Table size is defined as 350×400
No row height is defined
Result:
Row height will be calculated automatically With two rows available it will be half of the table height (with three rows it will be a third of the table height, etc.) As a result each row will have the same height

Table size is defined as 350×400
For the first row rowheight=1 is defined
For the second row rowheight $=1$ is defined
Result:
rowheight=1 defines the minimum height of the row. The height will be increased automatically as the object needs more space to be fit

	Long Distance Glider: With this paper rocket you can send all your messages even when sitting in a hall or in the cinema pretty near the back.
Giant Wing: An unbeliev- able sailplane! It is amaz- ingly robust and can even do aerobatics.	

Table size is defined as 350×400
For the first row rowheight=70\% is defined
For the second row rowheight $=30 \%$ is defined
Result:
The height of the first row will be 70% of the table height The height of the second row will be 30% of the table height

Table size is given as 350×400
For the first row rowheight=200 is defined
For the second row rowheight=100 is defined
Result:
rowheight defines the minimum row height. Since the objects need less space it does not have to be increased. Parts of the table fitbox will be left empty

