/*
 * Wrap text around images:
 * Place images within a Textflow
 *
 * Case 1:
 * Place an image at a fixed position on the page. Use the "matchbox" option of
 * fit_image() to define the matchbox rectangle. Use the "usematchbox" option of
 * fit_textflow() to wrap the text around the matchbox rectangle for the image.
 * Case 2:
 * Place an image left-aligned and an image right-aligned at defined positions
 * within the Textflow. Use the "matchbox" option of fit_image() to define the
 * matchbox rectangle of the image. Use specific return values of fit_textflow()
 * for indicating the text line for the image to be placed.
 * Case 3:
 * To place some small icons at the beginning of some text lines in a
 * Textflow use the inline options "matchbox" and "matchbox end" within the
 * Textflow as well as the info_matchbox() function to retrieve the matchbox
 * instances and dimensions.
 * Case 4:
 * Place some images at certain text positions within a Textflow by using the
 * "matchbox" and "matchbox end" inline options when placing the Textflow for
 * indicating the image positions.
 * Case 5:
 * Place an image which covers several lines of text at a certain text position
 * within a Textflow. Use the "matchbox" and "matchbox end" inline options when
 * placing the Textflow for indicating the image position. Use the
 * "createwrapbox" option to indicate that the matchbox will be inserted as wrap
 * box in the Textflow for the text to wrap around.
 *
 * Required software: PDFlib/PDFlib+PDI/PPS 10
 * Required data: image file
 */
package com.pdflib.cookbook.pdflib.textflow;

import com.pdflib.pdflib;
import com.pdflib.PDFlibException;

public class wrap_text_around_images
{
 public static void main (String argv[])
 {
 pdflib p = null;
 String searchpath = "../input";
 String outfile = "wrap_text_around_images.pdf";
 String title = "Wrap Text around Images";

 int i, m, tf = -1, image, icon, numberOfMatchbox;
 String result;
 String imageoptlist = "", numoptlist = "", textoptlist = "";
 final double llx = 100, lly = 50, urx = 450, ury = 800;
 double x1, y1, width, height;
 double posx = 0, posy = 0;
 String text;
 int exitcode = 0;

 try {
 p = new pdflib();

 p.set_option("searchpath={" + searchpath + "}");

 /* This means we must check return values of load_font() etc. */
 p.set_option("errorpolicy=return");
 p.set_option("charref=true");

 if (p.begin_document(outfile, "") == -1)
 throw new Exception("Error: " + p.get_errmsg());

 p.set_info("Creator", "PDFlib Cookbook");
 p.set_info("Title", title);

 /* --
 * Case 1:
 * Place an image at a fixed position on the page. Use the "matchbox"
 * option of fit_image() to define the matchbox rectangle. Use the
 * "usematchbox" option of fit_textflow() to wrap the text around the
 * matchbox rectangle for the image.
 * --
 */

 /* Text to be placed on the page. Soft hyphens are marked with the
 * character reference "­" (character references are enabled by the
 * "charref" option).
 */
 text =
 "Our paper planes are the ideal way of passing the time. We " +
 "offer revolutionary new develop­ments of the traditional " +
 "common paper planes. If your lesson, conference, or lecture " +
 "turn out to be deadly boring, you can have a wonderful time " +
 "with our planes. All our models are fol­ded from one paper " +
 "sheet. They are exclu­sively folded with­out using any " +
 "adhesive. Several models are equipped with a folded landing " +
 "gear enabling a safe landing on the intended loca­tion " +
 "provided that you have aimed well. Other models are able to fly " +
 "loops or cover long distances. Let them start from a vista " +
 "point in the mountains and see where they touch the ground. ";

 /* Option list for the output of a number */
 numoptlist =
 "fontname=NotoSerif-Bold fontsize=14 " +
 "fillcolor={rgb 0.6 0.6 0.8} charref";

 /* Option list for the text output */
 textoptlist =
 "fontname=NotoSerif-Regular fontsize=10.5 " +
 "fillcolor={gray 0} alignment=justify";

 /* Load the image. Assign a matchbox called "img" to it to indicate the
 * rectangle for the text to wrap around later.
 */
 image = p.load_image("auto", "kraxi_logo_text.tif", "");
 if (image == -1)
 throw new Exception("Error: " + p.get_errmsg());

 /* Repeat some dummy text to produce more contents, place a number
 * before each text and feed them to a Textflow object with alternating
 * options.
 */
 final int count = 7;

 for (i=1; i<=count; i++)
 {
 String num = i + " ";

 tf = p.add_textflow(tf, num, numoptlist);
 if (tf == -1)
 throw new Exception("Error: " + p.get_errmsg());

 tf = p.add_textflow(tf, text, textoptlist);
 if (tf == -1)
 throw new Exception("Error: " + p.get_errmsg());
 }

 /* Loop until all of the text is placed; create new pages
 * as long as more text needs to be placed.
 */
 p.create_bookmark("Case 1: \"matchbox\" option of fit_image() and " +
 "\"wrap\" option of fit_textflow()",
 "");
 do
 {
 p.begin_page_ext(0, 0, "width=a4.width height=a4.height");

 /* Place the image on a fixed position on the page. Assign a matchbox
 * called "img" to it to indicate the image rectangle to wrap the text
 * around later.
 */
 p.fit_image(image, 200, 370, "boxsize={300 200} fitmethod=meet " +
 "position=center matchbox={name=img margin=-10}");

 /* Place the text while wrapping it around the matchbox called "img" */
 result = p.fit_textflow(tf, llx, lly, urx, ury,
 "verticalalign=justify linespreadlimit=120% " +
 "wrap={usematchboxes={{img}}}");

 p.end_page_ext("");

 /* "_boxfull" means we must continue because there is more text;
 * "_nextpage" is interpreted as "start new column"
 */
 } while (result.equals("_boxfull") || result.equals("_nextpage"));

 /* Check for errors */
 if (!result.equals("_stop"))
 {
 /* "_boxempty" happens if the box is very small and doesn't
 * hold any text at all.
 */
 if (result.equals("_boxempty"))
 throw new Exception ("Error: Textflow box too small");
 else
 {
 /* Any other return value is a user exit caused by
 * the "return" option; this requires dedicated code to
 * deal with.
 */
 throw new Exception ("User return '" + result +
 "' found in Textflow");
 }
 }
 p.close_image(image);

 p.delete_textflow(tf);

 /* ---
 * Case 2:
 * Place an image left-aligned and an image right-aligned at defined
 * positions within the Textflow. Use the "matchbox" option of
 * fit_image() to define the matchbox rectangle of the image. Use
 * specific return values of fit_textflow() for indicating the text line
 * for the image to be placed.
 * ---
 */

 /* Text to be placed on the plage. Soft hyphens are marked with the
 * character reference "­" (character references are enabled by the
 * "charref" option).
 */
 text =
 "Our paper planes are the ideal way of passing the time. We " +
 "offer revolutionary new develop­ments of the traditional " +
 "common paper planes. If your lesson, conference, or lecture " +
 "turn out to be deadly boring, you can have a wonderful time " +
 "with our planes. All our models are fol­ded from one paper " +
 "sheet. They are exclu­sively folded with­out using any " +
 "adhesive. Several models are equipped with a folded landing " +
 "gear enabling a safe landing on the intended loca­tion " +
 "provided that you have aimed well. Other models are able to fly " +
 "loops or cover long distances. Let them start from a vista " +
 "point in the mountains and see where they touch the ground. ";

 /* Option list for the text to be added */
 textoptlist =
 "fontname=NotoSerif-Regular fontsize=10.5 " +
 "fillcolor={gray 0} alignment=justify";

 /* Add some text to the Textflow. Then add two nextlines and define the
 * return value "imageleft". Later, the Textflow portion defined above
 * will be placed with fit_textflow() and the "imageleft" value will be
 * returned indicating that now the left-aligned image should be placed.
 */
 tf = -1;
 tf = p.add_textflow(tf, text, textoptlist);
 if (tf == -1)
 throw new Exception("Error: " + p.get_errmsg());

 tf = p.add_textflow(tf, "", "nextline nextline return imageleft");
 if (tf == -1)
 throw new Exception("Error: " + p.get_errmsg());

 /* Add some more text to the Textflow. Similar to the "imageleft"
 * return value above define the "imageright" return value to indicate
 * that now the right-aligned image should be placed.
 */
 tf = p.add_textflow(tf, text, textoptlist);
 if (tf == -1)
 throw new Exception("Error: " + p.get_errmsg());
 tf = p.add_textflow(tf, "", "nextline nextline return imageright");
 if (tf == -1)
 throw new Exception("Error: " + p.get_errmsg());

 tf = p.add_textflow(tf, text, textoptlist);
 if (tf == -1)
 throw new Exception("Error: " + p.get_errmsg());

 image = p.load_image("auto", "kraxi_logo.tif", "");
 if (image == -1)
 throw new Exception("Error: " + p.get_errmsg());

 p.begin_page_ext(0, 0, "width=a4.width height=a4.height");
 p.create_bookmark("Case 2: Specific Textflow return values to " +
 "indicate image positions", "");

 posy = ury;
 boolean ismatchbox = false;

 do
 {
 /* Fit the text and wrap it around the matchbox called "image"
 * if it is defined yet
 */
 if (ismatchbox) {
 textoptlist = "verticalalign=justify linespreadlimit=120% " +
 "wrap={usematchboxes={{image}}} ";
 }
 else {
 textoptlist = "verticalalign=justify linespreadlimit=120% ";
 }

 result = p.fit_textflow(tf, llx, lly, urx, posy, textoptlist);

 /* Retrieve the current text position */
 posy = p.info_textflow(tf, "textendy");

 if (result.equals("imageleft")){
 /* Textflow interrupted returning the keyword "imageleft".
 * Place the image on the current left position of the Textflow
 * fitbox.
 */
 posx = llx;
 imageoptlist = "position {0 100} matchbox={name=image " +
 "offsetright=10 offsettop=10 offsetbottom=-10}";
 /* Reduce the posy position by a value similar to the
 * "offsettop" value defined above to create some distance
 * from the previous text
 */
 p.fit_image(image, posx, posy-10, imageoptlist);
 ismatchbox = true;
 }
 if (result.equals("imageright")){
 /* Textflow interrupted with the keyword "imageleft".
 * Place the image to the current left position of the fitbox.
 */
 posx = urx;
 imageoptlist = "position {100 100} matchbox={name=image " +
 "offsetleft=-10 offsettop=10 offsetbottom=-10}";

 /* Reduce the posy position by a value similar to the
 * "offsettop" value defined above to create some distance from
 * the previous text
 */
 p.fit_image(image, posx, posy-10, imageoptlist);
 ismatchbox = true;
 }
 /* Create a new page if the text cannot be fit completely into the
 * box
 */
 if (result.equals("_boxfull") || result.equals("_boxempty")){
 p.end_page_ext("");
 p.begin_page_ext(0, 0, "width=a4.width height=a4.height");
 posy = ury;
 }
 /* Go ahead with the rest of the text, until the text has been
 * finished
 */
 } while (!result.equals("_stop"));

 p.delete_textflow(tf);

 p.end_page_ext("");
 p.close_image(image);

 /* --
 * Case 3:
 * Place some small icons at the beginning of the lines in a Textflow
 * using the inline options "matchbox" and "matchbox end" within the
 * Textflow.
 * --
 */

 /* Text containing the macros defined in the option list below */
 text =
 "Our paper planes are the ideal way of passing the time. We " +
 "offer revolutionary new developments of the traditional common " +
 "paper planes. If your lesson, conference, or lecture turn out " +
 "to be deadly boring, you can have a wonderful time with our " +
 "planes. All our models are folded from one paper sheet. They " +
 "are exclusively folded without using any adhesive. Several " +
 "models are equipped with a folded landing gear enabling a safe " +
 "landing on the intended location provided that you have aimed " +
 "well. Other models are able to fly loops or cover long " +
 "distances. Let them start from a vista point in the mountains " +
 "and see where they touch the ground." +
 "<nextline><nextline>" +
 "Have a look at our new paper plane models!" +
 "<nextline><nextparagraph>" +
 "<&new><&end>Long Distance Glider <nextline>"+
 "With this paper rocket you can send all your messages even when " +
 "sitting in a hall or in the cinema pretty near the back. " +
 "<nextline><nextparagraph>" +
 "<&arrow><&end>Giant Wing<nextline>" +
 "An unbelievable sailplane! It is amazingly robust and can even " +
 "do aerobatics. But it best suited to gliding." +
 "<nextline><nextparagraph>" +
 "<&new><&end>Cone Head Rocket<nextline>" +
 "This paper arrow can be thrown with big swing. We launched it " +
 "from the roof of a hotel. It stayed in the air a long time and " +
 "covered a considerable distance. " +
 "<nextline><nextparagraph>" +
 "<&arrow><&end>Super Dart<nextline>" +
 "The super dart can fly giant loops with a radius of 4 or 5 " +
 "metres and cover very long distances. Its heavy cone point is " +
 "slightly bowed upwards to get the lift required for loops." +
 "<nextline><nextparagraph>" +
 "<&arrow><&end>German Bi-Plane<nextline>" +
 "Brand-new and ready for take-off. If you have lessons in the " +
 "history of aviation you can show your interest by letting it " +
 "land on your teacher's desk." +
 "<nextline leftindent=0><nextparagraph>" +
 "To fold the famous rocket looper proceed as follows:" +
 "<nextparagraph><nextline>" +
 "Take a A4 sheet." +
 "Fold it lengthwise in the middle." +
 "Then, fold the upper corners down. " +
 "Fold the long sides inwards " +
 "that the points A and B meet on the central fold." +
 "<nextparagraph><nextline>" +
 "Fold the points C and D that the upper " +
 "corners meet with the central fold as well. " +
 "Fold the plane in the middle. Fold the wings " +
 "down that they close with the lower border of the plane.";

 /* Option list with some text options and the three macros "arrow",
 * "new", and "end" to be used as inline options in the "features" text
 * below to indicate where to leave some space for the respective images
 * to be placed and the text to wrap around it.
 */
 textoptlist =
 "macro {" +
 "new {matchbox={name=new boxwidth=15 boxheight=" +
 " {ascender descender}} leftindent=15 " +
 " parindent=-15} " +
 "arrow {matchbox={name=arrow boxwidth=15 boxheight={ascender " +
 " descender}} leftindent=15 parindent=-15} " +
 "end {matchbox={end}} } " +
 "fontname=NotoSerif-Regular fontsize=10.5 " +
 "fillcolor={gray 0} alignment=justify";

 String[][] matchboxname = {
 {"new", "new.jpg"},
 {"arrow", "arrow.jpg"}
 };

 /* Start page */
 p.begin_page_ext(0, 0, "width=a4.width height=a4.height");

 /* Create a bookmark on the current page */
 p.create_bookmark("Case 3: Inline options \"matchbox\" and " +
 "\"matchbox end\" for create_textflow()", "");

 /* Create a Textflow containing inline options to define the matchboxes
 * "arrow" and "new" which indicates the positions for the arrow and the
 * new image to be placed.
 */
 tf = p.create_textflow(text, textoptlist);
 if (tf == -1)
 throw new Exception("Error: " + p.get_errmsg());

 do {
 /* Fit the Textflow */
 result = p.fit_textflow(tf, llx, lly, urx, ury,
 "verticalalign=justify linespreadlimit=120% ");

 /* Loop over all icons ("new" and "arrow" in our case) to be placed
 * in the respective matchboxes
 */
 for (m=0; m < (int) matchboxname.length; m++){
 icon = p.load_image("auto", matchboxname[m][1], "");
 if (icon == -1)
 throw new Exception("Error: " + p.get_errmsg());

 /* Retrieve the number of instances of the matchbox */
 numberOfMatchbox =
 (int) p.info_matchbox(matchboxname[m][0], 0, "count");

 /* Iterate over all matchbox instances and fill them with the
 * icon
 */
 for (i=1; i<= numberOfMatchbox; i++)
 {
 x1 = p.info_matchbox(matchboxname[m][0], i, "x1");
 y1 = p.info_matchbox(matchboxname[m][0], i, "y1");
 width = p.info_matchbox(matchboxname[m][0], i, "width");
 height = p.info_matchbox(matchboxname[m][0], i, "height");
 p.fit_image(icon, x1, y1,
 "boxsize {" + width + " " + height +
 "} fitmethod meet");
 }
 }
 if (result.equals("_boxfull")){
 p.end_page_ext("");
 p.begin_page_ext(0, 0, "width=a4.width height=a4.height");
 posy = ury;
 }
 } while (!result.equals("_stop"));

 p.delete_textflow(tf);

 p.end_page_ext("");

 /* --
 * Case 4:
 * Place images at certain text positions within a line of a Textflow
 * by using the "matchbox" and "matchbox end" inline options when
 * placing the Textflow for indicating the image positions.
 * --
 */

 /* Text containing the macros defined in the option list below */
 text =
 "Have a look at our new paper plane models!" +
 "<nextline><nextparagraph>" +
 "Long Distance Glider <nextline>"+
 "With this paper rocket you can send all your messages even " +
 "when sitting in a hall or in the cinema pretty near the back. " +
 "Print a photo of the paper plane by pressing the " +
 "<&print><&end> button. " +
 "Save a description of the paper plane by pressing the "+
 "<&saveas><&end> button.";

 /* Options list for creating the Textflow.
 * For each image to be placed within the Textflow a macro is defined
 * to specify the matchbox rectangle for the image to be placed in and
 * the Textflow to wrap around.
 * The macro "print" specifies a matchbox called "print".
 * "boxwidth=40" defines the width of the matchbox rectangle.
 * "boxheight {ascender descender}" defines the vertical extent of the
 * matchbox rectangle using the ascender of the font on the top and the
 * descender at the bottom. "offsettop=2" adds an offset of 2 on the top
 * of the rectangle.
 * The macro "saveas" specifies a matchbox called "saveas" with similar
 * options.
 * The macro "end" is used to finish the matchbox.
 */
 textoptlist =
 "macro {" +
 "print {matchbox={name=print boxwidth=40 " +
 "boxheight={ascender descender} offsettop=2}} " +
 "saveas {matchbox={name=saveas boxwidth=60 " +
 "boxheight={ascender descender} offsettop=2}} " +
 "end {matchbox={end}} } " +
 "fontname=NotoSerif-Regular fontsize=14 " +
 "fillcolor={gray 0} leading=140% alignment=justify";

 String[][] matchboxnames = {
 {"print", "fileprint.jpg"},
 {"saveas", "filesaveas.jpg"}
 };

 /* Add some text to the Textflow */
 tf = p.create_textflow(text, textoptlist);
 if (tf == -1)
 throw new Exception("Error: " + p.get_errmsg());

 p.begin_page_ext(0, 0, "width=a4.width height=a4.height");

 /* Create a bookmark on the current page */
 p.create_bookmark("Case 4: Inline options \"matchbox\" and " +
 "\"matchbox end\" for create_textflow()", "");

 posy = ury;

 do {
 /* Fit the Textflow */
 result = p.fit_textflow(tf, llx, lly, urx, ury,
 "verticalalign=justify linespreadlimit=120% ");

 /* Loop over all icons ("print" and "saveas" in our case) to be
 * placed in the respective matchboxes
 */
 for (m=0; m < (int) matchboxnames.length; m++){
 icon = p.load_image("auto", matchboxnames[m][1], "");
 if (icon == -1)
 throw new Exception("Error: " + p.get_errmsg());

 /* Retrieve the number of instances of the matchbox */
 numberOfMatchbox =
 (int) p.info_matchbox(matchboxnames[m][0], 0, "count");

 /* Iterate over all matchbox instances and fill them with the
 * icon
 */
 for (i=1; i<= numberOfMatchbox; i++)
 {
 x1 = p.info_matchbox(matchboxnames[m][0], i, "x1");
 y1 = p.info_matchbox(matchboxnames[m][0], i, "y1");
 width = p.info_matchbox(matchboxnames[m][0], i, "width");
 height = p.info_matchbox(matchboxnames[m][0], i, "height");
 p.fit_image(icon, x1, y1,
 "boxsize {" + width + " " + height +
 "} fitmethod meet position=center");
 }
 }
 if (result.equals("_boxfull")){
 p.end_page_ext("");
 p.begin_page_ext(0, 0, "width=a4.width height=a4.height");
 posy = ury;
 }
 else if (!result.equals("_stop"))
 {
 /* "_boxempty" happens if the box is very small and doesn't
 * hold any text at all.
 */
 if (result.equals("_boxempty"))
 throw new Exception ("Error: Textflow box too small");
 else
 {
 /* Any other return value is a user exit caused by
 * the "return" option; this requires dedicated code to
 * deal with.
 */
 throw new Exception ("User return '" + result +
 "' found in Textflow");
 }
 }
 } while (!result.equals("_stop"));

 p.delete_textflow(tf);

 p.end_page_ext("");
 p.close_image(image);

 /* --
 * Case 5:
 * Place an image which covers several lines of text at a certain text
 * position within a Textflow. Use the "matchbox" and "matchbox end"
 * inline options when placing the Textflow for indicating the image
 * position. Use the "createwrapbox" option to indicate that the
 * matchbox will be inserted as wrap box in the Textflow for the text
 * to wrap around.
 * --
 */

 /* Text which is placed on the page. Soft hyphens are marked
 * with the character reference "­" (character references are
 * enabled by the charref option).
 */
 text =
 "Our paper planes are the ideal way of passing the time. We " +
 "offer revolutionary new develop­ments of the traditional " +
 "common paper planes. If your lesson, conference, or lecture " +
 "turn out to be deadly boring, you can have a wonderful time " +
 "with our planes. All our models are fol­ded from one paper " +
 "sheet.<&plane><&end>They are exclu­sively folded " +
 "with­out using any ad­hesive. Several models are " +
 "equipped with a folded landing gear enabling a safe landing on " +
 "the intended loca­tion provided that you have aimed well. " +
 "Other models are able to fly loops or cover long distances. " +
 "Let them start from a vista point in the mountains and see " +
 "where they touch the ground. ";

 /* Options list for creating the Textflow.
 * For the image to be placed within the Textflow a macro is defined
 * to specify the matchbox rectangle for the image to be placed in and
 * the Textflow to wrap around.
 * The macro "plane" specify a matchbox called "plane".
 * "boxwidth=70" defines the width of the matchbox rectangle.
 * "boxheight {12 24}" defines the vertical extent of the matchbox
 * rectangle with 12 above and 24 below the baseline of the text line.
 * "offsetleft=4" and "offsetright=-4" add some empty space on the left
 * and right of the matchbox rectangle.
 * "createwrapbox" indicates that the matchbox will be inserted as wrap
 * box in the Textflow for the text to wrap around.
 * The macro "end" is used to finish the matchbox.
 */
 textoptlist =
 "macro {" +
 "plane {matchbox={name=plane boxwidth=70 boxheight={12 24} " +
 "offsetleft=4 offsetright=-4 createwrapbox}} " +
 "end {matchbox={end}} } " +
 "fontname=NotoSerif-Regular fontsize=12 " +
 "fillcolor={gray 0} leading=140% alignment=justify";

 /* Add some text to the Textflow */
 tf = p.create_textflow(text, textoptlist);
 if (tf == -1)
 throw new Exception("Error: " + p.get_errmsg());

 p.begin_page_ext(0, 0, "width=a4.width height=a4.height");
 p.create_bookmark("Case 5: \"createwrapbox\" option of " +
 "create_textflow() to wrap text around image covering several " +
 "text lines", "");

 posy = ury;

 do {
 /* Fit the Textflow */
 result = p.fit_textflow(tf, llx, lly, urx, ury,
 "verticalalign=justify linespreadlimit=120% ");

 image = p.load_image("auto", "kraxi_logo.tif", "");
 if (image == -1)
 throw new Exception("Error: " + p.get_errmsg());

 /* Retrieve the number of instances of the matchbox */
 numberOfMatchbox =
 (int) p.info_matchbox("plane", 0, "count");

 /* Iterate over all matchbox instances and fill them with the
 * image. In our case just one instance is present.
 */
 for (i=1; i<= numberOfMatchbox; i++)
 {
 x1 = p.info_matchbox("plane", i, "x1");
 y1 = p.info_matchbox("plane", i, "y1");
 width = p.info_matchbox("plane", i, "width");
 height = p.info_matchbox("plane", i, "height");
 p.fit_image(image, x1, y1, "boxsize {" + width + " " + height +
 "} fitmethod meet position=center");
 }
 if (result.equals("_boxfull")){
 p.end_page_ext("");
 p.begin_page_ext(0, 0, "width=a4.width height=a4.height");
 posy = ury;
 }
 else if (!result.equals("_stop"))
 {
 /* "_boxempty" happens if the box is very small and doesn't
 * hold any text at all.
 */
 if (result.equals("_boxempty"))
 throw new Exception ("Error: Textflow box too small");
 else
 {
 /* Any other return value is a user exit caused by
 * the "return" option; this requires dedicated code to
 * deal with.
 */
 throw new Exception ("User return '" + result +
 "' found in Textflow");
 }
 }
 } while (!result.equals("_stop"));

 p.delete_textflow(tf);

 p.end_page_ext("");
 p.close_image(image);

 p.end_document("");

 } catch (PDFlibException e) {
 System.err.println("PDFlib exception occurred:");
 System.err.println("[" + e.get_errnum() + "] " + e.get_apiname() +
 ": " + e.get_errmsg());
 exitcode = 1;
 } catch (Exception e) {
 System.err.println(e.toString());
 exitcode = 1;
 } finally {
 if (p != null) {
 p.delete();
 }
 System.exit(exitcode);
 }
 }
}

