
ABC

pCOS Path Reference
PDF Information Retrieval Tool

pCOS Interface Version 12

Copyright © 2005–2018 PDFlib GmbH. All rights reserved.

PDFlib GmbH
Franziska-Bilek-Weg 9, 80339 München, Germany
www.pdflib.com
phone +49 • 89 • 452 33 84-0
fax +49 • 89 • 452 33 84-99

If you have questions check the PDFlib mailing list and archive at
groups.yahoo.com/neo/groups/pdflib/info

Licensing contact: sales@pdflib.com
Support for commercial PDFlib licensees: support@pdflib.com (please include your license number)

This publication and the information herein is furnished as is, is subject to change without notice, and
should not be construed as a commitment by PDFlib GmbH. PDFlib GmbH assumes no responsibility or lia-
bility for any errors or inaccuracies, makes no warranty of any kind (express, implied or statutory) with re-
spect to this publication, and expressly disclaims any and all warranties of merchantability, fitness for par-
ticular purposes and noninfringement of third party rights.

PDFlib and the PDFlib logo are registered trademarks of PDFlib GmbH. PDFlib licensees are granted the
right to use the PDFlib name and logo in their product documentation. However, this is not required.

http://www.pdflib.com
https://groups.yahoo.com/neo/groups/pdflib/info
mailto:sales@pdflib.com
mailto:support@pdflib.com

Contents 3

Contents
1 Introduction 5

1.1 What is pCOS? 5
1.2 Roadmap to Documentation and Samples 5
1.3 Availability of the pCOS Interface 6

2 pCOS Examples 7

2.1 pCOS Functions 7
2.2 Document 9
2.3 Pages 11
2.4 Fonts 12
2.5 Raster Images 13
2.6 ICC Profiles 14
2.7 Interactive Elements 15

3 pCOS Data Types 17

3.1 Basic PDF Data Types 17
3.2 Composite Data Structures 19
3.3 Object Identifiers (IDs) 21

4 pCOS Path Reference 23

4.1 pCOS Path Syntax 23
4.2 Path Prefixes 25
4.3 Universal Pseudo Objects 26

4.3.1 General Document Information 26
4.3.2 PDF Version Information 27
4.3.3 Library Identification 28

4.4 Pseudo Objects for PDF Standard Identification 29
4.5 Pseudo Objects for Pages 30
4.6 Pseudo Objects for PDF Objects and interactive Elements 31
4.7 Pseudo Objects for Signatures 33
4.8 Pseudo Objects for ICC Profiles 34
4.9 Pseudo Objects for PDF Resources 35
4.10 Protected PDF Documents and pCOS Mode 39

A Revision History 41

Index 43

1.1 What is pCOS? 5

1 Introduction
1.1 What is pCOS?

The pCOS (PDFlib Comprehensive Object Syntax) interface provides a simple and elegant
facility for retrieving technical information from all sections of a PDF document which
do not describe page contents, such as page dimensions, metadata, interactive ele-
ments, etc. pCOS users are assumed to have some basic knowledge of internal PDF
structures and dictionary keys, but do not have to deal with PDF syntax and parsing de-
tails. We strongly recommend that pCOS users obtain a copy of the PDF Reference. Since
the standardization of PDF 1.7 in 2008 the PDF Reference is available as ISO 32000-1. This
standard document can be purchased from www.iso.org. If you don’t want to purchase
the official version you can download a free edition which is identical in content:

Document Management – Portable Document Format – Part 1: PDF 1.7, First Edition
Downloadable PDF from www.adobe.com/devnet/pdf/pdf_reference.html.

1.2 Roadmap to Documentation and Samples
We provide the material listed below to assist you in using pCOS successfully.

Mini sample for all language bindings. The dumper mini sample is available in all
packages and for all language bindings. It provides minimal sample code for using
pCOS. The mini sample is useful for testing your pCOS installation and for getting a
quick overview of writing pCOS applications.

pCOS Path Reference. The pCOS Path Reference (this manual) contains examples and a
concise description of the pCOS path syntax which forms the heart of the pCOS inter-
face. Since the pCOS interface is included in several PDFlib GmbH products, the pCOS
Path Reference can be used with all products that include pCOS.

Corresponding Product Manual. The pCOS interface is available as an integrated part
the following PDFlib GmbH products:

> PDFlib+PDI
> PDFlib Personalization Server (PPS)
> PDFlib TET (Text and Image Extraction Toolkit)
> PDFlib TET PDF IFilter
> PDFlib PLOP
> PDFlib PLOP DS

Each product comes with one or more additional product-specific manuals which de-
scribe the use of the respective programming library and the corresponding command-
line tool if applicable. The product manual covers the programming languages which
are supported by a product and discusses the API in detail.

pCOS Cookbook. The pCOS Cookbook is a collection of code fragments for the pCOS in-
terface. It is available at the following URL:

www.pdflib.com/pcos-cookbook/

http://www.adobe.com/devnet/pdf/pdf_reference.html
http://www.pdflib.com/pcos-cookbook/

6 Chapter 1: Introduction

The pCOS Cookbook details the use of pCOS for a variety of applications. It is highly rec-
ommended because it serves as a repository of useful pCOS programming idioms.

1.3 Availability of the pCOS Interface
As the pCOS interface is extended and new features are added, the pCOS interface num-
ber is increased. Table 1.1 details the pCOS interface numbers which are implemented in
various product versions

The pCOS programming interface is available in the products listed above. The PLOP
and PLOP DS product packages additionally contain the pCOS command-line tool which
allows you to use pCOS without the need for any programming.

Some aspects of the pCOS interface are available only in the TET product, but not in
other products. These features are explicitly marked in this manual.

Table 1.1 pCOS interface versions implemented in PDFlib GmbH products

pCOS
interface

highest supported PDF input version /
corresponding Acrobat version PDFlib GmbH product name and version

8 PDF 1.7 extension level 8 / Acrobat X/XI TET 4.1+, TET PDF IFilter 4.1+
PDFlib+PDI 9.x, PPS 9.x
pCOS 4.0

9 PDF 1.7 extension level 8 / Acrobat X/XI
PDF 2.0 (ISO 32000-2)

PLOP 5.0, PLOP DS 5.0

10 PDF 1.7 extension level 8 / Acrobat X/XI/DC
PDF 2.0 (ISO 32000-2)

TET 5.0, TET PDF IFilter 5.0

11 PDF 1.7 extension level 8 / Acrobat X/XI/DC includ-
ing certificate security
PDF 2.0 (ISO 32000-2)

PLOP 5.1+, PLOP DS 5.1+
TET 5.1, TET PDF IFilter 5.1

12 PDF 1.7 extension level 8 / Acrobat X/XI/DC includ-
ing certificate security
PDF 2.0 (ISO 32000-2)

PLOP 5.3, PLOP DS 5.3

2.1 pCOS Functions 7

2 pCOS Examples
This chapter provides examples for pCOS paths which can be used to retrieve the corre-
sponding values from PDF documents. More elaborate examples which require addi-
tional program logic are available in the pCOS Cookbook on the PDFlib Web site.

Except where noted otherwise all programming examples are presented in the Java
language. However, with the obvious changes (mostly of syntactic nature) the examples
can be used with all programming languages supported by pCOS.

The examples shown in this chapter are not comprehensive. Many more pCOS appli-
cations are possible by using other PDF objects.

2.1 pCOS Functions
Basic pCOS function calls. The following functions are the workhorses for querying
PDF documents with pCOS:

> pcos_get_number() retrieves objects of type number or boolean;
> pcos_get_string() retrieves objects of type name, number, string, or boolean;
> pcos_get_stream() retrieves objects of type stream, fstream, or string.

These functions can be used to retrieve information from a PDF document using the
pCOS path syntax. The basic structure of a pCOS application looks as follows:

/* Open the PDF document */
int doc = p.open_document(filename, "");
if (doc == -1)

throw new Exception("Error: " + p.get_errmsg());

/* Retrieve the value of a pCOS pseudo object */
System.out.println(" PDF version: " + p.pcos_get_string(doc, "pdfversionstring"));

p.close_document(doc);

The parameters for the pCOS functions are the same in all products. They are docu-
mented in the respective product reference manuals; a quick overview of pCOS func-
tion prototypes is available in Appendix A, »Revision History«.

Adding program logic. Many pCOS objects consist of arrays of some length. The length
can be retrieved with the length: prefix. The array can then be indexed with integer val-
ues in the range 0 up to length-1. The following code queries the number of fonts in a
document and emits the type and name of each font:

count = (int) p.pcos_get_number(doc, "length:fonts");

for (i = 0; i < count; i++) {
 String fonts;

 System.out.print(p.pcos_get_string(doc, "fonts[" + i + "]/type") + " font ");
 System.out.println(p.pcos_get_string(doc, fonts[" + i + "]/name));
}

8 Chapter 2: pCOS Examples

Formatting placeholders in C. The C language binding offers a convenience feature to
facilitate the use of parameters within a pCOS path. Analogous to the formatting pa-
rameters of the printf() family of functions you can use %s and %d placeholders for
string and integer parameters, respectively. The values of these parameters must be
added as additional function parameters after the pCOS path. pCOS will replace the
placeholders with the actual values. This feature is particularly useful for paths contain-
ing array indices.

For example, the Java idiom above for listing all fonts can be written in C as follows:

count = (int) PDF_pcos_get_number(p, doc, "length:fonts");

for (i = 0; i < count; i++)
{
 printf("%s font ", PDF_pcos_get_string(p, doc, "fonts[%d]/type", i));
 printf("%s\n", PDF_pcos_get_string(p, doc, "fonts[%d]/name", i));
}

Since modern programming languages offer more sophisticated string handling func-
tions this feature is only available in the C language binding, but not any other lan-
guage binding.

2.2 Document 9

2.2 Document
Table 2.1 lists pCOS paths for general and document-related objects.

Encryption status and pCOS mode. You can query the pcosmode pseudo object to de-
termine the pCOS mode for the document. This is important to avoid an exception
when an attempt is made at retrieving information for which no access is granted (e.g.
because the document is encrypted and no suitable password has been supplied). The
following general structure based on values of pcosmode is recommended for all pCOS
applications:

/* Open the PDF document */
int doc = p.open_document(filename, "requiredmode=minimum");
if (doc == -1)

throw new Exception("Error: " + p.get_errmsg());

int pcosmode = (int) p.pcos_get_number(doc, "pcosmode");
boolean plainmetadata = p.pcos_get_number(doc, "encrypt/plainmetadata") != 0;

// Retrieve universal pseudo objects which are always available
System.out.println(" PDF version: " + p.pcos_get_string(doc, "pdfversionstring"));
System.out.println(" Encryption: " + p.pcos_get_string(doc, "encrypt/description"));

// encrypted document, but suitable password or digital ID was not supplied
if (pcosmode == 0)
{
 System.out.println("Minimum mode: no more information available\n");
 p.delete();
 return;
}

// otherwise query more information
System.out.println("PDF/A status: " + p.pcos_get_string(doc, "pdfa"));

// no master password supplied; we cannot retrieve metadata
if (pcosmode == 1 && !plainmetadata && p.pcos_get_number(doc, "encrypt/nocopy") != 0)
{

Table 2.1 pCOS paths for document-related items

pCOS path type explanation

pcosmode number pCOS mode of the document, i.e. its encryption status (see Section 4.10,
»Protected PDF Documents and pCOS Mode«, page 39)

pdfversionstring string string representing the PDF version number of the document

/Info/Title string Document info field Title; The following field names are predefined in
PDF and can be used in a similar manner:
Title, Author, Subject, Keywords, Creator, Producer,
CreationDate, ModDate, Trapped

/Info/ArticleNumber string custom document info field ArticleNumber (document info entries can
use arbitrary names)

/Root/Metadata stream XMP stream with the document’s metadata

pdfa, pdfe, pdfua,
pdfvt, pdfx

string PDF/A, PDF/E, PDF/UA, PDF/VT or PDF/X standard conformance status

10 Chapter 2: pCOS Examples

 System.out.print("Restricted mode: no more information available");
 p.delete();
 return;
}

// otherwise we can query document information fields and XMP metadata
...

p.close_document(doc);

PDF version. The following code fragment emits the PDF version number of a docu-
ment:

System.out.println(" PDF version: " + p.pcos_get_string(doc, "pdfversionstring"));

Document info fields. Document information fields can be retrieved with the follow-
ing code sequence. In order to make sure that an object actually exists in the PDF docu-
ment and has the expected type we first check its type. If the object is present and has
type string we can retrieve it:

objtype = p.pcos_get_string(doc, "type:/Info/Title");
if (objtype.equals("string"))
{

/* Document info key found */
title = p.pcos_get_string(doc, "/Info/Title");

}

XMP metadata. A stream containing XMP metadata can be retrieved with the follow-
ing code sequence:

objtype = p.pcos_get_string(doc, "type:/Root/Metadata");
if (objtype.equals("stream"))
{

/* XMP meta data found */
metadata = p.pcos_get_stream(doc, "", "/Root/Metadata");

}

PDF standards. The PDF/A, PDF/E, PDF/UA, PDF/VT or PDF/X standard conformance
status can be queried with simple pCOS pseudo objects as follows:

System.out.println("PDF/A status: " + p.pcos_get_string(doc, "pdfa"));
System.out.println("PDF/E status: " + p.pcos_get_string(doc, "pdfe"));
System.out.println("PDF/UA status: " + p.pcos_get_string(doc, "pdfua"));
System.out.println("PDF/VT status: " + p.pcos_get_string(doc, "pdfvt"));
System.out.println("PDF/X status: " + p.pcos_get_string(doc, "pdfx"));

	Contents
	1 Introduction
	1.1 What is pCOS?
	1.2 Roadmap to Documentation and Samples
	1.3 Availability of the pCOS Interface

	2 pCOS Examples
	2.1 pCOS Functions
	2.2 Document
	2.3 Pages
	2.4 Fonts
	2.5 Raster Images
	2.6 ICC Profiles
	2.7 Interactive Elements

	3 pCOS Data Types
	3.1 Basic PDF Data Types
	3.2 Composite Data Structures
	3.3 Object Identifiers (IDs)

	4 pCOS Path Reference
	4.1 pCOS Path Syntax
	4.2 Path Prefixes
	4.3 Universal Pseudo Objects
	4.3.1 General Document Information
	4.3.2 PDF Version Information
	4.3.3 Library Identification

	4.4 Pseudo Objects for PDF Standard Identification
	4.5 Pseudo Objects for Pages
	4.6 Pseudo Objects for PDF Objects and interactive Elements
	4.7 Pseudo Objects for Signatures
	4.8 Pseudo Objects for ICC Profiles
	4.9 Pseudo Objects for PDF Resources
	4.10 Protected PDF Documents and pCOS Mode

	A Revision History
	Index

