z-PDFlib GmbH

PDFlib, PDFlib+PDI, PPS

A library for generating PDF on the fly
PDFlib 9.1.1

Tutorial

For use with C, C++, Cobol, COM, Java, .NET, Objective-C,
Perl, PHP, Python, REALbasic/Xojo, RPG, Ruby

Copyright © 1997-2017 PDFlib GmbH and Thomas Merz. All rights reserved.
PDFlib users are granted permission to reproduce printed or digital copies of this manual for internal use.

PDFlib GmbH

Franziska-Bilek-Weg 9, 80339 Miinchen, Germany
www.pdflib.com

phone +49 + 89 » 45233 84-0

fax +49 < 89 « 45233 84-99

If you have questions check the PDFlib mailing list and archive at
groups.yahoo.com/neo/groups/pdflib/info

Licensing contact: sales@pdflib.com
Support for commercial PDFlib licensees: support@pdflib.com (please include your license number)

This publication and the information herein is furnished as is, is subject to change without notice, and
should not be construed as a commitment by PDFlib GmbH. PDFlib GmbH assumes no responsibility or lia-
bility for any errors or inaccuracies, makes no warranty of any kind (express, implied or statutory) with re-
spect to this publication, and expressly disclaims any and all warranties of merchantability, fitness for par-
ticular purposes and noninfringement of third party rights.

PDFlib and the PDFlib logo are registered trademarks of PDFlib GmbH. PDFlib licensees are granted the
right to use the PDFlib name and logo in their product documentation. However, this is not required.

Adobe, Acrobat, PostScript, and XMP are trademarks of Adobe Systems Inc. AIX, IBM, 0S/390, WebSphere,
iSeries, and zSeries are trademarks of International Business Machines Corporation. ActiveX, Microsoft,
OpenType, and Windows are trademarks of Microsoft Corporation. Apple, Macintosh and TrueType are
trademarks of Apple Computer, Inc. Unicode and the Unicode logo are trademarks of Unicode, Inc. Unix is a
trademark of The Open Group. Java and Solaris are trademarks of Sun Microsystems, Inc. HKS is a regis-
tered trademark of the HKS brand association: Hostmann-Steinberg, K+E Printing Inks, Schmincke. Other
company product and service names may be trademarks or service marks of others.

PANTONE® colors displayed in the software application or in the user documentation may not match
PANTONE-identified standards. Consult current PANTONE Color Publications for accurate color. PANTONE®
and other Pantone, Inc. trademarks are the property of Pantone, Inc. © Pantone, Inc., 2003.

Pantone, Inc. is the copyright owner of color data and/or software which are licensed to PDFlib GmbH to
distribute for use only in combination with PDFlib Software. PANTONE Color Data and/or Software shall
not be copied onto another disk or into memory unless as part of the execution of PDFlib Software.

PDFlib contains modified parts of the following third-party software:

ICClib, Copyright © 1997-2002 Graeme W. Gill

GIF image decoder, Copyright © 1990-1994 David Koblas

PNG image reference library (libpng), Copyright © 1998-2012 Glenn Randers-Pehrson

Zlib compression library, Copyright © 1995-2012 Jean-loup Gailly and Mark Adler

TIFFlib image library, Copyright © 1988-1997 Sam Leffler, Copyright © 1991-1997 Silicon Graphics, Inc.
Cryptographic software written by Eric Young, Copyright © 1995-1998 Eric Young (eay@cryptsoft.com)
Independent JPEG Group’s JPEG software, Copyright © 1991-1998, Thomas G. Lane

Cryptographic software, Copyright © 1998-2002 The OpenSSL Project (www.openssl.org)

Expat XML parser, Copyright © 1998, 1999, 2000 Thai Open Source Software Center Ltd

ICU International Components for Unicode, Copyright © 1995-2012 International Business Machines Corpo-
ration and others

Reference sRGB ICC color profile data, Copyright (c) 1998 Hewlett-Packard Company

PDFlib contains the RSA Security, Inc. MD5 message digest algorithm.

https://groups.yahoo.com/neo/groups/pdflib/info
http://www.pdflib.com
mailto:sales@pdflib.com
mailto:support@pdflib.com

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.1
2.12

2.13

3.1

Contents

Applying the PDFlib License Key x

Introduction i

Roadmap to Documentation and Samples 15

PDFlib Programming 17

What’s new in PDFlib/PDFlib+PDI/PPS 9.0? 19
What'’s new in PDFlib/PDFlib+PDI/PPS 9.1? 21
Features in PDFlib 22

Additional Features in PDFlib+PDI 25
Additional Features in PPS 26

Availability of Features in different Products 27

PDFlib Language Bindings 29

CBinding 29

C++ Binding 32
COM Binding 35
Cobol Binding 40

Java Binding 41
.NET Binding 44
Objective-C Binding 47

Perl Binding 49

PHP Binding 51

Python Binding 53
REALbasic/Xojo Binding 54
RPG Binding 55

Ruby Binding 57

Creating PDF Documents s
General PDFlib Programming Aspects 59

3.11
3.1.2
3.1.3
3.1.4
3.1.5
3.1.6
3.1.7
3.1.8

Exception Handling 59

Logging 61

The PDFlib Virtual File System (PVF) 61

Resource Configuration and File Search 63

Generating PDF Documents in Memory 68

Maximum Size of PDF Documents and other Limits 69
Multi-threaded Programming 7o

Using PDFlib on EBCDIC-based Platforms 7o

Contents

3

3.2

33

Page Descriptions 71

3.21 Coordinate Systems 71

3.2.2 Page Size 73

3.2.3 Direct Paths and Path Objects 74

3.2.4 Templates (Form XObjects) 76

3.2.5 Referenced Pages from an external PDF Document 77

PDF Password Security 79
3.3.1 Password Security in PDF 79
3.3.2 Password-Protecting PDF Documents with PDFlib 82

4 Color Spaces ss

41
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

Device Color Spaces 85

Color Management with ICC Profiles 87
Device-Independent CIE L*a*b* Color 97
Pantone, HKS, and custom Spot Colors 92
DeviceN Colors 96

Shadings and Shading Patterns 100
Tiling Patterns 102

Transparency Blend Modes 103

Changing the Color of Objects 106
4.9.1 Changing the Color with Blend Modes 106
4.9.2 Changing the Color with Soft Masks 107

4.0 Rendering Intents 109

4.1 Overprint Control 170

5.1
5.2

53
5.4
5.5
5.6

Unicode and Legacy Encodings 3

Important Unicode Concepts 113

Unicode-capable Language Bindings 115

5.2.1 Language Bindings with native Unicode Strings 115
5.2.2 Language Bindings with UTF-8 Support 115
Non-Unicode-capable Language Bindings 117

Single-Byte (8-Bit) Encodings 121

Chinese, Japanese, and Korean Encodings 124

Addressing Characters 127
5.6.1 Escape Sequences 127
5.6.2 Character References 128

Font Handling

Font Formats 131

6.11 TrueType Fonts 131
6.1.2 OpenType Fonts 131
6.1.3 WOFF Fonts 132

4 Contents

6.3

6.4

6.5

6.6

741
7.2

73

74

75

6.1.4 SVGFonts 132

6.1.5 PostScript Type 1 Fonts 133
6.1.6 SING Fonts (Glyphlets) 133
6.1.7 CEF Fonts 134

6.1.8 Type 3 Fonts 134

Unicode Characters and Glyphs 136

6.21 GlyphIDs 136

6.2.2 Unicode Mappings for Glyphs 136
6.2.3 Unicode Control Characters 138

The Text Processing Pipeline 139

6.3.1 Normalizing Input Strings to Unicode 139
6.3.2 Converting Unicode Values to Glyph IDs 140
6.3.3 Transforming Glyph IDs 141

Loading Fonts 142

6.4.1 Selecting an Encoding for Text Fonts 142

6.4.2 Selecting an Encoding for symbolic Fonts 144

6.4.3 Example: Selecting a Glyph from the Wingdings Symbol Font 146
6.4.4 Searching for Fonts 149

6.4.5 Host Fonts on Windows and OS X/macOS 153

6.4.6 Fallback Fonts 155

Font Embedding and Subsetting 159
6.5.1 Font Embedding 159
6.5.2 Font Subsetting 160

Querying Font Information 162

6.6.1 Font-independent Encoding, Unicode, and Glyph Name Queries 162
6.6.2 Font-specific Encoding, Unicode, and Glyph Name Queries 163

6.6.3 Querying Codepage Coverage and Fallback Fonts 164

Text Output 67

Text Output Methods 167

Font Metrics and Text Variations 168
7.21 Font and Glyph Metrics 168
7.2.2 Kerning 169

7.2.3 Text Variations 170

OpenType Layout Features 172
7.3.1 Supported OpenType Layout Features 172
7.3.2 OpenType Layout Features with Textlines and Textflows 174

Complex Script Output 178

7.41 Complex Scripts 178

7.4.2 Script and Language 180
7.4.3 Complex Script Shaping 181
7.4.4 Bidirectional Formatting 182
7.4.5 Arabic Text Formatting 184

Chinese, Japanese, and Korean Text Output 186
7.5.1 Using TrueType and OpenType CJK Fonts 186
7.5.2 EUDC and SING Fonts for Gaiji Characters 187

Contents 5

7.5.3 OpenType Layout Features for advanced CJK Text Output 188
7.5.4 Unicode Variation Selectors and Variation Sequences 190
7.5.5 Standard CJK Fonts 191

8 Importing Images, SVG Graphics and PDF Pages 193

8.2

8.3

8.4

Raster Images 193

8.1.1 BasicImage Handling 193

8.1.2 Supported Image File Formats 194

8.1.3 Clipping Paths 198

8.1.4 Image Transparency with Alpha Channels and Stencil Masks 199
8.1.5 Colorize Images with Spot or DeviceN Color 201

SVG Graphics 203

8.21 Supported SVG Flavors 203

8.2.2 SVG Processing Considerations 203

8.2.3 Visible Size of SVG Graphics 204

8.2.4 Font Selection 205

8.2.5 Dealing with missing Fonts and missing Glyphs 207
8.2.6 SVG Color Extension 208

8.2.7 SVG Contents beyond Vector Graphics and Text 210
8.2.8 Unsupported SVG Features 2m

Importing PDF Pages with PDI 214

8.3.1 PDIFeatures and Applications 214

8.3.2 Using PDFlib+PDI 214

8.3.3 Document and Page-related Checks 216

8.3.4 Specific Aspects of imported PDF Documents 216

Placing Images, Graphics, and imported PDF Pages 219

8.4.1 Simple Object Placement 219

8.4.2 Placing an Object at a Point or Line or in a Box 219

8.4.3 Orientating an Object 221

8.4.4 Rotating an Object 222

8.4.5 Adjusting the Page Size 223

8.4.6 Querying Information about placed Images and PDF Pages 224

Text and Table Formatting 2

Placing and Fitting Textlines 227

9.11 Simple Textline Placement 227

9.1.2 Positioning Text in a Box 228

9.1.3 Fitting Text into a Box 229

9.1.4 Aligning Text at a Character 231

9.1.5 Placing a Stamp 232

9.1.6 Using Leaders 232

9.1.7 Texton aPath 233

9.1.8 Shadowed Text 234

9.1.9 Watermarks which can be edited in Acrobat 235

Multi-Line Textflows 237
9.21 Placing Textflows in the Fitbox 238

6 Contents

9.2.2 Paragraph Formatting Options 240

9.2.3 Inline Option Lists and Macros 240

9.2.4 Tab Stops 243

9.2.5 Numbered Lists and Paragraph Spacing 244

9.2.6 Control Characters and Character Mapping 245
9.2.7 Hyphenation 248

9.2.8 Widow and Orphan Lines 249

9.2.9 Controlling the standard Linebreak Algorithm 249
9.2.10 Advanced script-specific Line Breaking 252

9.2.11 Wrapping Text around Paths and Images 253

9.3 Table Formatting 257
9.3.1 Placing a Simple Table 258
9.3.2 Contents of a Table Cell 261
9.3.3 Table and Column Widths 263
9.3.4 Mixed Table Contents 264
9.3.5 Table Instances 267
9.3.6 Table Formatting Algorithm 269

9.4 Matchboxes 273
9.4.1 Decorating a Textline 273
9.4.2 Using Matchboxes in a Textflow 274
9.4.3 Matchboxes and Images 275

10 Interactive Features 27

10.1 Links, Bookmarks, and Annotations 277
10.2 Form Fields and JavaScript 280

10.3 Geospatial PDF 285
10.3.1 Using georeferenced PDF in Acrobat 285
10.3.2 Geographic and projected Coordinate Systems 285
10.3.3 Coordinate System Examples 286
10.3.4 Georeferenced PDF Restrictions in Acrobat 287

11 Document Interchange 239

1.1 XMP Metadata 289
1.2 Web-Optimized (Linearized) PDF 290

1.3 Tagged PDF Basics 291
11.3.1 The Logical Structure Tree (Structure Hierarchy) 292
11.3.2 Standard and custom Element Types 294
11.3.3 Artifacts 299
11.3.4 Text Handling 301
11.3.5 Alternate Description, Replacement Text and Abbreviation Expansion 303
11.3.6 Print Stream Order and Logical Reading Order 304
11.3.7 Tagged PDF Problems in Adobe Acrobat 305

1.4 Advanced Tagged PDF Topics 308
11.4.1 Automatic Table Tagging 308
11.4.2 Interactive Elements 317

Contents 7

12

12.1
12.2

12.3

12.4

12.5

12.6

13
13.1

13.2

11.4.3 Lists 314

11.4.4 Creating Contents out of Order 315

11.4.5 Importing Tagged PDF Pages with PDI 317
11.4.6 PDFlib Techniques for WCAG 2.0 321

PDF Versions and Standards ;z;

Acrobat and PDF Versions 327
The PDF Standard 1SO 32 000 330

PDF/A for Archiving 331

12.3.1 The PDF/A Standards 337

12.3.2 General Requirements 332

12.3.3 Color and Image Requirements 333

12.3.4 Requirements for Interactive Features 336

12.3.5 Additional PDF/A Requirements for Level U Conformance 336
12.3.6 Additional PDF/A Requirements for Level A Conformance 337
12.3.7 Importing PDF/A Documents with PDI 338

12.3.8 XMP Metadata for PDF/A 339

PDF/X for Print Production 342

12.4.1 The PDF/X Family of Standards 342

12.4.2 General Requirements 343

12.4.3 Output Intent and Color Requirements 344
12.4.4 Image and Transparency Requirements 349
12.4.5 Requirements for interactive Features 349
12.4.6 Importing PDF/X Documents with PDI 350

PDF/VT for Variable and Transactional Printing 352

12.5.1 The PDF/VT Standard 352

12.5.2 PDF/VT Concepts 353

12.5.3 Summary of Rules for generating PDF/VT-1and PDF/VT-2 354
12.5.4 Document Part Hierarchy and Document Part Metadata (DPM) 356
12.5.5 Scope Hints for recurring Graphical Content 357

12.5.6 Encapsulated XObjects 358

12.5.7 Importing PDF/X and PDF/VT Documents with PDI 359

12.5.8 Creating MIME Streams for PDF/VT-2s 360

PDF/UA for Universal Accessibility 362

12.6.1 The PDF/UA-1 Standard 362

12.6.2 Tagging Requirements 363

12.6.3 Additional Requirements for specific Content Types 365
12.6.4 Importing PDF/UA Documents with PDI 366

PPS and the PDFlib Block Plugin 369

Installing the PDFlib Block Plugin 369

Overview of the Block Concept 371

13.2.1 Separation of Document Design and Program Code 371
13.2.2 Block Properties 371

13.2.3 Why not use PDF Form Fields? 372

8 Contents

13.3

13.4
13.5
13.6

13.7
13.8

13.9

Editing Blocks with the Block Plugin 374
13.3.1 Creating Blocks 374
13.3.2 Editing Block Properties 378

13.3.3 Copying Blocks between Pages and Documents 379
13.3.4 Converting PDF Form Fields to PDFlib Blocks 381
13.3.5 Customizing the Block Plugin User Interface with XML 383

Previewing Blocks in Acrobat 385
Filling Blocks with PPS 390

Block Properties 394

13.6.1 Administrative Properties 394
13.6.2 Rectangle Properties 395

13.6.3 Appearance Properties 396

13.6.4 Text Preparation Properties 399
13.6.5 Text Formatting Properties 400
13.6.6 Object Fitting Properties 403

13.6.7 Properties for default Contents 406
13.6.8 Custom Properties 406

Querying Block Names and Properties with pCOS 407

Creating and Importing Blocks Programmatically 409
13.8.1 Creating PDFlib Blocks with POCA 409
13.8.2 Importing PDFlib Blocks 410

PDFlib Block Specification 411

A Revision History 4

Index 417

Contents

.9

o Applying the PDFlib License Key

Restrictions of the evaluation version. All binary versions of PDFlib, PDFlib+PDI, and
PPS supplied by PDFlib GmbH can be used as fully functional evaluation versions re-
gardless of whether or not you obtained a commercial license. However, unlicensed ver-
sions display a www.pdflib.com demo stamp across all generated pages, and the inte-
grated pCOS interface is limited to small documents (up to 10 pages and 1 MB file size).
Unlicensed binaries must not be used for production purposes, but only for evaluating
the product. Using any PDFlib GmbH product for production purposes requires a valid
license.

Companies which are interested in PDFlib licensing and wish to get rid of the evalua-
tion restrictions during the evaluation phase or for prototype demos can submit their
company and project details with a brief explanation to sales@pdflib.com, and apply for
a temporary license key (we reserve the right to refuse evaluation key requests, e.g. for
anonymous requests).

PDFlib, PDFlib+PD], and PDFlib Personalization Server (PPS) are different products
which require different license keys although they are delivered in a single package.
PDFlib+PDI license keys will also be valid for PDFlib, but not vice versa, and PPS license
keys will be valid for PDFlib+PDI and PDFlib. All license keys are platform-dependent,
and can only be used on the platform for which they have been purchased.

Once you purchased a license key you must apply it in order to get rid of the demo
stamp. Several methods are supported for setting the license key; they are detailed be-
low.

Cookbook A full code sample can be found in the Cookbook topic general/license_key.
Windows installer. If you are working with the Windows installer you can enter the li-

cense key when you install the product. The installer will add the license key to the reg-
istry (see below).

Applying a license key with an API call at runtime. Add a line to your script or pro-
gram which sets the license key at runtime. The license option must be set immediately
after instantiating the PDFlib object (in C: after PDF_new()). The exact syntax depends
on your programming language:

» In COM/VBScript and REALbasic:

OPDF.set_option "license=...your license key..."
» In C++, Java, NET/C#, Python and Ruby:
p.set_option("license=...your license key...")
» InC:
PDF_set option(p, "license=...your license key...")
» In Objective-C:
[pdflib set option: @"license=...your license key..."];
» In Perl and PHP:

$p->set_option("license=...your license key...")

http://www.pdflib.com/pdflib-cookbook/general-programming/license-key

Note

12

» In RPG:

o callp PDF_set_option(p:%ucs2('license=...your license key...")

Working with a license file. As an alternative to supplying the license key with a run-
time call, you can enter the license key in a text file according to the following format
(you can use the license file template licensekeys.txt which is contained in all PDFlib dis-
tributions). Lines beginning with a '#’ character contain comments and will be ignored;
the second line contains version information for the license file itself:

Licensing information for PDFlib GmbH products
PDFlib license file 1.0
PDFlib 9.1.1 ...your license key...

The license file may contain license keys for multiple PDFlib GmbH products on sepa-
rate lines. It may also contain license keys for multiple platforms so that the same li-
cense file can be shared among platforms. License files can be configured in the follow-
ing ways:
» Afile called licensekeys.txt will be searched in all default locations (see »Default file
search paths«, page 13).
» You can specify the licensefile option with the set_option() API function:

p.set_option("licensefile={/path/to/licensekeys.txt}");

» You can set an environment (shell) variable which points to a license file. On Win-
dows use the system control panel and choose System, Advanced, Environment
Variables.; on Unix apply a command similar to the following:

export PDFLIBLICENSEFILE=/path/to/licensekeys.txt

» On is/iSeries the license file must be encoded in ASCII (see asciifile option). The li-
cense file can be specified as follows (this command can be specified in the startup
program QSTRUP and works for all PDFlib GmbH products):

ADDENVVAR ENVVAR(PDFLIBLICENSEFILE) VALUE('/PDFlib/9.1/licensefile.txt') LEVEL(*SYS)
License keys in the registry. On Windows you can also enter the name of the license
file in the following registry value:

HKLM\SOFTWARE\PDF1ib\PDFLIBLICENSEFILE
As another alternative you can enter the license key directly in one of the following reg-
istry values:

HKLM\SOFTWARE\PDF1ib\PDF1ib9\license
HKLM\SOFTWARE\PDF1ib\PDF1ib9\9.1.1\1icense

The MSI installer writes the license key to the last of these entries.

Be careful when manually accessing the registry on 64-bit Windows systems: as usual, 64-bit
PDFlib binaries work with the 64-bit view of the Windows registry, while 32-bit PDFIib binaries
running on a 64-bit system work with the 32-bit view of the registry. If you must add registry
keys for a 32-bit product manually, make sure to use the 32-bit version of the regedit tool. It
can be invoked as follows from the Start dialog:

%systemroot%\syswowb4\regedit

Chapter o: Applying the PDFlib License Key

Default file search paths. On Unix, Linux, OS X/macOS and i5/iSeries some directories
will be searched for files by default even without specifying any path and directory
names. Before searching and reading the UPR file (which may contain additional search
paths), the following directories will be searched:

<rootpath>/PDFlib/PDF1ib/9.1/resource/cmap
<rootpath>/PDF1ib/PDF1lib/9.1/resource/codelist
<rootpath>/PDF1ib/PDF1ib/9.1/resource/glyphlst
<rootpath>/PDFlib/PDF1lib/9.1/resource/fonts
<rootpath>/PDF1ib/PDF1ib/9.1/resource/icc
<rootpath>/PDF1ib/PDF1ib/9.1
<rootpath>/PDFlib/PDF1lib

<rootpath>/PDFlib

On Unix, Linux, and OS X/macOS <rootpath> will first be replaced with /usr/local and
then with the HOME directory. On i5/iSeries <roothpath> is empty.

Default file names for license and resource files. By default, the following file names
will be searched for in the default search path directories:

licensekeys.txt (license file)
pdflib.upr (resource file)

This feature can be used to work with a license file without setting any environment
variable or runtime option.

Updates and Upgrades. If you purchased an update (change from an older version of a
product to a newer version of the same product) or an upgrade (change from PDFlib to
PDFlib+PDI or PPS, or from PDFlib+PDI to PPS), or received a new license key as part of
your support contract, you must apply the new license key that you received for your
update or upgrade. The old license key for the previous product must no longer be used.

Evaluating features which are not yet licensed. You can fully evaluate all features by
using the software without any license key applied. However, once you applied a valid
license key for a particular product using features of a higher category will no longer be
available. For example, if you installed a valid PDFlib license key the PDI functionality
will no longer be available for testing. Similarly, after installing a PDFlib+PDI license key
the personalization features (block functions) will no longer be available.

When a license key for a product has already been installed, you can replace it with
the dummy license string »o« (digit zero) to enable functionality of a higher product
class for evaluation. This will enable the previously disabled functions, and re-activate
the demo stamp across all pages.

Licensing options. Different licensing options are available for PDFlib use on one or
more servers, and for redistributing PDFlib with your own products. We also offer sup-
port and source code contracts. Licensing details and the PDFlib purchase order form
can be found in the PDFlib distribution. Please contact us if you are interested in obtain-
ing a commercial PDFlib license or have any questions:

13

PDFlib GmbH, Licensing Department
Franziska-Bilek-Weg 9, 80339 Miinchen, Germany
www.pdflib.com

phone +49 - 89 + 45233 84-0

fax +49 + 89+ 45233 84-99

Licensing contact: sales@pdflib.com

Support for PDFlib licensees: support@pdflib.com

14 Chapter o: Applying the PDFlib License Key

http://www.pdflib.com
mailto:sales@pdflib.com
mailto:support@pdflib.com

1

1.1

Note

Introduction

Roadmap to Documentation and Samples

We provide the material listed below to assist you in using PDFlib products successfully.

Mini samples for all language bindings. The mini samples (hello, image, pdfclock, etc.)
are available in all packages and for all language bindings. They provide minimalistic
sample code for text output, images, and vector graphics. The mini samples are mainly
useful for testing your PDFlib installation, and for getting a very quick overview of writ-
ing PDFlib applications.

Starter samples for all language bindings. The starter samples are contained in all
packages and are available for a variety of language bindings. They provide a useful ge-
neric starting point for important topics, and cover simple text and image output, Text-
flow and table formatting, PDF/A, PDF/X, PDF/VT and PDF/UA creation, and many other
topics. The starter samples demonstrate basic techniques for achieving a particular goal
with PDFlib products. It is strongly recommended to take a look at the starter samples.

PDFlib Tutorial. The PDFlib Tutorial (this manual), which is contained in all packages as
a single PDF document, explains important programming concepts in more detail, in-
cluding small pieces of sample code. If you start extending your code beyond the starter
samples you should read up on relevant topics in the PDFlib Tutorial.

Most examples in this PDFlib Tutorial are provided in the Java language (except for the
language-specific samples in Chapter 2, »PDFlib Language Bindings«, page 29). Although
syntax details vary with each language, the basic concepts of PDFlib programming are the
same for all language bindings.

PDFlib Reference. The PDFlib Reference, which is contained in all packages as a single
PDF document, contains a concise description of all functions and options which to-
gether comprise the PDFlib application programming interface (API). The PDFlib Refer-
ence is the definitive source for looking up supported options, input conditions, and
other programming rules which must be obeyed. Note that some other reference docu-
ments are incomplete, e.g. the Javadoc API listing. Make sure to always use the full
PDFlib Reference when working with PDFlib.

pCOS Path Reference. The pCOS interface can be used to query a variety of properties
from PDF documents. pCOS is included in PDFlib+PDI and PPS. The pCOS Path Reference
contains a description of the path syntax used to address individual objects within a
PDF document in order to retrieve the corresponding values.

PDFlib Cookbook. The PDFlib Cookbook is a collection of PDFlib coding fragments for
solving specific problems. Most Cookbook examples are available for Java and PHP, but
can easily be adjusted to other programming languages since the PDFlib API is identical
for all supported language bindings. The PDFlib Cookbook is maintained as a list of sam-
ple programs. It is available at the following URL:

www . pdf1ib.com/pdflib-cookbook/

1.1 Roadmap to Documentation and Samples

15

http://www.pdflib.com/pdflib-cookbook/

pCOS Cookbook. The pCOS Cookbook is a collection of code fragments for the pCOS in-
terface which is contained in PDFlib+PDI and PPS. The pCOS interface can be used to
query a variety of properties from PDF documents. It is available at the following URL:

www.pdflib.com/pcos-cookbook/

TET Cookbook. PDFlib TET (Text Extraction Toolkit) is a separate product for extract-
ing text and images from PDF documents. It can be combined with PDFlib+PDI to pro-
cess PDF documents based on their contents. The TET Cookbook is a collection of code
fragments for TET. It contains a group of samples which demonstrate the combination
of TET and PDFlib+PD], e.g. add Web links or bookmarks based on the text on the page,
highlight search terms, split documents based on text, create a table of contents, etc.
The TET Cookbook is available at the following URL:

www. pdflib.com/tet-cookbook/

16 Chapter 1: Introduction

http://www.pdflib.com/pcos-cookbook/
http://www.pdflib.com/tet-cookbook/

1.2 PDFlib Programming

What is PDFlib? PDFlib is a development component which allows you to generate
files in Adobe’s Portable Document Format (PDF). PDFlib acts as a backend to your own
programs. While the application programmer is responsible for retrieving the data to be
processed, PDFlib takes over the task of generating the PDF output which graphically
represents the data. PDFlib frees you from the internal details of PDF, and offers various
methods which help you formatting the output. The distribution packages contain dif-
ferent products in a single binary: B—

» PDFlib contains all functions required to create PDF output containing text, vector
graphics and images plus hypertext elements. PDFlib offers powerful formatting —
features for placing single- or multi-line text, images, and creating tables.

» PDFlib+PDI includes all PDFlib functions, plus the PDF Import Library (PDI) for in- —
cluding pages from existing PDF documents in the generated output, and the pCOS
interface for querying arbitrary PDF objects from an imported document (e.g. list all —
fonts on page, query metadata, and many more).

» PDFlib Personalization Server (PPS) includes PDFlib+PDI, plus additional functions -
for automatically filling PDFlib blocks. Blocks are placeholders on the page which
can be filled with text, images, or PDF pages. They can be created interactively with
the PDFlib Block Plugin for Adobe Acrobat (OS X/macOS or Windows), and will be
filled automatically with PPS. The plugin is included in PPS.

How can | use PDFlib? PDFlib is available on a variety of platforms, including Unix,
Windows, OS X/macOS, and EBCDIC-based systems such as IBM i5/iSeries and zSeries.
PDFlib is written in the C language, but it can be also accessed from several other lan-
guages and programming environments which are called language bindings. These lan-
guage bindings cover all current Web and stand-alone application environments. The
Application Programming Interface (API) is easy to learn, and is identical for all bind-
ings. Currently the following bindings are supported:

» COM for use with VB, ASP with VBScript or JScript, Windows Script Host, etc. —

» ANSICand C++

» Cobol (IBM zSeries) —

» Java, including J2EE Servlets and JSP

» NET for use with C#, VB.NET, ASP.NET, etc. —

» Objective-C (OS X/macOS, i0S)

» PHP E—

» Perl

» Python —

» REALbasic

» RPG (IBM i5/iSeries) e

» Ruby, including Ruby on Rails

What can | use PDFlib for? PDFlib’s primary target is dynamic PDF creation within
your own software or on a Web server. Similar to HTML pages dynamically generated on
a Web server, you can use a PDFlib program for dynamically generating PDF reflecting
user input or some other dynamic data, e.g. data retrieved from the Web server’s data-
base. The PDFlib approach offers several advantages:

» PDFlib can be integrated directly in the application generating the data.

1.2 PDFlib Programming 17

» As an implication of this straightforward process, PDFlib is the fastest PDF-generat-
ing method, making it perfectly suited for the Web.

» PDFlib’s thread-safety as well as its robust memory and error handling support the
implementation of high-performance server applications.

» PDFlib is available for a variety of operating systems and development environ-
ments.

Requirements for using PDFlib. PDFlib makes PDF generation possible without wading
through the PDF specification. While PDFIib tries to hide technical PDF details from the
user, a general understanding of PDF is useful. In order to make the best use of PDFlib,
application programmers should ideally be familiar with the basic graphics model of
PDF. However, a reasonably experienced application programmer who has dealt with
any graphics API for screen display or printing shouldn’t have much trouble adapting to
the PDFlib APIL

18 Chapter 1: Introduction

1.3 What’s new in PDFlib/PDFlib+PDI/PPS g9.0?

The following list discusses the most important new or improved features in PDFlib/
PDFlib+PDI/PPS 9.0 and Block Plugin 5. There are many more new features; see Table 1.1
and the PDFlib Reference for details. S

Create PDF/A-2 and PDF/A-3. PDFlib supports two new parts of the PDF/A standard for
archiving. PDF/A-2 is based on PDF 1.7 and supports transparency, JPEG 2000 compres-
sion, layers, and many other features. While PDF/A-2 allows embedding of PDF/A-1 and
PDF/A-2 documents, PDF/A-3 allows embedding of arbitrary file types.

Create Tagged PDF and PDF/UA. Creating Tagged PDF is much easier through various
convenience features, such as abbreviated tagging and automatic tagging of Artifacts.
PDFlib’s table formatter automatically tags tables. Tagged PDF documents including
structure elements can be imported with PDI.

Accessible documents can be created according to the PDF/UA standard (Universal —
Accessibility). PDF/UA is based on PDF 1.7 and improves Tagged PDF for accessibility
similar to WCAG 2.0 (Web Content Accessibility Guidelines) in the Web world. _

Create PDF/VT. PDF/VTis a standard for optimized PDF for variable and transactional
printing. PDFlib can create output which conforms to PDF/VT-1, PDF/VT-2 or PDF/VT-2s
according to ISO 16612-2 for Variable Document Printing (VDP). Document Part Metada-
ta (DPM) can be attached according to the PDF/VT standard.

Import Scalable Vector Graphics (SVG). PDFlib imports vector graphics in the SVG for-
mat. SVG is the standard format for vector graphics on the Web, and is supported by all
mainstream browsers.

Font handling and text output. PDFlib’s font engine and text processing have been en- —
hanced in several ways:
» ideographic variation sequences (IVS) for CJK variant glyphs —_
» WOFF fonts (Web Open Font Format), a new container format for TrueType and
OpenType fonts specified by the W3C -
» SVG fonts, i.e. vector fonts specified in SVG format
» CEF fonts (Compact Embedded Font), a variant of OpenType used for embedding
fonts in SVG graphics
» support for all Unicode normalization forms (NFC, NFKC etc.)
» automatically create UPR font configuration files with all fonts found in an arbitrary
number of directories

Import PDF documents with PDFlib+PDI. The following features are new in the PDF
Import library PDI:

» Tagged PDF documents including structure elements can be imported.

» Layer definitions can be imported. —

1.3 What’s new in PDFlib/PDFlib+PDI/PPS 9.0? 19

PDFlib Personalization Server (PPS) and Block Plugin. The following features are new
in PPS:
» The new Block type »Graphics« can be used to fill PDFlib Blocks with SVG graphics.
» PDFlib Blocks can not only be filled with PPS, but also imported into the output PDF.
» A few new Block properties have been introduced.

Create PDFlib Blocks programmatically. In addition to creating PDFlib Blocks interac-
tively with the PDFlib Block Plugin, PDFlib Blocks can be created programmatically with
PPS. Existing PDFlib Blocks in imported documents can be copied to the generated PDF
output. These features enable advanced document composition workflows where tem-
plates for PPS can themselves be built programmatically.

PDF Object Creation APl (POCA). POCA provides a set of methods for creating low-level
PDF objects which are included in the generated PDF output. POCA can be used for the
following purposes:

» create Document Part Metadata (DPM) for PDF/VT

» programmatically create PDFlib Blocks for use with PPS

Embed multimedia content. PDFlib can create rich media annotations with Sound,
Movie, or 3D content. The multimedia content can be controlled with JavaScript and
PDF actions. The following new multimedia features are available:

» rich media annotations

» rich media execute actions

Enhanced encryption algorithm. PDFlib supports PDF document encryption according
to Acrobat X/XI/DC. This encryption scheme is based on AES-256 and is specified in
PDF 1.7 Adobe extension level 8 and PDF 2.0 according to ISO 32000-2.

Other enhancements. The following enhancements have been implemented:
» improvements in the Table and Textflow formatters
» convenience functions for creating path objects with geometric shapes
» enhanced support for importing JPEG 2000 raster images
» query details of files in the PDFlib Virtual Filesystem (PVF)
» Removed most restrictions related to function scopes, e.g. pages, patterns and tem-
plates can now be nested arbitrarily.

20 Chapter1: Introduction

1.4 What’s new in PDFlib/PDFlib+PDI/PPS 9.1?

PDFlib/PDFlib+PDI/PPS 9.1 introduces new features related to color handling:
» Support for DeviceN and NChannel color spaces with an arbitrary number of colorants
» PDF/X-5n for exchange of n-colorant production files, e.g. in the packaging industry S
» SVG color extension for ICC profiles, spot and DeviceN color as well as Gray/RGB/

CMYK device color for increased usability of SVG for print production.

» Pantone Extended Gamut Coated (XGC) spot colors and Pantone Plus 2016 update
» Color shadings with an arbitrary number of stop colors for flexible color blends
» Color shadings between different spot colors, e.g. blends of Pantone colors
» Default color spaces can be specified for pattern, templates and Type 3 font glyphs
» Extended treatment of color-related topics in the PDFlib Tutorial and Cookbook

PDFlib/PDFlib+PDI/PPS 9.1 also updates support for several language bindings. S

1.4 What’s new in PDFlib/PDFlib+PDI/PPS 9.1? 21

1.5 Features in PDFlib

Table 1.1 lists features for generating PDF. New and improved features are marked.

Table 1.1 Feature list for PDFlib

topic
PDF flavors

SO standards
for PDF

Fonts

Text output

Accessibility

Internationalization

features

PDF 1.4 — PDF 1.7 extension level 8 and PDF 2.0 (Acrobat 5-DC)

Linearized (web-optimized) PDF for byteserving over the Web

High-volume output and arbitrary PDF file size (beyond 10 GB)

I1SO 32000-1: standardized version of PDF 1.7

1SO 32000-2 (draft): PDF 2.0

1SO 15930: PDF/X-1a/3/4/5 for the graphic arts industry

1SO 19 005-1/2/3: PDF/A-1/2/3 for archiving

1SO 16612-2: PDF/VT-1/2 for variable and transactional printing

1SO 14289-1: PDF/UA-1 for universal accessibility

TrueType (TTF and TTC) and PostScript Type 1 fonts

OpenType fonts with PostScript or TrueType outlines (TTF, OTF)

WOFF fonts (Web Open Font Format), a W3C-specified container format for fonts on the Web
CEF fonts (Compact Embedded Font), a variant of OpenType used for embedding fonts in SVG
SVG fonts, i.e. fonts which use the SVG format for describing glyph outlines

Support for dozens of OpenType layout features for Western and CIK text output, e.g. ligatures,
small caps, old-style numerals, swash characters, simplified/traditional forms, vertical alternates

Directly use fonts which are installed on Windows or OS X/macOS (»host fonts«)

Font embedding for all font types; subsetting for TrueType, OpenType, and Type 3 fonts
User-defined (Type 3) fonts for bitmap fonts or custom logos

EUDC and SING fonts (glyphlets) for CIK Gaiji characters

Fallback fonts (pull missing glyphs from an auxiliary font)

Text output in different fonts; underlined, overlined, and strikeout text

Glyphs in a font can be addressed by numerical value, Unicode value, or glyph name
Kerning for improved character spacing

Artificial bold, italic, and shadow text

Create text on a path

Configurable replacement of missing glyphs

Create Tagged PDF for accessibility, page reflow, and improved content repurposing
Simplified tagging by directly supplying tagging information to all content placement functions
Automatic table and artifact tagging

PDF/UA-1 for universal accessibility, WCAG 2.0 (Web Content Accessibility Guidelines)
Additional structure element types and attributes

Unicode strings for page content, interactive elements, and file names; UTF-8, UTF-16, and UTF-32
formats; support for all Unicode normalization forms

CIK fonts and CMaps for Chinese, Japanese, and Korean text

Support for a variety of 8-bit and legacy multi-byte CIK encodings (e.g. Shift-JIS; Bigs)
Ideographic variation sequences (IVS) for CIK variant glyphs

Vertical writing mode for Chinese, Japanese, and Korean text

Character shaping for complex scripts, e.g. Arabic, Thai, Devanagari

Bidirectional text formatting for right-to-left scripts, e.g. Arabic and Hebrew

22 Chapter 1: Introduction

Table 1.1 Feature list for PDFlib

topic
SVG vector graphics

Images

Color

Color management

Archiving

Graphic arts

Variable Document
Printing (VDP)

Textflow
Formatting

Table formatting

Vector graphics

Layers

features

Import vector graphics in SVG format; ICC profiles, CMYK and spot colors in SVG'
Embed BMP, GIF, PNG, TIFF, JBIG2, JPEG, JPEG 2000, and CCITT raster images
Query image information (pixel size, resolution, ICC profile, clipping path, etc.)
Interpret clipping paths in TIFF and JPEG images

Interpret alpha channel (transparency) in TIFF and PNG images

Image masks (transparent images with a color applied), colorize images with a spot or DeviceN'
color

Grayscale, RGB (numerical, hexadecimal strings, HTML color names), CMYK, CIE L*a*b* color
Integrated support for PANTONE® (incl. PANTONE+) and HKS® colors

DeviceN (n-colorant) color space based on process or spot colors’

User-defined spot colors

Color shadings between an arbitrary number of process colors or spot colors’

ICC-based color with ICC profiles; support for ICC 4 profiles

Rendering intent for text, graphics, and raster images

ICC profiles as output intent for PDF/A and PDF/X; multi-colorant (xCLR) profiles for PDF/X-5n’
PDF/A-1a/1b, PDF/A-2a/b/u and PDF/A-3a/b/u

XMP extension schemas for PDF/A

PDF/X-1a, PDF/X-3, PDF/X-4, PDF/X-4p, PDF/X-5p, PDF/X-5pg, PDF/X-5n"

Embedded or externally referenced output intent ICC profile

External graphical content (referenced pages) for PDF/X-5p and PDF/X-5pg

Settings for overprint, text knockout etc.

PDF/VT-1, PDF/VT-2, and PDF/VT-2s for variable and transactional printing

Format text into one or more rectangular or arbitrarily shaped areas with hyphenation (user-sup-
plied hyphenation points required), font and color changes, justification methods, tabs, leaders,
control commands

Advanced line-breaking with language-specific processing
Flexible image placement and formatting
Wrap text around images or image clipping paths

Table formatter places rows and columns, and automatically calculates their sizes according to a
variety of user preferences. Tables can be split across multiple pages.

Table cells can hold single- or multi-line text, images, vector graphics, PDF pages, path objects, an-
notations, and form fields

Table cells can be formatted with ruling and shading options

Flexible stamping function

Matchbox concept for referencing the coordinates of placed images or other objects

Common vector graphics primitives: lines, curves, arcs, ellipses, rectangles, etc.

Smooth shadings (color blends) between multiple process or spot colors’, pattern fills and strokes
Transparency (opacity) and blend modes

Reusable path objects and clipping paths imported from images

Optional page content which can selectively be displayed

Annotations and form fields can be placed on layers

1.5 Features in PDFlib 23

Table 1.1 Feature list for PDFlib

topic
Security

Interactive elements

Multimedia
Georeferenced PDF

Metadata

Programming

1. New in PDFlib 9.1

features

Encrypt PDF document or attachments with 128/256-bit AES or RC4 128-bit encryption

Unicode passwords

Document permission settings (e.g. printing or copying not allowed)

Create form fields with all field options and JavaScript

Create barcode form fields

Create actions for bookmarks, annotations, page open/close and other events

Create bookmarks with a variety of options and controls

Page transition effects, such as shades and mosaic

Create all PDF annotation types, such as PDF links, launch links (other document types), Web links
Named destinations for links, bookmarks, and document open action

Create page labels (symbolic names for pages)

Embed 3D animations in PDF

Embed Sound, Movie and 3D content in PDF and control it with JavaScript

Create PDF with geospatial reference information

Document information: common fields (Title, Subject, Author, Keywords) and user-defined fields
Create XMP metadata from document info fields or from client-supplied XMP streams

Process XMP image metadata in TIFF, JPEG, JPEG 2000 images and SVG graphics

Language bindings for Cobol, COM, C, C++, Objective-C, Java, .NET, Perl, PHP, Python, REALbasic,
RPG, Ruby

Virtual file system for supplying data in memory, e.g., images from a database

Generate PDF documents on disk file or directly in memory (for Web servers)

24 Chapter1: Introduction

1.6 Additional Features in PDFlib+PDI

Table 1.2 lists features in PDFlib+PDI and PPS in addition to the basic PDF generation fea-
tures in Table 1.1.

Table 1.2 Additional features in PDFlib+PDI

topic
PDF input (PDI)

pCOS interface

features

Import pages from existing PDF documents

Import all PDF versions up to PDF 1.7 extension level 8 (Acrobat X/XI/DC) and PDF 2.0
Import documents which are encrypted with any of PDF’s standard encryption algorithms
Query information about imported pages

Clone page geometry of imported pages (e.g. BleedBox, TrimBox, CropBox)

Delete redundant objects (e.g. identical fonts) across multiple imported PDF documents
Repair malformed input PDF documents

Copy PDF/A or PDF/X output intent from imported PDF documents

Import Tagged PDF documents including structure hierarchy

Import layer definitions (optional content)

pCOS interface for querying details about imported PDF documents

1.6 Additional Features in PDFlib+PDI 25

1.7 Additional Features in PPS

Table 1.3 lists features which are only available in the PDFlib Personalization Server (PPS)
(in addition to the basic PDF generation features in Table 1.1 and the PDF import fea-
tures in Table 1.2).

Table 1.3 Additional features in the PDFlib Personalization Server (PPS)

topic
Variable Document
Printing (VDP)

PDFlib Block Plugin

1. New in Block Plugin 5.10

features

PDF personalization with PDFlib Blocks for text, image, PDF data or SVG vector graphics

Create PDFlib Blocks programmatically with PPS
Copy PDFlib Blocks from imported documents

PDFlib Block plugin for creating PDFlib Blocks interactively in Acrobat on Windows and OS X/
macOS

Preview PPS Block filling in Acrobat

Copy Blocks to Preview file

Snap-to-grid for interactively creating or editing Blocks in Acrobat

Clone PDF/X or PDF/A properties of the Block container

Convert PDF form fields to PDFlib Blocks for automated filling

Textflow Blocks can be linked so that one Block holds the overflow text of a previous Block
PANTONE® and HKS® spot color names integrated in the Block plugin

Support for Retina displays on OS X/macOS’

26 Chapter 1: Introduction

1.8 Availability of Features in different Products

Table 1.4 details the availability of features in different products with the PDFlib family.

Table 1.4 Availability of features in different products

g

-+

2 =2

i . T =

feature API functions and options Q 2

basic PDF generation all except those listed below X X

linearized (Web-optimized) PDF linearize option in PDF begin_document() X X

optimize PDF (only relevant for inefficient — optimize option in PDF end_document() X X
client code and non-optimized imported

PDF documents)

Referenced PDF, PDF/X-5g and PDF/X-5spg ~ reference option in PDF begin_template_ext(), X' X
PDF open_pdi_page(), and PDF load_graphics()

Parsing PDF documents for Portfolio cre- password option in PDF_add_portfolio_file() X' X
ation
PDF import (PDI) all PDI functions = X

Query information from PDF with pCOS all pCOS functions -
Fill Blocks with variable data PDF fill_*block() - -

Create Blocks programmatically PDF_poca_new(): option usage=blocks - -
PDF _begin/end_page_ext(): option blocks

Copy Blocks to generated output PDF_process_pdi(): option action=copyblock or ~ — =
action=copyallblocks

interactively create PDFlib Blocks for use PDFlib Block Plugin for Acrobat - -
with PPS

1. Not available in PDFlib source code packages since PDI is required internally for this feature

1.8 Availability of Features in different Products

X X< X< pps

< X X X

.27

2 PDFlib Language Bindings

Note It is strongly recommended to take a look at the starter examples which are contained in all
PDFlib packages. They provide a convenient starting point for your own application develop-
ment, and cover many important aspects of PDFlib programming.

2.1 C Binding

PDFlib is written in C with some C++ modules. In order to use the PDFlib C binding, you
can use a static or shared library (DLL on Windows and MVS), and you need the central
PDFlib include file pdflib.h for inclusion in your PDFlib client source modules. Alterna-
tively, pdflibdl.h can be used for dynamically loading the PDFlib DLL at runtime (see next
section for details).

Note Applications which use the PDFlib binding for C must be linked with a C++ linker since PDFlib
includes some parts which are implemented in C++. Using a C linker may result in unresolved
externals unless the application is explicitly linked against the required C++ support libraries.

Data types. Parameters must be passed to the PDFlib API according to the data types
listed in Table 2.1.

Table 2.1 Data types in the C binding
API data type data types in the C binding
string data type const char * (Clanguage NULL string values and empty strings are considered equivalent)

binary data type const char *

Error handling in C. PDFlib supports structured exception handling with try/catch
clauses. This allows C and C++ clients to catch exceptions which are thrown by PDFlib,
and react on the exception in an adequate way. In the catch clause the client will have
access to a string describing the exact nature of the problem, a unique exception num-
ber, and the name of the PDFlib API function which threw the exception. The general
structure of a PDFlib C client program with exception handling looks as follows:

PDF_TRY(p)

...some PDFlib instructions...

}
PDF_CATCH(p)

printf("PDFlib exception occurred in hello sample:\n");
printf("[%d] %s: %s\n",

PDF_get errnum(p), PDF_get apiname(p), PDF_get errmsg(p));
PDF_delete(p);
return(2);

}

PDF_delete(p);

2.1 CBinding 29

Note

30

PDF_TRY/PDF_CATCH are implemented as tricky preprocessor macros. Accidentally omit-
ting one of these will result in compiler error messages which may be difficult to com-
prehend. Make sure to use the macros exactly as shown above, with no additional code
between the TRY and CATCH clauses (except PDF_CATCH()).

An important task of the catch clause is to clean up PDFlib internals using PDF _
delete() and the pointer to the PDFlib object. PDF_delete() will also close the output file if
necessary. After an exception the PDF document cannot be used, and will be left in an
incomplete and inconsistent state. Obviously, the appropriate action when an excep-
tion occurs is application-specific.

For C and C++ clients which do not catch exceptions, the default action upon excep-
tions is to issue an appropriate message on the standard error channel and exit. The PDF
output file is left in an incomplete state! Since this is not adequate for a library routine,
for serious PDFlib projects it is strongly advised to leverage PDFlib’s exception handling
facilities. A user-defined catch clause may, for example, present the error message in a
GUI dialog box, and take other measures instead of aborting.

Volatile variables. Special care must be taken regarding variables that are used in both
the PDF_TRY() and the PDF_CATCH() blocks. Since the compiler doesn’t know about the
control transfer from one block to the other, it might produce inappropriate code (e.g.,
register variable optimizations) in this situation. Fortunately, there is a simple rule to
avoid these problems:

Variables used in both the PDF TRY() and PDF_CATCH() blocks should be declared volatile.
Using the volatile keyword signals to the compiler that it must not apply (potentially

dangerous) optimizations to the variable.

Nesting try/catch blocks and rethrowing exceptions. PDF_TRY() blocks may be nested
to an arbitrary depth. In the case of nested error handling, the inner catch block can acti-
vate the outer catch block by re-throwing the exception:

PDF_TRY(p) /* outer try block */
VALY
PDF_TRY(p) /* inner try block */
/¥ 0¥/
}
PDF_CATCH(p) /* inner catch block */

/* error cleanup */
PDF_RETHROW(p);

}
VA
}
PDF_CATCH(p) /* outer catch block */
/* more error cleanup */
PDF_delete(p);
}

The PDF_RETHROW() invocation in the inner error handler will transfer program execu-
tion to the first statement of the outer PDF_CATCH() block immediately.

Chapter 2: PDFlib Language Bindings

Prematurely exiting a try block. If a PDF_TRY() block is left — e.g., by means of a return
statement —, thus bypassing the invocation of the corresponding PDF_CATCH() macro,
the PDF_EXIT_TRY() macro must be used to inform the exception machinery. No other li-
brary function must be called between this macro and the end of the try block:

PDF_TRY(p)

{
/¥ K -

if (error_condition)
{
PDF_EXIT_TRY(p);
return -1; R

}
}
PDF_CATCH(p)

/* error cleanup */ -
PDF_RETHROW(p);
}

Using PDFlib as a DLL loaded at runtime. While most clients will use PDFlib as a stati-
cally bound library or a dynamic library which is bound at link time, you can also load —
the PDFlib DLL at runtime and dynamically fetch pointers to all API functions. This is es-
pecially useful to load the PDFlib DLL only on demand, and on MVS where the library is —
customarily loaded as a DLL at runtime without explicitly linking against PDFlib. PDFlib
supports a special mechanism to facilitate this dynamic usage. It works according to the S
following rules:
» Include pdflibdl.h instead of pdflib.h. -
» Use PDF_new _dI() and PDF_delete_dI() instead of PDF_new() and PDF_delete().
» Use PDF_TRY DL()and PDF_CATCH_DL()instead of PDF_TRY() and PDF_CATCH().
» Use function pointers for all other PDFlib calls.
» PDF get_opaque() must not be used.
» Compile the auxiliary module pdflibd|.c and link your application against it.

In order to create a shared library from the static library on Linux use the following —
commands:

mkdir tmp

cd tmp

ar x ../libpdf.a

g++ -shared -o libpdf.so *

This results in a shared library which no longer requires the application to be linked
against the C++ runtime library.

Note Loading the PDFlib DLL at runtime is supported on selected platforms only.

2.1 CBinding 31

2.2
Note

C++ Binding

For .NET applications written in C++ we recommend to access the PDFlib .NET DLL directly in-
stead of via the C++ binding (except for cross-platform applications which should use the C++
binding). The PDFlib distribution contains C++ sample code for use with .NET CLI (Common
Language Infrastructure) which demonstrates this combination.

In addition to the pdfiib.h C header file, an object-oriented wrapper for C++ is supplied
for PDFIib clients. It requires the pdfiib.hpp header file, which in turn includes pdfiib.h.
Since pdflib.hpp contains a template-based implementation no corresponding .cpp mod-
ule is required. Using the C++ object wrapper replaces the PDF_ prefix in all PDFlib func-
tion names with a more object-oriented approach.

Data types. Parameters must be passed to the PDFlib API according to the data types
listed in Table 2.2.

Table 2.2 Data types in the C++ binding

API data type data types in the C++ binding

string data type std: :wstring by default, but can be customized (see below)

binary data type const char *

Note

32

String handling in C++. PDFlib 8 introduced a new Unicode-capable C++ binding. The
new template-based approach supports the following usage patterns with respect to
string handling:

» Strings of the C++ standard library type std::wstring are used as basic string type.
They can hold Unicode characters encoded as UTF-16 or UTF-32. This is the default be-
havior since PDFlib 8 and the recommended approach for new applications unless
custom data types (see next item) offer a significant advantage over wstrings.

» Custom (user-defined) data types for string handling can be used as long as the cus-
tom data type is an instantiation of the basic_string class template and can be con-
verted to and from Unicode via user-supplied converter methods. As an example a
custom string type implementation for UTF-8 strings is included in the PDFlib distri-
bution (pstring_utf8.cpp).

» Plain C++ strings can be used for compatibility with existing C++ applications which
have been developed against PDFlib 7 or earlier versions. This compatibility variant
is only recommended for existing applications, but not for new projects (see »Full
source code compatibility with legacy applications«, page 33, regarding source code
compatibility).

The new interface assumes that all strings passed to and received from PDFlib methods
are native wstrings. Depending on the size of the wchar_t data type, wstrings are assumed
to contain Unicode strings encoded as UTF-16 (2-byte characters) or UTF-32 (4-byte char-
acters). Literal strings in the source code must be prefixed with L to designate wide
strings. Unicode characters in literals can be created with the \u and \U syntax. Al-
though this syntax is part of standard ISO C++, some compilers don’t support it. In this
case literal Unicode characters must be created with hex characters.

On EBCDIC-based systems the formatting of option list strings for the wstring-based interface
requires additional conversions to avoid a mixture of EBCDIC and UTF-16 wstrings in option

Chapter 2: PDFlib Language Bindings

lists. Convenience code for this conversion and instructions are available in the auxiliary mod-
ule utfié6num_ebcdic.hpp.

Adjusting applications to the new C++ binding. Existing C++ applications which have
been developed against PDFlib 7 or earlier versions can be adjusted as follows:
» Since the PDFlib C++ class now lives in the pdflib namespace the class name must be
qualified. In order to avoid the pdflib::PDFlib construct client applications should add
the following before using PDFlib methods:

using namespace pdflib;

v

Switch the application’s string handling to wstrings. This mainly affects data from
external sources. However, string literals in the source code including option lists
must also be adjusted by prepending the L prefix, e.g.

const wstring imagefile = L"nesrin.jpg";
image = p.load image(L"auto", imagefile, L"");

v

Suitable wstring-capable methods (wcerr etc.) must be used to process PDFlib error
messages and exception strings (get_errmsg() method in the PDFlib and PDFlib-
Exception classes).

Remove PDFlib method calls which are required only for non-Unicode-capable lan-
guages, especially the following:

v

p.set_parameter("hypertextencoding”, "host");

» The pdflib.cpop module is no longer required for the C++ binding. Although the PDFlib
distribution contains a dummy implementation of this module, it should be re-
moved from the build process for PDFlib applications.

Full source code compatibility with legacy applications. The new C++ binding has
been designed with application-level source code compatibility mind, but client appli-
cations must be recompiled. The following aids are available to achieve full source code
compatibility for legacy applications devel