z-PDFlib GmbH

PDFlib, PDFlib+PDI, PPS

A library for generating PDF on the fly
Version 8.0.6

Tutorial

Edition for Cobol, C, C++, Java, Objective-C,
Perl, PHP, Python, RPG, Ruby, and Tcl

Copyright © 1997-2012 PDFlib GmbH and Thomas Merz. All rights reserved.
PDFlib users are granted permission to reproduce printed or digital copies of this manual for internal use.

PDFlib GmbH

Franziska-Bilek-Weg 9, 80339 Miinchen, Germany
www.pdflib.com

phone +49 + 89 » 45233 84-0

fax +49 < 89 « 45233 84-99

If you have questions check the PDFlib mailing list and archive at tech.groups.yahoo.com/group/pdflib

Licensing contact: sales@pdflib.com
Support for commercial PDFIib licensees: support@pdflib.com (please include your license number)

This publication and the information herein is furnished as is, is subject to change without notice, and
should not be construed as a commitment by PDFlib GmbH. PDFlib GmbH assumes no responsibility or lia-
bility for any errors or inaccuracies, makes no warranty of any kind (express, implied or statutory) with re-
spect to this publication, and expressly disclaims any and all warranties of merchantability, fitness for par-
ticular purposes and noninfringement of third party rights.

PDFlib and the PDFlib logo are registered trademarks of PDFlib GmbH. PDFlib licensees are granted the
right to use the PDFlib name and logo in their product documentation. However, this is not required.

Adobe, Acrobat, PostScript, and XMP are trademarks of Adobe Systems Inc. AIX, IBM, 0S/390, WebSphere,
iSeries, and zSeries are trademarks of International Business Machines Corporation. ActiveX, Microsoft,
OpenType, and Windows are trademarks of Microsoft Corporation. Apple, Macintosh and TrueType are
trademarks of Apple Computer, Inc. Unicode and the Unicode logo are trademarks of Unicode, Inc. Unix is
a trademark of The Open Group. Java and Solaris are trademarks of Sun Microsystems, Inc. HKS is a regis-
tered trademark of the HKS brand association: Hostmann-Steinberg, K+E Printing Inks, Schmincke. Other
company product and service names may be trademarks or service marks of others.

PANTONE® colors displayed in the software application or in the user documentation may not match
PANTONE-identified standards. Consult current PANTONE Color Publications for accurate color.
PANTONE® and other Pantone, Inc. trademarks are the property of Pantone, Inc. © Pantone, Inc., 2003.
Pantone, Inc. is the copyright owner of color data and/or software which are licensed to PDFlib GmbH to
distribute for use only in combination with PDFlib Software. PANTONE Color Data and/or Software shall
not be copied onto another disk or into memory unless as part of the execution of PDFlib Software.

PDFlib contains modified parts of the following third-party software:

ICClib, Copyright © 1997-2002 Graeme W. Gill

GIF image decoder, Copyright © 1990-1994 David Koblas

PNG image reference library (libpng), Copyright © 1998-2004 Glenn Randers-Pehrson

Zlib compression library, Copyright © 1995-2002 Jean-loup Gailly and Mark Adler

TIFFlib image library, Copyright © 1988-1997 Sam Leffler, Copyright © 1991-1997 Silicon Graphics, Inc.
Cryptographic software written by Eric Young, Copyright © 1995-1998 Eric Young (eay@cryptsoft.com)
Independent JPEG Group’s JPEG software, Copyright © 1991-1998, Thomas G. Lane

Cryptographic software, Copyright © 1998-2002 The OpenSSL Project (www.openssl.org)

Expat XML parser, Copyright © 1998, 1999, 2000 Thai Open Source Software Center Ltd

ICU International Components for Unicode, Copyright © 1995-2009 International Business Machines Cor-
poration and others

Reference sRGB ICC color profile data, Copyright (c) 1998 Hewlett-Packard Company

PDFlib contains the RSA Security, Inc. MD5 message digest algorithm.

http://www.pdflib.com
http://tech.groups.yahoo.com/group/pdflib
mailto:sales@pdflib.com
mailto:support@pdflib.com

11
1.2

1.3

1.4
1.5
1.6

1.7

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.m
2,12
2.13
2.14
2.15

3.1

Contents

Applying the PDFlib License Key o

Introduction 3

Roadmap to Documentation and Samples 13

PDFlib Programming 15
What'’s new in PDFlib/PDFlib+PDI/PPS 82 17

1.3.1
1.3.2
13.3
13.4

PDF Features for Acrobat 9 17

Font Handling and Text Output 18

PDFlib Block Plugin and PDFlib Personalization Server (PPS) 19
Other important Features 20

Features in PDFlib 21
Additional Features in PDFlib+PDI 24
Additional Features in PPS 25

Availability of Features in different Products 26

PDFlib Language Bindings :;
Data Types for Language Bindings 27

Cobol Binding 28

COM Binding 29

CBinding 30

C++ Binding 33

Java Binding 36
.NET Binding 39
Objective-C Binding 40

Perl Binding 42

PHP Binding 44
Python Binding 46
REALbasic Binding 47
RPG Binding 48
Ruby Binding 50

Tcl Binding 52

Creating PDF Documents 53

General PDFlib Programming Aspects 53

3.1.1
3.1.2
3.1.3
3.1.4

Exception Handling 53

The PDFlib Virtual File System (PVF) 55
Resource Configuration and File Search 56
Generating PDF Documents in Memory 61

Contents

3

3.1.5 Large PDF Documents 62
3.1.6 Using PDFlib on EBCDIC-based Platforms 62

3.2 Page Descriptions 64

3.21 Coordinate Systems 64

3.2.2 Page Size 66

3.2.3 Direct Paths and Path Objects 67

3.2.4 Templates 69

3.2.5 Referenced Pages from an external PDF Document 7o

3.3 Encrypted PDF 72

3.3.1 PDF Security Features 72
3.3.2 Protecting Documents with PDFlib 73

3.4 Web-Optimized (Linearized) PDF 75

3.5 Working with Color 76

3.5.1 Patterns and Smooth Shadings 76
3.5.2 Pantone, HKS, and custom Spot Colors 77
3.5.3 Color Management and ICC Profiles 8o

3.6 Interactive Elements 83

3.6.1 Links, Bookmarks, and Annotations 83
3.6.2 Form Fields and JavaScript 85

3.7 Georeferenced PDF 89

3.7.1 Using Georeferenced PDF in Acrobat 89

3.7.2 Geographic and projected Coordinate Systems 89
3.7.3 Coordinate System Examples go

3.7.4 Georeferenced PDF restrictions in Acrobat g1

4 Unicode and Legacy Encodings o3

4.1

Important Unicode Concepts 93

4.2 Single-Byte (8-Bit) Encodings 95

4.3 Chinese, Japanese, and Korean Encodings 99

4.4 String Handling in PDFlib 102

4.41 Content Strings, Hypertext Strings, and Name Strings 702
4.4.2 Strings in Unicode-aware Language Bindings 103
4.4.3 Strings in non-Unicode-aware Language Bindings 103

4.5 Addressing Characters 107

5.1

4.51 Escape Sequences 107
4.5.2 Character References 108

Font Handling

Font Formats 111

511 TrueType Fonts 111

5.1.2 OpenType Fonts 111

5.1.3 PostScript Type 1 Fonts 112
5.1.4 SING Fonts (Glyphlets) 112
5.1.5 Type 3 Fonts 113

4 Contents

5.2

53

5.4

5.5

5.6

6.1
6.2

6.3

6.4

6.5

Unicode Characters and Glyphs 115

521 GlyphIDs 15

5.2.2 Unicode Mappings for Glyphs 115
5.2.3 Unicode Control Characters 116

The Text Processing Pipeline 118

5.3.1 Normalizing Input Strings to Unicode 118
5.3.2 Converting Unicode Values to Glyph IDs 119
5.3.3 Transforming Glyph IDs 120

Loading Fonts 121

5.4.1 Selecting an Encoding for Text Fonts 121

5.4.2 Selecting an Encoding for symbolic Fonts 123

5.4.3 Example: Selecting a Glyph from the Wingdings Symbol Font 124
5.4.4 Searching for Fonts 126

5.4.5 Host Fonts on Windows and Mac OS X 131

5.4.6 Fallback Fonts 133

Font Embedding and Subsetting 137
5.51 Font Embedding 137
5.5.2 Font Subsetting 138

Querying Font Information 140

5.6.1 Font-independent Encoding, Unicode, and Glyph Name Queries 140
5.6.2 Font-specific Encoding, Unicode, and Glyph Name Queries 141

5.6.3 Querying Codepage Coverage and Fallback Fonts 142

Text Output s

Text Output Methods 145

Font Metrics and Text Variations 147
6.2.1 Font and Glyph Metrics 147
6.2.2 Kerning 148

6.2.3 Text Variations 149

OpenType Layout Features 152
6.3.1 Supported OpenType Layout Features 152
6.3.2 OpenType Layout Features with Textlines and Textflows 154

Complex Script Output 158

6.41 Complex Scripts 158

6.4.2 Script and Language 160
6.4.3 Complex Script Shaping 162
6.4.4 Bidirectional Formatting 162
6.4.5 Arabic Text Formatting 164

Chinese, Japanese, and Korean Text Output 166

6.5.1 Standard CJK Fonts 166

6.5.2 Custom CJK Fonts 168

6.5.3 EUDC and SING Fonts for Gaiji Characters 169

6.5.4 OpenType Layout Features for advanced CJK Text Output 170

Contents

5

7 Importing Images and PDF Pages 17

7.1 Importing Raster Images 173
7.1 Basic Image Handling 173
7.1.2 Supported Image File Formats 175
7.1.3 Clipping Paths 178
7.1.4 Image Masks and Transparency 178
7.1.5 Colorizing Images 180

7.2 Importing PDF Pages with PDI 182
7.21 PDIFeatures and Applications 182
7.2.2 Using PDI Functions with PDFlib 182
7.2.3 Acceptable PDF Documents 184

7.3 Placing Images and imported PDF Pages 186
7.3.1 Simple Object Placement 186
7.3.2 Placing an Object in a Box 186
7.3.3 Orientating an Object 188
7.3.4 Rotating an Object 190
7.3.5 Adjusting the Page Size 191
7.3.6 Querying Information about placed Images and PDF Pages 192

8 Text and Table Formatting 193

8.1 Placing and Fitting Textlines 193
8.11 Simple Textline Placement 193
8.1.2 Positioning Text in a Box 194
8.1.3 Fitting Text into a Box 195
8.1.4 Aligning Text at a Character 197
8.1.5 Placinga Stamp 198
8.1.6 Using Leaders 198
8.1.7 TextonaPath 199

8.2 Multi-Line Textflows 201
8.2.1 Placing Textflows in the Fitbox 202
8.2.2 Paragraph Formatting Options 204
8.2.3 Inline Option Lists and Macros 204
8.2.4 Tab Stops 207
8.2.5 Numbered Lists and Paragraph Spacing 208
8.2.6 Control Characters and Character Mapping 209
8.2.7 Hyphenation 212
8.2.8 Controlling the standard Linebreak Algorithm 212
8.2.9 Advanced script-specific Line Breaking 216
8.2.10 Wrapping Text around Paths and Images 217

8.3 Table Formatting 221
8.31 Placing a Simple Table 222
8.3.2 Contents of a Table Cell 225
8.3.3 Table and Column Widths 227
8.3.4 Mixed Table Contents 228
8.3.5 Table Instances 231
8.3.6 Table Formatting Algorithm 234

6 Contents

8.4 Matchboxes 237
8.41 Decorating a Textline 237
8.4.2 Using Matchboxes in a Textflow 238
8.4.3 Matchboxes and Images 239

9 The pCOS Interface 24

10 PDF Versions and Standards 243
10.1 Acrobat and PDF Versions 243

10.2 1SO 32000 246

10.3 PDF/X for Print Production 247
10.3.1 The PDF/X Family of Standards 247
10.3.2 Generating PDF/X-conforming Output 248
10.3.3 Output Intent and Standard Output Conditions 251
10.3.4 Importing PDF/X Documents with PDI 252

10.4 PDF/A for Archiving 254
10.4.1 The PDF/A Standards 254
10.4.2 Generating PDF/A-conforming Output 255
10.4.3 Importing PDF/A Documents with PDI 258
10.4.4 Color Strategies for creating PDF/A 259
10.4.5 XMP Document Metadata for PDF/A 260

10.5 Tagged PDF 262
10.5.1 Generating Tagged PDF with PDFlib 262
10.5.2 Creating Tagged PDF with direct Text Output and Textflows 264
10.5.3 Activating Items for complex Layouts 265
10.5.4 Using Tagged PDF in Acrobat 268

11 PPS and the PDFlib Block Plugin 7

1.1 Installing the PDFlib Block Plugin 271

11.2 Overview of the Block Concept 273
11.2.1 Separation of Document Design and Program Code 273
11.2.2 Block Properties 273
11.2.3 Why not use PDF Form Fields? 274

1.3 Editing Blocks with the Block Plugin 276
11.3.1 Creating Blocks 276
11.3.2 Editing Block Properties 280
11.3.3 Copying Blocks between Pages and Documents 281
11.3.4 Converting PDF Form Fields to PDFlib Blocks 282
11.3.5 Customizing the Block Plugin User Interface with XML 285

1.4 Previewing Blocks in Acrobat 286
1.5 Filling Blocks with PPS 290

1.6 Block Properties 294
11.6.1 Administrative Properties 294
11.6.2 Rectangle Properties 295
11.6.3 Appearance Properties 296

Contents 7

11.6.4 Text Preparation Properties 298
11.6.5 Text Formatting Properties 299
11.6.6 Object Fitting Properties 302

11.6.7 Properties for default Contents 305
11.6.8 Custom Properties 305

1.7 Querying Block Names and Properties with pCOS 306

1.8 PDFlib Block Specification 308
11.8.1 PDF Object Structure for PDFlib Blocks 308
11.8.2 Block Dictionary Keys 310
11.8.3 Generating PDFlib Blocks with pdfmarks 371

A Revision History 3

Index 315

8 Contents

o Applying the PDFlib License Key

Restrictions of the evaluation version. All binary versions of PDFlib, PDFlib+PDI, and
PPS supplied by PDFlib GmbH can be used as fully functional evaluation versions re-
gardless of whether or not you obtained a commercial license. However, unlicensed ver-
sions display a www.pdflib.com demo stamp across all generated pages, and the inte-
grated pCOS interface is limited to small documents (up to 10 pages and 1 MB file size).
Unlicensed binaries must not be used for production purposes, but only for evaluating
the product. Using any PDFlib GmbH product for production purposes requires a valid
license.

Companies which are interested in PDFlib licensing and wish to get rid of the evalua-
tion restrictions during the evaluation phase or for prototype demos can submit their
company and project details with a brief explanation to sales@pdflib.com, and apply for
a temporary license key (we reserve the right to refuse evaluation key requests, e.g. for
anonymous requests).

PDFlib, PDFlib+PD], and PDFlib Personalization Server (PPS) are different products
which require different license keys although they are delivered in a single package.
PDFlib+PDI license keys will also be valid for PDFlib, but not vice versa, and PPS license
keys will be valid for PDFlib+PDI and PDFlib. All license keys are platform-dependent,
and can only be used on the platform for which they have been purchased.

Once you purchased a license key you must apply it in order to get rid of the demo
stamp. Several methods are supported for setting the license key; they are detailed be-
low.

Cookbook A full code sample can be found in the Cookbook topic general/license_key.
Windows installer. If you are working with the Windows installer you can enter the li-

cense key when you install the product. The installer will add the license key to the reg-
istry (see below).

Applying a license key with an API call at runtime. Add a line to your script or pro-
gram which sets the license key at runtime. The license parameter must be set immedi-
ately after instantiating the PDFlib object (i.e., after PDF_new() or equivalent call). The
exact syntax depends on your programming language:

» In C and Python:

PDF_set_option(p, "license=...your license key...")
» In C++, Java, and Ruby:
p.set_option("license=...your license key...")
» In Objective-C:
[pdflib set option: @"license=...your license key..."];
» In Perl and PHP:
p->set_option("license=...your license key...")
» In RPG:

c callp PDF_set_option(p:%ucs2('license=...your license key...")

http://www.pdflib.com/pdflib-cookbook/general-programming/license-key

Note

10

» In Tcl:

PDF_set_option $p, "license=...your license key..."

Working with a license file. Asan alternative to supplying the license key with a run-
time call, you can enter the license key in a text file according to the following format
(you can use the license file template licensekeys.txt which is contained in all PDFlib dis-
tributions). Lines beginning with a '#’ character contain comments and will be ignored;
the second line contains version information for the license file itself:

Licensing information for PDFlib GmbH products
PDFlib license file 1.0
PDF1ib 8.0.6 ...your license key...

The license file may contain license keys for multiple PDFlib GmbH products on sepa-
rate lines. It may also contain license keys for multiple platforms so that the same li-
cense file can be shared among platforms. License files can be configured in the follow-
ing ways:
» Afile called licensekeys.txt will be searched in all default locations (see »Default file
search paths«, page 11).
» You can specify the licensefile parameter with the set_option() API function:

p.set_option("licensefile={/path/to/licensekeys.txt}");

» You can set an environment (shell) variable which points to a license file. On Win-
dows use the system control panel and choose System, Advanced, Environment
Variables; on Unix apply a command similar to the following:

export PDFLIBLICENSEFILE=/path/to/licensekeys.txt

» On IBM i5/iSeries the license file can be specified as follows (this command can be
specified in the startup program OSTRUP and will work for all PDFlib GmbH prod-
ucts):

ADDENVVAR ENVVAR(PDFLIBLICENSEFILE) VALUE(<... path ...>) LEVEL(*SYS)
License keys in the registry. On Windows you can also enter the name of the license
file in the following registry key:
HKLM\SOFTWARE\PDF1ib\PDFLIBLICENSEFILE
As another alternative you can enter the license key directly in one of the following reg-
istry keys:
HKLM\SOFTWARE\PDF1ib\PDF1ib8\license

HKLM\SOFTWARE\PDF1ib\PDF1ib8\8.0.6\1icense

The MSI installer will write the license key provided at install time in the last of these
entries.

Be careful when manually accessing the registry on 64-bit Windows systems: as usual, 64-bit
PDFlib binaries will work with the 64-bit view of the Windows registry, while 32-bit PDFlib bi-
naries running on a 64-bit system will work with the 32-bit view of the registry. If you must
add registry keys for a 32-bit product manually, make sure to use the 32-bit version of the
regedit tool. It can be invoked as follows from the Start, Run... dialog:

Chapter o: Applying the PDFlib License Key

%systemroot%\syswow64\regedit

Default file search paths. On Unix, Linux, Mac OS X and i5/iSeries systems some direc-
tories will be searched for files by default even without specifying any path and directo-
ry names. Before searching and reading the UPR file (which may contain additional
search paths), the following directories will be searched:

<rootpath>/PDF1lib/PDF1ib/8.0/resource/cmap
<rootpath>/PDF1ib/PDF1ib/8.0/resource/codelist
<rootpath>/PDF1ib/PDF1ib/8.0/resource/glyphlst
<rootpath>/PDF1ib/PDF1ib/8.0/resource/fonts
<rootpath>/PDF1ib/PDF1ib/8.0/resource/icc
<rootpath>/PDF1ib/PDF1ib/8.0
<rootpath>/PDF1lib/PDFlib

<rootpath>/PDFlib

On Unix, Linux, and Mac OS X <roothpath> will first be replaced with /usr/local and then
with the HOME directory. On i5/iSeries <roothpath> is empty.

Default file names for license and resource files. By default, the following file names
will be searched for in the default search path directories:

licensekeys.txt (license file)
pdflib.upr (resource file)

This feature can be used to work with a license file without setting any environment
variable or runtime option.

Multi-system license files on i5/iSeries and zSeries. License keys for i5/iSeries and
zSeries are system-specific and therefore cannot be shared among multiple systems. In
order to facilitate resource sharing and work with a single license file which can be
shared by multiple systems, the following license file format can be used to hold multi-
ple system-specific keys in a single file:

PDFlib license file 2.0

Licensing information for PDF1lib GmbH products

PDF1ib 8.0.6 ...your license key... ...serial number of machine 1...
PDF1ib 8.0.6 ...your license key... ...serial number of machine 2...

Note the changed version number in the first line and the presence of multiple license
keys, followed by the corresponding eight-digit hexadecimal serial number (on i5/iSer-
ies) or four-digit hexadecimal CPU ID (on zSeries).

Working with license files on i5/iSeries. On is/iSeries systems the license file must be
encoded in ASCII (see asciifile parameter). The following command sets the
PDFLIBLICENSEFILE environment variable to point to a suitable license file:

ADDENVVAR ENVVAR(PDFLIBLICENSEFILE) VALUE('/PDFLIB/8.0.6/1licensefile.txt")
LEVEL(*SYS)

Updates and Upgrades. If you purchased an update (change from an older version of a
product to a newer version of the same product) or upgrade (change from PDFlib to
PDFlib+PDI or PPS, or from PDFlib+PDI to PPS) you must apply the new license key that
you received for your update or upgrade. The old license key for the previous product

o

must no longer be used. Note that license keys will work for all maintenance releases of
a particular product version; as far as licensing is concerned, all versions 8.0.x are treat-
ed the same.

Evaluating features which are not yet licensed. You can fully evaluate all features by
using the software without any license key applied. However, once you applied a valid
license key for a particular product using features of a higher category will no longer be
available. For example, if you installed a valid PDFlib license key the PDI functionality
will no longer be available for testing. Similarly, after installing a PDFlib+PDI license key
the personalization features (block functions) will no longer be available.

When a license key for a product has already been installed, you can replace it with
the dummy license string »o« (digit zero) to enable functionality of a higher product
class for evaluation. This will enable the previously disabled functions, and re-activate
the demo stamp across all pages.

Licensing options. Different licensing options are available for PDFlib use on one or
more servers, and for redistributing PDFlib with your own products. We also offer sup-
port and source code contracts. Licensing details and the PDFlib purchase order form
can be found in the PDFlib distribution. Please contact us if you are interested in obtain-
ing a commercial PDFlib license, or have any questions:

PDFlib GmbH, Licensing Department
Franziska-Bilek-Weg 9, 80339 Miinchen, Germany
www.pdflib.com

phone +49 - 89 + 45233 84-0

fax +49 + 89+ 45233 84-99

Licensing contact: sales@pdflib.com

Support for PDFlib licensees: support@pdflib.com

12 Chapter o: Applying the PDFlib License Key

http://www.pdflib.com
mailto:sales@pdflib.com
mailto:support@pdflib.com

1

1.1

Note

Note

Introduction

Roadmap to Documentation and Samples
We provide the material listed below to assist you in using PDFlib products successfully.

On Windows Vista and Windows 7 the mini samples and starter samples will be installed in the
»Program Files« directory by default. Due to the Windows protection scheme the PDF output
files created by these samples will only be visible under »compatibility files«. Recommended
workaround: copy the folder with the samples to a user directory.

Mini samples for all language bindings. The mini samples (hello, image, pdfclock, etc.)
are available in all packages and for all language bindings. They provide minimalistic
sample code for text output, images, and vector graphics. The mini samples are mainly
useful for testing your PDFlib installation, and for getting a very quick overview of writ-
ing PDFlib applications.

Starter samples for all language bindings. The starter samples are contained in all
packages and are available for a variety of language bindings. They provide a useful ge-
neric starting point for important topics, and cover simple text and image output, Text-
flow and table formatting, PDF/A and PDF/X creation and many other topics. The starter
samples demonstrate basic techniques for achieving a particular goal with PDFlib prod-
ucts. It is strongly recommended to take a look at the starter samples.

PDFlib Tutorial. The PDFlib Tutorial (this manual), which is contained in all packages as
a single PDF document, explains important programming concepts in more detail, in-
cluding small pieces of sample code. If you start extending your code beyond the starter
samples you should read up on relevant topics in the PDFlib Tutorial.

Most examples in this PDFlib Tutorial are provided in the Java language (except for the
language-specific samples in Chapter 2, »PDFlib Language Bindings«, page 27, and a few C-
specific samples which are marked as such). Although syntax details vary with each language,
the basic concepts of PDFlib programming are the same for all language bindings.

PDFlib API Reference. The PDFlib API Reference, which is contained in all packages as a
single PDF document, contains a concise description of all functions, parameters, and
options which together comprise the PDFlib application programming interface (API).
The PDFlib API Reference is the definitive source for looking up parameter details, sup-
ported options, input conditions, and other programming rules which must be ob-
served. Note that some other reference documents are incomplete, e.g. the Javadoc API
listing for PDFlib and the PDFlib function listing on php.net. Make sure to always use the
full PDFlib API Reference when working with PDFlib.

pCOS Path Reference. The pCOS interface can be used to query a variety of properties
from PDF documents. pCOS is included in PDFlib+PDI and PPS. The pCOS Path Reference
contains a description of the path syntax used to address individual objects within a
PDF document in order to retrieve the corresponding values.

1.1 Roadmap to Documentation and Samples

13

PDFlib Cookbook. The PDFlib Cookbook is a collection of PDFlib coding fragments for
solving specific problems. Most Cookbook examples are written in the Java language,
but can easily be adjusted to other programming languages since the PDFlib API is al-
most identical for all supported language bindings. The PDFlib Cookbook is maintained
as a growing list of sample programs. It is available at the following URL:

www.pdflib.com/pdflib-cookbook/

pCOS Cookbook. The pCOS Cookbook is a collection of code fragments for the pCOS in-
terface which is contained in PDFlib+PDI and PPS. The pCOS interface can be used to
query a variety of properties from PDF documents. It is available at the following URL:

www. pdflib.com/pcos-cookbook/

TET Cookbook. PDFlib TET (Text Extraction Toolkit) is a separate product for extract-
ing text and images from PDF documents. It can be combined with PDFlib+PDI to pro-
cess PDF documents based on their contents. The TET Cookbook is a collection of code
fragments for TET. It contains a group of samples which demonstrate the combination
of TET and PDFlib+PD], e.g. add Web links or bookmarks based on the text on the page,
highlight search terms, split documents based on text, create a table of contents, etc.
The TET Cookbook is available at the following URL:

www. pdflib.com/tet-cookbook/

14 Chapter 1: Introduction

http://www.pdflib.com/pdflib-cookbook/
http://www.pdflib.com/pcos-cookbook/
http://www.pdflib.com/tet-cookbook/

1.2 PDFlib Programming

What is PDFlib? PDFlib is a development component which allows you to generate
files in Adobe’s Portable Document Format (PDF). PDFlib acts as a backend to your own
programs. While the application programmer is responsible for retrieving the data to be
processed, PDFlib takes over the task of generating the PDF output which graphically
represents the data. PDFlib frees you from the internal details of PDF, and offers various
methods which help you formatting the output. The distribution packages contain dif-
ferent products in a single binary: —

» PDFlib contains all functions required to create PDF output containing text, vector
graphics and images plus hypertext elements. PDFlib offers powerful formatting —
features for placing single- or multi-line text, images, and creating tables.

» PDFlib+PDI includes all PDFlib functions, plus the PDF Import Library (PDI) for in- —_—
cluding pages from existing PDF documents in the generated output, and the pCOS
interface for querying arbitrary PDF objects from an imported document (e.g. list all —
fonts on page, query metadata, and many more).

» PDFlib Personalization Server (PPS) includes PDFlib+PD]I, plus additional functions -
for automatically filling PDFlib blocks. Blocks are placeholders on the page which
can be filled with text, images, or PDF pages. They can be created interactively with
the PDFlib Block Plugin for Adobe Acrobat (Mac or Windows), and will be filled auto-
matically with PPS. The plugin is included in PPS.

How can | use PDFlib? PDFlib is available on a variety of platforms, including Unix,
Windows, Mac, and EBCDIC-based systems such as IBM i5/iSeries and zSeries. PDFlib is
written in the C language, but it can be also accessed from several other languages and
programming environments which are called language bindings. These language bind-
ings cover all current Web and stand-alone application environments. The Application
Programming Interface (API) is easy to learn, and is identical for all bindings. Currently
the following bindings are supported:

» COM for use with Visual Basic, Active Server Pages with VBScript or JScript, Borland —

Delphi, Windows Script Host, and other environments

» ANSIC —

» ANSI C++

» Cobol (IBM zSeries) —

» Java, including J2EE Servlets and JSP

» NET for use with C#, VB.NET, ASP.NET, and other environments R

» Objective C (Mac OS X, iOS)

» PHP e

» Perl

» Python —

» REALbasic

» RPG (IBM i5/iSeries) -

» Ruby, including Ruby on Rails

» Tcl -

What can | use PDFlib for? PDFlib’s primary target is dynamic PDF creation within

your own software or on a Web server. Similar to HTML pages dynamically generated on
a Web server, you can use a PDFlib program for dynamically generating PDF reflecting

1.2 PDFlib Programming 15

user input or some other dynamic data, e.g. data retrieved from the Web server’s data-
base. The PDFlib approach offers several advantages:
» PDFlib can be integrated directly in the application generating the data.
» As an implication of this straightforward process, PDFlib is the fastest PDF-generat-
ing method, making it perfectly suited for the Web.
» PDFlib’s thread-safety as well as its robust memory and error handling support the
implementation of high-performance server applications.
» PDFlib is available for a variety of operating systems and development environ-
ments.

Requirements for using PDFlib. PDFlib makes PDF generation possible without wading
through the PDF specification. While PDFIib tries to hide technical PDF details from the
user, a general understanding of PDF is useful. In order to make the best use of PDFlib,
application programmers should ideally be familiar with the basic graphics model of
PostScript (and therefore PDF). However, a reasonably experienced application pro-
grammer who has dealt with any graphics API for screen display or printing shouldn’t
have much trouble adapting to the PDFlib APIL

16 Chapter 1: Introduction

1.3

1.3.1

What’s new in PDFlib/PDFlib+PDI/PPS 8?

The following list discusses the most important new or improved features in PDFlib/
PDFlib+PDI/PPS 8 and Block Plugin 4. There are many more new features; see the PDFlib
API Reference for details.

PDF Features for Acrobat g

PDFlib supports various PDF features according to Acrobat 9 (technically: PDF 1.7 Adobe
extension level 3).

External graphical content. Pages in PDF documents can contain references to pages
in another PDF file, so-called Reference XObjects. The original file contains only a place-
holder, e.g. a low-resolution version of an image or simply a note which mentions that
the actual page contents are missing. Using this technique repeated content (e.g. for
transactional printing) does not have to be transferred again and again. Reference
XObijects are a crucial component of PDF/X-5g and PDF/X-5pg.

Layer variants. Layer variants (also called layer configurations) can be considered
groups of layers. The grouping makes layers safe for production because the user can no
longer inadvertently activate or deactivate the wrong set of layers (e.g. enable a particu-
lar language layer but forget to activate the image layer which is common to all lan-
guages). For this reason layer variants are the basis for using layers in the PDF/X-4 and
PDF/X-5 standards.

PDF Portfolios. PDF Portfolios group PDF and other documents in a single entity
which can conveniently be used with Acrobat g. If no hierarchical folders are used for
organizing the file attachments, the resulting PDF collections can be used with

Acrobat 8 as well. PDFlib also supports predefined and custom metadata fields to facili-
tate the organization of file attachments within a PDF Portfolio. New actions can be
used to create bookmarks which directly jump to a page in an embedded document.

Georeferenced PDF. Georeferenced PDF contains geographic reference information
for the whole page or individual maps on the page. Acrobat 9 and above offer various
features for interacting with Georeferenced PDF. PDFlib can be used to assign geospatial
reference data to images and partial or full pages.

AES-256 encryption and Unicode passwords. PDFlib supports AES-256 encryption for
improved security. AES-256 encryption has been introduced with Acrobat g and also al-
lows Unicode passwords.

Import Acrobat 9 documents. PDFlib+PDI and PPS can import and process Acrobat 9
documents. The pCOS interface can also analyze Acrobat 9 documents.

1.3 What’s new in PDFlib/PDFlib+PDI/PPS 8? 17

1.3.2 Font Handling and Text Output

Complex script shaping and bidirectional text formatting. Simple scripts, e.g. Latin,
are scripts in which characters are placed one after the other from left to right. Complex
scripts require additional processing for shaping the text (selecting appropriate glyph
form depending on context), reordering characters, or formatting text from right to left.
PDFlib supports complex script output for a variety of scripts including the Arabic, He-
brew, Devanagari, and Thai scripts.

Fallback fonts. Fallback fonts are a powerful mechanism for dealing with a variety of
font and encoding-related restrictions. You can mix and match fonts, pull missing
glyphs from another font, extend encodings, etc. Fallback fonts can adjust the size of in-
dividual glyphs automatically to account for design differences in the combined fonts.

OpenType layout features. OpenType layout features add intelligence to an Open-
Type font in the form of additional tables in the font file. These tables describe ad-
vanced typographic features such as ligatures, small capitals, swash characters, etc.
They also support advanced CJK text output with halfwidth, fullwidth, and proportion-
al glyphs, alternate forms, and many others.

Retain fonts across documents. Fonts and associated data can be kept in memory after
the generated document is finished. This improves performance since the font doesn’t
have to be parsed again for the next document, while still doing document-specific pro-
cessing such as font subsetting.

SING fonts for CJK Gaiji characters. The Japanese term Gaiji refers to custom charac-
ters (e.g. family or place names) which are in common use, but are not included in any
encoding standard. Adobe’s SING font architecture (glyphlets) solves the Gaiji problem
for CJK text. PDFlib supports SING fonts as well as the related Microsoft concept of EUDC
fonts (end-user defined fonts). Using the fallback font feature SING and EUDC fonts can
be merged into an existing font.

Redesigned font engine. PDFlib’s font engine has been redesigned and streamlined,
resulting in a variety of Unicode and encoding-related advantages as well as general
performance improvements and reduced memory requirements. Due to the redesign
some restrictions could be eliminated and the functionality of existing features extend-
ed. For example, it is now possible to address more than 256 glyphs in Type 1 or Type 3
fonts, address swash characters by glyph name, etc.

Wrap text around image clipping paths. The Textflow formatting engine wraps text
around arbitrary paths and can also use the clipping path of an imported TIFF or JPEG
image. This way multi-line text can be wrapped around an image.

Text on a path. Text can be placed on arbitrary vector paths consisting of an arbitrary
mixture of straight line segments, curves, and arcs. The paths can be constructed pro-
grammatically. Alternatively, the clipping paths from TIFF or JPEG images can be ex-
tracted and used as text paths.

18 Chapter 1: Introduction

1.3.3 PDFlib Block Plugin and PDFlib Personalization Server (PPS)

The PDFlib Block Plugin is used to prepare PDF documents for Block filling (personaliza-
tion) with the PDFlib Personalization Server (PPS).

Preview PPS Block processing in Acrobat. The Plugin can generate previews of the
Block filling process with PPS directly in Acrobat. The immediate preview allows design-
ers to quickly review the results of PPS-filling their Block documents before submitting
them to the server for processing. The preview PDF contains bookmarks, layers, and an-
notations with possible error messages as debugging and development aids. The pre-
view feature speeds up development cycles and can also be used as an interactive test
framework for trying PDFlib features. —

Clone PDF/A or PDF/X status of the Block container. When generating Block previews S
based on PDF/A or PDF/X documents, the Block Plugin can clone all relevant aspects of
the standard, e.g. standard identification, output intent, and metadata. If a Block filling
operation in PDF/A or PDF/X cloning mode would violate the selected standard (e.g. be-
cause a default image uses RGB color space although the document does not contain a
suitable output intent) an error message will be displayed. This way users can catch po-
tential standard violations very early in the workflow.

Redesigned user interface and snap-to-grid. The user interface of the PDFlib Block
Plugin has been restructured to facilitate access to the large number of existing and new
Block properties.

The new snap-to-grid feature is useful for quickly laying out Blocks according to a —
design raster.

Additional Block properties. More Block properties have been added to the Block
Plugin and PPS, e.g. for specifying transparency of text, image, or PDF contents placed in -
a Block.

Leverage PDFlib 8 features with Blocks. Relevant new features of PDFlib 8 such as text

output for complex scripts and OpenType layout features can be activated directly with
Block properties. For example, Blocks can be filled with Arabic or Hindi text.

1.3 What’s new in PDFlib/PDFlib+PDI/PPS 82 19

1.3.4 Other important Features

Reusable path objects. Path objects can be constructed independently from any page
and used one or more times for stroking, filling, or clipping. Path objects can also be
used as wrapping shapes (format text into irregularly shaped areas) or to place text on
the path.

PDF/X-4 and PDF/X-5. PDFlib creates output according to the PDF/X-4 and PDF/X-5
standards for the graphic arts industry. Compared to the earlier PDF/X-1 and PDF/X-3
standards these are based on a newer PDF version and allow transparency and layers.
PDF/X-4p and PDF/X-5pg support externally referenced ICC profiles as output intents.
PDF/X-5g and PDF/X-5pg support the use of external graphical content.

Alpha channel in TIFF and PNG images. PDFlib honors image transparency (alpha
channel) when importing TIFF and PNG images. Alpha channels can be used to create
smooth transitions and to blend an image with the background.

JBIG2-compressed images. JBIGz2 is a highly effective image compression format for
black and white images. PDFlib imports single- and multi-page JBIG2 images and main-
tains the advantages of their compression in the generated PDF output.

Compressed object streams and cross-reference streams. PDFlib creates compressed
object streams and cross-reference streams. These methods reduce the overall file size
of the generated PDF documents and help PDF documents to jump over the previous
10 GB limit which holds for PDFs with conventional cross-reference tables. While 10 GB
may seem an awful lot of data, an increasing number of applications in transaction
printing are approach this limit. We expect to see more and more scenarios where
PDFlib users want to create PDF documents in this range.

Builtin PANTONE® Goe™ color libraries. PDFlib supports the new PANTONE® Goe™ col-
or libraries with 2058 new colors for coated and uncoated paper as well as a new color
naming scheme. The Goe™ color libraries have been introduced by Pantone, Inc. in
2008.

Improvements in existing functions. The list below mentions some of the most impor-
tant improvements of existing features in PDFlib 8:
» query image details with PDF_info_image()
» PPS and Block Plugin: additional Block properties which make new PDFlib features
accessible via PDFlib Blocks
» Unicode filenames on Unix systems
» Table formatter: place path objects, annotations, and form fields in table cells
» Textflow: additional formatting control options, advanced language-specific line-
breaking
» shadow text
retain XMP metadata in imported images
» many improvements in PDF _info_font()
additional options for creating annotations
Configurable string data type for the C++ binding, e.g. wstring for Unicode support

v

v

v

20 Chapter1: Introduction

1.4 Features in PDFlib

Table 1.1 lists major PDFlib features for generating PDF. New and improved features in
PDFlib 8 are marked.

Table 1.1 Feature list for PDFlib

topic

PDF output

PDF flavors

I1SO standards

Graphics

Layers

Fonts

Text output

features

Generate PDF documents on disk file or directly in memory (for Web servers)
High-volume output and arbitrary PDF file size (even beyond 10 GB)
Suspend/resume and insert page features to create pages out of order

PDF 1.3 — PDF 1.7ext8’ (Acrobat 4—X) including ISO 32000-1 (=PDF 1.7)
Linearized (web-optimized) PDF for byteserving over the Web

Tagged PDF for accessibility and reflow

Marked Content for adding application-specific data or alternate text without Tagging’
ISO 15930: PDF/X for the graphic arts industry’

IS0 19 005: PDF/A for archiving

ISO 32000: standardized version of PDF 1.7'

Common vector graphics primitives: lines, curves, arcs, ellipses’, rectangles, etc.
Smooth shadings (color blends), pattern fills and strokes

Transparency (opacity) and blend modes

External graphical content (Reference XObjects) for variable data printing’
Reusable path objects and clipping paths imported from images’

Optional page content which can selectively be displayed

Annotations and form fields can be placed on layers

Layers can be locked, automatically activated depending on zoom factor, etc.
Layer variants' (production-safe groups of layers) for PDF/X-4 and PDF/X-5
TrueType (TTF and TTC) and PostScript Type 1 fonts (PFB and PFA, plus LWFN on the Mac)
OpenType fonts with PostScript or TrueType outlines (TTF, OTF)

Support for dozens of OpenType layout features for Western and CIK text output, e.g. ligatures,
small caps, old-style numerals, swash characters, simplified/traditional forms, vertical alternates’

Directly use fonts which are installed on the Windows or Mac system (»host fonts«)
Font embedding for all font types; subsetting for TrueType, OpenType, and Type 3 fonts
User-defined (Type 3) fonts for bitmap fonts or custom logos

EUDC and SING' fonts (glyphlets) for CJK Gaiji characters

Fallback fonts (pull missing glyphs from an auxiliary font)'

Retain fonts across documents to increase performance’

Text output in different fonts; underlined, overlined, and strikeout text

Glyphs in a font can be addressed by numerical value, Unicode value, or glyph name’
Kerning for improved character spacing

Artificial bold, italic, and shadow’ text

Create text on a path’

Proportional widths for CIK fonts'

Configurable replacement of missing glyphs

1.4 Features in PDFlib 21

Table 1.1 Feature list for PDFlib

topic
Internationalization

Images

Color

Color management

Archiving

Graphic arts

Textflow
Formatting

Table formatting

features

Unicode strings for page content, interactive elements, and file names’; UTF-8, UTF-16, and UTF-
32 formats

Support for a variety of 8-bit and legacy multi-byte CIK encodings (e.g. Shift-JIS; Bigs)
Fetch code pages from the system (Windows, IBM i5/iSeries and zSeries)

Standard and custom CJK fonts and CMaps for Chinese, Japanese, and Korean text
Vertical writing mode for Chinese, Japanese, and Korean text

Character shaping for complex scripts, e.g. Arabic, Thai, Devanagari’

Bidirectional text formatting for right-to-left scripts, e.g. Arabic and Hebrew'

Embed Unicode information in PDF for proper text extraction in Acrobat

Embed BMP, GIF, PNG, TIFF, JBIG2', JPEG, JPEG 2000", and CCITT raster images
Automatic detection of image file formats

Query image information (pixel size, resolution, ICC profile, clipping path, etc.)!
Interpret clipping paths in TIFF and JPEG images

Interpret alpha channel (transparency) in TIFF and PNG images’

Image masks (transparent images with a color applied), colorize images with a spot color
Grayscale, RGB (numerical, hexadecimal strings, HTML color names), CMYK, CIE L*a*b* color
Integrated support for PANTONE® colors (incl. PANTONE® Goe™)" and HKS® colors
User-defined spot colors

ICC-based color with ICC profiles; support for ICC 4 profiles’

Rendering intent for text, graphics, and raster images

Default gray, RGB, and CMYK color spaces to remap device-dependent colors

ICC profiles as output intent for PDF/A and PDF/X

PDF/A-1a and PDF/A-1b (1SO 19005-1)

XMP extension schemas for PDF/A-1

PDF/X-1a, PDF/X-3, PDF/X-4', PDF/X-4p', PDF/X-5p’, PDF/X-5pg’ (ISO 15930)
Embedded or externally referenced’ output intent ICC profile

External graphical content (referenced pages) for PDF/X-5p and PDF/X-5pg’

Create OPI 1.3 and OPI 2.0 information for imported images

Separation information (PlateColor)

Settings for text knockout, overprinting etc.

Format text into one or more rectangular or arbitrarily shaped areas with hyphenation (user-
supplied hyphenation points required), font and color changes, justification methods, tabs, lead-
ers, control commands; wrap text around images

Advanced line-breaking with language-specific processing
Flexible image placement and formatting
Wrap text around images or image clipping paths’

Table formatter places rows and columns, and automatically calculates their sizes according to a
variety of user preferences. Tables can be split across multiple pages.

Table cells can hold single- or multi-line text, images, PDF pages, path objects, annotations, and
form fields

Table cells can be formatted with ruling and shading options
Flexible stamping function

Matchbox concept for referencing the coordinates of placed images or other objects

22 Chapter 1: Introduction

Table 1.1 Feature list for PDFlib

topic

Security

Interactive elements

Multimedia
Georeferenced PDF
Tagged PDF

Metadata

Programming

features

Encrypt PDF output with RC4 (40/128 bit) or AES encryption algorithms (128/256" bit)
Unicode passwords’

Specify permission settings (e.g. printing or copying not allowed)

Create form fields with all field options and JavaScript

Create barcode form fields

Create actions for bookmarks, annotations, page open/close and other events
Create bookmarks with a variety of options and controls

Page transition effects, such as shades and mosaic

Create all PDF annotation types, such as PDF links, launch links (other document types), Web links
Named destinations for links, bookmarks, and document open action

Create page labels (symbolic names for pages)

Embed 3D animations in PDF

Create PDF with geospatial reference information’

Create Tagged PDF and structure information for accessibility, page reflow, and improved con-
tent repurposing; links and other annotations can be integrated in the document structure

Document information: common fields (Title, Subject, Author, Keywords) and user-defined fields
Create XMP metadata from document info fields or from client-supplied XMP streams
Process XMP image metadata in TIFF, JPEG, and JPEG 2000 images’

Language bindings for Cobol, COM, C, C++', Objective C', Java, .NET, Perl, PHP, Python, REALbasic,
RPG, Ruby, Tcl

Virtual file system for supplying data in memory, e.g., images from a database

1. New or considerably improved in PDFlib 8

1.4 Features in PDFlib 23

1.5 Additional Features in PDFlib+PDI

Table 1.2 lists features in PDFlib+PDI and PPS in addition to the basic PDF generation fea-
tures in Table 1.1.

Table 1.2 Additional features in PDFlib+PDI
topic features
PDF input (PDI) Import pages from existing PDF documents
Import all PDF versions up to PDF 1.7 extension level 3 (Acrobat 9)'

Import documents which are encrypted with any of PDF’s standard encryption algorithms (mas-
ter password required)’

Query information about imported pages’
Clone page geometry of imported pages (e.g. BleedBox, TrimBox, CropBox)’
Delete redundant objects (e.g. identical fonts) across multiple imported PDF documents
Repair malformed input PDF documents’
Copy PDF/A or PDF/X output intent from imported PDF documents
pCOS interface pCOS interface for querying details about imported PDF documents’

1. New or considerably improved in PDFlib+PDI 8

24 Chapter1: Introduction

1.6 Additional Features in PPS

Table 1.3 lists features which are only available in the PDFlib Personalization Server (PPS)
(in addition to the basic PDF generation features in Table 1.1 and the PDF import fea-
tures in Table 1.2). -

Table 1.3 Additional features in the PDFlib Personalization Server (PPS)

topic features
Variable Data PDF personalization with PDFlib Blocks for text, image, and PDF data
Processing (PPS)

PDFlib Block Plugin PDFlib Block plugin for creating PDFlib Blocks interactively in Acrobat on Windows and Mac
Redesigned user interface’
Preview PPS Block filling in Acrobat’
Snap-to-grid for interactively creating or editing Blocks in Acrobat’
Clone PDF/X or PDF/A properties of the Block container’
Convert PDF form fields to PDFlib Blocks for automated filling
Textflow Blocks can be linked so that one Block holds the overflow text of a previous Block
List of PANTONE® and HKS® spot color names integrated in the Block plugin’

1. New or considerably improved in PDFlib Personalization Server 8

1.6 Additional Features in PPS 25

1.7 Availability of Features in different Products
Table 1.4 details the availability of features in different products with the PDFlib family.

Table 1.4 Availability of features in different products

8

+

=2 2

. i = =

feature API functions and options 2 2
basic PDF generation all except those listed below X X
linearized (Web-optimized) PDF linearize option in PDF_end_document() X X
optimize PDF (only relevant for inefficient ~ optimize option in PDF _end document() X X

client code and non-optimized imported
PDF documents)

Referenced PDF, PDF/X-5g and PDF/X-5pg reference option in PDF_begin_template ext() X X
and PDF_open_pdi_page()

Parsing PDF documents for Portfolio cre- password option in PDF_add_portfolio_file() X' X
ation
PDF import (PDI) all PDI functions =

Query information from PDF with pCOS all pCOS functions -

Variable data processing and personaliza- all PPS functions for Block filling = =
tion with Blocks

PDFlib Block plugin for Acrobat interactively create PDFlib blocks for use with PPS - -

1. Not available in PDFlib source code packages since PDI is required internally for this feature

26 Chapter 1: Introduction

< X < pps

2 PDFlib Language Bindings

Note It is strongly recommended to take a look at the starter examples which are contained in all
PDFlib packages. They provide a convenient starting point for your own application develop-
ment, and cover many important aspects of PDFlib programming.

2.1 Data Types for Language Bindings S

This manual documents the function/method prototypes for various language bind-

ings. The main difference between language bindings is that in object-oriented lan- —
guage bindings the PDFlib methods do not have the PDF_ prefix in the name, while in

other language bindings the PDF_ prefix is part of all function names. Also, the PDF con- —
text parameter must be supplied as the first argument to all functions in non-object

oriented language bindings. In contrast, the object-oriented language bindings hide the —
PDF context in an object created by the language wrapper.

Table 2.1 details the use of the PDF document type and the string data type in all lan-
guage bindings. See the PDFlib Tutorial for more details on text and string handling. The
data types integer, long, and double are not mentioned since there is an obvious map-
ping of these types in all bindings.

Table 2.1 Data types in the language bindings

language binding p parameter and PDF_ prefix? string data type binary data type

C yes const char* ' const char * -
C++ no std::wstring by default® const char * -
Cobol yes? STRING STRING

Java no String byte[] -
Objective-C no NSString NSData -
Perl no string string

PHP no string string -
Python no string string

RPG yes Unicode string (use %ucs2) data -
Ruby no string string —_
Tcl yes string byte array

1. C language NULL string values and empty strings are considered equivalent.

2. The C++ API can be customized via instantiation of the std::basic_string template. For example, the API can be switched to
std::string to achieve compatibility with older applications. Alternatively, user-defined data types can also be used as the basis of
the string type used in the API (see Section 2.5, »C++ Binding«, page 33).

3. Cobol programs must use abbreviated names for the PDFlib functions.

2.1 Data Types for Language Bindings 27

2.2

Note

28

Cobol Binding

The PDFlib API functions for Cobol are not available under the standard C names, but
use abbreviated function names instead. The short function names are not documented
here, but can be found in a separate cross-reference listing (xref.txt). For example, in-
stead of using PDF_load_font() the short form PDLODFNT must be used.

PDFlib clients written in Cobol are statically linked to the PDFLBCOB object. It in turn
dynamically loads the PDLBDLCB Load Module (DLL), which in turn dynamically loads
the PDFlib Load Module (DLL) upon the first call to PDNEW (which corresponds to PDF _
new()). The instance handle of the newly allocated PDFlib internal structure is stored in
the P parameter which must be provided to each call that follows.

The PDLBDLCB load module provides the interfaces between the 8-character Cobol
functions and the core PDFlib routines. It also provides the mapping between PDFlib’s
asynchronous exception handling and the monolithic »check each function’s return
code« method that Cobol expects.

PDLBDLCB and PDFLIB must be made available to the COBOL program through the use of a
STEPLIB.

Data types. The data types used in the PDFlib API Reference must be mapped to Cobol
data types as in the following samples:

05 PDFLIB-A4-WIDTH USAGE COMP-1 VALUE 5.95E+2. // float

05 WS-INT PIC $S9(9) BINARY. // int

05 WS-FLOAT COMP-1. // float

05 WS-STRING PIC X(128). // const char *
05 P PIC $S9(9) BINARY. // long *

05 RETURN-RC PIC S9(9) BINARY. // int *

All Cobol strings passed to the PDFlib API should be defined with one extra byte of stor-
age for the expected LOW-VALUES (NULL) terminator.

Return values. The return value of PDFlib API functions will be supplied in an addi-
tional ret parameter which is passed by reference. It will be filled with the result of the
respective function call. A zero return value means the function call executed just fine;
other values signal an error, and PDF generation cannot be continued.

Functions which do not return any result (C functions with a void return type) don’t
use this additional parameter.

Error handling. PDFlib exception handling is not available in the Cobol language bind-
ing. Instead, all API functions support an additional return code (rc) parameter which
signals errors. The rc parameter is passed by reference, and will be used to report prob-
lems. A non-zero value indicates that the function call failed.

Chapter 2: PDFlib Language Bindings

2.3 COM Binding o

(This section is only included in the COM/.NET/REALbasic edition of the PDFlib tutorial.)

2.3 COM Binding 29

2.4

Note

Note

30

C Binding

PDFlib is written in C with some C++ modules. In order to use the PDFlib C binding, you
can use a static or shared library (DLL on Windows and MVS), and you need the central
PDFlib include file pdflib.h for inclusion in your PDFlib client source modules. Alterna-
tively, pdflibdl.h can be used for dynamically loading the PDFlib DLL at runtime (see next
section for details).

Applications which use the PDFlib binding for C must be linked with a C++ compiler since the
PDFlib library includes some parts which are implemented in C++. Using a C linker may result
in unresolved externals unless the application is explicitly linked against the required C++ sup-
port libraries.

Using PDFlib as a DLL loaded at runtime. While most clients will use PDFlib as a stati-
cally bound library or a dynamic library which is bound at link time, you can also load
the PDFlib DLL at runtime and dynamically fetch pointers to all API functions. This is es-
pecially useful to load the PDFlib DLL only on demand, and on MVS where the library is
customarily loaded as a DLL at runtime without explicitly linking against PDFlib. PDFlib
supports a special mechanism to facilitate this dynamic usage. It works according to the
following rules:

» Include pdfiibdl.h instead of pdflib.h.

» Use PDF_new _dI() and PDF delete dI() instead of PDF_new()and PDF_delete().

» Use PDF_TRY DL()and PDF_CATCH_DL()instead of PDF_TRY() and PDF_CATCH().

» Use function pointers for all other PDFlib calls.

» PDF _get_opaque() must not be used.

» Compile the auxiliary module pdfiibdl.c and link your application against it.

Loading the PDFlib DLL at runtime is supported on selected platforms only.

Error handling in C. PDFlib supports structured exception handling with try/catch
clauses. This allows C and C++ clients to catch exceptions which are thrown by PDFlib,
and react on the exception in an adequate way. In the catch clause the client will have
access to a string describing the exact nature of the problem, a unique exception num-
ber, and the name of the PDFlib API function which threw the exception. The general
structure of a PDFlib C client program with exception handling looks as follows:

PDF_TRY(p)

...some PDFlib instructions...

}
PDF_CATCH(p)

printf("PDFlib exception occurred in hello sample:\n");
printf("[%d] %s: %s\n",

PDF_get errnum(p), PDF_get apiname(p), PDF_get errmsg(p));
PDF_delete(p);
return(2);

}

PDF_delete(p);

PDF_TRY/PDF_CATCH are implemented as tricky preprocessor macros. Accidentally omit-
ting one of these will result in compiler error messages which may be difficult to com-

Chapter 2: PDFlib Language Bindings

Note

prehend. Make sure to use the macros exactly as shown above, with no additional code
between the TRY and CATCH clauses (except PDF_CATCH()).

An important task of the catch clause is to clean up PDFlib internals using PDF _
delete() and the pointer to the PDFlib object. PDF_delete() will also close the output file if
necessary. After fatal exceptions the PDF document cannot be used, and will be left in
an incomplete and inconsistent state. Obviously, the appropriate action when an ex-
ception occurs is application-specific.

For C and C++ clients which do not catch exceptions, the default action upon excep-
tions is to issue an appropriate message on the standard error channel, and exit on fatal
errors. The PDF output file will be left in an incomplete state! Since this may not be ade-
quate for a library routine, for serious PDFlib projects it is strongly advised to leverage
PDFlib’s exception handling facilities. A user-defined catch clause may, for example,
present the error message in a GUI dialog box, and take other measures instead of abort-
ing.

Volatile variables. Special care must be taken regarding variables that are used in both
the PDF_TRY() and the PDF_CATCH() blocks. Since the compiler doesn’t know about the
control transfer from one block to the other, it might produce inappropriate code (e.g.,
register variable optimizations) in this situation. Fortunately, there is a simple rule to
avoid these problems:

Variables used in both the PDF_TRY() and PDF_CATCH() blocks should be declared volatile.

Using the volatile keyword signals to the compiler that it must not apply (potentially
dangerous) optimizations to the variable.

Nesting try/catch blocks and rethrowing exceptions. PDF_TRY() blocks may be nested
to an arbitrary depth. In the case of nested error handling, the inner catch block can acti-
vate the outer catch block by re-throwing the exception:

PDF_TRY(p) /* outer try block */

{
VA

PDF_TRY(p) /* inner try block */
{

}
PDF_CATCH(p) /* inner catch block */

{

VAR

/* error cleanup */
PDF_RETHROW(p);

}
VAR
}
PDF_CATCH(p) /* outer catch block */
/* more error cleanup */
PDF_delete(p);
}

The PDF_RETHROW() invocation in the inner error handler will transfer program execu-
tion to the first statement of the outer PDF_CATCH() block immediately.

2.4 CBinding 31

Prematurely exiting a try block. Ifa PDF_TRY() block is left — e.g., by means of a return
statement —, thus bypassing the invocation of the corresponding PDF_CATCH() macro,
the PDF_EXIT_TRY() macro must be used to inform the exception machinery. No other li-
brary function must be called between this macro and the end of the try block:

PDF_TRY(p)
VAR

if (error condition)
{
PDF_EXIT_TRY(p);
return -1;

}
}
PDF_CATCH(p)

/* error cleanup */
PDF_RETHROW(p);
}

Memory management in C. In order to allow for maximum flexibility, PDFlib’s inter-
nal memory management routines (which are based on standard C malloc/free) can be
replaced by external procedures provided by the client. These procedures will be called
for all PDFlib-internal memory allocation or deallocation. Memory management rou-
tines can be installed with a call to PDF_newz2(), and will be used in lieu of PDFlib’s inter-
nal routines. Either all or none of the following routines must be supplied:

» an allocation routine

» a deallocation (free) routine

» areallocation routine for enlarging memory blocks previously allocated with the al-

location routine.

The memory routines must adhere to the standard C malloc/free/realloc semantics, but
may choose an arbitrary implementation. All routines will be supplied with a pointer to
the calling PDFlib object. The only exception to this rule is that the very first call to the
allocation routine will supply a PDF pointer of NULL. Client-provided memory alloca-
tion routines must therefore be prepared to deal with a NULL PDF pointer.

Using the PDF_get_opaque() function, an opaque application specific pointer can be
retrieved from the PDFlib object. The opaque pointer itself is supplied by the client in
the PDF_new2() call. The opaque pointer is useful for multi-threaded applications which
may want to keep a pointer to thread- or class specific data inside the PDFlib object, for
use in memory management or error handling.

Unicode in the C language binding. Clients of the C language binding must take care
not to use the standard text output functions (PDF_show(), PDF_show_xy(), and PDF _
continue_text()) when the text may contain embedded null characters. In such cases the
alternate functions PDF_show2() etc. must be used, and the length of the string must be
supplied separately. This is not a concern for all other language bindings since the
PDFlib language wrappers internally call PDF show2() etc. in the first place.

32 Chapter 2: PDFlib Language Bindings

2.5

Note

Note

C++ Binding

In addition to the pdflib.h C header file, an object-oriented wrapper for C++ is supplied
for PDFlib clients. It requires the pdflib.hpp header file, which in turn includes pdfiib.h.
Since pdflib.hpp contains a template-based implementation no corresponding .cpp mod-
ule is required. Using the C++ object wrapper replaces the PDF_ prefix in all PDFlib func-
tion names with a more object-oriented approach.

Using PDFlib as a DLL loaded at runtime. Similar to the C language binding the C++
binding allows you to dynamically attach PDFlib to your application at runtime (see
»Using PDFlib as a DLL loaded at runtimex, page 30). Dynamic loading can be enabled as
follows when compiling the application module which includes pdflib.hpp:

#define PDFCPP_DL 1

In addition you must compile the auxiliary module pdflibdl.c and link your application
against the resulting object file. Since the details of dynamic loading are hidden in the
PDFlib object it does not affect the C++ API: all method calls look the same regardless of
whether or not dynamic loading is enabled.

Loading the DLL at runtime is supported on selected platforms only.

String handling in C++. PDFlib 8 introduces a new Unicode-capable C++ binding. The
new template-based approach supports the following usage patterns with respect to
string handling;:

» Strings of the C++ standard library type std::wstring are used as basic string type.
They can hold Unicode characters encoded as UTF-16 or UTE-32. This is the default be-
havior in PDFlib 8 and the recommended approach for new applications unless cus-
tom data types (see next item) offer a significant advantage over wstrings.

» Custom (user-defined) data types for string handling can be used as long as the cus-
tom data type is an instantiation of the basic_string class template and can be con-
verted to and from Unicode via user-supplied converter methods. As an example a
custom string type implementation for UTF-8 strings is included in the PDFlib distri-
bution.

» Plain C++ strings can be used for compatibility with existing C++ applications which
have been developed against PDFlib 7 or earlier versions. This compatibility variant
is only meant for existing applications (see below for notes on source code compati-
bility).

The new interface assumes that all strings passed to and received from PDFlib methods
are native wstrings. Depending on the size of the wchar_t data type, wstrings are as-
sumed to contain Unicode strings encoded as UTF-16 (2-byte characters) or UTF-32 (4-
byte characters). Literal strings in the source code must be prefixed with L to designate
wide strings. Unicode characters in literals can be created with the \u and \U syntax. Al-
though this syntax is part of standard ISO C++, some compilers don’t support it. In this
case literal Unicode characters must be created with hex characters.

On EBCDIC-based systems the formatting of option list strings for the wstring-based interface
requires additional conversions to avoid a mixture of EBCDIC and UTF-16 wstrings in option
lists. Convenience code for this conversion and instructions are available in the auxiliary mod-
ule utf16num_ebcdic.hpp.

2.5 C++ Binding 33

Adjusting applications to the new C++ binding. Existing C++ applications which have
been developed against PDFlib 7 or earlier versions can be adjusted to PDFlib 8 as fol-
lows:
» Since the PDFlib C++ class now lives in the pdflib namespace the class name must be
qualified. In order to avoid the pdflib::PDFlib construct client applications should add
the following before using PDFlib methods:

using namespace pdflib;

» Switch the application’s string handling to wstrings. This includes data from exter-
nal sources. However, string literals in the source code (including option lists) must
also be adjusted by prepending the L prefix, e.g.

const wstring imagefile = L"nesrin.jpg";
image = p.load_image(L"auto", imagefile, L"");

» Suitable wstring-capable methods (wcerr etc.) must be used to process PDFlib error
messages and exception strings (get_errmsg() method in the PDFlib and PDFlib-
Exception classes).

» Remove PDFlib method calls which are required only for non-Unicode-capable lan-
guages, especially the following:

p.set_parameter("hypertextencoding", "host");

» The pdflib.cpop module is no longer required for the PDFlib C++ binding. Although the
PDFlib distribution contains a dummy implementation of this module, it should be
removed from the build process for PDFlib applications.

Full source code compatibility with legacy applications. The new C++ binding has
been designed with application-level source code compatibility mind, but client appli-
cations must be recompiled. The following aids are available to achieve full source code
compatibility for legacy applications:

» Disable the wstring-based interface as follows before including pdflib.hpp:

#define PDFCPP_PDFLIB_WSTRING 0
» Disable the PDFlib namespace as follows before including pdflib.hpp:

#define PDFCPP_USE_PDFLIB_NAMESPACE 0

Error handling in C++. PDFlib API functions will throw a C++ exception in case of an er-
ror. These exceptions must be caught in the client code by using C++ try/catch clauses. In
order to provide extended error information the PDFlib class provides a public
PDFlib::Exception class which exposes methods for retrieving the detailed error message,
the exception number, and the name of the PDFlib API function which threw the excep-
tion.

Native C++ exceptions thrown by PDFlib routines will behave as expected. The fol-
lowing code fragment will catch exceptions thrown by PDFlib:

try {
...some PDFlib instructions...

catch (PDFlib::Exception &ex) {
wcerr << L"PDFlib exception occurred in hello sample: " << endl
<< L"[" << ex.get_errnum() << L"] " << ex.get_apiname()

34 Chapter 2: PDFlib Language Bindings

<< L": " << ex.get_errmsg() << endl;

}

Memory management in C++. Client-supplied memory management for the C++
binding works the same as with the C language binding.

The PDFlib constructor accepts an optional error handler, optional memory manage-
ment procedures, and an optional opaque pointer argument. Default NULL arguments
are supplied in pdflib.hpp which will result in PDFlib’s internal error and memory man-
agement routines becoming active. All memory management functions must be »C«
functions, not C++ methods.

2.5 C++ Binding 35

2.6 Java Binding

Java supports a portable mechanism for attaching native language code to Java pro-
grams, the Java Native Interface (JNI). The JNI provides programming conventions for
calling native C or C++ routines from within Java code, and vice versa. Each C routine
has to be wrapped with the appropriate code in order to be available to the Java VM, and
the resulting library has to be generated as a shared or dynamic object in order to be
loaded into the Java VM.

PDFlib supplies JNI wrapper code for using the library from Java. This technique al-
lows us to attach PDFlib to Java by loading the shared library from the Java VM. The ac-
tual loading of the library is accomplished via a static member function in the pdfiib
Java class. Therefore, the Java client doesn’t have to bother with the specifics of shared
library handling.

Taking into account PDFlib’s stability and maturity, attaching the native PDFlib li-
brary to the Java VM doesn’t impose any stability or security restrictions on your Java
application, while at the same time offering the performance benefits of a native imple-
mentation.

Installing the PDFlib Java Edition. For the PDFlib binding to work, the Java VM must
have access to the PDFlib Java wrapper and the PDFlib Java package. PDFlib is organized
as a Java package with the following package name:

com.pdflib.pdflib

This package is available in the pdflib.jar file and contains a single class called pdflib. In
order to supply this package to your application, you must add pdflib.jar to your
CLASSPATH environment variable, add the option -classpath pdflib.jar in your calls to the
Java compiler and runtime, or perform equivalent steps in your Java IDE. In the JDK you
can configure the Java VM to search for native libraries in a given directory by setting
the java.library.path property to the name of the directory, e.g.

java -Djava.library.path=. pdfclock

You can check the value of this property as follows:

System.out.println(System.getProperty("java.library.path"));

In addition, the following platform-dependent steps must be performed:

» Unix: the library libpdf _java.so (on Mac OS X: libpdf_java.jnilib) must be placed in one
of the default locations for shared libraries, or in an appropriately configured direc-
tory.

» Windows: the library pdf_java.dll must be placed in the Windows system directory, or
a directory which is listed in the PATH environment variable.

Using PDFIlib in J2EE application servers and Servlet containers. PDFlib is perfectly
suited for server-side Java applications. The PDFlib distribution contains sample code
and configuration for using PDFlib in J2EE environments. The following configuration
issues must be observed:
» The directory where the server looks for native libraries varies among vendors. Com-
mon candidate locations are system directories, directories specific to the underly-

36 Chapter 2: PDFlib Language Bindings

ingJava VM, and local server directories. Please check the documentation supplied
by the server vendor.

» Application servers and Servlet containers often use a special class loader which may
be restricted or uses a dedicated classpath. For some servers it is required to define a
special classpath to make sure that the PDFlib package will be found.

More detailed notes on using PDFlib with specific Servlet engines and application serv-
ers can be found in additional documentation in the J2EE directory of the PDFlib distri-
bution.

Error handling in Java. The Java binding installs a special error handler which trans-
lates PDFlib errors to native Java exceptions. In case of an exception PDFlib will throw a
native Java exception of the following class:

PDFlibException

The Java exceptions can be dealt with by the usual try/catch technique:
try {
...some PDFlib instructions...

} catch (PDFlibException e) {
System.err.print("PDF1lib exception occurred in hello sample:\n");
System.err.print("[" + e.get errnum() + "] " + e.get_apiname() +
": " + e.get_errmsg() + "\n");

} catch (Exception e) {
System.err.println(e.getMessage());

} finally {
if (p != null) {
p.delete(); /* delete the PDF1lib object */
}
}

Since PDFlib declares appropriate throws clauses, client code must either catch all possi-
ble PDFlib exceptions, or declare those itself.

Unicode and legacy encoding conversion. For the convenience of PDFlib users we list
some useful string conversion methods here. Please refer to the Java documentation for
more details. The following constructor creates a Unicode string from a byte array, us-
ing the platform’s default encoding:

String(byte[] bytes)

The following constructor creates a Unicode string from a byte array, using the encod-
ing supplied in the enc parameter (e.g. SJIS, UTF8, UTF-16):

String(byte[] bytes, String enc)

The following method of the String class converts a Unicode string to a string according
to the encoding specified in the enc parameter:

byte[] getBytes(String enc)

2.6 Java Binding 37

Javadoc documentation for PDFlib. The PDFlib package contains Javadoc documenta-
tion for PDFlib. The Javadoc contains only abbreviated descriptions of all PDFlib API
methods; please refer to the PDFlib API Reference for more details.
In order to configure Javadoc for PDFlib in Eclipse proceed as follows:
» In the Package Explorer right-click on the Java project and select Javadoc Location.
» Click on Browse... and select the path where the Javadoc (which is part of the PDFlib
package) is located.

After these steps you can browse the Javadoc for PDFlib, e.g. with the Java Browsing per-
spective or via the Help menu.

Using PDFlib with Groovy. The PDFlib Java binding can also be used with the Groovy
language. The API calls are identical to the Java calls; only the object instantiation is
slightly different. A simple example for using PDFlib with Groovy is contained in the
PDFlib distribution.

38 Chapter 2: PDFlib Language Bindings

2.7 .NET Binding

(This section is only included in the COM/.NET/REALbasic edition of the PDFlib tutorial.)

2.7 .NET Binding 39

2.8 Objective-C Binding

Although the C and C++ language bindings can be used with Objective-C', a genuine lan-
guage binding for Objective-C is also available. The PDFlib framework is available in the
following flavors:

» PDFlib for use on Mac OS X

» PDFlib_ios for use on iOS

Both frameworks contain language bindings for C, C++, and Objective-C.

Installing the PDFlib Edition for Objective-C on Mac OS X. In order to use PDFlib in
your application you must copy PDFlib.framework or PDFlib_ios.framework to the directo-
ry /Library/Frameworks. Installing the PDFlib framework in a different location is possi-
ble, but requires use of Apple’s install_name_tool which is not described here. The PDFlib_
objc.h header file with PDFlib method declarations must be imported in the application
source code:

#import "PDFlib/PDFlib_objc.h"

or
#import "PDFlib_ios/PDFlib_objc.h"
Data types and parameter naming conventions. PDFlib expects the following Objec-
tive-C datatypes in its method interfaces: NSString (instead of string in C++), NSInteger
(instead of int), NSData (instead of const char *). For PDFlib method calls you must supply
parameters according to the following conventions:

» The value of the first parameter is provided directly after the method name, separat-

ed by a colon character.
» For each subsequent parameter the parameter’s name and its value (again separated

from each other by a colon character) must be provided. The parameter names can
be found in the PDFlib API Reference or in PDFlib_objc.h.

For example, the following line in the PDFlib API Reference:

void begin_page_ext(double width, double height, String optlist)

corresponds to the following Objective-C method:

- (void) begin page ext: (double) width height: (double) height optlist: (NSString *) optlist;

This means your application must make a call similar to the following:

[pdflib begin_page ext:595.0 height:842.0 optlist:@""];
XCode Code Sense for code completion can be used with the PDFlib framework.

Error handling in Objective-C. The Objective-C binding installs a special error handler
which translates PDFlib errors to native Objective-C exceptions. In case of a runtime
problem PDFlib throws a native Objective-C exception of the class PDFlibException. These
exceptions can be handled with the usual try/catch mechanism:

1. See developer.apple.com/library/mac/#documentation/Cocoa/Conceptual/ObjectiveC/Introduction/
introObjectiveC.html

40 Chapter 2: PDFlib Language Bindings

developer.apple.com/library/mac/#documentation/Cocoa/Conceptual/ObjectiveC/Introduction/introObjectiveC.html
developer.apple.com/library/mac/#documentation/Cocoa/Conceptual/ObjectiveC/Introduction/introObjectiveC.html

otry {
...some PDFlib instructions...
}

@catch (PDFlibException *ex) {

NSString * errorMessage =
[NSString stringWithFormat:@"PDFlib error %d in '%@': %@",
[ex get_errnum], [ex get_apiname], [ex get_errmsg]];

NSAlert *alert = [[NSAlert alloc] init];

[alert setMessageText: errorMessage];

[alert runModal];

[alert release]; E—

}

@catch (NSException *ex) {
NSAlert *alert = [[NSAlert alloc] init];
[alert setMessageText: [ex reason]];
[alert runModal]; —
[alert release];

}
@finally {

[pdflib release];
} -

In addition to the get_errmsg method you can also use the reason field of the exception
object to retrieve the error message.

2.8 Objective-C Binding 41

2.9 Perl Binding

The PDFlib wrapper for Perl' consists of a C wrapper file and two Perl package modules,
one for providing a Perl equivalent for each PDFlib API function and another one for the
PDFlib object. The C module is used to build a shared library which the Perl interpreter
loads at runtime, with some help from the package file. Perl scripts refer to the shared li-
brary module via a use statement.

Installing the PDFlib Perl Edition. The Perl extension mechanism loads shared libraries
at runtime through the DynaLoader module. The Perl executable must have been com-
piled with support for shared libraries (this is true for the majority of Perl configura-
tions).

For the PDFlib binding to work, the Perl interpreter must access the PDFlib Perl wrap-
per and the modules pdflib_pl.pm and PDFlib/PDFlib.pm. In addition to the platform-spe-
cific methods described below you can add a directory to Perl’s @/ NC module search
path using the -/ command line option:

perl -I/path/to/pdflib hello.pl
Unix. Perl will search pdfiib_pl.so (on Mac OS X: pdflib_pl.bundle), pdfiib_pl.pm and

PDFlib/PDFlib.pm in the current directory or the directory printed by the following Perl
command:

perl -e 'use Config; print $Config{sitearchexp};'

Per]l will also search the subdirectory auto/pdflib_pl. Typical output of the above com-
mand looks like

/usr/1ib/perl5/site_perl/5.8/1686-1inux

Windows. PDFlib supports the ActiveState port of Perl 5 to Windows, also known as
ActivePerl.? The DLL pdflib_pl.dll and the modules pdflib_pl.pm and PDFlib/PDFlib.pm will

be searched in the current directory or the directory printed by the following Perl com-
mand:

perl -e "use Config; print $Config{sitearchexp};"

Typical output of the above command looks like
C:\Program Files\Perl5.8\site\lib
Error Handling in Perl. The Perl binding installs a special error handler which trans-

lates PDFlib errors to native Perl exceptions. The Perl exceptions can be dealt with by ap-
plying the appropriate language constructs, i.e., by bracketing critical sections:

eval {
...some PDFlib instructions...
b
if (s@) {
die("$0: PDFlib Exception occurred:\n$@");
}

1. See www.perl.com
2. See www.activestate.com

42 Chapter 2: PDFlib Language Bindings

http://www.perl.com
http://www.activestate.com

More than one way of String handling. Depending on the requirements of your appli-
cation you can work with UTF-8, UTF-16, or legacy encodings. The following code snip-
pets demonstrate all three variants. All examples create the same Japanese output, but
accept the string input in different formats.

The first example works with Unicode UTF-8 and uses the Unicode::String module
which is part of most modern Perl distributions, and available on CPAN). Since Perl
works with UTF-8 internally no explicit UTF-8 conversion is required:

use Unicode::String qw(utf8 utfi6 uhex);

$p->set_parameter("textformat", "utf8");

$font = $p->load_font("Arial Unicode MS", "unicode", "");
$p->setfont($font, 24.0);

$p->set_text pos(50, 700);

$p->show(uhex("U+65E5 U+672C U+8A9E"));

The second example works with Unicode UTF-16 and little-endian byte order:

$p->set_parameter("textformat", "utfi6le");

$font = $p->load font("Arial Unicode MS", "unicode", "");
$p->setfont($font, 24.0);

$p->set_text_pos(50, 700);
$p->show("\XE5\x65\x2C\x67\X9E\x8A") ;

The third example works with Shift-JIS. Except on Windows systems it requires access to
the goms-RKSJ-H CMap for string conversion:

$p->set_parameter("SearchPath", "../../../resource/cmap");
$font = $p->load_font("Arial Unicode MS", "cp932", "");
$p->setfont($font, 24.0);

$p->set_text_pos(50, 700);
$p->show("\x93\xFA\x96\x7B\x8C\XEA") ;

Unicode and legacy encoding conversion. For the convenience of PDFlib users we list
some useful string conversion methods here. Please refer to the Perl documentation for
more details. The following constructor creates a UTF-16 Unicode string from a byte ar-

ray:

$logos="\x{039b}\x{03bf}\x{03b3}\x{03bf}\x{03c3}\x{0020}" ;

The following constructor creates a Unicode string from the Unicode character name:
$delta = "\N{GREEK CAPITAL LETTER DELTA}";

The Encode module supports many encodings and has interfaces for converting be-

tween those encodings:

use Encode 'decode';
$data = decode("iso-8859-3", $data); # convert from legacy to UTF-8

2.9 Perl Binding 43

2.10 PHP Binding

Note Detailed information about the various flavors and options for using PDFlib with PHP’,
including the question of whether or not to use a loadable PDFlib module for PHP, can
be found in the PDFlib-in-PHP-HowTo.pdf document which is contained in the distribu-
tion packages and also available on the PDFlib Web site.

Installing the PDFlib PHP Edition. You must configure PHP so that it knows about the
external PDFlib library. You have two choices:
» Add one of the following lines in php.ini:

extension=1libpdf php.so ; for Unix and Mac 0S X
extension=1libpdf php.dll ; for Windows

PHP will search the library in the directory specified in the extension_dir variable in
php.ini on Unix, and additionally in the standard system directories on Windows.
You can test which version of the PHP PDFlib binding you have installed with the fol-
lowing one-line PHP script:

<?phpinfo()?>

This will display a long info page about your current PHP configuration. On this page
check the section titled pdf. If this section contains PDFlib GmbH Binary Version (and
the PDFlib version number) you are using the supported new PDFlib wrapper. The
unsupported old wrapper will display PDFlib GmbH Version instead.

» Load PDFlib at runtime with one of the following lines at the start of your script:

d1("libpdf php.so"); # for Unix
d1("libpdf php.d11"); # for Windows

Modified error return for PDFlib functions in PHP. Since PHP uses the convention of
returning the value o (FALSE) when an error occurs within a function, all PDFlib func-
tions have been adjusted to return o instead of -1in case of an error. This difference is
noted in the function descriptions in the PDFlib API Reference. However, take care when
reading the code fragment examples in Section 3, »Creating PDF Documents«, page 53,
since they use the usual PDFlib convention of returning -1 in case of an error.

File name handling in PHP. Unqualified file names (without any path component) and
relative file names for PDF, image, font and other disk files are handled differently in
Unix and Windows versions of PHP:
» PHP on Unix systems will find files without any path component in the directory
where the script is located.
» PHP on Windows will find files without any path component only in the directory
where the PHP DLL is located.

In order to provide platform-independent file name handling the use of PDFl