/*
 * Linked text blocks:
 * Link multiple Textflow blocks
 *
 * Import a PDF page representing an advertisement template containing multiple
 * blocks for one product offer each. Several product offers represented in a
 * Textflow are filled into the appropriate number of blocks depending on the
 * length of the Textflow.
 *
 * Required software: PPS 10
 * Required data: PDF document containing blocks
 */
package com.pdflib.cookbook.pdflib.blocks;

import com.pdflib.pdflib;
import com.pdflib.PDFlibException;

public class linked_textblocks
{
 public static void main (String argv[])
 {
 /* This is where the data files are. Adjust as necessary. */
 String searchpath = "../input";

 /* By default annotations are also imported. In some cases this
 * requires the Noto fonts for creating annotation appearance streams.
 * We therefore set the searchpath to also point to the font directory.
 */
 String fontpath = "../resource/font";
 String outfile = "linked_textblocks.pdf";
 String title = "Linked Text Blocks";

 pdflib p = null;
 double width, height;
 String infile = "advertisement_blocks.pdf";
 int tf, i, inpage, indoc;
 String optlist;
 int exitcode = 0;

 /* Number of Textflow blocks which can be filled */
 final int nblocks = 6;

 /* Name prefix of the blocks contained on the imported page */
 final String blockname = "model_";

 final String models =
 "Our paper planes are the ideal way of passing the time. We offer " +
 "revolutionary new developments of the traditional common paper " +
 "planes. If your lesson, conference, or lecture turn out to be " +
 "deadly boring, you can have a wonderful time with our planes. All " +
 "our models are folded from one paper sheet. They are exclusively " +
 "folded without using any adhesive. Several models are equipped with " +
 "a folded landing gear enabling a safe landing on the intended " +
 "location provided that you have aimed well. Other models are able " +
 "to fly loops or cover long distances. Let them start from a vista " +
 "point in the mountains and see where they touch the ground. Have a " +
 "look at our new paper plane models! With our Long Distance Glider " +
 "you can send all your messages even when sitting in a hall or in " +
 "the cinema pretty near the back. Try our Giant Wing, an " +
 "unbelievable sailplane!";

 try {
 p = new pdflib();

 p.set_option("searchpath={" + searchpath + "}");

 p.set_option("searchpath={" + fontpath + "}");

 /* This means we must check return values of load_font() etc. */
 p.set_option("errorpolicy=return");

 if (p.begin_document(outfile, "") == -1)
 throw new Exception("Error: " + p.get_errmsg());

 p.set_info("Creator", "PDFlib Cookbook");
 p.set_info("Title", title);

 /* Open a PDF containing blocks */
 indoc = p.open_pdi_document(infile, "");
 if (indoc == -1)
 throw new Exception("Error: " + p.get_errmsg());

 /* Open the first page */
 inpage = p.open_pdi_page(indoc, 1, "");
 if (inpage == -1)
 throw new Exception("Error: " + p.get_errmsg());

 /* Get the width and height of the imported page */
 width = p.pcos_get_number(indoc, "pages[0]/width");
 height = p.pcos_get_number(indoc, "pages[0]/height");

 /* Start the output page with the size given by the imported page */
 p.begin_page_ext(width, height, "");

 /* Place the imported page on the output page */
 p.fit_pdi_page(inpage, 0, 0, "");

 /* Fill one or more blocks with the Textflow */
 String text = models;

 tf = -1;

 for (i = 1; i <= nblocks; i++)
 {
 /* Option list for text blocks; the encoding should be defined
 * and the Textflow handle supplied. In addition we slightly
 * rotate the block rectangles by 3 degrees. Other options have
 * already been set in the properties of the blocks contained in
 * the input document, such as:
 * "fitmethod=clip" to clip the text when it doesn't fit completely
 * into the block while avoiding any text shrinking.
 * "margin=4" to set some space between the text and the borders of
 * the block rectangle.
 * "fontsize=16" for a font size of 16.
 * "backgroundcolor={gray 0.9}" to colorize the block rectangle with
 * a light gray.
 */
 optlist = "rotate=3 textflowhandle=" + tf;

 tf = p.fill_textblock(inpage, blockname+i, text, optlist);

 text = "";

 if (tf == -1) {
 System.err.println("Warning: " + p.get_errmsg());
 break;
 }

 /* Check result of most recent call to fit_textflow() */
 int reason = (int) p.info_textflow(tf, "returnreason");
 String result = p.get_string(reason, "");

 /* End loop if all text was placed */
 if (result.equals("_stop"))
 {
 p.delete_textflow(tf);
 break;
 }
 }

 p.end_page_ext("");

 p.close_pdi_page(inpage);

 p.end_document("");
 p.close_pdi_document(indoc);

 } catch (PDFlibException e) {
 System.err.println("PDFlib exception occurred:");
 System.err.println("[" + e.get_errnum() + "] " + e.get_apiname() +
 ": " + e.get_errmsg());
 exitcode = 1;
 } catch (Exception e) {
 System.err.println(e);
 exitcode = 1;
 } finally {
 if (p != null) {
 p.delete();
 }
 System.exit(exitcode);
 }
 }
}

