to a stack.

Details The graphics state contains parameters that control all types of graphics objects. Saving
the graphics state is not required by PDF; it is only necessary if the application wishes to
return to some specific graphics state later (e.g. a custom coordinate system) without
setting all relevant parameters explicitly again. The following items are subject to save/
restore:

> graphics parameters which have been set with the corresponding functions: clipping
path, coordinate system, current point, flatness tolerance, line cap style, dash pat-
tern, line join style, line width, miter limit;

> color parameters: fill and stroke colors;
> graphics parameters which have been set with explicit graphics states in PDF_set_

gstate() (see Section 5.4, »Explicit Graphics States«, page 87);
> text position and the following text-related parameters: charspacing, font, fontsize,

horizscaling, italicangle, leading, textrendering, textrise, wordspacing.

Pairs of PDF_save() and PDF_restore() may be nested. Although the PDF specification
doesn’t limit the nesting level of save/restore pairs, applications must keep the nesting
level below 26 in order to avoid printing problems caused by restrictions in the Post-
Script output produced by PDF viewers, and to allow for additional save levels required
by PDFlib internally.

Scope page, pattern, template, glyph; must always be paired with a matching PDF_restore() call.
PDF_save() and PDF_restore() calls must be balanced on each page, pattern, template,
and glyph description.

Params Most text-related parameters are affected by save/restore; see list above. The following
parameters are not subject to save/restore: fillrule, kerning, underline, overline, strikeout.

C++ Java void restore()
Perl PHP PDF_restore(resource p)

C void PDF_restore(PDF *p)

Restore the most recently saved graphics state from the stack.

Details The corresponding graphics state must have been saved on the same page, pattern, or
template.

Scope page, pattern, template, glyph; must always be paired with a matching PDF_save() call.
PDF_save() and PDF_restore() calls must be balanced on each page, pattern, template,
and glyph description.

86 Chapter 5: Graphics Functions

5.3 Coordinate System Transformations
All transformation functions (PDF_translate(), PDF_scale(), PDF_rotate(), PDF_skew(),
PDF_concat(), PDF_setmatrix(), and PDF_initgraphics()) change the coordinate system
used for drawing subsequent objects. They do not affect existing objects on the page at
all.

C++ Java void translate(double tx, double ty)
Perl PHP PDF_translate(resource p, float tx, float ty)

C void PDF_translate(PDF *p, double tx, double ty)

Translate the origin of the coordinate system.

tx, ty The new origin of the coordinate system is the point (tx, ty), measured in the old
coordinate system.

Scope page, pattern, template, glyph

C++ Java void scale(double sx, double sy)
Perl PHP PDF_scale(resource p, float sx, float sy)

C void PDF_scale(PDF *p, double sx, double sy)

Scale the coordinate system.

sx, sy Scaling factors in x and y direction.

Details This function scales the coordinate system by sx and sy. It may also be used for achiev-
ing a reflection (mirroring) by using a negative scaling factor. One unit in the x direction
in the new coordinate system equals sx units in the x direction in the old coordinate sys-
tem; analogous for y coordinates.

Scope page, pattern, template, glyph

C++ Java void rotate(double phi)
Perl PHP PDF_rotate(resource p, float phi)

C void PDF_rotate(PDF *p, double phi)

Rotate the coordinate system.

phi The rotation angle in degrees.

Details Angles are measured counterclockwise from the positive x axis of the current coordi-
nate system. The new coordinate axes result from rotating the old coordinate axes by
phi degrees.

Scope page, pattern, template, glyph

5.3 Coordinate System Transformations 87

C++ Java void skew(double alpha, double beta)
Perl PHP PDF_skew(resource p, float alpha, float beta)

C void PDF_skew(PDF *p, double alpha, double beta)

Skew the coordinate system.

alpha, beta Skewing angles in x and y direction in degrees.

Details Skewing (or shearing) distorts the coordinate system by the given angles in x and y di-
rection. alpha is measured counterclockwise from the positive x axis of the current coor-
dinate system, beta is measured clockwise from the positive y axis. Both angles must be
in the range -360˚ < alpha, beta < 360˚, and must be different from -270˚, -90˚, 90˚, and
270˚.

Scope page, pattern, template, glyph

C++ Java void concat(double a, double b, double c, double d, double e, double f)
Perl PHP PDF_concat(resource p, float a, float b, float c, float d, float e, float f)

C void PDF_concat(PDF *p, double a, double b, double c, double d, double e, double f)

Apply a transformation matrix to the current coordinate system.

a, b, c, d, e, f Elements of a transformation matrix. The six values make up a matrix in
the same way as in PostScript and PDF (see references). In order to avoid degenerate
transformations, a*d must not be equal to b*c.

Details This function applies a matrix to the current coordinate system. It allows for the most
general form of transformations. Unless you are familiar with the use of transforma-
tion matrices, the use of PDF_translate(), PDF_scale(), PDF_rotate(), and PDF_skew() is
suggested instead of this function. The coordinate system is reset to the default coordi-
nate system (i.e. the current transformation matrix is the identity matrix [1, 0, 0, 1, 0, 0])
at the beginning of each page.

Scope page, pattern, template, glyph

C++ Java void setmatrix(double a, double b, double c, double d, double e, double f)
Perl PHP PDF_setmatrix(resource p, float a, float b, float c, float d, float e, float f)

C void PDF_setmatrix(PDF *p, double a, double b, double c, double d, double e, double f)

Explicitly set the current transformation matrix.

a, b, c, d, e, f See PDF_concat().

Details This function is similar to PDF_concat(). However, it disposes of the current transforma-
tion matrix, and completely replaces it with the new matrix.

Scope page, pattern, template, glyph

88 Chapter 5: Graphics Functions

5.4 Explicit Graphics States

C++ Java int create_gstate(String optlist)
Perl PHP int PDF_create_gstate(resource p, string optlist)

C int PDF_create_gstate(PDF *p, const char *optlist)

Create a graphics state object subject to various options.

optlist An option list containing options for graphics states according to Table 5.4. The
following options can be used:
alphaisshape, blendmode, flatness, linecap, linejoin, linewidth, miterlimit, opacityfill,
opacitystroke, overprintfill, overprintmode, overprintstroke, renderingintent, smoothness,
strokeadjust, textknockout

Returns A graphics state handle that can be used in subsequent calls to PDF_set_gstate() during
the enclosing document scope.

Details The option list may contain any number of graphics state parameters. Not all parame-
ters are allowed for all PDF versions. The table lists the minimum required PDF version.

Scope document, page, pattern, template, glyph

Table 5.4 Options for PDF_create_gstate()

key explanation and possible values

alphaisshape (Boolean; PDF 1.4) Sources of alpha are treated as shape (true) or opacity (false). Default:
false

blendmode (Keyword list; PDF 1.4; if used in PDF/A mode it must have the value Normal) Name of the blend
mode. Multiple blend modes can be specified. Possible values: Color, ColorDodge, ColorBurn,
Darken, Difference, Exclusion, HardLight, Hue, Lighten, Luminosity, Multiply, None, Normal,
Overlay, Saturation, Screen, SoftLight. Default: None

flatness (Float) Maximum distance between a path and its approximation (see PDF_setflat()), must
be > 0

linecap (Integer or keyword) Shape at the end of a path (see PDF_setlinecap()); must be 0, 1, or 2, or one
of the corresponding keywords butt, round, projecting

linejoin (Integer or keyword) Shape at the corners of paths (see PDF_setlinejoin()); must be 0, 1, or 2, or
one of the corresponding keywords miter, round, bevel

linewidth (Float) Line width (see PDF_setlinewidth()); must be > 0

miterlimit (Float) Controls the spike produced by miter joins, which must be >= 1 (see PDF_setmiterlimit())

opacityfill (Float; PDF 1.4; if used in PDF/A mode it must have the value 1) Constant alpha for fill operations;
must be >= 0 and <= 1.

opacitystroke (Float; PDF 1.4; if used in PDF/A mode it must have the value 1) Constant alpha for stroke opera-
tions; must be >=0 and <=1

overprintfill (Boolean) Overprint for operations other than stroke. Default: false

overprintmode (Integer) Overprint mode. 0 means that each color component replaces previously placed marks;
mode 1 (called »overprinting default is nonzero overprinting« in Acrobat) means that a color com-
ponent of 0 leaves the corresponding component unchanged. Default: 0

overprintstroke (Boolean) Overprint for stroke operations. Default: false

5.4 Explicit Graphics States 89

C++ Java void set_gstate(int gstate)
Perl PHP PDF_set_gstate(resource p, int gstate)

C void PDF_set_gstate(PDF *p, int gstate)

Activate a graphics state object.

gstate A handle for a graphics state object retrieved with PDF_create_gstate().

Details All options contained in the graphics state object will be set. Graphics state options ac-
cumulate when this function is called multiply. Options which are not explicitly set in
the graphics state object will keep their current values. All graphics state options will be
reset to their default values at the beginning of a page.

Scope page, pattern, template, glyph

renderingintent (Keyword) Color rendering intent used for gamut compression; possible keywords: Auto,
AbsoluteColorimetric, RelativeColorimetric, Saturation, Perceptual

smoothness (Float) Maximum error of a linear interpolation for a shading; must be >= 0 and <= 1

strokeadjust (Boolean) Whether or not to apply automatic stroke adjustment. Default: false

textknockout (Boolean; PDF 1.4) With respect to compositing, glyphs in a text object will be treated as separate
objects (false) or as a single object (true). Default: true

Table 5.4 Options for PDF_create_gstate()

key explanation and possible values

90 Chapter 5: Graphics Functions

5.5 Path Construction
Table 5.5 lists relevant value key names for this section (see Section 2.1, »Parameter Han-
dling«, page 13). The key names annot be used with PDF_set_value() since there are corre-
sponding API functions available for setting these values.

Note Make sure to call one of the functions in Section 5.6, »Path Painting and Clipping«, page 92, af-
ter using the functions in this section, or the constructed path will have no effect, and subse-
quent operations may raise an exception.

C++ Java void moveto(double x, double y)
Perl PHP PDF_moveto(resource p, float x, float y)

C void PDF_moveto(PDF *p, double x, double y)

Set the current point for graphics output.

x, y The coordinates of the new current point.

Details The current point is set to the default value of undefined at the beginning of each page.
The current points for graphics and the current text position are maintained separately.

Scope page, pattern, template, path, glyph; this function starts path scope.

Params currentx, currenty

C++ Java void lineto(double x, double y)
Perl PHP PDF_lineto(resource p, float x, float y)

C void PDF_lineto(PDF *p, double x, double y)

Draw a line from the current point to another point.

x, y The coordinates of the second endpoint of the line.

Details This function adds a straight line from the current point to (x, y) to the current path. The
current point must be set before using this function. The point (x, y) becomes the new
current point.

The line will be centered around the »ideal« line, i.e. half of the linewidth (as deter-
mined by the value of the linewidth parameter) will be painted on each side of the line
connecting both endpoints. The behavior at the endpoints is determined by the value of
the linecap parameter.

Scope path

Params currentx, currenty

Table 5.5 Keys for PDF_get_value()

key explanation

currentx
currenty

The x or y coordinate (in units of the current coordinate system), respectively, of the cur-
rent point. Scope: page, pattern, template, path

ctm_a
ctm_d

ctm_b
ctm_e

ctm_c
ctm_f

The components of the current transformation matrix (CTM) for vector graphics. Scope:
page, pattern, template, path

5.5 Path Construction 91

C++ Java void curveto(double x1, double y1, double x2, double y2, double x3, double y3)
Perl PHP PDF_curveto(resource p, float x1, float y1, float x2, float y2, float x3, float y3)

C void PDF_curveto(PDF *p, double x1, double y1, double x2, double y2, double x3, double y3)

Draw a Bézier curve from the current point, using three more control points.

x1, y1, x2, y2, x3, y3 The coordinates of three control points.

Details A Bézier curve is added to the current path from the current point to (x3, y3), using (x1, y1)
and (x2, y2) as control points. The current point must be set before using this function.
The endpoint of the curve becomes the new current point.

Scope path

Params currentx, currenty

C++ Java void circle(double x, double y, double r)
Perl PHP PDF_circle(resource p, float x, float y, float r)

C void PDF_circle(PDF *p, double x, double y, double r)

Draw a circle.

x, y The coordinates of the center of the circle.

r The radius of the circle.

Details This function adds a circle to the current path as a complete subpath. The point (x + r, y)
becomes the new current point. The resulting shape will be circular in user coordinates.
If the coordinate system has been scaled differently in x and y directions, the resulting
curve will be elliptical.

Scope page, pattern, template, path, glyph; this function starts path scope.

Params currentx, currenty

C++ Java void arc(double x, double y, double r, double alpha, double beta)
Perl PHP PDF_arc(resource p, float x, float y, float r, float alpha, float beta)

C void PDF_arc(PDF *p, double x, double y, double r, double alpha, double beta)

Draw a counterclockwise circular arc segment.

x, y The coordinates of the center of the circular arc segment.

r The radius of the circular arc segment. r must be nonnegative.

alpha, beta The start and end angles of the circular arc segment in degrees.

Details This function adds a counterclockwise circular arc segment to the current path, extend-
ing from alpha to beta degrees. For both PDF_arc() and PDF_arcn(), angles are measured
counterclockwise from the positive x axis of the current coordinate system. If there is a
current point an additional straight line is drawn from the current point to the starting
point of the arc. The endpoint of the arc becomes the new current point.

The arc segment will be circular in user coordinates. If the coordinate system has
been scaled differently in x and y directions the resulting curve will be elliptical.

92 Chapter 5: Graphics Functions

Scope page, pattern, template, path, glyph; this function starts path scope.

Params currentx, currenty

C++ Java void arcn(double x, double y, double r, double alpha, double beta)
Perl PHP PDF_arcn(resource p, float x, float y, float r, float alpha, float beta)

C void PDF_arcn(PDF *p, double x, double y, double r, double alpha, double beta)

Draw a clockwise circular arc segment.

Details Except for the drawing direction, this function behave exactly like PDF_arc(). In particu-
lar, the angles are still measured counterclockwise from the positive x axis.

C++ Java void rect(double x, double y, double width, double height)
Perl PHP PDF_rect(resource p, float x, float y, float width, float height)

C void PDF_rect(PDF *p, double x, double y, double width, double height)

Draw a rectangle.

x, y The coordinates of the lower left corner of the rectangle.

width, height The size of the rectangle.

Details This function adds a rectangle to the current path as a complete subpath. Setting the
current point is not required before using this function. The point (x, y) becomes the
new current point. The lines will be centered around the »ideal« line, i.e. half of the line-
width (as determined by the value of the linewidth parameter) will be painted on each
side of the line connecting the respective endpoints.

Scope page, pattern, template, path, glyph; this function starts path scope.

Params currentx, currenty

C++ Java void closepath()
Perl PHP PDF_closepath(resource p)

C void PDF_closepath(PDF *p)

Close the current path.

Details This function closes the current subpath, i.e. adds a line from the current point to the
starting point of the subpath.

Scope path

Params currentx, currenty

5.6 Path Painting and Clipping 93

5.6 Path Painting and Clipping
Table 5.6 lists relevant parameter key names for this section (see Section 2.1, »Parameter
Handling«, page 13).

Note Most functions in this section clear the path, and leave the current point undefined. Subse-
quent drawing operations must therefore explicitly set the current point (e.g. using PDF_
moveto()) after one of these functions has been called.

C++ Java void stroke()
Perl PHP PDF_stroke(resource p)

C void PDF_stroke(PDF *p)

Stroke the path with the current line width and current stroke color, and clear it.

Scope path; this function terminates path scope.

C++ Java void closepath_stroke()
Perl PHP PDF_closepath_stroke(resource p)

C void PDF_closepath_stroke(PDF *p)

Close the path, and stroke it.

Details This function closes the current subpath (adds a straight line segment from the current
point to the starting point of the path), and strokes the complete current path with the
current line width and the current stroke color.

Scope path; this function terminates path scope.

C++ Java void fill()
Perl PHP PDF_fill(resource p)

C void PDF_fill(PDF *p)

Fill the interior of the path with the current fill color.

Details This function fills the interior of the current path with the current fill color. The interior
of the path is determined by one of two algorithms (see the fillrule parameter). Open
paths are implicitly closed before being filled.

Scope path; this function terminates path scope.

Params fillrule

Table 5.6 Path-related keys for PDF_get/set_parameter()

key explanation

fillrule Set the current fill rule to winding or evenodd. The fill rule is used by PDF viewers to determine the interi-
or of shapes for the purpose of filling or clipping. Since both algorithms yield the same result for simple
shapes, most applications won’t have to change the fill rule. The fill rule is reset to the default of winding
at the beginning of each page. Scope: page, pattern, template, glyph

94 Chapter 5: Graphics Functions

C++ Java void fill_stroke()
Perl PHP PDF_fill_stroke(resource p)

C void PDF_fill_stroke(PDF *p)

Fill and stroke the path with the current fill and stroke color.

Scope path; this function terminates path scope.

Params fillrule

C++ Java void closepath_fill_stroke()
Perl PHP PDF_closepath_fill_stroke(resource p)

C void PDF_closepath_fill_stroke(PDF *p)

Close the path, fill, and stroke it.

Details This function closes the current subpath (adds a straight line segment from the current
point to the starting point of the path), and fills and strokes the complete current path.

Scope path; this function terminates path scope.

Params fillrule

C++ Java void clip()
Perl PHP PDF_clip(resource p)

C void PDF_clip(PDF *p)

Use the current path as clipping path, and terminate the path.

Details This function uses the intersection of the current path and the current clipping path as
the clipping path for subsequent operations. The clipping path is set to the default val-
ue of the page size at the beginning of each page. The clipping path is subject to PDF_
save()/PDF_restore(). It can only be enlarged by means of PDF_save()/PDF_restore().

Scope path; this function terminates path scope.

C++ Java void endpath()
Perl PHP PDF_endpath(resource p)

C void PDF_endpath(PDF *p)

End the current path without filling or stroking it.

Details This function doesn’t have any visible effect on the page. It generates an invisible path
on the page.

Scope path; this function terminates path scope.

5.7 Layers 95

5.7 Layers
Cookbook A full code sample can be found in the Cookbook topic graphics/starter_layer.

C++ Java int define_layer(String name, String optlist)
Perl PHP int PDF_define_layer(resource p, string name, string optlist)

C int PDF_define_layer(PDF *p, const char *name, int len, const char *optlist)

Create a new layer definition (requires PDF 1.5).

name (Hypertext string) The name of the layer.

len (C language binding only) Length of name (in bytes) for UTF-16 strings. If len = 0 a
null-terminated string must be provided.

optlist An option list specifying layer settings according to Table 5.7. The following op-
tions can be used:
creatorinfo, defaultstate, hypertextencoding, hypertextformat, initialexportstate, initial-
printstate, initialviewstate, intent, language, onpanel, pageelement, printsubtype,
removeunused, zoom

Returns A layer handle which can be used in calls to PDF_begin_layer() and PDF_set_layer_
dependency() until the end of the enclosing document scope.

Details PDFlib will issue a warning if a layer was defined but hasn’t been used in the document.
Layers which are used on multiple pages should be defined only once (e.g. before creat-
ing the first page). If PDF_define_layer() is called repeatedly on multiple pages, the layer
definitions will accumulate (even if they have the same name), which is usually not de-
sired.

Scope document, page

Table 5.7 Options for PDF_define_layer()

option explanation

creatorinfo (Option list) An option list describing the content and the creating application. Both of the following en-
tries are required if this option is used:
creator (Hypertext string) The name of the application which created the layer
subtype (String) The type of content. Suggested values are Artwork and Technical.

defaultstate (Boolean) Default: true

hypertext-
encoding

(Keyword) Specifies the encoding for the name parameter and the creator option. An empty string is
equivalent to unicode. Default: the global hypertextencoding parameter

hypertext-
format

(Keyword) Sets the format for the name parameter. Possible values are bytes, utf8, utf16, utf16le,
utf16be, and auto. Default: the value of the hypertextformat parameter

initial-
exportstate

(Boolean) Specifies the layer’s recommended export state. If true, Acrobat will include the layer when
converting/exporting to older PDF versions or other document formats. Default: true

initial-
printstate

(Boolean) The layer’s recommended printing state. If true, Acrobat will include the layer when printing
the document. Default: true

initial-
viewstate

(Boolean) The layer’s recommended viewing state. If true, Acrobat will display the layer when opening
the document. Default: true

http://www.pdflib.com/pdflib-cookbook/graphics/starter-layer

96 Chapter 5: Graphics Functions

C++ Java void set_layer_dependency(String type, String optlist)
Perl PHP PDF_set_layer_dependency(resource p, string type, string optlist)

C void PDF_set_layer_dependency(PDF *p, const char *type, const char *optlist)

Define hierarchical, group, and lock conditions among layers (requires PDF 1.5).

type The type of dependency, which must be one of the following:
> GroupAllOn: The layer specified in the depend option will be visible if all layers speci-

fied in the group option are visible. Options specific for this type: depend, group
> GroupAnyOn: The layers specified in the depend option will be visible if any layer

specified in the group option is visible. Options specific for this type: depend, group
> GroupAllOff: The layer specified in the depend option will be visible if all layers speci-

fied in the group option are invisible. Options specific for this type: depend, group
> GroupAnyOff: The layer specified in the depend option will be visible if any layer spec-

ified in the group option is invisible. Options specific for this type: depend, group
> Lock: (PDF 1.6) The layers specified in the group option will be locked, i.e. their state

cannot be changed interactively in Acrobat. Options specific for this type: group
> Parent: Specify a hierarchical relationship between the layer specified in the parent

option and the layers specified in the children option. A layer can not belong to more
than one parent layer. Options specific for this type: children, parent

> Radiobtn: Specify a radiobutton relationship between the layers specified in the
group option. This means that at most one layer in the group will be visible at a time,

intent (Keyword) Intended use of the graphics: View or Design. Default: View

language (Option list) Specifies the language of the layer:
lang (String; required) The language and possibly locale in the format described in Table 2.3 for the

lang option
preferred (Boolean) If true this layer is used if there is only a partial match between the layer and the

system language. Default: false

onpanel (Boolean) If false, the layer name will not be visible in Acrobat’s layer panel, and therefore cannot be
manipulated by the user. Default: true

pageelement (Keyword) Specifies that the layer contains a pagination artifact: one of HF (header/footer), FG (fore-
ground image or graphic), BG (background image or graphic), or L (logo).

printsubtype (Option list) Specifies whether the layer is intended for printing:
subtype (Keyword) One of Trapping, PrintersMarks, or Watermark specifying the kind of content in

the layer.
printstate (Boolean) If true, Acrobat will activate the layer contents upon printing.

removeunused (Boolean) If true and the layer is not used on a page, the layer will not be included in the page's layer list.
A layer is considered in use on a page if it has been supplied to PDF_begin_layer() at least once on that
page. Default: false

zoom (List of floats or percentages) One or two values specifying the layer’s visibility depending on the zoom
factor (1.0 means a zoom factor of 100 percent). If one value is provided, it will be used as the maximum
zoom factor at which the layer should be visible; if two values are provided they specify the minimum
and maximum zoom factor. The keyword maxzoom can be used to specify the largest possible zoom factor.

Table 5.7 Options for PDF_define_layer()

option explanation

5.7 Layers 97

which is particularly useful for multiple language layers.
Options specific for this type: group

> Title: The layer handle specified in the parent option does not control any page con-
tents directly, but serves as the parent layer node for the layers specified in the
children option. Options specific for this type: children, parent

optlist An option list specifying layer dependencies according to Table 5.8.

Scope document, page

C++ Java void begin_layer(int layer)
Perl PHP PDF_begin_layer(resource p, int layer)

C void PDF_begin_layer(PDF *p, int layer)

Start a layer for subsequent output on the page (requires PDF 1.5).

layer The layer’s handle, which must have been retrieved with PDF_define_layer().

Details All content placed on the page after this call, but before any subsequent call to PDF_
begin_layer() or PDF_end_layer() will be part of the specified layer. The content’s
visibility depends on the layer’s settings.

This function activates the specified layer, and deactivates any layer which may be
currently active.

Layers for annotations, images, templates, and form fields can be controlled with the
layer option of the respective functions.

Scope page

C++ Java void end_layer()
Perl PHP PDF_end_layer(resource p)

C void PDF_end_layer(PDF *p)

Deactivate all active layers (requires PDF 1.5).

Details Content placed on the page after this call will not belong to any layer. All layers must be
closed at the end of a page.

Table 5.8 Options for PDF_set_layer_dependency()

option explanation

children (List of layer handles; only for type=Parent and Title) One or more layer handles specifying the layers
subordinate to the provided parent layer.

depend (Layer handle; only for type=GroupAllOn, GroupAnyOn, GroupAllOff, and GroupAnyOff) The layer which
is controlled by the layers specified in the group option.

group (List of layer handles; only for type=GroupAllOn, GroupAnyOn, GroupAllOff, GroupAnyOff, Lock, and Ra-
diobtn) One or more layer handles comprising the group. For type=Lock all layers in the group will be
locked.

parent (Layer handle; only for type=Parent and Title) The layer which is the parent of the layers specified in
the children option.

98 Chapter 5: Graphics Functions

In order to switch from layer A to layer B a single call to PDF_begin_layer() is suffi-
cient; it is not required to explicitly call PDF_end_layer() to close layer A. PDF_end_layer()
is only required to create unconditional content (which is always visible), and to close
all layers at the end of a page.

Scope page

6.1 Setting Color and Color Space 97

6 Color Functions

6.1 Setting Color and Color Space
Cookbook A full code sample can be found in the Cookbook topic color/starter_color.

Table 6.1 lists relevant parameter key names for this section (see Section 2.1, »Parameter
Handling«, page 13).

Color spaces. PDFlib clients may specify the colors used for filling and stroking the in-
terior of paths and text characters. Colors may be specified in several color spaces (each
list item starts with the corresponding color space keyword for PDF_setcolor() and color
options):

> gray: Gray values between 0=black and 1=white;
> rgb: RGB triples, i.e. three values between 0 and 1 specifying the percentage of red,

green, and blue; (0, 0, 0)=black, (1, 1, 1)=white. The commonly used RGB color values in
the range 0–255 must be divided by 255 in order to scale them to the range 0–1 as re-
quired by PDFlib.

Cookbook A full code sample for using RGB color values can be found in the Cookbook topic
color/web_colornames.

> cmyk: Four CMYK values between 0 = no color and 1 = full color, representing cyan,
magenta, yellow, and black values; (0, 0, 0, 0)=white, (0, 0, 0, 1)=black. Note that this is
different from the RGB specification.

> iccbasedgray/rgb/cmyk: ICC-based colors are specified with the help of an ICC profile.
> spot: Spot color (separation color space): a predefined or arbitrarily named custom

color with an alternate representation in one of the other color spaces above; this is
generally used for preparing documents which are intended to be printed on an off-
set printing machine with one or more custom colors. The tint value (percentage)
ranges from 0 = no color to 1 = maximum intensity of the spot color.

> lab: Device-independent colors in the CIE L*a*b* color space are specified by a lumi-
nance value in the range 0-100 and two color values a and b in the range -127 to 128.
The a component contains the green-red axis, while the b component contains the
blue-yellow axis.

> pattern: tiling pattern with an object composed of arbitrary text, vector, or image
graphics.

Table 6.1 Color-related keys for PDF_get/set_parameter()

key explanation

preserveold-
pantonenames

If false, old-style Pantone spot color names will be converted to the corresponding new color
names, otherwise they will be preserved. Default: false. Scope: any

spotcolorlookup If false, PDFlib will not use its internal database of spot color names. This can be used to provide
custom definitions of known spot colors, which may be required as a workaround to match the
definitions used by other applications. This feature should be used with care, and is not recom-
mended. Default: true. Scope: any

http://www.pdflib.com/pdflib-cookbook/color/web-colornames
http://www.pdflib.com/pdflib-cookbook/color/starter-color

98 Chapter 6: Color Functions

> Shadings (smooth blends) provide a gradual transition between two colors, and are
based on another color space. Shadings can be created with PDF_shading().

> The indexed color space is a not really a color space on its own, but rather an efficient
coding of another color space. It will automatically be generated when an indexed
(palette-based) image is imported, but cannot be specified directly.

The default color for stroke and fill operations is black.

Color specification in option lists. See Section 1.2, »Option Lists«, page 6, for a descrip-
tion and examples of the color data type in option lists.

C++ Java void setcolor(String fstype, String colorspace, double c1, double c2, double c3, double c4)
Perl PHP PDF_setcolor(resource p, string fstype, string colorspace, float c1, float c2, float c3, float c4)

C void PDF_setcolor(PDF *p,
const char *fstype, const char *colorspace, double c1, double c2, double c3, double c4)

Set the current color space and color.

fstype One of fill, stroke, or fillstroke to specify that the color is set for filling, stroking,
or both.

colorspace One of gray, rgb, cmyk, spot, pattern, iccbasedgray, iccbasedrgb, iccbasedcmyk,
or lab to specify the color space.

PDF/X-1a: colorspace=rgb, iccbasedgray/rgb/cmyk, and lab are not allowed.
PDF/X-3: colorspace=gray requires that the defaultgray option in PDF_begin_page_

ext() has been set unless the PDF/X output intent is a grayscale or CMYK device.
colorspace= rgb requires that the defaultrgb option in PDF_begin_page_ext() has been set
unless the PDF/X output intent is an RGB device. colorspace=cmyk requires that the
defaultcmyk option in PDF_begin_page_ext() has been set unless the PDF/X output intent
is a CMYK device. Using iccbasedgray/rgb/cmyk and lab color requires an ICC profile in
the output intent (a standard name is not sufficient in this case).

PDF/A: colorspace=gray requires that an output intent (any type) has been specified.
colorspace=rgb or cmyk requires that an RGB or CMYK output intent has been specified,
respectively.

c1, c2, c3, c4 Color components for the chosen color space. The interpretation of these
values depends on the colorspace parameter:

> gray: c1 specifies a gray value;
> rgb: c1, c2, c3 specify red, green, and blue values.
> cmyk: c1, c2, c3, c4 specify cyan, magenta, yellow, and black values;
> iccbasedgray: c1 specifies a gray value;
> iccbasedrgb: c1, c2, c3 specify red, green, and blue values;
> iccbasedcmyk: c1, c2, c3, c4 specify cyan, magenta, yellow, and black values;
> spot: c1 specifies a spot color handle returned by PDF_makespotcolor(), and c2 specifies

a tint value between 0 and 1;
> lab: c1, c2, and c3 specify color values in the CIE L*a*b* color space, interpreted with

the D50 illuminant. c1 specifies the L* (luminance) in the range 0 to 100, and c2, c3
specify the a*, b* (chrominance) values in the range -127 to 128.

> pattern: c1 specifies a pattern handle returned by PDF_begin_pattern() or PDF_
shading_pattern(). The current fill or stroke color will be applied when the pattern is

6.1 Setting Color and Color Space 99

used for filling or stroking. The current color space must not be another pattern col-
or space.

Details All color values for the gray, rgb, and cmyk color spaces and the tint value for the spot col-
or space must be numbers in the inclusive range 0–1. Unused parameters should be set
to 0.

The fill and stroke color values for the gray, rgb, and cmyk color spaces are set to a de-
fault value of black at the beginning of each page. There are no defaults for spot and pat-
tern colors.

If the iccbasedgray/rgb/cmyk color spaces are used, a suitable ICC profile must have
been set before using the setcolor:iccprofilegray/rgb/cmyk parameters (see Table 6.3).

Scope page, pattern (only if the pattern’s paint type is 1), template, glyph (only if the Type 3
font’s colorized option is true), document; a pattern color can not be used within its own
definition. Setting the color in document scope may be useful for defining spot colors
with PDF_makespotcolor().

Params setcolor:iccprofilegray/rgb/cmyk

C++ Java int makespotcolor(String spotname)
Perl PHP int PDF_makespotcolor(resource p, String spotname)

C int PDF_makespotcolor(PDF *p, const char *spotname, int reserved)

Find a built-in spot color name, or make a named spot color from the current fill color.

spotname The name of a built-in spot color, or an arbitrary name for the spot color to
be defined. This name is restricted to a maximum length of 126 bytes. Only 8-bit charac-
ters are supported in the spot color name; Unicode or embedded null characters are not
supported. PANTONE® colors are not supported in PDF/X-1a mode.

The special spot color name All can be used to apply color to all color separations,
which is useful for painting registration marks. A spot color name of None will produce
no visible output on any color separation.

reserved (C language binding only) Reserved, must be 0.

Returns A color handle which can be used in subsequent calls to PDF_setcolor() throughout the
document. Spot color handles can be reused across all pages, but not across documents.
There is no limit for the number of spot colors in a document.

Details If spotname is known in the internal color tables and the spotcolorlookup parameter is
true (which is default), the supplied spot color name will be used. Otherwise the (CMYK
or other) color values of the current fill color will be used to define the appearance of a
new spot color. These alternate values will only be used for screen preview and low-end
printing. The supplied spot color name will be used for producing color separations in-
stead of the alternate values.

If spotname has already been used in a previous call to PDF_makespotcolor(), the re-
turn value will be the same as in the earlier call, and will not reflect the current color.

Scope page, pattern, template, glyph (only if the Type 3 font’s colorized option is true), document;
the current fill color must not be a spot color or pattern if a custom color is to be de-
fined.

Params spotcolorlookup, preserveoldpantonenames

100 Chapter 6: Color Functions

6.2 ICC Profiles

C++ Java int load_iccprofile(String profilename, String optlist)
Perl PHP int PDF_load_iccprofile(resource p, string profilename, string optlist)

C int PDF_load_iccprofile(PDF *p, const char *profilename, int len, const char *optlist)

Search for an ICC profile and prepare it for later use.

profilename (Name string) The name of an ICCProfile resource, a disk-based or virtual
file name, or one of the standard output condition names for PDF/X listed in Table 6.5.
The latter is only allowed if the usage option is set to outputintent. Additional standard
output intents can be defined with the StandardOutputIntent resource.

len (C language binding only) Length of profilename (in bytes) for UTF-16 strings. If
len = 0 a null-terminated string must be provided.

optlist An option list describing aspects of the profile handling according to Table 6.2.
The following options can be used: description, embedprofile, errorpolicy, metadata, usage

Returns A profile handle which can be used in subsequent calls to PDF_load_image() or for set-
ting profile-related parameters. If errorpolicy=return the caller must check for a return
value of -1 (in PHP: 0) since it signals an error. The returned profile handle can not be re-
used across multiple PDF documents. Also, the returned handle can not be applied to an
image if the usage option is outputintent. There is no limit to the number of ICC profiles
in a document. If the function call fails you can request the reason of the failure with
PDF_get_errmsg().

Details If the usage option is iccbased the named profile will be searched according to the profile
search strategy. If the profile is found, it will be checked whether it is suitable (e.g. num-
ber of color components). The sRGB profile is always available internally, and must not
be configured.

Table 6.2 Options for PDF_load_iccprofile()

key explanation and possible values

description (String) This option is only used if usage=outputintent. It contains the human-readable description of
the ICC profile which will be used along with the PDF/X output intent. Default: if profilename refers to a
standard output intent, the description will be taken from an internal list; otherwise there will be no de-
scription.

embedprofile (Boolean) This option is only used if usage=outputintent. Force an embedded ICC profile even if a stan-
dard output intent for PDF/X has been provided as profilename. Default: false

errorpolicy (Keyword) Controls the behavior in case of an error (see Section 2.6, »Exception Handling«, page 29)

metadata (Option list; PDF 1.4) Supply metadata for the profile (see Section 12.2, »XMP Metadata«, page 159)

usage (Keyword) Describes the intended use of the ICC profile. Supported keywords (default: iccbased):
iccbased The ICC profile will be used to define an ICC-based color space for text or graphics, or will be

applied to an image.
outputintent

The ICC profile will be used to define an output intent (mostly for PDF/X or PDF/A)

6.2 ICC Profiles 101

If the usage option is outputintent the named profile is first searched in an internal
list of standard output intents. If this search was unsuccessful, the name will be
searched in the list of user-configured output intents. If the supplied name was found
to be a standard output intent according to the built-in or user-configured list, no ICC
profile will be searched, and the name supplied with the description option will be em-
bedded in the PDF output as the output intent. If the name was not found to be a stan-
dard output intent identifier, it is treated as a profile name and the corresponding ICC
profile will be embedded in the PDF as output intent.

PDF/X: the output intent must be set either using this function or by copying an im-
ported document’s output intent using PDF_process_pdi().

PDF/A: the output intent can be set using this function or by copying an imported
document’s output intent using PDF_process_pdi(). However, if only device-indepen-
dent colors are used in the document no output intent is required. ICC profiles must
comply to ICC specification ICC.1:1998-09 and its addendum ICC.1A:1999-04 (internal
profile version up to 2.x).

Scope document; the output intent should be set immediately after PDF_begin_document(). If
usage=iccbased the following scopes are also allowed: page, pattern, template, glyph.

Params See Table 6.3 and Table 6.4

Table 6.3 Keys for PDF_get/set_parameter() (see Section 2.1, »Parameter Handling«, page 13)

key explanation

ICCProfile
StandardOutputIntent

The corresponding resource file line as it would appear for the respective category in a UPR file.
Multiple calls add new entries to the internal list (see also resourcefile in Table 2.1). Scope: any

iccwarning Deprecated, use errorpolicy

Table 6.4 Keys for PDF_get/set_value() (see Section 2.1, »Parameter Handling«, page 13)

key explanation

icccomponents Number of color components in the ICC profile referenced by the handle provided in the modifier

setcolor:icc-
profilegray

ICC profile which specifies a Gray color space for use with PDF_setcolor(). Scope: document, page,
pattern, template, glyph

setcolor:icc-
profilergb

ICC profile which specifies an RGB color space for use with PDF_setcolor(). Scope: document, page,
pattern, template, glyph

setcolor:icc-
profilecmyk

ICC profile which specifies a CMYK color space for use with PDF_setcolor(). Scope: document, page,
pattern, template, glyph

102 Chapter 6: Color Functions

Table 6.5 Standard output intents for PDF/X (see www.color.org for more information)

Name Printing process

CGATS TR 001 SWOP (Publication) printing in USA: ANSI CGATS.6.

FOGRA27 ISO/DIS 12647-2:2004, Offset commercial and specialty printing according to ISO 12647-2, positive plates,
paper type 1 or 2 (gloss or matte coated offset, 115 g/m2), screen frequency 60/cm.

FOGRA28 ISO/DIS 12647-2:2004, Offset commercial and specialty printing according to ISO 12647-2, positive plates,
paper type 3 (coated web, 60 g/m2), screen frequency 60/cm.

FOGRA29 ISO/DIS 12647-2:2004, Offset commercial and specialty printing according to ISO 12647-2, positive plates,
paper type 4 (uncoated white offset, 120 g/m2), screen frequency 60/cm.

FOGRA30 ISO/DIS 12647-2:2004, Offset commercial and specialty printing according to ISO 12647-2, positive plates,
paper type 5 (uncoated, slightly yellowish, offset, 115 g/m2), screen frequency 60/cm.

FOGRA31 ISO/DIS 12647-2:2003, Continuous forms printing according to ISO 12647-2, positive plates, paper type 2
(matt coated offset, 115 g/m2), screen frequency 60/cm.

FOGRA32 ISO/DIS 12647-2:2004, Continuous forms printing according to ISO 12647-2, positive plates, paper type 4
(white uncoated offset, 80 g/m2), screen frequency 60/cm.

FOGRA33 ISO/DIS 12647-2:2004, Continuous forms printing according to ISO 12647-2, positive plates, paper type 2
(matte coated offset, 115 g/m2), screen frequency 54/cm.

FOGRA34 ISO/DIS 12647-2:2004, Continuous forms printing according to ISO 12647-2, positive plates, paper type 4
(white uncoated offset, 120 g/m2), screen frequency 60/cm.

FOGRA35 ISO/DIS 12647-2:2004, Continuous forms printing according to ISO 12647-2, negative plates, paper type 2
(matte coated offset, 115 g/m2), screen frequency 54/cm.

FOGRA36 ISO/DIS 12647-2:2004, Continuous forms printing according to ISO 12647-2, negative plates, paper type 4
(white uncoated offset, 120 g/m2), screen frequency 54/cm.

FOGRA37 ISO/DIS 12647-2:2004, Continuous forms printing according to ISO 12647-2, negative plates, paper type 2
(matte coated offset, 115 g/m2), screen frequency 60/cm.

FOGRA38 ISO/DIS 12647-2:2004, Continuous forms printing according to ISO 12647-2, negative plates, paper type 4
(white uncoated offset, 120 g/m2), screen frequency 60/cm.

IFRA26 ISO/DIS 12647-3:2004, Coldset offset printing, contact exposed negative acting plates or computer to
plate (tone value increase of 26%), newsprint, screen ruling 40 lines per cm.

IFRA30 ISO/DIS 12647-3:2004, Coldset offset printing, contact exposed negative acting plates or computer to
plate (tone value increase of 30%), newsprint, screen ruling 40 lines per cm. (Principally applicable to the
USA).

JC200103 Japan Color 2001 Coated: ISO 12647-2:2004, sheet-fed offset printing, positive plates, paper type 3, (coat-
ed, 105 g/m2), screen frequency 69/cm.

JC200104 Japan Color 2001 Uncoated: ISO 12647-2:2004, sheet-fed offset printing, positive plates, paper type 4,
(uncoated, 105 g/m2), screen frequency 69/cm.

JCN2002 Japan Color 2002 for Newspaper Printing: ISO/DIS 12647-3:2004, coldset offset printing, negative plates,
newsprint, screen frequency 39/cm.

JCW2003 Japan Color 2003 for Web Offset: ISO 12647-2:2004, heat-set web offset printing, positive plates, paper
type 3, (coated, 70 g/m2), screen frequency 69/cm.

The following standard output intents are deprecated, and should not be used although they are still available:
FOGRA11-FOGRA26,
IFRA 22, IFRA 28,
OF COM PO P1 F60, OF COM PO P2 F60, OF COM PO-P3 F60, OF COM PO P4 F60, OF COM NE P1 F60, OF COM NE P2 F60,
OF COM NE P3 F60, OF COM NE P4 F60, SC GC2 CO F30, Ifra_NP_40lcm_neg+CTP_05.00

http://www.color.org

6.3 Patterns and Shadings 103

6.3 Patterns and Shadings

C++ Java int begin_pattern(double width, double height, double xstep, double ystep, int painttype)
Perl PHP int PDF_begin_pattern(resource p, float width, float height, float xstep, float ystep, int painttype)

C int PDF_begin_pattern(PDF *p,
double width, double height, double xstep, double ystep, int painttype)

Start a pattern definition.

width, height The dimensions of the pattern’s bounding box in points.

xstep, ystep The offsets when repeatedly placing the pattern to stroke or fill some ob-
ject. Most applications will set these to the pattern width and height, respectively.

painttype This parameter indicates whether the pattern contains color specifications
on its own, or is used as a stencil which will be colorized with the current fill or stroke
color when the pattern is used for filling or stroking:

> painttype=1 must be used if the pattern is colorized with one or more calls to PDF_
setcolor(), or places images or imported PDF pages.

> painttype=2 must be used if the pattern does not contain any color specification. In-
stead, the current fill or stroke color will be applied when the pattern is used for fill-
ing or stroking. Image masks may be used for painttype=2. Before using the pattern,
PDF_setcolor() must be called to set the current color with a color space which is not
itself based on another pattern.

Undesired behavior may result if the wrong value of painttype is supplied.

Returns A pattern handle that can be used in subsequent calls to PDF_setcolor() during the en-
closing document scope.

Details This function will reset all text, graphics, and color state parameters to their defaults,
and establish a coordinate system according to the global topdown parameter. Hyper-
text functions and functions for opening images must not be used during a pattern def-
inition, but all text, graphics, and color functions (with the exception of the pattern
which is in the process of being defined) can be used.

Scope document, page; this function starts pattern scope, and must always be paired with a
matching PDF_end_pattern() call.

Params topdown

C++ Java void end_pattern()
Perl PHP PDF_end_pattern(resource p)

C void PDF_end_pattern(PDF *p)

Finish a pattern definition.

Scope pattern; this function terminates pattern scope, and must always be paired with a
matching PDF_begin_pattern() call.

104 Chapter 6: Color Functions

C++ Java int shading_pattern(int shading, String optlist)
Perl PHP int PDF_shading_pattern(resource p, int shading, string optlist)

C int PDF_shading_pattern(PDF *p, int shading, const char *optlist)

Define a shading pattern using a shading object (requires PDF 1.4).

shading A shading handle returned by PDF_shading().

optlist An option list describing aspects of the shading pattern according to Table 6.6.
The following option can be used: gstate

Returns A pattern handle that can be used in subsequent calls to PDF_setcolor() during the en-
closing document scope.

Details This function can be used to fill arbitrary objects with a shading. To do so, a shading
handle must be retrieved using PDF_shading(), then a pattern must be defined based on
this shading using PDF_shading_pattern(). Finally, the pattern handle can be supplied to
PDF_setcolor() to set the current color to the shading pattern.

Scope document, page, font

C++ Java void shfill(int shading)
Perl PHP PDF_shfill(resource p, int shading)

C void PDF_shfill(PDF *p, int shading)

Fill an area with a shading, based on a shading object (requires PDF 1.4).

shading A shading handle returned by PDF_shading().

Details This function allows shadings to be used without involving PDF_shading_pattern() and
PDF_setcolor(). However, it works only for simple shapes where the geometry of the ob-
ject to be filled is the same as that of the shading itself. Since the current clip area will be
shaded (subject to the extend0 and extend1 options of the shading) this function will
generally be used in combination with PDF_clip().

Scope page, pattern (only if the pattern’s paint type is 1), template, glyph (only if the Type 3
font’s colorized option is true), document

Table 6.6 Options for PDF_shading_pattern()

key explanation and possible values

gstate (Handle) A graphics state handle

6.3 Patterns and Shadings 105

C++ Java int shading(String shtype, double x0, double y0, double x1, double y1,
double c1, double c2, double c3, double c4, String optlist)

Perl PHP int PDF_shading(resource p, string shtype, float x0, float y0, float x1, float y1,
float c1, float c2, float c3, float c4, string optlist)

C int PDF_shading(PDF *p, const char *shtype, double x0, double y0, double x1, double y1,
double c1, double c2, double c3, double c4, const char *optlist)

Define a blend from the current fill color to another color (requires PDF 1.4 or above).

shtype The type of the shading; must be axial for linear shadings or radial for circle-like
shadings.

x0, y0, x1, y1 For axial shadings, (x0, y0) and (x1, y1) are the coordinates of the starting
and ending points of the shading. For radial shadings these points specify the centers of
the starting and ending circles.

c1, c2, c3, c4 Color values of the shading’s endpoint, interpreted in the current fill color
space in the same way as the color parameters in PDF_setcolor(). If the current fill color
space is a spot color space c1 will be ignored, and c2 contains the tint value.

optlist An option list describing aspects of the shading according to Table 6.7. The fol-
lowing options can be used: antialias, extend0, extend1, N, r0, r1

Returns A shading handle that can be used in subsequent calls to PDF_shading_pattern() and
PDF_shfill() during the enclosing document scope.

Details The current fill color will be used as the starting color; it must not be based on a pattern.

Scope document, page, font

Table 6.7 Options for PDF_shading()

key explanation and possible values

antialias (Boolean) Specifies whether to activate antialiasing for the shading. Default: false

extend0 (Boolean) Specifies whether to extend the shading beyond the starting point. Default: false

extend1 (Boolean) Specifies whether to extend the shading beyond the endpoint. Default: false

N (Float) Exponent for the color transition function; must be > 0. Default: 1

r0 (Float; only for radial shadings, and required in this case) Radius of the starting circle

r1 (Float; only for radial shadings, and required in this case) Radius of the ending circle

106 Chapter 6: Color Functions

107

7 Image and Template Functions
Table 7.1 and Table 7.2 list relevant parameter and value key names for this section (see
Section 2.1, »Parameter Handling«, page 13).

Table 7.1 Image-related keys for PDF_get/set_parameter()

key explanation

honoriccprofile Read ICC color profiles embedded in images, and apply them to the image data. Default: true

imagewarning Deprecated, use errorpolicy

renderingintent The rendering intent for images. Default: Auto.
Auto Do not specify any rendering intent in the PDF file, but use the device’s default intent

instead. Typical use: unknown cases
AbsoluteColorimetric

No correction for the device’s white point (such as paper white) is made. Colors which
are out of gamut are mapped to nearest value within the device’s gamut. Typical use:
exact reproduction of solid colors; not recommended for other uses

RelativeColorimetric
The color data is scaled into the device’s gamut, mapping the white points onto one
another while slightly shifting colors. Typical use: vector graphics

Saturation Saturation of the colors will be preserved while the color values may be shifted.
Typical use: business graphics

Perceptual Color relationships are preserved by modifying both in-gamut and out-of-gamut
colors in order to provide a pleasing appearance. Typical use: scanned images

Table 7.2 Image-related keys for PDF_get/set_value()

key explanation

imagewidth1

imageheight1

1. Only for PDF_get_value()

Get the width or height, respectively, of an image in pixels. The modifier is the integer handle of
the selected image. Scope: page, pattern, template, glyph, document, path

image:iccprofile1 Return a handle for the ICC profile embedded in the image referenced by the image handle pro-
vided in the modifier.

orientation1 Get the orientation value of an image. The modifier is the integer handle of the selected image.
For TIFF images containing an orientation tag the value of this tag will be returned; in all other
cases 1 will be returned. PDFlib will automatically compensate orientation values different from 1.
Scope: page, pattern, template, glyph, document, path

resx1

resy1
Get the horizontal or vertical resolution of an image, respectively. The modifier is the integer han-
dle of the selected image.
If the value is positive, the return value is the image resolution in pixels per inch (dpi). If the return
value is negative, resx and resy can be used to find the aspect ratio of non-square pixels, but
don’t have any absolute meaning. If the return value is zero, the resolution of the image is un-
known. Scope: page, pattern, template, glyph, document, path

108 Chapter 7: Image and Template Functions

7.1 Images
Cookbook A full code sample can be found in the Cookbook topic images/starter_image.

C++ Java int load_image(String imagetype, String filename, String optlist)
Perl PHP int PDF_load_image(resource p, string imagetype, string filename, string optlist)

C int PDF_load_image(PDF *p,
const char *imagetype, const char *filename, int len, const char *optlist)

Open a disk-based or virtual image file subject to various options.

imagetype The string auto instructs PDFlib to automatically detect the image file type
(this is not possible for CCITT and raw images). Explicitly specifying the image format
with one of the strings bmp, ccitt, gif, jpeg, jpeg2000, png, raw, or tiff offers slight perfor-
mance advantages. Type jpeg2000 requires PDF 1.5 or above, and is not allowed in PDF/A
or PDF/X mode. Type ccitt is different from a TIFF file which contains CCITT-compressed
image data.

filename (Name string) Generally the name of the image file to be opened. This must
be the name of a disk-based or virtual file; PDFlib will not pull image data from URLs.

If a file with the specified file name cannot be found and imagetype=auto PDFlib will
try to determine the appropriate file name suffix automatically; it will append all suf-
fixes from the following list (in both lowercase and uppercase) to the specified filename
and try to locate a file with that name in the directories specified in the searchpath:

.bmp, .ccitt, .g3, .g4, .fax, .gif, .jpg .jpeg, .jpx, .jp2, .jpf, .jpm, .j2k, .png, .raw, .tif, .tiff

len (C language binding only) Length of filename (in bytes) for UTF-16 strings. If len = 0
a null-terminated string must be provided.

optlist An option list specifying image-related properties according to Table 7.3. The
following options can be used:

> Color-related options: colorize, honoriccprofile, iccprofile, invert, renderingintent
> Clipping and masking options: clippingpathname, honorclippingpath, ignoremask,

mask, masked
> Special PDF features for using the image: iconname, template
> Options for raw and CCITT images: bitreverse, bpc, components, height, K, width
> Options for processing the image data: ignoreorientation, inline, page, passthrough
> Other options: hypertextencoding, errorpolicy, interpolate, layer, metadata, OPI-1.3, OPI-

2.0

Returns An image handle which can be used in subsequent image-related calls. If
errorpolicy=return the caller must check for a return value of -1 (in PHP: 0) since it signals
an error. The returned image handle can not be reused across multiple PDF documents.
If the function call fails you can request the reason of the failure with PDF_get_errmsg().

Details This function opens and analyzes a raster graphics file in one of the supported formats
as determined by the imagetype parameter, and copies the relevant image data to the
output document. This function will not have any visible effect on the output. In order
to actually place the imported image somewhere in the generated output document,
PDF_fit_image() must be used. Opening the same image more than once per generated

http://www.pdflib.com/pdflib-cookbook/images/starter-image

7.1 Images 109

document is not recommended because the actual image data will be copied to the out-
put document more than once.

PDFlib will open the image file with the provided filename, process the contents, and
close the file before returning from this call. Although images can be placed multiply
within a document (see PDF_fit_image()), the actual image file will not be kept open af-
ter this call.

If imagetype=raw or ccitt, the width, height, components, and bpc options must be sup-
plied since PDFlib cannot deduce those from the image data. The user is responsible for
supplying option values which actually match the image. Otherwise corrupt PDF out-
put may be generated, and Acrobat may respond with the message Insufficient data for
an Image.

If imagetype=raw, the length of the supplied image data must be equal to [width x
components x bpc / 8] x height bytes, with the bracketed term adjusted upwards to the
next integer. The image samples are expected in the standard PostScript/PDF ordering,
i.e. top to bottom and left to right (assuming no coordinate transformations have been
applied). 16-bit samples must be provided with the most significant byte first (big-endi-
an or »Mac« byte order). The polarity of the pixel values is as discussed in Section , »Col-
or spaces«, page 97. If bpc is smaller than 8, each pixel row begins on a byte boundary,
and color values must be packed from left to right within a byte. Image samples are al-
ways interleaved, i.e. all color values for the first pixel are supplied first, followed by all
color values for the second pixel, and so on.

PDF/X-1a: RGB images are not allowed.
PDF/X-3: Grayscale images require that the defaultgray option in PDF_begin_page_

ext() must have been set unless the PDF/X output intent is a grayscale or CMYK device.
RGB images require that the defaultrgb option in PDF_begin_page_ext() must have been
set unless the PDF/X output intent is an RGB device. CMYK images require that the
defaultcmyk option in PDF_begin_page_ext() must have been set unless the PDF/X out-
put intent is a CMYK device.

PDF/A: Grayscale images require that an output intent has been specified. RGB or
CMYK images require that an RGB or CMYK output intent has been specified, respec-
tively.

Scope If the inline option is not provided, the scope is document, page, font, and this function
must always be paired with a matching PDF_close_image() call. Loading images in
document or font scope instead of page scope offers slight output size advantages.
If the inline option is provided, the scope is page, pattern, template, glyph, and PDF_close_
image() must not be called.

Params See Table 7.1 and Table 7.2

Table 7.3 Options for PDF_load_image()

key explanation

bitreverse (Boolean; only for imagetype=ccitt) If true, do a bitwise reversal of all bytes in the compressed data.
Default: false

bpc (Integer; only for imagetype=raw; required in this case) Number of bits per component; must be 1, 2, 4, or
8. In PDF 1.5, bpc=16 is also allowed.

110 Chapter 7: Image and Template Functions

clipping-
pathname

(String; only for imagetype=tiff and jpeg; will be ignored if honorclippingpath=false) Read the path
with the specified name from the image file and use it as clipping path. The named path must be present
in the image file. The special name Work Path can be used to address a temporary path created in Photo-
shop. Default: name of the path which is provided as clipping path in the image file

colorize (Spot color handle; will be ignored if the iccprofile option is provided; not for imagetype=jpeg2000)
Colorize the image with a spot color handle, which must have been retrieved with PDF_makespotcolor().
The image must be a black and white or grayscale image.

components (Integer; only for imagetype=raw; required in this case) Number of image components (channels); must
be 1, 3, or 4.

errorpolicy (Keyword) Controls the behavior in case of an error (see Section 2.6, »Exception Handling«, page 29)

height (Integer; only for imagetype=raw and ccitt; required in this case) Image height in pixels.

honor-
clippingpath

 (Boolean; only for imagetype=tiff and jpeg) Read the clipping path from the image file if available,
and apply it to the image. Default: true

honor-
iccprofile

(Boolean; only for imagetype=jpeg, png, and tiff; will be set to false if the colorize option is provided)
Read an embedded ICC profile (if any) and apply it to the image. Default: the value of the honoricc-
profile parameter.

hypertext-
encoding

(Keyword) Specifies the encoding for the iconname option. An empty string is equivalent to unicode. De-
fault: value of the global hypertextencoding parameter.

iccprofile (ICC handle; only for imagetype=jpeg, png, and tiff) Handle of an ICC profile which will be applied to
the image. Default: an embedded profile if one is present in the image and honoriccprofile=true.

iconname (Hypertext string; will be ignored if inline=true; forces template=true) Attaches a name to the image
so that it can be referenced via JavaScript, e.g. to use the image as an icon for form fields.

ignoremask (Boolean) Ignores transparency information in the image. Default: false

ignore-
orientation

(Boolean; only for imagetype=tiff) Ignores any orientation tag in the image. This may be useful for
compensating wrong orientation information. Default: false

imagewarning Deprecated, use errorpolicy

inline (Boolean; only for imagetype=ccitt, jpeg, and raw; only recommended when loading bitmap glyphs for
Type 3 fonts) If true, the image will be written directly into the content stream of the page, pattern, tem-
plate, or glyph description (only recommended for the glyphs of Type 3 fonts).

interpolate (Boolean; must be false for PDF/A) Enables image interpolation to improve the appearance on screen
and paper. This is useful for bitmap images for glyph descriptions in Type 3 fonts. Default: false

invert (Boolean; not for imagetype=jpeg2000 unless mask=true) Inverts the image (swap light and dark colors).
This can be used as a workaround for images which are interpreted differently by applications. Default:
false

K (Integer; only for imagetype=ccitt) CCITT parameter for compression scheme selection. Default: 0
-1 G4 compression
0 One-dimensional G3 compression (G3-1D)
1 Mixed one- and two-dimensional compression (G3, 2-D)

layer (Layer handle; PDF 1.5) Layer to which the image will belong. The image will only be visible if the corre-
sponding layer is visible. Note that the image will be tied to the layer. Use PDF_begin_layer() before
placing the image if you need different placements of the same image to belong to different layers.

Table 7.3 Options for PDF_load_image()

key explanation

7.1 Images 111

mask (Boolean; only for images with one color component, including indexed color). The image is going to be
used as a mask. This is required for 1-bit masks, but optional for masks with more than 1 bit per pixel.
However, masks with more than 1 bit require PDF 1.4. Default: false. There are two uses for masks:
> Masking another image: The returned image handle may be used in subsequent calls for opening an-

other image and can be supplied for the masked option.
> Placing a colorized transparent image: Treat the 0-bit pixels in the image as transparent, and colorize

the 1-bit pixels with the current fill color.

masked (Image handle) Image handle for an image which will be applied as a mask to the current image. The im-
age handle has been returned by a previous call to PDF_load_image() and has not yet been closed. In
PDF 1.3 compatibility mode the mask handle must refer to a 1-bit image and must have been loaded with
the mask option. In PDF/A and PDF/X mode this option is only allowed with 1-bit masks.

metadata (Option list; PDF 1.4) Supply metadata for the image (see Section 12.2, »XMP Metadata«, page 159).

OPI-1.3 (Option list; not for PDF/A and PDF/X) An option list containing OPI 1.3 PostScript comments as option
names; the following entries are required: ALDImageFilename (string1), ALDImageDimensions (list of inte-
gers), ALDImageCropRect (rectangle with integers), ALDImagePosition (list of floats)
The following entries are optional:
ALDImageID (string), ALDObjectComments (string), ALDImageCropFixed (rectangle), ALDImageResolution
(list of floats), ALDImageColorType (keyword; one of Process, Spot, Separation; default: Spot),
ALDImageColor (list of four color values in the range 0...1 and a color name), ALDImageTint (float),
ALDImageOverprint (boolean), ALDImageType (list of integers), ALDImageGrayMap (list of integers),
ALDImageTransparency (boolean), ALDImageAsciiTag (list of integer/string pairs)
The suboption normalizefilename controls the handling of file names: if true, file names will be nor-
malized as mandated by the PDF reference. If false they will be copied to the output without any modi-
fication. The latter can be useful to deal with some OPI servers which do not properly process normalized
file names. Default: false

OPI-2.0 (Option list; not for PDF/A and PDF/X) An option list containing OPI 2.0 PostScript comments as option
names; the following entry is required: ImageFilename (string1)
The following entries should either both be present or absent:
ImageCropRect (rectangle), ImageDimensions (list of floats)
The following entries are optional:
MainImage (string), TIFFASCIITag (list of integer/string pairs), ImageOverprint (boolean), ImageInks
(the string full_color, the string registration, or a list containing the string monochrome and string/
float pairs for each colorant name and tint), IncludedImageDimensions (list of integers), Included-
ImageQuality (integer with one of the values 1, 2, or 3)
The option normalizefilename is also supported (see OPI-1.3).

page (Integer; only for imagetype=gif or tiff; must be 1 if used with other formats) Extract the image with
the given number from a multi-page image file. The first image has the number 1. Default: 1

passthrough (Boolean; only for imagetype=tiff or jpeg) Controls handling of TIFF and JPEG image data.
tiff (Default: true) If true, compressed TIFF image data will be directly passed through to the PDF

output if possible. Setting this option to false may help in cases where a TIFF image contains
damaged or incomplete data.

jpeg (Default: false) If false, PDFlib will transcode JPEG image data in order to clean up the data
for compatibility with Acrobat. If true, JPEG image data will be directly copied to the PDF
output. This option will be ignored for multiscan and certain CMYK JPEG images. Setting this
option to true may speed up processing, but certain rare JPEG flavors won’t display correctly
in Acrobat.

rendering-
intent

(Keyword) Rendering intent for the image. See Table 7.1 for a list of possible keywords and their meaning.
Default: the value of the global renderingintent parameter

Table 7.3 Options for PDF_load_image()

key explanation

112 Chapter 7: Image and Template Functions

C++ Java void close_image(int image)
Perl PHP PDF_close_image(resource p, int image)

C void PDF_close_image(PDF *p, int image)

Close an image.

image A valid image handle retrieved with PDF_load_image().

Details This function only affects PDFlib’s associated internal image structure. If the image has
been opened from file, the actual image file is not affected by this call since it has al-
ready been closed at the end of the corresponding PDF_load_image() call. An image han-
dle cannot be used any more after it has been closed with this function, since it breaks
PDFlib’s internal association with the image.

Scope document, page, font; must always be paired with a matching call to PDF_load_image()
unless the inline option has been used.

C++ Java void fit_image(int image, double x, double y, String optlist)
Perl PHP PDF_fit_image(resource p, int image, float x, float y, string optlist)

C void PDF_fit_image(PDF *p, int image, double x, double y, const char *optlist)

Place an image or template at position (x, y) on the page, subject to various options.

image A valid image or template handle retrieved with one of the PDF_load_image() or
PDF_begin_template_ext() functions.

x, y The coordinates of the reference point in the user coordinate system where the
image or template will be located, subject to various options.

optlist An option list specifying placement details according to Table 7.4. The follow-
ing options can be used:
adjustpage, boxsize, dpi, fitmethod, ignoreclippingpath, ignoreorientation, matchbox,
orientate, position, rotate, scale, showborder

Details The image or template (collectively referred to as an object below) will be placed relative
to the reference point (x, y). By default, the lower left corner of the object will be placed
at the reference point. However, the orientate, boxsize, position, and fitmethod options
can modify this behavior. By default, an image will be scaled according to its resolution
value(s). This behavior can be modified with the dpi, scale, and fitmethod options.

template (Boolean) If true, generate a PDF Image XObject embedded in a Form XObject (called template in PDFlib)
instead of a plain Image XObject. This can be useful for creating templates for form field icons which con-
sist of an image only. It is also required for compatibility with certain OPI servers when using one of the
OPI-1.3 or OPI-2.0 options. Default: false. Scope: document

width (Integer; only for imagetype=raw and ccitt; required in this case) Image width in pixels

1. Windows users keep in mind that a sequence of two backslash characters is required in the option list to create a single backslash in
the resulting path (see section »Simple Values«, page 7).

Table 7.3 Options for PDF_load_image()

key explanation

7.1 Images 113

Scope page, pattern (only if the pattern's painttype is 1, or if the image is a mask), template, glyph
(only if the Type 3 font’s colorized option is true, or if the image is a mask); this function
can be called an arbitrary number of times on arbitrary pages, as long as the image
handle has not been closed with PDF_close_image().

Table 7.4 Options for PDF_fit_image() and PDF_fit_pdi_page()

key explanation

adjustpage (Boolean; ignored if blind=true) Adjust the dimensions of the current page to the object such that the
upper right corner of the page coincides with the upper right corner of the object plus (x, y) with the func-
tion parameters x and y. The MediaBox will be adjusted, and all other box entries will be reset to their de-
faults. With the value 0 for the position option the following useful cases shall be noted:
x >= 0 and y >= 0

The object is surrounded by a white margin. This margin has thickness y in horizontal
direction and thickness x in vertical direction.

x < 0 and y < 0
Horizontal and vertical strips will be cropped from the image.

This option is only effective in scope page, and must not be used when the topdown parameter has been
set to true. Default: false

boxsize (List of floats) Two values specifying the width and height of a box, relative to which the object will be
placed and possibly scaled. The lower left corner of the box coincides with the reference point (x, y). Plac-
ing the image and fitting it into the box is controlled by the position and fitmethod options. If width=0,
only the height is considered; If height=0, only the width is considered. In these cases the fitmethod op-
tion will be ignored and the object will be placed relative to the vertical line from (x, y) to (x, y+height),
or the horizontal line from (x, y) to (x+width, y), according to the relevant value of the position option.
Default: {0 0}

dpi (List of floats) One or two values specifying the desired image resolution in pixels per inch in horizontal
and vertical direction. If a single value is supplied it will be used for both dimensions. With the value o the
image’s internal resolution will be used if available, or 72 dpi otherwise. As an alternative to the value 0,
the keyword internal can be supplied. The scaling resulting from this option is relative to the current
user coordinate system; if it has been scaled the resulting physical resolution will be different from the
supplied values.
This option will be ignored for templates and PDF pages, or if the fitmethod option has been supplied
with one of the keywords auto, meet, slice, or entire. Default: internal

fitmethod (Keyword; will be ignored unless boxsize is supplied) Specifies the method used to fit the object into the
box. Default: nofit
nofit Position the object only, without any scaling or clipping.
clip Position the object, and clip it at the edges of the box.
meet Position the object according to the position option, and scale it so that it entirely fits into

the box while preserving its aspect ratio. Generally at least two edges of the object will meet
the corresponding edges of the box. The dpi and scale options are ignored.

auto Same as meet.
slice Position the object according to the position option, and scale it such that it entirely covers

the box, while preserving the aspect ratio and making sure that at least one dimension of the
object is fully contained in the box. Generally parts of the object’s other dimension will
extend beyond the box, and will therefore be clipped. The dpi and scale options are ignored.

entire Position the object according to the position option, and scale it such that it entirely covers
the box. Generally this method will distort the object. The dpi and scale options are ignored.

ignore-
clippingpath

(Boolean; only for TIFF and JPEG images) A clipping path which may be present in the image file will be
ignored. Default: false, i.e. the clipping path will be applied

114 Chapter 7: Image and Template Functions

ignore-
orientation

(Boolean; only for TIFF images) Ignore any orientation tag in the image. This may be useful for compen-
sating wrong orientation information. Default: the value of the ignoreorientation option in PDF_
load_image()

matchbox (Option list) Option list with matchbox details according to Table 4.13.

orientate (Keyword) Specifies the desired orientation of the object when it is placed. Default: north
north upright
east pointing to the right
south upside down
west pointing to the left

position (List of floats or keywords) One or two values specifying the position of the reference point (x, y) within
the object with {0 0} being the lower left corner of the object, and {100 100} the upper right corner. If
the boxsize option has been specified, the position option also specifies the positioning of the box, i.e.
the corresponding point in the box will be placed at the reference point (x, y). The values are expressed
as percentages of the object’s width and height. If both percentages are equal it is sufficient to specify a
single float value.
The keywords left, center, right (in x direction) or bottom, center, top (in y direction) can be used as
equivalents for the values 0, 50, and 100. If only one keyword has been specified the corresponding key-
word for the other direction will be added. Default: {left bottom}. Examples:
0 or {0 0} or {left} lower left corner
{50 100} or {center top} middle of the top edge
50 or {50 50} or {center} center of the object

rotate (Float) Rotates the coordinate system, using the reference point as center and the specified value as rota-
tion angle in degrees. This results in the box and the object being rotated. The rotation will be reset when
the object has been placed. Default: 0

scale (List of floats) Scales the object in horizontal and vertical direction by the specified scaling factors (not
percentages). If both factors are equal it is sufficient to specify a single float value. This option will be ig-
nored if the fitmethod option has been supplied with one of the keywords auto, meet, slice, or entire.
Default: 1

showborder (Boolean) If true, the border of the fitbox will be stroked (using the current graphics state). This may be
useful for development and debugging. Default: false

Table 7.4 Options for PDF_fit_image() and PDF_fit_pdi_page()

key explanation

7.2 Templates 115

7.2 Templates
Note The template functions described in this section are unrelated to variable data processing with

PDFlib blocks. Use PDF_fill_textblock(), PDF_fill_imageblock(), and PDF_fill_pdfblock() to fill
blocks prepared with the PDFlib block plugin (see Chapter 9, »Personalization Functions (PPS)«,
page 127).

C++ Java int begin_template_ext(double width, double height, String optlist)
Perl PHP int PDF_begin_template_ext(resource p, float width, float height, string optlist)

C int PDF_begin_template_ext(PDF *p, double width, double height, const char *optlist)

Start a template definition.

width, height The dimensions of the template’s bounding box in points.

optlist Option list specifying template-related properties.
> The following options of PDF_load_image() can be used (see Table 7.3):

iconname, layer, metadata, OPI-1.3, OPI-2.0
> The following options of PDF_begin_page_ext() can be used (see Table 2.9):

topdown, transparencygroup

Returns A template handle which can be used in subsequent image-related calls, especially PDF_
fit_image(). There is no error return.

Details This function will reset all text, graphics, and color state parameters to their defaults,
and establish a coordinate system according to the global topdown parameter.
Hypertext functions and functions for opening images must not be used during a
template definition, but all text, graphics, and color functions can be used.

Scope document, page; this function starts template scope, and must always be paired with a
matching PDF_end_template() call.

C++ Java void end_template()
Perl PHP PDF_end_template(resource p)

C void PDF_end_template(PDF *p)

Finish a template definition.

Scope template; this function terminates template scope, and must always be paired with a
matching PDF_begin_template() call.

C++ Java int begin_template(double width, double height)
Perl PHP int PDF_begin_template(resource p, float width, float height)

C int PDF_begin_template(PDF *p, double width, double height)

Deprecated, use PDF_begin_template_ext().

116 Chapter 7: Image and Template Functions

7.3 Thumbnails

C++ Java void add_thumbnail(int image)
Perl PHP PDF_add_thumbnail(resource p, int image)

C void PDF_add_thumbnail(PDF *p, int image)

Add an existing image as thumbnail for the current page.

image A valid image handle retrieved with PDF_load_image().

Details This function adds the supplied image as thumbnail image for the current page. A
thumbnail image must adhere to the following restrictions:

> The image must be no larger than 106 x 106 pixels.
> The image must use the grayscale, RGB, or indexed RGB color space.
> Multi-strip TIFF images can not be used as thumbnails because thumbnails must be

constructed from a single PDF image object.

This function doesn’t generate thumbnail images for pages, but only offers a hook for
adding existing images as thumbnails. The actual thumbnail images must be generated
by the client. The client must ensure that color, height/width ratio, and actual contents
of a thumbnail match the corresponding page contents.

Since Acrobat 5 and above generates thumbnails on the fly (though not Acrobat 5 or
Adobe Reader 6 in the Browser), and thumbnails increase the overall file size of the gen-
erated PDF, it is recommended not to add thumbnails, but rely on client-side thumbnail
generation instead.

Scope page; must only be called once per page. Not all pages need to have thumbnails attached
to them.

8.1 Document and Page 117

8 PDF Import Functions (PDI)
Note All functions described in this chapter require the additional PDF import library (PDI) which re-

quires PDFlib+PDI or PDFlib Personalization Server (PPS), but is not part of PDFlib Lite and
PDFlib. Please visit our Web site for more information on obtaining PDI.

8.1 Document and Page
Cookbook A full code sample can be found in the Cookbook topic pdf_import/starter_pdfmerge.

Table 8.1 lists relevant parameter key names for this section (see Section 2.1, »Parameter
Handling«, page 13).

C++ Java int open_pdi_document(String filename, String optlist)
Perl PHP int PDF_open_pdi_document(resource p, string filename, string optlist)

C int PDF_open_pdi_document(PDF *p, const char *filename, int len, const char *optlist)

Open a disk-based or virtual PDF document and prepare it for later use.

filename (Name string) The name of the PDF file.

optlist An option list specifying PDF open options according to Table 8.2. The follow-
ing options can be used: errorpolicy, infomode, inmemory, password, repair, requiredmode

len (C language binding only) Length of filename (in bytes) for UTF-16 strings. If len = 0
a null-terminated string must be provided.

Returns A PDI document handle which can be used for processing individual pages of the docu-
ment or for querying document properties. A return value of -1 (in PHP: 0) indicates that
the PDF document couldn’t be opened. An arbitrary number of PDF documents can be
opened simultaneously. The return value can be used until the end of the enclosing
document scope. If the function call fails you can request the reason of the failure with
PDF_get_errmsg().

Details By default, the document will be rejected if at least one of the following conditions is
true:

> The document is damaged.
> The document uses a higher PDF version than the current PDF document.
> The document is encrypted, but the corresponding password has not been supplied

in the password option.

Table 8.1 PDI-related keys for PDF_get/set_parameter()

key explanation

pdi1

1. Only for PDF_get_parameter()

Returns the string true if the PDI source code has been included when building the underlying library.
This is true for all combined PDFlib, PDFlib+PDI, and PPS binaries distributed by PDFlib GmbH, regardless
of the license key. Otherwise it returns false. Scope: any, null2

2. May be called with a PDF * argument of NULL or 0

pdiwarning Deprecated, use errorpolicy

http://www.pdflib.com/pdflib-cookbook/pdf-import/starter-pdfmerge

118 Chapter 8: PDF Import Functions (PDI)

> The document is not compatible to the current PDF/X or PDF/A output conformance
level, or uses an incompatible output intent.

> The document is Tagged PDF, and the tagged option in PDF_begin_document() is true.

Except for the first reason, the infomode option can be used to open the document nev-
ertheless. This may be useful to query information about the PDF using the PDF_pcos_
get_*() functions, such as encryption, PDF/A or PDF/X status, document info fields, etc.

In order to get more detailed information about the nature of a PDF import-related
problem (wrong PDF file name, unsupported format, bad PDF data, etc.), use PDF_get_
errmsg() to receive a more detailed error message.

PDF/A: the imported document must be compatible to the current PDF/A output
conformance level and output intent unless infomode=true.

PDF/X: the imported document must be compatible to the current PDF/X output
conformance level unless infomode=true, and must use the same output intent as the
generated document.

Scope object, document, page; in object scope a PDI document handle can only be used in the
PDF_pcos_get_*() functions.

Table 8.2 Options for PDF_open_pdi_document()

key explanation

errorpolicy (Keyword) Controls the behavior in case of an error (see Section 2.6, »Exception Handling«, page 29)

infomode (Boolean) If true, the document will be opened such that information can be queried with the pCOS in-
terface, but the pages can not be imported into the current output document. In particular, the following
kinds of documents can be opened when infomode=true:
> PDFs which are not compatible to the current PDF/X or PDF/A conformance level,
> PDFs with a higher PDF version than the current document,
> Encrypted PDFs where the password is not known (exception: PDF 1.6 documents created with the Dis-

tiller setting »Object Level Compression: Maximum«),
> Tagged PDF when the tagged option in PDF_begin_document() is true.
Default: false if requiredmode=full, otherwise true

inmemory (Boolean) If true, PDI will load the complete file into memory and process it from there. This can result in
a tremendous performance gain on some systems (especially MVS) at the expense of memory usage. If
false, individual parts of the document will be read from disk as needed. Default: false

password (String with a maximum length of 32 characters) Master password required to open a protected PDF doc-
ument for import. If infomode=true the user password (which may even be empty) is sufficient to query
document information. If no password has been supplied at all for an encrypted document the document
handle can only be used to query its encryption status.

pdiwarning Deprecated, use errorpolicy

repair (Keyword) Specifies how to treat damaged PDF input documents. Repairing a document takes more time
than normal parsing, but may allow processing of certain damaged PDFs. Note that some documents
may be damaged beyond repair. Supported keywords (default: auto):
auto Repair the document only if problems are detected while opening the PDF.
force Unconditionally try to repair the document, regardless of whether or not it has problems.
none No attempt will be made at repairing the document. If there are problems in the PDF the

function call will fail.

8.1 Document and Page 119

C++ Java int open_pdi(String filename, String optlist, int len)
Perl PHP int PDF_open_pdi(resource p, string filename, string optlist, int len)

C int PDF_open_pdi(PDF *p, const char *filename, const char *optlist, int len)

Deprecated; use PDF_open_pdi_document().

C int PDF_open_pdi_callback(PDF *p, void *opaque, size_t filesize,
size_t (*readproc)(void *opaque, void *buffer, size_t size),
int (*seekproc)(void *opaque, long offset), const char *optlist)

Open a PDF document from a custom data source and prepare it for later use.

opaque A pointer to some user data that might be associated with the input PDF docu-
ment. This pointer will be passed as the first parameter of the callback functions, and
can be used in any way. PDI will not use the opaque pointer in any other way.

filesize The size of the complete PDF document in bytes.

readproc A callback function which copies size bytes to the memory pointed to by
buffer. If the end of the document is reached it may copy less data than requested. The
function must return the number of bytes copied.

seekproc A callback function which sets the current read position in the document.
offset denotes the position from the beginning of the document (0 meaning the first
byte). If successful, this function must return 0, otherwise -1.

optlist An option list specifying PDF open options according to Table 8.2. The follow-
ing options can be used:
infomode, inmemory, password, pdiwarning, requiredmode

Returns A PDI document handle which can be used for processing individual pages of the docu-
ment or for querying document properties. A return value of -1 indicates that the PDF
document couldn’t be opened. An arbitrary number of PDF documents can be opened
simultaneously. The return value can be used until the end of the enclosing document
scope. If the function call fails you can request the reason of the failure with PDF_get_
errmsg().

Details This is a specialized interface for applications which retrieve arbitrary chunks of PDF
data from some data source instead of providing the PDF document in a disk file or in
memory.

Scope object, document, page; in object scope a PDI document handle can only be used to query
information from a PDF document.

Bindings Only available in the C binding.

requiredmode (Keyword) The minimum pcos mode (minimum/restricted/full) which is acceptable when opening
the document. The call will fail if the resulting pcos mode would be lower than the required mode. If the
call succeeds it is guaranteed that the resulting pcos mode is at least the one specified in this option.
However, it may be higher; e.g. requiredmode=minimum for an unencrypted document will result in full
mode. Default: full

Table 8.2 Options for PDF_open_pdi_document()

key explanation

120 Chapter 8: PDF Import Functions (PDI)

C++ Java void close_pdi_document(int doc)
Perl PHP PDF_close_pdi_document(resource p, int doc)

C void PDF_close_pdi_document(PDF *p, int doc)

Close all open PDI page handles, and close the input PDF document.

doc A valid PDF document handle retrieved with PDF_open_pdi_document().

Details This function closes a PDF import document, and releases all resources related to the
document. All document pages which may be open are implicitly closed. The document
handle must not be used after this call. A PDF document should not be closed if more
pages are to be imported. Although you can open and close a PDF import document an
arbitrary number of times, doing so may result in unnecessary large PDF output files.

Scope object, document, page

C++ Java void close_pdi(int doc)
Perl PHP PDF_close_pdi(resource p, int doc)

C void PDF_close_pdi(PDF *p, int doc)

Deprecated; use PDF_close_pdi_document().

C++ Java int open_pdi_page(int doc, int pagenumber, String optlist)
Perl PHP int PDF_open_pdi_page(resource p, int doc, int pagenumber, string optlist)

C int PDF_open_pdi_page(PDF *p, int doc, int pagenumber, const char* optlist)

Prepare a page for later use with PDF_fit_pdi_page().

doc A valid PDF document handle retrieved with PDF_open_pdi_document().

pagenumber The number of the page to be opened. The first page has page number 1.

optlist An option list specifying page options according to Table 8.3. The following op-
tions can be used: errorpolicy, hypertextencoding, iconname, infomode, layer, metadata,
pdiusebox

Returns A page handle which can be used for placing pages with PDF_fit_pdi_page(). A return val-
ue of -1 (in PHP: 0) indicates that the page couldn’t be opened. The return value can be
used until the end of the enclosing document scope. If the infomode option was true
when the document has been opened with PDF_open_pdi_document(), the handle can
not be used with PDF_fit_pdi_page(). If the function call fails you can request the reason
of the failure with PDF_get_errmsg().

Details This function will copy all data comprising the imported page to the output document,
but will not have any visible effect on the output. In order to actually place the import-
ed page somewhere in the generated output document, PDF_fit_pdi_page() must be
used. In order to get more detailed information about a problem related to PDF import
(unsupported format, bad PDF data, etc.) you can call PDF_get_errmsg().

This function will fail if the PDF version number of the imported document is higher
than the PDF version number of the generated PDF output document.

8.1 Document and Page 121

An arbitrary number of pages can be opened simultaneously. If the same page is
opened multiply, different handles will be returned, and each handle must be closed ex-
actly once.

Scope document, page

C++ Java void close_pdi_page(int page)
Perl PHP PDF_close_pdi_page(resource p, int page)

C void PDF_close_pdi_page(PDF *p, int page)

Close the page handle and free all page-related resources.

page A valid PDF page handle (not a page number!) retrieved with PDF_open_pdi_
page().

Details This function closes the page associated with the page handle identified by page, and re-
leases all related resources. page must not be used after this call.

Scope document, page

Table 8.3 Options for PDF_open_pdi_page()

key explanation

errorpolicy (Keyword) Controls the behavior in case of an error (see Section 2.6, »Exception Handling«, page 29)

hypertext-
encoding

(Keyword) Specifies the encoding for the iconname option. An empty string is equivalent to unicode. De-
fault: value of the global hypertextencoding parameter

iconname (Hypertext string) Attach a name to the imported page so that it can be referenced via JavaScript, e.g. to
use the page as an icon for form fields.

infomode Deprecated; use pCOS to query page properties without actually placing the page

layer (Layer handle; PDF 1.5) Layer to which the page will belong. The page will only be visible if the corre-
sponding layer is visible. Note that the page will be tied to the layer. Use PDF_begin_layer() before
placing the page if you need different placements of the same page to belong to different layers.

metadata (Option list; PDF 1.4) Supply metadata for the imported page (see Section 12.2, »XMP Metadata«, page
159)

pdiusebox (Keyword) Specifies which box dimensions will be used for determining an imported page’s size. Default:
crop.
media Use the MediaBox (which is always present)
crop Use the CropBox if present, else the MediaBox
bleed Use the BleedBox if present, else the CropBox
trim Use the TrimBox if present, else the CropBox
art Use the ArtBox if present, else the CropBox

pdiwarning Deprecated, use errorpolicy

122 Chapter 8: PDF Import Functions (PDI)

C++ Java void fit_pdi_page(int page, double x, double y, String optlist)
Perl PHP PDF_fit_pdi_page(resource p, int page, float x, float y, string optlist)

C void PDF_fit_pdi_page(PDF *p, int page, double x, double y, const char *optlist)

Place an imported PDF page on the page subject to various options.

page A valid PDF page handle (not a page number!) retrieved with PDF_open_pdi_
page(). The infomode option must have been false when opening the document. The
page handle must not have been closed.

x, y The coordinates of the reference point in the user coordinate system where the
page will be located, subject to various options.

optlist An option list specifying scaling and placement details according to Table 7.4.
The following options can be used:
adjustpage, blind, boxsize, dpi, fitmethod, ignoreclippingpath, ignoreorientation, matchbox,
orientate, position, rotate, scale, showborder

Details This function is similar to PDF_fit_image(), but operates on imported PDF pages instead.
The following option for PDF_begin/end_page() is recommended to improve the output
quality if an imported page contains ExtGState objects:
transparencygroup={CS=DeviceRGB}.

Scope page, pattern, template, glyph

8.2 pCOS Functions 123

8.2 pCOS Functions
All pCOS functions work with paths designating the target object in the PDF document.
pCOS paths are discussed in detail in the PDFlib Tutorial.

Cookbook A full code sample can be found in the Cookbook topic pdf_import/starter_pcos.

Note In evaluation mode pCOS will accept input documents up to a maximum of 1 MB or 10 pages.
However, the following elements can also be queried for larger documents in evaluation mode:
page count, page dimensions, block details, and all universal pseudo objects.

C++ Java double pcos_get_number(int doc, string path)
Perl PHP double PDF_pcos_get_number(resource p, long doc, string path)

C double PDF_pcos_get_number(PDF *p, int doc, const char *path, ...)

Get the value of a pCOS path with type number or boolean.

doc A valid document handle obtained with PDF_open_pdi_document().

path A full pCOS path for a numerical or boolean object.

Additional parameters (C language binding only) A variable number of additional pa-
rameters can be supplied if the key parameter contains corresponding placeholders (%s
for strings or %d for integers; use %% for a single percent sign). Using these parameters
will save you from explicitly formatting complex paths containing variable numerical
or string values. The client is responsible for making sure that the number and type of
the placeholders matches the supplied additional parameters.

Returns The numerical value of the object identified by the pCOS path. For Boolean values 1 will
be returned if they are true, and 0 otherwise.

Scope any

C++ Java string pcos_get_string(int doc, string path)
Perl PHP string PDF_pcos_get_string(resource p, long doc, string path)

C const char *PDF_pcos_get_string(PDF *p, int doc, const char *path, ...)

Get the value of a pCOS path with type name, string, or boolean.

doc A valid document handle obtained with PDF_open_pdi_document().

path A full pCOS path for a name, string, or boolean object.

Additional parameters (C language binding only) A variable number of additional pa-
rameters can be supplied if the key parameter contains corresponding placeholders (%s
for strings or %d for integers; use %% for a single percent sign). Using these parameters
will save you from explicitly formatting complex paths containing variable numerical
or string values. The client is responsible for making sure that the number and type of
the placeholders matches the supplied additional parameters.

Returns A string with the value of the object identified by the pCOS path. For Boolean values the
strings true or false will be returned.

http://www.pdflib.com/pdflib-cookbook/pdf-import/starter-pcos

124 Chapter 8: PDF Import Functions (PDI)

Details This function will raise an exception if pCOS does not run in full mode and the type of
the object is string. As an exception, the objects /Info/* (document info keys) can also be
retrieved in restricted pCOS mode if nocopy=false or plainmetadata=true, and
bookmarks[...]/Title and annots[...]/contents can be retrieved in restricted pCOS mode if
nocopy=false.

This function assumes that strings retrieved from the PDF document are text strings.
String objects which contain binary data should be retrieved with PDF_pcos_get_
stream() instead which does not modify the data in any way.

Scope any

Bindings C and C++ language bindings: The string will be returned in UTF-8 format without BOM.
C binding: The returned string can be used until the next call to this function.

Java, .NET, and Python: the result will be provided as Unicode string. If no more text is
available a null object will be returned.

Perl and PHP language bindings: the result will be provided as UTF-8 string. If no more
text is available a null object will be returned.

RPG language binding: the result will be provided as UTF-8 string.

C++ Java const unsigned char *pcos_get_stream(int doc, int *length, string optlist, string path)
Perl PHP string PDF_pcos_get_stream(resource p, long doc, string optlist, string path)

C const unsigned char *PDF_pcos_get_stream(PDF *p, int doc, int *length, const char *optlist,
const char *path, ...)

Get the contents of a pCOS path with type stream, fstream, or string.

doc A valid document handle obtained with PDF_open_pdi_document().

length (C and C++ language bindings only) A pointer to a variable which will receive
the length of the returned stream data in bytes.

optlist An option list specifying scaling and placement details according to Table 8.4.

path A full pCOS path for a stream or string object.

Additional parameters (C language binding only) A variable number of additional pa-
rameters can be supplied if the key parameter contains corresponding placeholders (%s
for strings or %d for integers; use %% for a single percent sign). Using these parameters
will save you from explicitly formatting complex paths containing variable numerical
or string values. The client is responsible for making sure that the number and type of
the placeholders matches the supplied additional parameters.

Returns The unencrypted data contained in the stream or string. The returned data will be emp-
ty (in C and C++: NULL) if the stream or string is empty.

If the object has type stream, all filters will be removed from the stream contents (i.e.
the actual raw data will be returned). If the object has type fstream or string the data will
be delivered exactly as found in the PDF file, with the exception of ASCII85 and ASCII-
Hex filters which will be removed.

Details This function will throw an exception if pCOS does not run in full mode. As an excep-
tion, the object /Root/Metadata can also be retrieved in restricted pCOS mode if nocopy=

8.2 pCOS Functions 125

false or plainmetadata=true. An exception will also be thrown if path does not point to an
object of type stream, fstream, or string.

Despite its name this function can also be used to retrieve objects of type string. Un-
like PDF_pcos_get_string(), which treats the object as a text string, this function will not
modify the returned data in any way. Binary string data is rarely used in PDF, and can-
not be reliably detected automatically. The user is therefore responsible for selecting
the appropriate function for retrieving string objects as binary data or text.

Scope any

Bindings C and C++ language bindings: The returned data buffer can be used until the next call to
this function.

Python: the result will be returned as 8-bit string (Python 3: bytes).

Bindings This function can be used to retrieve embedded font data from a PDF. Users are remind-
ed that fonts are subject to the respective font vendor’s license agreement, and must
not be reused without the explicit permission of the respective intellectual property
owners. Please contact your font vendor to discuss the relevant license agreement.

Table 8.4 Options for PDF_pcos_get_stream()

option description

(Currently no options are supported)

126 Chapter 8: PDF Import Functions (PDI)

8.3 Other PDI Processing

C++ Java int process_pdi(int doc, int page, String optlist)
Perl PHP int PDF_process_pdi(resource p, int doc, int page, string optlist)

C int PDF_process_pdi(PDF *p, int doc, int page, const char* optlist)

Process certain elements of an imported PDF document.

doc A valid PDF document handle retrieved with PDF_open_pdi_document().

page If optlist requires a page handle (see Table 8.5), page must be a valid PDF page
handle (not a page number!) retrieved with PDF_open_pdi_page(). The page handle must
not have been closed. If optlist does not require any page handle, page must be -1.

optlist An option list specifying processing options according to Table 8.5. The follow-
ing options can be used: action, errorpolicy

Returns The value 1 if the function succeeded, or an error code of -1 (in PHP: 0) if the function call
failed.

Details PDF/X: the output intent must be set either using this function with the copyoutput-
intent option, or with PDF_load_iccprofile().

PDF/A: the output intent can be set using this function with the copyoutputintent
option, or with PDF_load_iccprofile(). However, if only device-independent colors are
used in the document no output intent is required.

Scope document

Table 8.5 Options for PDF_process_pdi()

key explanation

action1

1. Does not require a page handle

(Keyword; required) Specifies the kind of PDF processing:
copyoutputintent

Copy the PDF/X or PDF/A output intent ICC profile of the imported document to the output
document. The second and subsequent attempts to copy an output intent will be ignored. If
the document contains more than one output intent the first one will be used. Standard
output intents (without an embedded ICC profile) cannot be copied with this method.

errorpolicy (Keyword) Controls the behavior in case of an error (see Section 2.6, »Exception Handling«, page 29)

pdiwarning Deprecated, use errorpolicy

8.4 Deprecated PDI Parameters 127

8.4 Deprecated PDI Parameters
All functions and parameters in this section are deprecated; use the pCOS interface dis-
cussed in Section 8.2, »pCOS Functions«, page 122.

C++ Java double get_pdi_value(String key, int doc, int page, int reserved)
Perl PHP double PDF_get_pdi_value(resource p, string key, int doc, int page, int reserved)

C double PDF_get_pdi_value(PDF *p, const char *key, int doc, int page, int reserved)

Deprecated, use PDF_pcos_get_number() with the pCOS paths listed in Table 8.6.

C++ Java String get_pdi_parameter(String key, int doc, int page, int reserved)
Perl PHP string PDF_get_pdi_parameter(resource p, string key, int doc, int page, int reserved)

C const char * PDF_get_pdi_parameter(PDF *p, const char *key, int doc, int page, int reserved, int *len)

Deprecated, use PDF_pcos_get_string() with the pCOS paths listed in Table 8.7.

Table 8.6 Names of deprecated numerical parameters for PDF_get_pdi_value() and recommended pCOS paths

old key recommended pCOS path as substitute for the old key

vdp/blockcount length:pages[...]/blocks

/Root/Pages/Count length:pages

width, height pages[...]/width, pages[...]/height

/Rotate pages[...]/Rotate

version pdfversion (not version!)

/CropBox, /BleedBox, /ArtBox,
/TrimBox, /MediaBox

pages[...]/CropBox[0] for llx, pages[...]/CropBox[1] for lly,
pages[...]/CropBox[2] for urx, pages[...]/CropBox[3] for ury
pages[...]/BleedBox[0] for llx, etc.

vdp/Blocks/<name>/<property> pages[...]/blocks/<name>/<property>

vdp/Blocks[...]/<property> pages[...]/blocks[...]/<property>

vdp/Blocks/<name>/Custom/<property> pages[...]/blocks/<name>/Custom/<property> or
pages[...]/blocks[...]/Custom/<property>

Table 8.7 Names of deprecated string parameters for PDF_get_pdi_parameter() and recommended pCOS paths

old key recommended pCOS path as substitute for the old key

isempty pages[...]/isempty

filename filename

/Info/<key> /Info/Title etc.

tagged tagged

pdfx pdfx

vdp/Blocks/<name>/<property> pages[...]/blocks/<name>/<property>

128 Chapter 8: PDF Import Functions (PDI)

vdp/Blocks[...]/<property> pages[...]/blocks[...]/<property>

vdp/Blocks/<name>/Custom/<property> pages[...]/blocks/<name>/Custom/<property> or
pages[...]/blocks[...]/Custom/<property>

Table 8.7 Names of deprecated string parameters for PDF_get_pdi_parameter() and recommended pCOS paths

old key recommended pCOS path as substitute for the old key

127

9 Personalization Functions (PPS)
The PDFlib Personalization Server (PPS) offers dedicated functions for processing vari-
able data blocks of type Text, Image, and PDF. These blocks must be contained in the im-
ported PDF page, but will not be retained in the generated output. The imported page
must have been placed on the output page with PDF_fit_pdi_page() before using any of
the block filling functions. When calculating the block position on the page, the block
functions will take into account the scaling options which have been in effect when
placing the imported page with PDF_fit_pdi_page().

Note The block processing functions discussed in this chapter require the PDFlib Personalization
Server (PPS). The PDFlib Block plugin for Adobe Acrobat is required for creating blocks in PDF
templates.

Cookbook A full code sample can be found in the Cookbook topic blocks/starter_block.

C++ Java int fill_textblock(int page, String blockname, String text, String optlist)
Perl PHP int PDF_fill_textblock(resource p, int page, string blockname, string text, string optlist)

C int PDF_fill_textblock(PDF *p,
int page, const char *blockname, const char *text, int len, const char *optlist)

Fill a text block with variable data according to its properties.

page A valid PDF page handle for a page containing blocks.

blockname (Name string) The name of the block.

text (Content string) The text to be filled into the block, or an empty string if the de-
fault text (as defined by block properties) is to be used. If the textflowhandle option is
supplied and contains a valid Textflow handle this parameter will be ignored.

len (C language binding only) Length of text (in bytes) for UTF-16 strings. If len = 0 a
null-terminated string must be provided.

optlist An option list specifying filling details according to Table 9.1. The following op-
tions can be used:

> boxsize, charref, encoding, escapesequence, font, ignoreorientation, refpoint, showborder,
shrinklimit, textformat, textflowhandle

> If the font option is not supplied, all options for PDF_load_font() (see Table 3.4). These
options will only be used if both the fontname and encoding options are supplied.
autocidfont, autosubsetting, capheight, descender, embedding, fontstyle, keepnative,
kerning, linegap, metadata, monospace, replacementchar, subsetlimit, subsetminsize,
subsetting, unicodemap, vertical, xheight

> If textflow=true, all options of PDF_add/create_textflow() (see Table 4.3 and Table 4.5):
General options: errorpolicy
Text semantics: charclass, charmapping, hyphenchar, tabalignchar,
Text formatting: alignment, avoidemptybegin, fixedleading, hortabsize, hortabmethod,
lastalignment, leader, leading, leftindent, minlinecount, parindent, rightindent, ruler,
tabalignment
Controlling the line breaking algorithm: adjustmethod, avoidbreak, maxspacing, min-
spacing, nofitlimit, shrinklimit, spreadlimit

http://www.pdflib.com/pdflib-cookbook/block-handling-and-pps/starter-block

128 Chapter 9: Personalization Functions (PPS)

Options which work as commands: comment, mark, nextline, nextparagraph, resetfont,
return, space
Font-related options: encoding, fontname
Processing inline options lists: begoptlistchar, endoptlistchar, textlen

> If textflow=true, the following options of PDF_fit_textflow() (see Table 4.6):
featherlimit, firstlinedist, fitmethod, keep, lastlinedist, linespreadlimit, maxlines,
minfontsize, orientate, rotate, showtabs, verticalalign, wrap

> All appearance options for PDF_fit_textline() (see Table 4.1):
charref, charspacing, dasharray, escapesequence, fakebold, fillcolor, font, fontsize,
glyphcheck, horizscaling, italicangle, kerning, matchbox, overline, showborder, strikeout,
strokecolor, strokewidth, textformat, textrendering, textrise, underline, underlineposition,
underlinewidth, wordspacing.
Both of the options fontname and encoding can be used to select a font. Alternatively,
the font option can be used to supply a font handle which has been created with an
earlier call to PDF_load_font(). If font is specified, the fontname and encoding options
will be ignored.

Returns -1 (in PHP: 0) if the named block doesn’t exist on the page, the block cannot be filled (e.g.
due to font problems), or the block requires a newer PDFlib version for processing; 1 if
the block could be processed successfully. If the textflowhandle option is supplied a valid
Textflow handle will be returned which can be used in subsequent calls.

If the PDF document is found to be corrupt, this function will either throw an excep-
tion or return -1 subject to the errorpolicy parameter or option.

Details The supplied text will be formatted into the block, subject to the block’s properties. If
text is empty the function will use the block’s default text if available, and silently re-
turn otherwise. This may be useful to take advantage of other block properties, such as
fill or stroke color.

Linking Textflow blocks: If a Textflow doesn’t fit into a block, the textflowhandle op-
tion can be used to connect multiple blocks to a chain so that they hold multiple parts
of the same Textflow:

> In the first call a value of -1 (in PHP: 0) must be supplied. The Textflow handle created
internally will be returned by PDF_fill_textblock(), and must be stored by the user.

> In the next call the Textflow handle returned in the previous step can be supplied to
the textflowhandle option (the text supplied in the text parameter will be ignored in
this case, and should be empty). The block will be filled with the remainder of the
Textflow.

> This process can be repeated with more Textflow blocks.
> The returned Textflow handle can be supplied to PDF_info_textflow() in order to de-

termine the results of block filling, e.g. the end position of the text.
This process can be repeated an arbitrary number of times. The user is responsible for
deleting the Textflow handle with PDF_delete_textflow() at the end.

Scope page, template

129

C++ Java int fill_imageblock(int page, String blockname, int image, String optlist)
Perl PHP int PDF_fill_imageblock(resource p, int page, string blockname, int image, string optlist)

C int PDF_fill_imageblock(PDF *p, int page, const char *blockname, int image, const char *optlist)

Fill an image block with variable data according to its properties.

page A valid PDF page handle for a page containing blocks.

blockname (Name string) The name of the block.

image A valid image handle for the image to be filled into the block, or -1 if the default
image (as defined by block properties) is to be used.

optlist An option list specifying filling details according to Table 9.1. The following op-
tions can be used: boxsize, errorpolicy, ignoreorientation, refpoint, showborder

Returns -1 (in PHP: 0) if the named block doesn’t exist on the page, the block cannot be filled, or
the block requires a newer PDFlib version for processing; 1 if the block could be pro-
cessed successfully. Use PDF_get_errmsg() to get more information about the nature of
the problem.

Details The image referred to by the supplied image handle will be placed in the block, subject
to the block’s properties. If image is -1 (in PHP: 0) the function will use the block’s default
image if available, and silently return otherwise.

If the PDF document is found to be corrupt, this function will either throw an excep-
tion or return -1 subject to the errorpolicy parameter or option.

Scope page, template

C++ Java int fill_pdfblock(int page, String blockname, int contents, String optlist)
Perl PHP int PDF_fill_pdfblock(resource p, int page, string blockname, int contents, string optlist)

C int PDF_fill_pdfblock(PDF *p, int page, const char *blockname, int contents, const char *optlist)

Fill a PDF block with variable data according to its properties.

page A valid PDF page handle for a page containing blocks.

blockname (Name string) The name of the block.

contents A valid PDF page handle for the PDF page to be filled into the block, or -1 if the
default PDF page (as defined by block properties) is to be used.

optlist An option list specifying filling details according to Table 9.1. The following op-
tions can be used: boxsize, encoding, errorpolicy, refpoint, showborder

Returns -1 (in PHP: 0) if the named block doesn’t exist on the page, the block cannot be filled, or
the block requires a newer PDFlib version for processing; 1 if the block could be pro-
cessed successfully. Use PDF_get_errmsg() to get more information about the nature of
the problem.

Details The PDF page referred to by the supplied page handle contents will be placed in the
block, subject to the block’s properties. If contents is -1 (in PHP: 0) the function will use
the block’s default PDF page if available, and silently return otherwise.

130 Chapter 9: Personalization Functions (PPS)

If the PDF document is found to be corrupt, this function will either throw an excep-
tion or return -1 subject to the errorpolicy parameter or option.

Scope page, template

Table 9.1 Options for the PDF_fill_*block() functions

key explanation

boxsize (List of floats) Changes the block’s width and height to the specified values (expressed as coordinates in
the current user coordinate system). Default: as specified in the block’s Rect property.

charref (Boolean; only for PDF_fill_textblock()) See Table 4.1.

encoding (String) Encoding for the font as required by PDF_load_font(). This option is required for PDF_fill_
textblock() unless one of the following is true:
The string in the text parameter is empty and the defaulttext property is used.
The font option has been supplied.

errorpolicy (Keyword) Controls the behavior in case of an error (see Section 2.6, »Exception Handling«, page 29)

escape-
sequence

(Boolean; only for PDF_fill_textblock()) See Table 4.1.

glyphwarning Deprecated, use errorpolicy

font (Font handle; only for PDF_fill_textblock()) A font handle returned by PDF_load_font(). Default: none;
either font or fontname must be supplied.

fontwarning Deprecated, use errorpolicy

ignore-
orientation

(Boolean; only for PDF_fill_imageblock()) If true, the orientation tag in TIFF images will be ignored. De-
fault: false

imagewarning Deprecated, use errorpolicy

pdiwarning Deprecated, use errorpolicy

refpoint (List of floats) Moves the lower left corner of the block to the specified point in user coordinates. Default:
as specified in the block’s Rect property.

showborder (Boolean) If true, the border of the block will be stroked (using the current graphics state). This may be
useful for development and debugging. Default: false

shrinklimit (Float or percentage; only for PDF_fill_textblock()) See Table 4.1.

textformat (String; only for PDF_fill_textblock() unless the defaulttext property is used) The format used to inter-
pret the supplied text. Default: auto

textflow-
handle

(Textflow handle; only for PDF_fill_textblock() with textflow=true) This option can be used for Text-
flow block chaining. For the first block in a block chain a value of -1 (in PHP: 0) must be supplied; the val-
ue returned by this function can be supplied as Textflow handle in subsequent calls with other blocks in
the chain. This option will change the default of fitmethod to clip.

almost any
property
name

Block property names and values which will be used to override those in the block definition. The follow-
ing block properties can not be overridden:
Name, Description, Locked, Subtype, Type
defaulttext, defaultimage, defaultpdf, defaultpdfpage
As an alternative to supplying the fontname property the font option can be used to supply a font han-
dle (fontname will be ignored in this case).
Color properties support the following color space keywords: none, gray, rgb, cmyk, spot, spotname.

10.1 Parameters for Interactive Elements 131

10 Interactive Features

10.1 Parameters for Interactive Elements
Table 10.1 lists relevant parameter key names for interactive elements (see Section 2.1,
»Parameter Handling«, page 13). These parameters are not available in Unicode-aware
language bindings.

10.2 Actions

C++ Java int create_action(String type, String optlist)
Perl PHP int PDF_create_action(resource p, string type, string optlist)

C int PDF_create_action(PDF *p, const char *type, const char *optlist)

Create an action which can be applied to various objects and events.

type The type of the action, specified by one of the following keywords:
> GoTo: go to a destination in the current document.

Options specific for this type: destination, destname
> GoTo3DView: (PDF 1.6) set the current view of a 3D animation.

Options specific for this type: 3Dview, target
> GoToR: go to a destination in another (remote) document.

Options specific for this type: destination, destname, filename, newwindow
> Hide: (not for PDF/A) hide or show an annotation or form field.

Options specific for this type: hide, namelist
> ImportData: (not for PDF/A) import form field values from a file.
> JavaScript: (not for PDF/A) execute a script with JavaScript code.

Options specific for this type: script, scriptname
> Launch: (not for PDF/A) launch an application or document.

Options specific for this type: defaultdir, filename, newwindow, operation, parameters
> Movie: (not for PDF/A) Play an external sound or movie file in a floating window or

within the rectangle of a movie annotation.
Options specific for this type: operation, target

Table 10.1 String-related keys for PDF_get/set_parameter()

key explanation

hypertextencoding Encoding for hypertext strings. An empty string is equivalent to unicode. Default: auto. Scope:
any

hypertextformat Format for hypertext strings. Possible values are bytes, utf8, utf16, utf16le, utf16be, and auto .
Default: auto. Scope: any

usehypertextencoding If true, the encoding specified in the hypertextencoding parameter will also be used for name
strings. If false, the encoding for name strings without UTF-8 BOM is host. Default: false.
Scope: any

usercoordinates If false, coordinates for hypertext rectangles will be expected in the default coordinate system;
otherwise the current user coordinate system will be used. Default: false. Scope: any

132 Chapter 10: Interactive Features

> Named: execute an Acrobat menu item identified by its name.
Options specific for this type: menuname

> ResetForm: (not for PDF/A) set some or all form fields to their default values.
> SetOCGState: (PDF 1.5) hide or show layers.

Options specific for this type: layerstate, preserveradio
> SubmitForm: send data to a uniform resource locator, i.e. an Internet address (note

that submits which require basic authentication don’t work in Acrobat).
Options specific for this type: canonicaldate, exclude, exportmethod, submitemptyfields,
url

> Trans: (PDF 1.5) update the display using some visual effect. This can be useful to con-
trol the display during a sequence of multiple actions.
Options specific for this type: duration, transition

> URI: resolve a uniform resource identifier, i.e. jump to an Internet address.
Options specific for this type: ismap, url

optlist An option list specifying properties of the action according to Table 10.2. The
following options are supported by all action types (see above for additional type-spe-
cific options): errorpolicy, hypertextencoding

Returns An action handle which can be used to attach actions to objects within the document.
The action handle can be used until the end of the enclosing document scope.

Details This function creates a single action. Various objects (e.g. pages, form field events, book-
marks) can be provided with one or more actions, but each action must be generated
with a separate call to PDF_create_action(). Using an action multiply for different objects
is allowed. Actions are prohibited in all PDF/X modes. Some actions are prohibited in
PDF/A mode (see above).

Scope page, document. The returned handle can be used until the next call to PDF_end_
document().

Table 10.2 Options for action properties with PDF_create_action()

option explanation

3Dview (Keyword or 3D view handle; GoTo3DView; required) Selects the view of the target 3D annotation; One of
the keywords first, last, next, previous (referring to the respective entries in the annotation’s views
option), or default (referring to the annotation’s defaultview option), or a 3D view handle created with
PDF_create_3dview().

actionwarning Deprecated, use errorpolicy

canonical-
date

(Boolean; SubmitForm) If true, any submitted field values representing dates are converted to a standard
format. The interpretation of a field as a date is not specified explicitly in the field itself, but only in the
JavaScript code that processes it. Default: false

defaultdir (String; Launch) Set the default directory for the launched application. This is only supported by Acrobat
on Windows. Default: none

destination (Option list; GoTo, GoToR; required unless destname is supplied) Option list according to Table 10.3 defin-
ing the destination to jump to.

destname (Hypertext string; GoTo, GoToR; required unless destination is supplied) Name of a destination which
has been defined with PDF_add_nameddest() (for GoTo), or the name of a destination in the remote
document (for GoToR).

duration (Float; Trans) Set the duration of the transition effect in seconds for the current page. Default: 1

10.2 Actions 133

errorpolicy (Keyword) Controls the behavior in case of an error (see Section 2.6, »Exception Handling«, page 29)

exclude (Boolean; SubmitForm) If true, the namelist option specifies which fields to exclude; all fields in the doc-
ument are submitted except those listed in the namelist array and those whose exportable option is
false. If false, the namelist option specifies which fields to include in the submission. All members of
specified field groups will be submitted as well. Default: false
(ResetForm) If true, the namelist option specifies which fields to exclude; all fields in the document are
reset except those listed in the namelist array. If false, the namelist option specifies which fields to in-
clude in resetting. All members of specified field groups will be reset as well. Default: false

export-
method

(Keyword list; SubmitForm) Controls how the field names and values are submitted. Default: fdf.
html, fdf, xfdf, pdf

In HTML, FDF, XFDF, or PDF format, respectively
annotfields (Only for fdf) Include all annotations and fields.
coordinate (Only for html) The coordinates of the mouse click that caused the submitform action will be

transmitted as part of the form data. The coordinate values are relative to the upper-left
corner of the field’s rectangle.

exclurl (Only for fdf) The submitted FDF will exclude the url string.
getrequest (Only for html and pdf) Submit using HTTP GET; otherwise HTTP POST
onlyuser (Only for fdf and annotfields) The submit will include only those annotations whose name

matches the name of the current user, as determined by the remote server.
updates (Only for fdf) Include all incremental updates contained in the underlying PDF document
Example for combined options: exportmethod {fdf updates onlyuser}

filename (Hypertext string; GoToR, Launch; required) The name of an external (PDF or other) file or application
which will be opened when the action is triggered. UNC file names must be written as \\server\volume.
(ImportData; required): The name of the external file containing forms data.

hide (Boolean; Hide) Indicates whether to hide (true) or show (false) annotations. Default: true

hypertext-
encoding

(Keyword) Specifies the encoding for the supplied text. An empty string is equivalent to unicode. Default:
the value of the global hypertextencoding parameter

ismap (Boolean; URI) If true, the coordinates of the mouse position will be added to the target URI when the
url is resolved. Default: false

layerstate (Option list; SetOCGState; required) List of pairs where each pair consists of a keyword and a layer han-
dle. Supported keywords:
on Activate the layer
off Deactivate the layer
toggle Reverse the state of the layer. If this is used preserveradio should be set to false.

menuname (String; Named; required) The name of the menu item to be performed. In PDF/A mode only the well-
known names nextpage, prevpage, firstpage, lastpage are allowed. Otherwise more names will be ac-
cepted. A full code sample for finding the names of other menu items can be found in the Cookbook topic
interactive/acrobat_menu_items.

namelist (List of strings; Hide; required) The names (including group names) of the annotations or fields to be hid-
den or shown.
(SubmitForm) The names (including group names) of form fields to include in the submission or which to
exclude, depending on the setting of the exclude option. Default: all fields are submitted except those
whose exportable option is false.
(ResetForm) The names (including group names) of form fields to include in the resetting or which to ex-
clude, depending on the setting of the exclude option. Default: all fields are reset.

Table 10.2 Options for action properties with PDF_create_action()

option explanation

http://www.pdflib.com/pdflib-cookbook/interactive-elements/acrobat-menu-items

134 Chapter 10: Interactive Features

newwindow (Boolean; GoToR, Launch) A flag specifying whether to open the destination document in a new window.
If this flag is false, the destination document will replace the current document in the same window.
Launch: This entry is ignored if the file is not a PDF document. Default: Acrobat behaves according to the
current user preference.

operation This option is used differently for type=Launch and type=Movie:
(Keyword; Launch) A keyword specifying the operation to be applied to the document specified in the
filename option. This is only supported by Acrobat on Windows. If the filename option designates an
application instead of a document, this option will be ignored and the application is launched. Supported
keywords (default: open):
open open a document
print print a document

(Keyword; Movie) A keyword specifying the operation to be applied to the movie or sound. Supported
keywords (default: play):
play Start playing the movie, using the mode specified in the movie annotation’s playmode option.

If the movie is currently paused, it is repositioned to the beginning before playing.
stop Stop playing the movie.
pause Pause a playing movie.
resume Resume a paused movie.

parameters (String; Launch) A parameter string to be passed to the application specified with the filename option.
This is only supported by Acrobat on Windows. Multiple parameters can be separated with a space char-
acter, but individual parameters must not contain any space characters. This option should be omitted if
filename designates a document. Default: none

preserve-
radio

(Boolean; SetOCGState) If true, preserve the radio-button state relationship between layers. Default:
true

script (Hypertext string; JavaScript; required) A string containing the JavaScript code to be executed.

scriptname (Hypertext string; JavaScript) If present, the JavaScript supplied in the script option will be inserted as
a document-level JavaScript with the supplied name. If the same scriptname is supplied more than once
in a document only the last script will be used, the others will be ignored. Document-level JavaScript will
be executed after loading the document in Acrobat. This may be useful for scripts which are used in form
fields.

submit-
emptyfields

(Boolean; SubmitForm; PDF 1.4) If true, all fields characterized by the namelist and exclude options are
submitted, regardless of whether they have a value. For fields without a value, only the field name is
transmitted. If false, fields without a value are not submitted. Default: false

target (String; GoTo3DView, Movie; required) Name of the target 3D or movie annotation as specified in the name
option of PDF_create_annotation().

transition (Keyword; Trans) Set the transition effect; see Table 2.9 for a list of keywords. Default: replace

url (String; URI and SubmitForm; required) A Uniform Resource Locator encoded in 7-bit ASCII or EBCDIC (but
only containing ASCII characters) specifying the link target (for type=URI) or the address of the script at
the Web server that will process the submission (for type=SubmitForm). It can point to an arbitrary (Web
or local) resource, and must start with a protocol identifier (such as http://). The textx/texty, currentx/
currenty, and imagewidth/imageheight parameters may be useful for retrieving positioning informa-
tion for calculating the dimension of link rectangles.

Table 10.2 Options for action properties with PDF_create_action()

option explanation

10.3 Named Destinations 135

10.3 Named Destinations

C++ Java void add_nameddest(String name, String optlist)
Perl PHP PDF_add_nameddest(resource p, string name, string optlist)

C void PDF_add_nameddest(PDF *p, const char *name, int len, const char *optlist)

Create a named destination on an arbitrary page in the current document.

name (Hypertext string) The name of the destination, which can be used as a target for
links, bookmarks, or other triggers. Destination names must be unique within a docu-
ment. If the same name is supplied more than once for a document only the last defini-
tion will be used, the others will be silently ignored.

len (C language binding only) Length of name (in bytes) for UTF-16 strings. If len = 0 a
null-terminated string must be provided.

optlist An option list specifying the destination according to Table 10.3. An empty list
is equivalent to {type fitwindow page 0}. The following options can be used:
bottom, group, hypertextencoding, hypertextformat, left, page, right, top, type, zoom

Details The destination details must be specified in optlist, and the destination may be located
on any page in the current document. The provided name can be used with the destname
option in PDF_create_action(), PDF_create_annotation(), PDF_create_bookmark(), and
PDF_begin/end_document(). This way defining and using a destination can be split into
two separate steps.

Alternatively, if the destination is known at the time when it is used, defining and
using the named destination can be combined by using the destination option of those
functions, and PDF_add_nameddest() is not required in this case.

Scope document, page

Table 10.3 Destination options for PDF_add_nameddest(), as well as for the destination option in PDF_create_action(),
PDF_create_annotation(), PDF_create_bookmark(), and PDF_begin/end_document().

option explanation

bottom (Float; only for type=fitrect) The y coordinate of the page which will positioned at the bottom edge of
the window. Default: 0

group (String; required if the page option has been specified and the document uses page groups; not allowed
otherwise.) Name of the page group that the destination page belongs to.

hypertext-
encoding

(Keyword) Specifies the encoding for the name parameter. An empty string is equivalent to unicode. De-
fault: the value of the global hypertextencoding parameter

hypertext-
format

(Keyword) Sets the format for the name parameter. Possible values are bytes, utf8, utf16, utf16le,
utf16be, and auto. Default: the value of the hypertextformat parameter

left (Float; only for type=fixed, fitheight, fitrect, or fitvisibleheight) The x coordinate of the page
which will positioned at the left edge of the window. Default: 0

page (Integer) Page number of the destination page (first page is 1). The page must exist in the destination PDF.
Page 0 means the current page if in scope page, and page 1 if in scope document. Note that due to a bug
Acrobat 6.0 will ignore the page number, and will always jump to page 1. This bug has been fixed in
Acrobat 6.0.1, and is not present in older versions. Default: 0

136 Chapter 10: Interactive Features

right (Float; only for type=fitrect) The x coordinate of the page which will positioned at the right edge of
the window. Default: 1000

top (Float; only for type=fixed, fitwidth, fitrect, or fitvisiblewidth) The y coordinate of the page
which will positioned at the top edge of the window. Default: 1000

type (Keyword) Specifies the location of the window on the target page. Supported keywords (default:
fitwindow):

fitheight Fit the page height to the window, with the x coordinate left at the left edge of the window.
fitrect Fit the rectangle specified by left, bottom, right, and top to the window.
fitvisible Fit the visible contents of the page (the ArtBox) to the window.
fitvisibleheight

Fit the visible contents of the page to the window with the x coordinate left at the left edge
of the window.

fitvisiblewidth
Fit the visible contents of the page to the window with the y coordinate top at the top edge of
the window.

fitwidth Fit the page width to the window, with the y coordinate top at the top edge of the window.
fitwindow Fit the complete page to the window.
fixed Use a fixed destination view specified by the left, top, and zoom options. If any of these is

missing its current value will be retained.

zoom (Float or percentage; only for type=fixed) The zoom factor (1 means 100%) to be used to display the
page contents. If this option is missing or 0 the zoom factor which was in effect when the link was acti-
vated will be retained.

Table 10.3 Destination options for PDF_add_nameddest(), as well as for the destination option in PDF_create_action(),
PDF_create_annotation(), PDF_create_bookmark(), and PDF_begin/end_document().

option explanation

10.4 Annotations 137

10.4 Annotations

C++ Java void create_annotation(double llx, double lly, double urx, double ury, String type, String optlist)
Perl PHP PDF_create_annotation(resource p, float llx, float lly, float urx, float ury, string type, string optlist)

C void PDF_create_annotation(PDF *p,
double llx, double lly, double urx, double ury, const char *type, const char *optlist)

Create a rectangular annotation on the current page.

llx, lly, urx, ury x and y coordinates of the lower left and upper right corners of the an-
notation rectangle in default coordinates (if the usercoordinates parameter or option is
false) or user coordinates (if it is true). Acrobat will align the upper left corner of the an-
notation at the upper left corner of the specified rectangle.

Note that annotation coordinates are different from the parameters of the PDF_rect()
function. While PDF_create_annotation() expects parameters for two corners directly,
PDF_rect() expects the coordinates of one corner, plus width and height values.

If the usematchbox option has been specified, the llx/lly/urx/ury parameters will be ig-
nored.

type The type of the annotation, specified by one of the following keywords:
> 3D: (PDF 1.6) animated 3D model

Options specific for this type: 3Dactivate, 3Ddata, 3Dinteractive, 3Dshared, 3Dinitialview
> Circle: circle annotation

Options specific for this type: interiorcolor
> FileAttachment: (not for PDF/A) file attachment annotation. Acrobat Reader 5 is un-

able to deal with file attachments and will display a question mark instead. File at-
tachments do not work in Adobe Reader.
Options specific for this type: filename, iconname, mimetype

> FreeText: free text annotation
Options specific for this type: alignment, fillcolor, font, fontsize, orientate

> Highlight: highlight annotation
Options specific for this type: polylinelist

> Ink: ink annotation
Options specific for this type: polylinelist

> Line: line annotation
Options specific for this type: endingstyles, interiorcolor, line

> Link: link annotation
Options specific for this type: destination, destname, highlight

> Movie: movie or sound annotations; the filename option must refer to a media file in
one of the following formats: AVI or QuickTime movie, WAV or AIFF sound.
Options specific for this type: filename, movieposter, playmode, showcontrols,
soundvolume, windowscale, windowposition

> Polygon: (PDF 1.5) polygon annotation (vertices connected by straight lines)
Options specific for this type: polylinelist

> PolyLine: (PDF 1.5) polyline annotation; similar to polygons, except that the first and
last vertices are not connected.
Options specific for this type: endingstyles, interiorcolor, polylinelist

> Popup: pop-up annotation
Options specific for this type: open, parentname

138 Chapter 10: Interactive Features

> Square: square annotation
Options specific for this type: interiorcolor

> Squiggly: (PDF 1.4) squiggly-underline annotation
Options specific for this type: polylinelist

> Stamp: rubber stamp annotation
Options specific for this type: iconname, orientate

> StrikeOut: strikeout annotation
Options specific for this type: polylinelist

> Text: text annotation. In Acrobat this type is called note annotation.
Options specific for this type: iconname, open

> Underline: underline annotation
Options specific for this type: polylinelist

optlist An option list specifying annotation properties according to Table 10.4. The fol-
lowing options are supported by all annotation types (see above for additional type-
specific options):
action, annotcolor, borderstyle, cloudy, contents, createdate, custom, dasharray, display,
hypertextencoding, layer, linewidth, locked, name, opacity, popup, readonly, rotate, subject,
title, usematchbox, usercoordinates, zoom

Details In all PDF/X modes annotations are only allowed if they are positioned completely out-
side of the BleedBox (or TrimBox/ArtBox if no BleedBox is present). Restrictions in PDF/
A mode are listed in Table 10.4.

Tagged PDF: the annotation will be inserted as a child of the current item if an item is
currently active.

Scope page

Table 10.4 Options for PDF_create_annotation()

option explanation

3Dactivate (Option list; only for type=3D) Specifies when the 3D annotation should be activated and its state upon
activation/deactivation. Supported options:
enable (Keyword) Specifies when the animation should be enabled. Default: click.

open Activate when the page is opened.
visible Activate when the page becomes visible.
click Annotation must explicitly be activated by a script or user action.

enablestate (Keyword) Initial animation state. Default: play.
pause The 3D model is instantiated, but script animations are disabled.
play The 3D model is instantiated; script animations are enabled if present.

disable (Keyword) Specifies when the animation should be disabled. Default: invisible.
close Deactivate when the page is closed.
invisible Deactivate when the page becomes invisible.
click Annotation must explicitly be deactivated by a script or user action.

disablestate (Keyword) State of the animation upon disabling. Default: reset.
pause The 3D model can be rendered, but animations are disabled.
play The 3D model can be rendered and animations are enabled.
reset Initial state of the 3D model before it has been used in any way.

modeltree (Boolean; PDF 1.6) If true, the Model Tree navigation tab will be opened when the annotation
is activated. Default: false

toolbar (Boolean; PDF 1.6) If true, the 3D toolbar (at the top of the annotation) will be displayed
when the annotation is activated. Default: true

3Ddata (3D handle; only for type=3D; required) 3D handle created with PDF_load_3ddata().

10.4 Annotations 139

3Dinteractive (Boolean; only for type=3D) If true, the 3D model is intended for interactive use. If false, it is intended to
be manipulated with JavaScript. Default: true

3Dshared (Boolean; only for type=3D) If true, the 3D data specified in the 3Ddata option will be referenced indirect-
ly. Multiple 3D annotations which indirectly reference the same data share a single run-time instance of
the model. This means that changes will be visible in all such annotations simultaneously. Default: false

3Dinitialview (Keyword or 3D view handle) Specifies the initial view of the 3D model; One of the keywords first, last,
(referring to the respective entries in the views option of PDF_load_3ddata()), or default (referring to
the model’s defaultview option), or a 3D view handle created with PDF_create_3dview(). Default:
default

action (Action list) List of annotation actions for the following events (default: empty list). All types of actions
are permitted:
activate (Only for type=Link) Actions to be performed when the annotation is activated.
close (PDF 1.5) Actions to be performed when the page containing the annotation is closed.
open (PDF 1.5) Actions to be performed when the page containing the annotation is opened.
invisible (PDF 1.5) Actions to be performed when the page containing the annotation is no longer

visible.
visible (PDF 1.5) Actions to be performed when the page containing the annotation becomes visible.

alignment (Keyword; only for type=FreeText) Alignment of text in the annotation: left, center, or right. This op-
tion does not work in Acrobat 6, which always uses left. Default: left

annotcolor (Color) The color of the background of the annotation’s icon when closed, the title bar of the annotation’s
pop-up window, and the border of a link annotation. Supported color spaces: none (not for type=Square,
Circle), gray, rgb, and (in PDF 1.6) cmyk.
In PDF/A mode this option must only be used if an RGB output intent has been specified, and gray or rgb
color must be used.
Default: white for type=Square, Circle, otherwise none

annotwarning Deprecated, and not required

borderstyle (Keyword) Style of the annotation border or the line of the annotation types Polygon, PolyLine, Line,
Square, Circle, Ink: solid, beveled, dashed, inset, or underline. Note that the beveled, inset, and
underline styles do not work reliably in Acrobat. Default: solid

cloudy (Float; only for type=Polygon; PDF 1.5) Specifies the intensity of the »cloud« effect used to render the
polygon. Possible values are 0 (no effect), 1, and 2. If this option is used the borderstyle option will be ig-
nored. Default: 0

contents (Hypertext string with a maximum length of 65535 bytes) Text to be displayed for the annotation or (if
the annotation does not display text) an alternate description of its contents in human-readable form.
Carriage return or line feed characters can be used to force a new paragraph.
This option is required – but may be an empty string – for type=Circle, FileAttachment, FreeText,
Highlight, Ink, Line, Polygon, PolyLine, Square, Squiggly, Stamp, Strikeout, Text, Underline. If
type=FreeText this option must be of type string. This option is optional for type=Link, PopUp.
In PDF/A-1a mode this option is required and must contain a non-empty string.

createdate (Boolean; PDF 1.5 or above) If true, a date/time entry will be created for the annotation. Default: false

Table 10.4 Options for PDF_create_annotation()

option explanation

140 Chapter 10: Interactive Features

custom (List of option lists; only for advanced users) This option can be used to insert an arbitrary number of pri-
vate entries in the annotation dictionary, which may be useful for specialized applications such as insert-
ing processing instructions for digital printing machines. Using this option requires knowledge of the PDF
file format and the target application. Corrupt PDF output may be generated if unsuitable values are
supplied. Each list must contain three options:
key (string) Name of the dictionary key (excluding the / character). Any non-standard PDF key

can be specified, as well as the following standard keys: Contents, Name (option iconname), NM
(option name), and Open. The corresponding options will be ignored in this case.

type (keyword) Type of the corresponding value, which must be one of boolean, name, or string
value (Hypertext string if type=string, otherwise string) Value as it will appear in the PDF output;

PDFlib will automatically apply any decoration required for strings and names.

dasharray (List of floats; only for borderstyle=dashed). The lengths of dashes and gaps for a dashed border in de-
fault units (see PDF_setdash()). Default: 3 3

destination (Option list; only for type=Link; will be ignored if an activate action has been specified) Option list ac-
cording to Table 10.3 defining the destination to jump to

destname (Hypertext string; only for type=Link; will be ignored if the destination option has been specified)
Name of a destination which has been defined with PDF_add_nameddest(). Actions created with the
destination or destname options of PDF_create_action() are dominant over this option.

display (Keyword) Visibility on screen and paper: visible, hidden, noview, noprint. Default: visible

endingstyles (Keyword list; only for type=Line, PolyLine) A list with two keywords specifying the line ending styles:
none, square, circle, diamond, openarrow, closedarrow. Default: {none none}

filename (String; only for type=FileAttachment and Movie; required) The file associated with the annotation. It is
recommended to use only ASCII characters in the file name.

fillcolor (Color; only for type=FreeText) Fill color of the text. Supported color spaces: gray, rgb, cmyk.
In PDF/A mode this option must only be used if an RGB or CMYK output intent has been specified, and a
corresponding rgb or cmyk color space must be used.
Default: {gray 0} (=black)

font (Font handle; only for type=FreeText; required) Specifies the font to be used for the annotation. Only
PDF core fonts and the following encodings are allowed: any 8-bit encoding, Unicode CMaps, builtin.

fontsize (Float or option list; only for type=FreeText; required) The font size in default or user coordinates de-
pending on the usercoordinates option or parameter. See PDF_fit_textline() for details.

highlight (Keyword; only for type=Link) Highlight mode of the annotation when the user clicks on it: none,
invert, outline, push. Default: invert

hypertext-
encoding

(Keyword) Specifies the encoding for the supplied text. An empty string is equivalent to unicode. Default:
the value of the global hypertextencoding parameter

iconname (String; only for type=Text, Stamp, FileAttachment) Name of an icon to be used in displaying the anno-
tation (to create an annotation without any visible icon set opacity=0):
For type=Text (default: note):

comment , key , note , help , newparagraph , paragraph , insert

For type=Stamp (default: draft):
approved, experimental, notapproved, asis, expired, notforpublicrelease, confidential, final,
sold, departmental, forcomment, topsecret, draft, forpublicrelease
For type=FileAttachment (default: pushpin):

graph , pushpin , paperclip , tag

Table 10.4 Options for PDF_create_annotation()

option explanation

10.4 Annotations 141

interiorcolor (Color; only for type=Line, PolyLine, Square, Circle) The color for the annotation’s line endings, rectan-
gle, or ellipse, respectively. Supported color spaces: none, gray, rgb, and (in PDF 1.6) cmyk.
In PDF/A mode this option must only be used if an RGB output intent has been specified, and gray or rgb
color must be used.
Default: none

layer (Layer handle; PDF 1.5) Layer to which the annotation will belong. The annotation will only be visible if
the corresponding layer is visible.

line (List of 4 floats; only for type=Line; required) A list of four numbers x1, y1, x2, y2 specifying the start and
end coordinates of the line in default coordinates (if the usercoordinates option or parameter is false)
or user coordinates (if it is true).

linewidth (Integer) Width of the annotation border or the line of the annotation types Line, PolyLine, Polygon,
Square, Circle, Ink in default units (=points). If linewidth=0 the border will be invisible. Default: 1

locked (Boolean) If true, the annotation properties cannot be edited in Acrobat. Default: false

mimetype (String; only for type=FileAttachment) MIME type of the file. Acrobat will use it for launching the ap-
propriate application when the annotation is activated.

movieposter (Keyword; only for type=Movie) Keyword which specifies a poster image representing the movie on the
page. Supported keywords (default: none):
auto The poster image will be retrieved from the movie file.
none No poster will be displayed.

name (Hypertext string) Name uniquely identifying the annotation. The name is necessary for some actions,
and must be unique on the page. Default: none

opacity (Float or percentage; PDF 1.4) The constant opacity value (0-1 or 0%-100%) to be used in painting the
annotation. Default: 1

open (Boolean; only for type=Text, Popup) If true, the annotation will initially be displayed open. Default:
false

orientate (Keyword; only for type=FreeText, Stamp) Specifies the desired orientation of the annotation within its
rectangle. Supported keywords (default: north):
north upright
east pointing to the right
south upside down
west pointing to the left

parentname (String; only for type=PopUp) Name of the parent annotation for the annotation

playmode (Keyword; only for type=Movie) The mode for playing the movie or sound. Supported keywords (default:
once):

once Play once and stop.
open Play and leave the movie controller bar open.
repeat Play repeatedly from beginning to end until stopped.
palindrome Play continuously forward and backward until stopped.

Table 10.4 Options for PDF_create_annotation()

option explanation

142 Chapter 10: Interactive Features

polylinelist (List containing one or more lists of floats; only for type=Polygon, PolyLine, Ink, Highlight, Underline,
Squiggly, Strikeout). The coordinates will be interpreted in default coordinates (if the usercoordinates
option is false) or user coordinates (if it is true). Default: a polyline connecting the vertices of the anno-
tation rectangle.
type=Polygon, PolyLine, Ink

A single list containing a polyline with n segments (minimum: n=2). A polyline is a list of 2 x n
float values specifying coordinate pairs. The points will be connected by straight lines.
Example for n=3: {{10 20 30 40 50 60 }}

others The list contains n sublists with 8 float values each, specifying n quadrilaterals (minimum:
n=1). Each quadrilateral encompasses a word or group of contiguous words in the text
underlying the annotation. The coordinates for each quadrilateral are given as x4 y4 x3 y3 x1
y1 x2 y2 specifying the quadrilateral’s vertices in counterclockwise order (x4 y4 is the upper
left corner). The text is oriented with respect to the edge connecting (x1, y1) and (x2, y2).
Example for n=2: {{1 2 3 4 5 6 7 8} {10 20 30 40 50 60 70 80}}

popup (String) Name of a PopUp annotation for entering or editing the text associated with this annotation.
Default: none

readonly (Boolean) If true, do not allow the annotation to interact with the user. The annotation may be dis-
played or printed, but should not respond to mouse clicks or change its appearance in response to mouse
motions. Default: false

rotate (Boolean; must not be set to true for text annotations in PDF/A mode) If true, rotate the annotation to
match the rotation of the page. Otherwise the annotation’s rotation will remain fixed. This option will
be ignored for the icons of text annotations. Default: false for text annotations in PDF/A mode, true
otherwise

showcontrols (Boolean; only for type=Movie) If true a controller bar while playing the movie or sound will be dis-
played. Default: false

soundvolume (Float; only for type=Movie) The initial sound volume at which to play the movie, in the range -1.0 to 1.0.
Higher values denote greater volume; negative values mute the sound. Default: 1.0

subject (Hypertext string; PDF 1.5) Text representing a short description of the subject being addressed by the an-
notation. Default: none

title (Hypertext string; recommended for movie annotations) The text label to be displayed in the title bar of
the annotation’s pop-up window when open and active. This string corresponds to the »Author« field in
Acrobat. The maximum length of title is 255 single-byte characters or 126 Unicode characters. However,
a practical limit of 32 characters is advised. Default: none

usematchbox (List of strings) The llx/lly/urx/ury parameters will be ignored, and the matchbox will be used instead.
The first element in the option list is a name string which specifies a matchbox. The second element is ei-
ther an integer specifying the number of the desired rectangle, or the keyword all to specify all rectan-
gles referring to the selected matchbox. If the second element is missing, it defaults to all.
If the matchbox itself or the specified rectangle does not exist on the current page, the function will si-
lently return without creating any annotation.

user-
coordinates

(Boolean) If false, annotation coordinates and font size will be expected in the default coordinate sys-
tem; otherwise the current user coordinate system will be used. Default: the value of the global
usercoordinates parameter

window-
position

(List of 2 floats or keywords; only for type=Movie) For floating movie windows, the relative position of
the window on the screen. The two values specify the position of the floating window on the screen, with
{0 0} denoting the lower left corner of the screen and {100 100} the upper right corner. The keywords
left, center, right (in horizontal screen direction) or bottom, center, top (in vertical screen direction)
can be used as equivalents for the values 0, 50, and 100. Default: {center center}

Table 10.4 Options for PDF_create_annotation()

option explanation

10.4 Annotations 143

windowscale (Float or keyword; only for type=Movie) The zoom factor at which to play the movie in a floating win-
dow. If the option is absent, the movie will be played in the annotation rectangle. The value of this op-
tion is either a zoom factor for the movie, or the following keyword (default: option is absent, i.e. the
movie is played in the annotation rectangle):
fullscreen The movie will be played using all of the available screen area.

zoom (Boolean; must not be set to true for text annotations in PDF/A mode) If true, scale the annotation to
match the magnification of the page. Otherwise the annotation’s size will remain fixed. This option will
be ignored for the icons of text annotations. Default: false for text annotations in PDF/A mode, true
otherwise

Table 10.4 Options for PDF_create_annotation()

option explanation

144 Chapter 10: Interactive Features

10.5 Form Fields
Cookbook A full code sample can be found in the Cookbook topic webserver/starter_webform.

C++ Java void create_field(double llx, double lly, double urx, double ury,
String name, String type, String optlist)

Perl PHP PDF_create_field(resource p, float llx, float lly, float urx, float ury,
string name, string type, string optlist)

C void PDF_create_field(PDF *p, double llx, double lly, double urx, double ury,
const char *name, int len, const char *type, const char *optlist)

Create a form field on the current page subject to various options.

llx, lly, urx, ury x and y coordinates of the lower left and upper right corners of the
field rectangle in default coordinates (if the usercoordinates parameter or option is false)
or user coordinates (if it is true).

Note that form field coordinates are different from the parameters of the PDF_rect()
function. While PDF_create_field() expects parameters for two corners directly, PDF_
rect() expects the coordinates of one corner, plus width and height values.

name (Hypertext string) The form field name, possibly prefixed with the name(s) of
one or more groups which have been created with PDF_create_fieldgroup(). Group names
must be separated from each other and from the field name by a period ».« character.
Field names must be unique on a page, and must not end in a period ».« character.

len (C language binding only) Length of text (in bytes) for UTF-16 strings. If len = 0 a
null-terminated string must be provided.

type The field type according to Table 10.5.

Table 10.5 Form field types

type icon Options specific for this type

pushbutton buttonlayout, caption, captiondown, captionrollover, charspacing, fitmethod, icon, icondown,
iconrollover, position, submitname

checkbox currentvalue, itemname

radiobutton buttonstyle, currentvalue, itemname, toggle, unisonselect
The name must be prefixed with a group name since radio buttons must always belong to a
group. For all other field types group membership is optional.

listbox charspacing, currentvalue, itemnamelist, itemtextlist, multiselect, sorted, topindex

combobox commitonselect, charspacing, currentvalue, editable, itemnamelist, itemtextlist, sorted,
spellcheck

textfield comb, charspacing, currentvalue, fileselect, maxchar, multiline, password, richtext, scrollable,
spellcheck

signature charspacing, lockmode

http://www.pdflib.com/pdflib-cookbook/pdf-on-the-web-server/starter-webform

10.5 Form Fields 145

optlist An option list specifying the field’s properties according to Table 10.6. String
options will be interpreted as hypertext strings or text strings as noted in the table. The
following options are supported for all field types (see Table 10.5 for more type-specific
options):
action, alignment, backgroundcolor, bordercolor, borderstyle, calcorder, dasharray,
defaultvalue, display, errorpolicy, exportable, fieldtype, fillcolor, font, fontsize, highlight,
hypertextencoding, hypertextformat, layer, linewidth, locked, orientate, readonly, required,
strokecolor, taborder, tooltip, usercoordinates

Details The tab order of the fields on the page (the order in which they receive the focus when
the tab key is pressed) is determined by the order of calls to PDF_create_field() by default,
but a different order can be specified with the taborder option. The tab order can not be
modified after creating the fields. However, this behavior can be overridden with the
taborder option of PDF_begin/end_page_ext().

In Acrobat it is possible to assign a format (number, percentage, etc.) to text fields.
However, this is not specified in the PDF reference, but implemented with custom Java-
Script. You can achieve the same effect by attaching JavaScript actions to the field which
refers to the predefined (but not standardized) JavaScript functions in Acrobat.

This function must not be called in PDF/A mode.
In all PDF/X modes form fields are only allowed if they are positioned completely

outside of the BleedBox (or TrimBox/ArtBox if no BleedBox is present).
Tagged PDF: the field will be inserted as a child of the current item if an item is cur-

rently active.

Scope page

C++ Java void create_fieldgroup(String name, String optlist)
Perl PHP PDF_create_fieldgroup(resource p, string name, string optlist)

C void PDF_create_fieldgroup(PDF *p, const char *name, int len, const char *optlist)

Create a form field group subject to various options.

name (Hypertext string) The name of the form field group, which may in turn be pre-
fixed with the name of another group. Field groups can be nested to an arbitrary level.
Group names must be separated with a period ».« character. Group names must be
unique within the document, and must not end in a period ».« character.

len (C language binding only) Length of text (in bytes) for UTF-16 strings. If len = 0 a
null-terminated string must be provided.

optlist An option list specifying field properties according to Table 10.6.

Details Field groups are useful for mirroring the contents of a field in one or more other fields.
If the name of a field group is provided as prefix for a field name created with PDF_
create_field(), the new field will be part of this group. All field property options provided
in the optlist for a group will be inherited by all fields belonging to this group.

Scope page, document

146 Chapter 10: Interactive Features

Table 10.6 Options for field properties with PDF_create_field() and PDF_create_fieldgroup()

option explanation

action (Action list) List of field actions for one or more of the following events. The activate event is allowed for
all field types, the other events are not allowed for type=pushbutton, checkbox, radiobutton. Default:
empty list
activate Actions to be performed when the field is activated.
blur Actions to be performed when the field loses the input focus.
calculate JavaScript actions to be performed in order to recalculate the value of this field when the

value of another field changes.
close (PDF 1.5) Actions to be performed when the page containing the field is closed.
down Actions to be performed when the mouse button is pressed inside the field’s area.
enter Actions to be performed when the mouse enters the field’s area.
exit Actions to be performed when the mouse exits the field’s area.
focus Actions to be performed when the field receives the input focus.
format JavaScript actions to be performed before the field is formatted to display its current value.

This allows the field’s value to be modified before formatting.
invisible (PDF 1.5) Actions to be performed when the page containing the field is no longer visible.
keystroke JavaScript actions to be performed when the user types into a text field or combo box, or

modifies the selection in a scrollable list box.
open (PDF 1.5) Actions to be performed when the page containing the field is opened.
up Actions to be performed when the mouse button is released inside the field’s area (this is

typically used to activate a field).
validate JavaScript actions to be performed when the field’s value is changed. This allows the new

value to be checked for validity.
visible (PDF 1.5) Actions to be performed when the page containing the field becomes visible.

alignment (Keyword) Alignment of text in the field: left, center, right. Default: left

background-
color
bordercolor

(Color) Color of the field background or border. Supported color spaces: none, gray, rgb, cmyk. Default:
none

borderstyle (Keyword) Style of the field border, which is one of solid, beveled, dashed, inset, underline. Default:
solid

button-
layout

(Keyword; only for type=pushbutton) The position of the button caption relative to the button icon, pro-
vided both have been specified: below, above, right, left, overlaid. Default: right

buttonstyle (Keyword; only for type=radiobutton and checkbox) Specifies the symbol to be used for the field: check,
cross, diamond, circle, star, square. Default: check

calcorder (Integer; only used if the field has a JavaScript action for the calculate event) Specifies the calculation or-
der of the field relative to other fields. Fields with smaller numbers will be calculated before fields with
higher numbers. Default: 10 plus the maximum calcorder used on the current page (and 10 initially)

caption (Content string; only for type=pushbutton; one of the caption or icon options must be supplied for push
buttons) The caption text which will be visible when the button doesn’t have input focus. Use an empty
string (i.e. caption { }) if you don’t want caption nor icon. Default: none

captiondown (Content string; only for type=pushbutton) The caption text which will be visible when the button is ac-
tivated. Default: none

caption-
rollover

(Content string; only for type=pushbutton) The caption text which will be visible when the button has
input focus. Default: none

charspacing (Float; not for type=radiobutton, checkbox) The character spacing for text in the field in units of the
current user coordinate system. This option is ignored by Acrobat 7. Default: 0

10.5 Form Fields 147

comb (Boolean; only for type=textfield; PDF 1.5) If true and the multiline, fileselect, and password op-
tions are false, and the maxchar option has been supplied with an integer value, the field will be divided
into a number of equidistant subfields (according to the maxchar value) for individual characters. De-
fault: false

commit-
onselect

(Boolean; only for type=listbox, combobox; PDF 1.5) If true, an item selected in the list will be committed
immediately upon selection. If false, the item will only be committed upon exiting the field. Default:
false

currentvalue (Not for type=pushbutton, signature) The field’s initial value. Type and default depend on the field type:
checkbox, radiobutton

(String) Arbitrary string other than Off means that the button is activated; Acrobat 6 shows
erratic behavior if itemname is specified and/or unisonselect is true. The string Off means
that the button is deactivated. This option should be set for the first button. Default: Off

textfield, combobox
(Content string) Contents of the field. Default: empty

listbox (List of integers) Indices of the selected items within itemtextlist. Default: none

dasharray (List of floats; only for borderstyle=dashed). The lengths of dashes and gaps for a dashed border in de-
fault units (see PDF_setdash()). Default: 3 3

defaultvalue The field’s value after a reset action. Types and defaults are the same as for the currentvalue option. Ex-
ception: for listboxes only a single integer value is allowed.

display (Keyword) Visibility on screen and paper: visible, hidden, noview, noprint. Default: visible

editable (Boolean; only for type combobox) If true, the currently selected text in the box can be edited. Default:
false

errorpolicy (Keyword) Controls the behavior in case of an error (see Section 2.6, »Exception Handling«, page 29)

exportable (Boolean) The field will be exported when a SubmitForm action happens. Default: true

fieldtype (Keyword; only for PDF_create_fieldgroup()) Type of the fields contained in the group: mixed,
pushbutton, checkbox, radiobutton, listbox, combobox, textfield, or signature. Unless
fieldtype=mixed the group may only contain fields of the specified type. If a particular fieldtype has
been specified for the group, the current value is displayed in all contained fields simultaneously, even if
the fields are located on separate pages. If fieldtype=radiobutton the option unisonselect must be
supplied. The options itemtextlist, itemnamelist, currentvalue and defaultvalue must be specified
in the options of PDF_create_fieldgroup(), and not in the options of PDF_create_field(). Default: mixed

fieldwarning Deprecated, use errorpolicy

fileselect (Boolean; only for type=textfield) If true, the text in the field will be treated as a file name. Default:
false

fillcolor (Color) Fill color for text. Supported color spaces: gray, rgb, cmyk. Default: {gray 0} (=black)

fitmethod (Keyword; only for type=pushbutton) Method of placing a template provided with the icon, icondown,
and iconrollover options within the button. Supported keywords (default: meet):
auto same as meet if the template fits into the button, otherwise clip
nofit same as clip
clip template will not be scaled, but clipped at the field border
meet template will be scaled proportionally so that it fits into the button
slice same as meet
entire template will be scaled so that it fully fits into the button

Table 10.6 Options for field properties with PDF_create_field() and PDF_create_fieldgroup()

option explanation

148 Chapter 10: Interactive Features

font (Font handle; required except for type=radiobutton and checkbox which always use ZapfDingbats; for
type=pushbutton it is only required if one or more of the caption, captionrollover, or captiondown op-
tions are specified). Specifies the font to be used for the field. The following options must have been set in
the corresponding call to PDF_load_font(): embedding (with the exception of core fonts which need not
be embedded), nosubsetting, noautocidfont. Only the following encodings are allowed: 8-bit encod-
ings, any CMaps (but only for standard CJK fonts), builtin

fontsize (Float, option list, or keyword) Font size in user coordinates. If the keyword auto is supplied instead of a
float value Acrobat will determine the font size automatically. See PDF_fit_textline() for details. Default:
auto

highlight (Keyword) Highlight mode of the field when the user clicks on it: none, invert, outline, push. Default:
invert

hypertext-
encoding

(Keyword) Specifies the encoding for the name parameter. An empty string is equivalent to unicode. De-
fault: the value of the global hypertextencoding parameter

hypertext-
format

(Keyword) Sets the format for the name parameter. Possible values are bytes, utf8, utf16, utf16le,
utf16be, and auto. Default: the value of the hypertextformat parameter

icon (Template handle1; only for type=pushbutton; one of the caption or icon options must be supplied for
push buttons) Handle for a template which will be visible when the button doesn’t have input focus. De-
fault: none

icondown (Template handle1; only for type=pushbutton) Handle for a template which will be visible when the but-
ton is activated. Default: none

iconrollover (Template handle1; only for type=pushbutton) Handle for a template which will be visible when the but-
ton has input focus. Default: none

itemname (Hypertext string; only for type=radiobutton, checkbox; must be used if the export value is not a Latin 1
string) Export value of the field. Item names for multiple radio buttons in a group may be identical. Acro-
bat 6: Checkboxes within a group which have the same item name will be switched on or off simulta-
neously, even if they are located on separate pages. Default: field name

item-
namelist

(Hypertext string; only for type=listbox, combobox) Export values of the list items. Multiple items may
have the same export value. Default: none

itemtextlist (List of content strings; only for type=listbox and combobox, and required in these cases) Text contents
for all items in the list. If both itemnamelist and itemtextlist are specified both must contain the
same number of strings.

layer (Layer handle; PDF 1.5) Layer to which the field will belong. The field will only be visible if the correspond-
ing layer is visible.

linewidth (Integer) Line width of the field border in default units (=points). Default: 1

locked (Boolean) If true, the field properties cannot be edited in Acrobat. Default: false

lockmode (Keyword; only for type=signature; PDF 1.5) Indicates the set of fields that should be locked when the
field is signed:
all All fields in the document will be locked.

maxchar (Integer or keyword; only for type=textfield) The upper limit for the number of text characters in the
field, or the keyword unlimited if there is no limit. Default: unlimited

multiline (Boolean; only for type=textfield) If true, text will be wrapped to multiple lines if required. Default:
false

multiselect (Boolean; only for type=listbox) If true, multiple items in the list can be selected. Default: false

Table 10.6 Options for field properties with PDF_create_field() and PDF_create_fieldgroup()

option explanation

10.5 Form Fields 149

orientate (Keyword) Orientation of the contents within the field: north, west, south, east. Default: north

password (Boolean; only for type=textfield) If true, the text will be simulated with bullets or asterisks upon in-
put. Default: false

position (List of floats or keywords; only for type=pushbutton) One or two values specifying the position of a tem-
plate provided with the icon... options within the field rectangle, with {0 0} being the lower left corner of
the field, and {100 100} the upper right corner. The values are expressed as percentages of the field rect-
angle’s width and height. If both percentages are equal it is sufficient to specify a single float value.
The keywords left, center, right (in x direction) or bottom, center, top (in y direction) can be used as
equivalents for the values 0, 50, and 100. If only one keyword has been specified, the corresponding key-
word for the other direction will be added. Default: {center}. Examples:
{0 50} or {left center} left-justified template
{50 50} or {center} centered template
{100 50} or {right center}right-justified template

readonly2 (Boolean) If true, the field does not allow any input. Default: false

required (Boolean) If true, the field must contain a value when the form is submitted. Default: false

richtext (Boolean; only for type=textfield; PDF 1.5) Allow rich text formatting. If true, the fontsize must not be
0, and fillcolor must not use color space cmyk. Default: false

scrollable (Boolean; only for type=textfield) If true, text will be moved to the invisible area outside the field if
the text doesn’t fit into the field. If false, no more input will be accepted when the text fills the full field.
Default: true

sorted (Boolean; only for type=listbox and combobox) If true, the contents of the list will be sorted. Default:
false

spellcheck (Boolean; only for type=textfield and combobox) If true, the spell checker will be active in the field. De-
fault: true

strokecolor (Color) Stroke color for text. Supported color spaces: gray, rgb, cmyk. Default: {gray 0} (=black).

submitname (Hypertext string; recommended only for type=pushbutton) URL-encoded string of the Internet address
to which the form will be submitted. Default: none

taborder (Integer) Specifies the tab order of the field relative to other fields. Fields with smaller numbers will be
reached before fields with higher numbers. Default: 10 plus the maximum taborder used on the current
page (and 10 for the first field on the page); the result of this default is that the creation order will specify
the tab order.

toggle (Boolean; only for PDF_create_fieldgroup() and type=radiobutton) If true, a radio button within a
group can be activated and deactivated by clicking. If false, it can only be activated by clicking, and de-
activating by clicking another button. Default: false

tooltip2 (Hypertext string) The text visible in the field’s tooltip. For radio buttons and groups Acrobat will always
use the tooltip of the first button in the group, others will be ignored. Default: none

topindex (Integer; only for type=listbox) Index of the first visible entry. The first item has index 0. Default: 0

unisonselect (Boolean; only for PDF_create_fieldgroup(), type=radiobutton and PDF 1.5) If true, radio buttons with
the same field name or item name will be selected simultaneously. Default: false

user-
coordinates

(Boolean) If false, field coordinates will be expected in the default coordinate system; otherwise the cur-
rent user coordinate system will be used. Default: the value of the global usercoordinates parameter

1. Templates for icons can be created with the PDF_begin_template() function; if the icon consists of an image only you can create the
template by supplying the template option to PDF_load_image().
2. For type=radiobutton this option should not be used with PDF_create_field(), but only with PDF_create_fieldgroup().

Table 10.6 Options for field properties with PDF_create_field() and PDF_create_fieldgroup()

option explanation

150 Chapter 10: Interactive Features

10.6 Bookmarks

C++ Java int create_bookmark(String text, String optlist)
Perl PHP int PDF_create_bookmark(resource p, string text, string optlist)

C int PDF_create_bookmark(PDF *p, const char *text, int len, const char *optlist)

Create a bookmark subject to various options.

text (Hypertext string) Contains the text of the bookmark. The maximum length of
text is 255 single-byte characters (8-bit encodings), or 126 Unicode characters. However, a
practical limit of 32 characters for text is recommended.

len (C language binding only) Length of text (in bytes) for UTF-16 strings. If len = 0 a
null-terminated string must be provided.

optlist An option list specifying the bookmark’s properties according to Table 10.7. The
following options can be used:
action, destination, destname, fontstyle, hypertextencoding, hypertextformat, index, open,
parent, textcolor

Returns A handle for the generated bookmark, which may be used with the parent option in sub-
sequent calls.

Details This function adds a PDF bookmark with the supplied text. Unless the destination option
has been specified the bookmark will point to the current page (or the last page if used
in document scope, or the first page if used before the first page).

Creating bookmarks sets the openmode option of PDF_begin/end_document() to
bookmarks unless another mode has explicitly been set.

Scope document, page

Table 10.7 Options for PDF_create_bookmark()

option explanation

action (Action list) List of bookmark actions for the following event. Default: GoTo action with the target speci-
fied in the destination option.
activate Actions to be performed when the bookmark is activated. All types of actions are permitted.

destination (Option list; will be ignored if an activate action has been specified) Option list specifying the bookmark
destination according to Table 10.3. Default: {type fitwindow page 0} if destination, destname, and
action are absent.

destname (Hypertext string; may be empty; will be ignored if the destination option has been specified) Name of
a destination which has been defined with PDF_add_nameddest(). Destination or destname actions will
be dominant over this option. If destname is an empty string (i.e. {}) and neither destination nor action
are specified, the bookmark won’t have any action, which may be useful if the bookmark serves as a sep-
arator.

fontstyle (Keyword) Specifies the font style of the bookmark text: normal, bold, italic, bolditalic. Default:
normal

hypertext-
encoding

(Keyword) Specifies the encoding for the supplied text. An empty string is equivalent to unicode. Default:
the value of the global hypertextencoding parameter

hypertext-
format

(Keyword) Set the format for the supplied text. Possible values are bytes, utf8, utf16, utf16le, utf16be, and
auto. Default: the value of the global hypertextformat parameter

10.6 Bookmarks 151

index (Integer) Index where to insert the bookmark within the parent. Values between 0 and the number of
bookmarks of the same level will be used to insert the bookmark at that specific location within the par-
ent. The value -1 can be used to insert the bookmark as the last one on the current level. Default: -1. How-
ever, for inserted or resumed pages bookmarks will be placed as if all pages had been generated in their
physical order (the bookmarks will reflect the page order).

open (Boolean) If false, subordinate bookmarks will not be visible. If true, all children will be folded out. De-
fault: false

parent (Bookmark handle) The new bookmark will be specified as a subordinate of the bookmark specified in
the handle. If parent=0 a new top-level bookmark will be created. Default: 0

textcolor (Color) Specifies the color of the bookmark text. Supported color spaces: none, gray, rgb.
Default: rgb {0 0 0} (=black)

Table 10.7 Options for PDF_create_bookmark()

option explanation

152 Chapter 10: Interactive Features

153

11 Multimedia Features (3D Artwork)
Note Acrobat 7.07 or above is required for viewing PDF documents containing a 3D model.

Cookbook A full code sample can be found in the Cookbook topic multimedia/starter_3d.

C++ Java int load_3ddata(String filename, String optlist)
Perl PHP int PDF_load_3ddata(resource p, string filename, string optlist)

C int PDF_load_3ddata(PDF *p, const char *filename, int len, const char *optlist)

Load a 3D model from a disk-based or virtual file (requires PDF 1.6).

filename (Name string) Name of a disk-based or virtual file containing a 3D model.

len (C language binding only) Length of filename (in bytes) for UTF-16 strings. If len = 0
a null-terminated string must be provided.

optlist An option list specifying properties of the 3D model according to Table 11.1. The
following options can be used: defaultview, errorpolicy, hypertextencoding, script, views

Returns A 3D handle which can be used to create 3D annotations with PDF_create_annotation().
The 3D handle can be used until the end of the enclosing document scope. If
errorpolicy=return the caller must check for a return value of -1 (in PHP: 0) since it signals
an error.

Details The file containing 3D data will be loaded. There is no error checking on the 3D data. The
following 3D file formats are supported in Acrobat viewers:

> Acrobat 7.0.x and 8.0: ECMA-363, Universal 3D File Format (U3D), 1st Edition1

> Acrobat 8.1: as above, plus ECMA-363, Universal 3D File Format (U3D), 3rd Edition

Scope page, document. The returned handle can be used until the next call to PDF_end_
document().

1. See www.ecma-international.org

Table 11.1 Options for PDF_load_3ddata()

option explanation

defaultview (Keyword or 3D view handle) Specifies the initial view of the 3D annotation; One of the keywords first
or last (referring to the respective entries in the views option), or a 3D view handle created with PDF_
create_3dview(). Default: first

errorpolicy (Keyword) Controls the behavior in case of an error (see Section 2.6, »Exception Handling«, page 29)

hypertext-
encoding

(Keyword) Specifies the encoding for the supplied script. An empty string is equivalent to unicode. De-
fault: the value of the global hypertextencoding parameter

script (Hypertext string) String containing JavaScript code to be executed when the 3D model is instantiated.
Default: no script

views (list of 3D view handles) List of predefined views for the 3D model. Each list element is a 3D view handle
created with PDF_create_3dview(). Default: empty list

http://www.ecma-international.org/
http://www.pdflib.com/pdflib-cookbook/multimedia/starter-3d

154 Chapter 11: Multimedia Features (3D Artwork)

C++ Java int create_3dview(String username, String optlist)
Perl PHP int PDF_create_3dview(resource p, string username, string optlist)

C int PDF_create_3dview(PDF *p, const char *username, int len, const char *optlist)

Create a 3D view (requires PDF 1.6).

username (Hypertext string) User interface name of the 3D view.

len (C language binding only) Length of username (in bytes) for UTF-16 strings. If len =
0 a null-terminated string must be provided.

optlist An option list specifying 3D view properties according to Table 11.2. The follow-
ing options can be used: background, camera2world, cameradistance, errorpolicy, hypertext-
encoding, lighting, name, rendermode

Returns A 3D view handle which can be used until the end of the enclosing document scope. If
errorpolicy=return the caller must check for a return value of -1 (in PHP: 0) since it signals
an error.

Details The 3D view handle can be attached to 3D models with the views option in PDF_load_
3ddata() or can be used to create 3D annotations with PDF_create_annotation() or 3D-
related actions with PDF_create_action().

Scope page, document. The returned handle can be used until the next call to PDF_end_
document().

Table 11.2 Options for PDF_create_3dview()

option explanation

background (Option list) Specifies the background for the 3D model:
fillcolor (Color) Background color, expressed in the RGB color space. Default: white
entire (Boolean) If true, the background applies to the entire annotation; otherwise it applies only

to the rectangle specified in the annotations’s 3Dbox option. Default: false

camera2world (List of 12 floats) 3D transformation matrix specifying position and orientation of the camera in world co-
ordinates. Default: defined internally in the 3D data

camera-
distance

(Float; must not be negative; will be ignored if camera2world is not specified) Distance between the cam-
era and the center of the orbit. Default: defined internally in the 3D data

errorpolicy (Keyword) Controls the behavior in case of an error (see Section 2.6, »Exception Handling«, page 29)

hypertext-
encoding

(Keyword) Specifies the encoding for the supplied name and username. An empty string is equivalent to
unicode. Default: the value of the global hypertextencoding parameter

155

lighting (Option list; PDF 1.7) Specifies the lighting scheme for the 3D artwork. The following option is supported:
type (Keyword) Specifies the lighting scheme. Supported keywords (Default: Artwork):

Artwork Lights are specified in the 3D artwork.
None No lights; lights specified in the 3D artwork will be ignored.
White Three light-grey infinite lights, no ambient term
Day Three light-grey infinite lights, no ambient term
Night One yellow, one aqua, and one blue infinite light, no ambient term
Hard Three grey infinite lights, moderate ambient term
Primary One red, one green, and one blue infinite light, no ambient term
Blue Three blue infinite lights, no ambient term
Red Three red infinite lights, no ambient term
Cube Six grey infinite lights aligned with the major axes, no ambient term
CAD Three grey infinite lights and one light attached to the camera, no ambient term
Headlamp Single infinite light attached to the camera, low ambient term

name (Hypertext string) Name of the 3D view, which can be used in GoTo actions. This is an optional internal
name which is treated separately from the required username parameter.

rendermode (Option list; PDF 1.7) Specifies the render mode for displaying the 3D artwork. Table 11.3 lists the supported
suboptions.

U3Dpath (Hypertext string) A View Node name used to access a view node within the 3D artwork. Will be ignored
if the camera2world option is specified.

Table 11.3 Suboptions for the rendermode option of PDF_create_3dview()

option explanation

crease (Float in the range 0..180) crease value

facecolor (RGB color or keyword; only for type=Illustration) Face color; this color will be used by several render
modes. The keyword backgroundcolor refers to the current background color. Default: backgroundcolor

opacity (Float in the range 0..1) Opacity for some render modes. Default: 0.5

rendercolor (RGB color) Auxiliary color. This color will be used by several render modes. Default: black

Table 11.2 Options for PDF_create_3dview()

option explanation

156 Chapter 11: Multimedia Features (3D Artwork)

type (Option list; PDF 1.7) Specifies the render mode for displaying the 3D artwork. Supported options:
(Keyword) Specifies the render mode. Supported keywords (Default: Artwork):
Artwork Render mode is specified in the 3D artwork; all other suboptions of the rendermode option

will be ignored.
Solid Displays textured and lit geometric shapes.
SolidWireframe

Displays textured and lit geometric shapes (triangles) with single color edges on top of
them.

Transparent Displays textured and lit geometric shapes (triangles) with an added level of transparency.
TransparentWireframe

Displays textured and lit geometric shapes (triangles) with an added level of transparency.
BoundingBox

Displays textured and lit geometric shapes (triangles) with an added level of transparency,
with single color opaque edges on top of it.

TransparentBoundingBox
Displays bounding boxes faces of each node, aligned with the axes of the local coordinate
space for that node, with an added level of transparency.

TransparentBoundingBoxOutline
Displays bounding boxes edges and faces of each node, aligned with the axes of the local
coordinate space for that node, with an added level of transparency.

Wireframe Displays bounding boxes edges and faces of each node, aligned with the axes of the local
coordinate space for that node, with an added level of transparency.

ShadedWireframe
Displays only edges, though interpolates their color between their two vertices and applies
lighting.

HiddenWireframe
Displays edges in a single color, though removes back-facing and obscured edges.

Vertices Displays only vertices in a single color.
ShadedVertices

Displays only vertices, though uses their vertex color and applies lighting.
Illustration Displays silhouette edges with surfaces, removes obscured lines.
SolidOutline Displays silhouette edges with lit and textured surfaces, removes obscured lines.
ShadedIllustration

Displays silhouette edges with lit and textured surfaces and an additional emissive term to
remove poorly lit areas of the artwork.

Table 11.3 Suboptions for the rendermode option of PDF_create_3dview()

option explanation

12.1 Document Information Fields 157

12 Document Interchange

12.1 Document Information Fields

C++ Java void set_info(String key, String value)
Perl PHP PDF_set_info(resource p, string key, string value)

C void PDF_set_info(PDF *p, const char *key, const char *value)
C void PDF_set_info2(PDF *p, const char *key, const char *value, int len)

Fill document information field key with value.

key (Name string) The name of the document info field, which may be any of the stan-
dard names, or an arbitrary custom name (see Table 12.1). There is no limit for the num-
ber of custom fields. Regarding the use and semantics of custom document information
fields, PDFlib users are encouraged to take a look at the Dublin Core Metadata element
set.1

value (Hypertext string) The string to which the key parameter will be set. Acrobat im-
poses a maximum length of value of 255 bytes. Note that due to a bug in Adobe Reader 6
for Windows the & character does not display properly in some info strings.

len (Only for PDF_set_info2(), and only for the C binding) Length of value (in bytes) for
UTF-16 strings. If len = 0 a null-terminated string must be provided.

Details The supplied info value will only be used for the current document, but not for all docu-
ments generated within the same object scope. If the autoxmp option has been supplied
to PDF_begin/end_document() PDFlib will automatically create synchronized XMP docu-
ment metadata from the info entries supplied to PDF_set_info().

The document info entries will be overwritten by XMP document metadata supplied
to the metadata option of PDF_begin/end_document().

Scope object, document, page. If used in object scope the supplied values will only be used for
the next document.

1. See dublincore.org

Table 12.1 Values for the document information field key

key explanation

Subject Subject of the document

Title Title of the document

Creator Software used to create the document (as opposed to the Producer of the PDF out-
put, which is always PDFlib). Acrobat will display this entry as »Application«.

Author Author of the document

Keywords Keywords describing the contents of the document

Trapped Indicates whether trapping has been applied to the document. Allowed values are
True, False, and Unknown. In PDF/X mode Unknown is not allowed.

http://dublincore.org

158 Chapter 12: Document Interchange

any name other
than CreationDate,
Producer, ModDate,
GTS_PDFXVersion,
GTS_PDFXConfor-
mance,
ISO_PDFEVersion

User-defined field. PDFlib supports an arbitrary number of fields. A custom field
name should only be supplied once. With multiple occurrences of the same field
name the last one will be used. See also moddate option of PDF_begin/end_
document().
Custom document info fields must not contain any space character if XMP meta-
data is created (via the autoxmp or metadata options).

Table 12.1 Values for the document information field key

key explanation

12.2 XMP Metadata 159

12.2 XMP Metadata
As an alternative or in addition to document information fields PDFlib supports XMP
(Extensible Metadata Platform1) as a framework for specifying metadata. XMP is required,
for example, for PDF/A compliance, and is supported by an increasing number of appli-
cations. There are several flavors of XMP support in PDFlib as detailed below.

Automatic XMP synchronization for document info fields. If the autoxmp option in
PDF_begin/end_document() is true, PDFlib will synchronize document information fields
supplied to PDF_set_info() as well as several internally generated entries (e.g.
CreationDate) to the corresponding entries in the document-level XMP metadata.

Document info fields which correspond to a well-known element in one of the stan-
dard XMP schemas will be placed in the appropriate schema. Unknown info fields will
usually be placed in the extended PDF (pdfx) schema, but will be ignored in PDF/A mode.

User-supplied XMP streams. Users can supply full or partial XMP metadata streams to
the metadata option of various functions. This option expects an XMP stream and will
validate it. PDFlib will automatically generate the XDP packet header and trailer.

Cookbook A simple XMP sample can be found in the Cookbook topic interchange/embed_xmp.

For document-level metadata PDFlib will add several internally generated properties
(e.g. CreationDate). In PDF/A mode PDFlib will synchronize relevant entries in user-sup-
plied XMP streams to standard document info fields (analogous to autoxmp mode
which synchronizes document info fields to XMP). However, PDFlib will not synchro-
nize other XMP entries to custom document info fields. Additional requirements for
XMP document metadata for PDF/A are discussed in the PDFlib Tutorial.

In addition to document-level metadata, XMP can be supplied for pages, fonts, ICC
profiles, images, templates, and imported PDF pages. Table 12.2 lists options for XMP
metadata.

1. See www.adobe.com/products/xmp

Table 12.2 Options for XMP metadata in PDF_begin/end_document(), PDF_begin/end_page_ext(), PDF_load_font(),
PDF_load_iccprofile(), PDF_load_image(), PDF_begin_template_ext(), PDF_open_pdi_page()

option description

metadata (Option list; PDF 1.4) Supply metadata for the document or another object. The option list may contain
the following options:
compress (Boolean; not for PDF_begin/end_document()) Compress the XMP metadata stream in the

PDF output. If the option is only supplied in PDF_begin_page_ext() but not in PDF_end_
page_ext(), its value takes precedence over the default. Default: false
PDF/A and PDF/X: compress=true is not allowed.

inputencoding
(Keyword) The encoding to interpret the supplied data. Default: unicode

inputformat
(Keyword) The format of the supplied data. Default: utf8, but bytes if inputencoding is an 8-
bit encoding

filename (Name string; required) The name of a disk-based or virtual file containing well-formed XMP
metadata.

Example: metadata={filename=info.xmp inputencoding=winansi}

http://www.pdflib.com/pdflib-cookbook/document-interchange/embed-xmp
http://www.adobe.com/products/xmp

160 Chapter 12: Document Interchange

12.3 Tagged PDF
The tagged option in PDF_begin_document() must have been set to true in order to gener-
ate Tagged PDF. The lang option must be provided as well.

Tagged PDF mode will automatically be activated if the pdfa option in PDF_begin_
document() has been set to PDF/A-1a:2005.

Cookbook A full code sample can be found in the Cookbook topic interchange/starter_tagged.

C++ Java int begin_item(String tag, String optlist)
Perl PHP int PDF_begin_item(resource p, string tag, string optlist)

C int PDF_begin_item(PDF *p, const char *tag, const char *optlist)

Open a structure element or other content item with attributes supplied as options.

tag The item’s element type according to Table 12.3. It must be one of the standard
structure types allowed for the current PDF compatibility level, or a pseudo tag.

optlist An option list specifying details of the item according to Table 12.4. All inherita-
ble settings will be inherited to child elements, and therefore need not be repeated. All
properties of an item must be set here since they cannot be modified later. The follow-
ing options can be used:
ActualText, Alt, artifacttype, Attached, BBox, ColSpan, E, hypertextencoding, index, inline,
Lang, parent, RowSpan, Scope, Title

Table 12.3 Standard item tags

category tags

grouping Document, Part, Art, Sect, Div, BlockQuote, Caption, TOC, TOCI, Index, NonStruct, Private

paragraph-
like

P, H, H1-H6 (BLSEs)

list L, LI, Lbl, LBody (BLSEs)

table Table (BLSE), TR, TH, TD, THead1, TBody1, TFoot1

1. Requires PDF 1.5 or above

inline-level Span, TagSuspect2, Quote, Note, Reference, BibEntry, Code, (ILSEs)

2. Requires PDF 1.6 or above

illustration Figure, Formula, Form

Japanese Ruby1 (grouping), RB1, RT1, RP1, Warichu1 (grouping), WT1, WP1

pseudo tags The following tags create items which are not structure elements:
Artifact Specifies an artifact, to be distinguished from real page content.
ASpan (Accessibility span; will be written to PDF as Span, but must be distinguished from the inline-

level item Span) Can be used to attach accessibility properties to content which does not
belong to a structure element, or which resembles only a fraction of a structure element.

ReversedChars
Specifies text in a right-to-left language with reversed character sequence. This is useful for
making Hebrew or Arabic text searchable in Acrobat.

Clip Specifies a marked clipping sequence. This is a sequence containing only clipping paths or text
in rendering mode 7, but no visible graphics or PDF_save() / PDF_restore().

http://www.pdflib.com/pdflib-cookbook/document-interchange/starter-tagged

12.3 Tagged PDF 161

Returns An item handle which can be used in subsequent item-related calls.

Details This function generates the document’s structure tree, which is essential for Tagged
PDF. The position of the new element in the structure tree can be controlled with the
parent and index options. Structure elements can be nested to an arbitrary level. Regular
items are not bound to the page where they have been opened, but can be continued on
an arbitrary number of pages.

Scope page for inline items, and for regular items also document; must always be paired with a
matching PDF_end_item() call. This function is only allowed in Tagged PDF mode.

Table 12.4 Options for the properties of structure and pseudo tags with PDF_begin_item()

option explanation

ActualText (Hypertext string; not for pseudo tags except in PDF 1.5 with ASpan; not for TagSuspect; required for text
in fonts which are not Unicode-compatible) Equivalent replacement text for the content item. It should
be provided for text content which is represented in some non-standard way, such as ligatures, swash
characters in illustrations, drop caps, etc. If this option is used in PDF 1.4 mode the inline option must be
set to false.

Alt (Hypertext string; not for pseudo tags except in PDF 1.5 with ASpan; not for TagSuspect) Alternate de-
scription for the content item. It should be provided for figures, images, etc., which cannot be recognized
as text. Alternate text for images is required for accessibility. If this option is used in PDF 1.4 mode the
inline option must be set to false.

artifacttype (Keyword; only for tag=Artifact) Identifies the artifact type of the content item: Pagination, Layout, or
Page

Attached (Keyword list; only for tag=Artifact and artifacttype=Pagination) A list containing one to four of the
keywords Top, Bottom, Left, and Right

BBox (Rectangle; only for tag=Artifact as well as all table and illustration tags; optional, but recommended
for reflow) The artifact’s bounding box in the default coordinate system (if usercoordinates=false) or
the user coordinate system (if usercoordinates=true). If this option has not been supplied PDFlib will
automatically create a BBox entry for imported images and PDF pages.

ColSpan (Integer; only for tag=TH and TD) Number of table columns spanned by a cell.

E (Hypertext string; not for pseudo tags except ASpan; not for TagSuspect; requires PDF 1.5 for structure
tags) Abbreviation expansion for the content item. It should be provided for explaining abbreviations
and acronyms. Acrobat’s Read Aloud feature will consider the expansion text as a separate word even in
the absence of explicit word breaks.

hypertext-
encoding

(Keyword) Specifies the encoding for the supplied text. An empty string is equivalent to unicode. Default:
empty string for Unicode-capable language bindings, otherwise auto.

index (Integer; not for pseudo tags and TagSuspect) The index at which to insert the element within the par-
ent. Values between 0 and the current number of children will be used to insert the item at that specific
location within the parent. The value -1 can be used to insert the element as the last item. Default: -1

inline (Boolean; only for tag=ASpan and all inline-level tags except TagSuspect) If true, the content item will
be written inline, and no structure element will be created. Default: true

Lang (String; not for TagSuspect and pseudo tags except ASpan) Language identifier for the content item in
the format described in Table 2.3 for the lang option. This can be used to override the document’s domi-
nant language for individual content items.

parent (Item handle; not for TagSuspect and pseudo tags) The item handle of the element’s parent, as returned
by another call to PDF_begin_item(). The value 0 refers to the structure tree root. -1 refers to the parent
of the most recently opened element on the current page. In other words, parent=-1 opens a sibling of
the current element. Default: -1

162 Chapter 12: Document Interchange

C++ Java void end_item(int id)
Perl PHP PDF_end_item(resource p, int id)

C void PDF_end_item(PDF *p, int id)

Close a structure element or other content item.

id The item’s handle, which must have been retrieved with PDF_begin_item().

Details All inline items must be closed before the end of the page. All regular items must be
closed before the end of the document. However, it is strongly recommended to close all
regular items as soon as they are completed to reduce memory consumption. An item
can only be closed if all of its children have been closed before. After closing an item its
parent will become the active item.

Scope page for inline items, and for regular items also document; must always be paired with a
matching PDF_begin_item() call. This function is only allowed in Tagged PDF mode.

C++ Java void activate_item(int id)
Perl PHP PDF_activate_item(resource p, int id)

C void PDF_activate_item(PDF *p, int id)

Activate a previously created structure element or other content item.

id The item’s handle, which must have been retrieved with PDF_begin_item(), and
must not yet have been closed. Pseudo and inline-level items can not be activated.

Details Putting aside a structure element and activating it later gives additional flexibility for
efficiently creating Tagged PDF pages even when there are multiple parallel structure
branches on a page, e.g. with multi-column layouts or text inserts which interrupt the
main text.

Scope document, page; This function is only allowed in Tagged PDF mode.

RowSpan (Integer; only for tag=TH and TD) The number of table rows spanned by a cell.

Scope (Keyword; only for tag=TH; PDF 1.5 or above) One of the keywords Row, Column, or Both indicating whether
the header cell applies to the rest of the cells in the row that contains it, the column that contains it, or
both the row and the column that contain it.

Title (Hypertext string; not for inline and pseudo tags) Name of the structure element

Table 12.4 Options for the properties of structure and pseudo tags with PDF_begin_item()

option explanation

Chapter A: List of all Functions 163

A List of all Functions
Click on a function name to jump to the corresponding description.

General Functions Text Output Functions Graphics Functions PDI and pCOS Functions
PDF_get_value PDF_set_text_pos PDF_setdash PDF_open_pdi_document
PDF_set_value PDF_show PDF_setdashpattern PDF_open_pdi_callback
PDF_get_parameter PDF_xshow PDF_setflat PDF_close_pdi_document
PDF_set_parameter PDF_show_xy PDF_setlinejoin PDF_open_pdi_page
PDF_new PDF_continue_text PDF_setlinecap PDF_close_pdi_page
PDF_new2 PDF_stringwidth PDF_setmiterlimit PDF_fit_pdi_page
PDF_delete PDF_setlinewidth PDF_process_pdi
PDF_begin_document Text Formatting Functions PDF_initgraphics PDF_pcos_get_number
PDF_begin_document_callback PDF_fit_textline PDF_save PDF_pcos_get_string
PDF_end_document PDF_info_textline PDF_restore PDF_pcos_get_stream
PDF_get_buffer PDF_add_textflow PDF_translate
PDF_begin_page_ext PDF_create_textflow PDF_scale Block Filling Functions (PPS)
PDF_end_page_ext PDF_fit_textflow PDF_rotate PDF_fill_textblock
PDF_suspend_page PDF_info_textflow PDF_skew PDF_fill_imageblock
PDF_resume_page PDF_delete_textflow PDF_concat PDF_fill_pdfblock
PDF_create_pvf PDF_setmatrix
PDF_delete_pvf Table Formatting Functions PDF_create_gstate Interactive Features
PDF_get_errnum PDF_add_table_cell PDF_set_gstate PDF_create_action
PDF_get_errmsg PDF_fit_table PDF_moveto PDF_add_nameddest
PDF_get_apiname PDF_info_table PDF_lineto PDF_create_annotation
PDF_get_opaque PDF_delete_table PDF_curveto PDF_create_field

PDF_info_matchbox PDF_circle PDF_create_fieldgroup
Font Functions PDF_arc PDF_create_bookmark
PDF_load_font Color Functions PDF_arcn
PDF_setfont PDF_setcolor PDF_rect Multimedia
PDF_info_font PDF_makespotcolor PDF_closepath PDF_load_3ddata
PDF_begin_font PDF_load_iccprofile PDF_stroke PDF_create_3dview
PDF_end_font PDF_begin_pattern PDF_closepath_stroke
PDF_begin_glyph PDF_end_pattern PDF_fill Document Interchange
PDF_end_glyph PDF_shading_pattern PDF_fill_stroke PDF_set_info
PDF_encoding_set_char PDF_shfill PDF_closepath_fill_stroke PDF_begin_item
PDF_utf16_to_utf8 PDF_shading PDF_clip PDF_end_item
PDF_utf8_to_utf16 PDF_endpath PDF_activate_item
PDF_utf32_to_utf16 Image Functions PDF_define_layer

PDF_load_image PDF_set_layer_dependency
PDF_close_image PDF_begin_layer
PDF_fit_image PDF_end_layer
PDF_begin_template_ext
PDF_end_template
PDF_add_thumbnail

164 Chapter A: List of all Functions

B List of all Parameters 165

B List of all Parameters
This section lists all keywords for PDF_get/set_parameter() and PDF_get/set_value(). Click
on a keyword to jump to the corresponding description.

category PDF_get/set_parameter() PDF_get/set_value()
setup asciifile, errorpolicy, honorlang, license1, licensefile,

nodemostamp, resourcefile, scope1, SearchPath,
string1

1. Only for PDF_get_parameter()

compress, maxfilehandles

logging logging1, logmsg1

versioning version1 major, minor, revision2

2. Only for PDF_get_value()

page topdown pagewidth, pageheight
font
handling

Encoding, FontAFM, FontPFM, FontOutline, Host-
Font

font2, fontsize2

simple text
output

autospace, charref, escapesequence, fakebold,
glyphcheck, kerning, textformat, underline, over-
line, strikeout

charspacing, horizscaling, italicangle, leading,
textrendering, textrise, textx2, texty2, underline-
position, underlinewidth, wordspacing

graphics fillrule currentx2, currenty2, ctm_a2, ctm_b2, ctm_c2,
ctm_d2, ctm_e2, ctm_f2

color preserveoldpantonenames, spotcolorlookup
ICC profiles ICCProfile, StandardOutputIntent icccomponents2, setcolor:iccprofilegray,

setcolor:iccprofilergb, setcolor:iccprofilecmyk
image honoriccprofile, renderingintent imagewidth2, imageheight2, image:iccprofile2,

orientation2, resx2, resy2

PDI pdi1

interactive hypertextencoding, hypertextformat, usehypertext-
encoding, usercoordinates

166

List of all Options 167

C List of all Options
This index contains an alphabetical list of all options along with the functions in which
they can be used.

&
&name option list macro call in fit_textflow() 62

3D
3Dactivate in create_annotation() 138
3Ddata in create_annotation() 138
3Dinitialview in create_annotation() 139
3Dinteractive in create_annotation() 139
3Dshared in create_annotation() 139
3Dview in create_action() 132

A
acrobat suboption for fontname in info_font() 37
action

in begin/end_page_ext() 23
in create_annotation() 139
in create_bookmark() 150
in create_field() and create_fieldgroup() 146
in end_document() 17
in process_pdi() 124

actual suboption for encoding in info_font() 37
ActualText in begin_item() 161
addfitbox suboption for wrap in fit_textflow() 67
adjustmethod in add/create_textflow() 58
adjustpage in fit_image/pdipage() 113
alignchar in fit/info_textline() 50
alignment

in add/create_textflow() 58
in create_annotation() 139
suboption for leader in add/create_textflow()
60
suboption for leader in fit_textline() 52

alphaisshape in create_gstate() 87
Alt in begin_item() 161
angle keyword in info_textline() 54
annotcolor in create_annotation() 139
antialias in shading() 105
api

suboption for encoding in info_font() 37
suboption for fontname in info_font() 37

area suboption for fill in fit_table() 74
artbox in begin/end_page_ext() 23
artifacttype in begin_item() 161
ascender

in info_font() 37
in load_font() 35
keyword in info_textline() 54

Attached in begin_item() 161
attachmentpassword in begin_document() 17

attachments in begin/end_document() 17
autocidfont in load_font() 35
autosubsetting in load_font() 35
autoxmp in begin/end_document() 17
avoidbreak in add/create_textflow() 58
avoidemptybegin in add/create_textflow() 58

B
background in create_3dview() 154
backgroundcolor in create_field() and

create_fieldgroup() 146
BBox in begin_item() 161
begoptlistchar in create_textflow() 63
bitreverse in load_image() 109
bleedbox in begin/end_page_ext() 23
blendmode in create_gstate() 87
blind

in fit_table() 73
in fit_textflow() 65

bordercolor in create_field() and
create_fieldgroup() 146

borderstyle
in create_annotation() 139
in create_field() and create_fieldgroup() 146

borderwidth suboption for matchbox option 77
bottom option in add_nameddest() and subop-

tion for destination option in create_action(),
create_annotation(), create_bookmark() and
begin/end_document() 135

boxes suboption for wrap in fit_textflow() 67
boxheight suboption for matchbox option 77
boxlinecount keyword in info_textflow() 68
boxsize

in fill_*block() 129
in fit/info_textline() 50
in fit_image() and fit_pdi_page() 113

boxwidth suboption for matchbox option 77
bpc in load_image() 109
buttonlayout in create_field() and

create_fieldgroup() 146
buttonstyle in create_field() and

create_fieldgroup() 146

C
calcorder in create_field() and create_fieldgroup()

146
camera2world in create_3dview() 154
cameradistance in create_3dview() 154
canonicaldate in create_action() 132

168 List of all Options

capheight
in info_font() 37
in load_font() 35
keyword in info_textline() 54

caption in create_field() and create_fieldgroup()
146

captiondown in create_field() and
create_fieldgroup() 146

captionrollover in create_field() and
create_fieldgroup() 146

centerwindow suboption for viewerpreferences
option in begin/end_document() 20

charclass in add/create_textflow() 58
charmapping in add/create_textflow() 59
charref

in fill_*block() 129
in fit/info_textline() and add/
create_textflow() 50

charspacing
in create_field() and create_fieldgroup() 146
in fit/info_textline() and add/
create_textflow() 50

checkwordsplitting in add_table_cell() 71
children in define_layer() 95
cid suboption for unicode in info_font() 38
cidfont in info_font() 37
classes for logging parameter 32
clipping suboption for matchbox option 77
clippingpathname in load_image() 109
cloudy in create_annotation() 139
code

in info_font() 37
suboption for glyphid in info_font() 38
suboption for glyphname in info_font() 38
suboption for unicode in info_font() 38

colorize in load_image() 109
colorized in begin_font() 40
colscalegroup in add_table_cell() 71
colspan in add_table_cell() 71
ColSpan in begin_item() 161
colwidth in add_table_cell() 60, 71, 72
comb in create_field() and create_fieldgroup()

147
comment

in add/create_textflow() 59
option list macro definition in fit_textflow()
62

commitonselect in create_field() and
create_fieldgroup() 147

compatibility in begin_document() 17
components in load_image() 109
compress suboption for metadata 159
contents in create_annotation() 139
copy in create_pvf() 27
crease suboption for rendermode in

create_3dview() 154
createdate in create_annotation() 139

createwrapbox suboption for matchbox option
77

creatorinfo in define_layer() 94
cropbox in begin/end_page_ext() 23
currentvalue in create_field() and

create_fieldgroup() 147
custom in create_annotation() 140

D
dasharray

in create_annotation() 140
in create_field() and create_fieldgroup() 147
in fit/info_textline() and add/
create_textflow() 50
in setdashpattern() 81
suboption for matchbox option 77
suboption for stroke in fit_table() 75

dashphase
in setdashpattern() 81
suboption for matchbox option 77
suboption for stroke in fit_table() 75

debugshow
in fit_table() 73

defaultcmyk in begin/end_page_ext() 23
defaultdir in create_action() 132
defaultgray in begin/end_page_ext() 23
defaultrgb in begin/end_page_ext() 23
defaultstate in define_layer() 94
defaultvalue in create_field() and

create_fieldgroup() 147
defaultview in load_3d() 153
depend in define_layer() 96
descender

in info_font() 37
in load_font() 35
keyword in info_textline() 54

description
in load_iccprofile() 100
suboption for attachments in begin/
end_document() 17

destination
in begin/end_document() 17
in create_action() 132
in create_annotation() 140
in create_bookmark() 150

destname
in create_action() 132
in create_annotation() 140
in create_bookmark() 150
in end_document() 17

direction suboption for viewerpreferences option
in begin/end_document() 20

disable
for logging parameter 31
suboption for 3Dactivate in
create_annotation() 138

disablestate suboption for 3Dactivate in
create_annotation() 138

List of all Options 169

display
in create_annotation() 140
in create_field() and create_fieldgroup() 147

displaydoctitle suboption for viewerpreferences
option in begin/end_document() 20

dpi in fit_image/fit_pdi_page() 113
drawbottom suboption for matchbox option 77
drawleft suboption for matchbox option 77
drawright suboption for matchbox option 77
drawtop suboption for matchbox option 77
dropcorewidths in load_font() 35
duplex suboption for viewerpreferences option in

begin/end_document() 20
duration

in begin/end_page_ext() 23
in create_action() 132

E
E in begin_item() 161
editable in create_field() and create_fieldgroup()

147
embedding in load_font() 35
embedprofile in load_iccprofile() 100
enable

for logging parameter 31
suboption for 3Dactivate in
create_annotation() 138

enablestate suboption for 3Dactivate in
create_annotation() 138

encoding
in add/create_textflow() 59
in fill_*block() 130
in fit/info_textline() and add/
create_textflow() 50
in info_font() 37
suboption for leader in add/create_textflow()
60
suboption for leader in fit_textline() 52

end suboption for matchbox option 78
endingstyles in create_annotation() 140
endoptlistchar in create_textflow() 63
endx, endy keywords in info_textline() 54
entire suboption for background in

create_3dview() 154
errorpolicy

in add/create_textflow() 59
in add_table_cell() 71
in begin_document() 17
in create_3dview() 154
in create_action() 132
in create_field() and create_fieldgroup() 147
in fill_*block() 130
in fit/info_textline() 50
in fit_table() 73
in load_3ddata() 153
in load_font() 35
in load_iccprofile() 100
in load_image() 110

in open_pdi_document() 118
in open_pdi_page() 120
in process_pdi() 124

escapesequence
in fill_*block() 130
in fit/info_textline() and add/
create_textflow() 50

exclude in create_action() 132
exists keyword in info_matchbox() 79
exportable in create_field() and

create_fieldgroup() 147
exportmethod in create_action() 133
extend0 in shading() 105
extend1 in shading() 105

F
facecolor suboption for rendermode in

create_3dview() 154
fakebold in fit/info_textline() and add/

create_textflow() 50
faked

suboption for ascender in info_font() 37
suboption for fontstyle in info_font() 37

familyname in begin_font() 40
fieldtype in create_fieldgroup() 147
filename

for logging parameter 31
in create_action() 133
in create_annotation() 140
suboption for attachments in begin/
end_document() 17
suboption for metadata 159
suboption for search in begin/
end_document() 19

fileselect in create_field() and create_fieldgroup()
147

fill in fit_table() 74
fillcolor

in create_annotation() 140
in create_field() and create_fieldgroup() 147
in fit/info_textline() and add/
create_textflow() 50
suboption for background in create_3dview()
154
suboption for fill in fit_table() 74
suboption for leader in add/create_textflow()
60
suboption for leader in fit_textline() 52
suboption for matchbox option 77

fillrule suboption for wrap in fit_textflow() 67
firstbodyrow

keyword in info_matchbox() 79
keyword in info_table() 76

firstlinedist
in fit_textflow() 65
keyword in info_textflow() 68

firstparalinecount keyword in info_textflow() 68
fitimage in add_table_cell() 71

170 List of all Options

fitmethod
in create_field() and create_fieldgroup() 147
in fit/info_textline() 51
in fit_image/pdipage() 113
in fit_textflow() 65

fitpdipage in add_table_cell() 71
fittextflow in add_table_cell() 71
fittextline in add_table_cell() 71
fitwindow suboption for viewerpreferences op-

tion in begin/end_document() 20
fixedleading in add/create_textflow() 59
flatness in create_gstate() 87
flush

for logging parameter 31
font

in create_annotation() 140
in create_field() and create_fieldgroup() 148
in fill_*block() 130
in fit/info_textline() and add/
create_textflow() 51
suboption for leader in add/
create_textflow() 60
suboption for leader in fit_textline() 52

fontfile in info_font() 37
fontname

in add/create_textflow() 59
in fit/info_textline() and add/
create_textflow() 51
in info_font() 37
suboption for leader in add/
create_textflow() 60
suboption for leader in fit_textline() 52

fontscale in fit_textflow() 65
fontsize

in create_annotation() 140
in create_field() and create_fieldgroup() 148
in fit/info_textline() and add/
create_textflow() 51
suboption for ascender in info_font() 37
suboption for leader in add/
create_textflow() 60
suboption for leader in fit_textline() 52

fontstyle
in create_bookmark() 150
in info_font() 37
in load_font() 35

footer in fit_table() 74
full suboption for fontname in info_font() 37

G
glyphcheck in fit/info_textline() and add/

create_textflow() 51
glyphid

in info_font() 38
suboption for glyphname in info_font() 38
suboption for unicode in info_font() 38

glyphname
in info_font() 38

suboption for code in info_font() 37
suboption for unicode in info_font() 38

group
in begin_page_ext() 23
in define_layer() 96
in resume_page() 26
option in add_nameddest() and suboption
for destination option in create_action(),
create_annotation(), create_bookmark() and
begin/end_document() 135
suboption for labels option in
begin_document() 19

groups in begin_document() 17
gstate in shading_pattern() 104

H
header in fit_table() 74
height

in begin/end_page_ext() 23
in load_image() 110
keyword in info_matchbox() 79
keyword in info_table() 76
keyword in info_textline() 54

hide in create_action() 133
hidemenubar suboption for viewerpreferences

option in begin/end_document() 20
hidetoolbar suboption for viewerpreferences op-

tion in begin/end_document() 20
hidewindowui suboption for viewerpreferences

option in begin/end_document() 20
highlight

in create_annotation() 140
in create_field() and create_fieldgroup() 148

honorclippingpath in load_image() 110
honoriccprofile in load_image() 110
horboxgap keyword in info_table() 76
horizscaling in fit/info_textline() and add/

create_textflow() 51
horshrinking keyword in info_table() 76
horshrinklimit in fit_table() 74
hortabmethod in add/create_textflow() 59
hortabsize in add/create_textflow() 59
hostfont in info_font() 38
hyphenchar in add/create_textflow() 59

I
iccprofile in load_image() 110
icon in create_field() and create_fieldgroup() 148
icondown in create_field() and

create_fieldgroup() 148
iconname

in create_annotation() 140
in load_image() and begin_template() 110
in open_pdi_page() 120

iconrollover in create_field() and
create_fieldgroup() 148

ignoreclippingpath in fit_image/pdipage() 113

List of all Options 171

ignoremask in load_image() 110
ignoreorientation

in fill_*block() 130
in fit_image/pdipage() 113
in load_image() 110

image in add_table_cell() 71
index

in begin_item() 161
in create_bookmark() 150

indextype suboption for search in begin/
end_document() 19

infomode
in open_pdi_document() 118
in open_pdi_page() 120

initialexportstate in define_layer() 94
initialprintstate in define_layer() 94
initialviewstate in define_layer() 94
inline

in begin_item() 161
in load_image() 110

inmemory
in begin_document() 17
in open_pdi_document 118

innerbox suboption for matchbox option 78
inputencoding suboption for metadata 159
inputformat suboption for metadata 159
intent in define_layer() 94
interiorcolor in create_annotation() 141
interpolate in load_image() 110
inversefill suboption for wrap in fit_textflow() 67
invert in load_image() 110
ismap in create_action() 133
italicangle

in fit/info_textline() and add/
create_textflow() 51
in info_font() 38

itemname in create_field() and
create_fieldgroup() 148

itemnamelist in create_field() and
create_fieldgroup() 148

itemtextlist in create_field() and
create_fieldgroup() 148

K
K in load_image() 110
keephandles in delete_table() 76
keepnative in info_font() 38
keepnative in load_font() 36
kerning

in fit/info_textline() and add/
create_textflow() 51
in load_font() 36

kerningpairs in info_font() 38
key suboption for custom in create_annotation()

140

L
label in begin/end_page_ext() 23
labels in begin/end_document() 17
lang in begin_document() 17
Lang in begin_item() 161
language in define_layer() 94
lastalignment in add/create_textflow() 59
lastbodyrow keyword in info_table() 76
lastlinedist

in fit_textflow() 65
keyword in info_textflow() 68

lastmark keyword in info_textflow() 68
lastparalinecount keyword in info_textflow() 68
layer

in create_annotation() 141
in create_field() and create_fieldgroup() 148
in load_image() and begin_template() 110
in open_pdi_page() 120

layerstate in create_action() 133
leader

in add/create_textflow() 60
in fit/info_textline() 52

leading
in add/create_textflow() 60
keyword in info_textflow() 68

left option in add_nameddest() and suboption for
destination option in create_action(),
create_annotation(), create_bookmark() and
begin/end_document() 135

leftindent in add/create_textflow() 60
leftlinex, leftliney keywords in info_textflow() 68
lighting

in create_3dview() 154
line

in create_annotation() 141
suboption for stroke in fit_table() 75

linearize in begin_document() 18
linecap

in create_gstate() 87
in load_font() 36
suboption for matchbox option 78
suboption for stroke in fit_table() 75

linegap in info_font() 38
lineheight suboption for wrap in fit_textflow() 67
linejoin

in create_gstate() 87
suboption for matchbox option 78
suboption for stroke in fit_table() 75

linespreadlimit in fit_textflow() 65
linewidth

in create_annotation() 141
in create_field() and create_fieldgroup() 148
in create_gstate() 87
suboption for stroke in fit_table() 75

locked
in create_annotation() 141
in create_field() and create_fieldgroup() 148

172 List of all Options

lockmode in create_field() and
create_fieldgroup() 148

M
macro option list macro definition in

fit_textflow() 62
margin

in add_table_cell() 71
in fit/info_textline() 52
suboption for matchbox option 78

marginbottom in add_table_cell() 71
marginleft in add_table_cell() 71
marginright in add_table_cell() 71
margintop in add_table_cell() 71
mark in add/create_textflow() 60
mask in load_image() 110
masked in load_image() 110
masterpassword in begin_document() 18
matchbox

in fit/info_textline() and add/
create_textflow() 52
in fit_image/pdipage() 113

maxchar in create_field() and create_fieldgroup()
148

maxcode in info_font() 38
maxlinelength keyword in info_textflow() 68
maxlines in fit_textflow() 65
maxliney keyword in info_textflow() 68
maxspacing in add/create_textflow() 60
mediabox in begin/end_page_ext() 24
menuname in create_action() 133
metadata 159

in begin/end_document() 18
in begin/end_page_ext() 24
in load_font() 36
in load_iccprofile() 100
in load_image() and begin_template_ext()
110
in open_pdi_page() 120

metricsfile in info_font() 38
mimetype

suboption for attachments in begin/
end_document() 17

mimetype in create_annotation() 141
minfontsize in fit_textflow() 65
minlinecount in add/create_textflow() 60
minlinelength keyword in info_textflow() 68
minliney keyword in info_textflow() 68
minrowheight in add_table_cell() 72
minspacing in add/create_textflow() 60
miterlimit in create_gstate() 87
moddate in begin/end_document() 18
modeltree

suboption for 3Dactivate in
create_annotation() 138

monospace in info_font() 38
monospace in load_font() 36
movieposter in create_annotation() 141

multiline in create_field() and
create_fieldgroup() 148

multiselect in create_field() and
create_fieldgroup() 148

N
N in shading() 105
name

in create_3dview() 154
in create_annotation() 141
keyword in info_matchbox() 79
suboption for attachments in begin/
end_document() 17
suboption for matchbox option 78

namelist in create_action() 133
newwindow in create_action() 133
nextline in add/create_textflow() 60
nextparagraph in add/create_textflow() 60
nofitlimit in add/create_textflow() 60
nonfullscreenpagemode suboption for viewer-

preferences option in begin/end_document()
20

numcids in info_font() 38
numcopies suboption for viewerpreferences op-

tion in begin/end_document() 21
numglyphs in info_font() 38

O
offset suboption for wrap in fit_textflow() 67
offsetbottom suboption for matchbox option 78
offsetleft suboption for matchbox option 78
offsetright suboption for matchbox option 78
offsettop suboption for matchbox option 78
onpanel in define_layer() 94
opacity in create_annotation() 141
opacity suboption for rendermode in

create_3dview() 155
opacityfill in create_gstate() 87
opacitystroke in create_gstate() 87
open

in create_annotation() 141
in create_bookmark() 150

openmode in begin/end_document() 18
openrect suboption for matchbox option 78
operation in create_action() 134
OPI-1.3 in load_image() and begin_template() 111
OPI-2.0 in load_image() and begin_template() 111
optimize in begin_document() 18
orientate

in create_annotation() 141
in create_field() and create_fieldgroup() 148
in fit/info_textline() 52
in fit_image/pdipage() 114
in fit_textflow() 66

overline in fit/info_textline() and add/
create_textflow() 52

overprintfill in create_gstate() 87

List of all Options 173

overprintmode in create_gstate() 87
overprintstroke in create_gstate() 87

P
page

in load_image() 111
option in add_nameddest() and suboption for
destination option in create_action(),
create_annotation(), create_bookmark() and
begin/end_document() 135

pageelement in define_layer() 94
pagelayout in begin/end_document() 18
pagenumber

in begin_page_ext() 24
in resume_page() 26
suboption for labels option in begin/
end_document() and label option in begin/
end_page_ext() 20

pages suboption for separationinfo in begin/
end_page_ext() 24

parameters in create_action() 134
parent

in begin_item() 161
in create_bookmark() 151
in define_layer() 96

parentname in create_annotation() 141
parindent in add/create_textflow() 60
passthrough

in load_image() 111
password

in create_field() and create_fieldgroup() 148
in open_pdi_document 118

pdfa in begin_document() 18
pdfx in begin_document() 18
pdipage in add_table_cell() 72
pdiusebox in open_pdi_page() 120
permissions in begin_document() 19
perpendiculardir keyword in info_textline() 54
picktraybypdfsize suboption for viewerpreferenc-

es option in begin/end_document() 21
playmode in create_annotation() 141
polygons suboption for wrap in fit_textflow() 67
polylinelist

in create_annotation() 142
popup in create_annotation() 142
position

in create_field() and create_fieldgroup() 149
in fit/info_textline() 53
in fit_image/pdipage() 114

prefix suboption for labels option in begin/
end_document() and label option in begin/
end_page_ext() 20

preserveradio in create_action() 134
printarea suboption for viewerpreferences option

in begin/end_document() 21
printclip suboption for viewerpreferences option

in begin/end_document() 21

printpagerange suboption for viewerpreferences
option in begin/end_document() 21

printscaling suboption for viewerpreferences op-
tion in begin/end_document() 21

printsubtype in define_layer() 95

R
r0 in shading() 105
r1 in shading() 105
readonly

in create_annotation() 142
in create_field() and create_fieldgroup() 149

refpoint in fill_*block() 130
remove for logging parameter 31
removeunused in define_layer() 95
rendercolor suboption for rendermode in

create_3dview() 155
renderingintent

in create_gstate() 87
in load_image() 111

rendermode
in create_3dview() 154

repair in open_pdi_document 118
replacedchars in info_textline() 54
replacementchar

in info_font() 38
in load_font() 36

required in create_field() and create_fieldgroup()
149

requiredmode in open_pdi_document 118
resetfont in add/create_textflow() 60
return

in add/create_textflow() 61
in add_table_cell() 72

returnatmark
in fit_textflow() 66

returnreason
keyword in info_table() 76
keyword in info_textflow() 68

rewind
in fit_table() 74
in fit_textflow() 66

richtext in create_field() and create_fieldgroup()
149

right option in add_nameddest() and suboption
for destination option in create_action(),
create_annotation(), create_bookmark() and
begin/end_document() 135

rightindent in add/create_textflow() 61
rightlinex, rightliney keywords in info_textflow()

68
rotate

in begin/end_page_ext() 24
in create_annotation() 142
in fit/info_textline() 53
in fit_image/pdipage() 114
in fit_textflow() 66

rowcount keyword in info_table() 76

174 List of all Options

rowheight in add_table_cell() 72
rowjoingroup in add_table_cell() 72
rowscalegroup in add_table_cell() 72
rowspan in add_table_cell() 72
RowSpan in begin_item() 161
rowsplit keyword in info_table() 76
ruler in add/create_textflow() 61

S
scale in fit_image/pdipage() 114
scalex, scaley keywords in info_textline() 54
Scope in begin_item() 161
script

in create_action() 134
in load_3d() 153

scriptname in create_action() 134
scrollable in create_field() and

create_fieldgroup() 149
search in begin/end_document() 19
separationinfo in begin_page_ext() 24
showborder

in fill_*block() 130
in fit/info_textline() and add/
create_textflow() 53
in fit_image/pdipage() 114
in fit_table() 74
in fit_textflow() 66

showcells in fit_table() 74
showcontrols in create_annotation() 142
showgrid in fit_table() 74
showtabs in fit_textflow() 66
shrinklimit

in add/create_textflow() 61
in fill_*block() 130
in fit/info_textline() and add/
create_textflow() 53

smoothness in create_gstate() 88
sorted in create_field() and create_fieldgroup()

149
soundvolume in create_annotation() 142
space in add/create_textflow() 61
spellcheck in create_field() and

create_fieldgroup() 149
split keyword in info_textflow() 69
spotcolor suboption for separationinfo in begin/

end_page_ext() 24
spotname suboption for separationinfo in begin/

end_page_ext() 24
spreadlimit in add/create_textflow() 61
stamp in fit/info_textline() 53
standardfont in info_font() 38
start suboption for labels option in begin/

end_document() and label option in begin/
end_page_ext() 20

startx, starty keywords in info_textline() 54
stretch in begin_font() 40
strikeout in fit/info_textline() and add/

create_textflow() 53

stringlimit for logging parameter 31
stroke in fit_table() 75
strokeadjust in create_gstate() 88
strokecolor

in create_field() and create_fieldgroup() 149
in fit/info_textline() and add/
create_textflow() 53
suboption for matchbox option 77
suboption for stroke in fit_table() 75

strokewidth in fit/info_textline() and add/
create_textflow() 53

style suboption for labels option in begin/
end_document() and label option in begin/
end_page_ext() 20

subject in create_annotation() 142
submitemptyfields in create_action() 134
submitname in create_field() and

create_fieldgroup() 149
subsetlimit in load_font() 36
subsetminsize in load_font() 36
subsetting in load_font() 36
supplement in info_font() 38
symbolfont in info_font() 38

T
tabalignchar in add/create_textflow() 61
tabalignment in add/create_textflow() 61
taborder

in begin/end_page_ext() 24
in create_field() and create_fieldgroup() 149

tagged in begin_document() 19
target in create_action() 134
tempdirname in begin_document() 19
template in load_image() 111
text

suboption for leader in add/
create_textflow() 60
suboption for leader in fit_textline() 52

textcolor in create_bookmark() 151
textendx, textendy keywords in info_textflow()

69
textflow in add_table_cell() 72
textflowhandle in fill_textblock() 130
textformat

in fill_*block() 130
textheight keyword in info_textflow() 69
textknockout in create_gstate() 88
textlen in create_textflow() 63
textrendering in fit/info_textline() and add/

create_textflow() 53
textrise in fit/info_textline() and add/

create_textflow() 53
textwidth keyword in info_textflow() 69
Title in begin_item() 162
title in create_annotation() 142
toggle in create_fieldgroup() 149
toolbar

List of all Options 175

suboption for 3Dactivate in
create_annotation() 138

tooltip in create_field() and create_fieldgroup()
149

top option in add_nameddest() and suboption for
destination option in create_action(),
create_annotation(), create_bookmark() and
begin/end_document() 135

topdown in begin_page_ext() 24
topindex in create_field() and create_fieldgroup()

149
transition

in begin/end_page_ext() 25
in create_action() 134

transparencygroup
in begin/end_page_ext() 25

trimbox in begin/end_page_ext() 25
type

option in add_nameddest() and suboption for
destination option in create_action(),
create_annotation(), create_bookmark() and
begin/end_document() 136
suboption for custom in create_annotation()
140

type suboption for rendermode in
create_3dview() 155

U
U3Dpath

in create_3dview() 154
underline in fit/info_textline() and add/

create_textflow() 53
underlineposition in fit/info_textline() and add/

create_textflow() 53
underlinewidth in fit/info_textline() and add/

create_textflow() 53
unicode

in info_font() 38
suboption for code in info_font() 37
suboption for glyphid in info_font() 38
suboption for glyphname in info_font() 38

unicodefont in info_font() 38
unicodemap in load_font() 36
unisonselect in create_fieldgroup() 149
unknownchars in info_textline() 55
unmappedchars in info_font() 38
unmappedchars in info_textline() 55
unmappedglyphs keyword in info_textline() 55
uri in begin/end_document() 19
url in create_action() 134
usage in load_iccprofile() 100
used keyword in info_textflow() 69
usematchbox in create_annotation() 142
usematchboxes suboption for wrap in

fit_textflow() 67
usercoordinates

in create_annotation() 142
in create_field() and create_fieldgroup() 149

userpassword in begin_document() 19
userunit in begin/end_page_ext() 25

V
value suboption for custom in

create_annotation() 140
vertboxgap keyword in info_table() 76
vertical

in info_font() 38
in load_font() 36

verticalalign in fit_textflow() 66
vertshrinking keyword in info_table() 76
vertshrinklimit in fit_table() 75
viewarea suboption for viewerpreferences option

in begin/end_document() 21
viewclip suboption for viewerpreferences option

in begin/end_document() 21
viewerpreferences in begin_document() and

end_document() 19
views in load_3d() 153

W
weight

in begin_font() 40
in info_font() 39

wellformed keyword in info_textline() 55
width

in begin/end_page_ext() 25
in load_image() 111
keyword in info_matchbox() 79
keyword in info_table() 76
keyword in info_textline() 55

widthsonly in begin_font() 40
willembed in info_font() 39
willsubset in info_font() 39
windowposition

in create_annotation() 142
windowscale

in create_annotation() 143
wordspacing in fit/info_textline() and add/

create_textflow() 54
wrap in fit_textflow() 67
writingdirx, writingdiry keywords in

info_textline() 55

X
x1, y1, ... , x4, y4 keywords

in info_matchbox() 79
in info_table() 76
in info_textflow() 69

xadvancelist in fit/info_textline() 54
xheight

in info_font() 39
in load_font() 36
keyword in info_textline() 55

xvertline keyword in info_table() 76

176 List of all Options

Y
yhorline keyword in info_table() 76
yposition

suboption for leader in add/
create_textflow() 60
suboption for leader in fit_textline() 52

Z
zoom

in add_nameddest() and suboption for
destination option in create_action(),
create_annotation(), create_bookmark() and
begin/end_document() 136
in create_annotation() 143
in define_layer() 95

D Revision History 177

D Revision History
Date Changes

April 20, 2010 > Minor corrections for PDFlib 7.0.5

March 13, 2009 > Various updates and corrections for PDFlib 7.0.4

February 13, 2008 > Various updates and corrections for PDFlib 7.0.3

August 08, 2007 > Various updates and corrections for PDFlib 7.0.2

March 09, 2007 > Various updates and corrections for PDFlib 7.0.1

October 03, 2006 > Updates and restructuring for PDFlib 7.0.0; split the manual in tutorial and API reference

February 15, 2007 > Various updates and corrections for PDFlib 6.0.4

February 21, 2006 > Various updates and corrections for PDFlib 6.0.3; added Ruby section

August 09, 2005 > Various updates and corrections for PDFlib 6.0.2

November 17, 2004 > Minor updates and corrections for PDFlib 6.0.1
> introduced new format for language-specific function prototypes in chapter 8
> added hypertext examples in chapter 3

June 18, 2004 > Major changes for PDFlib 6

January 21, 2004 > Minor additions and corrections for PDFlib 5.0.3

September 15, 2003 > Minor additions and corrections for PDFlib 5.0.2; added block specification

May 26, 2003 > Minor updates and corrections for PDFlib 5.0.1

March 26, 2003 > Major changes and rewrite for PDFlib 5.0.0

June 14, 2002 > Minor changes for PDFlib 4.0.3 and extensions for the .NET binding

January 26, 2002 > Minor changes for PDFlib 4.0.2 and extensions for the IBM eServer edition

May 17, 2001 > Minor changes for PDFlib 4.0.1

April 1, 2001 > Documents PDI and other features of PDFlib 4.0.0

February 5, 2001 > Documents the template and CMYK features in PDFlib 3.5.0

December 22, 2000 > ColdFusion documentation and additions for PDFlib 3.03; separate COM edition of the manual

August 8, 2000 > Delphi documentation and minor additions for PDFlib 3.02

July 1, 2000 > Additions and clarifications for PDFlib 3.01

Feb. 20, 2000 > Changes for PDFlib 3.0

Aug. 2, 1999 > Minor changes and additions for PDFlib 2.01

June 29, 1999 > Separate sections for the individual language bindings
> Extensions for PDFlib 2.0

Feb. 1, 1999 > Minor changes for PDFlib 1.0 (not publicly released)

Aug. 10, 1998 > Extensions for PDFlib 0.7 (only for a single customer)

178

July 8, 1998 > First attempt at describing PDFlib scripting support in PDFlib 0.6

Feb. 25, 1998 > Slightly expanded the manual to cover PDFlib 0.5

Sept. 22, 1997 > First public release of PDFlib 0.4 and this manual

Date Changes

Index 179

Index
Note that parameters and options are listed in separate appendices.

A
action lists in option lists 8
activate_item() 162
add_nameddest() 135
add_textflow() 56
add_thumbnail() 116
alignment (position option) 53
All spot color name 99
arc() 90
arcn() 91
Author field 157

B
begin_document() 16
begin_font() 40
begin_glyph() 41
begin_item() 160
begin_layer() 96
begin_page_ext() 22, 23
begin_pattern() 103
begin_template() 115
begin_template_ext() 115
Bézier curve 90
boolean values in option lists 7

C
circle() 90
clip() 93
close_image() 112
close_pdi_document() 119
close_pdi_page() 120
closepath() 91
closepath_fill_stroke() 93
closepath_stroke() 92
CMYK color 97
cmyk keyword 8
color functions 97
color values in option lists 8
concat() 86
continue_text() 46
create_3dview() 153
create_action() 131
create_annotation() 137
create_bookmark() 150
create_field() 144
create_fieldgroup() 145
create_gstate() 87
create_pvf() 27
create_textflow() 62

Creator field 157
curveto() 90

D
dash pattern for lines 81
define_layer() 94
delete_pvf() 27
delete_textflow() 69, 76
document and page functions 16
document information fields 157
document scope 10
Dublin Core 157

E
encoding_set_char() 42
end_document() 16
end_font() 41
end_glyph() 41
end_item() 162
end_layer() 96
end_pattern() 103
end_template() 115
endpath() 93
explicit graphics state 87

F
fast Web view 18
fill() 92
fill_imageblock() 128
fill_pdfblock() 129
fill_stroke() 93
fill_textblock() 127
fit_image() 112
fit_pdi_page() 120
fit_textflow() 64
fit_textline() 49
float and integer values in option lists 7
font scope 10
function scopes 10

G
get_apiname() 30
get_buffer() 21
get_errmsg() 29
get_errnum() 29
get_parameter() 13
get_value() 13
glyph scope 10

180 Index

graphics functions 81
graphics state, explicit 87
gray keyword 8

H
handles in option lists 8
honorlang 15

I
ICC Profiles 100
ICC-based color 97
iccbasedcmyk keyword 9
iccbasedgray keyword 8
iccbasedrgb keyword 9
image functions 107
import functions for PDF (PDI) 117
indexed color 98
info fields 157
info_font() 37
info_textflow() 68, 75, 78
info_textline() 54
initgraphics() 83
inline option lists for Textflows 63
invisible text 44

K
Keywords field 157
keywords in option lists 7

L
lab keyword 8
landscape mode 23
licence 15
license 15
licensefile 15
linearized PDF 18
lines: dashed and patterned 81
lineto() 89
list values in option lists 8
load_3ddata() 153
load_font() 33
load_iccprofile() 100
load_image() 108
logging 31

M
makespotcolor() 99
metadata 159
mirroring 85
moveto() 89

N
None spot color name 99

O
object scope 10
open_pdi_document() 117
open_pdi_page() 119
option lists 6
outline text 44

P
page scope 10
page size formats 22
parameter handling functions 13
path painting and clipping 92
path scope 10
pattern keyword 9
pattern scope 10
pcircle() 90
pCOS functions 122
pcos_get_number() 122
pcos_get_stream() 123
pcos_get_string() 122
PDF import functions (PDI) 117
PDF/A or PDF/X output intent 124
PDFlib Personalization Server (PPS) 127
PDI (PDF import) 117
PPS (PDFlib Personalization Server) 127
process_pdi() 124
pscale() 85

R
raster image functions 107
rect() 91
rectangles in option lists 8
reflection 85
restore() 84
resume_page() 26
RGB color 97
rgb keyword 8
rotate() 85

S
save() 84
scale() 85
scopes 10
separation color space 97
set_gstate() 88
set_info() 157
set_layer_dependency() 95
set_parameter() 14
set_text_pos() 45
set_value() 13
setcolor() 98
setdash() 81
setdashpattern() 81
setflat() 82
setfont() 44
setlinecap() 82

Index 181

setlinejoin() 82
setlinewidth() 83
setmatrix() 86
setmiterlimit() 83
setup functions 15
shading() 104
shading_pattern() 104
shfill() 104
show() 45
show_xy() 45
skew() 85
spot color (separation color space) 97
spot keyword 8
spotname keyword 8
standard page sizes 22
string index 15
string values in option lists 7
stringwidth() 46
stroke() 92
Subject field 157
subscript 44
superscript 44
suspend_page() 25

T
table formatting 70
template scope 10
text functions 33
text position 45
Textflow: inline option lists 63
thumbnails 116
Title field 157
translate() 85
Trapped field 157

U
Unichar values in option lists 7

W
web-optimized PDF 18

X
XMP metadata 159

	PDFlib Cookbook
	Contents
	1 PDFlib Programming Concepts
	1.1 Data Types
	1.2 Option Lists
	1.3 Function Scopes
	1.4 Limits

	2 General Functions
	2.1 Parameter Handling
	2.2 Setup
	2.3 Document Functions
	2.4 Page Functions
	2.5 PDFlib Virtual File System (PVF)
	2.6 Exception Handling
	2.7 Logging

	3 Text Functions
	3.1 Font Handling
	3.2 Type 3 Font Definition
	3.3 Encoding Definition
	3.4 Simple Text Output
	3.5 Unicode Conversion Functions

	4 Formatting Functions
	4.1 Single-Line Text with Textlines
	4.2 Multi-Line Text with Textflows
	4.3 Table Formatting
	4.4 Matchboxes

	5 Graphics Functions
	5.1 Graphics State
	5.2 Saving and Restoring Graphics States
	5.3 Coordinate System Transformations
	5.4 Explicit Graphics States
	5.5 Path Construction
	5.6 Path Painting and Clipping
	5.7 Layers

	6 Color Functions
	6.1 Setting Color and Color Space
	6.2 ICC Profiles
	6.3 Patterns and Shadings

	7 Image and Template Functions
	7.1 Images
	7.2 Templates
	7.3 Thumbnails

	8 PDF Import Functions (PDI)
	8.1 Document and Page
	8.2 pCOS Functions
	8.3 Other PDI Processing
	8.4 Deprecated PDI Parameters

	9 Personalization Functions (PPS)
	10 Interactive Features
	10.1 Parameters for Interactive Elements
	10.2 Actions
	10.3 Named Destinations
	10.4 Annotations
	10.5 Form Fields
	10.6 Bookmarks

	11 Multimedia Features (3D Artwork)
	12 Document Interchange
	12.1 Document Information Fields
	12.2 XMP Metadata
	12.3 Tagged PDF

	A List of all Functions
	B List of all Parameters
	C List of all Options
	D Revision History
	Index

