z-PDFlib GmbH

PDFlib, PDFlib+PDI, PPS

A library for generating PDF on the fly
PDFlib 9.1.0

API Reference

For use with C, C++, Cobol, COM, Java, .NET, Objective-C,
Perl, PHP, Python, REALbasic/Xojo, RPG, Ruby

Copyright © 1997-2017 PDFlib GmbH and Thomas Merz. All rights reserved.
PDFlib users are granted permission to reproduce printed or digital copies of this manual for internal use.

PDFlib GmbH

Franziska-Bilek-Weg 9, 80339 Miinchen, Germany
www.pdflib.com

phone +49 + 89 « 452 33 84-0

fax +49 « 89 + 45233 84-99

If you have questions check the PDFlib mailing list and archive at
groupsyahoo.com/neo/groups/pdflib/info

Licensing contact: sales@pdflib.com
Support for commercial PDFlib licensees: support@pdflib.com (please include your license number)

This publication and the information herein is furnished as is, is subject to change without notice, and
should not be construed as a commitment by PDFlib GmbH. PDFlib GmbH assumes no responsibility or lia-
bility for any errors or inaccuracies, makes no warranty of any kind (express, implied or statutory) with re-
spect to this publication, and expressly disclaims any and all warranties of merchantability, fitness for par-
ticular purposes and noninfringement of third party rights.

PDFlib and the PDFlib logo are registered trademarks of PDFlib GmbH. PDFlib licensees are granted the
right to use the PDFlib name and logo in their product documentation. However, this is not required.

Adobe, Acrobat, PostScript, and XMP are trademarks of Adobe Systems Inc. AlX, IBM, 05/390, WebSphere,
iSeries, and zSeries are trademarks of International Business Machines Corporation. ActiveX, Microsoft,
OpenType, and Windows are trademarks of Microsoft Corporation. Apple, Macintosh and TrueType are
trademarks of Apple Computer, Inc. Unicode and the Unicode logo are trademarks of Unicode, Inc. Unix is a
trademark of The Open Group. Java and Solaris are trademarks of Sun Microsystems, Inc. HKS is a regis-
tered trademark of the HKS brand association: Hostmann-Steinberg, K+E Printing Inks, Schmincke. Other
company product and service names may be trademarks or service marks of others.

PANTONE® colors displayed in the software application or in the user documentation may not match
PANTONE-identified standards. Consult current PANTONE Color Publications for accurate color. PANTONE®
and other Pantone, Inc. trademarks are the property of Pantone, Inc. © Pantone, Inc., 2003.

Pantone, Inc. is the copyright owner of color data and/or software which are licensed to PDFlib GmbH to
distribute for use only in combination with PDFlib Software. PANTONE Color Data and/or Software shall
not be copied onto another disk or into memory unless as part of the execution of PDFlib Software.

PDFlib contains modified parts of the following third-party software:

ICClib, Copyright © 1997-2002 Graeme W. Gill

GIF image decoder, Copyright © 1990-1994 David Koblas

PNG image reference library (libpng), Copyright © 1998-2012 Glenn Randers-Pehrson

Zlib compression library, Copyright © 1995-2012 Jean-loup Gailly and Mark Adler

TIFFlib image library, Copyright © 1988-1997 Sam Leffler, Copyright © 1991-1997 Silicon Graphics, Inc.
Cryptographic software written by Eric Young, Copyright © 1995-1998 Eric Young (eay@cryptsoft.com)
Independent JPEG Group’s JPEG software, Copyright © 1991-1998, Thomas G. Lane

Cryptographic software, Copyright © 1998-2002 The OpenSSL Project (www.openssl.org)

Expat XML parser, Copyright © 1998, 1999, 2000 Thai Open Source Software Center Ltd

ICU International Components for Unicode, Copyright © 1995-2012 International Business Machines Corpo-
ration and others

Reference sRGB ICC color profile data, Copyright (c) 1998 Hewlett-Packard Company

PDFlib contains the RSA Security, Inc. MD5 message digest algorithm.

http://www.pdflib.com
mailto:sales@pdflib.com
mailto:support@pdflib.com
https://groups.yahoo.com/neo/groups/pdflib/info

11

1.2

1.3

2.1
2.2
23
2.4

2.5
2.6

3.1
3.2
3.3
3-4

41
4.2
43
4.4
45

5.1
5.2
53

6.1

Contents

Programming Concepts ;

Option Lists 7

111 Syntax 7

112 Simple Data Types 9

11.3 Fontsize and Action Data Types 12
114 Color Data Type 13

11.5 Geometric Data Types 15

Function Scopes 17

Logging 18

General Functions 2z

Exception Handling 21

Unicode Conversion 23

Global Options 25

Creating and Deleting PDFlib Objects 32
PDFlib Virtual File System (PVF) 34

PDF Object Creation API (POCA) 37

Document and Page Functions 4

Document Functions 41
Fetching PDF Documents from Memory 51
Page Functions 52

Layers 58

Font and Text Functions 6;
Font Handling 63

Text Filter and Appearance Options 75
Simple Text Output 8o

User-defined (Type 3) Fonts 84
User-defined 8-Bit Encodings 87

Text and Table Formatting sy

Single-Line Text with Textlines 89
Multi-Line Text with Textflows g5

Table Formatting 112

Object Fitting and Matchboxes 123
Object Fitting 123

Contents

3

71
7.2
73
74
75
7.6

8.1

8.2
8.3
8.4
8.5
8.6

9.1
9.2
93
9.4

10

10.1
10.2
10.3

10.4

1

1.2
1.3

1.4
1.5

12

12.1

12.2

Matchboxes 131

Graphics Functions i35

Graphics Appearance Options 135
Graphics State 138

Coordinate System Transformations 142
Path Construction 145

Painting and Clipping 149

Path Objects 157

Color Functions 157

Setting Color 157

ICC Profiles 159

Spot Colors 161

DeviceN Colors 162

Shadings and Shading Patterns 164
Tiling Patterns 167

Image, SVG and Template Functions 169

Images 169

SVG Graphics 177

Templates 183

Common XObject Options 186

PDF Import (PDI) and pCOS Functions 1o

Document Functions 191
Page Functions 195
Other PDI Processing 201

pCOS Functions 203

Block Filling Functions (PPS) 207

Rectangle Options for Block Filling Functions 207
Textline and Textflow Blocks 208

Image Blocks 210

PDF Blocks 211

Graphics Blocks 212

Interactive Features :;3

Bookmarks 213

Annotations 215

4 Contents

12.3 Form Fields 223

12.4 Actions 231

12.5 Named Destinations 236

12.6 PDF Packages and Portfolios 238

12.7 Geospatial Features 243

13 Multimedia Features 245
13.1 3D Artwork 245

13.2 Asset and Rich Media Features 257

14 Document Interchange :s59

14.1 Document Information Fields 259
14.2 XMP Metadata 2617

14.3 Tagged PDF 262

14.4 Marked Content 268

14.5 Document Part Hierarchy 270
A List of all APl Functions 27
B List of all Options and Keywords 25
C Revision History 2z

Index 293

Contents 5

1

1.1

Bindings

Note

Programming Concepts

Option Lists

Option lists are a powerful yet easy method for controlling API function calls. Instead of
requiring a multitude of function parameters, many API methods support option lists,
or optlists for short. These are strings which can contain an arbitrary number of options.
Option lists support various data types and composite data like lists. In most language
bindings optlists can easily be constructed by concatenating the required keywords and
values.

Clanguage binding: you may want to use the sprintf() function for constructing optlists.

NET language binding: C# programmers should keep in mind that the AppendFormat()
StringBuilder method uses the { and } braces to represent format items which will be re-
placed by the string representation of arguments. On the other hand, the Append()
method does not impose any special meaning on the brace characters. Since the option
list syntax makes use of the brace characters, care must be taken in selecting the
AppendFormat() or Append() method appropriately.

Syntax

Formal option list syntax definition. Option lists must be constructed according to fol-
lowing rules:

» All elements (keys and values) in an option list must be separated by one or more of
the following separator characters: space, tab, carriage return, newline, equal sign '=’.

» An outermost pair of enclosing braces is not part of the element. The sequence {}
designates an empty element.

» Separators within the outermost pair of braces no longer split elements, but are part
of the element. Therefore, an element which contains separators must be enclosed
with braces.

» If an element contains brace characters these must be protected with a preceding
backslash character.

» If an element contains a sequence of one or more backslash characters in front of a
brace, each backslash in the sequence must be protected with another backslash
character.

» Option lists must not contain binary zero values.

An option may have a list value according to its documentation in this PDFlib API Refer-
ence. List values contain one or more elements (which may themselves be lists). They
are separated according to the rules above, with the only difference that the equal sign
isnolonger treated as a separator.

Option names (i.e. the key) never contain hyphen characters. Keep this in mind since the tables
with option descriptions may sometimes contain long option names which are hyphenated.
The hyphen must be omitted when supplying the option in an option list.

Simple option lists. In many cases option lists will contain one or more key/value
pairs. Keys and values, as well as multiple key/value pairs must be separated by one or

1.1 Option Lists

7

more whitespace characters (space, tab, carriage return, newline). Alternatively, keys
can be separated from values by an equal sign '=":

key=value

key = value

key value

keyl = valuel key2 = value2

To increase readability we recommend to use equal signs between key and value and
whitespace between adjacent key/value pairs.

Since option lists will be evaluated from left to right an option can be supplied mul-
tiply within the same list. In this case the last occurrence will overwrite earlier ones. In
the following example the first option assignment will be overridden by the second,
and key will have the value valuez after processing the option list:

key=valuel key=value2
List values. Lists contain one or more separated values, which may be simple values or

list values in turn. Lists are bracketed with { and } braces, and the values in the list must
be separated by whitespace characters. Examples:

dasharray={11 22 33} (1ist containing three numbers)
position={ center bottom } (1ist containing two keywords)

Alist may also contain nested lists. In this case the lists must also be separated from
each other by whitespace. While a separator must be inserted between adjacent } and {
characters, it can be omitted between braces of the same kind:

polylinelist={{10 20 30 40} {50 60 70 80}} (list containing two lists)

If the list contains exactly one list the braces for the nested list must not be omitted:
polylinelist={{10 20 30 40}} (1ist containing one nested list)

Nested option lists and list values. Some options accept the type option list or list of
option lists. Options of type option list contain one or more subordinate options. Options
of type list of option lists contain one or more nested option lists. When dealing with
nested option lists it is important to specify the proper number of enclosing braces.
Several examples are listed below.

The value of the option metadata is an option list which itself contains a single op-
tion filename:

metadata={filename=info.xmp}

The value of the option fill is a list of option lists containing a single option list:

fill={{ area=table fillcolor={rgb 1 0 0} }}

The value of the option fill is a list of option lists containing two option lists:

fill={{ area=rowodd fillcolor={rgb 0 1 0} } { area=roweven fillcolor={rgb 1 0 0} }}

List containing one option list with a value that includes spaces:

attachments={{filename={foo bar.xml} }}

8 Chapter1: Programming Concepts

1.1.2

List containing three strings:

itemnamelist = { {Isaac Newton} {James Clark Maxwell} {Albert Einstein} }

List containing two keywords:

position={left bottom}

List containing different types (float and keyword):

position={10 bottom}

List containing one rectangle:

boxes={{10 20 30 40}}

List containing two polylines with percentages:
polygons = {{10 20 40 60 90 120}} {12 87 34 98 34% 67% 34% 7%}}
Common traps and pitfalls. This paragraph lists some common errors regarding op-

tion list syntax.
Braces are not separators; the following is wrong:

key1 {valuei}key2 {value2} WRONG!
This will trigger the error message Unknown option 'value2'. Similarly, the following are
wrong since the separators are missing:

key{value} WRONG!
key={{value1i}{value2}} WRONG!

Braces must be balanced; the following is wrong (see below for unquoted string syntax):

key={open brace {} WRONG!

This will trigger the error message Braces aren't balanced in option list 'key={open brace {}"

A single brace as part of a string must be preceded by an additional backslash character:

key={closing brace \} and open brace \{} CORRECT!

Abackslash at the end of a string value must be preceded by another backslash if it is
followed by a closing brace character:

key={\value\} WRONG!

key={\value\\} CORRECT!

Simple Data Types

String. Strings are plain ASCII strings (or EBCDIC strings on EBCDIC platforms) which
are generally used for non-localizable keywords. Strings containing whitespace or '=’
characters must be bracketed with {and }:

password={ secret string } (string value contains three blanks)
contents={length=3mm} (string value containing one equal sign)

1.1 Option Lists

.9

The characters { and } must be preceded by an additional \ character if they are sup-
posed to be part of the string:

password={weird\}string} (string value contains a right brace)

A backslash in front of the closing brace of an element must be preceded by a backslash
character:

filename={C:\path\name\\} (string ends with a single backslash)

An empty string can be constructed with a pair or braces:

{

Content strings, hypertext strings and name strings: these can hold Unicode content in
various formats. Single bytes can be expressed by an escape sequence if the option
escapesequence is set. For details on these string types and encoding choices for string
options see the PDFlib Tutorial.

Non-Unicode capable language bindings: if an option list starts with a [EBCDIC-]UTEF-
8 BOM, each content, hypertext or name string of the option list is interpreted as a [EBC-
DIC-]UTEF-8 string.

Unquoted string values. In the following situations the actual characters in an option
value may conflict with optlist syntax characters:
» Passwords or file names may contain unbalanced braces, backslashes and other spe-
cial characters
» Japanese SJIS filenames in option lists (reasonable only in non-Unicode-capable lan-
guage bindings)
» Supplying JavaScript code in options is problematic due to the use of { and } braces

In order to provide a simple mechanism for supplying arbitrary text or binary data
which does not interfere with option list syntax elements, unquoted option values can
be supplied along with a length specifier in the following syntax variants:

key[n]=value
key[n]={value}

The decimal number n represents the following:
» in Unicode-capable language bindings: the number of UTF-16 code units
» in non-Unicode aware language bindings: the number of bytes comprising the string

The braces around the string value are optional, but strongly recommended. They are
required for strings starting with a space or other separator character. Braces, separators
and backslashes within the string value are taken literally without any special interpre-
tation.

Example for specifying a 7-character password containing space and brace charac-
ters. The whole string is surrounded by braces which are not part of the option value:

password[7]={ ab}c d}

If an option value in a nested option list is provided with a length count, the enclosing
option list must also supply a length count, e.g.

fitannotation[34]={contents[19]={this is a brace '}'}}

10 Chapter 1: Programming Concepts

Unichar. A Unichar is a single Unicode value where several syntax variants are sup-
ported: decimal values > 10 (e.g. 173), hexadecimal values prefixed with x, X, ox, oX, or U+
(xAD, oxAD, U+00AD), numerical references, character references, and glyph name refer-
ences but without the ‘&’ and ’;’ decoration (shy, #xAD, #173). Alternatively, literal charac-
ters can be supplied. Examples:

replacementchar=? (literal)

replacementchar=63 (decimal)

replacementchar=x3F (hexadecimal)

replacementchar=0x3F (hexadecimal)

replacementchar=U+003F (Unicode notation)
replacementchar=euro (HTML character reference)
replacementchar=.question (standard glyph name reference)
replacementchar=.marina (font-specific glyph name reference)

Single characters which happen to be a number are treated literally, not as decimal Uni-
code values:

replacementchar=3 (U+0033 THREE, not U+0003!)

Unichars must be in the hexadecimal range o-ox10FFFF (decimal o-1114111). However,
some options are restricted to the range 0-oxFFFF (0-65535). This is noted in the respec-
tive option description.

Unicode range. A Unicode range identifies a contiguous range of Unicode characters
via start and end characters of the range. The start and end values of a Unicode range
must be separated by a minus sign -’ without any spaces, e.g.

forcechars={U+03AC-U+03CE}
Boolean. Booleans have the values true or false; if the value of a Boolean option is

omitted, the value true is assumed. As a shorthand notation noname can be used instead
of name=false:

embedding (equivalent to embedding=true)
noembedding (equivalent to embedding=false)

Keyword. An option of type keyword can hold one of a predefined list of fixed key-
words. Example:

blendmode=overlay
For some options the value hold either a number or a keyword.

Number. Option list support several numerical types.
Integer types can hold decimal and hexadecimal integers. Positive integers starting
with x, X, ox, or oX specify hexadecimal values:

-12345
0
OxFF

1.1 Option Lists

1

Floats can hold decimal floating point or integer numbers; period and comma can be
used as decimal separators for floating point values. Exponential notation is also sup-
ported. The following values are all equivalent:

size = -123.45
size = -123,45
size = -1.2345E2
size = -1.2345e+2

Percentages are numbers with a % character directly after the numerical value. Some
options allow negative percentages:

leading=120%
topoffset=-20.5%

Handle. Handles identify various types of objects, e.g. fonts, images, ICC profiles or ac-
tions. Technically these are integer values which have been returned earlier by an API
function. For example, an image handle is returned by PDF load_image(). Handles must
always be treated as opaque types; they must never be modified or created by the appli-
cation directly (as opposed to using a handle returned by an API function). Handles
must always be valid for the respective type of object. For example, an option which ex-
pects an image handle must not be supplied with a graphics handle, although both han-
dles are integer types.

Fontsize and Action Data Types

Fontsize. A fontsize can be defined in several ways which allow the size of text to be
specified in absolute values, relative to some external entity, or relative to some font
property. In general the fontsize must be different from o unless the option description
mentions otherwise.

In the most common case a fontsize contains a single float value which specifies re-
fers to units in the user coordinate system:

fontsize=12

The second variant contains a percentage, where the basis of the percentage depends on
the context (e.g. the width of the fitbox for PDF fit_textline()):

fontsize=8%

In the third variant, the fontsize is specified as an option list which must contain a key-
word and a number. The keyword describes the desired font metric according to Table
1.1, and the number contains the desired size. PDFlib will calculate the proper fontsize so
that the selected text metric matches the supplied value:

fontsize={capheight 5}

Action list. An action list specifies one or more actions. Each entry in the list consists
of an event keyword (trigger) and a list of action handles which must have been created
with PDF create_action(). Actions will be performed in the listed order. The set of al-
lowed events (e.g. docopen) and the type of actions (e.g. JavaScript) are documented sep-
arately for the respective options.

List containing a single trigger with three actions:

12 Chapter1: Programming Concepts

Table 1.1 Suboptions for options of type fontsize

option description
ascender The number is interpreted as ascender height.
bodyheight The number is interpreted as minimum distance between baselines, i.e. descenders and ascenders of ad-

jacent lines may exactly touch if this value is used as leading. This is the default behavior if no keyword is

provided.

capheight The number is interpreted as capital letter height.

xheight The number is interpreted as lowercase letter height.

1.1.4

action={ activate={ 012 } }

List containing three triggers with one action for each:

action={ keystroke=0 format=1 validate=2 }

Color Data Type

Overview of color spaces. You can specify the colors for filling and stroking paths and
text characters. Colors can be specified in several color spaces (see PDFlib Tutorial for a
full discussion of color spaces and values). Each item in the following list starts with the
corresponding color space keyword for color options):

» gray: Gray values between o=black and 1=white;

» rgb: RGB triples, i.e. three values between o and 1 specifying the percentage of red,
green, and blue; (o, 0, 0)=black, (1, 1, 7)=white. The commonly used RGB color values in
the range o—255 must be divided by 255 in order to scale them to the range o1 as re-
quired by PDFlib.

As an alternative to numerical RGB values you can specify RGB colors via their HTML
names or hexadecimal values.

cmyk: Four CMYK values between o = no color and 1 = full color, representing cyan,
magenta, yellow, and black values; (o, o, 0, 0o)=white, (0, o, 0, 1)=black. Note that this is
different from the RGB specification.

iccbased (not for PDF_setcolor()) and icchasedgray/rgb/cmyk: 1CC-based colors are based
on an ICC profile.

» spotname: name of a predefined spot color and a tint value in the range o=no color to
1=maximum intensity.

Alternatively, the name of a custom spot color, a tint value”, and an alternate re-
presentation in one of the other color spaces above.

spot: handle for a predefined or custom spot color created with PDF_makespotcolor()
and a tint value.

devicen: handle for a DeviceN color space created with PDF create_devicen() and N tint
values for the named colorants. Tint values are in the range o=no color to 1=maxi-
mum intensity.

lab expects device-independent colors in the CIE L*a*b* color space. Colors are speci-
fied by a luminance value in the range 0-100 and two color values g and b in the
range -128 to 127. The a component ranges from green to red/magenta (negative val-
ues indicate green, positive values indicate magenta), and the b component ranges
from blue to yellow (negative values indicate blue, positive values indicate yellow).

v

v

A\

A\

v

1.1 Option Lists

13

» pattern: shading pattern identified by a pattern handle. A shading pattern provides a
gradual transition between two colors and can be created with PDF_shading_pattern()
based on a shading handle created with PDF_shading().

» pattern: tiling pattern identified by a pattern handle. A tiling pattern contains arbi-
trary text, vector graphics, or images which are repeatedly tiled across the area to be
filled. Tiling patterns can be created with PDF_begin_pattern_ext().

The default color for stroke and fill operations is black. The color space for this default
color is selected automatically to match PDF/X and PDF/A color requirements.

Color options. Color options can be defined in three different forms: using an RGB col-
or name, hexadecimal RGB values, or a flexible option list for colors in any color space.

Cookbook A full code sample for using RGB color values can be found in the Cookbook topic

color/web_colornames.

In the first form all valid color names from SVG 1.1 can be supplied directly to specify an
RGB color or an sRGB color if the sSRGB ICC profile has been selected, e.g.

strokecolor=pink

The color names are case-insensitive. A list of valid RGB color names can be found at the
following location:

www.ws3.org/TR/SVG11/types.html#ColorKeywords

In the second form a hash '#’ character followed by any three pairs of hexadecimal dig-
its oo-FF can be supplied to specify an RGB color value, e.g.

strokecolor=#FFCOCB

In the third form an color option list specified a color space and color value. A color op-
tion list contains a color space keyword and a list with a variable number of float values
depending on the particular color space. Table 1.2 contains descriptions of color space

keywords with examples. As detailed in the respective function descriptions, a particu-
lar option list may support only a subset of the color space keywords.

Cookbook A full code sample can be found in the Cookbook topic color/starter_color.

Table 1.2 Keywords for the color data type in option lists

keyword additional values example
gray single float value for the grayscale color space { gray 0.5 }
rgb three float values for the RGB color space {rgh100}
(no keyword) HTML color name or hexadecimal values for an RGB color pink
#FFCOCB
cmyk four float values for the CMYK color space {cmyk o100}
lab three float values for the Lab color space { lab 100 50 30 }
spot spot color handle created with PDF_makespotcolor(), followed by ~{ spot <handle> 0.8 }

1

a float specifying the tint value

Chapter 1: Programming Concepts

http://www.w3.org/TR/SVG11/types.html#ColorKeywords
http://www.pdflib.com/pdflib-cookbook/color/starter-color
http://www.pdflib.com/pdflib-cookbook/color/web-colornames

Table 1.2 Keywords for the color data type in option lists

keyword additional values example

spotname (up to 63 bytes; fewer Unicode characters depending on format { spotname {PANTONE 281 U} 0.5 }

and encoding) spot color name and a float specifying the tint val-
ue in the range o..1

spotname Similar to the simple form of spotname above, but a color value { spotname {PDFlib Blue} 0.5

can be added to specify the alternate color for a custom spot color ~ { 1lab 100 50 30 } }
(i.e. a spot color name which is not known internally to PDFIib). If

multiple options define the same custom spot color name all defi-

nitions must be consistent (i.e. define the same alternate color).

devicen DeviceN color space handle created with PDF _create_devicen() fol- { devicen <handle> 0.8 0.9 }
lowed by N float values for the tint values of the colorantsinthe { devicen <handle> 0 0 0.1 0.2}
range o..1.

iccbased ICC profile handle or keyword sxgb, plus 1, 3 or 4 color values de- { iccbased <handle> 0.5 }

pending on the type of ICC profile (gray, RGB, or CMYK). The stgb { iccbased <handle> 0 0 0.75 }
keyword must not be used in document scope. { iccbased srgb 0 0 0.75 }

{ iccbased <handle> 0 0 0.3 1 }

iccbasedgray single float value referring to an ICC profile selected with the op- { iccbasedgray 0.5 }

tion iccprofilegray

icchasedrgb three float values value referring to an ICC profile selected with the { iccbasedrgb 1 0 0 }

option iccprofilergb

iccbasedemyk four float values value referring to an ICC profile selected with the { iccbasedcmyk 0 1 0 0 }

option iccprofilecmyk

pattern shading pattern handle created with PDF shading_pattern() { pattern <handle> }
pattern tiling pattern handle created with PDF _begin_pattern_ext() { pattern <handle> }
none specifies the absence of color none
1.1.5 Geometric Data Types

Line. Aline is alist of four float values specifying the x and y coordinates of the start
and end point of a line segment. The coordinate system for interpreting the coordinates
(default or user coordinate system) varies depending on the option, and is documented
separately:

line = {10 40 130 90}
Polyline. A polyline is alist containing an even number n of float values with n>2. Each
pair in the list specifies the x and y coordinates of a point; these points will be connected

by line segments. The coordinate system for interpreting the coordinates (default or
user coordinate system) varies depending on the option, and is documented separately:

polyline = {10 20 30 40 50 60}

The following option lists are equivalent:

polyline = {10 20 30r 40r 50r 601}
polyline = {10 20 40 60 90 120}

1.1 Option Lists 15

Quadrilaterals are a special type of polylines: these are rectangles which may be rotated
and for which exactly four points must be specified.

Another special type are polygons: these are polylines which will automatically be
closed by a line segment.

Rectangle. Arectangleisalist of four float values specifying the x and y coordinates of
the lower left and upper right corners of a rectangle. The coordinate system for inter-
preting the coordinates (default or user coordinate system) varies depending on the op-
tion, and is documented separately. Some options accept percentages, where the basis
for the percentage depends on the context (e.g. the fitbox of a Textflow). Relative coordi-
nates can be supplied by adding the suffix r immediately after a number. Within a coor-
dinate list a relative coordinate relates to the previous x or y coordinate. Relative coordi-
nates at the beginning of a list relate to the origin, i.e. they are absolute coordinates.
Examples:

cropbox={ 0 0 500 600 }
box={40% 30% 50% 70%}

The following options are equivalent:

box={12 34 56r 78r}
box={12 34 68 112}

Circle. A circle is specified as a list of four float values where the first pair specifies the
x and y coordinates of the center, and the second pair specifies the x and y coordinates
of an arbitrary point on the circle. The coordinate system for interpreting the coordi-
nates (default or user coordinate system) varies depending on the option, and is docu-
mented separately:

circle={200 325 200 200}

Curve list. A curve list consists of two or more connected third-order Bézier curve seg-
ments. A Bézier curve is specified by four control points. The first control point is the
starting point and the fourth point is the end point of the curve. The second and third

point control the shape of the curve. In a curve list the last point of a segment serves as
the first point for the next segment:

curve={200 700 240 600 80 580 400 660 400 660 440 620}

The last control point will become the new current point after drawing the curves.

16 Chapter 1: Programming Concepts

1.2 Function Scopes

PDFlib applications must obey certain structural rules which are easy to understand.
For example, you obviously begin a document before ending it. PDFlib enforces correct
ordering of function calls with a strict scoping system. The scope definitions can be
found in Table 1.3. All API function descriptions specify the allowed scope for each func-
tion. Calling a function outside of the allowed scopes results in an exception. You can
query the current scope with the scope keyword of PDF_get_option().

Table 1.3 Function scope definitions

scope name definition

path started by one of PDF_moveto(), PDF circle(), PDF arc(), PDF arcn(), PDF rect(), PDF ellipse() or PDF _
elliptical_arc();
terminated by any of the functions in Section 7.5, »Painting and Clipping«, page 149

page between PDF begin_page_ext() and PDF _end_page_ext(), but outside of path scope

template between PDF begin_template_ext() and PDF end_template_ext(), but outside of path scope

pattern between PDF _begin_pattern_ext() and PDF end_pattern(), but outside of path scope
font between PDF _begin_font() and PDF end_font(), but outside of glyph scope
glyph between PDF_begin_glyph_ext() and PDF_end_glyph(), but outside of path scope

document between PDF_begin_document() and PDF _end_document(), but outside of page, path, glyph, template,
pattern, and font scope

object during the lifetime of the PDFIlib object, but outside of document scope; in the C, Cobol and RPG language
bindings between PDF_new() and PDF _delete(), but outside of document scope

1.2 Function Scopes 17

1.3

Logging
The logging feature can be used to trace API calls. The contents of the log file may be
useful for debugging purposes, or may be requested by PDFlib GmbH support. Logging
options can be supplied in the following ways:

» As an option list for the global logging option of PDF set option(), e.g.:

p.set_option("logging={filename=trace.log remove}");

» In an environment variable called PDFLIBLOGGING. This will activate the logging out-
put starting with the very first call to one of the API functions.

Table 1.4 Suboptions for the logging option

option

description

(empty list) Enable log output

disable (Boolean) Disable logging output

enable (Boolean) Enable logging output

filename (String) Name of the log file; stdout and stderr will be recognized as special names. On CICS this option
will be ignored, and logging output will always be written to stderr. Output will be appended to any ex-
isting contents. Default:
pdflog on z/0S
PDF1ib.log on OS X/macOS and iSeries
\PDF1ib.log on Windows
/tmp/PDF1ib.log on all other systems
The log file name can alternatively be supplied in an environment variable called PDFLIBLOGFILE.

flush (Boolean) If txue, the log file will be closed after each output, and reopened for the next output to make
sure that the output will actually be flushed. This may be useful when chasing program crashes where
the log file is truncated, but significantly slows down processing. If false, the log file will be opened only
once. Default: false

includepid (Boolean; not on MVS) Include the process id in the log file name. This should be enabled if multiple pro-

cesses use the same log file name. Default: false

includetid (Boolean; not on MVS) Include the thread id in the log file name. This should be enabled if multiple

threads in the same process use the same log file name. Default: false

includeoid (Boolean; not on MVS) Include the object id in the log file name. This should be enabled if multiple PDFlib
objects in the same thread use the same log file name. Default: false

remove (Boolean) If true, an existing log file will be deleted before writing new output. Default: false

removeon- (Boolean) Remove the generated log file in PDF_delete() unless an exception occurred. This may be useful

success for analyzing occasional problems in multi-threaded applications or problems which occur only sporadi-

cally. It is recommended to combine this option with includepid/includetid/includeoid as appropri-

ate.

stringlimit (Integer) Limit for the number of characters per line, or o for unlimited. Default: o

18

Chapter 1: Programming Concepts

Table 1.4 Suboptions for the logging option

option

classes

description

(Option list) List containing options of type integer, where each option describes a logging class and the

corresponding value describes the granularity level. Level o disables a logging class, positive numbers en-

able a class. Increasing levels provide more and more detailed output. The following options are provided

(default: {api=1 warning=1}):

api Log all API calls with their function parameters and results. If api=2 a timestamp will be
created in front of all API trace lines, and deprecated functions and options will be marked.

filesearch Log all attempts related to locating files via SearchPath or PVF.

resource Log all attempts at locating resources via Windows registry, UPR definitions as well as the
results of the resource search.

tagging Structure element (tag) operations
user User-specified logging output supplied with the userlog option.

warning Log all PDFlib warnings, i.e. error conditions which can be ignored or fixed internally. If
warning=2 messages from functions which do not throw any exception, but hook up the
message text for retrieval via PDF_get_errmsg(), and the reason for all failed attempts at
opening a file (searching for a file in searchpath) will also be logged.

1.3 Logging 19

2 General Functions

2.1 Exception Handling

Table 2.1 details the relevant option for this section. This option is supported by many
functions as indicated in the corresponding option list descriptions. It can also be sup-

plied as global o

ption to PDF set option() (see Section 2.3, »Global Options«, page 25).

Table 2.1 Exception-related option for PDF set_option()

option description

errorpolicy (Keyword) Controls the error behavior of functions which return a value. The global option errorpolicy
can be overridden by the errorpolicy option of many functions, and serves as default for this option.

Supported
legacy

return

exception

keywords (default: legacy):
(Deprecated) Some functions return an error code, while others throw an exception according
to the respective APl description.

If a processing error occurs the function will return. Functions which can return an error code
(e.g. PDF load_image()) return -1 (in PHP: o). Functions which return result strings (e.g. PDF
fit_table()) return the string _error. Application developers must check the return value
against -1(in PHP: o) or _exror to detect error situations. In case of an error a detailed
description can be queried with PDF_get_errmsg(). This setting is recommended for new
applications.

Even with errorpolicy=return an exception is thrown if a syntactic error in an option list is
found or the PDF output cannot be written.

If an error occurs the function will throw an exception. The exception must be caught in client
code. The partial PDF output generated so far is unusable and must be discarded (this can be
automated with the removefragments document option).

C++ Java C# int get_errnum()
Perl PHP int get_errnum()

C int PDF_get_errnum(PDF *p)

Get the number

of the last thrown exception or the reason of a failed function call.

Returns The error code of the most recent error condition.

Scope Between an exception thrown by PDFlib and the death of the PDFlib object. Alternative-

ly, this function

may be called after a function returned a -1 (in PHP: 0) error code, but

before calling any other function except those listed in this section.

Bindings In C++,Java, Obj

ective-C, .NET, PHP and REALbasic/Xojo this function is also available as

get_errnum() in the PDFlibException object.

2.1 Exception Handling 21

C++ Java C# String get_errmsg()

Perl PHP string get_errmsg()

Returns

Scope

Bindings

C const char *PDF_get_errmsg(PDF *p)

Get the text of the last thrown exception or the reason of a failed function call.
Text containing the description of the most recent error condition.

Between an exception thrown by PDFlib and the death of the PDFlib object. Alternative-
ly, this function may be called after a function returned a -1 (in PHP: 0) error code, but
before calling any other function except those listed in this section.

In C++, Java, Objective-C, .NET, PHP and REALbasic/Xojo this function is also available as
get_errmsg() in the PDFlibException object.

C++ Java C# String get_apiname()

Perl PHP string get_apiname()

Returns

Scope

Bindings

C+

Returns

Details

Scope

Bindings

2

C const char "PDF_get_apiname(PDF *p)

Get the name of the API function which threw the last exception or failed.

The name of the API function which threw an exception, or the name of the most re-
cently called function which failed with an error code.

Between an exception thrown by PDFlib and the death of the PDFlib object. Alternative-
ly, this function may be called after a function returned a -1 (in PHP: 0) error code, but
before calling any other function except those listed in this section.

In C++, Java, Objective-C, .NET, PHP and REALbasic/Xojo this function is also available as
get_apiname() in the PDFlibException object.

+ void *get_opaque()
C void *PDF_get_opaque(PDF *p)

Fetch the opaque application pointer stored in PDFlib.

The opaque application pointer stored in PDFlib which has