
ABC

pCOS Command-Line Tool
pCOS Interface 12

PDF Information Retrieval Tool

Copyright © 2005–2020 PDFlib GmbH. All rights reserved.

PDFlib GmbH
Franziska-Bilek-Weg 9, 80339 München, Germany
www.pdflib.com
phone +49 • 89 • 452 33 84-0

If you have questions check the PDFlib mailing list at
groups.yahoo.com/neo/groups/pdflib/info

Licensing contact: sales@pdflib.com
Support for commercial PDFlib licensees: support@pdflib.com (please include your license number)

This publication and the information herein is furnished as is, is subject to change without notice, and
should not be construed as a commitment by PDFlib GmbH. PDFlib GmbH assumes no responsibility or lia-
bility for any errors or inaccuracies, makes no warranty of any kind (express, implied or statutory) with re-
spect to this publication, and expressly disclaims any and all warranties of merchantability, fitness for par-
ticular purposes and noninfringement of third party rights.

PDFlib and the PDFlib logo are registered trademarks of PDFlib GmbH. PDFlib licensees are granted the
right to use the PDFlib name and logo in their product documentation. However, this is not required.

PDFlib pCOS contains modified parts of the following third-party software:
ICClib, Copyright © 1997-2002 Graeme W. Gill
Zlib compression library, Copyright © 1995-2017 Jean-loup Gailly and Mark Adler
Cryptographic software written by Eric Young, Copyright © 1995-1998 Eric Young (eay@cryptsoft.com)
Independent JPEG Group’s JPEG software, Copyright © 1991-2017, Thomas G. Lane, Guido Vollbeding
OpenSSL Cryptographic Library, Copyright © 1998-2018 The OpenSSL Project (www.openssl.org)
Expat XML parser, Copyright © 2001-2017 Expat maintainers
ICU International Components for Unicode, Copyright © 1995-2012 International Business Machines Corpo-
ration and others
OpenJPEG library, Copyright © 2012, CS Systemes d’Information, France

pCOS contains the RSA Security, Inc. MD5 message digest algorithm.

http://www.pdflib.com
https://groups.yahoo.com/neo/groups/pdflib/info
mailto:sales@pdflib.com
mailto:support@pdflib.com

Contents 3

Contents
1 pCOS Command-Line Examples 5

1.1 For Starters: simple Mode 5
1.2 Extracting Data from PDF 7
1.3 For advanced Applications: extended Mode 8
1.4 For Experts: raw pCOS Paths 11

2 pCOS Command-Line Reference 13

2.1 Option Processing and Exit Codes 13
2.2 Option Handling 15
2.3 Input Options 16
2.4 Options for Retrieving PDF Elements 17
2.5 Advanced Retrieval Options 19
2.6 Output Options 21
2.7 Unicode Output and Binary Data 23

A Revision History 25

1.1 For Starters: simple Mode 5

1 pCOS Command-Line Examples
The pCOS command-line tool allows you to query information from one or more PDF
documents without the need for programming. In addition, it can be used as a frontend
to the pCOS interface. The pCOS command-line tool is built on top of the pCOS inter-
face. In this chapter we present sample calls of the pCOS tool. We start with simple ex-
amples and proceed to more complex applications. A detailed list of all command-line
options can be found in Chapter 2, »pCOS Command-Line Reference«, page 13.

The pCOS programming interface can be used to integrate pCOS queries in applica-
tions written in a variety of programming languages. The pCOS interface uses pCOS
paths as its workhorse; these are discussed in a separate manual, the pCOS Path Refer-
ence.

Applying the license key. The pCOS command-line tool is activated via a valid PLOP or
PLOP DS license key. Please refer to the PLOP manual which discusses several methods
for supplying the license key in a license file or the Windows registry. If no valid PLOP or
PLOP DS license key is found, the pCOS command-line tool will operate in evaluation
mode.

The default file search paths described in the PLOP manual also apply to the pCOS
command-line tool.

1.1 For Starters: simple Mode
The first command does not use any options, which means that general information
plus all document info entries are listed:

pcos file.pdf

The following command lists all fonts used in the document along with their type and
embedding status:

pcos --font file.pdf

The following command creates a hierarchical list of all form fields in the document
along with their field type and the field value:

pcos --field file.pdf

The following command creates a hierarchical list of all bookmarks in the document:

pcos --bookmark file.pdf

The following command lists the width and height of all pages as well as relevant Box
entries (e.g. CropBox) and rotation:

pcos --pagesize file.pdf

The following command emits information about the PDF/X and PDF/A status of the
document:

pcos --pdfx --pdfa file.pdf

6 Chapter 1: pCOS Command-Line Examples

The following command emits information about the PDF/UA status of the document:

pcos --pcospath pdfua file.pdf

The following command lists all web links on the first two pages:

pcos --firstpage 1 --lastpage 2 --weblink file.pdf

The following command lists all digital signature fields along with relevant details:

pcos --signature file.pdf

Understanding pCOS paths in the generated output. In many cases pCOS creates out-
put which not only includes text and numbers found in the PDF document, but also
emits pCOS paths which designate an object within the PDF object hierarchy. While the
pCOS path syntax is discussed in detail in the pCOS Path Reference, here are a few im-
portant notes based on sample output.

The --weblink option creates output similar to the following line. The first column
contains the pCOS path, while the second column contains the URL. It is important to
note that in pCOS syntax page numbering starts at 0, i.e. the first page is designated as
pages[0]. Similarly, annotations are numbered starting from 0:

pages[0]/annots[0]/A/URI: http://www.pdflib.com

1.2 Extracting Data from PDF 7

1.2 Extracting Data from PDF
Note Our product TET (Text Extraction Toolkit) can be used to extract text and image contents from

PDF pages. Text and images can not be extracted with pCOS.

The pCOS command-line tool can be used to extract various data items from PDF docu-
ments. The extracted data items are written to disk files with unique names (based on
the name of the input PDF, the data type, and increasing numbers). This section lists
several examples for PDF data extraction; see Section 2.4, »Options for Retrieving PDF
Elements«, page 17, for more detailed option descriptions.

The following command extracts all file attachments (on page level) in the document:

pcos --extract attachment file.pdf

The following command extracts all file attachments (on document level) in the docu-
ment:

pcos --extract embeddedfile file.pdf

The following command extracts all JavaScripts in the document. Note that a particular
script can be used in more than one places (e.g. validation scripts for form fields). In this
case the script is extracted more than once:

pcos --extract javascript file.pdf

The following command extracts the output intent ICC profile of a PDF/X or PDF/A file:

pcos --extract outputintent file.pdf

The following command extracts document-level XMP metadata to a file:

pcos --extract metadata file.pdf

8 Chapter 1: pCOS Command-Line Examples

1.3 For advanced Applications: extended Mode
In this section we will present commands which use the extended output mode of pCOS
and options for advanced formatting control.

Text output. The following command lists all annotations (links and other types) with
their Subtype, destination within the document, the target URL, and the link rectangle
coordinates on the page. Double quotes must surround the list of annotation keys since
they must be supplied as a single argument to the program:

pcos --extended annotation "Subtype destpage A/URI Rect" file.pdf

If you have a file with comments from a review process you can list the text in the com-
ments along with the reviewers’ name with the following command. The PP variable at
the start of the formatting string will create the corresponding pCOS path which in-
cludes the page number and the annotation number (both starting at 0). The KEY vari-
able denotes the key (name) of a dictionary entry, which usually is a PDF name object;
the VAL variable refers to the corresponding value which may have any type. The paren-
thesis around the key/value pair mean that this expression is repeated for all entries in
the annotation dictionary:

pcos --format "PP (KEY=VAL)\n" --extended annotation "Subtype Contents T" file.pdf

The following command lists all file attachments (embedded files):

pcos --format "(KEY=VAL)\n" --extended attach "Subtype Contents T Name" file.pdf

The following command lists the file name and Author for multiple files. The default
headline is disabled since we included the name of the input file (variable IF) in the for-
mat string:

pcos --headline "" --format "IF:(VAL\n)" --extended docinfo Author *.pdf

The following command lists important properties of PDFlib blocks. Double quotes are
used to avoid problems with space characters in block names:

pcos --bracket dquot --format "(KEY=VAL\n)\n" --extended block "Name Subtype Description"
file.pdf

The following command creates a table of contents from the bookmark titles and corre-
sponding page numbers; this only works if the bookmarks actually point to a page:

pcos --indent 4 --format "(VAL)\n" --extended bookmark "Title destpage" file.pdf

The following command lists the names of all named destinations along with the corre-
sponding target page. The pCOS path (variable PP) contains the destination name:

pcos --format "PP: page VAL\n" --extended destination destpage file.pdf

1.3 For advanced Applications: extended Mode 9

Tabular output for use in spreadsheet applications. Using the formatting options of
pCOS it is easy to create output which can be processed in applications such as Micro-
soft Excel. The following commands create comma-separated lists of various pieces of
information retrieved from an arbitrary number of PDF documents. The required com-
ma and newline characters are created using suitable format strings. The output can be
imported in Microsoft Excel and similar spreadsheet applications which support the
CSV (comma-separated values) format.

The following command creates a table with the pCOS path (variable PP) containing
the page number (starting at 0) in the first column, and the width and height of each
page in subsequent columns:

pcos --outfile table.csv --format "PP,(VAL,)\n" --extended pagesize "width height"
file.pdf

The following command extends the previous example for use with many files; it cre-
ates a table with the file names of all input files (variable IF) along with the pCOS path
(variable PP) and the size of all pages. It suppresses the default headline since the input
file name is already printed in the first column of each output line:

pcos --outfile table.csv --headline "" --format "IF,PP,(VAL,)\n"
--extended pagesize "width height" file.pdf

The following command creates a table of PDFlib block names, types, and position:

pcos --outfile table.csv --bracket dquot --format "(VAL,)\n"
--extended block "Name Subtype fontname Rect[0] Rect[1] Rect[2] Rect[3]" file.pdf

The following command creates a table containing the file names (created by the IF vari-
able) and various document info entries:

pcos --outfile table.csv --replace missing "" --bracket dquot --headline ""
--format "IF,(VAL,)\n" --extended docinfo "Title Author Creator Subject" *.pdf

The following command creates a table with type, name, and value of form fields. In or-
der to avoid unwanted whitespace we set the indentation to 0. A headline with the
names of the extracted field keys is placed at the top. Missing entries are designate with
a custom string:

pcos --outfile table.csv --indent 0 --headline "FT,fullname,V\n"
--replace missing "(unavailable)" --format "(VAL,)\n"
--extended field "FT fullname V" file.pdf

The following command creates a table of file names along with all fonts and their em-
bedding status. We place the input file name (variable IF) in the first column of each
line, and disable the default heading (which would place the input file name on a sepa-
rate line) by specifying an empty headline:

pcos --outfile table.csv --headline "" --bracket dquot --format "IF,(VAL,)\n"
--extended font "name type embedded" file.pdf

10 Chapter 1: pCOS Command-Line Examples

The following command creates a table of all Web links (URL and position). The pCOS
path in the first column (variable PP) contains the page and annotation numbers (0-
based):

pcos --outfile table.csv --format "PP,(VAL,)\n"
--extended weblink "A/URI Rect[0] Rect[1] Rect[2] Rect[3]" file.pdf

Querying all keys in a dictionary object. Using the »xx« special key you can list all keys
which are contained in a dictionary without having to know in advance the name of the
keys.

The following command lists all entries in the PDFlib block dictionaries (generally
this is all required entries and those with a non-default value, since the PDFlib Block
plugin omits properties which have their default value):

pcos --format "(KEY=VAL\n)\n" --extended block xx file.pdf

The following command lists all entries in all font dictionaries:

pcos --bracket round --format "(KEY=VAL\n)\n" --extended font xx file.pdf

1.4 For Experts: raw pCOS Paths 11

1.4 For Experts: raw pCOS Paths
The following command prints the total number of fonts in the document; using the
pCOS paths length:bookmarks, length:pages, or length:fields you can check the number of
bookmarks, pages, or form fields, respectively:

pcos --pcospath "length:fonts" file.pdf

The following command extracts an embedded Distiller job options file:

pcos --outfile embedded.joboptions --pcospath "names/EmbeddedFiles[0]/EF/F" file.pdf

The following command dumps information about the version of PDFlib blocks on the
first page, and the version of the Block plugin used to create the blocks:

pcos --format "PP=VAL\n" --pcospath "pages[0]/PieceInfo/PDFlib/Private/Version"
--pcospath "pages[0]/PieceInfo/PDFlib/Private/PluginVersion" file.pdf

The following command prints the number of annotations on the first page:

pcos --pcospath "length:pages[0]/Annots" file.pdf

The following command extracts the first file attachment on the first page:

pcos --outfile attachment.txt --pcospath "pages[0]/Annots[0]/FS/EF" file.pdf

The following command extracts the CMS object with cryptographic details in DER for-
mat from a signed document:

pcos --binary --pcospath signaturefields[0]/V/Contents[0]/V/Contents
--outfile signature.der input.pdf

The extracted DER-encoded CMS object can further be analyzed, e.g. with the OpenSSL
command-line tool:
openssl cms -in signature.der -inform DER -cmsout -print

2.1 Option Processing and Exit Codes 13

2 pCOS Command-Line Reference

2.1 Option Processing and Exit Codes
The pCOS program can be controlled via a number of command-line options. It is called
as follows for one or more input PDF files:

pcos [<options>] <filename>...

Constructing pCOS command lines. The following rules must be observed for con-
structing pCOS command lines:

> Input files are searched in all directories specified as searchpath.
> Short forms are available for some options, and can be mixed with long options.
> Long options can be abbreviated provided the abbreviation is unique (e.g. --last in-

stead of --lastpage)
> Depending on encryption status of the input file, a user or master password may be

required. This can be supplied with the --password option. pCOS will check whether
this password is sufficient for the requested operation.

pCOS checks the full command line before processing any file. If an error is encountered
in the options anywhere on the command line, no files are processed at all.

File names. File names which contain blank characters require some special handling
when used with command-line tools like pCOS. In order to process a file name with
blank characters you should enclose the complete file name with double quote " char-
acters. Wildcards can be used according to standard practice. For example, *.pdf denotes
all files in a given directory which have a .pdf file name suffix. Note that on some sys-
tems case is significant, while on others it isn’t (i.e., *.pdf may be different from *.PDF).
Also note that on Windows systems wildcards do not work for file names containing
blank characters. Wildcards are evaluated in the current directory, not any searchpath
directory.

On Windows all file name options accept Unicode strings, e.g. as a result of dragging
files from the Explorer to a command prompt window.

Response files. In addition to options supplied directly on the command-line, options
can also be supplied in a response file. The contents of a response file will be inserted in
the command-line at the location where the @filename option was found.

A response file is a simple text file with options and parameters. It must adhere to
the following syntax rules:

> Option values must be separated with whitespace, i.e. space, linefeed, return, or tab.
> Values which contain whitespace must be enclosed with double quotation marks: "
> Double quotation marks at the beginning and end of a value will be omitted.
> A double quotation mark must be masked with a backslash to use it literally: \"
> A backslash character must be masked with another backslash to use it literally: \\

Response files can be nested, i.e. the @filename syntax can be used in another response
file.

14 Chapter 2: pCOS Command-Line Reference

Exit codes. The pCOS command-line tool returns with an exit code which can be used
to check whether or not the requested operations could be successfully carried out:

> Exit code 0: all command-line options could be successfully and fully processed.
> Exit code 1 (parser warning): the parser detected a problem in the command-line op-

tions, but continued after issuing a warning (e.g. wrong verbosity number)
> Exit code 2 (parser error): the parser detected a fatal problem in the command-line

options, and stopped.
> Exit code 3: a warning was issued while processing the input, but processing contin-

ues.
> Exit code 4: an error was found while processing the input, processing stopped.

Encrypted PDF. All objects can be queried if the proper master password has been sup-
plied with the --password option. If no password or only the user password has been sup-
plied some objects are available, while others are not. Refer to the pCOS Path Reference
for details on PDF security and pCOS modes.

2.2 Option Handling 15

2.2 Option Handling
Table 2.2 lists options related to general option handling.

Table 2.1 pCOS command-line options related to option handling

option parameters function

-- End the list of options; this is useful in case file names start with a »-«
character.

@filename1

1. This option can be supplied more than once.

Specify a response file with options; for a syntax description see »Response
files«, page 13. Response files will only be recognized before the -- option
and before the first filename, and can not be used to replace the parame-
ter for another option.

16 Chapter 2: pCOS Command-Line Reference

2.3 Input Options
Table 2.2 lists options related to the input or general processing.

Table 2.2 pCOS command-line options related to input or general processing

option parameters function

--docopt <option list> Additional option list for PLOP_open_document()

--firstpage 1, 2, ..., last The number of the page where page-related processing will start. The key-
word last can be used to specify the last page. Default: 1

--lastpage 1, 2, ..., last The number of the page where page-related processing will finish. The
keyword last can be used to specify the last page. Default: last

--password, -p <password> User or master password for encrypted documents

--plopopt <option list> Additional option list for PLOP_set_option(). This can be used to pass the
license or licensefile options.

--pcosopt <option list> (Unsupported) Same as --plopopt

2.4 Options for Retrieving PDF Elements 17

2.4 Options for Retrieving PDF Elements
Table 2.3 lists options for simple output retrieval (there are no short option forms nor
parameters in this group). Multiple retrieval options can be provided in a single call. In
this case output will be created in the following order: first, the --general and --docinfo
options will be processed (if supplied), and then all other retrieval options in Table 2.3
and Table 2.4 in the order in which they have been specified on the command line. If no
retrieval option has been provided, the default --general --docinfo is used.

All options in Table 2.3 except --general require full pCOS mode, i.e. the master pass-
word must be provided for encrypted files.

Table 2.3 pCOS command-line options for simple output retrieval

option function

--annotation1 Contents and type of annotations. This option queries the keys Contents and Subtype in pages[...]/
annots for all pages, using the format PP/KEY: VAL\n.

--attachment1 Description and file name of file attachments on the pages (see also --embeddedfile). This option que-
ries the keys Contents, FS/F, and FS/UF in pages[...]/annots for all pages (if FS is present), using the
format PP/KEY: VAL\n.
The actual contents of a file attachment can be retrieved via --extract attachment.

--block1 Name and subtype of PDFlib Blocks for use with the PDFlib Personalization Server (PPS). This option que-
ries the keys Name and Subtype in pages[...]/PieceInfo/PDFlib/Private/Blocks for all pages, using
the format KEY: VAL\n.

--bookmark Names of bookmarks. This option queries the key Title in bookmarks[...], using the format VAL\n, and
bookmarks[...]/level for indentation.
The target page of a bookmark can be retrieved via bookmarks[...]/destpage.

--destination Names and destination pages of named destinations. This option queries all keys in names[...]/Dest
(i.e. all named destinations) and the value of the destpage subkey, using the format PP/KEY: VAL\n.

--docinfo Key and value of document info entries. This option queries all keys in /Info, using the format KEY:
VAL\n.

--embedded-
file

File name and description of named embedded files. This option queries document-level file attach-
ments, while --attachment will retrieve file attachments on the page level. This option queries the keys F,
UF, and Desc in names/EmbeddedFiles/*, using the format PP/KEY: VAL\n.
The actual contents of an embedded file can be retrieved via --extract embeddedfile.

--field Names, types, and values of form fields. This option queries the keys type, fullnameand value in
fields[...], using the format PP/KEY: VAL\n, and fields[...]/level for indentation.

--font Names, types, and embedding status of fonts. This option queries the keys name, type, and embedded in
fonts[...], using the format PP/KEY: VAL\n.

--general File name and size, PDF version, encryption status, master/user password, linearization status, PDF/X,
PDF/A, XFA, tagged status, signature details, Reader-enabled status, portfolio status, number of pages,
number of fonts (page and font count are only available in full pCOS mode), document info fields, pres-
ence of XMP metadata, and presence of encrypted attachments. This option queries various real and
pseudo objects.

18 Chapter 2: pCOS Command-Line Reference

--javascript JavaScript at various locations in the document. For each script its length (in Unicode characters) is print-
ed, as well as the total number of scripts found. Depending on the location of the JavaScript in the docu-
ment, additional information is printed:
Document open actions: JavaScript which will activated when the document is opened.
Bookmarks: JavaScript for bookmark activation.
Document-level JavaScript: additional information for the trigger event (didprint, didsave, willclose,
willprint, willsave)
Page-level JavaScript: additional information for the trigger event (open, close)
JavaScript for annotation activation. Additional information: page number, annotation type
Field-level JavaScript. Additional information: form field name, trigger (activate, keystroke, format,
validate, calculate, enter, exit, down, up, focus, blur)

--layer Names of all layers in the document. This may include unused layers and layers which are not visible in
Acrobat’s user interface (e.g. layers which do not require any interaction because they are controlled by
JavaScript). This option queries the key Name in /Root/OCProperties/OCGs, using the format VAL\n.

--layer-
default

Names of layers which are presented by default in Acrobat’s layer pane (not related to the visibility of
layer contents on the page). Only layers which are presented to the user is shown, using indentation to
visualize the layer hierarchy. Text labels for grouping (which do not directly resemble a layer) will also be
printed. Use --layer to catch all layers, regardless of their presence in the user interface. This option que-
ries the key Name in /Root/OCProperties/D/Order, using the format VAL\n.

--outputintent Properties of one or more output intent ICC profilesfor PDF/X and PDF/A. This option queries various keys
in the /Root/OutputIntents[...] dictionary, using the format PP/KEY: VAL\n.

--pagefield Names, types, and values of form fields listed by page. This option queries the keys exportvalue, full-
name, Rect, type and value in pages[]/fields[], using the format PP/KEY: VAL\n.

--pagesize1 Width, height, and various boxes describing the page dimensions. This option queries the keys width,
height, MediaBox, CropBox, and Rotate in pages[...] for all pages, using the format PP/KEY: VAL\n.

--pdfa PDF/A version and output intent name (no validation). This option queries the part, conformance, and
amd (amendment) keys in the pdfaid section of the document’s XMP metadata (/Root/Metadata) if
present. If the file conforms to any of the PDF/A-1 standards, the corresponding keys /Root/Output-
Intents[...]/OutputConditionIdentifier and /Root/OutputIntents[...]/Info are queried as well.

--pdfua PDF/UA version (no validation) This option queries the part key in the pdfuaid section of the document’s
XMP metadata (/Root/Metadata) if present.

--pdfvt (PDF/VT version (no validation) This option queries the part key in the pdfvt section of the document’s
XMP metadata (/Root/Metadata) if present.

--pdfx PDF/X version and output intent name (no validation). This option first queries the key /Info/GTS_
PDFXVersion. If the file conforms to any of the PDF/X standards, the corresponding keys /Root/Output-
Intents[...]/OutputConditionIdentifier and /Root/OutputIntents[...]/Info are queried as well.

--signature Signature information: name and visibility of all signature fields, signed/unsigned status, and signature
details for signed fields. This option queries the keys fullname, sigtype, visible, permissions, and
cades in fields[...]as well as the usagerights pseudo object.

--weblink1 Contents and URL of web links. This option queries the keys Contents and A/URI in pages[...]/annots
for all pages (if A/URI is present), using the format PP/KEY: VAL\n.

--xfa Checks whether the documents contains any XFA information (eXtensible Forms Architecture). This
option queries the key /Root/AcroForm/XFA.

1. This option is subject to the --firstpage and --lastpage options.

Table 2.3 pCOS command-line options for simple output retrieval

option function

2.5 Advanced Retrieval Options 19

2.5 Advanced Retrieval Options
Table 2.4 lists options for advanced output retrieval. If pCOS runs in minimum or re-
stricted mode, i.e. the master password has not been provided for an encrypted file, not
all objects may be available (see the pCOS Path Reference for details). If the path desig-
nates a simple object, its value is printed, dictionary objects are enumerated recursively
up to the level specified with --depth, and array objects are completely enumerated
recursively.

Table 2.4 pCOS command-line options for advanced output retrieval

option parameters function

--binary Retrieved string objects are treated as binary data, i.e. will not be subject to Unicode
and EBCDIC conversions. This option is useful for binary string data, e.g.
Contents of a signature dictionary; it is not required for stream data since these are
always treated in binary mode.

--extended1 <type> <keys> Extended object retrieval for one of the following types:
annotation, attachment, block, bookmark, destination, docinfo, embeddedfile,
field, font, layer, pagefield, pagesize, signature, weblink
<keys> contains a list of keys to be retrieved from the respective object(s). Use xx to
query all existing keys (excluding pseudo keys if they exist for an object, e.g. a font
dictionary, and some low-level bookkeeping keys for maintaining tree structures).
The list of keys must be provided as a single command-line argument (in some envi-
ronments this requires surrounding double quotes).

--extract1 <type> Extract the binary data associated with one of the following types and print general
information about the items):
attachment All file attachments on page level (takes into account the --firstpage

and --lastpage options)
embeddedfile

All file attachments on document level
font All embedded fonts2

javascript All JavaScripts for document open action, bookmarks, document-level
scripts, page-level scripts, annotation activation, and fields.

metadata XMP document metadata (without any format conversion)
outputintent

All output intent ICC profiles
signature All signature values, i.e. the Contents entry of signature field values. It

contains a PKCS#7/CMS object.
Each data item is written to a separate disk file. Starting at the directory specified
with the --targetdir option, a directory is created using the name of the input PDF
(without any .pdf or .PDF suffix, and with critical characters replaced with »_«).
Within this directory various subdirectories for the data items are created. The
--outfile option is ignored.
In addition to the generated data files a description of all extracted data items is cre-
ated on standard output.

20 Chapter 2: pCOS Command-Line Reference

--format
-f

<string> (Affects only --extended and --pcospath) Output format for recursion level 0. Ex-
pressions within (...) will iterate over all existing keys. Format examples can be found
in Table 2.3. The following placeholders can be used in addition to regular characters:
IF input file name
PP pCOS path of the object
KEY name of the object
VAL value of the object
\n carriage return plus linefeed on Windows; single linefeed on all other

systems
\r carriage return
\t horizontal tab
Default: PP/KEY: VAL\n for --extended, VAL\n for --pcospath (or VAL for binary da-
ta)

--pcospath1 <path>... pCOS path of an object that will be queried. Examples for object paths can be found
in Table 2.3, and a full description in the pCOS Path Reference.

1. This option can be supplied more than once.
2. This function can be used to retrieve embedded font data from a PDF. Users are reminded that fonts are subject to the respective font
vendor’s license agreement, and must not be reused without the explicit permission of the respective intellectual property owners.
Please contact your font vendor to discuss the relevant license agreement.

Table 2.4 pCOS command-line options for advanced output retrieval

option parameters function

2.6 Output Options 21

2.6 Output Options
Table 2.5 lists options for controlling details of the generated output.

Table 2.5 pCOS command-line options for controlling output details

option parameters function

--bracket
-b

<keyword> Bracketing of strings, arrays, names, dictionaries, and empty values (default: none):
none no brackets
angle < >
curly { }
round ()
squared []
dquot " "
squot ' '

--depth
-d

1, 2, ... Recursion depth for resolving dictionaries. For higher recursion levels the string sup-
plied with --replace dictionary is printed. Default: 2

--headline
-h

<string> Header line for each file. The following placeholders can be used in addition to regu-
lar characters (default: no header when a single file is processed, and \nIF:\n when
multiple files are processed):
IF input file name
OF output file name
\n carriage return plus linefeed on Windows; single linefeed on all other

systems
\r carriage return
\t horizontal tab

--help
-?

Display help with a summary of available options.

--indent 0, 1, 2, ... Indentation for hierarchical output of --bookmark, --field, and --layerdefault.
Default: 3 (use --indent 0 for creating tabular output)

--outfile
-o

<filename> Output file name (ignored for --extract). The following special names are recog-
nized (default: -):

- standard output
+ base name of the input file with .pdf replaced with .txt

--replace1

-r
<keyword> <string> Replacement strings. The following keywords are supported:

missing String for non-existing objects. Default: <not found>
dictionary String for unresolved dictionaries. Default: <dictionary>
control Replacement of control characters (U+0000-U+001F and U+007F-

U+009F). A C-style formatting expression (e.g. \%03o) is replaced with
the formatted value of the character. The replacement is performed in
textual and stream data. Default: no replacement

--separator
-s

<string> Separator string between keys and values of type dictionary for recursion levels 1 and
above. Default: =

--targetdir
-t

<dirname> Output directory name; the directory must exist. Default: .

--utf16
-u

(Ignored when writing to stdout) Convert the output to UTF-16 with BOM. Without
this option the text is output in UTF-8 format, and stream contents are output with-
out any modification.

22 Chapter 2: pCOS Command-Line Reference

--verbose
-v

0, 1, 2, 3 Verbosity level (default: 1):
0 no output at all
1 emit only warnings, errors, and banner
2 like 1, but also emit file names
3 detailed reporting

1. This option can be supplied more than once.

Table 2.5 pCOS command-line options for controlling output details

option parameters function

2.7 Unicode Output and Binary Data 23

2.7 Unicode Output and Binary Data
Conversion rules. Subject to the PDF objects retrieved, the output created by pCOS can
contain plain ASCII text (e.g. most font names), Unicode text (e.g. Japanese document
info entries, or binary data (e.g. ICC profiles). pCOS creates output according to the fol-
lowing rules:

> Name and string objects are output in UTF-8 without BOM. This means that ASCII
text will result in plain ASCII output, but Latin-1 special characters (e.g. umlauts or
accented characters) will result in two-byte UTF-8 sequences. Users must be prepared
for UTF-8 output, and must convert to other formats (e.g. WinAnsi) if required.
Lines are terminated with \r\n (carriage return plus linefeed) on Windows, and with
\n (single linefeed) on all other systems.

> If the --utf16 option has been supplied and the output channel is not stdout the com-
plete output is converted from UTF-8 to native UTF-16 with BOM (byte order mark).
This only makes sense if all output items are UTF-8 (without any binary stream ob-
jects). pCOS emits a warning at the end of the output for some critical combinations,
or if the output couldn’t be converted from UTF-8 to UTF-16 (the most likely reason
for this is that binary stream data was included in the output).

> Stream objects are output in binary format without any modification. This includes
XMP metadata streams, but these are usually stored in the PDF as UTF-8 anyway. Be
careful with the --format and --replace options since these may have undesired ef-
fects on binary data.

A Revision History 25

A Revision History

Revision history of this manual

Date Changes

May 04, 2020 > Minor refresh for PLOP/PLOP DS 5.4

July 27, 2018 > Repackaged the pCOS Command-line Tool in PLOP 5.3; API description removed

August 02, 2013 > Updates for pCOS 4.0

October 29, 2010 > Updates for pCOS 3.0

July 22, 2010 > Moved the pCOS reference for pCOS interface version 6 to a separate manual for
use in multiple products

December 07, 2009 > Updates for pCOS interface 5 in PDFlib+PDI 8, PPS 8

February 01, 2009 > Updates for pCOS interface 4 in PLOP 4.0, TET 3.0, TET PDF IFilter 3.0

October 19, 2007 > Updates for pCOS interface 3 in pCOS 2.0

March 28, 2006 > Added a description of the Perl language binding

September 30, 2005 > Edition for pCOS interface 2 in pCOS 1.0

June 20, 2005 > Edition for pCOS interface 1 in TET 2.0

ABC

PDFlib GmbH
Franziska-Bilek-Weg 9
80339 München, Germany
www.pdflib.com
phone +49 • 89 • 452 33 84-0

Licensing contact
sales@pdflib.com

Support
support@pdflib.com (please include your license number)

	Contents
	1 pCOS Command-Line Examples
	1.1 For Starters: simple Mode
	1.2 Extracting Data from PDF
	1.3 For advanced Applications: extended Mode
	1.4 For Experts: raw pCOS Paths

	2 pCOS Command-Line Reference
	2.1 Option Processing and Exit Codes
	2.2 Option Handling
	2.3 Input Options
	2.4 Options for Retrieving PDF Elements
	2.5 Advanced Retrieval Options
	2.6 Output Options
	2.7 Unicode Output and Binary Data

	A Revision History

