
ABC

PDFlib, PDFlib+PDI, PPS
A library for generating PDF on the fly
PDFlib 9.4.0

API Reference
For use with C, C++, Java, .NET, .NET Core, Objective-C,
Perl, PHP, Python, RPG, Ruby

Copyright © 1997–2022 PDFlib GmbH and Thomas Merz. All rights reserved.
PDFlib users are granted permission to reproduce printed or digital copies of this manual for internal use.

PDFlib GmbH
Franziska-Bilek-Weg 9, 80339 München, Germany
www.pdflib.com
phone +49 • 89 • 452 33 84-0

sales@pdflib.com
support@pdflib.com (please include your license number)

This publication and the information herein is furnished as is, is subject to change without notice, and
should not be construed as a commitment by PDFlib GmbH. PDFlib GmbH assumes no responsibility or lia-
bility for any errors or inaccuracies, makes no warranty of any kind (express, implied or statutory) with re-
spect to this publication, and expressly disclaims any and all warranties of merchantability, fitness for par-
ticular purposes and noninfringement of third party rights.

PDFlib and the PDFlib logo are registered trademarks of PDFlib GmbH. PDFlib licensees are granted the
right to use the PDFlib name and logo in their product documentation. However, this is not required.

PANTONE® colors displayed in the software application or in the user documentation may not match
PANTONE-identified standards. Consult current PANTONE Color Publications for accurate color. PANTONE®
and other Pantone, Inc. trademarks are the property of Pantone, Inc. © Pantone, Inc., 2003.
Pantone, Inc. is the copyright owner of color data and/or software which are licensed to PDFlib GmbH to
distribute for use only in combination with PDFlib Software. PANTONE Color Data and/or Software shall
not be copied onto another disk or into memory unless as part of the execution of PDFlib Software.

PDFlib contains the following third-party components:

Adobe CMap resources, Copyright © 1990-2019 Adobe
AES, Arcfour and SHA algorithms, Copyright © 1995-1998 Eric Young
Expat XML parser, Copyright © 2001-2017 Expat maintainers
ICClib, Copyright © 1997-2002 Graeme W. Gill
ICU International Components for Unicode, Copyright © 1995-2012 IBM
Koblas GIF image decoder, Copyright © 1990-1994 David Koblas
libjpeg, Copyright © 1991-2019, Thomas G. Lane, Guido Vollbeding
libpng, Copyright © 1998-2002, 2004, 2006-2017 Glenn Randers-Pehrson
TIFFlib image library, Copyright © 1988-1997 Sam Leffler, Copyright © 1991-1997 Silicon Graphics, Inc.
MD5 message digest, Copyright © 1991-2, RSA Data Security, Inc.
sRGB ICC profile, Copyright © 1998 Hewlett-Packard Company
Zlib compression library, Copyright © 1995-2017 Jean-loup Gailly and Mark Adler

The PDFlib Block Plugin contains the following additional third-party component:
wxWidgets Cross-Platform GUI Library, Copyright © 2018 © 1998 Julian Smart, © 2018 wxWidgets

http://www.pdflib.com
mailto:sales@pdflib.com
mailto:support@pdflib.com

Contents 3

Contents
1 Programming Concepts 7

1.1 Option Lists 7
1.1.1 Syntax 7
1.1.2 Simple Data Types 9
1.1.3 Fontsize and Action Data Types 12
1.1.4 Color Data Type 13
1.1.5 Geometric Data Types 15

1.2 Function Scopes 17

1.3 Logging 18

2 General Functions 21

2.1 Exception Handling 21

2.2 Unicode Conversion 23

2.3 Global Options 25

2.4 Creating and Deleting PDFlib Objects 32

2.5 PDFlib Virtual File System (PVF) 34

2.6 PDF Object Creation API (POCA) 37

3 Document and Page Functions 41

3.1 Document Functions 41

3.2 Fetching PDF Documents from Memory 51

3.3 Page Functions 52

3.4 Layers 58

4 Font and Text Functions 63

4.1 Font Handling 63

4.2 Text Filter and Appearance Options 74

4.3 Simple Text Output 79

4.4 User-defined (Type 3) Fonts 83

4.5 User-defined 8-Bit Encodings 86

5 Text and Table Formatting 87

5.1 Single-Line Text with Textlines 87

5.2 Multi-Line Text with Textflows 94

5.3 Table Formatting 111

6 Object Fitting and Matchboxes 121

6.1 Object Fitting 121

4 Contents

6.2 Matchboxes 129

7 Graphics Functions 133

7.1 Graphics Appearance Options 133

7.2 Graphics State 136

7.3 Coordinate System Transformations 140

7.4 Path Construction 143

7.5 Painting and Clipping 147

7.6 Path Objects 149

8 Color Functions 155

8.1 Setting Color 155

8.2 ICC Profiles 157

8.3 Spot Colors 159

8.4 DeviceN Colors 160

8.5 Shadings and Shading Patterns 162

8.6 Tiling Patterns 166

9 Image, SVG and Template Functions 169

9.1 Images 169

9.2 SVG Graphics 177

9.3 Templates (Form XObjects) 184

9.4 Common XObject Options 187

10 PDF Import (PDI) and pCOS Functions 193

10.1 Document Functions 193

10.2 Page Functions 197

10.3 Other PDI Processing 203

10.4 pCOS Functions 205

11 Block Filling Functions (PPS) 209

11.1 Rectangle Options for Block Filling Functions 209

11.2 Textline and Textflow Blocks 210

11.3 Image Blocks 212

11.4 PDF Blocks 213

11.5 Graphics Blocks 214

12 Interactive Features 215

12.1 Bookmarks 215

12.2 Annotations 217

Contents 5

12.3 Form Fields 226

12.4 Actions 234

12.5 Named Destinations 239

12.6 PDF Packages and Portfolios 241

12.7 Geospatial Features 246

13 Multimedia Features 249

13.1 3D Artwork 249

13.2 Asset and Rich Media Features 255

14 Document Interchange 261

14.1 Document Information Fields 261

14.2 XMP Metadata 263

14.3 Tagged PDF 264

14.4 Marked Content 270

14.5 Document Part Hierarchy 272

A List of all API Functions 275

B List of all Options and Keywords 277

C Revision History 293

Index 295

1.1 Option Lists 7

1 Programming Concepts

1.1 Option Lists
Option lists are a powerful yet easy method for controlling API function calls. Instead of
requiring a multitude of function parameters, many API methods support option lists,
or optlists for short. These are strings which can contain an arbitrary number of options.
Option lists support various data types and composite data like lists. In most language
bindings optlists can easily be constructed by concatenating the required keywords and
values.

Bindings C language binding: you may want to use the sprintf() function for constructing optlists.

.NET language binding: C# programmers should keep in mind that the AppendFormat()
StringBuilder method uses the { and } braces to represent format items which will be re-
placed by the string representation of arguments. On the other hand, the Append()
method does not impose any special meaning on the brace characters. Since the option
list syntax makes use of the brace characters, care must be taken in selecting the
AppendFormat() or Append() method appropriately.

1.1.1 Syntax

Formal option list syntax definition. Option lists must be constructed according to fol-
lowing rules:

> All elements (keys and values) in an option list must be separated by one or more of
the following separator characters: space, tab, carriage return, newline, equal sign ’=’.

> An outermost pair of enclosing braces is not part of the element. The sequence { }
designates an empty element.

> Separators within the outermost pair of braces no longer split elements, but are part
of the element. Therefore, an element which contains separators must be enclosed
with braces.

> If an element contains brace characters these must be protected with a preceding
backslash character.

> If an element contains a sequence of one or more backslash characters in front of a
brace, each backslash in the sequence must be protected with another backslash
character.

> Option lists must not contain binary zero values.

An option may have a list value according to its documentation in this PDFlib API Refer-
ence. List values contain one or more elements (which may themselves be lists). They
are separated according to the rules above, with the only difference that the equal sign
is no longer treated as a separator.

Note Option names (i.e. the key) never contain hyphen characters. Keep this in mind since the tables
with option descriptions may sometimes contain long option names which are hyphenated.
The hyphen must be omitted when supplying the option in an option list.

Simple option lists. In many cases option lists will contain one or more key/value
pairs. Keys and values, as well as multiple key/value pairs must be separated by one or

8 Chapter 1: Programming Concepts

more whitespace characters (space, tab, carriage return, newline). Alternatively, keys
can be separated from values by an equal sign ’=’:

key=value
key = value
key value
key1 = value1 key2 = value2

To increase readability we recommend to use equal signs between key and value and
whitespace between adjacent key/value pairs.

Since option lists will be evaluated from left to right an option can be supplied mul-
tiply within the same list. In this case the last occurrence will overwrite earlier ones. In
the following example the first option assignment will be overridden by the second,
and key will have the value value2 after processing the option list:

key=value1 key=value2

List values. Lists contain one or more separated values, which may be simple values or
list values in turn. Lists are bracketed with { and } braces, and the values in the list must
be separated by whitespace characters. Examples:

dasharray={11 22 33} (list containing three numbers)
position={ center bottom } (list containing two keywords)

A list may also contain nested lists. In this case the lists must also be separated from
each other by whitespace. While a separator must be inserted between adjacent } and {
characters, it can be omitted between braces of the same kind:

polylinelist={{10 20 30 40} {50 60 70 80}} (list containing two lists)

If the list contains exactly one list the braces for the nested list must not be omitted:

polylinelist={{10 20 30 40}} (list containing one nested list)

Nested option lists and list values. Some options accept the type option list or list of
option lists. Options of type option list contain one or more subordinate options. Options
of type list of option lists contain one or more nested option lists. When dealing with
nested option lists it is important to specify the proper number of enclosing braces.
Several examples are listed below.

The value of the option metadata is an option list which itself contains a single op-
tion filename:

metadata={filename=info.xmp}

The value of the option fill is a list of option lists containing a single option list:

fill={{ area=table fillcolor={rgb 1 0 0} }}

The value of the option fill is a list of option lists containing two option lists:

fill={{ area=rowodd fillcolor={rgb 0 1 0} } { area=roweven fillcolor={rgb 1 0 0} }}

List containing one option list with a value that includes spaces:

attachments={{filename={foo bar.xml} }}

1.1 Option Lists 9

List containing three strings:

itemnamelist = { {Isaac Newton} {James Clark Maxwell} {Albert Einstein} }

List containing two keywords:

position={left bottom}

List containing different types (float and keyword):

position={10 bottom}

List containing one rectangle:

boxes={{10 20 30 40}}

List containing two polylines with percentages:

polygons = {{10 20 40 60 90 120}} {12 87 34 98 34% 67% 34% 7%}}

Common traps and pitfalls. This paragraph lists some common errors regarding op-
tion list syntax.

Braces are not separators; the following is wrong:

key1 {value1}key2 {value2} WRONG!

This will trigger the error message Unknown option 'value2'. Similarly, the following are
wrong since the separators are missing:

key{value} WRONG!
key={{value1}{value2}} WRONG!

Braces must be balanced; the following is wrong (see below for unquoted string syntax):

key={open brace {} WRONG!

This will trigger the error message Braces aren't balanced in option list 'key={open brace {}'.
A single brace as part of a string must be preceded by an additional backslash character:

key={closing brace \} and open brace \{} CORRECT!

A backslash at the end of a string value must be preceded by another backslash if it is
followed by a closing brace character:

key={\value\} WRONG!
key={\value\\} CORRECT!

1.1.2 Simple Data Types

String. Strings are plain ASCII strings (or EBCDIC strings on EBCDIC platforms) which
are generally used for non-localizable keywords. Strings containing whitespace or ’=’
characters must be bracketed with { and }:

password={ secret string } (string value contains three blanks)
contents={length=3mm} (string value containing one equal sign)

10 Chapter 1: Programming Concepts

The characters { and } must be preceded by an additional \ character if they are sup-
posed to be part of the string:

password={weird\}string} (string value contains a right brace)

A backslash in front of the closing brace of an element must be preceded by a backslash
character:

filename={C:\path\name\\} (string ends with a single backslash)

An empty string can be constructed with a pair or braces:

{}

Content strings, hypertext strings and name strings: these can hold Unicode content in
various formats. Single bytes can be expressed by an escape sequence if the option
escapesequence is set. For details on these string types and encoding choices for string
options see the PDFlib Tutorial.

Non-Unicode capable language bindings: if an option list starts with a [EBCDIC-]UTF-
8 BOM, each content, hypertext or name string of the option list is interpreted as a [EBC-
DIC-]UTF-8 string.

Unquoted string values. In the following situations the actual characters in an option
value may conflict with optlist syntax characters:

> Passwords or file names may contain unbalanced braces, backslashes and other spe-
cial characters

> Japanese SJIS filenames in option lists (reasonable only in non-Unicode-capable lan-
guage bindings)

> Supplying JavaScript code in options is problematic due to the use of { and } braces

In order to provide a simple mechanism for supplying arbitrary text or binary data
which does not interfere with option list syntax elements, unquoted option values can
be supplied along with a length specifier in the following syntax variants:

key[n]=value
key[n]={value}

The decimal number n represents the following:
> in Unicode-capable language bindings: the number of UTF-16 code units
> in non-Unicode aware language bindings: the number of bytes comprising the string

The braces around the string value are optional, but strongly recommended. They are
required for strings starting with a space or other separator character. Braces, separators
and backslashes within the string value are taken literally without any special interpre-
tation.

Example for specifying a 7-character password containing space and brace charac-
ters. The whole string is surrounded by braces which are not part of the option value:

password[7]={ ab}c d}

If an option value in a nested option list is provided with a length count, the enclosing
option list must also supply a length count, e.g.

fitannotation[34]={contents[19]={this is a brace '}'}}

1.1 Option Lists 11

Unichar. A Unichar is a single Unicode value where several syntax variants are sup-
ported: decimal values ¹ 10 (e.g. 173), hexadecimal values prefixed with x, X, 0x, 0X, or U+
(xAD, 0xAD, U+00AD), numerical references, character references, and glyph name refer-
ences but without the ’&’ and ’;’ decoration (shy, #xAD, #173). Alternatively, literal charac-
ters can be supplied. Examples:

replacementchar=? (literal)
replacementchar=63 (decimal)
replacementchar=x3F (hexadecimal)
replacementchar=0x3F (hexadecimal)
replacementchar=U+003F (Unicode notation)
replacementchar=euro (HTML character reference)
replacementchar=.question (standard glyph name reference)
replacementchar=.marina (font-specific glyph name reference)

Single characters which happen to be a number are treated literally, not as decimal Uni-
code values:

replacementchar=3 (U+0033 THREE, not U+0003!)

Unichars must be in the hexadecimal range 0-0x10FFFF (decimal 0-1114111). However,
some options are restricted to the range 0-0xFFFF (0-65535). This is noted in the respec-
tive option description.

Unicode range. A Unicode range identifies a contiguous range of Unicode characters
via start and end characters of the range. The start and end values of a Unicode range
must be separated by a minus sign ’-’ without any spaces, e.g.

forcechars={U+03AC-U+03CE}

Boolean. Booleans have the values true or false; if the value of a Boolean option is
omitted, the value true is assumed. As a shorthand notation noname can be used instead
of name=false:

embedding (equivalent to embedding=true)
noembedding (equivalent to embedding=false)

Keyword. An option of type keyword can hold one of a predefined list of fixed key-
words. Example:

blendmode=overlay

For some options the value hold either a number or a keyword.

Number. Option list support several numerical types.
Integer types can hold decimal and hexadecimal integers. Positive integers starting
with x, X, 0x, or 0X specify hexadecimal values:

-12345
0
0xFF

12 Chapter 1: Programming Concepts

Floats can hold decimal floating point or integer numbers; period and comma can be
used as decimal separators for floating point values. Exponential notation is also sup-
ported. The following values are all equivalent:

size = -123.45
size = -123,45
size = -1.2345E2
size = -1.2345e+2

Percentages are numbers with a % character directly after the numerical value. Some
options allow negative percentages:

leading=120%
topoffset=-20.5%

Handle. Handles identify various types of objects, e.g. fonts, images, ICC profiles or ac-
tions. Technically these are integer values which have been returned earlier by an API
function. For example, an image handle is returned by PDF_load_image(). Handles must
always be treated as opaque types; they must never be modified or created by the appli-
cation directly (as opposed to using a handle returned by an API function). Handles
must always be valid for the respective type of object. For example, an option which ex-
pects an image handle must not be supplied with a graphics handle, although both han-
dles are integer types.

1.1.3 Fontsize and Action Data Types

Fontsize. A fontsize can be defined in several ways which allow the size of text to be
specified in absolute values, relative to some external entity, or relative to some font
property. In general the fontsize must be different from 0 unless the option description
mentions otherwise.

In the most common case a fontsize contains a single float value which specifies re-
fers to units in the user coordinate system:

fontsize=12

The second variant contains a percentage, where the basis of the percentage depends on
the context (e.g. the width of the fitbox for PDF_fit_textline()):

fontsize=8%

In the third variant, the fontsize is specified as an option list which must contain a key-
word and a number. The keyword describes the desired font metric according to Table
1.1, and the number contains the desired size. PDFlib will calculate the proper fontsize so
that the selected text metric matches the supplied value:

fontsize={capheight 5}

Action list. An action list specifies one or more actions. Each entry in the list consists
of an event keyword (trigger) and a list of action handles which must have been created
with PDF_create_action(). Actions will be performed in the listed order. The set of al-
lowed events (e.g. docopen) and the type of actions (e.g. JavaScript) are documented sep-
arately for the respective options.

List containing a single trigger with three actions:

1.1 Option Lists 13

action={ activate={ 0 1 2 } }

List containing three triggers with one action for each:

action={ keystroke=0 format=1 validate=2 }

1.1.4 Color Data Type

Overview of color spaces. You can specify the colors for filling and stroking paths and
text characters. Colors can be specified in several color spaces (see PDFlib Tutorial for a
full discussion of color spaces and values). Each item in the following list starts with the
corresponding color space keyword for color options):

> gray: Gray values between 0=black and 1=white;
> rgb: RGB triples, i.e. three values between 0 and 1 specifying the percentage of red,

green, and blue; (0, 0, 0)=black, (1, 1, 1)=white. The commonly used RGB color values in
the range 0–255 must be divided by 255 in order to scale them to the range 0–1 as re-
quired by PDFlib.
As an alternative to numerical RGB values you can specify RGB colors via their HTML
names or hexadecimal values.

> cmyk: Four CMYK values between 0 = no color and 1 = full color, representing cyan,
magenta, yellow, and black values; (0, 0, 0, 0)=white, (0, 0, 0, 1)=black. Note that this is
different from the RGB specification.

> iccbased (not for PDF_setcolor()) and iccbasedgray/rgb/cmyk: ICC-based colors are based
on an ICC profile.

> spotname: name of a predefined spot color and a tint value in the range 0=no color to
1=maximum intensity.
Alternatively, the name of a custom spot color, a tint value, and an alternate re-
presentation in one of the other color spaces above.

> spot: handle for a predefined or custom spot color created with PDF_makespotcolor()
and a tint value.

> devicen: handle for a DeviceN color space created with PDF_create_devicen() and N tint
values for the named colorants. Tint values are in the range 0=no color to 1=maxi-
mum intensity.

> lab expects device-independent colors in the CIE L*a*b* color space. Colors are speci-
fied by a luminance value in the range 0-100 and two color values a and b in the
range -128 to 127. The a component ranges from green to red/magenta (negative val-
ues indicate green, positive values indicate magenta), and the b component ranges
from blue to yellow (negative values indicate blue, positive values indicate yellow).

Table 1.1 Suboptions for options of type fontsize

option description

ascender The number is interpreted as ascender height.

bodyheight The number is interpreted as minimum distance between baselines, i.e. descenders and ascenders of ad-
jacent lines may exactly touch if this value is used as leading. This is the default behavior if no keyword is
provided.

capheight The number is interpreted as capital letter height.

xheight The number is interpreted as lowercase letter height.

14 Chapter 1: Programming Concepts

> pattern: shading pattern identified by a pattern handle. A shading pattern provides a
gradual transition between two or more colors and can be created with PDF_shading_
pattern() based on a shading handle created with PDF_shading().

> pattern: tiling pattern identified by a pattern handle. A tiling pattern contains arbi-
trary text, vector graphics, or images which are repeatedly tiled across the area to be
filled. Tiling patterns can be created with PDF_begin_pattern_ext().

The default color for stroke and fill operations is black. The color space for this default
color is selected automatically to match PDF/X and PDF/A color requirements.

Color options. Color options can be defined in three different forms: using an RGB col-
or name, hexadecimal RGB values, or a flexible option list for colors in any color space.

In the first form all valid color names from SVG 1.1 can be supplied directly to specify
an RGB color or an sRGB color if the sRGB ICC profile has been selected, e.g.

strokecolor=pink

Color names are case-insensitive. A list of valid RGB color names can be found at the fol-
lowing location:

www.w3.org/TR/SVG11/types.html#ColorKeywords

In the second form a hash ’#’ character followed by any three pairs of hexadecimal dig-
its 00-FF can be supplied to specify an RGB color value, e.g.

strokecolor=#FFC0CB

Cookbook In the third form an color option list specified a color space and color value. A color op-
tion list contains a color space keyword and a list with a variable number of float values
depending on the particular color space. Table 1.2 contains descriptions of color space
keywords with examples. As detailed in the respective function descriptions, a particu-
lar option list may support only a subset of the color space keywords.

Table 1.2 Keywords for the color data type in option lists

keyword additional values example

gray single float value for the grayscale color space { gray 0.5 }

rgb three float values for the RGB color space { rgb 1 0 0 }

(no keyword) HTML color name or hexadecimal values for an RGB color pink

#FFC0CB

cmyk four float values for the CMYK color space { cmyk 0 1 0 0 }

lab three float values for the Lab color space { lab 100 50 30 }

spot spot color handle created with PDF_makespotcolor(), followed by
a float specifying the tint value

{ spot <handle> 0.8 }

spotname (up to 63 bytes; fewer Unicode characters depending on format
and encoding) spot color name and a float specifying the tint val-
ue in the range 0..1

{ spotname {PANTONE 281 U} 0.5 }

http://www.w3.org/TR/SVG11/types.html#ColorKeywords

1.1 Option Lists 15

1.1.5 Geometric Data Types

Line. A line is a list of four float values specifying the x and y coordinates of the start
and end point of a line segment. The coordinate system for interpreting the coordinates
(default or user coordinate system) varies depending on the option, and is documented
separately:

line = {10 40 130 90}

Polyline. A polyline is a list containing one or more points where each point is de-
scribed by a pair of float values. Each pair in the list specifies the x and y coordinates of a
point; these points will be connected by line segments. The coordinate system for inter-
preting the coordinates (default or user coordinate system) varies depending on the op-
tion, and is documented separately:

polyline = {10 20 30 40 50 60}

The following option lists are equivalent:

polyline = {10 20 30r 40r 50r 60r}
polyline = {10 20 40 60 90 120}

Quadrilaterals are a special type of polylines: these are rectangles which may be rotated
and for which exactly four points must be specified.

spotname Similar to the simple form of spotname above, but a color value
can be added to specify the alternate color for a custom spot color
(i.e. a spot color name which is not known internally to PDFlib). If
multiple options define the same custom spot color name all defi-
nitions must be consistent (i.e. define the same alternate color).

{ spotname {PDFlib Blue} 0.5
{ lab 100 50 30 } }

devicen DeviceN color space handle created with PDF_create_devicen() fol-
lowed by N float values for the tint values of the colorants in the
range 0..1.

{ devicen <handle> 0.8 0.9 }

{ devicen <handle> 0 0 0.1 0.2}

iccbased ICC profile handle or keyword srgb, plus 1, 3 or 4 color values de-
pending on the type of ICC profile (gray, RGB, or CMYK). The srgb
keyword must not be used in document scope.

{ iccbased <handle> 0.5 }

{ iccbased <handle> 0 0 0.75 }

{ iccbased srgb 0 0 0.75 }

{ iccbased <handle> 0 0 0.3 1 }

iccbasedgray single float value referring to an ICC profile selected with the op-
tion iccprofilegray

{ iccbasedgray 0.5 }

iccbasedrgb three float values value referring to an ICC profile selected with the
option iccprofilergb

{ iccbasedrgb 1 0 0 }

iccbasedcmyk four float values value referring to an ICC profile selected with the
option iccprofilecmyk

{ iccbasedcmyk 0 1 0 0 }

pattern shading pattern handle created with PDF_shading_pattern() { pattern <handle> }

pattern tiling pattern handle created with PDF_begin_pattern_ext() { pattern <handle> }

none specifies the absence of color none

Table 1.2 Keywords for the color data type in option lists

keyword additional values example

16 Chapter 1: Programming Concepts

Another special type are polygons: these are polylines which will automatically be
closed by a line segment.

Rectangle. A rectangle is a list of four float values specifying the x and y coordinates of
the lower left and upper right corners of a rectangle. The coordinate system for inter-
preting the coordinates (default or user coordinate system) varies depending on the op-
tion, and is documented separately. Some options accept percentages, where the basis
for the percentage depends on the context (e.g. the fitbox of a Textflow). Relative coordi-
nates can be supplied by adding the suffix r immediately after a number. Within a coor-
dinate list a relative coordinate relates to the previous x or y coordinate. Relative coordi-
nates at the beginning of a list relate to the origin, i.e. they are absolute coordinates.
Examples:

cropbox={ 0 0 500 600 }
box={40% 30% 50% 70%}

The following options are equivalent:

box={12 34 56r 78r}
box={12 34 68 112}

Circle. A circle is specified as a list of four float values where the first pair specifies the
x and y coordinates of the center, and the second pair specifies the x and y coordinates
of an arbitrary point on the circle. The coordinate system for interpreting the coordi-
nates (default or user coordinate system) varies depending on the option, and is docu-
mented separately:

circle={200 325 200 200}

Curve list. A curve list consists of two or more connected third-order Bézier curve seg-
ments. A Bézier curve is specified by four control points. The first control point is the
starting point and the fourth point is the end point of the curve. The second and third
point control the shape of the curve. In a curve list the last point of a segment serves as
the first point for the next segment:

curve={200 700 240 600 80 580 400 660 400 660 440 620}

The last control point will become the new current point after drawing the curves.

1.2 Function Scopes 17

1.2 Function Scopes
PDFlib applications must obey certain structural rules which are easy to understand.
For example, you obviously begin a document before ending it. PDFlib enforces correct
ordering of function calls with a strict scoping system. The scope definitions can be
found in Table 1.3. All API function descriptions specify the allowed scope for each func-
tion. Calling a function outside of the allowed scopes results in an exception. You can
query the current scope with the scope keyword of PDF_get_option().

Table 1.3 Function scope definitions

scope name definition

path started by one of PDF_moveto(), PDF_circle(), PDF_arc(), PDF_arcn(), PDF_rect(), PDF_ellipse() or PDF_
elliptical_arc();
terminated by any of the functions in Section 7.5, »Painting and Clipping«, page 147

page between PDF_begin_page_ext() and PDF_end_page_ext(), but outside of path scope

template between PDF_begin_template_ext() and PDF_end_template_ext(), but outside of path scope

pattern between PDF_begin_pattern_ext() and PDF_end_pattern(), but outside of path scope

font between PDF_begin_font() and PDF_end_font(), but outside of glyph scope

glyph between PDF_begin_glyph_ext() and PDF_end_glyph(), but outside of path scope

document between PDF_begin_document() and PDF_end_document(), but outside of page, path, glyph, template,
pattern, and font scope

object during the lifetime of the PDFlib object, but outside of document scope; in the C and RPG language bind-
ings between PDF_new() and PDF_delete(), but outside of document scope

18 Chapter 1: Programming Concepts

1.3 Logging
The logging feature can be used to trace API calls. The contents of the log file may be
useful for debugging purposes, or may be requested by PDFlib GmbH support. Logging
options can be supplied in the following ways:

> As an option list for the global logging option of PDF_set_option(), e.g.:

p.set_option("logging={filename=trace.log remove}");

> In an environment variable called PDFLIBLOGGING. This will activate the logging out-
put starting with the very first call to one of the API functions.

Table 1.4 Suboptions for the logging option

option description

(empty list) Enable log output

disable (Boolean) Disable logging output

enable (Boolean) Enable logging output

filename (String) Name of the log file; stdout and stderr will be recognized as special names. On CICS this option
will be ignored, and logging output will always be written to stderr. Output will be appended to any ex-
isting contents. Default:
pdflog on z/OS
PDFlib.log on macOS and iSeries
\PDFlib.log on Windows
/tmp/PDFlib.log on all other systems
The log file name can alternatively be supplied in an environment variable called PDFLIBLOGFILE.

flush (Boolean) If true, the log file will be closed after each output, and reopened for the next output to make
sure that the output will actually be flushed. This may be useful when chasing program crashes where
the log file is truncated, but significantly slows down processing. If false, the log file will be opened only
once. Default: false

includepid (Boolean; not on MVS) Include the process id in the log file name. This should be enabled if multiple pro-
cesses use the same log file name. Default: false

includetid (Boolean; not on MVS) Include the thread id in the log file name. This should be enabled if multiple
threads in the same process use the same log file name. Default: false

includeoid (Boolean; not on MVS) Include the object id in the log file name. This should be enabled if multiple PDFlib
objects in the same thread use the same log file name. Default: false

remove (Boolean) If true, an existing log file will be deleted before writing new output. Default: false

removeon-
success

(Boolean) Remove the generated log file in PDF_delete() unless an exception occurred. This may be useful
for analyzing occasional problems in multi-threaded applications or problems which occur only sporadi-
cally. It is recommended to combine this option with includepid/includetid/includeoid as appropri-
ate.

stringlimit (Integer) Limit for the number of characters per line, or 0 for unlimited. Default: 0

1.3 Logging 19

classes (Option list) List containing options of type integer, where each option describes a logging class and the
corresponding value describes the granularity level. Level 0 disables a logging class, positive numbers en-
able a class. Increasing levels provide more and more detailed output. The following options are provided
(default: {api=1 warning=1}):
api Log all API calls with their function parameters and results. If api=2 a timestamp will be

created in front of all API trace lines, and deprecated functions and options will be marked.
filesearch Log all attempts related to locating files via SearchPath or PVF.

resource Log all attempts at locating resources via Windows registry, UPR definitions as well as the
results of the resource search.

tagging Structure element (tag) operations
user User-specified logging output supplied with the userlog option.
warning Log all PDFlib warnings, i.e. error conditions which can be ignored or fixed internally. If

warning=2 messages from functions which do not throw any exception, but hook up the
message text for retrieval via PDF_get_errmsg(), and the reason for all failed attempts at
opening a file (searching for a file in searchpath) will also be logged.

Table 1.4 Suboptions for the logging option

option description

2.1 Exception Handling 21

2 General Functions

2.1 Exception Handling
Table 2.1 details the relevant option for this section. This option is supported by many
functions as indicated in the corresponding option list descriptions. It can also be sup-
plied as global option to PDF_set_option() (see Section 2.3, »Global Options«, page 25).

C++ Java C# int get_errnum()
Perl PHP int get_errnum()

C int PDF_get_errnum(PDF *p)

Get the number of the last thrown exception or the reason of a failed function call.

Returns The error code of the most recent error condition.

Scope Between an exception thrown by PDFlib and the death of the PDFlib object. Alternative-
ly, this function may be called after a function returned a -1 (in PHP: 0) error code, but
before calling any other function except those listed in this section.

Bindings In C++, Java, Objective-C, .NET and PHP this function is also available as get_errnum() in
the PDFlibException object.

Table 2.1 Exception-related option for PDF_set_option()

option description

errorpolicy (Keyword) Controls the error behavior of functions which return a value. The global option errorpolicy
can be overridden by the errorpolicy option of many functions, and serves as default for this option.
Supported keywords (default: legacy):
legacy (Deprecated) Some functions return an error code, while others throw an exception according

to the respective API description.
return If a processing error occurs the function will return. Functions which can return an error code

(e.g. PDF_load_image()) return -1 (in PHP: 0). Functions which return result strings (e.g. PDF_
fit_table()) return the string _error. Application developers must check the return value
against -1 (in PHP: 0) or _error to detect error situations. In case of an error a detailed
description can be queried with PDF_get_errmsg(). This setting is recommended for new
applications.
Even with errorpolicy=return an exception is thrown if a syntactic error in an option list is
found or the PDF output cannot be written.

exception If an error occurs the function will throw an exception. The exception must be caught in client
code. The partial PDF output generated so far is unusable and must be discarded (this can be
automated with the removefragments document option).

22 Chapter 2: General Functions

C++ Java C# String get_errmsg()
Perl PHP string get_errmsg()

C const char *PDF_get_errmsg(PDF *p)

Get the text of the last thrown exception or the reason of a failed function call.

Returns Text containing the description of the most recent error condition.

Scope Between an exception thrown by PDFlib and the death of the PDFlib object. Alternative-
ly, this function may be called after a function returned a -1 (in PHP: 0) error code, but
before calling any other function except those listed in this section.

Bindings In C++, Java, Objective-C, .NET and PHP this function is also available as get_errmsg() in
the PDFlibException object.

C++ Java C# String get_apiname()
Perl PHP string get_apiname()

C const char *PDF_get_apiname(PDF *p)

Get the name of the API function which threw the last exception or failed.

Returns The name of the API function which threw an exception, or the name of the most re-
cently called function which failed with an error code.

Scope Between an exception thrown by PDFlib and the death of the PDFlib object. Alternative-
ly, this function may be called after a function returned a -1 (in PHP: 0) error code, but
before calling any other function except those listed in this section.

Bindings In C++, Java, Objective-C, .NET and PHP this function is also available as get_apiname() in
the PDFlibException object.

C++ void *get_opaque()
C void *PDF_get_opaque(PDF *p)

Fetch the opaque application pointer stored in PDFlib.

Returns The opaque application pointer stored in PDFlib which has been supplied in the call to
PDF_new2().

Details PDFlib never touches the opaque pointer, but supplies it unchanged to the client. This
may be used in multi-threaded applications for storing private thread-specific data
within the PDFlib object. It is especially useful for thread-specific exception handling.

Scope any

Bindings Only available in the C and C++ bindings.

2.2 Unicode Conversion 23

2.2 Unicode Conversion

C++ string convert_to_unicode(string inputformat, string input, string optlist)
Java C# string convert_to_unicode(string inputformat, byte[] input, string optlist)

Perl PHP string convert_to_unicode(string inputformat, string input, string optlist)
C const char *PDF_convert_to_unicode(PDF *p,

const char *inputformat, const char *input, int inputlen, int *outputlen, const char *optlist)

Convert a string in an arbitrary encoding to a Unicode string in various formats.

inputformat Unicode text format or encoding name specifying interpretation of the
input string:

> Unicode text formats: utf8, ebcdicutf8 (on EBCDIC platforms), utf16, utf16le, utf16be,
utf32

> Only if the font option is specified: builtin, glyphid
> All internally known 8-bit encodings, encodings available on the host system, and

the CJK encodings cp932, cp936, cp949, cp950
> The keyword auto specifies the following behavior: if the input string contains a

UTF-8 or UTF-16 BOM it will be used to determine the appropriate format, otherwise
the current system codepage is assumed.

input String to be converted to Unicode.

inputlen (C language binding only) Length of the input string in bytes. If inputlen=0 a
null-terminated string must be provided.

outputlen (C language binding only) C-style pointer to a memory location where the
length of the returned string (in bytes) will be stored.

optlist An option list specifying options for input interpretation and Unicode conver-
sion:

> Text filter options according to Table 4.6: charref, escapesequence
> Unicode conversion options according to Table 2.2:

bom, errorpolicy, font, inflate, outputformat

Returns A Unicode string created from the input string according to the specified parameters
and options. If the input string does not conform to the specified input format (e.g. in-
valid UTF-8 string) an empty output string will be returned if errorpolicy=return, and an
exception will be thrown if errorpolicy=exception.

Details This function may be useful for general Unicode string conversion. It is provided for the
benefit of users who work in environments without suitable Unicode converters.

Scope any

Bindings C binding: the returned strings will be stored in a ring buffer with up to 10 entries. If
more than 10 strings are converted, the buffers will be reused, which means that clients
must copy the strings if they want to access more than 10 strings in parallel. For exam-
ple, up to 10 calls to this function can be used as parameters for a printf() statement
since the return strings are guaranteed to be independent if no more than 10 strings are
used at the same time.

24 Chapter 2: General Functions

Non-Unicode-capable language bindings: this function can be used to create name
strings and option lists in non-Unicode aware language bindings. It creates the required
BOM with the options bom=optimize and outputformat=utf8.

C++ binding: The parameters inputformat and optlist must be passed as wstrings as
usual, while input and returned data must have type string.

Table 2.2 Options for PDF_convert_to_unicode()

option description

bom (Keyword; will be ignored for outputformat=utf32) Policy for adding a byte order mark (BOM) to the
output string. Supported keywords (default: none):
add Add a BOM.
keep Add a BOM if the input string has a BOM.
none Don’t add a BOM.
optimize Add a BOM except if outputformat=utf8 or ebcdicutf8 and the output string contains only

characters in the range < U+007F.

errorpolicy (Keyword) Behavior in case of conversion errors (default: the value of the errorpolicy global option, see
Table 2.1):
return The replacement character will be used if a character reference cannot be resolved or a code

or glyph ID doesn’t exist in the specified font. An empty string will be returned in case of con-
version errors.

exception An exception will be thrown in case of conversion errors.

font (Font handle; required for inputformat=builtin and glyphid) Apply font-specific conversion according
to the specified font.

inflate (Boolean; only for inputformat=utf8) If true, an invalid UTF-8 input string will not trigger an excep-
tion, but rather an inflated byte string in the specified output format will be generated. The inflated
string contains Unicode characters which correspond to the ASCII interpretation of the bytes in the input
string. This may be useful for debugging. Default: false

output-
format

(Keyword) Unicode text format of the generated string: utf8, ebcdicutf8 (on EBCDIC platforms),
utf16, utf16le, utf16be, utf32. An empty string is equivalent to utf16. Default: utf16
Unicode-capable language bindings: the output format will be forced to utf16.
C++ language binding: only the following output formats are allowed: ebcdicutf8, utf8, utf16, utf32.

2.3 Global Options 25

2.3 Global Options
PDFlib offers various global options for controlling the library and the appearance of
the PDF output. These options retain their settings across the life span of the PDFlib ob-
ject, or until they are explicitly changed by the client.

C++ Java C# void set_option(String optlist)
Perl PHP set_option(string optlist)

C void PDF_set_option(PDF *p, const char *optlist)

Set one or more global options.

optlist An option list specifying global options according to Table 2.3. The following
options can be used:

> Options for resource handling and resource categories according to Table 2.3:
CMap, Encoding, enumeratefonts, FontAFM, FontnameAlias, FontOutline, FontPFM,
HostFont, ICCProfile, resourcefile, saveresources, searchpath

> Options for file handling and licensing according to Table 2.3:
avoiddemostamp, filenamehandling, license, licensefile

> Text filter options according to Table 2.3:
charref,escapesequence, glyphcheck, stringformat, textformat

> Options for interactive elements according to Table 2.3:
hypertextencoding, hypertextformat, usehypertextencoding, usercoordinates

> Other options according to Table 2.3:
asciifile, autospace, compress, kerning, logging, maxfilehandles, shutdownstrategy,
usehostfonts, userlog

> Option for error handling according to Table 2.1: errorpolicy
> Options for color handling according to Table 2.3 and Table 8.2:

iccprofilecmyk, iccprofilegray, iccprofilergb

Details Except for resource category options new values override previously set option values.
The following options provide default values for the same-named text options (see

Table 4.6 and Table 4.7):
charref, escapesequence, glyphcheck, kerning, textformat

At the same time these options change the options of the same name in the current
text state. It is recommended to set options for content strings only in PDF_set_text_
option() to avoid unwanted side effects.

Scope any, but restricted scopes apply to some options

Table 2.3 Global options for PDF_set_option()

option description

asciifile (Boolean; only supported on IBM System i and IBM Z). Expect text files in ASCII encoding. Default: true
on IBM System i; false on IBM Z

autospace If true and the current font contains a glyph for U+0020, PDFlib will automatically add a space character
after each text output. This may be useful for generating Tagged PDF. Note that adding spaces changes
the current text position. Default: false

26 Chapter 2: General Functions

avoiddemo-
stamp

(Boolean) If true, an exception will be thrown when no valid license key was found; if false, a demo
stamp will be created on all pages. This option must be set before the first call to PDF_begin_
document(). Default: false

charref (Boolean) If true, enable substitution of numeric and character entity references and glyph name refer-
ences for all content, name and hypertext strings. In order to avoid character reference substitution in
places where it is not desired (e.g. file names) it is recommended to set this option for content strings only
in PDF_set_text_option(); see PDFlib Tutorial for details. Default: false

CMap (List of pairs of name strings) List of key/value pairs for a resource definition separated by whitespace or
equal signs ’=’ (see PDFlib Tutorial for details). Multiple calls add new entries to the internal list.

compress (Integer) Compression level from 0=no compression, 1=best speed, etc. to 9=best compression. This op-
tion does not affect image data handled in passthrough mode. Default: 6. Scope: any except object

Encoding (List of pairs of name strings) List of key/value pairs for a resource definition separated by whitespace or
equal signs ’=’ (see PDFlib Tutorial for details). Multiple calls add new entries to the internal list.

enumerate-
fonts

(Boolean) If true, PDFlib searches for font files in all directories which can be accessed via the SearchPath
resource. Host fonts are not processed, but can be included by adding the system font directory to the
search path, e.g. C:/Windows/Fonts.
Font enumeration may take significant time for a large number of fonts. The resulting resource list can
be saved to a file with the saveresources option. The recommended strategy is to create and save the re-
source list only if the set of fonts has changed, but not for each document or PDFlib object.
For each font PDFlib determines the font-family, font-weight and font-style names and synthesizes
an API font name according to the following scheme:
<font-family>[,<font-weight>][,font-style]

PDFlib creates a FontOutline resource of the form <fontname>=<pathname> which connects the artificial
font name with the full path name of the font. In addition to the API font name PDFlib creates a
FontnameAlias resource with the PostScript name of the font if it is different from the artificial name:
<PostScript fontname>=<artificial fontname>

As a result, the font can be loaded by the artificial font name or the PostScript name. Default: false

escape-
sequence

(Boolean) If true, enable substitution of escape sequences in all content, name and hypertext strings. In
order to avoid escape sequence substitutions in places where it is not desired (e.g. file names) it is recom-
mended to set this option for content strings only in PDF_set_text_option(); Default: false

filename-
handling

(Keyword) Indicates the encoding of file names. File names supplied as function parameters without
UTF-8 BOM in non-Unicode aware language bindings are interpreted according to this option to guard
against characters which would be illegal in the file system and to create a Unicode version of the file
name. An error occurs if the file name contains characters outside the specified encoding. Default:
legacy:

ascii 7-bit ASCII
basicebcdic Basic EBCDIC according to code page 1047, but only Unicode values <= U+007E
basicebcdic_37

Basic EBCDIC according to code page 0037, but only Unicode values <= U+007E
honorlang (Not on i5/iSeries) The environment variables LC_ALL, LC_CTYPE and LANG are interpreted.

The codeset specified in LANG is applied to file names if it is available.
legacy Use host encoding to interpret the file name
unicode Unicode encoding in (EBCDIC-) UTF-8 format
all valid encoding names

Any encoding recognized by PDFlib (see Table 4.2) except CMaps, glyphid and builtin

Table 2.3 Global options for PDF_set_option()

option description

2.3 Global Options 27

FontAFM (List of pairs of name strings; deprecated) List of key/value pairs for a resource definition separated by
whitespace or equal signs ’=’ (see PDFlib Tutorial for details). Multiple calls add new entries to the inter-
nal list.

Fontname-
Alias

(List of pairs of name strings) List of key/value pairs for a resource definition separated by whitespace or
equal signs ’=’ (see PDFlib Tutorial for details). Multiple calls add new entries to the internal list.

FontOutline (List of pairs of name strings) List of key/value pairs for a resource definition separated by whitespace or
equal signs ’=’ (see PDFlib Tutorial for details). Multiple calls add new entries to the internal list.

FontPFM (List of pairs of name strings; deprecated) List of key/value pairs for a resource definition separated by
whitespace or equal signs ’=’ (see PDFlib Tutorial for details). Multiple calls add new entries to the inter-
nal list.

glyphcheck (Keyword) See Table 4.6 for a description. It is recommended to set this option for content strings only in
PDF_set_text_option(); see PDFlib Tutorial for details. Default: replace

HostFont (List of pairs of name strings) List of key/value pairs for a resource definition separated by whitespace or
equal signs ’=’ (see PDFlib Tutorial for details). Multiple calls add new entries to the internal list.

hypertext-
encoding

(String; only for non-Unicode-capable language bindings) Encoding for hypertext strings. An empty
string is equivalent to unicode. Default: auto

hypertext-
format

(Keyword; only for non-Unicode-capable language bindings) Format for hypertext strings as function pa-
rameters. Supported keywords are bytes, utf8, ebcdicutf8, utf16, utf16le, utf16be, and auto. Default:
auto

ICCProfile (List of pairs of name strings) List of key/value pairs for a resource definition separated by whitespace or
equal signs ’=’ (see PDFlib Tutorial for details). Multiple calls add new entries to the internal list.

iccprofilecmyk
iccprofilegray
iccprofilergb

(ICC profile handle) ICC profile which specifies a CMYK, Gray, or RGB color space for use with the icc-
basedcmyk/gray/rgb color options. Default: no ICC color space

kerning (Boolean) If true, enable kerning for fonts which have been opened with the readkerning option; disable
kerning otherwise. Default: true

license (String) License key for PDFlib, PDFlib+PDI, or PPS (see PDFlib Tutorial for details). The key can be set be-
fore the first call to PDF_begin_document(). Use the avoiddemostamp option to make sure that missing
license keys will not accidentally result in a demo stamp.

licensefile (Name string) Name of a file containing the license key (see PDFlib Tutorial for details). The license file
can only be set once before the first call to PDF_begin_document().

logging (Option list) Logging options according to Table 1.4

maxfile-
handles

(Unsupported; implemented on Windows only) New maximum for the number of simultaneously open
files (in the C runtime). The number must be greater or equal than 20 and less or equal than 2048. An ex-
ception will be thrown if the new value is not accepted by the C runtime. Scope: object

resourcefile (Name string) Relative or absolute file name of the PDFlib UPR resource file. The resource file will be load-
ed immediately before the first access to any resource. Existing resources will be kept; their values are
overridden by new ones if they are set again.

saveresources (Option list) Save the current resource list to a file. The following option is supported:
filename The name of the resource file to which the resource list will be saved. Default: pdflib.upr

Table 2.3 Global options for PDF_set_option()

option description

28 Chapter 2: General Functions

C++ Java C# double get_option(String keyword, String optlist)
Perl PHP float get_option(string keyword, string optlist)

C double PDF_get_option(PDF *p, const char *keyword, const char *optlist)

Retrieve some option or other value.

keyword Keyword specifying the option to retrieve. The keywords below are support-
ed; see description of PDF_set_option(), PDF_set_text_option() and PDF_set_graphics_
option() regarding their meaning. Keywords for which no corresponding option exists
are described in Table 2.4:

searchpath (List of name strings) One or more relative or absolute path name(s) of directories containing files to be
read. The search path can be set multiply; the entries will be accumulated and used in least-recently-set
order (see PDFlib Tutorial for details). It is recommended to use double braces even for a single entry to
avoid problems with directory names containing space characters. An empty string list (i.e. {{}})
deletes all existing search path entries including the default entries. On Windows the search path can
also be set via a registry entry. Default: platform-specific, see PDFlib Tutorial

shutdown-
strategy

(Integer) Strategy for releasing global resources which are allocated once for all PDFlib objects. Each
global resource is initialized on demand when it is first needed. This option must be set to the same value
for all PDFlib objects in a process; otherwise the behavior is undefined (default: 0):
0 A reference counter keeps track of how many PDFlib objects use the global resources. When

the last PDFlib object is deleted the resources are released.
1 The resources are kept until the end of the process. This may slightly improve performance,

but requires more memory after the last PDFlib object is deleted.

stringformat (Keyword; only for non-Unicode-capable language bindings) Format used to interpret all strings at the
API, i.e. name strings, content strings, hypertext strings and option lists. Supported keywords (default:
legacy):

ebcdicutf8 (Only on IBM System i and IBM Z) All strings and option lists are expected in EBCDIC-UTF-8
format with or without BOM.

legacy Name strings, content strings, hypertext strings and option lists are treated according to the
textformat, hypertextformat and hypertextencoding options.

utf8 (Not on IBM System i and IBM Z) All strings and option lists are expected in UTF-8 format with
or without BOM. The options textformat, hypertextformat and hypertextencoding are not
allowed. The Textflow option fixedtextformat is forced to true. Legacy CJK CMaps can not
be used for loading fonts. In the C language binding name strings as function parameters are
still interpreted as UTF-16 strings if the length parameter is supplied with a value larger than
0. Use PDF_convert_to_unicode() to convert strings in 8-bit encodings to UTF-8.

user-
coordinates

(Boolean) If false, coordinates for hypertext rectangles are expected in the default coordinate system;
otherwise the current user coordinate system will be used. Default: false

userlog String which will be copied to the log file

usehostfonts (Boolean) If true, host fonts are included in the font search. Default: true

usehypertext-
encoding

(Boolean; only for non-Unicode-capable language bindings) If true, the encoding specified in the
hypertextencoding option will also be used for name strings. If false, the encoding for name strings
without UTF-8 BOM is host. Default: false

textformat (Keyword; only for non-Unicode capable language bindings) Format used to interpret content strings.
Supported keywords: bytes, utf8, ebcdicutf8 (only on IBM System i and IBM Z), utf16, utf16le,
utf16be, and auto. Default: auto

Table 2.3 Global options for PDF_set_option()

option description

2.3 Global Options 29

> Keywords for the string index of the n-th entry of the specified resource, where n cor-
responds to the resourcenumber option:
Encoding, FontAFM, FontnameAlias, FontOutline, FontPFM, HostFont, ICCProfile,
searchpath

> Keywords for Boolean option values return 1 for true or 0 for false:
asciifile, autospace,avoiddemostamp, charref, decorationabove, escapesequence, fakebold,
kerning, overline, pdi, preserveoldpantonenames strikeout, tagged, topdown, underline,
usercoordinates, usehostfonts, usehypertextencoding

> Keywords for integer and float option values:
charspacing, compress, ctm_a, ctm_b, ctm_c, ctm_d, ctm_e, ctm_f, currentx, currenty,
icccomponents, flatness, font, fontsize, horizscaling, iccprofilecmyk, iccprofilegray, iccprofilergb,
italicangle, leading, linecap, linejoin, linewidth, major, maxfilehandles, minor, miterlimit,
pageheight, pagewidth, revision, scope, textrendering, textrise, textx, texty, underline-
position, underlinewidth, wordspacing

> Keywords returning a string index for an option value or -1 if the string value is not
available:
cliprule, errorpolicy, filenamehandling, fillrule, glyphcheck, hypertextencoding, hypertext-
format, resourcefile, scope, textformat

> Keywords for querying the current structure element (only in Tagged PDF mode):
activeitemid, activeitemindex, activeitemisinline, activeitemkidcount, activeitemname,
activeitemstandardname

Table 2.4 Additional keywords for PDF_get_option()

keyword description

activeitemid (Integer) Item id of the currently active structure item. This may be used with PDF_activate_item() or the
parent suboption of PDF_begin_item() and the tag option. -1 is returned if no root element has been cre-
ated yet. Scope: document, page

activeitem-
index

(Integer) Zero-based index of the currently active structure item within its parent. This may be used with
the index tag option. If the current item is a pseudo element or the root element or no root element has
been created yet -1 is returned. Scope: document, page

activeitem-
isinline

(Integer) 1 if the currently active structure item is a direct element, 0 otherwise. Scope: document, page

activeitem-
kidcount

(Integer) Number of child elements of the currently active structure element created up to this point (not
counting pseudo elements). -1 is returned if no root element has been created yet. Scope: document, page

activeitem-
name

String index for the type name of the currently active structure element or pseudo element, or -1 if no
root element has been created yet. Scope: document, page

activeitem-
standard-
name

String index for the standard element type name to which the currently active item is role mapped, or -1
if no root element has been created yet or the current item is a custom element for which no role map-
ping is available. If no rolemap is active the original type name is returned. Scope: document, page

ctm_a
ctm_b
ctm_c
ctm_d
ctm_e
ctm_f

(Float) The components of the current transformation matrix (CTM) for vector graphics. Scope: page,
pattern, template, glyph, path

currentx
currenty

(Float) The x or y coordinate (in units of the current coordinate system), respectively, of the current point.
Scope: page, pattern, template, glyph, path

30 Chapter 2: General Functions

optlist Option list specifying an option according to Table 2.5.

Returns The value of some option as requested by keyword. If no value for the requested key-
word is available, the function returns -1. If the requested keyword produces text, a
string index is returned, and the corresponding string must be retrieved with PDF_get_
string().

Scope any, but restricted scopes apply to some keywords

C++ Java C# String get_string(int idx, String optlist)
Perl PHP string get_string(int idx, string optlist)

C const char *PDF_get_string(PDF *p, int idx, const char *optlist)

Retrieve a string value.

idx String index returned by one of the PDF_get_option() or PDF_info_*() functions, or
-1 if an option is supplied.

optlist An option list specifying options according to Table 2.6.

Returns The value of some string as requested by idx and optlist.

icccomponents (Integer) Number of color components in the ICC profile referenced by the handle provided in the
iccprofile option

major
minor
revision

(Integer) Major, minor, or revision number of PDFlib, respectively. Scope: any, null1

pageheight
pagewidth

(Float) Page size of the current page (dimensions of the MediaBox). Scope: any except object, but only
reasonable in page scope

pdi (Integer) Returns 1 if PDI has been included when building the underlying library. This is true for all com-
bined PDFlib, PDFlib+PDI, and PPS binaries distributed by PDFlib GmbH, regardless of the license key. Oth-
erwise it returns 0. Scope: any, null1

scope (Integer) String index for the name of the current scope (see Table 1.3)

textx
texty

(Float) The x or y coordinate of the current text position. Scope: page, pattern, template, glyph

1. C language binding: may be called with a PDF * argument of NULL or 0

Table 2.5 Options for PDF_get_option()

option description

textstate (Boolean) If true, the values of the following options will be retrieved from the current text state, other-
wise from the global options, (default: false):
charref, escapesequence, glyphcheck, kerning, textformat

iccprofile (ICC profile handle; must not refer to an output intent ICC profile) ICC profile for use with the
icccomponents keyword

resource-
number

(Integer) Number of the resource to be retrieved; res0urces are numbered starting with 1. Default: 1

Table 2.4 Additional keywords for PDF_get_option()

keyword description

2.3 Global Options 31

Scope any

Bindings C: The returned string is valid until the next call to any API function.

Table 2.6 Option for PDF_get_string()

option description

version (Boolean) Full PDFlib version string in the format <major>.<minor>.<revision>, possibly suffixed with
additional qualifiers such as beta, rc, etc. Scope: any, null1

1. C language binding: may be called with a PDF * argument of NULL or 0

32 Chapter 2: General Functions

2.4 Creating and Deleting PDFlib Objects
C PDF *PDF_new(void)

Create a new PDFlib object.

Details This function creates a new PDFlib object, using PDFlib’s internal default error handling
and memory allocation routines.

Returns A handle to a PDFlib object which is to be used in subsequent PDFlib calls. If this func-
tion doesn’t succeed due to unavailable memory it returns NULL or throws an excep-
tion.

Scope null; this function starts object scope, and must always be paired with a matching PDF_
delete() call.

Bindings C: In order to load the PDFlib DLL dynamically at runtime use PDF_new_dl(). PDF_new_
dl() returns a pointer to a PDFlib_api structure filled with pointers to all PDFlib API func-
tions. If the DLL cannot be loaded, or a mismatch of major or minor version number is
detected, NULL will be returned.

Other language bindings: this function is not available since it is hidden in the PDFlib
constructor.

C PDF *PDF_new2(void (*errorhandler)(PDF *p, int errortype, const char *msg),
void* (*allocproc)(PDF *p, size_t size, const char *caller),
void* (*reallocproc)(PDF *p, void *mem, size_t size, const char *caller),
void (*freeproc)(PDF *p, void *mem),
void *opaque)

Create a new PDFlib object with client-supplied error handling and memory allocation
routines.

errorhandler Pointer to a user-supplied error-handling function. The error handler
will be ignored in PDF_TRY/PDF_CATCH sections.

allocproc Pointer to a user-supplied memory allocation function.

reallocproc Pointer to a user-supplied memory reallocation function.

freeproc Pointer to a user-supplied free function.

opaque Pointer to some user data which may be retrieved later with PDF_get_
opaque().

Returns A handle to a PDFlib object which is to be used in subsequent PDFlib calls. If this func-
tion doesn’t succeed due to unavailable memory it will return NULL in C or throw an ex-
ception in C++.

Details This function creates a new PDFlib object with client-supplied error handling and mem-
ory allocation routines. Unlike PDF_new(), the caller may optionally supply own proce-
dures for error handling and memory allocation. The function pointers for the error
handler, the memory procedures, or both may be NULL. PDFlib will use default routines
in these cases. Either all three memory routines must be provided, or none.

2.4 Creating and Deleting PDFlib Objects 33

Scope null; this function starts object scope, and must always be paired with a matching PDF_
delete() call.

Bindings C++: this function is indirectly available via the PDF constructor. Not all function argu-
ments must be given since default values of NULL are supplied. All supplied functions
must be »C« style functions, not C++ methods.

C void PDF_delete(PDF *p)

Delete a PDFlib object and free all internal resources.

Details This function deletes a PDFlib object and frees all document-related PDFlib-internal re-
sources. This function must only be called once for a given PDFlib object. PDF_delete()
should also be called for cleanup when an exception occurred. PDF_delete() itself is guar-
anteed to not throw any exception. If more than one PDF document will be generated it
is not necessary to call PDF_delete() after each document, but only when the complete
sequence of PDF documents is done.

Scope any; no more API function calls with the same PDFlib object are allowed with the PDF
object after this call.

Bindings C: If the PDFlib DLL has been loaded dynamically at runtime with PDF_new_dl(), use
PDF_delete_dl() to delete the PDFlib object.

C++: this function is indirectly available via the PDF destructor.
Java: this function is automatically called by the wrapper code. However, it can explicit-
ly be called from client code in order to overcome shortcomings in Java’s finalizer sys-
tem.
Objective-C: this function is called when the PDFlib object’s release method is called.
Perl and PHP: this function is automatically called when the PDFlib object goes out of
scope.

34 Chapter 2: General Functions

2.5 PDFlib Virtual File System (PVF)

C++ void create_pvf(string filename, const void *data, size_t size, string optlist)
Java C# void create_pvf(String filename, byte[] data, String optlist)

Perl PHP create_pvf(string filename, string data, string optlist)
C void PDF_create_pvf(PDF *p,

const char *filename, int len, const void *data, size_t size, const char *optlist)

Create a named virtual read-only file from data provided in memory.

filename (Name string) The name of the virtual file. This is an arbitrary string which
can later be used to refer to the virtual file in other PDFlib calls. The name of the virtual
file will be subject to the SearchPath mechanism if it uses only slash ’/’ characters as di-
rectory or file name separators.

len (C language binding only) Length of filename (in bytes). If len=0 a null-terminated
string must be provided.

data A reference to the data for the virtual file. In C and C++ this is a pointer to a mem-
ory location. In Java this is a byte array. In Perl, Python, and PHP this is a string.

size (C and C++ only) The length in bytes of the memory area containing the data.

optlist An option list according to Table 2.7. The following option can be used: copy

Details The virtual file name can be supplied to any API function which uses input files. Use the
createpvf option of PDF_begin_document() to create a PVF file which contains the gener-
ated PDF output. Some of these functions may set a lock on the virtual file until the data
is no longer needed. Virtual files will be kept in memory until they are deleted explicitly
with PDF_delete_pvf(), or automatically in PDF_delete().

Each PDFlib object will maintain its own set of PVF files. Virtual files cannot be
shared among different PDFlib objects, but they can be used for creating multiple docu-
ments with the same PDFlib object. Multiple threads working with separate PDFlib ob-
jects do not need to synchronize PVF use. If filename refers to an existing virtual file an
exception will be thrown. This function does not check whether filename is already in
use for a regular disk file.

Unless the copy option has been supplied, the caller must not modify or free (delete)
the supplied data before a corresponding successful call to PDF_delete_pvf(). Not obey-
ing to this rule will most likely result in a crash.

Scope any

Table 2.7 Option for PDF_create_pvf()

option description

copy (Boolean) If true, PDFlib, creates an internal copy of the supplied data. In this case the caller may dispose
of the supplied data immediately after this call. Default: false for C and C++, but true for all other lan-
guage bindings

2.5 PDFlib Virtual File System (PVF) 35

C++ Java C# int delete_pvf(String filename)
Perl PHP int delete_pvf(string filename)

C int PDF_delete_pvf(PDF *p, const char *filename, int len)

Delete a named virtual file and free its data structures.

filename (Name string; will be interpreted according to the global filenamehandling op-
tion (see Table 2.3) The name of the virtual file as supplied to PDF_create_pvf().

len (C language binding only) Length of filename (in bytes). If len=0 a null-terminated
string must be provided.

Returns -1 (in PHP: 0) if the virtual file exists but is locked, and 1 otherwise. If filename does not
refer to a valid virtual file 1 is returned.

Details If the file isn’t locked, PDFlib immediately deletes the data structures associated with
filename. After successfully calling this function filename may be reused. All virtual files
are automatically deleted in PDF_delete().

The detailed semantics depend on whether or not the copy option has been supplied
to the corresponding call to PDF_create_pvf(): If the copy option has been supplied, both
the administrative data structures for the file and the actual file contents (data) are-
freed; otherwise, the contents are not freed since the client is supposed to do so.

Scope any

C++ Java C# double info_pvf(String filename, String keyword)
Perl PHP float info_pvf(string filename, string keyword)

C double PDF_info_pvf(PDF *p, const char *filename, int len, const char *keyword)

Query properties of a virtual file or the PDFlib Virtual File system (PVF).

filename (Name string) The name of the virtual file. The filename may be empty if
keyword=filecount.

len (C language binding only) Length of filename (in bytes). If len=0 a null-terminated
string must be provided.

keyword A keyword according to Table 2.7.

Table 2.8 Keywords for PDF_info_pvf()

keyword description

filecount Total number of files in the PDFlib Virtual File system maintained for the current PDFlib object. The
filename parameter will be ignored.

exists 1 if the file exists in the PDFlib Virtual File system (and has not been deleted), otherwise 0

size (Only for existing virtual files) Size of the specified virtual file in bytes.

iscopy (Only for existing virtual files) 1 if the copy option was supplied when the specified virtual file was creat-
ed, otherwise 0

lockcount (Only for existing virtual files) Number of locks for the specified virtual file set internally by PDFlib func-
tions. The file can only be deleted if the lock count is 0.

36 Chapter 2: General Functions

Returns The value of some file parameter as requested by keyword.

Details This function returns various properties of a virtual file or the PDFlib Virtual File sys-
tem (PVF). The property is specified by keyword.

Scope any

2.6 PDF Object Creation API (POCA) 37

2.6 PDF Object Creation API (POCA)
Object types and frozen objects. The PDF object creation API (POCA) is a low-level in-
terface for creating PDF objects. POCA supports the following object types:

> simple object types: boolean, integer, name, float, string;
> container object types: array, dictionary, stream;
> specific types for PDFlib Blocks: percentage, color.

The generated PDF objects can be used as follows:
> with the dpm option of PDF_begin/end_dpart() to create document part metadata for

PDF/VT;
> with the blocks option of PDF_begin/end_page_ext() to create PDFlib Blocks for use

with PPS;
> with the richmediaargs option of PDF_create_action() to specify arguments for the Java-

Script associated with a rich media annotation.

Supplying a PDF container object to any of the options listed above freezes the contain-
er object itself as well as all objects referenced from the container directly or indirectly,
i.e. the full object tree created by the container will be frozen. Frozen objects can be used
again with the options above, but they can no longer be modified with PDF_poca_
insert() or PDF_poca_remove().

C++ Java C# int poca_new(String optlist)
Perl PHP int poca_new(string optlist)

C int PDF_poca_new(PDF *p, const char *optlist)

Create a new PDF container object of type dictionary, array, or stream and insert objects.

optlist An option list for creating and populating a container.
> Options for creating a container according to Table 2.9: containertype, usage
> Options for inserting objects in the container according to Table 2.11:

direct, hypertextencoding, index, key, type, value, values

Returns A POCA container handle which can be used until it is deleted with PDF_poca_delete().

Details This function creates an empty PDF container object of the specified container type. The
container can immediately be populated in the same call or later calls to PDF_poca_
insert().

PDF/VT A POCA container handle for an object of type dictionary with usage=dpm can be sup-
plied as Document Part Metadata (DPM) with the dpm option of PDF_begin/end_dpart().

Scope any

Table 2.9 Options for PDF_poca_new()

option description

container-
type

(Keyword; required) Type of the container: dict, array, or stream. Unspecified array slots and array slots
which have been removed without inserting a new object will contain the keyword null in the PDF out-
put. Note: containertype=stream is not yet implemented.

38 Chapter 2: General Functions

C++ Java C# void poca_delete(int container, String optlist)
Perl PHP poca_delete(int container, string optlist)

C void PDF_poca_delete(PDF *p, int container, const char *optlist)

Delete a PDF container object.

container A valid POCA container handle retrieved with PDF_poca_new().

optlist An option list according to Table 2.10. The following option can be used:
recursive

Details The container will be deleted and can no longer be used. If the container is referenced
from another dictionary or array all dictionary references to the deleted container are
removed, and all array references to the deleted container are replaced with the null ob-
ject. POCA container objects are not automatically deleted in PDF_end_document().

Scope any; must always be paired with a matching PDF_poca_new() call.

usage (Keyword; required) Context in which the new container will be used. This option enables some checks to
make sure that the container is suited for the intended use:
blocks (Only relevant for containertype=dict; only in the PPS product) The Block dictionary (the

container which will be supplied to the blocks option of PDF_begin/end_page_ext()) must
contain one or more PDFlib Block definitions. The option usage=blocks must also be supplied
to all container objects which will directly or indirectly be inserted into the new dictionary.

dpm (Only relevant for containertype=dict) All keys in the new dictionary or any dictionary
contained in it must consist of ASCII characters, must conform to the rules of an XML
NMTOKEN. This ensures that the dictionary can be used as Document Part Metadata (DPM)
dictionary for PDF/VT. The option usage=dpm must also be supplied to all container objects
which will directly or indirectly be inserted into the new dictionary.

richmediaargs
(Only for containertype=array) The array can contain objects of type string, integer, float,
or Boolean. However, the following is recommended to pass parameters from PDF to Flash: if
a parameter for an ActionScript function parameter has type string, number, or int, use
type=string in POCA (i.e. numbers must be wrapped within strings); if the parameter is de-
clared as Boolean, use type=boolean in POCA (i.e. do not wrap boolean values as string). The
POCA types integer and float should not be used since Acrobat does not pass them correctly
to ActionScript.

Table 2.10 Options for PDF_poca_delete()

option description

recursive (Boolean) If true, the container object itself and all objects referenced from it will be deleted recursively.
This may be useful as a shortcut for deleting a full object tree which is no longer needed. Default: false

Table 2.9 Options for PDF_poca_new()

option description

2.6 PDF Object Creation API (POCA) 39

C++ Java C# void poca_insert(int container, String optlist)
Perl PHP poca_insert(int container, string optlist)

C void PDF_poca_insert(PDF *p, int container, const char *optlist)

Insert a simple or container object in a PDF container object.

container A valid POCA container handle retrieved with PDF_poca_new(). Frozen con-
tainers (see »Object types and frozen objects«, page 37) are not allowed since they can no
longer be modified.

optlist An option list according to Table 2.11. The following options can be used:
direct, hypertextencoding, index, key, type, value, values

Details This function inserts an object in a container. The order in which objects are inserted in
a container is not significant. Inserted containers may be populated after insertion; it is
not required that inserted containers be complete at the time of insertion.

Inserting an object into a container must not create a loop of direct objects within
the object graph. For example, a directly inserted dictionary cannot include a direct ref-
erence to its container. In order to create cyclic references use direct=false to create indi-
rect objects which can reference arbitrary other objects.

Scope any

Table 2.11 Options for PDF_poca_new(), PDF_poca_insert() and PDF_poca_remove()

option description

direct 1 (Boolean; only for type=array and dict; ignored for other types) If true, the object will be inserted di-
rectly in the container; if false, an indirect PDF object will be created and a reference to the indirect PDF
object will be inserted in the container. Indirect objects are useful to save space in the generated PDF if an
object is used more than once. Default: true

hypertext-
encoding

(Keyword) Specifies the encoding for the key, value, and values options. An empty string is equivalent to
unicode. Default: value of the global hypertextencoding option

index (Integer; only for containers with type=array; required for PDF_poca_remove()) The zero-based index
at which the value(s) will be inserted or deleted in the array. The value -1 can be used to insert the ele-
ment as the new last item. The array will grow as necessary to include an element with the specified in-
dex. If the array already contains a value at the specified index it will be replaced with the new value. De-
fault for PDF_poca_new() and PDF_poca_insert(): -1

key (Hypertext string; only for containers with type=dict and stream; required for type=dict) The key un-
der which the value will be inserted in the dictionary container or the dictionary associated with the
stream container. The key must not include the leading ’/’ slash character. The key must conform to the
conditions specified in the dictionary’s usage option. If the dictionary already contains an entry with the
same key it will be replaced with the new value.
For type=stream the key must be different from Length and Filter.

type1 (Keyword; required except for stream containers without the key option) Type of the inserted object:
array, boolean, dict, integer, name, float, stream, string, percentage, color
The following types are not allowed if the container has been created with usage=dpm: name (use
type=string instead), stream
The following types are only allowed if the container has been created with usage=blocks: color,
percentage

40 Chapter 2: General Functions

C++ Java C# void poca_remove(int container, String optlist))
Perl PHP poca_remove(int container, string optlist)

C void PDF_poca_remove(PDF *p, int container, const char *optlist)

Remove a simple or container object from a PDF container object.

container A valid POCA dictionary or array handle retrieved with PDF_poca_new(). Fro-
zen containers (see »Object types and frozen objects«, page 37) are not allowed since
they can no longer be modified.

optlist The following options of PDF_poca_insert() in Table 2.11 can be used:
hypertextencoding, index, key

Details This function removes an object from a container of type array or dictionary. Nothing
happens if the specified object doesn’t exist in the container.

Scope any

value1 (Data type according to the type option; exactly one of the options value and values must be provided)
The value of the inserted object, subject to the container type and the type option:
For array and dictionary containers:
If type=boolean the value must have option type string, and must contain one of the strings true or
false.
If type=string or name the value must have option type Hypertext string, and must contain the target
directly. Values for type=name are limited to 127 bytes in UTF-8 representation, and must not include the
leading ’/’ slash character.
If type=integer the value must have option type integer, and must contain the target directly.
If type=float the value must have option type float or integer, and must contain the target directly.
If type=array, dict, or stream the value must have option type POCA container handle (i.e. created with
PDF_poca_new()) and must specify the inserted container. The inserted object must have been created
with the same usage option as the container.
For type=percentage the value must have option type number. It will be interpreted as a percentage val-
ue and must include the percent sign (e.g. 50%). It will be written as Block data type percentage
For type=color the value must have option type color (see Table 1.2, page 14). It will be written as Block
data type color. The following color space keywords are not allowed: iccbased, iccbasedgray,
iccbasedrgb, iccbasedcmyk, pattern, devicen
In order to pass arbitrary strings with this option the option list syntax described in »Unquoted string val-
ues«, page 10, may be useful.

values1 (List of one or more values according to the type option; only for containers with type=array; exactly
one of the options value and values must be provided) One or more values of the same type which will
be inserted in the array at the position specified by the index option. See option value regarding the con-
ditions for specific types. If the specified list contains only a single element, the effect is equivalent to the
value option. If the list contains more than one element, all elements in the list will be inserted in the ar-
ray sequentially, possibly overriding existing elements. The array will grow as necessary to include all ele-
ments in the specified list.

1. Only for PDF_poca_new() and PDF_poca_insert()

Table 2.11 Options for PDF_poca_new(), PDF_poca_insert() and PDF_poca_remove()

option description

3.1 Document Functions 41

3 Document and Page Functions

3.1 Document Functions

C++ Java C# int begin_document(String filename, String optlist)
Perl PHP int begin_document(string filename, string optlist)

C int PDF_begin_document(PDF *p, const char *filename, int len, const char *optlist)

C++ void begin_document_callback(size_t (*writeproc) (PDF *p, void *data, size_t size), string optlist)
C void PDF_begin_document_callback(PDF *p,

size_t (*writeproc) (PDF *p, void *data, size_t size), const char *optlist)

Create a new PDF document subject to various options.

filename (Name string; will be interpreted according to the global filenamehandling op-
tion, see Table 2.3) Absolute or relative name of the PDF output file to be generated. If
filename is empty, the PDF document will be generated in memory instead of on file,
and the generated PDF data must be fetched by the client with the PDF_get_buffer()
function. On Windows it is OK to use UNC paths or mapped network drives.

len (C language binding only) Length of filename (in bytes). If len=0 a null-terminated
string must be provided.

writeproc (Only for C and C++) C callback function which will be called by PDFlib in or-
der to submit (portions of) the generated PDF data. The supplied writeproc must be a C-
style function, not a C++ method.

optlist An option list specifying document options:
> General options: errorpolicy (see Table 2.1) and hypertextencoding (see Table 2.3)
> Document options according to Table 3.1. Some of these options can also be specified

in PDF_end_document(); in this case they have precedence over identical options
specified in PDF_begin_document():
attachments, autoxmp, destination, groups, labels, linearize, metadata, objectstreams,
openmode, optimize, pagelayout, portfolio, search2, uri, viewerpreferences

> Options for PDF compatibility and standards according to Table 3.2:
compatibility, limitcheck, nodenamelist, pdfa, pdfua, pdfvt, pdfx, recordlevel, uses-
transparency

> Options for Tagged PDF according to Table 3.3:
checktags, lang, rolemap, structuretype, tag, tagged

> Security options according to Table 3.4:
attachmentpassword, masterpassword, permissions, userpassword

> Output processing options according to Table 3.5:
createoutput, createpvf, filemode, flush, inmemory, recordsize, removefragments,
tempdirname, tempfilenames

Returns -1 (in PHP: 0) on error, and 1 otherwise. If filename is empty this function will always suc-
ceed, and never return the error value.

42 Chapter 3: Document and Page Functions

Details This function creates a new PDF file using the supplied filename. PDFlib will attempt to
open a file with the given name, and close the file when the PDF document is finished.

PDF_begin_document_callback() opens a new PDF document, but instead of writing to
a disk file it calls a client-supplied callback function to deliver the PDF output data. The
function supplied as writeproc must return the number of bytes written. If the return
value doesn’t match the size argument supplied by PDFlib, an exception will be thrown.
The frequency of writeproc calls is configurable with the flush option.
The callback function must not call any API method or macro with the same context
pointer except PDF_get_opaque().

PDF/VT The following option is not allowed: groups. Setting usestransparency=false for docu-
ments which do not contain any transparent objects may result in faster ripping due to
Form XObject encapsulation without transparency groups.

Scope object; this function starts document scope if the file could successfully be opened, and
must always be paired with a matching PDF_end_document() call.

Bindings ASP: the MapPath facility should be used to construct full path names to be passed to
this function.

C, C++, Java, JScript: take care of properly escaping the backslash path separator. For ex-
ample, the following denotes a file on a network drive: \\\\malik\\rp\\foo.pdf.
PDF_begin_document_callback() is only available in C and C++.

C++ Java C# void end_document(String optlist)
Perl PHP end_document(string optlist)

C void PDF_end_document(PDF *p, const char *optlist)

Close the generated PDF document and apply various options.

optlist An option list specifying document processing options:
> General option: hypertextencoding (see Table 2.3)
> Document options according to Table 3.1. Options specified in PDF_end_document()

have precedence over identical options specified in PDF_begin_document(). The fol-
lowing options can be used:
action, associatedfiles, attachments, autoxmp, destination, destname, labels, metadata,
openmode, pagelayout, portfolio, uri, viewerpreferences

Details This function finishes the generated PDF document, frees all document-related resourc-
es, and closes the output file if the PDF document has been opened with PDF_begin_
document(). This function must be called when the client is done generating pages, re-
gardless of the method used to open the PDF document.

When the document was generated in memory (as opposed to on file), the document
buffer will still be kept after this function is called (so that it can be fetched with PDF_
get_buffer()), and will be freed in the next call to PDF_begin_document(), or when the
PDFlib object goes out of scope.

Scope document; this function terminates document scope, and must always be paired with a
matching call to one of PDF_begin_document() or PDF_begin_document_callback().

3.1 Document Functions 43

Table 3.1 Document options for PDF_begin_document() and PDF_end_document()

option description

action1 (Action list) List of document actions for one or more of the following trigger events (default: empty list):
open Actions to be performed when the document is opened. Due to the execution order in Acrobat

document-level JavaScript must not be used for open actions.
didprint/didsave/willclose/willprint/willsave

(Not for PDF/A) JavaScript actions to be performed after printing/after saving/before closing/
before printing/ before saving the document.

associated-
files1

(List of asset handles; only for PDF 2.0 and PDF/A-3) Asset handles for associated files. The files must have
been loaded with PDF_load_asset() and type=attachment.

attachments (List of option lists or list of asset handles; not for PDF/X-1a/3 and PDF/A-1; PDF/A-2: only PDF/A-1 and
PDF/A-2 documents can be attached; PDF/A-3: not allowed, use associatedfiles instead) Specifies docu-
ment-level file attachments which have been loaded with PDF_load_asset() and type=attachment. It is
OK to supply file attachments both in PDF_begin_document() and PDF_end_document(). However, as-
set handles can only be supplied in PDF_end_document(). Supported suboptions: see Table 13.6

autoxmp (Boolean; forced to true for PDF/X-3/4/5 and PDF/A) If true, PDFlib will create XMP document metadata
from document info fields (see Section 14.2, »XMP Metadata«, page 263). Default: false

destination (Option list; will be ignored if an open action has been specified) An option list specifying the document
open action according to Table 12.10.

destname1 (Hypertext string; will be ignored if the destination option has been specified) The name of a destina-
tion which has been defined with PDF_add_nameddest(), and will be used as the document open action.

groups2 (List of strings; not allowed in PDF/VT mode or if a document part hierarchy is created) Define the names
and ordering of the page groups used in the document. Page groups keep pages together (useful e.g. for
attaching page labels); pages can be assigned to one of the page groups defined in the document, and
referenced within the respective group. If page groups are defined for a document, all pages must be as-
signed to a page group.

labels (List of option lists) A list containing one or more option lists according to Table 3.6 specifying symbolic
page names. The page name will be displayed as a page label (instead of the page number) in Acrobat’s
status line. The combination of style/prefix/start must be unique within a document. Default: no
page labels

linearize2 (Boolean; forces objectstreams=none) If true, the output document will be linearized. On z/OS this op-
tion cannot be combined with an empty filename. Default: false

metadata (Option list) Supply XMP document metadata (see Section 14.2, »XMP Metadata«, page 263). Individual
XMP properties may be overridden with document info fields supplied with PDF_set_info(). In PDF/A
mode the supplied XMP metadata must conform to additional requirements (see PDFlib Tutorial).

44 Chapter 3: Document and Page Functions

objectstreams2 (List of keywords; PDF 1.5; forced to none if linearize is true) Generate compressed object streams
which significantly reduce output file size (default: {other nodocinfo}):
bookmarksCompress bookmark objects.
docinfo Compress document info fields.
dpartarrays Compress dictionaries related to the document part hierarchy.
dpartdicts Compress arrays related to the document part hierarchy.
fields Compress form fields.
names Compress objects for named destinations.
none Don’t generate any compressed object streams (except for categories which are explicitly

enabled after this option).
other All categories which are not explicitly disabled after this keyword, plus other object types

which don’t have their own keyword.
pages Compress the objects comprising the page tree.
poca Compress all simple objects created with the POCA interface.
tags Compress marked content tags.
xref Generate a compressed xref stream. This category is automatically enabled if at least one of

the other categories is enabled.
Except for none and other, all keywords can be prefixed with no (e.g. nodocinfo) to disable compression
for the specified category. If at least one such negative keyword is supplied, the keyword other will be
prepended to the list.

openmode (Keyword) Set the appearance when the document is opened. Default: bookmarks if the document con-
tains any bookmarks, otherwise none.
none Open with no additional panel visible.
bookmarks Open with the bookmark panel visible.
thumbnails Open with the thumbnail panel visible.
fullscreen Open in fullscreen mode (does not work in the browser).
layers (PDF 1.5) Open with the layer panel visible.
attachments (PDF 1.6) Open with the attachments panel visible.

optimize2 (Boolean) If true, the output document will be optimized in a separate pass after generating it. Optimi-
zation reduces file size by eliminating redundant duplicate objects. In general optimization will not have
any significant effect except for inefficient client code (e.g. loading the same image or ICC profile multiply
instead of reusing the handle). On z/OS this option cannot be combined with in-core generation (i.e. an
empty filename). Default: false

pagelayout (Keyword) The page layout to be used when the document is opened (default: default):
default The default setting of the PDF viewer.
singlepage Display one page at a time.
onecolumn Display the pages continuously in one column.
twocolumnleft Display the pages in two columns, odd pages on the left.
twocolumnright Display the pages in two columns, odd pages on the right
twopageleft (PDF 1.5) Display the pages two at a time, with odd-numbered pages on the left.
twopageright (PDF 1.5) Display the pages two at a time, with odd-numbered pages on the right.

portfolio1 (Option list; PDF 1.7) Suboptions for creating a PDF portfolio according to Table 12.13

search2 (Option list; deprecated because not part of ISO 32000-1) Instruct Acrobat to attach a search index when
opening the document. The following suboptions are supported:
filename (Hypertext string; required) Name of a file containing a search index
indextype (Name string) Type of the index; must be PDX for Acrobat. Default: PDX

Table 3.1 Document options for PDF_begin_document() and PDF_end_document()

option description

3.1 Document Functions 45

uri (String) Set the document’s base URL. This is useful when a document with relative Web links is moved to
a different location. Adjusting the base URL makes sure that relative links will still work. Default: no base
URI

viewer-
preferences

(Option list) Option list specifying various viewer preferences according to Table 3.7. Default: empty

1. Only for PDF_end_document()
2. Only for PDF_begin_document() and PDF_begin_document_callback()

Table 3.2 Options for PDF compatibility and standards in PDF_begin_document()

option description

compatibility (Keyword; ignored if one of the pdfa, pdfua, pdfvt or pdfx options is used with a value different from
none) Set the document’s PDF version to one of the keywords below. This option affects which PDF cre-
ation features are available and which PDF documents can be imported with PDFlib+PDI (default: 1.7):
1.4 PDF 1.4 requires Acrobat 5 or above.
1.5 PDF 1.5 requires Acrobat 6 or above.
1.6 PDF 1.6 requires Acrobat 7 or above.
1.7 PDF 1.7 is specified in ISO 32000-1 and requires Acrobat 8 or above.
1.7ext3 PDF 1.7 extension level 3 requires Acrobat 9 or above.
1.7ext8 PDF 1.7 extension level 8 requires Acrobat X or above.
2.0 PDF 2.0 is specified in ISO 32000-2.

limitcheck If true, the limit for the number of indirect PDF objects (8.388.607) is enforced in PDF/A-1/2/3 and PDF/X-
4/5 modes. Default: true

nodenamelist (List of name strings; required for pdfvt=PDF/VT-1 and pdfvt=PDF/VT-2) Names for all levels of the doc-
ument part hierarchy. All names must consist of ASCII characters and must conform to the rules of an
XML NMTOKEN. The first string specifies the name for level 0 in the document part hierarchy.

pdfa (Keyword) Set the PDF/A conformance level to one of the following (default: none):
PDF/A-1a:2005, PDF/A-1b:2005 (implies compatibility=1.4)
PDF/A-2a, PDF/A-2b, PDF/A-2u (implies compatibility=1.7)
PDF/A-3a, PDF/A-3b, PDF/A-3u (implies compatibility=1.7)
none
PDF/A1-a:2005, PDF/A-2a, and PDF/A-3a imply tagged=true. PDF/A can simultaneously conform to oth-
er standards as follows:
pdfx=PDF/X-1a:2003, PDF/X-3:2003, PDF/X-4
pdfvt=PDF/VT-1
pdfua=PDF/UA-1

If multiple options for PDF standards are specified the lowest compatibility value is used.

pdfua (Keyword) Set the PDF/UA conformance level to one of the following (default: none):
PDF/UA-1 Implies compatibility=1.7 and tagged=true.
none No PDF/UA output

pdfvt (Keyword) Set the PDF/VT conformance level to one of the following (default: none):
PDF/VT-1 Implies pdfx=PDF/X-4; any other value for the pdfx option is an error.
PDF/VT-2 (Deprecated) The pdfx option must specify one of PDF/X-4p, PDF/X-5g, PDF/X-5pg; any other

value for the pdfx option is an error.
none No PDF/VT output

Table 3.1 Document options for PDF_begin_document() and PDF_end_document()

option description

46 Chapter 3: Document and Page Functions

pdfx (Keyword) Set the PDF/X conformance level to one of the following (default: none):
PDF/X-1a:2003 (implies compatibility=1.4)
PDF/X-3:2003 (implies compatibility=1.4)
PDF/X-4, PDF/X-4p (implies compatibility=1.6)
PDF/X-5g, PDF/X-5pg (deprecated; implies compatibility=1.6)
PDF/X-5n (implies compatibility=1.6)
none

recordlevel (Non-negative integer; only relevant if a document part hierarchy is created) Zero-based level of the
document part hierarchy which corresponds to recipient records.

uses-
transparency

(Boolean; only for PDF/VT) If false, none of the pages in the generated document will contain any trans-
parent objects. PDFlib will throw an exception if this assertion is violated. Setting this option to false is
allowed only for documents without transparency, and implies that encapsulated Form XObjects for
PDF/VT are created without a transparency group which allows more efficient RIP caching. Default: true

Table 3.3 Options for Tagged PDF in PDF_begin_document()

option description

checktags (Keyword; must be strict in PDF/UA-1 mode) Specifies whether the structure element nesting rules (see
PDFlib Tutorial) are checked for elements created with PDF_begin_item() or the tag option of various
functions. This option is only provided as a migration aid. It does not affect the tags in imported pages
(see option checktags of PDF_open_pdi_document()). Supported keywords (default: strict):
none Tag nesting rules are not enforced. This setting may result in an invalid structure hierarchy

and is therefore not recommended.
relaxed Similar to strict except that a few rules are not enforced (see PDFlib Tutorial).
strict If a tag violates the nesting rules an exception will be thrown.

lang (String; required for PDF/UA-1) Set the default language of the document as BCP 47 language tag consist-
ing of a two- or three-character language code according to ISO 639-1/2 (e.g. de, en, fr, ja, fil), option-
ally followed by a hyphen and a two-character ISO 3166 region code (e.g. en-us, en-gb, es-mx). The value
zxx indicates non-linguistic content, e.g. program code. An empty string means that the language is un-
known (this is not allowed in PDF/UA mode).
The default language can be overridden for individual structure elements with the lang tagging option.
The lang option is allowed in PDF_end_document() only if it has also been supplied to PDF_begin_
document(), i.e. only to change a previously set value. This may be useful e.g. if the document language
is chosen based on an imported PDF document.

rolemap (List of string lists; the first element in each string list is a name string, the second element is a string; only
for Tagged PDF; required if custom element types are used) Mapping of custom element types to stan-
dard element types. Each sublist contains the name of a standard or custom element type, and the name
of the standard element type to which the first type will be mapped. Direct and pseudo element types are
not allowed for the second entry in a sublist. Standard element type names also can be mapped to other
standard element types in order to assign different semantics to existing element types. Indirect map-
pings are allowed, i.e. a custom type is mapped to another custom type which is then mapped to a stan-
dard type. Pairs with identical entries are silently ignored. See Section 14.3, »Tagged PDF«, page 264, re-
garding the use of custom element types in Tagged PDF. Custom element type names must not start with
the reserved prefix Plib.
In PDF/UA-1 it is not allowed to remap standard element types.

Table 3.2 Options for PDF compatibility and standards in PDF_begin_document()

option description

3.1 Document Functions 47

structuretype (Keyword; only for PDF/UA-1) Type of document structure. Supported keywords (default: weak):
strong (Not recommended) The document is strongly structured, i.e. the structure tree reflects the

document’s logical organization. The only allowed structure type for headings is H, while H1,
H2, etc. are not allowed. Each node in the structure tree contains at most one H tag plus one or
more paragraph tags P.

weak The document is weakly structured, i.e. the structure tree is only a few levels deep with all
headings, paragraph etc. as immediate children. Logical structure may be expressed with
heading tags H1, H2, etc., while H is not allowed. Headings may not have any descendants.

tag (Option list) Tagging options according to Table 14.4. The specified structure element comprises the docu-
ment structure root and will be closed automatically in PDF_end_document(). Only grouping elements
are allowed for the tagname suboption.

tagged (Boolean) If true, generate Tagged PDF output. Proper structure information must be provided by the cli-
ent in Tagged PDF mode (see Section 14.3, »Tagged PDF«, page 264). If PDF/A-1a:2005, PDF/A-2a, PDF/A-
3a or PDF/UA-1 mode is active this option is automatically set to true. Default: false

Table 3.4 Security options for PDF_begin_document(); not allowed for PDF/A and PDF/X

option description

attachment-
password1

(String2; PDF 1.6; will be ignored if userpassword or masterpassword are set; can not be combined with
the linearize and optimize options; not for PDF/A and PDF/X) File attachments will be encrypted using
the supplied string as password. The rest of the document will not be encrypted. On EBCDIC platforms
the password is expected in ebcdic encoding or EBCDIC-UTF-8.

master-
password1

(String; required if permissions has been specified; not for PDF/A and PDF/X) The master password for
the document. If it is empty no master password will be applied. On EBCDIC platforms the password is
expected in ebcdic encoding or EBCDIC-UTF-8. Default: empty

permissions (Keyword list; not for PDF/A and PDF/X) The access permission list for the output document. It contains
any number of the following keywords (default: empty):
noprint Acrobat will prevent printing the file.
nohiresprint

Acrobat will prevent high-resolution printing. If noprint isn’t set, printing is restricted to the
»print as image« feature which prints a low-resolution rendition of the page.

nomodify Acrobat will prevent editing or cropping pages and creating or changing form fields.
noassemble (Implies nomodify) Acrobat will prevent inserting, deleting, or rotating pages and creating

bookmarks and thumbnails.
noannots Acrobat will prevent creating or changing annotations and form fields.
noforms (implies nomodify and noannots) Acrobat will prevent form field filling.
nocopy Acrobat will prevent copying and extracting text or graphics; the accessibility interface will be

controlled by noaccessible.
noaccessible

(Deprecated in PDF 2.0; not allowed in PDF/UA-1) Acrobat will prevent extracting text or
graphics for accessibility (e.g. a screenreader).

plainmetadata
(PDF 1.5) Keep XMP document metadata unencrypted even in an encrypted document.

user-
password1

(String; not for PDF/A and PDF/X) The user password for the document. If it is empty no user password
will be applied. On EBCDIC platforms the password is expected in ebcdic encoding or EBCDIC-UTF-8. De-
fault: empty

Table 3.3 Options for Tagged PDF in PDF_begin_document()

option description

48 Chapter 3: Document and Page Functions

1. In order to pass arbitrary strings with this option the option list syntax described in »Unquoted string values«, page 10, may be useful.
2. Characters outside of Winansi encoding are only allowed in passwords for compatibility=1.7ext3 or above

Table 3.5 Output processing options for PDF_begin_document()

option description

createoutput (Boolean) If false, the filename parameter is ignored and no output file or memory area is created. This
option implies compress=0, linearize=false and optimize=false. Default: true

createpvf (Boolean) If true, generate the PDF file in memory instead of on file. The supplied file name is the name
of a virtual file which will be created with the call of PDF_end_document(). In this case PDF_get_buffer()
cannot be called to fetch the PDF output data; instead, the name of the generated PVF file can be sup-
plied to other PDFlib functions. This may be useful when generating documents which will be included in
a PDF Portfolio. Default: false

filemode (String, z/OS and USS only) Parameter string for setting the file mode of the document file and any tem-
porary file (e.g. with the linearize option). The supplied string is appended to the default file mode of
»wb,«. The option recordsize must be consistent with the parameters specified in this option. Default:
empty, or recfm=v for unblocked output (which is default, see option recordsize)
Example strings:
recfm=fb,lrecl=80,space=(cyl,(1,5)
Honor attributes of the dataset if it has already been allocated: recfm=*

flush (Keyword; only for PDF_begin_document_callback()) Set the flushing strategy (default: page):
none flush only once at the end of the document
page flush at the end of each page
content flush after all fonts, images, file attachments, and pages
heavy always flush when the internal 64 KB document buffer is full

inmemory (Boolean; not for PDF_begin_document_callback()) If true and the linearize or optimize option is
true as well, PDFlib will not create any temporary files for linearization, but will process the file in mem-
ory. This can result in tremendous performance gains on some systems (especially z/OS), but requires
memory twice the size of the document. If false, a temporary file will be created for linearization and op-
timization. Default: false

recordsize (Integer; z/OS and USS only) The record size of the output file, and any temporary file which may have to
be created for the linearize and optimize options. Default: 0 (unblocked output)

remove-
fragments

If true, a partial PDF output document which exists after an exception will be removed in PDF_delete().
Such PDF fragments are never usable as documents. This option has no effect if an empty filename has
been specified, i.e. for in-memory PDF generation. Default: false

tempdirname (String; not for PDF_begin_document_callback()) Directory where temporary files for the linearize and
optimize options will be created. If this option is missing, PDFlib will generate temporary files in the cur-
rent directory. This option will be ignored if the tempfilenames option has been supplied. Default: not
present

temp-
filenames

(List of two strings; only for z/OS and USS) Full file names for two temporary files required for the
linearize and optimize options. If empty, PDFlib will generate unique temporary file names. The user is
responsible for deleting the temporary files after PDF_end_document(). If this option is supplied the
filename parameter must not be empty. Default: not present

3.1 Document Functions 49

Table 3.6 Suboptions for the labels option in PDF_begin/end_document() and label option in PDF_begin/end_page_ext()

option description

group (String; only for PDF_begin_document() and PDF_begin/end_page_ext(); required if the document uses
page groups, but not allowed otherwise) The label will be applied to all pages in the specified group and
all pages in all subsequent groups until a new label is applied. The group name must have been defined
with the groups option in PDF_begin_document().

hypertext-
encoding

(Keyword) Specifies the encoding for the prefix option. An empty string is equivalent to unicode. De-
fault: value of the global hypertextencoding option.

pagenumber (Integer; only for PDF_end_document() and PDF_begin/end_page_ext(); required if the document does
not use page groups, but not allowed otherwise) The label will be applied to the specified page and sub-
sequent pages until a new label is applied.
If this option, but not the group option, is supplied in PDF_begin_document() the label will be applied to
all pages up to the designated page number.

prefix (Hypertext string) The label prefix for all labels in the range. Default: none

start (Integer >= 1) Numeric value for the first label in the range. Subsequent pages in the range will be num-
bered sequentially starting with this value. Default: 1

style (Keyword) The numbering style to be used. Default: none.
none no page number; labels will only consist of the prefix.
D decimal arabic numerals (1, 2, 3, ...)
R uppercase roman numerals (I, II, III, ...)
r lowercase roman numerals (i, ii, iii, ...)
A uppercase letters (A, B, C, ..., AA, BB, CC, ...)
a lowercase letters (a, b, c, ..., aa, bb, cc, ...)

50 Chapter 3: Document and Page Functions

Table 3.7 Suboptions for the viewerpreferences option in PDF_begin_document() and PDF_end_document()

option description

centerwindow (Boolean) If true, position the document’s window in the center of the screen. Default: false

direction (Keyword) The reading order of the document, which affects the scroll ordering in double-page view and
the side (left/right) of the first page for double-page layout in Acrobat (default l2r):
l2r Left to right
r2l Right to left (including vertical writing systems)

displaydoctitle (Boolean; only true allowed in PDF/UA-1 mode) Display the Title document info field in Acrobat’s title bar
(true) or the file name (false). Default: true for PDF/UA-1, otherwise false

duplex (Keyword; PDF 1.7) Paper handling option for the print dialog (default: none):
DuplexFlipShortEdge

Duplex and flip on the short edge of the sheet.
DuplexFlipLongEdge

Duplex and flip on the long edge of the sheet.
none No paper handling specified.
Simplex Print single-sided.

fitwindow (Boolean) Specifies whether to resize the document’s window to the size of the first page. Default: false

hidemenubar1 (Boolean) Specifies whether to hide Acrobat’s menu bar. Default: false

hidetoolbar1 (Boolean) Specifies whether to hide Acrobat’s tool bars. Default: false

hide-
windowui1

(Boolean) Specifies whether to hide Acrobat’s window controls. Default: false

nonfullscreen-
pagemode

(Keyword; only relevant if the openmode option is set to fullscreen) Specifies how to display the docu-
ment on exiting full-screen mode (default: none):
bookmarks display page and bookmark pane
thumbnails display page and thumbnail pane
layers display page and layer pane
none display page only

numcopies (Integer in the range 1-5, PDF 1.7) The number of copies for the print dialog. Default: viewer-specific

picktrayby-
pdfsize

(Boolean; PDF 1.7; no effect on macOS) Specifies whether the PDF page size is used to select the input pa-
per tray in the print dialog. Default: viewer-specific

printscaling (Keyword; PDF 1.6) Page scaling option to be selected when a print dialog is presented for the document.
Supported keywords (default: appdefault):
none No page scaling; this may be useful for printing page contents at their exact sizes.
appdefault Use the current print scaling as specified in Acrobat.

printpage-
range

(List with pairs of integers; PDF 1.7) Page numbers for the print dialog. Each pair denotes the start and end
page numbers of a page range to be printed (first page is 1). Default: viewer-specific

printarea
printclip
viewarea
viewclip

(Keyword; deprecated in PDF 2.0; no effect in Acrobat; for PDF/X only media and bleed are allowed) The
type of the page boundary box representing the area of a page to be displayed or clipped when viewing
the document on screen or printing it. Supported keywords (default: crop):
art Use the ArtBox
bleed Use the BleedBox
crop Use the CropBox
media Use the MediaBox
trim Use the TrimBox

1. Acrobat does not support the combination of hidemenubar, hidetoolbar, and hidewindowui (i.e. all user interface elements hidden).
The menu bar will still be visible if all three elements are set to hidden.

3.2 Fetching PDF Documents from Memory 51

3.2 Fetching PDF Documents from Memory
If a non-empty filename parameter has been supplied to PDF_begin_document() PDFlib
writes PDF documents to a named disk file. Alternatively, PDF document data are gener-
ated in memory if the filename parameter is empty. In this case the PDF document data
must be fetched from memory with PDF_get_buffer(). This is especially useful when
shipping PDF from a Web server.

C++ const char *get_buffer(long *size)
Java C# final byte[] get_buffer()

Perl PHP string get_buffer()
C const char * PDF_get_buffer(PDF *p, long *size)

Get the contents of the PDF output buffer.

size (C and C++ language bindings only) C-style pointer to a memory location where
the length of the returned data in bytes will be stored.

Returns A buffer full of binary PDF data for consumption by the client. The function returns a
language-specific data type for binary data. The returned buffer must be used by the cli-
ent before calling any other PDFlib function.

Details Fetch the full or partial buffer containing the generated PDF data. If this function is
called between page descriptions, it will return the PDF data generated so far. If generat-
ing PDF into memory, this function must at least be called after PDF_end_document(),
and will return the remainder of the PDF document. It can be called earlier to fetch par-
tial document data. If there is only a single call to this function which happens after
PDF_end_document() the returned buffer is guaranteed to contain the complete PDF
document in a contiguous buffer.

Since PDF output contains binary characters, client software must be prepared to ac-
cept non-printable characters including null values.

Scope object, document (in other words: after PDF_end_page_ext() and before PDF_begin_page_
ext(), or after PDF_end_document() and before PDF_delete(). This function can only be
used if an empty filename has been supplied to PDF_begin_document().

If the linearize option in PDF_begin_document() has been set to true, the scope is re-
stricted to object, i.e. this function can only be called after PDF_end_document().

Bindings C and C++: the size parameter is only used for C and C++ clients.

Other bindings: an object of appropriate length will be returned, and the size param-
eter must be omitted.

52 Chapter 3: Document and Page Functions

3.3 Page Functions

C++ Java C# void begin_page_ext(double width, double height, String optlist)
Perl PHP begin_page_ext(float width, float height, string optlist)

C void PDF_begin_page_ext(PDF *p, double width, double height, const char *optlist)

Add a new page to the document and specify various options.

width, height The width and height parameters are the dimensions of the new page in
points (or user units, if the userunit option has been specified). They can be overridden
by the options with the same name (the dummy value 0 can be used for the parameters
in this case). A list of commonly used page formats can be found in Table 3.8. The PDFlib
Tutorial lists applicable page size limits in Acrobat. See also Table 3.9 for more details
(options width and height).

optlist An option list with page options according to Table 3.9. These options have low-
er priority than identical options specified in PDF_end_page_ext():
action, artbox, associatedfiles, bleedbox, blocks, cropbox, defaultcmyk, defaultgray, defaultrgb,
duration, group, height, label, mediabox, metadata, pagenumber, rotate, separationinfo,
taborder, topdown, transition, transparencygroup, trimbox, userunit, viewports, width

Details This function resets all text, graphics, and color state parameters to their default values
and establishes a coordinate system according to the topdown option.

PDF/A Restrictions apply to the transparencygroup option.

PDF/VT The following options are not allowed: group, pagenumber.

PDF/X Restrictions apply to the transparencygroup and defaultgray/rgb/cmyk options.

Scope document; this function starts page scope, and must always be paired with a matching
PDF_end_page_ext() call.

Table 3.8 Common ISO standard page size dimensions in points1

1. Note that ISO B5 is different from JIS B5. More information about ISO, Japanese, and U.S. standard formats can be
found atwww.cl.cam.ac.uk/~mgk25/iso-paper.html

format width height format width height format width height

a0 2380 3368 a4 595 842 letter 612 792

a1 1684 2380 a5 421 595 legal 612 1008

a2 1190 1684 a6 297 421 ledger 1224 792

a3 842 1190 b5 501 709 11x17 792 1224

http://www.cl.cam.ac.uk/~mgk25/iso-paper.html

3.3 Page Functions 53

C++ Java C# void end_page_ext(String optlist)
Perl PHP end_page_ext(string optlist)

C void PDF_end_page_ext(PDF *p, const char *optlist)

Finish a page and apply various options.

optlist An option list according to Table 3.9. Options specified in PDF_end_page_ext()
have priority over identical options specified in PDF_begin_page_ext(). The following
options can be used:
associatedfiles, action, artbox, bleedbox, blocks, cropbox, defaultcmyk, defaultgray, defaultrgb,
duration, group, height, label, mediabox, metadata, rotate, taborder, transition, transparency-
group, trimbox, userunit, viewports, width

Scope page; this function terminates page scope, and must always be paired with a matching
PDF_begin_page_ext() call. In Tagged PDF mode all direct and pseudo items must be
closed before calling this function.

Table 3.9 Page options for PDF_begin_page_ext() and PDF_end_page_ext()

option description

action (Action list; not for PDF/A) List of page actions for one or more of the following events (default: empty
list):
open Actions to be performed when the page is opened.
close Actions to be performed when the page is closed.

associatedfiles (List of asset handles; only for PDF 2.0 and PDF/A-3) Asset handles for associated files. The files must have
been loaded with PDF_load_asset() and type=attachment.

artbox
bleedbox
cropbox

(Rectangle) Specify the ArtBox, BleedBox, or CropBox for the current page, respectively. The coordinates
are specified in the default coordinate system. Default: no box entries

blocks (POCA container handle; may be supplied to PDF_begin_page_ext() or PDF_end_page_ext(), but not to
both functions for the same page; only available in PPS) Handle for a dictionary container created with
PDF_poca_new() which contains PDFlib Block definitions for the PDFlib Personalization Server (PPS). The
specified Blocks will be attached to the page. The dictionary must have been created with the option
usage=blocks. Default: no Blocks

defaultgray1

defaultrgb1

defaultcmyk1

(ICC handle or keyword; not for PDF/X-1a) Set a default gray, RGB, or CMYK color space for the page ac-
cording to the supplied ICC profile handle. The option defaultrgb also supports the keyword srgb. The
specified color space is used to map device-dependent gray, RGB, or CMYK colors on the page.

duration (Float) Set the page display duration in seconds for the current page if openmode=fullscreen (see Table
3.1). Default: 1

group1 (String; required if the document uses page groups, but not allowed otherwise; not allowed in PDF/VT
mode or if a document part hierarchy is created) Name of the page group to which the page will belong.
This name can be used to keep pages together in a page group and to address pages with PDF_resume_
page(). The group name must have been defined with the groups option in PDF_begin_document().

54 Chapter 3: Document and Page Functions

height (Float or keyword; not allowed in PDF_end_page_ext() if the topdown option is true) Dimensions of the
new page in points (or user units, if the userunit option has been specified). In order to produce land-
scape pages use width > height or the rotate option. PDFlib uses width and height to construct the
page’s MediaBox, but the MediaBox can also explicitly be set using the mediabox option. The width and
height options override the parameters with the same name.
The following symbolic ISO page size names can be used as keywords by appending .width or .height
(e.g. a4.width, a4.height):
a0, a1, a2, a3, a4, a5, a6, b5, letter, legal, ledger, 11x17

label (Option list) An option list according to Table 3.6 specifying symbolic page names. The page name will be
displayed as a page label (instead of the page number) in Acrobat’s status line. The specified numbering
scheme will be used for the current and subsequent pages until it is changed again. The combination of
style/prefix/start values must be unique within a document.

mediabox (Rectangle; not allowed if the topdown option is true) Change the MediaBox for the current page. The
coordinates are specified in the default coordinate system. By default, the MediaBox will be created by
using the width and height parameters. The mediabox option overrides the width and height options
and parameters.

metadata (Option list) Metadata for the page (see Section 14.2, »XMP Metadata«, page 263)

pagenumber1 (Integer; not allowed in PDF/VT mode or if a document part hierarchy is created) If this option is specified
with a value n, the page will be inserted before the existing page n within the page group specified in
the group option (or the document if the document doesn’t use page groups). If this option is not speci-
fied the page will be inserted at the end of the group.

rotate (Integer) The page rotation value. The rotation will affect page display, but does not modify the coordi-
nate system. Possible values are 0, 90, 180, 270. Default: 0

separation-
info1

(Option list; deprecated in PDF 2.0) An option list containing color separation details for the current page.
This will be ignored in Acrobat, but may be useful in third-party software for identifying and correctly
previewing separated pages in a preseparated workflow:
pages (Integer; required for the first page of a set of separation pages, but not allowed for subse-

quent pages of the same set) The number of pages which belong to the same set of separa-
tion pages comprising the color data for a single composite page. All pages in the set must
appear sequentially in the file.

spotname (String; required unless spotcolor has been supplied) The name of the colorant for the
current page.

spotcolor (Spot color handle) A color handle describing the colorant for the current page.

taborder (Keyword; PDF 1.5; only structure allowed in PDF/UA-1) Keyword specifying the tab order for form fields
and annotations (Default: structure in Tagged PDF mode for PDF 1.5 and above, otherwise none):
column Column by column from top to bottom, where columns are ordered as specified by the

direction suboption of the viewerpreferences option of PDF_begin/end_document().
none The tab order is unspecified.
structure Form fields and annotations are visited in the order in which they appear in the structure

tree.
row Row by row starting at the topmost row, where the direction within a row is as specified by

the direction suboption of the viewerpreferences option of PDF_begin/end_document().

topdown1 (Boolean) If true, the origin of the coordinate system at the beginning of the page is located in the top
left corner of the page, and y coordinates increase downwards; otherwise the default coordinate system
is used. Default: false

Table 3.9 Page options for PDF_begin_page_ext() and PDF_end_page_ext()

option description

3.3 Page Functions 55

transition (Keyword) Set the page transition for the current page in order to achieve special effects which may be
useful when displaying the PDF in Acrobat’s full-screen mode as presentations if openmode=fullscreen
(see Table 3.1). Default: replace
split Two lines sweeping across the screen reveal the page
blinds Multiple lines sweeping across the screen reveal the page
box A box reveals the page
wipe A single line sweeping across the screen reveals the page
dissolve The old page dissolves to reveal the page
glitter The dissolve effect moves from one screen edge to another
replace The old page is simply replaced by the new page
fly (PDF 1.5) The new page flies into the old page.
push (PDF 1.5) The new page pushes the old page off the screen
cover (PDF 1.5) The new page slides on to the screen and covers the old page.
uncover (PDF 1.5) The old page slides off the screen and uncovers the new page.
fade (PDF 1.5) The new page gradually becomes visible through the old one.

trans-
parency-
group

(Option list or keyword; not for PDF/A-1 and PDF/X-1a/3; restrictions apply to PDF/A-2/3 and PDF/X-4/5)
Create a transparency group for the page. The following keywords are supported (default: auto):
auto If transparent objects are present on the page itself, on a placed template or image, or on im-

ported graphics (not counting objects in isolated transparency groups since these don't affect
objects outside the group), a page transparency group is created with a suitable color space;
otherwise no transparency group is created.

none (Not allowed for PDF/A-2/3 without output intent and PDF/X-5n if transparency is used on the
page) Don’t create any transparency group for the page.

The following suboptions can be used to explicitly create a transparency group:
colorspace (Keyword or ICC profile handle; required for PDF/A-2/3 without output intent and PDF/X-5n if

transparency is used on the page) Blending color space for the page (default: none):
DeviceCMYK PDF/A-2/3 and PDF/X-4/5g/pg: only allowed with a CMYK output intent or if the

defaultcmyk option has been supplied.
PDF/X-5n: only allowed if the output intent contains the Colorants Cyan, Magenta,
Yellow and Black or if the defaultcmyk option has been supplied.

DeviceGray PDF/A-2/3: only allowed with a gray, RGB or CMYK output intent or if the
defaultgray option has been supplied. PDF/X-4/5g/pg: only allowed with a gray
or CMYK output intent or if the defaultgray option has been supplied.
PDF/X-5n: only allowed if the output intent contains the Colorant Black or if the
defaultgray option has been supplied.

DeviceRGB PDF/A-2/3 and PDF/X-4/5g/pg: only allowed with an RGB output intent or if the
defaultrgb option has been supplied.
PDF/X-5n: only allowed if the defaultrgb option has been supplied.

none (Not allowed for PDF/A-2/3 without output intent and PDF/X-5n if transparency is
used on the page) No color space is emitted for the transparency group.

srgb Keyword for selecting the sRGB color space
knockout (Boolean) Specifies whether the page group is a knockout group, which means that the group

elements do not composite with each other; objects knock out earlier elements in the group.
Default: false

trimbox (Rectangle) Specify the TrimBox for the current page. The coordinates are specified in the default coordi-
nate system. Default: no TrimBox entry

userunit (Float or keyword; PDF 1.6) A number in the range 1..75 000 specifying the size of a user unit in points, or
one of the keywords mm, cm, or m which scales to the respective unit. User units don’t change the actual
page contents; they are only a hint to Acrobat which is used when printing the page or using the mea-
surement tools. Default: 1 (i.e. one unit is one point)

Table 3.9 Page options for PDF_begin_page_ext() and PDF_end_page_ext()

option description

56 Chapter 3: Document and Page Functions

C++ Java C# void suspend_page(String optlist)
Perl PHP suspend_page(string optlist)

C void PDF_suspend_page(PDF *p, const char *optlist)

Suspend the current page so that it can later be resumed.

optlist An option list for future use.

Details The full graphics, color, text and layer states of the current page are saved internally.
The page can later be resumed with PDF_resume_page() to add more content. Suspended
pages must be resumed before they can be closed.

Scope page; this function starts document scope, and must always be paired with a matching
PDF_resume_page() call. In Tagged PDF mode all direct and pseudo items must be closed
before calling this function.

C++ Java C# void resume_page(String optlist)
Perl PHP resume_page(string optlist)

C void PDF_resume_page(PDF *p, const char *optlist)

Resume a page to add more content to it.

optlist An option list according to Table 3.10. The following options can be used:
group, pagenumber

Details The page must have been suspended with PDF_suspend_page(). It will be opened again
so that more content can be added. All suspended pages must be resumed before they
can be closed, even if no more content has been added.

In Tagged PDF mode it must be kept in mind that resuming a page does not restore
any structure item. Instead, the item which is active when PDF_resume_page() is called
will be the current item for subsequent page contents. It is recommended to use PDF_
activate_item() to restore a specific structure element on the page as parent for
subsequently generated contents.

Scope document; this function starts page scope, and must always be paired with a matching
PDF_suspend_page() call.

viewports (List of option lists; PDF 1.7ext3) Specifies one or more georeferenced areas (viewports) on the page; see
Section 12.7, »Geospatial Features«, page 246, for details.
Viewports allow different geospatial references (specified by the georeference option) to be used on dif-
ferent areas of the page, e.g. for multiple maps. The ordering of the option lists in the viewports list is
relevant for overlapping viewports: the last viewport which contains a point will be used for that point.

width (Float or keyword; not allowed in PDF_end_page_ext() if the topdown option is true) See height option.

1. Only for PDF_begin_page_ext()

Table 3.9 Page options for PDF_begin_page_ext() and PDF_end_page_ext()

option description

3.3 Page Functions 57

Table 3.10 Options for PDF_resume_page()

option description

group (String; required if the document uses page groups, but not allowed otherwise) Name of the page group
of the resumed page. The group name must have been defined with the groups option in PDF_begin_
document().

pagenumber (Integer) If this option is supplied, the page with the specified number within the page group chosen in
the group option (or in the document if the document doesn’t use page groups) will be resumed. If this
option is missing the last page in the group will be resumed.

58 Chapter 3: Document and Page Functions

3.4 Layers

C++ Java C# int define_layer(String name, String optlist)
Perl PHP int define_layer(string name, string optlist)

C int PDF_define_layer(PDF *p, const char *name, int len, const char *optlist)

Create a new layer definition (requires PDF 1.5).

name (Hypertext string) The name of the layer.

len (C language binding only) Length of name (in bytes). If len = 0 a null-terminated
string must be provided.

optlist An option list with layer settings:
> General options: hypertextencoding and hypertextformat (see Table 2.3)
> Layer control options according to Table 3.11:

creatorinfo, defaultstate, initialexportstate, initialprintstate, initialviewstate, intent,
language, onpanel, pageelement, printsubtype, removeunused, zoom

Returns A layer handle which can be used in calls to PDF_begin_layer() and PDF_set_layer_
dependency() until the end of the enclosing document scope.

Details PDFlib issues a warning if a layer was defined but hasn’t been used in the document.
Layers which are used on multiple pages should be defined only once (e.g. before creat-
ing the first page). If PDF_define_layer() is called repeatedly on multiple pages, the layer
definitions will accumulate (even if they have the same name), which is usually not de-
sired.

Once this function has been called PDF_open_pdi_document() must not be called for a
layered PDF document and the option uselayers=false. Vice versa, this function must not
be called if PDF_open_pdi_document() has already been called for a layered PDF docu-
ment and the option uselayers=false.

PDF/A PDF/A-1: this function must not be called.
PDF/A-2/3: some options are restricted.

PDF/X PDF/X-1a/2/3: this function must not be called.
PDF/X-4/5: some options are restricted.

PDF/UA Some options are restricted.

Scope any except object

Table 3.11 Options for PDF_define_layer()

option description

creatorinfo (Option list; not for PDF/A-2/3, PDF/X-4/5, and PDF/UA-1) An option list describing the content and the
creating application. Both of the following entries are required if this option is used:
creator (Hypertext string) The name of the application which created the layer
subtype (String) The type of content. Suggested values are Artwork and Technical.

defaultstate (Boolean) Specifies whether or not the layer is visible by default. Default: true

3.4 Layers 59

C++ Java C# void set_layer_dependency(String type, String optlist)
Perl PHP set_layer_dependency(string type, string optlist)

C void PDF_set_layer_dependency(PDF *p, const char *type, const char *optlist)

Define layer relationships (requires PDF 1.5).

type The type of dependency or relationship according to Table 3.12.

optlist An option list for layer dependencies:
> General option: hypertextencoding (see Table 2.3)
> Layer dependency options according to Table 3.13:

children, depend, group, parent

initial-
exportstate

(Boolean; not for PDF/A-2/3, PDF/X-4/5, and PDF/UA-1) Specifies the layer’s recommended export state. If
true, Acrobat includes the layer when converting/exporting to older PDF versions or other document for-
mats. Default: true

initial-
printstate

(Boolean; not for PDF/A-2/3, PDF/X-4/5, and PDF/UA-1) The layer’s recommended printing state. If true,
Acrobat includes the layer when printing the document. Default: true

initial-
viewstate

(Boolean; not for PDF/A-2/3, PDF/X-4/5, and PDF/UA-1) The layer’s recommended viewing state. If true,
Acrobat displays the layer when opening the document. Default: true

intent (Keyword) Intended use of the graphics: View or Design. Default: View

language (Option list; not for PDF/A-2/3, PDF/X-4/5, and PDF/UA-1) Specifies the language of the layer:
lang (String; required) The language and possibly locale in the format described in Table 3.1 for the

lang option
preferred (Boolean) If true this layer is used if there is only a partial match between the layer and the

system language. Default: false

onpanel (Boolean; not for PDF/A-2/3, PDF/X-4/5, and PDF/UA-1) If false, the layer name will not be visible in Acro-
bat’s layer panel, and therefore cannot be manipulated by the user. Default: true

pageelement (Keyword; not for PDF/A-2/3, PDF/X-4/5, and PDF/UA-1) Specifies that the layer contains a pagination ar-
tifact: one of HF (header/footer), FG (foreground image or graphic), BG (background image or graphic), or
L (logo).

printsubtype (Option list; not for PDF/A-2/3, PDF/X-4/5, and PDF/UA-1) Specifies whether the layer is intended for print-
ing:
subtype (Keyword) One of Trapping, PrintersMarks, or Watermark specifying the kind of content in

the layer.
printstate (Boolean) If true, Acrobat activates the layer contents upon printing.

removeunused (Boolean) If true and the layer is not used on a page, the layer will not be included in the page’s layer list.
A layer is considered used on a page if it has been supplied to PDF_begin_layer() at least once on that
page. Default: false

zoom (List of floats or percentages; not for PDF/A-2/3, PDF/X-4/5, and PDF/UA-1) One or two values specifying
the layer’s visibility depending on the zoom factor (1.0 means a zoom factor of 100 percent). If one value
is provided, it will be used as the maximum zoom factor at which the layer should be visible; if two values
are provided they specify the minimum and maximum zoom factor. The keyword maxzoom can be used to
specify the largest possible zoom factor.

Table 3.11 Options for PDF_define_layer()

option description

60 Chapter 3: Document and Page Functions

Details Layer relationships specify the presentation of layer names in Acrobat’s layer pane as
well as the visibility of one or more layers when the user interactively enables or dis-
ables layers.

PDF/A PDF/A-1: this function must not be called.

PDF/X PDF/X-1a/2/3: this function must not be called.

Scope any except object; Layer relationships should be specified after all layers have been
defined.

Table 3.12 Dependency and relationship types for layers

type notes; options specific for this type

GroupAllOn The layer specified in the depend option will be visible if all layers specified in the group option are visi-
ble. Options specific for this type: depend, group

GroupAnyOn The layers specified in the depend option will be visible if any layer specified in the group option is visible.
Options specific for this type: depend, group

GroupAllOff The layer specified in the depend option will be visible if all layers specified in the group option are invis-
ible. Options specific for this type: depend, group

GroupAnyOff The layer specified in the depend option will be visible if any layer specified in the group option is invisi-
ble. Options specific for this type: depend, group

Lock (PDF 1.6) The layers specified in the group option are locked, i.e. their state cannot be changed interac-
tively in Acrobat. Options specific for this type: group

Parent Specify a hierarchical relationship between the layer specified in the parent option and the layers speci-
fied in the children option. Setting the parent to invisible automatically sets its children to invisible. A
layer cannot belong to more than one parent layer. Options specific for this type: children, parent

Radiobtn Specify a radio button relationship between the layers specified in the group option. This means that at
most one layer in the group is visible at a time, which is particularly useful for multiple language layers.
Option specific for this type: group

Title The layer specified in the parent option does not control any page contents directly, but serves as a hier-
archical separator for the layers specified in the children option. Options specific for this type:
children, parent

Table 3.13 Options for PDF_set_layer_dependency()

option description

children (List of layer handles; only for type=Parent and Title) One or more layer handles specifying the layers
subordinate to the provided parent layer.

depend (Layer handle; only for type=GroupAllOn, GroupAnyOn, GroupAllOff, and GroupAnyOff) The layer which
is controlled by the layers specified in the group option.

group (List of layer handles; only for type=GroupAllOn, GroupAnyOn, GroupAllOff, GroupAnyOff, Lock, and
Radiobtn) One or more layer handles comprising the group. For type=Lock all layers in the group will be
locked.

parent (Layer handle; only for type=Parent and Title) The layer which is the parent of the layers specified in
the children option.

3.4 Layers 61

C++ Java C# void begin_layer(int layer)
Perl PHP begin_layer(int layer)

C void PDF_begin_layer(PDF *p, int layer)

Start a layer for subsequent output on the page (requires PDF 1.5).

layer The layer’s handle, which must have been retrieved with PDF_define_layer().

Details All content placed on the page after this call, but before any subsequent call to PDF_
begin_layer() or PDF_end_layer() will be part of the specified layer. The content’s
visibility depends on the layer’s settings.

This function activates the specified layer, and deactivates any layer which may be
currently active.

Layers for annotations, images, graphics, templates, and form fields can be con-
trolled with the layer option of the respective functions.

Scope page

C++ Java C# void end_layer()
Perl PHP end_layer()

C void PDF_end_layer(PDF *p)

Deactivate all active layers (requires PDF 1.5).

Details Content placed on the page after this call will not belong to any layer. All layers must be
closed at the end of a page.

In order to switch from layer A to layer B a single call to PDF_begin_layer() is suffi-
cient; it is not required to explicitly call PDF_end_layer() to close layer A. PDF_end_layer()
is only required to create unconditional content (which is always visible), and to close
all layers at the end of a page.

Scope page

62 Chapter 3: Document and Page Functions

4.1 Font Handling 63

4 Font and Text Functions

4.1 Font Handling

C++ Java C# int load_font(String fontname, String encoding, String optlist)
Perl PHP int load_font(string fontname, string encoding, string optlist)

C int PDF_load_font(PDF *p, const char *fontname, int len, const char *encoding, const char *optlist)

Search for a font and prepare it for later use.

fontname (Name string) Name of the font. It can alternatively be provided via the
fontname option which overrides this parameter. See option fontname in Table 4.2 for
details.

len (C language binding only) Length of fontname in bytes. If len = 0 a null-terminated
string must be provided.

encoding Name of the encoding. It can alternatively be provided via the encoding op-
tion which overrides this parameter. See option encoding in Table 4.2 for details. Note
the following common encoding-related problems:

> An 8-bit encoding was supplied but the font does not contain any glyph for this en-
coding.

> The encoding builtin was supplied, but the font does not contain any internal encod-
ing. This can only happen for TrueType fonts.

> A CMap was supplied but doesn’t match the font.

optlist An option list with the following options:
> General option: errorpolicy (see Table 2.1)
> Font loading options according to Table 4.2:

ascender, autosubsetting, capheight, descender, dropcorewidths, embedding, encoding,
fallbackfonts, fontname, initialsubset, keepfont, keepnative, linegap, metadata, optimize-
invisible, preservepua, readfeatures, readkerning, readselectors, readshaping, readvertical-
metrics, replacementchar, simplefont, skipembedding, subsetlimit, subsetminsize, subsetting,
unicodemap, vertical, xheight

Returns A font handle for later use with PDF_info_font(), text output functions, and the font text
appearance option. If the requested font/encoding combination cannot be loaded due
to a configuration problem (e.g. a font or encoding file could not be found, or a mis-
match was detected), an error code of -1 (in PHP: 0) will be returned or an exception
raised. The error behavior can be changed with the errorpolicy option.

If the function returns an error you can request the reason of the failure with PDF_
get_errmsg(). Otherwise, the value returned by this function can be used as font handle
when calling other font-related functions. The returned handle doesn’t have any signif-
icance to the user other than serving as a font handle.

The returned font handle is valid until the font is closed with PDF_close_font(). Fin-
ishing the document with PDF_end_document() closes each open font handle unless the
option keepfont has been supplied in the respective PDF_load_font() call, or the font has
been loaded in object scope (i.e. outside of any document).

64 Chapter 4: Font and Text Functions

Details This function prepares a font for later use.
Repeated calls: when this function is called again with the same font name and the

same encoding, the same font handle as in the first call will be returned. Trying to load a
font again fails if embedding=false in the first call and embedding= true in the second call.
This situation usually points to a problem in the application.

Implicit font loading: in addition to explicitly loading a font with PDF_load_font(),
some API functions (e.g. PDF_add/create_textflow() or PDF_fill_textblock()) can implicitly
load a font for which the font name and encoding have been specified in an option list.
A new font handle will be created unless the font has already been loaded earlier.

Some text output features are not available for certain encodings (see Table 4.1).
In non-Unicode language bindings, the option textformat=auto behaves as follows

(note that all UTF formats are allowed for both cases):
> Wide character encodings: text in the loaded font is expected in text format utf16 (for

encoding=glyphid surrogates will not be interpreted)
> Byte- and multibyte encodings: text in the loaded font is expected in text format

bytes.

PDF/A All fonts must be embedded.

PDF/UA All fonts must be embedded.

PDF/X All fonts must be embedded.

Scope any

Table 4.1 Availability of PDFlib features for various encodings

feature
unicode and
Unicode CMaps

8-bit
encodings

legacy CMaps,
cp936 etc. glyphid

Textflow yes yes yes1

1. This feature is not available for CJK fonts with keepnative=true.

yes

glyph replacement yes yes yes1 –

fallback fonts yes yes yes1 –

shaping yes – yes1 yes

OpenType layout features yes – yes1 yes

Table 4.2 Font loading options for PDF_load_font() and implicit font loading

option description

ascender (Integer between -2048 and 2048) Force the corresponding typographic property to the specified value.
This will override any values found in the font, and is especially useful if the font does not contain any
such information (e.g. Type 3 fonts). Default: the value in the font if present, or an estimated value other-
wise (which can be queried with PDF_info_font())

auto-
subsetting

(Boolean) Dynamically decide whether or not the font will be subset, subject to the subsetlimit and
subsetminsize options and the actual usage of glyphs. This option will be ignored if the subsetting op-
tion has been supplied. Default: true

capheight (Integer between -2048 and 2048) See ascender above.

descender (Integer between -2048 and 2048) See ascender above.

4.1 Font Handling 65

dropcore-
widths

(Boolean; unsupported; forced to false for PDF/A, PDF/UA, and PDF/X) The widths for unembedded core
fonts will not be emitted in the generated PDF. The slightly reduces output file size, but may create incor-
rect text rendering for certain characters. It is strongly recommended to keep this option at its default
value. Default: false

embedding (Boolean; must be true for PDF/A, PDF/UA and PDF/X) Controls whether or not the font will be embed-
ded. If a font is to be embedded, the font outline file must be available and the font outline definition is
included in the PDF output. If a font is not embedded, only general information about the font is includ-
ed in the PDF output.
Default: false, although PDFlib automatically embeds certain fonts depending on their type and encod-
ing.
The option embedding=false will be ignored if the same font has already been loaded earlier with
embedding=true. The embedding behavior for fonts with invisible text can be modified with the
optimizeinvisible option even for embedding=true.
Font embedding can also be controlled with the skipembedding option.

encoding (String; required for implicit font loading if the text appearance option font is not specified) Encoding in
which incoming text for this font is interpreted:
Wide character encodings:
> unicode or the name of a Unicode CMap
> glyphid: all glyphs in the font can be addressed by their font-specific ID

Byte and multibyte encodings:
> one of the predefined 8-bit encodings winansi, macroman, macroman_apple, ebcdic, ebcdic_37,
pdfdoc, iso8859-X, or cpXXXX, and non-Unicode (legacy) CMaps

> (not for Unicode-capable language bindings) cp932, cp936, cp949, or cp950 for CJK codepages
> host or auto or the name of a user-defined encoding or an encoding known to the operating system
> builtin to select the font’s internal encoding (mostly for symbolic fonts);

PDF_load_font(): this option can alternatively be provided as function parameter.
PDF_fill_textblock(): this option is required unless the string in the text parameter is empty and the
defaulttext property is used, or the font option has been supplied.

fallbackfonts (List of option lists according to Table 4.3) Specify one or more fallback fonts for the loaded font. Each fall-
back font must be defined by a font handle in the font suboption or suitable suboptions for implicit font
loading. Fallback fonts are not supported for some combinations of font type and encoding (see Table
4.1).
If glyphcheck=replace and the text contains a character which is not part of the base font’s 8-bit encod-
ing, or the base font does not contain a glyph for the character, or glyph replacement is forced via the
forcechars suboption, PDFlib will search a glyph for this character in all specified fallback fonts in the or-
der in which they are listed. If a suitable glyph is found in one of the fallback fonts, the character will be
rendered with this glyph; otherwise the usual glyph replacement mechanism applies.

Table 4.2 Font loading options for PDF_load_font() and implicit font loading

option description

66 Chapter 4: Font and Text Functions

fontname (Name string; required for implicit font loading except for PDF_fill_textblock() if the text appearance op-
tion font is not specified) Real or alias name of the font (case is significant). This name is used to locate
the font data. If the font file name is supplied the suffix must be omitted. On Windows font style names
can be appended to the font name after a comma (see PDFlib Tutorial for details). If fontname starts with
an ’@’ character the font will be applied in vertical writing mode.
PDF_load_font(): the font name can alternatively be provided as function parameter.

fontstyle (Keyword; deprecated) Controls the creation of artificial font styles. Possible keywords are normal, bold,
italic, bolditalic. All text created with this font will be styled with the fakebold and/or italicangle
text appearance options as appropriate. Unless another value of italicangle has been set, -12 is used.
If this option is applied to one of the core fonts, the appropriate bold, italic, or bolditalic font variant will
be selected instead of faking the font style. If no such font is available (e.g. applying bold to Times-Bold),
the option is ignored. Default: normal

initialsubset (List of Unichars or Unicode ranges, or list of keywords; only relevant for embedding=true and sub-
setting=true) Specify the Unicode values for which glyphs will be included in the initial font subset.
This can be used to reduce the PDF output file size by creating identical subsets, which facilitates later op-
timizations when merging multiple documents. The Unicode values can be specified explicitly by Uni-
chars or Unicode ranges, or implicitly by the name of an 8-bit encoding. Unichars and Unicode ranges
have precedence over encoding names. Supported keywords (default: empty):
empty The initial font subset will be empty; the contents of the subset will be determined by the

text in the document.
any 8-bit encoding name

All Unicode values found in the encoding will be included in the initial subset. Glyphs for
additional characters will be added to the subset automatically if required by the text in the
document or by the features and shaping text options.

keepfont (Boolean; not allowed for Type 3 fonts) If false the font will be deleted automatically in PDF_end_
document(). If true the font can also be used in subsequent documents until PDF_close_font() has been
called. Default: true if PDF_load_font() is called in object scope, otherwise false

keepnative (Boolean; only relevant for unembedded CJK fonts with a predefined CMap; will be ignored for other
fonts or custom CMaps; will be forced to false if embedding=true) If false, text in this font will be con-
verted to CID values when creating PDF output. The text supplied to API functions must still match the
selected CMap (e.g. Shift-JIS). However, the font can be used in Textflow and all simple text output func-
tions (but not in form fields). Except for glyph replacement and fallback fonts which are unavailable, a
font with Unicode CMaps will behave as with encoding=unicode.
If true, text in this font will be written to the PDF output in its native format according to the specified
CMap. The font can be used in form fields and all simple text output functions, but not in Textflow.
Default: false for TrueType fonts or embedding=true, and true otherwise.

linegap (Integer between -2048 and 2048) See ascender above.

metadata (Option list) Supply metadata for the font (see Section 14.2, »XMP Metadata«, page 263)

monospace (Integer between 1 and 2048) Deprecated; don’t use

optimize-
invisible

(Boolean; not for PDF/X-1/2/3) If true, fonts which are exclusively used for invisible text (i.e. text-
rendering=3) will not be embedded even if embedding=true. This may be useful to avoid font embed-
ding for PDF/A output with invisible text containing OCR results. Even if the font is not embedded, font
files must be configured as usual since PDFlib decides about non-embedding only at the end of the docu-
ment. Default: false

preservepua (Boolean) If true, characters which are mapped to a Unicode value in the Private Use Area (PUA) in the
font retain their PUA value in the PDF output. This may be useful if the PUA characters carry locally de-
fined semantics such as Japanese Gaiji/EUDC characters. If false, PUA characters are mapped to
U+FFFD (Unicode replacement character) in the ToUnicode CMap in the PDF output. Default: false

Table 4.2 Font loading options for PDF_load_font() and implicit font loading

option description

4.1 Font Handling 67

readfeatures (Boolean; only relevant for TrueType and OpenType fonts and encoding=unicode, glyphid, or Unicode
CMaps) Specifies whether the feature tables of a TrueType or OpenType font will be read from the font.
Actually applying OpenType features to text is controlled by the features option (see Table 5.4). Setting
this option to false may speed up font loading if OpenType features are not required. Default: true

readkerning (Boolean) Controls whether or not kerning values will be read from the font. Actually applying the kern-
ing values to text is controlled by the kerning text option (see Table 4.7). Setting this option to false
may speed up font loading if kerning is not required. Default: true for horizontal writing mode, false for
vertical writing mode

readselectors (Boolean; only relevant for TrueType and OpenType fonts) If true, the variation selectors will be read
from the font if available. This is required for automatically substituting Ideographic Variation Sequences
(IVS) within Unicode text. Default: true

readshaping (Boolean; only relevant for TrueType and OpenType fonts and the encodings unicode and glyphid) Spec-
ifies whether the shaping tables of a TrueType or OpenType font will be read, which is a requirement for
complex script shaping. Actually shaping text is controlled by the shaping option (see Table 5.4). Setting
readfeatures to false can save memory if shaping is not required. Default: true

readvertical-
metrics

(Boolean) If true and the option vertical is also true the vertical metrics of a TrueType or OpenType
font (if present) is used for formatting the text output. Default: false

replace-
mentchar

(Unichar or keyword; only relevant for glyphcheck=replace; ignored for fonts loaded with a non-Uni-
code CMap or glyphid encoding) Glyphs which are not available in the selected font and which cannot
be substituted by fallback fonts or typographically similar characters will be replaced with the specified
Unicode value. If the font doesn’t contain any glyph for the specified Unicode character, the behavior of
auto will be applied. U+0000 can be used to specify the font’s »missing glyph« symbol (not allowed in
PDF/A, PDF/UA and PDF/X-4/5). For symbolic fonts loaded with encoding=builtin the byte code must be
supplied instead of the Unicode value. The following keywords can be used as an alternative to a Unicode
character (default: auto):
auto The first character from the following list for which a glyph is available in the font will be

used as a replacement character:
U+00A0 (NO-BREAK SPACE), U+0020 (SPACE), U+0000 (missing glyph symbol).

drop No output will be created for the character.
error An exception will be thrown if a typographically similar character is not available. This may

be used to avoid unreadable text output.

simplefont (Boolean; only relevant for fonts with TrueType outlines and an 8-bit encoding) If this option is true and
subsetting= false, the font is emitted as simple font instead of as a CID font. For some PDF viewers
(particularly Acrobat) this is required for successful font substitution if the font is not installed on the
viewing machine. The value true is recommended when loading fonts for use in form fields. Default:
false

Table 4.2 Font loading options for PDF_load_font() and implicit font loading

option description

68 Chapter 4: Font and Text Functions

C++ Java C# void close_font(int font)
Perl PHP close_font(int font)

C void PDF_close_font(PDF *p, int font)

Close an open font handle which has not yet been used in the document.

font A font handle returned by PDF_load_font() which has not already been used in the
document or closed.

Details This function closes a font handle, and releases all resources related to the font. The font
handle must not be used after this call. Usually fonts will automatically be closed at the
end of a document. However, closing a font is useful in the following situations:

> After querying font properties with PDF_info_font() it was determined that the font
will not be used in the current PDF document.

skip-
embedding

(List of keywords; only relevant for embedding=true; in PDF/A, PDF/X and PDF/UA only an empty list is al-
lowed) Ignore font embedding if the font satisfies one or more conditions. This may be useful in situa-
tions where font embedding is generally desired, but an unembedded font is preferable for specific kinds
of fonts or error situations. Supported keywords (default: empty list):
fstype The font is a TrueType or OpenType font and cannot be embedded because it doesn’t permit

embedding according to the fsType flag in the font’s OS/2 table.
hostfont The font was loaded as a host font.
latincore The font is included in the set of standard 14 Latin core fonts (see PDFlib Tutorial for full list),

but cannot be embedded because no font outline file is available.
metricsonly

(Deprecated) Only the PFM or AFM metrics file for the font is available, but the font cannot be
embedded because no font outline (PFA, PFB) file is available.

standardcjk
(Deprecated) The font is included in the set of standard CJK fonts (see PDFlib Tutorial for full
list), but cannot be embedded because no font outline file is available.

subsetlimit (Float or percentage; ignored for Type 3 fonts) Disable automatic font subsetting if the percentage of
glyphs used in the document related to the total number of glyphs in the font exceeds the provided per-
centage. Default: 100%

subsetminsize (Float; ignored for Type 3 fonts) Disable automatic font subsetting if the size of the original font file is less
than the provided value in KB. Default: 50

subsetting (Boolean) Controls whether or not the font will be subset. Subsetting for Type 3 fonts requires a two-pass
definition of the font (see PDFlib Tutorial), and the subsetting option must be provided in the first call to
PDF_load_font(). Default: subsetting is enabled automatically based on the subsetlimit/subsetmin-
size settings.

unicodemap (Boolean; must not be set to false for PDF/A-1a/2a/2u/3a/3u and PDF/UA-1) Controls generation of ToU-
nicode CMaps. This option will be ignored in Tagged PDF mode. Default: true

vertical (Boolean; only for TrueType and OpenType fonts; will be ignored for predefined CMaps, and will be forced
to true if the font name starts with @) If true, the font will be prepared for vertical writing mode and
the vrt2 and vert OpenType features are activated if supported by the font.

xheight (Integer between -2048 and 2048) See ascender above.

Table 4.2 Font loading options for PDF_load_font() and implicit font loading

option description

4.1 Font Handling 69

> A font was retained across document boundaries (with the keepfont option of PDF_
load_font()), but now it should be disposed because it is no longer required.

If the font has already been used in the current document it must not be closed.

Scope any

C++ Java C# double info_font(int font, String keyword, String optlist)
Perl PHP float info_font(int font, string keyword, string optlist)

C double PDF_info_font(PDF *p, int font, const char *keyword, const char *optlist)

Query detailed information about a loaded font.

font A font handle returned by PDF_load_font(), or -1 (in PHP: 0) for some keywords.

keyword A keyword specifying the requested information according to Table 4.5. The
following keywords can be used:

> Keywords for glyph mapping: cid, code, glyphid, glyphname, unicode
> Font metrics: ascender, capheight, descender, italicangle, linegap, xheight
> Font file, name, and type: cidfont, familyname, fontfile, fontname, fontstyle, fonttype,

metricsfile, outlineformat, singfont, standardfont, supplement
> Technical font information: feature, featurelist, hostfont, kerningpairs, numglyphs,

shapingsupport, vertical
> Keywords for Ideographic Variation Selectors:

maxuvsunicode, minuvsunicode, selector, selectorlist

Table 4.3 Suboptions for the fallbackfonts option of PDF_load_font()

option description

font loading
options

If the font is specified implicitly (i.e. via the fontname and encoding options, as opposed to the font op-
tion), all font loading options according to Table 4.2 except fallbackfonts can be supplied as subop-
tions. Fonts loaded with a non-Unicode CMap can not be used as fallback fonts.

font (Font handle) A font handle returned by a call to PDF_load_font() without the fallbackfonts option. If
this option is supplied, all font loading options (including fontname and encoding) will be ignored..

fontsize (Float or percentage) Size of the fallback font in user coordinates or as a percentage of the current font
size. This option can be used to adjust the size of the fallback font if the design size of the fallback font
doesn’t match that of the base font. Default: 100%

forcechars (List of Unichars or Unicode ranges, or single keyword) Specify characters which are always rendered with
glyphs from the fallback font (regardless of the glyphcheck setting). The fallback font must contain
glyphs for the specified characters (if individual characters are specified), or at least glyphs for the first
and last characters in the specified Unicode range. Unicode values can be specified for this option even if
an 8-bit encoding has been specified for the base font.
One of the following keywords can be supplied:
gaiji The fallback font must refer to a SING font, and this keyword can be used as a shortcut for the

Unicode value of the main glyph of the SING font.
all All glyphs in the fallback font will be used to replace the corresponding characters in the base

font, even if the character is available in the base font.

textrise (Float or percentage) Text rise value (see Table 4.7). Percentages are based on the size specified for the fall-
back font (i.e. after applying the fontsize suboption if present). This option can be used to adjust the po-
sition of text in the fallback font if the design size of the fallback font doesn’t match that of the base font.
Default: 0

70 Chapter 4: Font and Text Functions

> Font/encoding relationship: codepage, codepagelist, encoding, fallbackfont, keepnative,
maxcode, numcids, numusableglyphs, predefcmap, replacementchar, symbolfont,
unicodefont, unmappedglyphs

> Results of font processing for the current document: numusedglyphs, usedglyph,
willembed, willsubset

optlist An option list which additionally qualifies the selected keyword. The following
options can be used:

> Keyword-specific options which are detailed along with the corresponding keyword
in Table 4.5.

> Mapping options according to Table 4.4 for specifying glyphs:
cid, code, glyphid, glyphname, selector, unicode.
These options define the source value for the mapping keywords cid, code, glyphid,
glyphname, and unicode. The mapping options are mutually exclusive. The code,
glyphname, and unicode options can be combined with the encoding option.

Returns The value of some font or encoding property as requested by keyword and in some cases
auxiliary options. For unspecified combinations of keyword and options -1 (in PHP: 0)
will be returned. If the requested keyword produces text, a string index is returned, and
the corresponding string must be retrieved with PDF_get_string().

Details This function supplies information from the following distinct sources:
> If a valid font handle is supplied it returns information gathered from the font. Ex-

amples: font metrics, name, or type; unicode value for a particular glyphid.
> If font = -1 (in PHP: 0) and the encoding option is supplied it returns information

about this encoding. Example: unicode value for a code in the encoding.
> If font = -1 (in PHP: 0) and the encoding option is not supplied it returns information

gathered from PDFlib’s internal tables. Example: unicode value for a particular
glyphname.

Scope any

Table 4.4 Options for specifying glyphs in PDF_info_font()

option description

cid (Number) CID value of the glyph; only reasonable if cidfont=1

code (Number in the range 0...255; only for fonts with 8-bit encoding) Encoding slot

glyphid (Number in the range 0...65535) Internal glyph id

glyphname (String) Name of a glyph; not reasonable if cidfont=1

selector (Unichar) Unicode value of a variation selector in the range U+0xFE00..U+FE0F or U+E0100..U+E01EF. All
values returned by the selector keyword can be supplied here.

unicode (Unichar) Unicode character

4.1 Font Handling 71

Table 4.5 Keywords and options for PDF_info_font()

keyword description

ascender Metrics value for the ascender. Supported options (default: fontsize=1000):
faked (Boolean) 1 if the value had to be estimated because it was not available in the font or metrics

file, otherwise 0
fontsize (Fontsize) Value will be scaled to the specified font size

capheight Metrics value for the capheight. See ascender.

cid CID for the specified glyph, or -1 if not available. Supported options: cid, glyphid, unicode, selector

cidfont 1 if the font will be embedded as a CID font, otherwise 0

code Number in the range 0...255 specifying an encoding slot or -1 if no such slot was found in the font or in the
encoding (if the encoding option was supplied and font=-1 (in PHP: 0)). Supported options are the map-
ping options code, glyphid, glyphname, unicode plus the following:
encoding (String) Name of an 8-bit encoding

codepage Check whether the font supports a specific codepage. The information will be taken from the OS/2 table
of TrueType/OpenType fonts if available. Supported option:
name (String; required) Name of a codepage in the form cpXXXX, where XXXX indicates the decimal

number of a codepage (e.g. cp437, cp1252)
The following return values indicate whether the specified codepage is supported by the font:
-1 Unknown because the font is not a TrueType or OpenType font.
0 Font does not support the specified codepage.
1 Font supports the specified codepage.

codepagelist String index of a space-separated list of all codepages supported by the font (in the form cpXXXX), or -1 if
the codepage list is unknown because the font is not a TrueType or OpenType font (see codepage).

descender Metrics value for the descender. See ascender.

encoding String index of the name of the font’s encoding or CMap. Supported options (default: actual):
api (Boolean) If true, the encoding name as specified in the API
actual (Boolean) If true, the name of the actual encoding used for the font

fallbackfont Handle of the base or fallback font which will be used to render the character specified in the unicode op-
tion. This can be used to check which font in the chain of fallback fonts actually provides the glyph used
for the specified character. If the character cannot be rendered with any of the base or fallback fonts, -1
will be returned. Supported option: unicode

familyname String index of the name of the font family, or -1 if unavailable

feature Check whether the font contains a specific OpenType feature table which is supported by PDFlib.
Supported options:
language (Keyword; only if script is supplied) Specifies the language name. Default: _none
name (Keyword; required) Specifies the four-character name of an OpenType feature table, e.g. liga

(standard ligatures), ital (italic forms in CJK fonts), vert (vertical writing). Feature kern can
not be queried.

script (Keyword) Specifies the script name. Default: _none
An exception is thrown if an unknown keyword for language, name, or script is supplied; see PDFlib Tu-
torial for lists of known keywords. The following return values indicate whether the specified OpenType
feature table is present in the font and supported by PDFlib:
-1 No feature tables are available in the font.
0 The feature is not availablefor the specified specified script and language in the font, or is not

known to PDFlib.
1 The feature is available for the specified script and language.

72 Chapter 4: Font and Text Functions

featurelist String index of a space-separated list of all features which are available in the font and supported by
PDFlib, or -1 if no feature tables are available.

fontfile String index of the path name for the font outline file, or -1 if unavailable

fontname String index of the font name, or -1 if unavailable. Supported options (default: acrobat):
acrobat (Boolean) If true, the font name as displayed in Acrobat
api (Boolean) If true, the font name as specified in the API
full (Boolean) If true, the /FontName entry in the PDF font descriptor

fontstyle String index for the value of the fontstyle option (normal, bold, italic, or bolditalic)

fonttype String index of the font type, or -1 if unavailable. Known font types are Multiple Master, OpenType,
TrueType, TrueType (CID), Type 1, Type 1 (CID), Type 1 CFF, Type 1 CFF (CID), Type 3

glyphid Number in the range 0...65535 specifying the font-internal id (GID) of the specified glyph, or -1 if no such
glyph was found. Supported options are the mapping options cid, code, glyphid, glyphname, unicode,
selector.

glyphname String index of the name of the specified glyph, or -1 if no such glyph was found in the font or in the spec-
ified encoding (if the encoding option was supplied and font=-1 (in PHP: 0)). Supported options are the
mapping options code, glyphid, glyphname, unicode plus the following:
encoding (String) Name of an 8-bit encoding

hostfont 1 if the font is a host font, 0 otherwise

italicangle Italic angle of the font (ItalicAngle in the PDF font descriptor)

keepnative The resulting value of the keepnative option

kerningpairs Number of kerning pairs in the font

linegap Metrics value for the linegap. See ascender.

maingid Glyph ID of the main glyph (member mainGID of SING table).

maxcode Highest code value for the font’s encoding, in particular: 0xFF for single-byte encodings, numglyphs-1 for
encoding=glyphid, and the highest Unicode value in the encoding otherwise.

metricsfile (Deprecated) String index of the path name for the font metrics file (AFM or PFM), or -1 if unavailable

maxuvs-
unicode

Largest Unicode value which may be contained in a valid Ideographic Variation Sequence (IVS).

minuvs-
unicode

Smallest Unicode value which may be contained in a valid Ideographic Variation Sequence (IVS).

monospace (Deprecated) Value of the monospace option, or 0 if it hasn’t been supplied

numcids Number of CIDs if the font uses a standard CMap, otherwise -1

numglyphs Number of glyphs in the font (including the .notdef glyph). Since GIDs start at 0 the highest possible GID
value is one smaller than numglyphs.

numusable-
glyphs

Number of glyphs in the font which can be reached by the encoding supplied in PDF_load_font()

numused-
glyphs

Number of glyphs used in generated text so far.

outlineformat Font format; one of PFA, PFB, LWFN, TTF, OTF. For TTC and WOFF fonts the keyword for the underlying base
font format is returned, e.g. TTF.

Table 4.5 Keywords and options for PDF_info_font()

keyword description

4.1 Font Handling 73

predefcmap String index of the name of a predefined CMap which was specified as encoding for the font, or -1 if un-
available.

replace-
mentchar

Unicode value of the character specified in the replacementchar option. For symbolic fonts loaded with
encoding=builtin the code will be returned instead of the Unicode value.

selector Unicode value of the variation selector with the number specified in the index option. If the index option
is not specified or the specified selector is not available in the font, -1 is returned. Supported option:
index (Non-negative Integer) Index of a selector.

selectorlist String index of a string containing a space-separated list of the Unicode values of all variation selectors in
the font. Each value is provided in the form hhhhh where h is a hexadecimal digit.

shaping-
support

1 if the font supports shaping and the readshaping option was supplied when loading the font, other-
wise 0

singfont 1 if the font is a SING (gaiji) font, otherwise 0

standardfont 1 if the font is a PDF core font, otherwise 0

supplement Supplement number of the character collection for fonts with a standard CJK CMap, otherwise 0

symbolfont 1 if the font is a symbolic font, 0 otherwise (symbol flag in the PDF font descriptor)

unicode Unicode UTF-32 value for the specified glyph, or -1 if no Unicode value was found in the font or encoding
(if the encoding option was supplied and font=-1 (in PHP: 0)). Supported options are the mapping op-
tions cid, code, glyphid, glyphname, unicode, selector plus the following:
encoding (String) Name of an 8-bit encoding

unicodefont 1 if the font/encoding combination provides Unicode mapping for the glyphs, otherwise 0. CJK fonts with
non-Unicode CMaps and keepnative=true will return 0.

unmapped-
glyphs

Number of glyphs in the font which are mapped to Unicode PUA values, regardless of whether the PUA
value was already present in the font or has been assigned by PDFlib.

usedglyph 1 if the specified glyph ID was used in the text, otherwise 0. Supported option: glyphid

vertical 1 if the font is for vertical writing mode, otherwise 0

weight Font weight in the range 100...900; 400=normal, 700=bold

willembed 1 if the font will be embedded (via the embedding option or forced font embedding), otherwise 0

willsubset 1 if a font subset will be created (if autosubsetting=true, the subsetlimit must be reached for subset-
ting to be activated), otherwise 0

xheight Metrics value for the xheight. See ascender.

Table 4.5 Keywords and options for PDF_info_font()

keyword description

74 Chapter 4: Font and Text Functions

4.2 Text Filter and Appearance Options
In this section the term text designates content strings, i.e. text with a specified appear-
ance (font, color, etc.). In contrast, name strings and hypertext strings (e.g. file names)
don’t have any appearance; see PDFlib Tutorial for details.

Text options can be used with PDF_set_text_option(), PDF_fit/info_textline(), PDF_fill_
textblock() and PDF_add/create_textflow(). Text options also apply to table cells and text
Blocks. The following groups of text options are available:

> text filter options according to Table 4.6;
> text appearance options according to Table 4.7;
> shaping and typographic options according to Table 5.4 (not for PDF_set_text_

option()).

Table 4.6 Text filter options for PDF_set_text_option(), PDF_fit/info_textline(), PDF_fill_textblock() and PDF_add/
create_textflow()

option description

actualtext (Boolean; only for PDF_set_text_option(), PDF_fit_textline(), and PDF_fill_textblock()) If true, PDFlib
creates a marked content Span with suitable ActualText if the Unicode value(s) derived from the ToUni-
code CMap wouldn’t be correct and no user-provided Alt or ActualText was provided. This ensures cor-
rect text extraction for glyphs which are used to represent multiple similar looking Unicode values in a
font, e.g. Ohm and Omega. Default: true

charref (Boolean) If true, enable substitution of numeric and character entity references and glyph name refer-
ences in content strings.1 Default: the global charref option

escape-
sequence

(Boolean) If true, enable substitution of escape sequences in content strings.1 Default: the global
escapesequence option

glyphcheck (Keyword) Glyph checking policy: what happens if a code in the text cannot be mapped to a glyph in the
selected font (default: the global glyphcheck option)1:
error An exception is thrown for unavailable glyphs. A detailed error message can be retrieved with

PDF_get_errmsg().
none No checking. notdef glyphs trigger an exception in PDF/A, PDF/UA-1 or PDF/X-4/5 mode; oth-

erwise notdef glyphs may appear in the output.
replace Try to replace unavailable glyphs with typographically similar characters in the base and

fallback fonts and decompose ligatures. If no suitable glyph could be found, the character is
handled according to the replacementchar option.

4.2 Text Filter and Appearance Options 75

normalize (Keyword; ignored for encoding=glyphid and non-Unicode CMaps) Normalize incoming text to one of
the Unicode normalization forms (default: none):
none Do not apply any normalization. This is the default behavior; the client is responsible for

supplying text which can be represented with glyphs from the selected font.
nfc Normalization Form C (NFC): canonical decomposition followed by canonical composition.

NFC replaces combining sequences with precomposed characters. This is useful for workflows
with combining sequences since fonts usually contain only glyphs for the precomposed
character. Without NFC normalization PDFlib emits a sequence of multiple characters instead
of the precomposed character.

nfkc Normalization Form KC (NFKC): compatibility decomposition followed by canonical composi-
tion. This is useful for workflows which are only interested in the semantics of characters, but
not in formatting differences, e.g. convert shaped Arabic characters to their base form, resolve
ligatures and fractions, replace vertical forms with horizontal forms, wide characters with
regular characters.

nfd Normalization Form D (NFD): canonical decomposition
nfkd Normalization Form KD (NFKD): compatibility decomposition
Since NFD and NFKD can create combining sequences they are unlikely to be useful in PDFlib workflows.

textformat (Keyword; only for non-Unicode compatible language bindings) Format used to interpret content strings.
Supported keywords: bytes, utf8, ebcdicutf8 (only on IBM System i and IBM Z), utf16, utf16le,
utf16be, and auto.1 Default: the global textformat option

1. The value may be overridden by a subsequent call to PDF_set_option() with the same option.

Table 4.7 Text appearance options for PDF_set_text_option(), PDF_fit/info_textline(), PDF_fill_textblock() and PDF_add/
create_textflow()

option description

charspacing (Float or percentage) Character spacing, i.e. the shift of the current point after placing individual charac-
ters in a string. Float values specify units of the user coordinate system; percentages are based on
fontsize. In order to spread characters apart use positive values for horizontal writing mode, and nega-
tive values for vertical writing mode. Default: 0

dasharray (List of non-negative floats or keyword) The lengths of dashes and gaps for stroked (outline) text and dec-
oration. The keyword none can be used to create solid lines. Default: none

decoration-
above

(Boolean) If true, the text decoration enabled with the underline, strikeout, and overline options will
be drawn above the text, otherwise below the text. Changing the drawing order affects visibility of the
decoration lines, i.e. you can control whether the text overprints the lines or vice versa. Default: false

fakebold (Boolean) If true, simulate bold text by stroking glyph outlines or multiple overprinting. Default: false

fillcolor (Color) Fill color of the text.1

Default for simple text output functions and PDF_fit_textline() with inittextstate=false: the corre-
sponding option in the current graphics state.
Default for Textflow and PDF_fit_textline() with inittextstate=true: {gray 0} (in PDF/A mode: {lab
0 0 0})

font (Font handle) Handle for the font to be used. If this option is supplied, all font loading options (including
fontname and encoding) will be ignored. Using the font option instead of implicit font loading with the
fontname/encoding options offers performance benefits.
Default: the implicitly loaded font if available, else the font selected with PDF_setfont() for simple text
output and PDF_fit_textline() with inittextstate=false. Otherwise no font is available which will trig-
ger an error.

Table 4.6 Text filter options for PDF_set_text_option(), PDF_fit/info_textline(), PDF_fill_textblock() and PDF_add/
create_textflow()

option description

76 Chapter 4: Font and Text Functions

fontsize (Fontsize) Size of the font, measured in units of the current user coordinate system. In PDF_fit_textline()
percentages relate to the box width (for orientate=north and south) or box height (for orientate=
east and west). In PDF_set_text_option() and Textflow percentages relate to the size of the preceding
text.
Default: PDF_setfont() sets the default only for simple text output functions and PDF_fit_textline() with
inittextstate=false. Otherwise no font size is available which will trigger an error.

gstate (Gstate handle) Handle for a graphics state retrieved with PDF_create_gstate(). The graphics state af-
fects all text created with this function. Default: no graphics state (i.e. current settings will be used).

horizscaling (Float or percentage; must be different from 0) Horizontal text scaling to the given percentage. Text scal-
ing shrinks or expands the text by a given percentage. Text scaling always relates to the horizontal coor-
dinate. Default: 100%

inittextstate (Boolean; only for PDF_fit_textline()) If true all text appearance options are initialized with the default
values. If false the current text state values are used. Default: false

italicangle (Float; not supported for vertical writing mode) The italic (slant) angle of text in degrees (between -90°
and 90°). Negative values can be used to simulate italic text when only a plain upright font is available,
especially for CJK fonts. Default: 0

kerning (Boolean) If true, enable kerning for fonts which have been opened with the readkerning option; disable
kerning otherwise.2 Default: the global option kerning

leading (Float or percentage) Specify the leading for multi-line text, i.e. the distance between baselines of adja-
cent lines of text as absolute value in user coordinates or as a percentage of fontsize. Setting the lead-
ing equal to the font size results in dense line spacing. However, ascenders and descenders of adjacent
lines generally don’t overlap (leading=0 results in overprinting lines). Default: 100%
The leading for PDF_add/create_textflow() is determined as follows: if there are option lists at the begin-
ning of a line, the leading is determined by the last relevant option (font, fontsize, leading, etc.). If
there are additional option lists on the same line, any options relevant for leading are only taken into ac-
count if fixedleading=false. If there are no option lists in the line, the previous leading value is used.

overline (Boolean) If true, a line will be drawn above the text. Default: false

shadow (Option list; only for PDF_fit_textline(), PDF_fill_textblock(), PDF_add/create_textflow()) Create a shad-
ow effect for the text (default: no shadow):
disable (Boolean; only for PDF_add/create_textflow()) If true, a previously specified shadow is dis-

abled. Default: false
fillcolor (Color) Fill color of the shadow. Default: {gray 0.8}
gstate (Gstate handle) Graphics state created with PDF_create_gstate() which will be applied to the

shadow. Default: none
offset (List of 2 floats or percentages) The shadow’s offset from the reference point of the text in user

coordinates or as a percentage of the font size. Default: {5% -5%}
strokecolor (Color; only effective if textrendering is set to stroke text) Stroke color of the shadow.

Default: current stroke color
strokewidth (Float, percentage or keyword; only effective if textrendering is set to stroke text) Line width

for outline text in the shadow (in user coordinates or as a percentage of the font size). The
keyword auto or the equivalent value 0 uses a built-in default. Default: current stroke width if
the main text is also set to stroke text, otherwise auto

textrendering
(Integer) Text rendering mode of the shadow. Default: current value of textrendering

strikeout (Boolean) If true, a line will be drawn through the text; see also decorationabove. Default: false

strokecolor (Color; only effective for stroked text, see textrendering) Stroke color of the text. Default: see fillcolor

Table 4.7 Text appearance options for PDF_set_text_option(), PDF_fit/info_textline(), PDF_fill_textblock() and PDF_add/
create_textflow()

option description

4.2 Text Filter and Appearance Options 77

strokewidth (Float, percentage, or keyword; only effective if textrendering is set to stroke text) Line width for outline
text (in user coordinates or as a percentage of the fontsize). The keyword auto or the equivalent value
0 uses a built-in default. Default: auto

tagtrailing-
hyphen

(Unichar or keyword; only relevant for Tagged PDF) If the last character in the text (after possibly apply-
ing glyph replacements) is equal to the specified Unicode value, it will be tagged as Span with Actual-
Text soft hyphen U+00AD if required by the font, and no autospace will be added. The keyword none re-
sults in no tagging for soft hyphens. Default: U+00AD

textrendering (Integer) Text rendering mode. Only textrendering=3 has an effect on Type 3 fonts (default: 0):

0 fill text 4 fill text and add it to the clipping path

1 stroke text (outline) 5 stroke text and add it to the clipping path

2 fill and stroke text 6 fill and stroke text and add it to the clipping path

3 invisible text 7 add text to the clipping path

Behavior of textrendering=4/5/6/7 (clipping modes):
> There is no clipping effect after PDF_fit_textflow(), PDF_fit_table(), PDF_fill_textblock() and PDF_fit_

textline() if the textpath option is specified.
> Clipping areas can be accumulated across multiple calls to simple text output functions, but not across

multiple calls to PDF_fit_textline().
> PDF_fit_textline(): the specified fillcolor and strokecolor remain in effect after the function call.

textrise (Float or percentage) Textrise value, which specifies the distance between the desired text position and
the baseline. Positive values of textrise move the text up. Textrise always relates to the vertical coordi-
nate. This may be useful for superscripts and subscripts. Percentages are based on fontsize. Default: 0

underline (Boolean) If true, a line will be drawn below the text. Default: false

underline-
position

(Float, percentage, or keyword) Position of the stroked line for underlined text relative to the baseline
(absolute values or relative to the fontsize; a typical value is -10%). The keyword auto specifies a font-spe-
cific value which will be retrieved from the font metrics or outline file. Default: auto

underline-
width

(Float, percentage, or keyword) Line width for underlined text (absolute value or percentage of the font-
size). The keyword auto or the value 0 uses a font-specific value from the font metrics or outline file if
available, otherwise 5%. Default: auto

wordspacing (Float or percentage) Wordspacing, i.e. the shift of the current point after placing individual words in a
line. In other words, the current point is moved horizontally after each space character (U+0020). The
value is specified in user coordinates or a percentage of the fontsize. Default: 0

1. The value may be overridden by a subsequent call to PDF_setcolor() for simple text output functions and PDF_fit_textline() with
inittextstate=false.
2. The value may be overridden by a subsequent call to PDF_set_option() with the same option.

Table 4.7 Text appearance options for PDF_set_text_option(), PDF_fit/info_textline(), PDF_fill_textblock() and PDF_add/
create_textflow()

option description

P
P

78 Chapter 4: Font and Text Functions

C++ Java C# void set_text_option(String optlist)
Perl PHP set_text_option(string optlist)

C void PDF_set_text_option(PDF *p, const char *optlist)

Set one or more text filter or text appearance options for simple text output functions.

optlist An option list specifying font and text options as follows:
> Text filter options according to Table 4.6:

actualtext, charref, escapesequence, glyphcheck, normalize, textformat
> Text appearance options according to Table 4.7:

charspacing, dasharray, decorationabove, fakebold, fillcolor, font, fontsize, gstate,
horizscaling, inittextstate, italicangle, kerning, leading, overline, strikeout, strokecolor,
strokewidth, tagtrailinghyphen, textrendering, textrise, underline, underlineposition,
underlinewidth, wordspacing

Details The values of text options are relevant for all simple text output functions and PDF_fit_
textline() with inittextstate=false. Calls to PDF_set_text_option() should not be mixed
with calls to PDF_setfont() and PDF_setcolor().

All text options are reset to their default values at the beginning of a page, pattern,
template, or glyph description, and retain their values until the end of the current page,
pattern, template, or glyph scope. However, the text options can also be reset with the
inittextstate option.

Scope page, pattern, template, glyph

4.3 Simple Text Output 79

4.3 Simple Text Output
The functions listed in this section can be used for low-level text output. It is recom-
mended to use the more powerful Textline and Textflow functions for more advanced
text output (see Section 5.1, »Single-Line Text with Textlines«, page 87, and Section 5.2,
»Multi-Line Text with Textflows«, page 94.

C++ Java C# void PDF_setfont(int font, double fontsize)
Perl PHP setfont(int font, float fontsize)

C void PDF_setfont(PDF *p, int font, double fontsize)

Set the current font in the specified size.

font A font handle returned by PDF_load_font().

fontsize Size of the font, measured in units of the current user coordinate system. The
font size must not be 0; a negative font size will result in mirrored text relative to the
current transformation matrix.

Details This function sets the font and font size to be used by simple text output functions (e.g.
PDF_show()) and PDF_fit_textline(). It is almost equivalent to a call to PDF_set_text_
option() with the option list font= fontsize=<fontsize>. However, unlike PDF_set_
text_option() this function additionally sets the leading text option to fontsize.

The font must be set on each page before calling any of the simple text output func-
tions. Font settings are not retained across pages.

The use of PDF_set_text_option() is recommended over PDF_setfont(). Calls to PDF_
setfont() should not be mixed with calls to PDF_set_text_option().

Scope page, pattern, template, glyph

C++ Java C# void set_text_pos(double x, double y)
Perl PHP set_text_pos(float x, float y)

C void PDF_set_text_pos(PDF *p, double x, double y)

Set the position for simple text output on the page.

x, y New text position

Details The text position is set to the default value of (0, 0) at the beginning of each page. The
current point for graphics output and the current text position are maintained sepa-
rately.

Scope page, pattern, template, glyph

80 Chapter 4: Font and Text Functions

C++ Java C# void show(String text)
Perl PHP show(string text)

C void PDF_show(PDF *p, const char *text)
C void PDF_show2(PDF *p, const char *text, int len)

Print text in the current font and size at the current text position.

text (Content string) The text to be printed. In C text must not contain null bytes when
using PDF_show(), since it is assumed to be null-terminated; use PDF_show2() for strings
which may contain null characters.

len (Only for PDF_show2()) Length of text (in bytes). If len = 0 a null-terminated string
must be provided.

Details The font and font size must have been set before with PDF_setfont() or PDF_set_text_
option(). The current text position is moved to the end of the printed text. The char-
spacing parameter is taken into account after the last glyph.

Scope page, pattern, template, glyph

Bindings PDF_show2() is only available in C since in all other bindings arbitrary string contents
can be supplied with PDF_show().

C++ Java C# void show_xy(String text, double x, double y)
Perl PHP show_xy(string text, float x, float y)

C void PDF_show_xy(PDF *p, const char *text, double x, double y)
C void PDF_show_xy2(PDF *p, const char *text, int len, double x, double y)

Print text in the current font at the specified position.

text (Content string) The text to be printed. In C text must not contain null bytes when
using PDF_show_xy(), since it is assumed to be null-terminated; use PDF_show_xy2() for
strings which may contain null characters.

x, y The position in the user coordinate system where the text will be printed.

len (Only for PDF_show_xy2()) Length of text (in bytes). If len = 0 a null-terminated
string must be provided.

Details The font and font size must have been set before with PDF_setfont() or PDF_set_text_
option(). The current text position is moved to the end of the printed text. The char-
spacing parameter is taken into account after the last glyph.

Scope page, pattern, template, glyph

Bindings PDF_show_xy2() is only available in C since in all other bindings arbitrary string con-
tents can be supplied with PDF_show_xy().

4.3 Simple Text Output 81

C++ Java C# void continue_text(String text)
Perl PHP continue_text(string text)

C void PDF_continue_text(PDF *p, const char *text)
C void PDF_continue_text2(PDF *p, const char *text, int len)

Print text at the next line.

text (Content string) The text to be printed. If this is an empty string, the text position
will be moved to the next line anyway. In C text must not contain null bytes when using
PDF_continue_text(), since it is assumed to be null-terminated; use PDF_continue_text2()
for strings which may contain null bytes.

len (Only for PDF_continue_text2()) Length of text (in bytes). If len = 0 a null-terminat-
ed string must be provided as in PDF_continue_text().

Details The positioning of text (x and y position) and the spacing between lines is determined
by the leading text option (which can be set with PDF_set_text_option()) and the most re-
cent call to PDF_show_xy() or PDF_set_text_pos(). The current point will be moved to the
end of the printed text; the x position for subsequent calls of this function will not be
changed.

Scope page, pattern, template, glyph; this function should not be used in vertical writing mode.

Bindings PDF_continue_text2() is only available in C since in all other bindings arbitrary string
contents can be supplied with PDF_continue_text().

C++ Java C# double stringwidth(String text, int font, double fontsize)
Perl PHP float stringwidth(string text, int font, float fontsize)

C double PDF_stringwidth(PDF *p, const char *text, int font, double fontsize)
C double PDF_stringwidth2(PDF *p, const char *text, int len, int font, double fontsize)

Calculate the width of text in an arbitrary font.

text (Content string) The text for which the width will be queried. In C text must not
contain null bytes when using PDF_stringwidth(), since it is assumed to be null-termi-
nated; use PDF_stringwidth2() for strings which may contain null bytes.

len (Only for PDF_stringwidth2()) Length of text (in bytes). If len = 0 a null-terminated
string must be provided.

font A font handle returned by PDF_load_font().

fontsize Size of the font, measured in units of the user coordinate system.

Returns The width of text in a font which has been selected with PDF_load_font() and the sup-
plied fontsize. The returned width value may be negative (e.g. when negative horizontal
scaling has been set). In vertical writing mode the width of the widest glyph will be re-
turned (use PDF_info_textline() to determine the actual height of the text).
If character spacing has been specified, it will be applied after the last glyph as well (this
behavior differs from PDF_info_textline()).

Details The width calculation takes into account the values of the following text options (which
can be set with PDF_set_text_option()): horizscaling, kerning, charspacing, and wordspacing.

82 Chapter 4: Font and Text Functions

Scope any except object

Bindings PDF_stringwidth2() is only available in C since in all other bindings arbitrary string con-
tents can be supplied with PDF_stringwidth().

4.4 User-defined (Type 3) Fonts 83

4.4 User-defined (Type 3) Fonts

C++ Java C# void begin_font(String fontname,
double a, double b, double c, double d, double e, double f, String optlist)

Perl PHP begin_font(string fontname, float a, float b, float c, float d, float e, float f, string optlist)
C void PDF_begin_font(PDF *p, const char *fontname, int reserved,

double a, double b, double c, double d, double e, double f, const char *optlist)

Start a Type 3 font definition.

fontname (Name string) The name under which the font will be registered, and can
later be used with PDF_load_font().

reserved (C language binding only) Reserved, must be 0.

a, b, c, d, e, f (Will be ignored in the second pass of the font definition for Type 3 font
subsets) Elements of the font matrix. This matrix defines the coordinate system in
which the glyphs will be drawn. The six values make up a matrix in the same way as in
PostScript and PDF (see references). In order to avoid degenerate transformations, a*d
must not be equal to b*c. A typical font matrix for a 1000 x 1000 coordinate system is
[0.001, 0, 0, 0.001, 0, 0].

optlist (Ignored in the second pass for subset fonts) Option list according to Table 4.8.
The following options can be used: colorized, defaultcmyk, defaultgray, defaultrgb,
familyname, stretch, weight, widthsonly

Details The font may contain an arbitrary number of glyphs. The font can be used until the end
of the current document scope.

Scope any except object; this function starts font scope, and must always be paired with a
matching PDF_end_font() call. For the second pass of subsetted fonts only document
scope is allowed.

Table 4.8 Options for PDF_begin_font()

option description

colorized (Boolean) If true, the font may explicitly specify the color of individual characters. If false, all characters
will be drawn with the current color (at the time the font is used, not when it is defined), and the glyph
definitions must not contain any color operators or images other than masks. Default: false

defaultgray
defaultrgb
defaultcmyk

(ICC handle or keyword; only reasonable for colorized=true; not for PDF/X-1a) Set a default gray, RGB,
or CMYK color space for the glyph descriptions in the font according to the supplied ICC profile handle.
The option defaultrgb also supports the keyword srgb.

familyname (String; PDF 1.5) Name of the font family

stretch (Keyword; PDF 1.5) Font stretch value: ultracondensed, extracondensed, condensed, semicondensed,
normal, semiexpanded, expanded, extraexpanded, ultraexpanded. Default: normal

weight (Integer or keyword; PDF 1.5) Font weight: 100=thin, 200=extralight, 300=light, 400=normal,
500=medium, 600=semibold, 700=bold, 800=extrabold, 900=black. Default: normal

84 Chapter 4: Font and Text Functions

C++ Java C# void end_font()
Perl PHP end_font()

C void PDF_end_font(PDF *p)

Terminate a Type 3 font definition.

Scope font; this function terminates font scope, and must always be paired with a matching
PDF_begin_font() call.

C++ Java C# void begin_glyph_ext(int uv, String optlist)
Perl PHP begin_glyph_ext(int uv, string optlist)

C void PDF_begin_glyph_ext(PDF *p, int uv, const char *optlist)

Start a glyph definition for a Type 3 font.

uv Unicode value for the glyph. Each Unicode value can be supplied only for one glyph
description. The glyph with the Unicode value 0 always gets glyph ID 0 and glyph name
.notdef, regardless of whether or not the glyph was specified.

If uv=-1 the Unicode value is derived from the glyphname option according to PDFlib’s
internal glyph name list. If a glyph name is unknown, consecutive PUA values (starting
at U+E000) will be assigned. This value can be queried with PDF_info_font().

optlist Option list according to Table 4.9. The following options can be used:
boundingbox, code, glyphname, width

Details The glyphs in a font can be defined using text, graphics, and image functions. Images,
however, can only be used if the font’s colorized option is true, or if the image has been
opened with the mask option. This function resets all text, graphics, and color state pa-
rameters to their default values.

Since the complete graphics state of the surrounding page will be inherited for the
glyph definition when the colorized option is true, the glyph definition should explicitly
set any aspect of the graphics state which is relevant for the glyph definition (e.g. line-
width).

Scope font; this function starts glyph scope, and must always be paired with a matching PDF_
end_glyph() call. If widthsonly=true in PDF_begin_font() all API function calls between
PDF_begin_glyph_ext() and PDF_end_glyph() will be ignored.

widthsonly (Boolean) If true (pass 1 for Type 3 font subsetting), only the metrics of the font and glyphs will be de-
fined. No other API functions should be called between PDF_begin_glyph_ext() and PDF_end_glyph(). If
other functions are called nevertheless, they will not have any effect on the PDF output, and will not raise
any exception. If widthsonly=false (pass 2 for Type 3 font subsetting) the actual glyph outlines can be
defined. This two-pass definition enables PDFlib to perform subsetting on Type 3 fonts. Default: false

Table 4.8 Options for PDF_begin_font()

option description

4.4 User-defined (Type 3) Fonts 85

C++ Java C# void end_glyph()
Perl PHP end_glyph()

C void PDF_end_glyph(PDF *p)

Terminate a glyph definition for a Type 3 font.

Scope glyph; this function changes from glyph scope to font scope, and must always be paired
with a matching PDF_begin_glyph_ext() call.

Table 4.9 Options for PDF_begin_glyph_ext()

option description

bounding-
box

(List of 4 floats; will be ignored in the second pass of the font definition for Type 3 font subsets and if the
font’s colorized option is true) If the font’s colorized option is false (which is default), the coordi-
nates of the lower left and upper right corners of the glyph’s bounding box. Default: {0 0 0 0}

code (Integer) Specify the glyph’s slot number, i.e. its byte code in the Type 3 font’s builtin encoding. By default
the glyphs are numbered sequentially (starting with 0) in the order of creation.

glyphname (String) Name of the glyph. The name for glyph 0 with Unicode 0 is forced to .notdef. Default: G<i> for
glyph <i>=1,2,3,...

width (Float; required; will be ignored in the second pass of the font definition for Type 3 font subsets) Width of
the glyph in the glyph coordinate system as specified by the font’s matrix.

86 Chapter 4: Font and Text Functions

4.5 User-defined 8-Bit Encodings

C++ Java C# void encoding_set_char(String encoding, int slot, String glyphname, int uv)
Perl PHP encoding_set_char(string encoding, int slot, string glyphname, int uv)

C void PDF_encoding_set_char(PDF *p, const char *encoding, int slot, const char *glyphname, int uv)

Add a glyph name and/or Unicode value to a custom 8-bit encoding.

encoding The name of the encoding. This is the name which must be used with PDF_
load_font(). The encoding name must be different from any built-in encoding and all
previously used encodings.

slot The position of the character to be defined, with 0 <= slot <= 255. A particular slot
must only be filled once within a given encoding.

glyphname The character’s name

uv The character’s Unicode value

Details This function is only required for specialized applications which must work with non-
standard 8-bit encodings. It can be called multiply to define up to 256 character slots in
an encoding. More characters may be added to a particular encoding until it has been
used for the first time; otherwise an exception will be raised. Not all code points must be
specified; undefined slots will be filled with .notdef and U+0000.

There are three possible combinations of glyph name and Unicode value:
> glyphname supplied, uv=0: this parallels an encoding file without Unicode values;
> uv supplied, but no glyphname supplied: this parallels a codepage file;
> glyphname and uv supplied: this parallels an encoding file with Unicode values.

It is strongly recommended to supply each glyph name/Unicode value only once in an
encoding (with the exception of .notdef/U+0000). If slot 0 is used, it should contain the
.notdef character.

If the encoding is intended for use with Type 3 fonts it is recommended to specify
the encoding slots only with glyph names.

The defined encoding can be used until the end of the current object scope.

Scope any

5.1 Single-Line Text with Textlines 87

5 Text and Table Formatting

5.1 Single-Line Text with Textlines

C++ Java C# void fit_textline(String text, double x, double y, String optlist)
Perl PHP fit_textline(string text, float x, float y, string optlist)

C void PDF_fit_textline(PDF*p, const char *text, int len, double x, double y, const char *optlist)

Place a single line of text at position (x, y) subject to various options.

text (Content string) The text to be placed on the page.

len (C language binding only) Length of text (in bytes). If len = 0 a null-terminated
string must be provided.

x, y The coordinates of the reference point in the user coordinate system where the
text will be placed, subject to various options. See Section 6.1, »Object Fitting«, page 121,
for a description of the fitting algorithm.

optlist An option list specifying font, text, and formatting options. The following op-
tions are supported:

> General option: errorpolicy (see Table 2.1)
> Font loading options according to Table 4.2 for implicit font loading (i.e. font option

in the text appearance group not supplied):
ascender, autosubsetting, capheight, descender, embedding, encoding, fallbackfonts,
fontname, fontstyle, keepnative, linegap, metadata, monospace, readfeatures, replace-
mentchar, subsetlimit, subsetminsize, subsetting, unicodemap, vertical, xheight

> Text filter options according to Table 4.6:
actualtext, charref, escapesequence, glyphcheck, normalize, textformat

> Text appearance options according to Table 4.7:
charspacing, dasharray, decorationabove, fakebold, fillcolor, font, fontsize, gstate,
horizscaling, inittextstate, italicangle, kerning, leading, overline, shadow, strikeout,
strokecolor, strokewidth, textrendering, textrise, underline, underlineposition, underline-
width, wordspacing

> Options for Textline formatting according to Table 5.1:
justifymethod, leader, textpath, xadvancelist

> Shaping and typographic options according to Table 5.4:
features, language, script, shaping

> Fitting options according to Table 6.1:
alignchar, blind, boxsize, fitmethod, margin, matchbox, orientate, position, rotate, stamp,
showborder, shrinklimit

> Option for abbreviated structure element tagging according to Table 14.5 (only al-
lowed in page scope): tag

Details If inittextstate=false (which is the default), the current text and graphics state options
are used to control the appearance of the text output unless they are explicitly overrid-
den by options.

88 Chapter 5: Text and Table Formatting

If inittextstate=true the default values of the text and graphics state options are used
to control the appearance of the text output unless they are explicitly overridden by op-
tions. The Textline options will not affect any output created after this call to PDF_fit_
textline().

The current text and graphics state are not modified by this function (in particular,
the current font will be unaffected). However, the textx/texty options are adjusted to
point to the end of the generated text output. The charspacing parameter is not taken
into account after the last glyph.

The reference point for PDF_continue_text() is not set to the beginning of the text. In
order to use PDF_continue_text() after PDF_fit_textline() you must query the starting
point with PDF_info_textline() and the startx/starty keywords and set the text position
with PDF_set_text_pos().

Scope page, pattern, template, glyph

Table 5.1 Additional options for PDF_fit_textline()

option description

justifymethod (List of keywords; only relevant for fitmethod=auto and stamp=none; requires boxsize; ignored in verti-
cal writing mode) Ensure that the text will not extend beyond the fitbox by applying one or more for-
matting methods without changing the fontsize. One or more of the following keywords can be sup-
plied; if multiple keywords are present justification will be applied in the following order of decreasing
priority: wordspacing, charspacing, horizscaling (default: none):
charspacing Justify with an appropriate charspacing value.
horizscaling Justify with an appropriate horizscaling value.
none No justification
wordspacing

Justify with an appropriate wordspacing value. If the text does not contain any space
characters wordspacing justification will not be applied.

leader (Option list; ignored if boxsize is not specified or the width of the box is 0) Specifies filler text (e.g. dot
leaders) and formatting options. Leaders will be inserted repeatedly between the border of the text box
and the text.
See Table 5.3 for a list of supported suboptions. Default: no leader

textpath (Option list) Draw text along a path. Text beyond the end of the path will not be displayed. If
showborder=true the flattened path will be drawn with the current linewidth and stroke color. The op-
tions listed in Table 5.2 plus the following options of PDF_draw_path() are supported:
align, attachmentpoint, boxsize, fitmethod, orientate, scale (see Table 6.1)
close, round, subpaths (see Table 7.6)
bboxexpand, boundingbox (see Table 7.6)
The following options of PDF_fit_textline() have modified meaning for text on a path:
matchbox A separate box will be created for each glyph.
position The first value specifies the starting position of the text relative to the length of the path

(left/center/right). If the text is longer than the path it will always begin at startoffset.
The second value specifies the vertical position of each glyph relative to the path, i.e. which
part of the glyph box will touch the path (bottom/center/top).

rotate Specifies a rotation angle for each glyph.
The following fitbox-related options are ignored:
boxsize, margin, fitmethod, orientate, alignchar, showborder, stamp, leader
Kerning and text with CJK legacy encodings are not supported for text on a path.

5.1 Single-Line Text with Textlines 89

xadvancelist (List of floats; ignored if shaping=true) Advance width of the glyphs in the text in user coordinates. The
length of the list must be less than or equal to the number of glyphs in the text. The xadvance values
override the standard glyph widths. In most situations modified spacing can easier be achieved with the
charspacing option.

Table 5.2 Additional suboptions for the textpath option of PDF_fit_textline()

option description

path (Path handle; required) Path to use as baseline for text output. By default, the text will be placed at the
left side of the path and the path will serve as the text baseline. However, if the second keyword in the
position option is top the text will be placed on the other side of the path and the top of the text will
touch the path. The parameters x and y of PDF_fit_textline() are used as reference point for the path.

startoffset (Float or percentage) Offset of the starting point of the text along the path in user coordinates or as per-
centage of the path length. Default: 0

tolerance (Float or percentage) Indicates how much the last glyph on the path is allowed to extend beyond the
path. The value is specified in user coordinates or as a percentage of the fontsize. Default: 25%

Table 5.1 Additional options for PDF_fit_textline()

option description

90 Chapter 5: Text and Table Formatting

Table 5.3 Suboptions for the leader option for PDF_fit_textline() and PDF_add/create_textflow() and inline options in
PDF_create_textflow()

option description

font loading
options

If the font is specified implicitly (i.e. via the fontname and encoding options, as opposed to the font op-
tion), all font loading options according to Table 4.2 can be supplied as suboptions.

alignment (One or two keywords) Textline: The first keyword specifies the alignment of the leader between the left
border of the fitbox and the Textline; the second keyword specifies the alignment of the leader between
the Textline and the right border of the fitbox. If only one keyword is specified it will be used for the lead-
er between the Textline and the right border of the fitbox. Supported keywords (default for Textline:
{none grid}; default for Textflow: grid):
center Textline: the leader is justified between the Textline and the border of the fitbox.

Textflow: the leader is centered between the last text fragment (or the start of the line if there
is no text) and the tab position (or the end of the line if there is no tab).

grid PDFlib snaps the position of the leader text to the next multiple of one half of the width of
the leader text to the left or right of the Textline. This may result in a gap between the
Textline and the leader text which spans at most 50% of the width of the leader text.

justify Textline: the leader is justified between the Textline and the border of the fitbox by applying a
suitable character spacing.
Textflow: the leader is justified between the last text fragment (or the start of the line if there
is no text) and the tab position (or the end of the line if there is no tab) by applying a suitable
character spacing.

left The leader is repeated starting from the left border of the fitbox or the end of the Textline,
respectively. This may result in a gap at the start of the Textline or the right border of the
fitbox, respectively.

none No leader
right The leader is repeated starting from the right border of the fitbox or the beginning of the

Textline, respectively. This may result in a gap at the end of the Textline or the left border of
the fitbox, respectively.

fillcolor (Color) Color of the leader. Default: color of the text line

font (Font handle) Handle for the font to be used for the leader. Default: font of the text line

fontsize (Fontsize) Size of the leader. Default: font size of the Textline

text (Content string) The text which will be used for the leader. Default: U+002E ’.’ (period)

yposition (Float or keyword) Specifies the vertical position of the leader relative to the baseline as a numerical val-
ue or as one of the keywords fontsize, ascender, xheight, baseline, descender, textrise. Default:
baseline

5.1 Single-Line Text with Textlines 91

C++ Java C# double info_textline(String text, String keyword, String optlist)
Perl PHP float info_textline(string text, string keyword, string optlist)

C double PDF_info_textline(PDF *p, const char *text, int len, const char *keyword, const char *optlist)

Perform Textline formatting without creating output and query the resulting metrics.

text (Content string) The contents of the Textline.

len (C language binding only) The length of text in bytes, or 0 for null-terminated
strings.

keyword A keyword specifying the requested information:
> Keywords for querying the results of object fitting according to Table 6.3:

boundingbox, fitscalex, fitscaley, height, objectheight, objectwidth, width
> Additional keywords according to Table 5.5:

angle, ascender, capheight, descender, endx, endy, missingglyphs, pathlength,
perpendiculardir, replacedchars, righttoleft, scalex, scaley, scriptlist, startx, starty,
textwidth, textheight, unmappedchars, wellformed, writingdirx, writingdiry, xheight

optlist An option list specifying options for PDF_fit_textline(). Options which are not
relevant for the requested keyword are silently ignored.

Table 5.4 Shaping and typographic options for PDF_fit/info_textline(), PDF_add/create_textflow(), and PDF_fill_
textblock()

option description

features (List of keywords) Specifies which typographic features of an OpenType font will be applied to the text,
subject to the script and language options. Keywords for features which are not present in the font will
silently be ignored. The following keywords can be supplied (default: _none):
_none Apply none of the features in the font.
<name> Enable a feature by supplying its four-character OpenType name. Some common feature

names are liga, ital, tnum, smcp, swsh, zero. A list with names and descriptions of all
supported features can be found in the PDFlib Tutorial. The features vrt2 and vert are
automatically enabled for fonts in vertical writing mode.

no<name>The prefix no in front of a feature name (e.g. noliga) disables this feature.

language (Keyword; only relevant if script is supplied) The text will be processed according to the specified lan-
guage, which is relevant for the features and shaping options. A full list of keywords can be found in the
PDFlib Tutorial, e.g. ARA (Arabic), JAN (Japanese), HIN (Hindi). Default: _none (undefined language)

script (Keyword; required if shaping=true) The text will be processed according to the specified script, which is
relevant for the features, shaping, and advancedlinebreak options. The most common keywords for
scripts are the following: _none (undefined script), latn, grek, cyrl, armn, hebr, arab, deva, beng, guru,
gujr, orya, taml, thai, tibt, hang, kana. A full list of keywords can be found in the PDFlib Tutorial. The
keyword _auto selects the script to which the majority of characters in the text belong, where latn and _
none are ignored. _auto is only relevant for shaping and will be ignored for features and
advancedlinebreak. Default: _none

shaping (Boolean) If true, complex script shaping and bidirectional reordering will be applied to the text accord-
ing to the script and language options. The script option must have a value different from _none and
the font must obey certain conditions (see PDFlib Tutorial). Shaping is only done for characters in the
same font. Shaping is not available for right-to-left text in Textflows (only in Textlines). Default: false

92 Chapter 5: Text and Table Formatting

Returns The value of some text metric value as requested by keyword.

Details This function will perform all calculations required for placing the text according to the
supplied options, but will not actually create any output on the page. The text reference
position is assumed to be {0 0}.

If errorpolicy=return this function returns 0 in case of an error. If errorpolicy= exception
this function throws an exception in case of an error (even for the keyword wellformed).

Scope any except object

Table 5.5 Keywords for PDF_info_textline()

keyword description

angle Rotation angle of the baseline in degree, i.e. the text rotation

ascender
capheight
descender

Corresponding typographic value in user coordinates

endx, endy x/y coordinates of the logical text end position in user coordinates

missingglyphs (Only for text on a path) Number of glyphs which couldn’t be placed on the path.

pathlength (Only for text on a path) Length of the path covered by the text from its starting point to the end
point. This value can be queried even if PDF_fit_textline() was called in blind mode. The value
can be used for the startoffset option of PDF_fit_textline() to continue labeling a path with
additional text.

perpendiculardir Unit vector perpendicular to writingdir; for standard horizontal text this would be (0, 1), for
vertical text (1, 0)

replacedchars Number of characters which have been replaced with a slightly different glyph from the internal
list of typographically similar characters or with a glyph from a fallback font because they
couldn’t be mapped to a code in the current encoding or to a glyph in the font. This value can only
be different from 0 if glyphcheck=replace.

righttoleft 1 if the global output direction for the text is right-to-left, and 0 for left-to-right or vertical text.
The global direction will be determined based on the initial characters and any directional mark-
ers which may be present in the text (e.g. U+202D or &LRO; LEFT-TO-RIGHT OVERRIDE).

scalex, scaley Deprecated, use fitscalex/fitscaley

scriptlist String containing the space-separated list of the names of all scripts in the text. This may be use-
ful to prepare text shaping. The script names are sorted by frequency in descending order. The
scripts _none and _latn will be ignored since they are not relevant for shaping. If only _none and
_latn characters are present in the text, -1 will be returned.

startx, starty x/y coordinates of the logical text start position in the user coordinate system

textwidth,
textheight

Width and height of the text. The height is subject to the matchbox definition of boxheight,
which defaults to {capheight none}. For text on a path both values are 0.

unknownchars If glyphcheck=none: number of skipped characters. The number includes character references
which couldn’t be resolved, and characters which couldn’t be mapped to a code in the current en-
coding or to a glyph in the font.
If glyphcheck=replace: number of characters which were replaced with the specified replace-
ment character (option replacementchar). The number includes characters which couldn’t be
mapped to a code in the current encoding or to a glyph in the font, and characters which couldn't
be replaced with typographically similar characters.

unmappedchars The number of characters which have been skipped or replaced, i.e. the sum of replacedchars
and unknownchars.

5.1 Single-Line Text with Textlines 93

wellformed 1 if the text is well-formed according to the selected font/encoding (and textformat, if applica-
ble), otherwise 0.

writingdirx
writingdiry

x/y coordinates of the dominant writing direction (i.e. the direction of inline text progression)
which describes a unit vector from (startx, starty) to (endx, endy). For left-to-right horizon-
tal text the values will be (1, 0), for vertical text (0, -1), and for right-to-left horizontal text (-
1, 0). The writing direction will be determined based on the shaping and vertical options as
well as the directionality properties of the text.

xheight xheight in user coordinates

Table 5.5 Keywords for PDF_info_textline()

keyword description

94 Chapter 5: Text and Table Formatting

5.2 Multi-Line Text with Textflows

C++ Java C# int add_textflow(int textflow, String text, String optlist)
Perl PHP int add_textflow(int textflow, string text, string optlist)

C int PDF_add_textflow(PDF *p, int textflow, const char *text, int len, const char *optlist)

Create a Textflow object, or add text and explicit options to an existing Textflow.

textflow Textflow handle returned by an earlier call to PDF_create_textflow() or PDF_
add_textflow(), or -1 (in PHP: 0) to create a new Textflow.

text (Content string) The contents of the Textflow. The text may not contain any in-
line options.

len (C language binding only) The length of text in bytes, or 0 for null-terminated
strings.

optlist An option list specifying Textflow options as follows:
> General option: errorpolicy (see Table 2.1)
> Font loading options according to Table 4.2 for implicit font loading (i.e. font option

in the text appearance group not supplied):
ascender, autosubsetting, capheight, descender, embedding, encoding, fallbackfonts,
fontname, fontstyle, keepnative, linegap, metadata, monospace, readfeatures, replace-
mentchar, subsetlimit, subsetminsize, subsetting, unicodemap, xheight

> Text filter options according to Table 4.6:
charref, escapesequence, glyphcheck, normalize, textformat

> Text appearance options according to Table 4.7:
charspacing, dasharray, decorationabove, fakebold, fillcolor, font, fontsize, gstate,
horizscaling, inittextstate, italicangle, kerning, leading, overline, shadow, strikeout,
strokecolor, strokewidth, textrendering, textrise, underline, underlineposition, underline-
width, wordspacing

> Shaping and typographic options according to Table 5.4:
features, language, script, shaping

> Options for Textflow formatting according to Table 5.6:
alignment, avoidemptybegin, fixedleading, hortabmethod, hortabsize, lastalignment, leader,
leftindent, minlinecount, parindent, rightindent, ruler, tabalignment

> Options for controlling the line break algorithm according to Table 5.7:
adjustmethod, advancedlinebreak, avoidbreak, locale, maxspacing, minspacing, nofitlimit,
shrinklimit, spreadlimit

> Command options according to Table 5.8:
comment, mark, matchbox, nextline, nextparagraph, restore, resetfont, return, save, space

> Text semantics options according to Table 5.9:
charclass, charmapping, hyphenchar, tabalignchar

Returns A Textflow handle which can be used in Textflow-related function calls. The handle is
valid until the end of the enclosing document scope, or until PDF_delete_textflow() is
called with this handle.

If the textflow parameter is -1 (in PHP: 0), a new Textflow will be created and its han-
dle will be returned. Otherwise the handle supplied in the textflow parameter will be re-
turned. By default, this function returns -1 (in PHP: 0) in case of an error. However, this

5.2 Multi-Line Text with Textflows 95

behavior can be changed with the errorpolicy option. In case of an error the handle sup-
plied in the textflow parameter can no longer be used in subsequent function calls (ex-
cept in PDF_delete_textflow() if it was different from -1).

Details This function processes the supplied text and creates an internal data structure from it.
It determines text portions (e.g. words) which will later be used by the formatter, con-
verts the text to Unicode if possible, determines potential line breaks, and calculates the
width of text portions based on font and text options.

As opposed to PDF_create_textflow(), which expects all text contents and options in a
single call, this function is useful for supplying the text contents and options for a Text-
flow in separate calls. It will add the supplied text and optlist to a new or existing Text-
flow. Options specified in optlist will be evaluated before processing text. Both text and
optlist may be empty.

If textflow=-1 (in PHP: 0) this function is almost equivalent to PDF_create_textflow().
However, unlike PDF_create_textflow() this function will not search for inline options in
text. It is therefore not necessary to redefine the start character for inline option lists or
to specify the length of the text with an inline option (not even for non-Unicode text
and UTF-16 text).

This function preprocesses the supplied text and options, but does not create any
output in the generated PDF document, but only prepares the text. Use PDF_fit_
textflow(), PDF_fit_table(), or PDF_fill_textblock() to create output with the preprocessed
Textflow handle.

By default, a new line will be forced by the characters U+000B (VT), U+2028 (LS),
U+000A (LF), U+000D (CR), CRLF, U+0085 (NEL), U+2029 (PS), and U+000C (FF). These
control characters will not be interpreted for symbolic fonts loaded with encoding=
builtin. All of these except VT and LS force a new paragraph (which means that the
parindent option will be effective). FF immediately stops the process of fitting text to the
current fitbox (the function PDF_fit_textflow() returns the string _nextpage).

A horizontal tab character (HT) sets a new start position for subsequent text. The de-
tails of this are controlled by the hortabmethod and hortabsize options.

Soft hyphen characters (SHY) will be replaced with the character specified in the
hyphenchar option if there is a line break after the soft hyphen.

Vertical writing mode is not supported.

Scope any except object

Table 5.6 Additional formatting options for PDF_add/create_textflow(), inline options in PDF_create_textflow() and
PDF_fill_textblock() with a Textflow Block

option description

alignment (Keyword) Specifies formatting for lines in a paragraph (default: left):
left Left-aligned, starting at leftindent+parindent (for the first line of a paragraph) and at

leftindent (for all other lines)
center Centered between leftindent and rightindent
right Right-aligned, ending at rightindent
justify Left- and right-aligned
The value alignment=justify is ignored for a line containing the nextline option. The alignment of a
line containing nextparagraph is not controlled by the alignment option, but rather the option last-
alignment.

avoid-
emptybegin

(Boolean) If true, empty lines at the beginning of a fitbox will be deleted. Default: false

96 Chapter 5: Text and Table Formatting

fixedleading (Boolean) If true, the first leading value found in each line will be used. Otherwise the maximum of all
leading values in the line will be used. fixedleading will be forced to true if the wrap option of PDF_fit_
textflow() or the createwrapbox suboption of the matchbox option will be used to wrap the text around
shapes. Default: false

hortabmethod (Keyword) Treatment of horizontal tabs in the text. If the calculated position is to the left of the current
text position, the tab is ignored (default: relative):
relative The position will be advanced by the amount specified in hortabsize.
typewriter The position will be advanced to the next multiple of hortabsize.
ruler The position will be advanced to the n-th tab value in the ruler option, where n is the

number of tabs found in the line so far. If n is larger than the number of tab positions the
relative method will be applied.

hortabsize (Float or percentage) Width of a horizontal tab1. The interpretation depends on the hortabmethod op-
tion. Default: 7.5%

lastalignment (Keyword) Formatting for the last line in a paragraph. All keywords of the alignment option are sup-
ported, plus the following (default: auto):
auto Use the value of the alignment option if it is different from justify, else left

leader (Option list) Specifies filler text (e.g. dot leaders) and formatting options. Leaders will be inserted until
the next tab position, or the end of the line if no tab is available. Leaders never span more than one line.
See Table 5.3 for a list of supported suboptions. Default: no leader

leftindent (Float or percentage) Left indent of text lines1. If leftindent is specified within a line and the resulting
position is to the left of the current text position, this option will be ignored for this line. Default: 0

minlinecount (Integer) Minimum number of lines in the last paragraph of the fitbox. If there are fewer lines they will
be placed in the next fitbox. The value 2 can be used to prevent single lines of a paragraph at the end of
a fitbox (»orphans«). Default: 1

parindent (Float or percentage) Left indent of the first line of a paragraph1. The amount is added to leftindent.
Specifying this option within a line will act like a tab. Default: 0

rightindent (Float or percentage) Right indentation of text lines1. Default: 0

ruler (List of floats or percentages) List of absolute tab positions for hortabmethod=ruler1. The list may con-
tain up to 32 non-negative entries in ascending order. Default: integer multiples of hortabsize

tabalignment (List of keywords; only with hortabmethod=ruler) Alignment for tab stops. The list may contain up to
32 entries. if more than 32 horizontal tabs per line occur in the text the list will be extended with the last
value. Each entry in the list defines the alignment for the corresponding entry in the ruler option. De-
fault: left.
center Text will be centered at the tab position.
decimal The first instance of tabalignchar will be left-aligned at the tab position. If no tabalign-

char is found, right alignment will be used instead.
left Text will be left-aligned at the tab position.
right Text will be right-aligned at the tab position.

1. In user coordinates or as a percentage of the width of the fitbox

Table 5.6 Additional formatting options for PDF_add/create_textflow(), inline options in PDF_create_textflow() and
PDF_fill_textblock() with a Textflow Block

option description

5.2 Multi-Line Text with Textflows 97

Table 5.7 Additional options for controlling the line break algorithm for PDF_add/create_textflow(), inline options in
PDF_create_textflow() and PDF_fill_textblock() with a Textflow Block

option description

adjustmethod (Keyword) Method used to adjust a line when a text portion doesn’t fit into a line after compressing or
expanding the distance between words subject to the limits specified by the minspacing and max-
spacing options. Default: auto.
auto The following methods are applied in order: shrink, spread, nofit, split.
clip Same as nofit, except that the long part at the right edge of the fitbox (taking into account

the rightindent option) will be clipped.
nofit The last word will be moved to the next line provided the remaining (short) line will not be

shorter than the percentage specified in the nofitlimit option. Even justified paragraphs
may look slightly ragged.

shrink If a word doesn’t fit in the line the text will be compressed subject to shrinklimit. If it still
doesn’t fit the nofit method will be applied.

split The last word will not be moved to the next line, but will forcefully be split after the last
character in the box. If hyphenchar is different from none a hyphen character will be
inserted. Setting hyphenchar=none must be used to suppress the hyphen character (e.g. in
formulae or URLs) since PDFlib does not automatically detect such situations.

spread The last word will be moved to the next line and the remaining (short) line will be justified
by increasing the distance between characters in a word, subject to spreadlimit. If
justification still cannot be achieved the nofit method will be applied.

advanced-
linebreak

(Boolean) Enable advanced line breaking algorithm which is required for complex scripts. This is re-
quired for line-breaking in scripts which do not use space characters for designating word boundaries,
e.g. Thai. The options locale and script will be honored. Default: false

avoidbreak (Boolean) If true, line breaking opportunities (e.g. at space characters) will be ignored until avoidbreak
is reset to false. Mandatory line breaks (e.g. at a newline) and methods defined by adjustmethod will
be still performed. In particular, adjustmethod=split may still create hyphenation. Default: false

locale (Keyword) The locale which will be used for localized line-breaking methods if advancedlinebreak=
true. The keywords consists of one or more components, where the optional components are separated
by an underscore character ’_’ (the syntax slightly differs from NLS/POSIX locale IDs):
> A required two- or three-letter lowercase language code according to ISO 639-2 (see www.loc.gov/

standards/iso639-2), e.g. en, (English), de (German), ja (Japanese). This differs from the language op-
tion.

> An optional two-letter uppercase country code according to ISO 3166, e.g. DE (Germany), CH (Switzer-
land), GB (United Kingdom)

The keyword _none specifies that no locale-specific processing will be done.
Specifying a locale is required for advanced line breaking for some scripts, e.g. Thai. Default: _none
Examples: tha, de_DE, en_US, en_GB

maxspacing
minspacing

(Float or percentage; only relevant if the line contains at least one space character U+0020 and
alignment=justify) Maximum or minimum distance between words (in user coordinates, or as a per-
centage of the width of the space character). The calculated word spacing is limited by the provided val-
ues (but the wordspacing option will still be added). Defaults: minspacing=50%, maxspacing=500%

nofitlimit (Float or percentage; only relevant with alignment=justify) Lower limit for the length of a line with
the nofit method1. Default: 75%

shrinklimit (Percentage) Lower limit for compressing text with adjustmethod=shrink; the calculated shrinking fac-
tor is limited by the provided value, but will be multiplied with the horizscaling option. Default: 85%

spreadlimit (Float or percentage) Upper limit for the distance between characters for the spread method1; the cal-
culated distance will be added to the value of the charspacing option. Default: 0

1. In user coordinates or as a percentage of the width of the fitbox

98 Chapter 5: Text and Table Formatting

Table 5.8 Additional command options for PDF_add/create_textflow(), inline options in PDF_create_textflow() and PDF_
fill_textblock() with a Textflow Block

option description

comment (String) Arbitrary text which will be ignored; useful for commenting option lists or macros

mark (Integer) Store the supplied number internally as a mark. The mark which has been stored most recently
can later be retrieved with PDF_info_textflow() and the lastmark keyword. This may be useful for de-
termining which portions of text have already been placed on the page.

matchbox (Option list) Option list for creating a matchbox according to Table 6.4

nextline (Boolean) Force a new line; equivalent to one of the characters U+000B or U+2028. The options
alignment=justify and lastalignment don’t have any effect on the line containing the nextline op-
tion. This option should not be used in the same inline option list together with the matchbox suboption
end.

nextparagraph (Boolean) Force a new paragraph; equivalent to one of the characters U+000A, U+000D, U+000D plus
U+000A, U+0085, U+2029 and U+00FF. The alignment of the line containing the nextparagraph op-
tion is determined by the option lastalignment; the option alignment is ignored.

resetfont (Boolean) Reset font and fontsize to the most recently values which were different from the current
settings (either different font or font size). This may be useful to reset the font after inserts, such as italic
text. The font option has precedence over this option. This command only makes sense after the first
change of any font-related options which differ from the first setting, and will be ignored otherwise.

restore (Boolean) If true, the values of all text and Textflow options saved by the corresponding save command
will be restored. A matchbox created within a save/restore pair is retained after restore. Default: false

return (String; must not start with an underscore _ character) Exit PDF_fit_textflow() with the supplied string
as return value. A new line will automatically be created.

save (Boolean) If true, the values of all text and Textflow options will be saved, except those of the non-state
options charmapping, nextline, nextparagraph, resetfont, return, space, and textlen. Save/restore
pairs can be nested to an arbitrary depth. Default: false

space (Float or percentage) The text position will be advanced horizontally by the specified value1.

1. In user coordinates or as a percentage of the font size

Table 5.9 Additional text semantics options for PDF_add/create_textflow() and inline options in PDF_create_textflow()

option description

charclass (List of pairs, where the first element in each pair is a keyword, and the second element is either a Uni-
char or a list of Unichars; the Unichars must be < 0xFFFF; will be ignored if advancedlinebreak=true)
The specified Unichars will be classified by the specified keyword to determine the line breaking behav-
ior of those character(s):
letter behave like a letter, e.g. a B
punct behave like a punctuation character, e.g. + / ; :
open behave like an open parenthesis, e.g. [
close behave like a close parenthesis, e.g.]
default reset all character classes to PDFlib’s builtin defaults
Example: charclass={ close » open « letter {/ : =} punct & }

5.2 Multi-Line Text with Textflows 99

Macros for Textflow options. Option lists for Textflows (either in the optlist parameter
of PDF_create_textflow() or PDF_add_textflow(), or inline in the text supplied to PDF_
create_textflow()) may contain macro definitions and macro calls according to Table
5.10. Macros may be useful for having a central definition of multiply used option val-
ues, such as font names, indentation amounts, etc. Before parsing an option list each
contained macros will be substituted with the contents of the corresponding option list
provided in the macro definition. The resulting option list will then be parsed. The fol-
lowing example demonstrates a macro definition for two macros:

<macro {
comment { The following macros are used as paragraph styles }
H1 {fontname=Helvetica-Bold encoding=winansi fontsize=14 }
body {fontname=Helvetica encoding=winansi fontsize=12 }

}>

These macros could be used as follows in an option list:

<&H1>Chapter 1
<&body>This chapter talks about...

The following rules apply to macro definition and use:
> Macros may be nested to an arbitrary depth (macro definitions may contain calls to

other macros).
> Macros can not be used in the same option list where they are defined. In PDF_create_

textflow() a new inline option list which uses the macro can be started immediately
after the end of the inline option list in which the macro is defined. When using PDF_
add_textflow() one function call is required to define the macro, and another one to
use it (since PDF_add_textflow() accepts only a single option list at a time).

> Macro names are case-insensitive.
> Undefined macros will result in an exception.
> Macros can be redefined at any time.

charmapping (List of pairs, where each pair either contains two Unichars or a Unichar and a list of Unichar and inte-
ger; the Unichars must be < U+FFFF) Replace individual characters with one or more instances of anoth-
er character. The option list contains one or more pairs of Unichars. The first character in each pair will
be replaced with the second character. Instead of one-to-one mapping the second element in each pair
may be an option list containing a unichar and a count:
count > 0 The replacement character will be repeated count times.
count < 0 A sequence of multiple instances of the character will be reduced to the absolute value of

the specified number.
count = 0 The character will be deleted.
Examples:
charmapping={ hortab space CRLF space LF space CR space }
charmapping={ shy {shy 0} }
charmapping={ hortab {space 4} }

hyphenchar (Unichar < 0xFFFF or keyword) Character which replaces a soft hyphen at line breaks. The value 0 and
the keyword none completely suppress hyphens. Default: U+00AD (soft hyphen) if available in the font,
U+002D (hyphen-minus) otherwise

tabalignchar (Unichar < 0xFFFF) Character at which decimal tabs will be aligned. Default: U+002E ’.’

Table 5.9 Additional text semantics options for PDF_add/create_textflow() and inline options in PDF_create_textflow()

option description

100 Chapter 5: Text and Table Formatting

C++ Java C# int create_textflow(String text, String optlist)
Perl PHP int create_textflow(string text, string optlist)

C int PDF_create_textflow(PDF *p, const char *text, int len, const char *optlist)

Create a Textflow object from text contents, inline options, and explicit options.

text (Content string) The contents of the Textflow. It may contain text in various en-
codings, macros (see »Macros for Textflow options«, page 99), and inline option lists ac-
cording to Table 5.6 and Table 5.11 (see also »Inline option lists for Textflows«, page 101).
If text is an empty string, a valid Textflow handle will be returned nevertheless.

len (C language binding only) The length of text in bytes, or 0 for null-terminated
strings.

optlist An option list specifying Textflow options. Options specified in the optlist pa-
rameter will be evaluated before those in inline option lists in text so that inline options
have precedence over options provided in the optlist parameter. The following options
can be used:

> General option: errorpolicy (see Table 2.1)
> All options of PDF_add_textflow() (see option list of PDF_add_textflow())
> Options for controlling inline option list processing according to Table 5.11:

begoptlistchar, endoptlistchar, fixedtextformat, textlen

Returns A Textflow handle which can be used in calls to PDF_add_textflow(), PDF_fit_textflow(),
PDF_info_textflow(), and PDF_delete_textflow(). The handle is valid until the end of the
enclosing document scope, or until PDF_delete_textflow() is called with this handle. By
default this function returns -1 (in PHP: 0) in case of an error. This behavior can be
changed with the errorpolicy option.

Details This function accepts options and text to be prepared for Textflow. Unlike PDF_add_
textflow() the text may contain inline options. Searching for inline option lists can be
disabled for parts or all of the text by supplying the textlen option in the optlist parame-
ter (see »Inline option lists for Textflows«, page 101).

Table 5.10 Option list macro definitions and calls for PDF_add/create_textflow(), PDF_ fit_textflow() and PDF_fill_
textblock() with a Textflow Block

option description

macro (List of pairs) Each pair describes the name and definition of a macro as follows (note that there must not
be any equals character ’=’ between the macro name and its definition):
name (string) The name of the macro which can later be used for macro calls. Macros which have

already been defined can be redefined later. The special name comment will be ignored.
suboptlist An option list which will literally replace the macro name when the macro is called. Leading

and trailing whitespace will be ignored.

&name The macro with the specified name will be expanded, and the macro name (including the & character)
will be replaced by the macro’s contents, i.e. the suboptlist which has been defined for the macro (with-
out the surrounding braces). The macro name is terminated by whitespace, {, }, =, or &. Therefore,
these characters can not be used as part of a macro name.
Nested macros will be expanded without any nesting limit. Macros contained in string options will also
be expanded. Macro substitution must result in a valid option list.

5.2 Multi-Line Text with Textflows 101

This function does not create any output in the generated PDF document, but only
prepares the text according to the supplied options. Use PDF_fit_textflow() to create out-
put with the resulting Textflow handle.

See the Details section of PDF_add_textflow() for more information regarding special
characters, line breaking, etc.

Scope any except object

Inline option lists for Textflows. The content provided in the text parameter of PDF_
create_textflow() (but not PDF_add_textflow()) may include an arbitrary number of op-
tion lists (inline options) specifying Textflow options according to Table 5.6. All of these
options can alternatively be provided in the optlist parameter of PDF_create_textflow()
and PDF_add_textflow(). The same option can be specified multiply in a single option
list; in this case only the last occurrence of an option will be taken into account.

Inline option lists must be enclosed with the characters specified in the begoptlist-
char and endoptlistchar options (by default: < and >). Obviously, conflicts could arise if
the character used for starting inline option lists must also be used in the actual text.
There are several methods to resolve this conflict, depending on whether or not the text
contains any inline option lists. Remember that PDF_add_textflow() completely sepa-
rates text and options, so the conflict doesn’t arise there.

If the text does not contain any inline options lists you can completely disable the
search for inline option lists by one of the following methods:

Table 5.11 Additional options for inline option list processing in PDF_create_textflow() and PDF_fill_textblock() with a
Textflow Block

option description

begoptlistchar (Unichar < 0xFFFF or keyword) Character which starts inline option lists. Replacing the default character
may be useful if this character appears in the text literally (see »Inline option lists for Textflows«, page
101). If textlen is not specified, the begoptlistchar character in the text must be encoded in the same
text format and encoding as the preceding text. This means that the Unicode value of begoptlistchar
must be chosen such that it is contained in the encoding of the preceding text. The keyword none can be
used to completely disable the search for option lists. Default: U+003C (<)

endoptlistchar (Unichar < 0xFFFF; U+007D ’}’ is not allowed) Character which terminates inline option lists. Default:
U+003E ’>’

fixedtext-
format

(Boolean; only relevant for non-Unicode-capable language bindings and forced to true if
stringformat=utf8; this option doesn’t make sense in inline option lists, and can only be used in the
optlist parameter) If true, all text fragments and inline options lists will use the same textformat,
which must be one of utf8, utf16, utf16be, or utf16le. This is useful if text and inline options come
from the same source.
If false, inline option lists including the delimiters must be encoded in textformat=bytes, regardless of
the format used for the actual text. This allows the combination e.g. of UTF-16 text with ASCII-encoded
inline option lists (the text may come from a Unicode database, while inline options are constructed as
ASCII text within the application). Default: false

textlen (Integer or keyword; required for text fragments with encoding=glyphid as well as for text fragments
with fixedtextformat=false and textformat=utf16xx in non-Unicode aware languages; not allowed
in PDF_add_textflow() with inlineoptions=true) Number of bytes or (in Unicode-capable languages)
characters before the next inline option list (see »Inline option lists for Textflows«, page 101). The charac-
ters are counted before character references are resolved, e.g. <textlen=8>①<...>. The keyword
all specifies all of the remaining text. Default: the text will be searched for the next occurrence of
begoptlistchar.

102 Chapter 5: Text and Table Formatting

> Set begoptlistchar=none in the optlist parameter of PDF_create_textflow().
> Set the textlen option in the optlist parameter of PDF_create_textflow() to the length

of the full text.

If the text actually contains inline option lists you can avoid the conflict between text
contents and the begoptlistchar for starting an inline option list by using one of the fol-
lowing methods:

> Replace all occurrences of the < character in the text with the corresponding numeric
or character entity reference (< or <) and start inline option lists with the lit-
eral < character:

A<B<fontname=Helvetica encoding=winansi>

Note that this method does not work for fonts with encoding=builtin.
> Set the begoptlistchar option in the optlist parameter of PDF_create_textflow() or an

inline option list to a character which is not used in the text (e.g. $), and use this char-
acter to start inline option lists:

<begoptlistchar=$>A<B$fontname=Helvetica encoding=winansi>

> Specify the length of the next text fragment (until the start of the next inline option
list) in the preceding inline option list using the textlen option:

<textlen=3>A<B<fontname=Helvetica encoding=winansi>

> Specify the begoptlistchar as an escape sequence and set the escapesequence global op-
tion to true. However, escape sequences don’t work within inline option lists includ-
ing the endoptlistchar.

Note Consecutive inline option lists without any text between them should be avoided; it is recom-
mended to aggregate all options in a single option list. If an inline option list is provided imme-
diately after another option list, they are assumed to enclose a text fragment of zero length.
This is important when supplying the textlen option in the first option list.

C++ Java C# String fit_textflow(int textflow, double llx, double lly, double urx, double ury, String optlist)
Perl PHP string fit_textflow(int textflow, float llx, float lly, float urx, float ury, string optlist)

C const char *PDF_fit_textflow(PDF *p,
int textflow, double llx, double lly, double urx, double ury, const char *optlist)

Format the next portion of a Textflow.

textflow A Textflow handle returned by a call to PDF_create_textflow() or PDF_add_
textflow().

llx, lly, urx, ury x and y coordinates of the lower left and upper right corners of the tar-
get rectangle (the fitbox) in user coordinates. The corners can also be specified in reverse
order. Shapes other than a rectangle can be filled with the wrap option.

optlist An option list specifying processing options. The following options can be
used:

> Textflow options according to Table 5.12:
avoidwordsplitting, blind, createfittext, createlastindent, exchangefillcolors, exchange-
strokecolors, firstlinedist, fitmethod, fontscale, lastlinedist1, linespreadlimit, maxlines,

5.2 Multi-Line Text with Textflows 103

minfontsize, orientate, returnatmark, rewind, rotate, showborder, showtabs, stamp,
truncatetrailingwhitespace, verticalalign1, wrap

> Matchbox option according to Table 6.1: matchbox
> Option for abbreviated structure element tagging according to Table 14.5 (only al-

lowed in page scope): tag

Returns A string which specifies the reason for returning from the function:
> _stop: all text in the Textflow has been processed. If the text was empty, _stop will al-

ways be returned, even if the return or mark/returnatmark option was supplied.
> _nextpage: Waiting for the next page (caused by a form feed character U+000C). An-

other call to PDF_fit_textflow() is required for processing the remaining text.
> _boxfull: Some text was placed in the fitbox, but no more space is available, or the

maximum number of lines (as specified via the maxlines option) has been placed in
the fitbox, or fitmethod=auto and minfontsize has been specified but the text didn’t fit
into the fitbox. Another call to PDF_fit_textflow() is required for processing the re-
maining text.

> _boxempty: The box doesn’t contain any text at all after processing. This may happen
if the size of the fitbox is too small to hold any text, or a wrapbox was larger than the
fitbox. No more calls to PDF_fit_textflow() with the same fitbox should be issued in
order to avoid infinite loops.

> _mark#: The option returnatmark has been specified with the number #, and the
mark with the number specified in this option has been placed.

> Any other string: The string supplied to the return command in an inline option list.

If there are multiple simultaneous reasons for returning, the first in the list (from top to
bottom) will be reported. The returned string is valid until the next call to this function.

Details The current text and graphics states do not influence the text output created by this
function (this is different from PDF_fit_textline()). Use fillcolor, strokecolor and other text
appearance options (see Table 4.7) in PDF_create_textflow() or PDF_add_textflow() to con-
trol the appearance of the text. After returning from this function the text state is un-
changed. However, the textx/texty options are adjusted to point to the end of the gener-
ated text output (unless the blind option has been set to true).

Scope page, pattern, template, glyph

Table 5.12 Options for PDF_fit_textflow() and PDF_fill_textblock() with a Textflow Block

option description

avoidword-
splitting

(Boolean) If true and fitmethod=auto, Textflow attempts to fit the text completely into the fitbox by de-
creasing the fontsize and avoiding word splitting (see adjustmethod).

blind (Boolean) If true, no output will be generated, but all calculations will be performed and the formatting
results can be checked with PDF_info_textflow(). Default: false

createfittext (Boolean) If true the text placed in the current fitbox will be saved in memory so that it can later be re-
trieved with a call to PDF_info_textflow() and the keyword fittext. Default: true

104 Chapter 5: Text and Table Formatting

createlast-
indent

(Option list) Reserve some space at the end of the last line in the fitbox and optionally create a matchbox
which can be used to fill the reserved space. The reserved space may be useful to add continuation dots,
an image, a link to the continuation of the text, etc. at the end of the text. Supported suboptions:
rightindent (Float or percentage) Additional right indent of the last text line in the fitbox in user coordi-

nates or as percentage of the width of the fitbox. The value will be added to the value of the
rightindent option of PDF_add/create_textflow() . Default: 0

matchbox (Option list according to Table 6.4) Create a matchbox at the end of the last line. If the
matchbox option boxwidth is not specified, the value of rightindent will be used as
boxwidth. If boxwidth=0 no box will be created.

exchange-
fillcolors

(List with an even number of colors) Each pair in the list specifies an original fill color and a replacement
color. Whenever the Textflow specifies the original fill color within the fitbox it will be replaced with the
specified replacement color. This may be useful to adjust the colors to the background. The character ’*’
as original color means that all remaining colors will be replaced with the replacement color. Example:
exchangefillcolors={{gray 0} white Orchid DeepPink {rgb 1 0 1} MediumBlue}

exchange-
strokecolors

(List with an even number of colors) Each pair in the list specifies an original stroke color and a replace-
ment color. Whenever the Textflow specifies the original stroke color within the fitbox it will be replaced
with the specified replacement color. This may be useful to adjust the colors to the background. The char-
acter ’*’ as original color means that all remaining colors will be replaced with the replacement color.

firstlinedist1 (Float, percentage, or keyword) Distance between the top of the fitbox and the baseline for the first line
of text, specified in user coordinates, as a percentage of the relevant font size (the first font size in the line
if fixedleading=true, and the maximum of all font sizes in the line otherwise), or as a keyword (default:
leading):

leading The leading value determined for the first line; typical diacritical characters such as À will
touch the top of the fitbox.

ascender The ascender value determined for the first line; typical characters with larger ascenders, such
as d and h will touch the top of the fitbox.

capheight The capheight value determined for the first line; typical capital uppercase characters such as
H will touch the top of the fitbox.

xheight The xheight value determined for the first line; typical lowercase characters such as x will
touch the top of the fitbox.

If fixedleading=false the maximum of all leading, ascender, xheight, or capheight values found in
the first line will be used.

fitmethod (Keyword) Specifies the method to fit the text into the fitbox:
auto PDF_fit_textflow() will repeatedly be called in blind mode with reduced font size and other

font-related options (see fontscale) until the text fits into the fitbox (but see also option
minfontsize).

clip The text will be truncated at the bottom of the fitbox.
nofit The text can extend beyond the bottom of the fitbox (for verticalalign=top), the top of the

fitbox (for verticalalign=bottom), or both (for verticalalign=center).
The default for PDF_fit_textflow() is clip. The default for PDF_fill_textblock() with a Textflow Block is
clip if the textflowhandle option is supplied, otherwise auto

fontscale (Positive float or percentage) Values of fontsize and absolute values (but not percentages) of leading,
minspacing, maxspacing, spreadlimit, and space will be multiplied with the supplied scaling factor or
percentage. Default: 1 if rewind=0, otherwise the value supplied with the corresponding call to PDF_fit_
textflow().

gstate (Gstate handle) Handle for a graphics state retrieved with PDF_create_gstate(). The graphics state af-
fects all text placed with this function. If another graphics state has already been supplied to PDF_add/
create_textflow() both graphics states will be merged. Default: no graphics state (i.e. current settings will
be used)

Table 5.12 Options for PDF_fit_textflow() and PDF_fill_textblock() with a Textflow Block

option description

5.2 Multi-Line Text with Textflows 105

lastlinedist1 (Float, percentage, or keyword; will be ignored for fitmethod=nofit) Minimum distance between the
baseline for the last line of text and the bottom of the fitbox, specified in user coordinates, as a percent-
age of the font size (the first font size in the line if fixedleading=true, and the maximum of all font sizes
in the line otherwise), or as a keyword. Default: 0, i.e. the bottom of the fitbox will be used as baseline,
and typical descenders will extend below the fitbox. The following keyword can be used:
descender The descender value determined for the last line; typical characters with descenders, such as g

and j will touch the bottom of the fitbox. If fixedleading=false the maximum of all
descender values found in the last line is used.

linespread-
limit

(Float or percentage; only for verticalalign=justify) Maximum amount in user coordinates or as per-
centage of the leading for increasing the leading for vertical justification. Default: 200%

maxlines (Integer or keyword) Maximum number of lines in the fitbox, or the keyword auto which means that as
many lines as possible will be placed in the fitbox. When the maximum number of lines has been placed
PDF_fit_textflow() will return the string _boxfull. Default: auto

minfontsize (Float or percentage) Minimum font size allowed when text is scaled down to fit into the fitbox, especial-
ly for fitmethod=auto. The limit is specified in user coordinates or as a percentage of the height of the fit-
box. If the limit is reached and the text still does not fit the string _boxfull will be returned. Default:
0.1%

mingapwidth (Float or percentage) Minimal horizontal width for fitting text between shapes (e.g. between wrap con-
tours) in user coordinates or as a percentage of the fontsize. This may be useful to avoid ugly formatting
results in cases where only small gaps are left between wrap contours. Default: 10%

orientate (Keyword) Specifies the desired orientation of the text when it is placed (default: north):
north upright
east pointing to the right
south upside down
west pointing to the left

returnatmark (Integer) PDF_fit_textflow() will return prematurely at the text position where the Textflow option mark
is defined with the specified number. The return reason string will be _mark#, where # is the number
specified in this option.

rewind (Integer: -2, -1, 0, or 1) The state of the supplied Textflow is reset to the state before some other call to
PDF_fit_textflow() with the same Textflow handle and then the Textflow is placed as usual (default: 0):
1 Rewind to the state before the first call to PDF_fit_textflow().

0 Don’t reset the Textflow.
-1 Rewind to the state before the previous call to PDF_fit_textflow().
-2 Rewind to the state before the second last call to PDF_fit_textflow().

rotate (Float) Rotate the coordinate system, using the lower left corner of the fitbox as center and the specified
value as rotation angle in degrees. This results in the fitbox and the text being rotated. The rotation will
be reset when the text has been placed. Default: 0

showborder (Boolean) If true, the border of the fitbox and all wrap boxes is stroked (using the current graphics state).
This may be useful for development and debugging. Default: false

showtabs (Keyword) Tab stops and left indents are visualized with vertical lines as a debugging aid. The lines will be
drawn according to the graphics state which was active before calling PDF_fit_textflow() (default:
none):

none no lines will be drawn
fitbox lines will be drawn over the full height of the fitbox
validarea lines will be drawn only in vertical area where they are valid

Table 5.12 Options for PDF_fit_textflow() and PDF_fill_textblock() with a Textflow Block

option description

106 Chapter 5: Text and Table Formatting

stamp (Keyword) This option can be used to create a diagonal stamp within the fitbox. Line breaks for the
stamp text should be specified explicitly (i.e. with newline characters or the newline option). If the text
does not contain any explicit line breaks a single-line stamp will be created. The generated stamp text
will be as large as possible, but not larger than the specified fontsize. Supported keywords (default:
none):
ll2ur The stamp will run diagonally from the lower left corner to the upper right corner.
ul2lr The stamp will run diagonally from the upper left corner to the lower right corner.
none No stamp will be created.

truncate-
trailing-
whitespace

(Boolean) Control treatment of fitboxes which contain only trailing whitespace, i.e. the text in the fitbox
starts with whitespace and there is only whitespace until the end of the Textflow. If this option is true,
trailing whitespace is removed, i.e. the fitbox is treated as empty and the return value is _stop. If this op-
tion is false, the whitespace is processed like regular text, i.e. the function may return a value different
from _stop (depending on the amount of trailing whitespace) and the textendx/y and other keywords
of PDF_info_textflow() take the whitespace into account. truncatetrailingwhitespace=false may be
useful if the original text must be processed without any whitespace removal. Default: true

verticalalign1 (Keyword) Vertical alignment of the text in the fitbox; the firstlinedist and lastlinedist options will
be taken into account as appropriate (default: top):
top Formatting will start at the first line, and continue downwards. If the text doesn’t fill the

fitbox there may be whitespace below the text.
center The text will be vertically centered in the fitbox. If the text doesn’t fill the fitbox there may be

whitespace both above and below the text.
bottom Formatting will start at the last line, and continue upwards. If the text doesn’t fill the fitbox

there may be whitespace above the text.
justify The text will be aligned with top and bottom of the fitbox. In order to achieve this the leading

will be increased up to the limit specified by linespreadlimit. If this limit is exceeded no
justification will be performed. The height of the first line will only be increased if
firstlinedist=leading.

wrap (Option list according to Table 5.13) The text will run around the areas specified with the suboptions listed
in Table 5.13. This can be used to place images or paths within the Textflow and wrap the text around it,
or to fill arbitrary shapes with text. The fitbox will be filled according to the fillrule option, starting at
the border of the fitbox.
By default, the specified areas will not contain any text (except where they overlap), i.e. the text is
wrapped around the shapes. Using the addfitbox and inversefill options the opposite effect can be
achieved: the specified areas will be filled with text, and the rest of the fitbox remains empty. This can be
used to fill arbitrary shapes (and not only the rectangle supplied in the llx/lly/urx/ury parameters)
with text.
Absolute and relative coordinate values will be interpreted in the user coordinate system. A relative coor-
dinate will be added to the previous absolute coordinate. Up to 256 values can be supplied as relative val-
ues. Percentages will be interpreted in the fitbox coordinate system, i.e. the lower left corner of the fitbox
is (0, 0) and the upper right corner is (100, 100) (even in a topdown system). Up to 256 values can be sup-
plied as percentage. Examples:
Exclude a box with relative coordinates: wrap={ boxes={{120r 340r 50r 60r}} }
(equivalent to wrap={ boxes={{120 340 170 400}} }
Exclude the upper right quarter of the fitbox: wrap={ boxes={{50% 50% 100% 100%}} }
Fill a triangular shape: wrap={ addfitbox polygons={{50% 80% 30% 40% 70% 40% 50% 80%}} }
Exclude the area of an image with a matchbox called image1: wrap={ usematchboxes={{ image1 }}}

1. The firstlinedist, lastlinedist and verticalalign options always refer to the fitbox, even in the presence of wrap elements.
This means – especially in the case of inverse filling, i.e. the wrap elements are filled with text – that Textflow will not use the bounding
box of the wrap elements to determine the distance between text and fitbox borders and the position of the text box according to the
verticalalign option. This may lead to unexpected results, especially if the outer edges of the wrap elements don’t touch the fitbox.
This effect can almost completely be avoided by supplying wrap elements which touch the fitbox.

Table 5.12 Options for PDF_fit_textflow() and PDF_fill_textblock() with a Textflow Block

option description

5.2 Multi-Line Text with Textflows 107

Table 5.13 Suboptions for the wrap option of PDF_fit_textflow() and PDF_fill_textblock() with a Textflow Block

option description

addfitbox (Boolean) If true, the fitbox will be added to the wrap area. As a result, the shapes specified with other
wrapping options will be filled with text instead of wrapping the text around the shapes. Default: false

beziers (List of two or more Bézier curves) Bézier curves which will be added to the wrap area.

boxes (List of rectangles) One or more rectangles which will be added to the wrap area.

circles (List of circles) One or more circles which will be added to the wrap area.

creatematch-
boxes

(List of option lists) Create matchboxes from one or more rectangles in the boxes option. Each option list
corresponds to one entry in the boxes option (ordering is relevant), and controls the creation of a match-
box. All relevant matchbox options in Table 6.4 can be used. A suboption list can be empty; in this case
no matchbox will be created for the corresponding wrap box.

fillrule (Keyword) Specifies the method for determining the interior of overlapping wrap shapes (default: even-
odd). See Table 7.1 for details:
evenodd Use the even-odd rule.
winding Use the non-zero winding number rule. Use this rule to process the interior of overlapping

circles (i.e. to avoid »doughnut holes«) , or to process the union of overlapping shapes
(instead of the intersection).

inversefill (Boolean) If true, wrap shape processing starts at the first intersection of the text line with the border of
a wrap element inside the fitbox. If false, processing starts at the fitbox border. If fillrule=evenodd,
the option inversefill=true has the same effect as addfitbox=true. If fillrule=winding, the option
addfitbox=true leads to an empty or a full fitbox (for inversefill=false or true, respectively).

lineheight (List with two elements, each being a positive float or a keyword) Defines the vertical extent of the text
line to be used for calculating the intersection with wrap areas. Two keywords/floats specify the extent
above and below the text baseline. Supported keywords:
none (no extent), xheight, descender, capheight, ascender, fontsize, leading, textrise
Default: {ascender descender}

usematch-
boxes

(List of string lists) The first element in each list is a name string which specifies a matchbox. The second
element is either an integer specifying the number of the desired rectangle, or the keyword all to speci-
fy all rectangles referring to the selected matchbox. If the second element is missing, it defaults to all.
The bounding box of each rectangle will be added to the wrap area.

offset (Float or percentage) Horizontal distance between the text and the contour of the wrap area, supplied
in user coordinates or as a percentage of the width of the fitbox. This can be used to horizontally extend
the wrap area. Default: 0

paths (List of option lists) One or more path objects which will be added to the wrap area. Supported subop-
tions:
path (Path handle; required) Handle for the path to be added to the wrap area.
refpoint (List of two floats or percentages) Coordinates of the reference point for the path in user

coordinates or as percentages of the width and height of the fitbox. Default: {0 0}
The following options of PDF_draw_path() can also be used (see Table 6.1 and Table 7.6):
align, attachmentpoint, boxsize, close, fitmethod, orientate, position, round, scale, subpaths

polygons (List of polylines) One or more polylines (not necessarily closed) which will be added to the wrap area.

108 Chapter 5: Text and Table Formatting

C++ Java C# double info_textflow(int textflow, String keyword)
Perl PHP float info_textflow(int textflow, string keyword)

C double PDF_info_textflow(PDF *p, int textflow, const char *keyword)

Query the current state of a Textflow after a call to PDF_fit_textflow().

textflow A Textflow handle returned by a call to PDF_add/create_textflow() or PDF_fill_
textblock() with the textflowhandle option.

keyword A keyword specifying the requested information according to Table 5.14.

Returns The value of some Textflow parameter as requested by keyword. This function returns
correct geometry information even in blind mode (unlike the textx/texty options). If the
requested keyword produces text, a string index is returned, and the corresponding
string must be retrieved with PDF_get_string().

Scope any except object

5.2 Multi-Line Text with Textflows 109

Table 5.14 Keywords for PDF_info_textflow()

keyword description

boundingbox Handle of the path containing the Textflow’s bounding box in user coordinates or -1 (0 in PHP).
firstlinedist and lastlinedist will be taken into account.

boxlinecount Number of lines in the last fitbox

firstparalinecount Number of lines in the first paragraph of the fitbox

firstlinedist Distance between the first text baseline and the fictitious baseline above (if verticalalign=top
this will be the upper border of the fitbox)

fittext String index for the text placed in the previous call to PDF_fit_textflow(). This can be used to de-
termine the amount of text which could be placed in the fitbox. The string will be normalized as
follows: encoding is UTF-16 in Unicode-capable languages or (EBCDIC-)UTF-8 otherwise, line
breaks will be marked with U+000A, and horizontal tabs will be replaced with a space character
U+0020.

fontscale Value of fontscale after the most recent call to PDF_fit_textflow() with fitmethod=auto

lastfont Handle of the font used in the last text line in the fitbox

lastfontsize Font size used in the last text line in the fitbox

lastmark Number of the last mark found in the processed part of the Textflow in the last fitbox (marks can
be set with the mark option)

lastlinedist Distance between the last text baseline and the fictitious baseline below, assuming unmodified
leading (if verticalalign=bottom this will be the lower border of the fitbox)

lastparalinecount Number of lines in the last paragraph of the fitbox

leading The current value of the leading option, as determined by the text and options within the Text-
flow

leftlinex1,
leftliney1

The x and y coordinates of the line with the leftmost start in the most recently filled fitbox, in cur-
rent user coordinates

maxlinelength Length of the longest text line in the most recently filled fitbox

maxliney1 The y coordinate of the baseline of the longest text line in the most recently filled fitbox, in cur-
rent user coordinates

minlinelength Length of the shortest text line in the most recently filled fitbox

minliney1 The y coordinate of the baseline of the shortest text line in the most recently filled fitbox, in cur-
rent user coordinates

returnreason String index for the return reason of the most recent direct or indirect call to PDF_fit_textflow().
The retrieved return reason will be one of the return strings of PDF_fit_textflow(). This is useful
for querying the result of indirect Textflow calls issued internally by PDF_fill_textblock().

rightlinex1,
rightliney1

The x and y coordinates of the line with the rightmost end in the most recently filled fitbox, in
current user coordinates

split Specifies whether word splitting occurred in the last fitbox:
0 No word had to be split.
1 At least one word had to be split.

textendx, textendy The x or y coordinate of the current text position after the most recently filled fitbox in current
user coordinates

textheight Height of the bounding box of the whole text (taking firstlinedist and lastlinedist into ac-
count) in current user coordinates

110 Chapter 5: Text and Table Formatting

C++ Java C# void delete_textflow(int textflow)
Perl PHP delete_textflow(int textflow)

C void PDF_delete_textflow(PDF *p, int textflow)

Delete a Textflow and all associated data structures.

textflow A Textflow handle returned by a call to PDF_create_textflow() or PDF_add_
textflow().

Details Textflows which have not been deleted with this function will be deleted automatically
at the end of the enclosing document scope. However, failing to call PDF_delete_
textflow() may significantly slow down the application if many Textflows are generat-
ed.

Scope any

textwidth Width of the bounding box of the whole text in current user coordinates

used Percentage of text (0...100) which has been placed so far

x1, y1, ... , x4, y4 Coordinates of the bounding box of the whole text in current user coordinates. firstlinedist
and lastlinedist will be taken into account. x1, y1 correspond to the lower left, x2, y2 to the
lower right, x3, y3 to the upper right and x4, y4 to the upper left corner.

1. If rotate is different from 0 this value refers to the rotated system.

Table 5.14 Keywords for PDF_info_textflow()

keyword description

5.3 Table Formatting 111

5.3 Table Formatting

C++ Java C# int add_table_cell(int table, int column, int row, string text, string optlist)
Perl PHP int add_table_cell(int table, int column, int row, string text, string optlist)

C int PDF_add_table_cell(PDF *p,
int table, int column, int row, const char *text, int len, const char *optlist)

Add a cell to a new or existing table.

table A valid table handle retrieved with another call to PDF_add_table_cell(), or -1 (in
PHP: 0) to start a new table. The table handle must not yet have been used in a call to
PDF_fit_table(), i.e. all table contents must be defined before placing the table on the
page.

column, row Number of the column and row containing the cell. If the cell spans mul-
tiple columns and/or rows the numbers of the leftmost column and the topmost row
must be supplied. The first column/row has number 1.

text (Content string) Text for filling the cell. If text is not empty it will be used for fill-
ing the cell with PDF_fit_textline().

len (C language binding only) Length of text (in bytes). If len = 0 a null-terminated
string must be provided.

optlist An option list specifying table cell formatting details:
> General option: errorpolicy (see Table 2.1)
> Column and row definition options according to Table 5.15.:

colwidth, colscalegroup, minrowheight, return, rowheight, rowjoingroup, rowscalegroup
> Cell property options according to Table 5.15:

avoidwordsplitting, colspan, margin, marginleft, marginbottom, marginright, margintop,
rowspan

> Cell content formatting options according to Table 5.15.:
continuetextflow, repeatcontent

> Static cell contents according to Table 5.16:
fitgraphics, fitimage, fitpath, fitpdipage, fittextflow, fittextline, graphics, image, match-
box, path, pdipage, textflow

> Interactive cell contents according to Table 5.17 (only in page scope):
annotationtype, fieldname, fieldtype, fitannotation, fitfield

> Option for abbreviated structure element tagging according to Table 14.5: tag

Returns A table handle which can be used in subsequent table-related calls. If errorpolicy=return
the caller must check for a return value of -1 (in PHP: 0) since it signals an error. In case
of an error only the last cell definition will be discarded; no contents will be added to the
table, but the table handle is still valid. The returned table handle can not be reused
across multiple PDF output documents.

Details A table cell can be filled with images, graphics, imported PDF pages, path objects, form
fields, annotations, Textflows, or Textlines. Multiple content types can be specified for a
particular cell in a single function call.

See the PDFlib Tutorial for a description of the table formatting algorithm and width
and height calculations.

112 Chapter 5: Text and Table Formatting

PDF/UA Vector graphics and raster images supplied with the path or image options must be
tagged as Artifact or Figure with the tag option.

Scope any except object

Table 5.15 Formatting options for PDF_add_table_cell()

option description

avoidword-
splitting

(Boolean; only relevant for Textflow cells) If true, the table formatter will check whether the Textflow re-
quires at least one forced word splitting when fitting the text into the table cell. If so, the cell width will
be increased in an attempt to avoid word splittings. Default: true

checkword-
splitting

Deprecated, use avoidwordsplitting

colscale-
group1

(String) Name of a column group to which the column will be added. All columns in a group will be scaled
uniformly if one of the columns in the group must be enlarged to completely hold long text. If a cell
spans multiple columns the affected columns form a scale group automatically.

colspan (Integer) Number of columns spanned by the cell. Default: 1

colwidth1 (Float or percentage) Width of the column specified in the column parameter. The width can be specified
in user coordinates2, or as a percentage of the width of the table’s first fitbox (see PDF_fit_table()). User
coordinates and percentages must not be mixed, i.e. either user coordinates or percentages must be used
in all column width definitions of a table. The column width may be increased automatically if the col-
umn traverses cells containing text. Images, graphics and PDF pages in table cells don’t have any influ-
ence on column widths. Default: see option colwidthdefault of PDF_fit_table()

continue-
textflow

(Boolean; only relevant for Textflows) If true the contents of the Textflow specified in the textflow op-
tion can be continued in another cell provided that the other cell is filled with the same Textflow handle
and continuetextflow=true as well. The parts of the Textflow will be placed in the order in which the
cells are added. PDFlib will not adjust the cell size to the whole Textflow, and the avoidwordsplitting
option will be ignored. Therefore, a suitable cell size should be defined.
If false the Textflow will be started from the beginning. Default: false

margin
marginleft
marginbottom
marginright
margintop

(Float or percentage) Left/bottom/right/top cell margins in user coordinates (must be greater than or
equal to 0) or as a percentage of the cell width or height (must be less than 100%). The specified margins
define the inner cell box which serves as the fitbox for the cell contents. Default for margin: 0; Default for
all others: margin

minrow-
height1

(Float or percentage; not recommended) This option indicates that a row which cannot completely be
placed at the end of a table instance can be split into two fragments. The minimum height of the first
fragment in the current table instance can be specified in user coordinates or as a percentage of the row
height. The next table instance starts with the second fragment. This option should be used carefully and
only if the row contains a Textflow which is very high compared to the height of the fitbox. The option
value should be estimated such that at least one text line can be placed in the cell; otherwise an error will
occur. Default: 100%, i.e. no splitting

repeatcontent (Boolean) Specify whether the contents of a table cell will be repeated if a cell or row is split between sev-
eral table instances. Default: true
Splitting a cell: If the last rows spanned by a cell don’t fit into the fitbox, the cell will be split. Except for
Textflows (which will not be repeated), the cell contents will be repeated in the next table instance if
repeatcontent=true. Otherwise it will not be repeated.
Splitting a row: If the last body row doesn’t fit into the fitbox, it will usually not be split but will com-
pletely be placed in the next table instance. You can decrease the minrowheight value to split the last
body row with the given percentage of contents in the first instance, and place the remaining parts of
that row in the next instance. Except for Textflows (which will not be repeated), the cell contents will be
repeated in the next table instance if repeatcontent=true. Otherwise it will not be repeated.

5.3 Table Formatting 113

return1 (String) PDF_fit_table() will stop after placing the specified row, and will return the specified string. The
string must not start with an underscore character ’_’. If the specified row is part of a join group it must
be the last row of the group; otherwise an error will occur.

rowheight1 (Float or percentage) Height of the row specified in the row parameter. The height can be specified in user
coordinates2, or as a percentage of the height of the table’s first fitbox (see PDF_fit_table()). User coordi-
nates and percentages must not be mixed, i.e. either user coordinates or percentages must be used in all
row height definitions of a table. The row height may be increased automatically if the row traverses
cells containing text. Images, graphics and PDF pages in table cells don’t have any influence on row
heights. Default: see option rowheightdefault of PDF_fit_table()

rowscale-
group1

(String) Name of a row group to which the row will be added. All rows in a group will be scaled uniformly
if one of the rows in the group must be enlarged to completely hold long text. If a cell spans multiple
rows the affected rows form a scale group automatically.

rowjoin-
group1

(String) Name of a row group to which the row will be added. All rows in the group will be kept together
in a table instance. The rows in a group must be numbered consecutively. If a cell spans multiple rows the
affected rows do not automatically form a join group.

rowspan (Integer) Number of rows spanned by the cell. Default: 1

1. The last specification of this option is dominant; earlier specifications for the same row or column will be ignored.
2. More precisely, the coordinate system which is in effect when PDF_fit_table() is called for placing the first table instance.

Table 5.16 Options for static cell contents in PDF_add_table_cell() and suboptions for the caption option of PDF_fit_
table()

option description

fitgraphics (Option list; only relevant for graphics) Option list for PDF_fit_graphics(). This option list will be applied
to place the graphics supplied with the graphics option in the cell. The lower left corner of the fitbox will
be used as reference point.
Default: fitmethod=meet position=center. This option list is prepended to the user-specified options.1

fitimage (Option list; only relevant for images and templates) Option list for PDF_fit_image(). This option list will
be applied to place the image or template supplied with the image option in the cell. The lower left corner
of the fitbox will be used as the reference point.
Default: fitmethod=meet position=center. This option list is prepended to the user-specified options.1

fitpath (Option list; only relevant for path objects) Option list for PDF_draw_path(). This option list will be ap-
plied to place the path object specified with the path option within its bounding box in the cell. The low-
er left corner of the fitbox will be used as reference point.
Default: fitmethod=meet position=center. This option list is prepended to the user-specified options.1

fitpdipage (Option list; only relevant for PDI pages; only if PDI is available) Option list for PDF_fit_pdi_page(). This
option list will applied to place the page supplied with the pdipage option in the cell. The lower left cor-
ner of the fitbox will be used as the reference point.
Default: fitmethod=meet position=center. This option list is prepended to the user-specified options.1

fittextflow (Option list; only relevant for Textflows) Option list for PDF_fit_textflow(). This option list will be applied
to place the Textflow supplied in the textflow option in the cell. The fitbox will be used as fitbox.
Default: verticalalign=center lastlinedist=descender. This option list will be prepended to the
user-specified option list.

Table 5.15 Formatting options for PDF_add_table_cell()

option description

114 Chapter 5: Text and Table Formatting

C++ Java C# String fit_table(int table, double llx, double lly, double urx, double ury, String optlist)
Perl PHP string fit_table(int table, float llx, float lly, float urx, float ury, string optlist)

C const char *PDF_fit_table(PDF *p,
int table, double llx, double lly, double urx, double ury, const char *optlist)

Fully or partially place a table on the page.

table A valid table handle retrieved with a call to PDF_add_table_cell().

llx, lly, urx, ury Coordinates of the lower left and upper right corners of the target rect-
angle for the table instance (the fitbox) in user coordinates. The corners can also be
specified in reverse order.

fittextline (Option list; only relevant for Textlines) Option list for PDF_fit_textline(). This option list will be applied
to fit the text supplied with the text parameter into the cell. The lower left corner of the fitbox will be
used as the reference point. Options which have not been specified will be replaced with the respective
defaults; the current text state is not taken into account.
Default: fitmethod=nofit position=center. This option list is prepended to the user-specified options.1

graphics (Graphics handle) The graphics associated with the handle will be placed in the fitbox.

image (Image handle) The image or template associated with the handle will be placed in the fitbox.

matchbox (Option list) Option list with matchbox details according to Table 6.4.

path (Path handle) The path object within its bounding box will be placed in the fitbox according to the
fitpath option.

pdipage (Page handle) The imported PDF page associated with the handle will be placed in the fitbox.

text (Content string) Text to be placed with PDF_fit_textline() according to the option fittextline. In PDF_
add_table_cell() the value of this option can alternatively be provided via the function parameter text.

textflow (Textflow handle) The Textflow associated with the handle will be placed in the fitbox. The
continuetextflow option controls the behavior for a Textflow handle which is used in multiple cells. The
Textflow handle must not be used outside the table.

1. The box size is calculated automatically; any boxsize option in the supplied option list will be ignored.

Table 5.17 Options for interactive cell contents for PDF_add_table_cell() and suboptions for the caption option (only in
page scope)

option description

annotation-
type

(String) Specifies the type of an annotation to be inserted in the table cell according to Table 12.2.

fieldname (Hypertext string) Form field name for fieldtype.

fieldtype (String) Specifies the type of a form field to be inserted in the table cell according to Table 12.4. Form field
groups should be defined outside of tables.

fitannotation (Option list) Annotation options for annotationtype according to Table 12.3.

fitfield (Option list) Form field options for fieldtype according to Table 12.5.

Table 5.16 Options for static cell contents in PDF_add_table_cell() and suboptions for the caption option of PDF_fit_
table()

option description

5.3 Table Formatting 115

optlist An option list specifying filling details according to Table 5.18. The following
options can be used:

> General option: errorpolicy (see Table 2.1)
> Fitting options according to Table 6.1: fitmethod, position, showborder
> General table options:

blind, colwidthdefault, horshrinklimit, rewind, rowheightdefault, vertshrinklimit
> Table contents: header, footer
> Table decoration: fill, firstdraw, gstate, round, stroke
> Visualization aids for development and debugging: debugshow, showcells, showgrid
> Option for abbreviated structure element tagging according to Table 14.5 (only al-

lowed in page scope): tag. This option can be used to trigger automatic table tagging
(see PDFlib Tutorial for details).

Returns A string which specifies the reason for returning from the function:
> _stop: all rows in the table have been processed.
> _boxfull: there are still rows to be placed, but not enough space is available in the ta-

ble’s fitbox; another call to PDF_fit_table() is required for processing the remaining
rows.

> _error: an error occurred; call PDF_get_errmsg() to obtain details about the problem
and set debugshow=true to visualize the problem.

> Any other string: the string supplied to the return option in a call to PDF_add_table_
cell().

The error behavior can be changed with the errorpolicy option.

Details Place the table on the page. The table cells must have been filled with prior calls to PDF_
add_table_cell(). If the full table doesn’t fit in the fitbox, the first table instance will be
placed; more table instances can be placed with subsequent calls to this function de-
pending on the return value. The contents of a table cell will be placed in the following
order:

> Filling: the areas specified with the fill option will be filled in the following order:
table, colother, colodd, coleven, col#, collast, rowother, rowodd, roweven, row#, rowlast,
header, footer.

> Matchbox filling: areas which are defined by a matchbox definition.
> Contents: the specified cell contents will be placed in the following order: image,

graphics, imported PDF page, graphics, path objects, Textflow, Textline, annotations,
form fields.

> Matchbox ruling: areas which are defined by a matchbox definition.
> Ruling: the lines specified with the stroke option will be stroked according to the

linecap and linejoin suboptions of the stroke option in the following order: other,
horother, hor#, horlast, vertother, vert#, vertlast, frame (the order of horizontal and ver-
tical lines can be changed with the firstdraw option). Cells which span multiple rows
or columns will not be intersected by strokes. Similarly, lines will not be stroked
around cells with a matchbox which specifies border decoration (unless the match-
box uses the inner cell box). The table border lines vert0, hor0, vertN, and horN will be
suppressed if frame is specified.

> Named matchboxes: these can be filled with other elements like annotations, form
fields, images, graphics etc. outside of the table functions.

Automatic table tagging: the tag option can be used to trigger automatic table tagging
(see PDFlib Tutorial).

116 Chapter 5: Text and Table Formatting

Scope Generally page, pattern, template, glyph; however, if the table contains form fields or
annotations the respective scope of those table contents is dominant. For example, a
table containing form fields or annotations cannot be placed on a template.

PDF/UA If automatic table tagging is active the table decoration (ruling and shading) is automat-
ically tagged as Artifact.

Table 5.18 Options for PDF_fit_table()

option description

blind (Boolean) If true, all calculations will be performed, but no output will be created. The formatting results
can be checked with PDF_info_table(). Default: false

caption (Option list) Create a fit box for a caption relative to the calculated fit box and fill it with various content
types. The following option can be supplied (default: no caption):
fitbox (List of four floats or percentages with absolute or relative coordinates; required) Coordinates

of two diagonal box corners in user coordinates. If a value is a percentage or a relative value it
indicates the offset from the corresponding corner {llx lly urx ury} of the table instance.
Percentages corresponding to llx or urx are percentages of the table instance width,
percentages corresponding to lly or ury are percentages of the table instance height. The
fitbox is not automatically adjusted to the size of its contents. The specified matchbox will
describe the fitbox; this can be used to draw the caption fitbox or to retrieve the matchbox
with PDF_info_matchbox().
Examples for using the fitbox option:
Fit box at the top of the table instance with a height of 20: fitbox={0r 100% 0r 20r}
Fit box to the right of the table instance with width 20 and offset 20% from the bottom:
fitbox={100% 20% 20r 0r}

In addition, the following options are supported:
> Options for static cell contents according to Table 5.16: fitgraphics, fitimage, fitpath, fitpdipage,
fittextflow, fittextline, graphics, image, matchbox, path, pdipage, text, textflow

> Options for interactive cell contents according to Table 5.17 (only in page scope):
annotationtype, fieldname, fieldtype, fitannotation, fitfield

> Option for abbreviated structure element tagging according to Table 14.5: tag. This can be used for in-
serting a parent element of the caption contents, or a grouping element as container for multiple ele-
ments which comprise the caption contents.

colwidth-
default

(Float or keyword; only relevant in the first call to PDF_fit_table()) Default width for columns which do
not contain any Textline or Textflow cells and for which the colwidth option of PDF_add_table_cell()
was not specified. The default width can be specified as an absolute value or as a keyword. The value 0
(zero) is equivalent to the keyword distribute. The following keywords are supported (default: auto):
auto Columns with unspecified width which contain only Textline cells have the width of the text.

The remaining width of the fitbox is distributed among all columns with non-Textline cells
with unspecified width. If such columns are present the table covers the full width of the
fitbox.

distribute The width of the fitbox is distributed among all columns with unspecified width which don’t
contain any Textline cells. If such columns are present the table covers the full width of the
fitbox.

minimum Columns with unspecified width which contain only Textline cells have the width of the text,
i.e. the smallest possible width to hold the text.

In order to create columns with minimal width you can supply a small value (e.g. 1). The width of all col-
umns which contain Textline or Textflow cells will be adjusted automatically (see PDFlib Tutorial).

debugshow (Boolean) If true, all errors for tables which are too high or too wide, or where the cells get too small are
suppressed and logged instead. The resulting table instance is created as a debugging aid although the
table is damaged (i.e. the table may be incomplete or incorrect). Default: false

5.3 Table Formatting 117

fill (List of option lists) This option can be used to fill rows or columns with color (the matchbox option can be
used to fill single cells with color, see Section 6.2, »Matchboxes«, page 129):
area (Keyword) Table area(s) to be filled:

col# column number # in the table
collast last column
coleven all columns with even numbers (according to col in PDF_add_table_cell())
colodd all columns with odd numbers
colother all unspecified columns
row# row number # in the table
rowlast last body row in the table instance
roweven all rows with even numbers (according to row in PDF_add_table_cell())
rowodd all rows with odd numbers
header all rows in the header group
footer all rows in the footer group
rowother all unspecified body rows
table complete table area (i.e. all rows in the table)

The following graphics appearance options according to Table 7.1 can also be used:
fillcolor, shading
Use fillcolor=none to suppress filling in a specified table area.
Examples:
fill all rows in the table with red: fill = { {area=table fillcolor=red} }
fill odd-numbered rows with green and even-numbered rows with red:
fill = { {area=rowodd fillcolor=green} {area=roweven fillcolor=red} }

firstdraw (Keyword) Specifies the order in which horizontal and vertical lines will be created (default: vertlines):
horlines Horizontal lines will be created first.
vertlines Vertical lines will be created first.

footer (Integer) Number of final (footer) rows in the table definition which will be repeated at the bottom of the
table instance. Default: 0 (no footer rows)

gstate (Gstate handle) Handle for a graphics state retrieved with PDF_create_gstate(). All table decorations will
be subject to the supplied graphics state. The cell contents will not be affected. Default: no gstate (i.e. cur-
rent settings will be used).

header (Integer) Number of initial (header) rows in the table definition which will be repeated at the top of the
table instance. Default: 0 (no header rows)

horshrinklimit (Float or percentage) Lower limit for the horizontal shrinking factor which will be used when the table is
shrunk to fit in the table’s fitbox (if a percentage is supplied) or the absolute difference between the table
width and the width of the fitbox (if a float is supplied). Default: 50%

rewind (Integer: -1, 0, or 1) The state of the table is reset to the state before some other call to PDF_fit_table()
with the same table handle and then the table is placed as usual (default: 0):
1 Rewind to the state before the first call to PDF_fit_table().
0 Don’t reset the table.
-1 Rewind to the state before the previous call to PDF_fit_table() (the one before the current

call)

round (Float) If this value is different from 0 the corners of the table rectangle for the fill and stroke options
are rounded with a circular arc with the specified radius. If the radius is negative the arc segments are
swept inwards. Default: 0, i.e. no rounding

Table 5.18 Options for PDF_fit_table()

option description

118 Chapter 5: Text and Table Formatting

rowheight-
default

(Float or keyword; only relevant in the first call to PDF_fit_table()) Default height of rows for which the
rowheight option of PDF_add_table_cell() was not specified. The default height can be specified as an
absolute value or as a keyword. If a float value is specified it is used as default row height unless it is
smaller than the textbox height. The value 0 (zero) is equivalent to the keyword distribute. The
following keywords are supported (default: auto):
auto Rows with unspecified height which contain only Textline cells have a height of two times the

height of the textbox. The remaining height of the fitbox is distributed among all rows with
non-Textline cells with unspecified height. If such rows are present the table covers the full
height of the fitbox.

distribute The height of the fitbox is distributed among all Textline and other rows with unspecified
height. If such rows are present the table covers the full height of the fitbox.

minimum Rows with unspecified height which contain only Textline cells have the height of the textbox,
i.e. the smallest possible height to hold the text. Use the boxsize or margin options to
increase the height of Textline cells.

In order to create rows with minimal height you can supply a small positive value (e.g. 1). The height of
all rows which contain Textline or Textflow cells are adjusted automatically (see PDFlib Tutorial).

showcells (Boolean) If true, the border of each inner cell box will be stroked using the current graphics state. In
page scope and if PDF/A is not active each cell is additionally decorated with an annotation with details
describing the cell contents which may be helpful for analyzing table-related problems. Default: false

showgrid (Boolean) If true, the vertical and horizontal boundary of all columns and rows are stroked. Default:
false

stroke (List of option lists) This option can be used to create stroked lines at the cell borders:
line (Keyword) Table line(s) to be stroked:

vert# vertical line at the right border of column number #; vert0 is the left table border
vertfirst first vertical line (equivalent to vert0)
vertlast last vertical line
vertother all unspecified vertical lines
hor# horizontal line at the bottom of row number # in the table; hor0 is the top border
horfirst first horizontal line in the table instance
horother all unspecified horizontal lines
horlast last horizontal line in the table instance
frame outer border of the table
other all unspecified lines

The following graphics appearance options according to Table 7.1 can also be used:
dasharray, dashphase, linecap, linejoin, linewidth, strokecolor
Use strokecolor=none or linewidth=0 to suppress stroking in a specified table area.
Examples:
stroke all lines with black and linewidth 1: stroke = {line=other}
stroke the outer border lines with linewidth 0.5: stroke = { {line=frame linewidth=0.5} }
stroke the outer border lines with linewidth 0.5, and all other lines with linewidth 0.1:
stroke = { {line=frame linewidth=0.5} {line=other linewidth=0.1} }

vertshrink-
limit

(Float or percentage) The lower limit for the vertical shrinking factor which will be used when the table is
shrunk to fit the table’s fitbox (if a percentage is supplied) or the absolute difference between the height
of the table instance and the height of the fitbox (if a float is supplied). Default: 90%

Table 5.18 Options for PDF_fit_table()

option description

5.3 Table Formatting 119

C++ Java C# double info_table(int table, String keyword)
Perl PHP float info_table(int table, string keyword)

C double PDF_info_table(PDF *p, int table, const char *keyword)

Retrieve table information related to the most recently placed table instance.

table A valid table handle retrieved with a call to PDF_add_table_cell(). The table han-
dle must already have been used in at least one call to PDF_fit_table() since the returned
values are meaningful only after placing a table instance on the page.

keyword A keyword specifying the requested information:
> Keywords for querying the results of object fitting according to Table 6.3:

boundingbox, fitscalex, fitscaley, height, objectheight, objectwidth, width, x1, y1, x2, y2, x3,
y3, x4, y4

> Additional keywords according to Table 5.19:
firstbodyrow, horboxgap, horshrinking, lastbodyrow, returnreason, rowcount, rowsplit,
tableheight, tablewidth, vertboxgap, vertshrinking, xvertline#, yhorline#,

Returns The value of some table parameter as requested by keyword. This function returns cor-
rect geometry information even in blind mode. If the requested keyword produces text,
a string index is returned, and the corresponding string must be retrieved with PDF_
get_string().

Scope any except object

Table 5.19 Keywords for PDF_info_table()

keyword description

firstbodyrow Number of the first body row in the most recently placed table instance

horboxgap Difference between the width of the table instance and the width of the fitbox. If the table had to be
shrunk the value will specify the deviation from the width of the fitbox (i.e. a negative value).

horshrinking Horizontal shrinking factor as a percentage of the calculated table width. If the table had to be shrunk
horizontally the value will specify the shrinking percentage, otherwise it will be 100.

lastbodyrow Number of the last body row in the most recently placed table instance

returnreason String index for the return reason

rowcount Number of rows in the most recently placed table instance (including headers and footers)

rowsplit 1 if the last row had to be split, 0 otherwise

tableheight
tablewidth

Width and height of the entire table

vertboxgap Difference between the height of the most recently generated table instance and the height of the fitbox.
If the table had to be shrunk, the value will specify the deviation from the height of the fitbox (i.e. a neg-
ative value).

vert-
shrinking

Vertical shrinking factor as a percentage of the calculated table height. If the table had to be shrunk ver-
tically the value will specify the shrinking percentage, otherwise it will be 100.

xvertline# x coordinate of the vertical line with number #. xvertline0 is the left table border.

yhorline# y coordinate of the horizontal line with number #. yhorline0 is the top table border.

C++ Java C# void delete_table(int table, String optlist)
Perl PHP delete_table(int table, string optlist)

C void PDF_delete_table(PDF *p, int table, const char *optlist)

Delete a table and all associated data structures.

table A valid table handle retrieved with a call to PDF_add_table_cell().

optlist An option list specifying cleanup options according to Table 5.20.

Details Tables which have not been deleted with this function will be deleted automatically at
the end of the enclosing document scope.

Scope any

Table 5.20 Option for PDF_delete_table()

option description

keephandles (Boolean) If false, all handles supplied to the textflow, image, graphics and pdipage options of PDF_
add_table_cell() will automatically be deleted. Default: false

6.1 Object Fitting 121

6 Object Fitting and Matchboxes

6.1 Object Fitting
PDFlib’s fitting algorithm places a rectangular graphical object relative to a point, a hor-
izontal or vertical line, or a rectangle. The fitting algorithm is implemented in several
functions:

> PDF_fit_textline(), PDF_info_textline()
> PDF_fit_image(), PDF_info_image()
> PDF_fit_graphics(), PDF_info_graphics()
> PDF_fit_pdi_page(), PDF_info_pdi_page()
> PDF_draw_path(), PDF_info_path()
> PDF_add_table_cell() (via option lists for the fitgraphics, fitimage, fitpdipage, fitpath,

fittextline options)
> PDF_fit_table()
> PDF_fill_*block()

Note Since the fitting options for Textflow are slightly different they are not described here, but in
Section 5.2, »Multi-Line Text with Textflows«, page 94.

Table 6.1 lists fitting options which can be supplied to the fitting functions. Not all op-
tions are available for all functions, and the behavior of some options may slightly
change depending on the function; see Table 6.1 for details. The following options form
the group of fitting options:

alignchar, boxsize, dpi, fitmethod, margin, matchbox, minfontsize, orientate, position,
refpoint, rotate, scale, stamp, showborder, shrinklimit

Object box. In all cases the fitting algorithm calculates the smallest enclosing rectan-
gle of the placed object. This rectangle is called the object box. It can be modified accord-
ing to the type of object:

> Textlines (PDF_fit/info_textline(), single-line text Blocks, table cells): The width is the
width of the text string (in horizontal writing mode) or the width of the widest glyph
(in vertical writing mode). The default height of the text box is the capheight of the
selected font. This can be changed with the boxheight suboption of the matchbox op-
tion. Character spacing will not be applied after the last glyph.

> Images and templates (PDF_fit/info_image(), image Blocks, table cells): the suboption
clipping of the matchbox option can be used to define some part of the object as object
box. For TIFF and JPEG images with a clipping path the smallest enclosing rectangle
with edges parallel to the coordinate axes will be used as object box if the suboption
innerbox of the matchbox option is set. If the transform option of PDF_begin_template_
ext() has been supplied, the specified transformation is applied to the template.

> Graphics (PDF_fit/info_graphics()): the suboption clipping of the matchbox option can
be used to define some part of the object as object box. The object box is defined by
the width and height of the SVG graphics or by forcedwidth and forcedheight. If these
values are 0 the following holds: if fitmethod is different from nofit or the fitbox is
not defined, the size of the object box is defined by fallbackwidth and fallbackheight. If
fitmethod=nofit and the fitbox is defined, the size of the object box is defined by the
fitbox.

122 Chapter 6: Object Fitting and Matchboxes

> Imported PDF pages (PDF_fit/info_pdi_page(), PDF Blocks, table cells): the options
used in PDF_open_pdi_page() are honored. If cloneboxes=true the visible box is used
(i.e. the CropBox if present, else the MediaBox). If the transform option of PDF_open_
pdi_page() has been supplied, the specified transformation is applied to the import-
ed page. The suboption clipping of the matchbox option can be used to define some
part of the object as object box.

> Path objects (PDF_draw/info_path(), table cells): the smallest rectangle with edges
parallel to the coordinate axes which encloses the path will be used as object box.
The object box will only be calculated if the boxsize and position options have values
different from zero. The linewidth and miterlimit options will be ignored.

> Table instances (PDF_fit_table()): the smallest rectangle with edges parallel to the co-
ordinate axes which encloses the table instance will be used as object box.

Reference point. The reference point is used as an anchor for placing the object box. It is
defined as follows:

> In PDF_fit_*() and PDF_draw_path(): the x and y function parameters;
> In PDF_info_*(): the point (0, 0); PDF_info_path() additionally supports the refpoint op-

tion for specifying the reference point.
> PDF_add_table_cell(), PDF_fit_table(), and PDF_fill_*block(): the lower left corner of the

table cell, table instance, or PDFlib Block; PDF_fill_*block() additionally supports the
refpoint option for specifying the reference point.

Fitbox and reference line segment. The rectangle in which the object box will be
placed is called the fitbox. It has the reference point (x, y) as its lower left corner and its
size is specified by the two values of the boxsize option:

lower left corner = (x, y)
upper right corner = (x + boxsize[0], y + boxsize[1]) (if topdown=false)
upper right corner = (x + boxsize[0], y - boxsize[1]) (if topdown=true)

In addition to the definition above the fitbox can be modified as follows:
> Textlines: the fitbox can be reduced with the margin option;
> table cells: the fitbox is defined by the inner cell box, i.e. the cell box as modified by

the margin* options;
> table instances: the fitbox is defined by the llx/lly/urx/ury parameters;
> PDFlib Blocks: the fitbox is by default defined by the Block’s Rect property, but it can

be modified with the refpoint and/or boxsize options.

In the last three cases above the fitbox is always available; otherwise it is only available
if the boxsize option was specified with two values different from zero.

If boxsize[0]=0 the box degenerates to a vertical line. The fitting algorithm will place
the object box relative to this line segment. Similarly, if boxsize[1]=0 the box will be
placed relative to the resulting horizontal line segment. The vertical or horizontal line
segment is called the reference line segment.

Placing the object box. The object box can be placed in different ways:
> If no fitbox is available the object will be placed relative to the reference point (not

for table cells, table instances, and PDFlib Blocks): the lower left corner of the object
box will coincide with the reference point. Using the position option other points
within the object box can be selected. For example, position=center places the object

6.1 Object Fitting 123

box’s center point at the reference point.
The option scale will be honored for images, graphics, templates, path objects, and
imported PDF pages; the option dpi will be honored for images. The fitmethod option
will be ignored in this case.
Path objects: if position={0 0} the bounding box will not be calculated and the origin
of the path object will coincide with the reference point.

> Relative to a reference line segment (not for table cells, table instances, and PDFlib
Blocks): this works similarly to placing an object relative to the reference point as de-
scribed above. In addition, the position option also defines a point on the line seg-
ment which will serve as reference point.

> Relative to the fitbox: The fitmethod option specifies whether and how the object box
will be forced to fit into the fit box. If fitmethod=nofit nothing will be done to restrict
the result to the fitbox. Other values of fitmethod define details of the fitting algo-
rithm according to Table 6.2.
In this case the options scale and dpi are ignored, and the options margin, shrinklimit,
and showborder are honored.
The lower left corner of the object box will coincide with the lower left corner of the
fitbox. Using the position option other points within the object box and simultane-
ously the corresponding point within the fitbox can be selected. For example,
position=center places the object box’s center point at the center point of the fitbox.

Table 6.1 Fitting options for various functions

option description

align (List of two floats; only for path objects) The coordinates of a direction vector in user coordinates which
defines the rotation of the path object. The x direction of the path object’s coordinate system will be
aligned with the specified vector. The coordinates must not both be 0. The calculated rotation will be
added to the rotation defined by the orientate option. Default: {1 0}, i.e. no additional rotation

alignchar (Unichar < 0xFFFF or keyword; only for Textlines) If the specified character is found in the text, its lower
left corner will be aligned at the reference point. For horizontal text with orientate=north or south the
first value supplied in the position option defines the position. For horizontal text with orientate=west
or east the second value supplied in the position option defines the position.
If this option is present the formatted text may exceed beyond the fitbox. This option will be ignored if
the specified alignment character is not present in the text. If the specified character cannot be found in
the font or encoding, an exception will be thrown if glyphcheck=error. For other values of glyphcheck
the alignchar option will silently be ignored if the character is not available.
The value 0 and the keyword none suppress alignment characters. The specified fitmethod will be ap-
plied, although the text cannot be placed within the fitbox because of the forced positioning of
alignchar. Default: none

attachment-
point

(String; only for path objects) Name of the attachment point. The path object will be placed so that the
specified attachment point coincides with the reference point. If fitmethod is different from nofit the
object will first be placed in the fitbox according to the specified method. Default: origin of the path ob-
ject

blind (Boolean; see Table 5.12 for Textflow) If true, no output will be generated, but all calculations will be per-
formed and the formatting results can be checked with the appropriate info function PDF_info_*(). De-
fault: false

124 Chapter 6: Object Fitting and Matchboxes

boxsize (List of two floats; not for tables) Width and height of the fitbox, relative to which the object (possibly ro-
tated according to the rotate option) will be placed. The lower left corner of the fitbox coincides with the
reference point (x, y). Placing the object is controlled by the position and fitmethod options. If
width=0, only the height is considered; If height=0, only the width is considered. In these cases the
fitmethod option is ignored and the object will be placed relative to the vertical line from (x, y) to (x,
y+height) (or (x, y-height) for topdown systems), or the horizontal line from (x, y) to (x+width, y),
according to the position option.
Default for Blocks: width and height of the Block’s Rect property
Default for all other fitting functions: {0 0}

dpi (List of two floats or keywords; only for images) One or two values specifying the desired image resolu-
tion in pixels per inch in horizontal and vertical direction. This option does not change the number of pix-
els in the image (downsampling). If a single value is supplied it is used for both dimensions. With the val-
ue zero the image’s internal resolution is used if available, or 72 dpi otherwise. The keyword internal is
equivalent to zero. The scaling resulting from this option is relative to the current user coordinate system;
if the coordinate system has been scaled the resulting physical resolution is different from the supplied
values. The scale option will be applied in addition to the dpi values.
If the fitmethod option has been supplied with one of the keywords auto, meet, slice, or entire, the dpi
values specify only the image’s aspect ratio, but not its absolute size. Default: internal

fitmethod (Keyword; see Table 5.12 for Textflow) Method used to fit the object into the specified fitbox. See Table 6.2
for supported keywords. Keywords other than nofit are ignored if no fitbox has been specified.
Default: clip for Textflow and tables; meet for path objects and reference option; and nofit otherwise

margin (List of floats; only for Textlines) One or two float values describing additional horizontal and vertical re-
ductions of the fitbox. Default: 0

matchbox (Option list; not for path objects; see Table 5.12 for Textflow) Option list for creating a matchbox accord-
ing to Table 6.4

minfontsize (Float or percentage; see Table 5.12 for Textflow) Minimum allowed font size when text is scaled down to
fit into the fitbox with fitmethod=auto when shrinklimit is exceeded. The limit is specified in user coor-
dinates or as a percentage of the height of the fitbox. If the limit is reached the text will be created with
the specified minfontsize as fontsize. Default: 0.1%

orientate (Keyword or float; not for tables; see Table 5.12 for Textflow) Specifies the desired orientation of the object
relative to the current coordinate system. Default: north.
Arbitrary rotation angles (in degrees) can be specified for path objects, but not other object types. The
bounding box of the path object will be calculated after rotating the path object. All functions support
the following keywords (corresponding equivalent angles are shown in parentheses):
north upright (0)
east pointing to the right (270)
south upside down (180)
west pointing to the left (90)

Table 6.1 Fitting options for various functions

option description

6.1 Object Fitting 125

position (List of floats or keywords) One or two values specifying the position of the object box relative to the ref-
erence point, the reference line segment, or the fitbox. The values specify a position within the object
box. This position is defined horizontally as percentage of the box width (first value) and vertically as per-
centage of the box height (second value). This specified position coincides with the reference point, a
point on the reference line segment or a point within the fitbox. Although the values designate percent-
ages, they must be specified without any percent sign. Negative values are allowed. If both values are
equal, it is sufficient to specify a single value.
Default: {0 100} for tables, center for the reference option, otherwise {0 0}. Examples:
{0 0} The lower left corner of the object box coincides with the reference point, the start of the

reference line segment, or the lower left corner of the fitbox.
{100 100} The upper right corner of the object box coincides with the reference point, the end of the

reference line segment, or the upper right corner of the fitbox.
The keywords left, center, right (in x direction) or bottom, center, top (in y direction) can be used as
equivalents for the values 0, 50, and 100. If only one keyword has been specified, the corresponding key-
word for the other direction will be added. Examples:
{left center} or {0 50} left-aligned
{center} or {50 50} centered
{right center} or {100 50} right-aligned
Only for Textlines: the keyword auto can be used for the first value in the list. It indicates right if the
writing direction of the text is from right to left (e.g. for Arabic and Hebrew text), and left otherwise

refpoint (List of floats; only for PDF_fill_*block() and PDF_info_path()) Specifies the reference point in user coordi-
nates for fitting the block contents or path.
Default for PDF_fill_*block(): lower left corner of the rectangle defined by the Block’s Rect property
Default for PDF_info_path(): {0 0}

rotate (Float; not for tables and path objects; see Table 5.12 for Textflow) Rotate the coordinate system, using
the reference point as center and the specified value as rotation angle in degrees. This results in the fitbox
and the object being rotated. The rotation will be reset when the object has been placed. Default: 0
Textline in table cells: if the rotate option was specified with a value different from 0, the table engine
attempts to fit the bounding box of the rotated text into the cell box according to the fitmethod and
position options. If fitmethod is different from auto, the cell will be enlarged appropriately if necessary.

scale (List of floats; not for Textlines; ignored for fitmethod=meet) Scales the object in horizontal and vertical
direction by the specified scaling factors (not percentages), using the reference point as center. If both
factors are equal it is sufficient to specify a single value. Negative values result in mirroring. The absolute
value of this option ignored if the fitmethod option has been supplied with one of the keywords auto,
meet, slice, or entire. Default: {1 1}

showborder (Boolean; see Table 5.12 for Textflow) If true, the border of the fitbox will be stroked using the current
graphics state. If a stamp is created, the bounding box of the stamp will also be stroked. This may be use-
ful for development and debugging. Default: false

Table 6.1 Fitting options for various functions

option description

126 Chapter 6: Object Fitting and Matchboxes

shrinklimit (Float or percentage; only for Textlines) The lower limit of the shrinkage factor which will be applied to fit
text with fitmethod=auto. Default: 0.75

stamp (Keyword; only for Textlines; will be ignored if boxsize is not specified; see Table 5.12 for Textflow) This
option can be used to create a diagonal stamp of maximal size in the rectangle specified with the
boxsize option. More specifically, the text will be placed diagonally in the fitbox. The size of the text box
will be chosen so that it covers the fitbox as much as possible while preserving the aspect ratio of the text
box (i.e. the text comprising the stamp will be as large as possible). The options fontsize, fitmethod,
and position will be ignored. The options orientate=west and =east don’t make any sense (only north
and south). Supported keywords (default: none):
ll2ur The stamp runs diagonally from the lower left corner to the upper right corner.
ul2lr The stamp runs diagonally from the upper left corner to the lower right corner.
none No stamp will be created.

Table 6.1 Fitting options for various functions

option description

6.1 Object Fitting 127

Table 6.2 Keywords for the fitmethod option of various functions; the illustrations demonstrate the typical effect of each
keyword on a Textline, using the same value for the fontsize option in all examples.

keyword description

auto This method tries to fit the object box into the fitbox automatically:
If the object fits into the fitbox the behavior is identical to the nofit
method, i.e. the object is placed without any scaling. If the object is larger
than the fitbox the object is proportionally reduced in size as follows:
> Textlines: a scaling factor is calculated such that the text can be shrunk

horizontally (distorted) to fit into the fitbox. If the calculated factor is
smaller than the shrinklimit option, the meet method is applied by
reducing the fontsize until the text can be fit or the fontsize 0.001 is
reached.

> PDF_fit_table(): If the table box is narrower than the fitbox it is en-
larged to the fitbox width. Otherwise the behavior is identical to the
meet method.

> Other object types: the behavior is identical to the meet method.
In other words, with fitmethod=auto objects may be reduced in size, but never enlarged.

clip Position the object and graphically clip it at the edges of the fitbox.
PDF_fit_table(): the calculated table box will be logically clipped at the
bottom edge of the fitbox and can be continued in the next fitbox. Logical
clipping is similar to PDF_fit_textflow(), but not graphical clipping as in
PDF_fit_image() etc. The table box will be placed inside the fitbox accord-
ing to the position option.

entire Scale the object box such that it entirely covers the fitbox. Generally this
method will distort the object. The position option doesn’t have any ef-
fect.
PDF_fit_table(): similar to clip. If the table box is smaller than the fitbox, the cells of the table box (but
not their contents) will be enlarged uniformly until the table box entirely covers the fitbox.

meet Position the object according to the position option, and scale it such
that it entirely fits into the fitbox while preserving its aspect ratio. Gener-
ally at least two edges of the object box meet the corresponding edges of
the fitbox.
PDF_fit_table(): similar to clip. If the table box is smaller than the fit-
box, the cells of the table box (but not their contents) are enlarged uniformly until the horizontal or ver-
tical table edge meets the fitbox.

nofit Position the object only. The scale option is applied to images and
graphics, for images also the dpi option.
PDF_fit_table(): The table will be calculated for a virtual fitbox with
infinite height. The table box will be placed inside the fitbox according to
the position option. The default sizes of columns and rows relate to the
specified fitbox height. fitmethod=nofit is recommended to format the table in blind mode.

slice Position the object according to the position option, and scale it such
that it entirely covers the fitbox, while preserving the aspect ratio and
making sure that at least one dimension of the object is fully contained in
the fitbox. Generally parts of the object’s other dimension will extend be-
yond the fitbox, and will therefore be clipped.
PDF_fit_table(): similar to clip. If the table box is smaller than the fitbox the cells of the table box (but
not their contents) will be enlarged uniformly until the fitbox is entirely covered by the table box while
preserving its aspect ratio. The table box will be placed inside the fitbox according to the position op-
tion. The parts of the table box which exceed beyond the fitbox will be clipped graphically at the edges of
the fitbox.

Kraxi Systems

Kraxi Systems

Kraxi Systems

Kraxi Sys

Kraxi Systems

Kraxi Systems

Kraxi Systems

Kraxi S

128 Chapter 6: Object Fitting and Matchboxes

Common keywords for querying the results of object fitting. The results of object fit-
ting can be queried without actually placing the object on the page. This can be used to
make formatting decisions before actually creating page content. In order to query for-
matting results the fitting options for an object can be supplied to the respective PDF_
info_*() function. Table 6.3 lists keywords for querying fitting results. The fitting results
for PDF_info_path() are expressed relative to the reference point.

Table 6.3 Common keywords for querying the results of object fitting with PDF_info_image(), PDF_info_graphics(), PDF_
info_path(), PDF_info_pdi_page(), PDF_info_table(), PDF_info_textline()

keyword description

boundingbox Path handle for the object’s bounding box

fitscalex, fitscaley Scaling factors which resulted from fitting the object to a box.

height Object height in user coordinates

objectheight,
objectwidth

Raw size of the object after processing all options relevant for loading or creating the object. This
size will be used by the fitting algorithm.

width Object width in user coordinates

x1, y1, x2, y2,
x3, y3, x4, y4

Position of the i-th rectangle corner (i=1, 2, 3, 4) of the object’s bounding box in user coordinates
according to the supplied options. x1, y1 correspond to the lower left, x2, y2 to the lower right,
x3, y3 to the upper right and x4, y4 to the upper left corner.

6.2 Matchboxes 129

6.2 Matchboxes
Matchboxes are not defined with a dedicated API function, but with the matchbox op-
tion in the formatting function call which creates the corresponding element:

> Textlines with PDF_fit_textline(), PDF_fill_textblock() with textflow=false: the match-
box describes the bounding box of the text line.

> Textflows with PDF_add/create_textflow(), PDF_fit_textflow(), PDF_fill_textblock() with
textflow=true: the matchbox describes the bounding box of the generated text out-
put. Matchbox specifications in PDF_fill_textblock() cannot be used as start for inline
text decorations, but only for creating a matchbox for the whole text.

> imported PDF pages with PDF_fit_pdi_page(), PDF_fill_pdfblock(): the matchbox de-
scribes the bounding box of the placed page.

> images and templates with PDF_fit_image(), PDF_fill_imageblock(): the matchbox de-
scribes the bounding box of the placed image or template.

> graphics with PDF_fit_graphics(): the matchbox describes the bounding box of the
placed graphics.

> table cells: PDF_add_table_cell(): the matchbox describes the bounding box of the ta-
ble cell.

Matchboxes are defined with the matchbox option of these functions and can be used
until the end of the page, pattern, template, or glyph description where the matchbox is
defined. The matchbox option expects an option list which supports the following sub-
options:

> Graphics appearance options according to Table 7.1:
borderwidth, dasharray, dashphase, fillcolor, gstate, linecap, linejoin, shading, strokecolor

> Matchbox controlling options according to Table 6.4;
> Option for abbreviated structure element tagging according to Table 14.5 (only al-

lowed in page scope): tag

A rectangle defined by a matchbox will be filled if the option(s) fillcolor or shading are
specified. The border of a matchbox will be stroked if the option strokecolor is specified
and option borderwidthhas a value > 0.

Details of the rectangle(s) corresponding to a matchbox can be queried with PDF_
info_matchbox().

Note Matchboxes are not supported in blind mode, i.e. formatting with the blind option.

130 Chapter 6: Object Fitting and Matchboxes

Table 6.4 Suboptions for the matchbox option of various functions

option description

boxheight (List with two elements, each being a positive float, a percentage of the fontsize, or a keyword; only for
Textline and Textflow) Vertical extent of the text box. Two values can be specified numerically or via key-
words for the extent above and below the baseline:
none (no extent), xheight, descender, capheight, ascender, fontsize, leading, textrise
With Textflows the values corresponding to the text at the beginning of the matchbox will be used.
Default: {capheight none}

boxwidth (Float or percentage; only for Textflow) Width of the matchbox specified in user coordinates or as a per-
centage of the width of the fitbox. If this option is supplied, horizontal space of the specified width is in-
serted between the matchbox option and the next text fragment or the matchbox end specification. This
may be useful to reserve space for inserting an image, template, or PDF page in the Textflow. Note that
with alignment=justify the box width may be compressed the same way as text (see option shrink-
limit). Default: 0

clipping (Rectangle or 4 percentages; only for images, graphics and imported PDF pages; will be ignored if the
innerbox option has been specified) Coordinates of the lower left and upper right corner of a rectangle
within the image, graphics or page specifying which part should be displayed. The specification depends
on the type of object (default: {0% 0% 100% 100%}):
> For images the clipping rectangle can be specified in pixels or as a percentage of the width/height.
> For graphics the clipping rectangle can be specified in coordinates of the graphics or as a percentage of

the width/height of the graphics’ object box.
> For PDF pages the clipping rectangle can be specified in default units or as a percentage of the width/

height of the page’s crop box.

create-
wrapbox

(Boolean; only for Textflow) If true, the rectangle(s) comprising the matchbox will be inserted as wrap
areas in the Textflow after they have been calculated. The subsequent lines after the lines containing the
matchbox will be wrapped around the rectangle(s). Default: false

doubleadapt If true the start and end point of the second line will be adapted to the first line. Otherwise the second
line will be shorter or longer by the amount of doubleoffset. Default: true

doubleoffset (Float) If different from 0 the lines around the border of the inner matchbox rectangle will be doubled.
The second line has the specified offset from the original line. If the offset is positive the line will be
drawn outside the matchbox rectangle, and inside if the offset is negative. Default: 0 (i.e. single line)

drawleft
drawbottom
drawright
drawtop

(Boolean) If true, the corresponding border of the rectangle will be drawn provided that the
borderwidth is set to a value greater than 0. Default: true

end (Boolean; only for Textflow) Specifies the end of the matchbox. If true, all other suboptions for the cur-
rent matchbox definition will be ignored. Matchboxes in Textflows cannot be nested. The width of a Tex-
tflow matchbox is defined by the option boxwidth (if specified) and the extent of the text enclosed in the
options matchbox and matchbox= end. If the end option has not been specified, the matchbox will end af-
ter the last character in the Textflow.

exceedlimit (Float or percentage; only for Textflow) Upper limit for the part of the matchbox which is allowed to ex-
ceed beyond the bottom or right edge of the fitbox, specified in user coordinates or as a percentage of the
matchbox height. If the specified limit would be exceeded PDF_fit_textflow() will return _boxfull; the
remaining text and the matchbox can be continued in the next fitbox. Default: 0, i.e. the matchbox must
completely fit into the box.

innerbox (Boolean; only for table cells, and TIFF and JPEG images) Table cells: If true, the cell box will be reduced by
the margins defined for the cell; otherwise the full cell box will be used.
TIFF and JPEG images: If true and the image contains a clipping path the bounding box of the clipping
path will be used instead of the full image.
Default: false

6.2 Matchboxes 131

C++ Java C# double info_matchbox(String boxname, int num, String keyword)
Perl PHP float info_matchbox(string boxname, int num, string keyword)

C double PDF_info_matchbox(PDF *p, const char *boxname, int len, int num, const char *keyword)

Query information about a matchbox on the current page.

boxname (Name string) Name of a matchbox which has been created under this name
on the current page. It must have been created with the name suboption of the
matchbox option when the matchbox was defined. Alternatively, the name ’*’ (asterisk
character) can be used to query information about all matchboxes on the page. An emp-
ty boxname can be used to query information about all matchbox rectangles on the cur-
rent page.

len (C language binding only) Length of name in bytes. If len = 0 a null-terminated
string must be provided.

num Positive number of a matchbox or rectangle (the first has number 1).

keyword A keyword specifying the requested information according to Table 6.5.

Returns The value of some matchbox parameter as requested by keyword. If a matchbox with the
specified name or a matchbox rectangle with the specified number does not exist, the
return value is -1 (in PHP: 0) for the keywords boundingbox, name, and rectangle, and 0
for all other keywords. If the requested keyword produces text, a string index is re-
turned, and the corresponding string must be retrieved with PDF_get_string().

margin (Float or percentage) Additional margin for the matchbox rectangle, specified in user coordinates (must
be greater than or equal to 0) or as a percentage of the rectangle width or height (must be less than
100%). This option will be ignored for an edge for which offset* has been supplied. Default: 0

name (Name string) Name of the matchbox. If the name has already been assigned to a matchbox, an addi-
tional rectangle for this matchbox will be created. This means that a matchbox may consist of more than
one rectangle. The name can be used in PDF_info_matchbox(). Various functions support the option
usematchbox to reference one or more rectangles of a matchbox, e.g. to add an annotation with PDF_
create_annotation(). Matchbox names can be used until the end of the current page. The name »*« (as-
terisk character) should not be used as matchbox name. Default: no name

offsetleft
offsetbottom
offsetright
offsettop

(Float or percentage) User-defined offset from the left/right/bottom/top edge of the calculated rectan-
gle and the desired box. The values are specified in user coordinates or as a percentage of the rectangle’s
width (for offsetleft/offsetright) or height (for offsetbottom/offsettop). Negative values are al-
lowed, and can be used to extend the matchbox. Default of offsetleft/offsetbottom: margin; De-
fault of offsetright/offsettop: -margin

openrect (Boolean; only for Textflow and table cells) Textflow: If true and a matchbox rectangle has to be split
(e.g. because of a font change or line break), the right border of the first rectangle and the left border of
the second rectangle will not be drawn. Table cells: If true and a table row is split to the next table in-
stance the bottom border of the first part and the top border of the second part will not be drawn. De-
fault: false

round (Float) Adjacent lines of a matchbox rectangle will be joined with a circular arc with the specified radius
and the line segments as tangents. If the specified radius is negative the arc segments will be swept in-
wards, and the tangents will be perpendicular to the line segments of the box. Default: 0 (no rounding)

Table 6.4 Suboptions for the matchbox option of various functions

option description

132 Chapter 6: Object Fitting and Matchboxes

Depending on the current scope, the function returns information about the match-
boxes on the current page, pattern, template, or glyph description.

Details Named matchboxes within a Textflow can only be queried after calling PDF_fit_
textflow(). Matchboxes created in blind mode cannot be queried.

Rectangles for the keywords boundingbox, exists, height, name, rectangle, width, x1,
y1,...,x4,y4 are selected as follows:

> If boxname contains the name of a matchbox: select the num-th rectangle of the spec-
ified named matchbox on the current page.

> If boxname=*: select the first rectangle of the num-th named matchbox on the cur-
rent page.

> If boxname is empty: select the num-th rectangle created by a named matchbox on
the current page.

Scope any except document and object

Table 6.5 Keywords for PDF_info_matchbox()

keyword description

boundingbox Handle of a path object containing the bounding box of the selected rectangle in the current user coordi-
nate system or -1 (in PHP: 0) if the specified rectangle doesn’t exist. The bounding box is different from
the rectangle if the matchbox was rotated.

count (The num parameter will be ignored)
If boxname contains the name of a matchbox: Number of rectangles for this matchbox
If boxname=*: number of matchboxes with at least one rectangle
If boxname is empty: total number of rectangles created by named matchboxes

exists 1 if the selected rectangle exists, 0 otherwise.

height1

1. This keyword will be ignored if boxname=*

Height of the selected rectangle in user coordinates

name String index for the name of the matchbox for which the selected rectangle was created. The corre-
sponding string can be retrieved via PDF_get_string()

rectangle Handle of the path object containing the selected rectangle in user coordinates or -1 (in PHP: 0) if the
rectangle couldn’t be found

width1 Width of the selected rectangle in user coordinates

x1, y1, ... ,
x4, y41

Position of the i-th corner (i=1, 2, 3, 4) of the selected rectangle in user coordinates. In the coordinate sys-
tem of the respective fit element (image, text, etc.), x1, y1 correspond to the lower left, x2, y2 to the
lower right, x3, y3 to the upper right and x4, y4 to the upper left corner.

7.1 Graphics Appearance Options 133

7 Graphics Functions

7.1 Graphics Appearance Options
Graphics appearance options. The graphics appearance options in Table 7.1 can be
used with the following functions (note that not all functions support all options; see
function descriptions for details):

> PDF_set_graphics_option()
> PDF_create_gstate() (only flatness, linecap, linejoin, linewidth, miterlimit)
> PDF_add_path_point() and PDF_draw_path()
> The fill option of PDF_fit_table() (only fillcolor, shading) and the

stroke option of PDF_fit_table() (only dasharray, dashphase, linecap, linejoin, linewidth,
strokecolor)

> The matchbox option of various functions

Table 7.1 Graphics appearance options

option description

cliprule (Keyword) Clipping rule which determines the interior of areas for clipping; see fillrule for possible key-
words. Default: value of the fillrule option

borderwidth (Float; only for matchboxes) Line width for the rectangle’s border. If you set borderwidth to a value
greater than 0 all rectangle borders will be stroked. To prevent the upper, lower, left, or right border from
being stroked, set the corresponding drawtop, drawbottom, drawleft, or drawright option to false. De-
fault: 0

dasharray (List of two non-negative floats or keyword) List of 2-12 alternating values for the lengths of dashes and
gaps for stroked paths (measured in the user coordinate system). The array values must not be negative.
They will be cyclically reused until the complete path is stroked. The keyword none can be used to create
solid lines. Default: none

dashphase (Float) Distance into the dash pattern at which to start the dash. Default: 0

fillcolor (Color) Fill color of the area. Default: generally {gray 0} (in PDF/A mode: {lab 0 0 0}), but none for
matchboxes

fillrule (Keyword) Fill rule which determines the interior of areas for filling and clipping (default: winding):
winding Use the nonzero winding number rule. For sim-

ple shapes, the result of filling matches intui-
tive expectations. For shapes consisting of mul-
tiple paths the direction of the paths is
relevant.

evenodd Use the even-odd rule, which yields the same
results as winding for simple shapes, but
produces different results for more complex
shapes, especially self-intersecting paths.

flatness (Float > 0) A positive number which describes the maximum distance (in device pixels) between a circular
arc or a curve and an approximation constructed from straight line segments. Default: 1

gstate (Gstate handle) Handle for a graphics state retrieved with PDF_create_gstate(). Default: no graphics
state (i.e. current settings will be used)

134 Chapter 7: Graphics Functions

initgraphics-
state

(Boolean; only for PDF_set_graphics_option()) If true all graphics appearance options are initialized
with the default values. The current clipping path is not affected. If false the current graphics state val-
ues are used. Default: false

linecap (Integer or keyword) Shape at the end of a path (default: projecting in PDF_fit_table(), otherwise
butt):

butt (Equivalent value: 0) Butt end caps: the stroke is squared off at the
endpoint of the path.

round (Equivalent value: 1) Round end caps: a semicircular arc with a
diameter equal to the line width is drawn around the endpoint
and filled in.

projecting (Equivalent value: 2) Projecting square end caps: the stroke extends
beyond the end of the line by a distance which is half the line width
and is squared off.

linejoin (Integer or keyword) Shape at the corners of paths (default: miter):
miter (Equivalent value: 0) Miter joins: the outer edges of the strokes for the two seg-

ments are continued until they meet. If the extension projects too far, as deter-
mined by the miter limit, a bevel join is used instead.

round (Equivalent value: 1) Round joins: a circular arc with a diameter equal to the line
width is drawn around the point where the segments meet and filled in, produc-
ing a rounded corner.

bevel (Equivalent value: 2) Bevel joins: the two path segments are drawn with butt end
caps (see the discussion of linecap), and the resulting notch beyond the ends of
the segments is filled in with a triangle.

linewidth (Float > 0) Line width. Default: 1

miterlimit (Float >= 1) Controls the spike produced by miter joins (default: 10; this cor-
responds to an angle of roughly 11.5 degrees)
If the linejoin style is set to 0 (miter join), two line segments joining at a
small angle will result in a sharp spike. This spike will be replaced by a
straight end (i.e. the miter join will be changed to a bevel join) when the ra-
tio of the miter length and the linewidth exceeds the miter limit.

shading (Option list according to Table 8.4; only for matchboxes and tables) Specify a shading for the matchbox’s
rectangle(s) or table area The following options can be used: antialias, domain, end, endcolor, N, start,
startcolor, type

strokecolor (Color) Stroke color of the path. Default: generally {gray 0} (in PDF/A mode: {lab 0 0 0}), but none for
matchboxes

Table 7.1 Graphics appearance options

option description

Miter
length

Line width

7.1 Graphics Appearance Options 135

C++ Java C# void set_graphics_option(String optlist)
Perl PHP set_graphics_option(string optlist)

C void PDF_set_graphics_option(PDF *p, const char *optlist)

Set one or more graphics appearance options.

optlist An option list specifying graphics appearance options according to Table 7.1.
The following options can be used:

cliprule, dasharray, dashphase, fillcolor, fillrule, flatness, gstate, initgraphicsstate, linecap,
linejoin, linewidth, miterlimit, strokecolor

Details Graphics appearance options set the graphics state for the following groups of func-
tions:

> explicit drawing functions, e.g. PDF_stroke(), PDF_fill()
> implicit drawing functions, e.g. the showborder option of PDF_fit_textline(), PDF_fit_

textflow()
> text output created with simple text output functions if no color has been set with

text options, e.g PDF_show()

All graphics appearance options are reset to their default values at the beginning of a
page, pattern, template, or glyph description, and retain their values until the end of
the current page, pattern, template, or glyph scope. However, the graphics appearance op-
tions can also be reset with the initgraphicsstate option.

A subsequent call to PDF_setcolor() overrides the fillcolor and/or strokecolor values. A
subsequent call to PDF_setlinewidth() overrides the linewidth value.

Scope page, pattern, template, glyph

136 Chapter 7: Graphics Functions

7.2 Graphics State

C++ Java C# void setlinewidth(double width)
Perl PHP setlinewidth(float width)

C void PDF_setlinewidth(PDF *p, double width)

Set the current line width.

width The linewidth in units of the user coordinate system.

Details This function sets the line width in the graphics state (see PDF_set_graphics_option()) as
well as the stroke width in the text state (see PDF_set_text_option()). The width is reset to
the default value of 1 at the beginning of each page.

Scope page, pattern, template, glyph

C++ Java C# void save()
Perl PHP save()

C void PDF_save(PDF *p)

Save the current graphics state to a stack.

Details The graphics state contains options that control all types of graphics objects. Saving the
graphics state is not required by PDF; it is only necessary if the application wishes to re-
turn to some specific graphics state later (e.g. a custom coordinate system) without set-
ting all relevant options explicitly again. The following items are subject to save/re-
store:

> graphics appearance options:
clipping path, coordinate system, current point, flatness tolerance, line cap style,
dash pattern, line join style, line width, miter limit;

> color options: fill and stroke colors;
> graphics options which have been set with explicit graphics states in PDF_set_

gstate();
> text position and the following text appearance options:

charspacing, decorationabove, fakebold, font, fontsize, horizscaling, italicangle, leading,
strokewidth, textrendering, textrise, underlineposition, underlinewidth, wordspacing.

Pairs of PDF_save() and PDF_restore() may be nested. Although the PDF specification
doesn’t limit the nesting level of save/restore pairs, applications should keep the nest-
ing level below 26 in order to avoid printing problems caused by restrictions in the Post-
Script output produced by PDF viewers, and to allow for additional save levels required
by PDFlib internally.

Most text options are affected by save/restore; see list above. The following text
options are not subject to save/restore: fillrule, kerning, underline, overline, strikeout.

Scope page, pattern, template, glyph; must always be paired with a matching PDF_restore() call.
PDF_save() and PDF_restore() calls must be balanced on each page, pattern, template,
and glyph description.

7.2 Graphics State 137

C++ Java C# void restore()
Perl PHP restore()

C void PDF_restore(PDF *p)

Restore the most recently saved graphics state from the stack.

Details The corresponding graphics state must have been saved on the same page, pattern, or
template.

Scope page, pattern, template, glyph; must always be paired with a matching PDF_save() call.
PDF_save() and PDF_restore() calls must be balanced on each page, pattern, template,
and glyph description.

C++ Java C# int create_gstate(String optlist)
Perl PHP int create_gstate(string optlist)

C int PDF_create_gstate(PDF *p, const char *optlist)

Create a graphics state object subject to various options.

optlist An options list with graphics state options:
> Graphics appearance options according to Table 7.1:

flatness, linecap, linejoin, linewidth, miterlimit
> Graphics state options according to Table 7.2:

alphaisshape, blendmode, opacityfill, opacitystroke, overprintfill, overprintmode,
overprintstroke, renderingintent, smoothness, softmask, strokeadjust, textknockout

Returns A graphics state handle that can be used in subsequent calls to PDF_set_gstate() during
the enclosing document scope.

Details The option list may contain any number of graphics state options.

Scope any except object

Table 7.2 Options for PDF_create_gstate()

option description

alphaisshape (Boolean) Sources of alpha are treated as shape (true) or opacity (false). Default: false

blendmode (Keyword; in PDF/X-1/3 and PDF/A-1 only Normal is allowed) Blend mode for transparency opera-
tions (default: None):
Color, ColorDodge, ColorBurn, Darken, Difference, Exclusion, HardLight, Hue, Lighten,
Luminosity, Multiply, None, Normal, Overlay, Saturation, Screen, SoftLight
See PDFlib Tutorial for descriptions of these blend modes and examples for their use.

opacityfill (Float or percentage; in PDF/A-1 and PDF/X-1/3 it must have the value 1) Opacity for fill operations
in the range 0..1. The value 0 means fully transparent; 1 means fully opaque.

opacitystroke (Float or percentage; in PDF/A-1 and PDF/X-1/3 it must have the value 1) Opacity for stroke opera-
tions in the range 0..1. The value 0 means fully transparent; 1 means fully opaque.

overprintfill (Boolean) Overprint behavior for all non-stroking operations including image placement: if
false, painting in any color space erases the corresponding areas of unspecified colorants; if true
and the output device supports overprinting, previous markings in other colorants are left un-
changed. Default: false

138 Chapter 7: Graphics Functions

overprintmode (Integer) Overprint behavior of CMYK component values 0 if overprintfill or overprintstroke
is true. The overprint mode affects only text and vector elements, but not images or shadings. Al-
lowed values (default: 0):
0 (Zero) Each color component replaces previously placed marks (»foreground color

wins«).
1 A color component of 0 leaves the corresponding component of previously painted

color unchanged (»foreground tint value 0 is ignored«). In other words, the value zero
is treated as unspecified.

PDF/A-2/3: overprintmode=1 is not allowed if the current color space is ICC-based CMYK and
overprintfill or overprintstroke is true.

overprintstroke (Boolean) Overprint for stroke operations: if false, painting in any color space erases the corre-
sponding areas of unspecified colorants; if true and the output device supports overprinting, pre-
vious markings in other colorants are left unchanged. Default: false

renderingintent (Keyword) Color rendering intent:
Auto, AbsoluteColorimetric, RelativeColorimetric, Saturation, Perceptual

smoothness (Float) Maximum error of a linear interpolation for a shading; must be >= 0 and <= 1

softmask (Option list or keyword; in PDF/A-1 and PDF/X-3 only none is allowed) Current soft mask with
mask shape or opacity values for transparent imaging. Supported options and keyword (default:
none):

backdropcolor
(List with one, three, or four floats; only for type=luminosity) Color to be used as the
backdrop against which to composite the transparency group template. The color
values are interpreted according to the colorspace suboption of the transparency-
group option used when creating the transparency group template (e.g. 3 for
DeviceRGB). Default: black in the respective colorspace

none (Keyword) No soft mask at all; this is required to disable soft masks which may be in
effect from a previously set graphics state.

template (Template handle; required) Transparency group template which has been created
with PDF_begin_template_ext() and the transparencygroup option. If type=
luminosity the template must have been created with the colorspace suboption
and a value different from none.

type (Keyword; required) Method for deriving mask values from the transparency group
template:
alpha The template’s alpha value defines the mask.
luminosity The template’s color is converted to a luminosity value (perceived gray lev-

el) which defines the mask: light areas of the template are transparent (i.e.
drawn objects are visible); dark areas prevent objects from being visible.

strokeadjust (Boolean) Whether or not to apply automatic stroke adjustment. Default: false

textknockout (Boolean) With respect to compositing, glyphs in a text object will be treated as separate objects
(false) or as a single object (true). Default: true

Table 7.2 Options for PDF_create_gstate()

option description

7.2 Graphics State 139

C++ Java C# void set_gstate(int gstate)
Perl PHP set_gstate(int gstate)

C void PDF_set_gstate(PDF *p, int gstate)

Activate a graphics state object.

gstate A handle for a graphics state object retrieved with PDF_create_gstate().

Details All options contained in the graphics state object will be set. Graphics state options ac-
cumulate when this function is called multiply. Options which are not explicitly set in
the graphics state object will keep their current values. All graphics state options will be
reset to their default values at the beginning of a page.

Scope page, pattern, template, glyph

140 Chapter 7: Graphics Functions

7.3 Coordinate System Transformations
All transformation functions (PDF_translate(), PDF_scale(), PDF_rotate(), PDF_align(),
PDF_skew(), PDF_concat(), PDF_setmatrix(), and the initgraphicsstate option of PDF_set_
graphics_option()) change the coordinate system used for drawing subsequent objects.
They do not affect any existing objects on the page.

C++ Java C# void translate(double tx, double ty)
Perl PHP translate(float tx, float ty)

C void PDF_translate(PDF *p, double tx, double ty)

Translate the origin of the coordinate system.

tx, ty The new origin of the coordinate system is the point (tx, ty), measured in the old
coordinate system.

Scope page, pattern, template, glyph

C++ Java C# void scale(double sx, double sy)
Perl PHP scale(float sx, float sy)

C void PDF_scale(PDF *p, double sx, double sy)

Scale the coordinate system.

sx, sy Scaling factors in x and y direction.

Details This function scales the coordinate system by sx and sy. It may also be used for achiev-
ing a reflection (mirroring) by using a negative scaling factor. One unit in the x direction
in the new coordinate system equals sx units in the x direction in the old coordinate sys-
tem; analogous for y coordinates.

Scope page, pattern, template, glyph

C++ Java C# void rotate(double phi)
Perl PHP rotate(float phi)

C void PDF_rotate(PDF *p, double phi)

Rotate the coordinate system.

phi The rotation angle in degrees.

Details Angles are measured counterclockwise from the positive x axis of the current coordi-
nate system. The new coordinate axes result from rotating the old coordinate axes by
phi degrees.

Scope page, pattern, template, glyph

7.3 Coordinate System Transformations 141

C++ Java C# void align(double dx, double dy)
Perl PHP align(float dx, float dy)

C void PDF_align(PDF *p, double dx, double dy)

Align the coordinate system with a relative vector.

dx, dy Coordinates of a direction vector dx and dy must not both be 0.

Details Rotate the coordinate system such that the x axis of the new coordinate system is
aligned with the vector (dx, dy), and the y axis is aligned with (-dy, dx). This is equivalent
to PDF_rotate() with phi=180° / pi * atan2(dy/dx).

Scope page, pattern, template, glyph

C++ Java C# void skew(double alpha, double beta)
Perl PHP skew(float alpha, float beta)

C void PDF_skew(PDF *p, double alpha, double beta)

Skew the coordinate system.

alpha, beta Skewing angles in x and y direction in degrees.

Details Skewing (or shearing) distorts the coordinate system by the given angles in x and y di-
rection. alpha is measured counterclockwise from the positive x axis of the current coor-
dinate system, beta is measured clockwise from the positive y axis. Both angles must
not be odd multiples of 90˚.

Scope page, pattern, template, glyph

C++ Java C# void concat(double a, double b, double c, double d, double e, double f)
Perl PHP concat(float a, float b, float c, float d, float e, float f)

C void PDF_concat(PDF *p, double a, double b, double c, double d, double e, double f)

Apply a transformation matrix to the current coordinate system.

a, b, c, d, e, f Elements of a transformation matrix. The six values make up a matrix in
the same way as in PDF (see references). In order to avoid degenerate transformations,
a*d must not be equal to b*c.

Details This function allows for the most general form of transformations. Unless you are fa-
miliar with the use of transformation matrices, the use of PDF_translate(), PDF_scale(),
PDF_rotate(), and PDF_skew() is suggested instead of this function. The coordinate sys-
tem is reset to the default coordinate system (i.e. the current transformation matrix is
the identity matrix [1, 0, 0, 1, 0, 0]) at the beginning of each page.

Scope page, pattern, template, glyph

142 Chapter 7: Graphics Functions

C++ Java C# void setmatrix(double a, double b, double c, double d, double e, double f)
Perl PHP setmatrix(float a, float b, float c, float d, float e, float f)

C void PDF_setmatrix(PDF *p, double a, double b, double c, double d, double e, double f)

Explicitly set the current transformation matrix.

a, b, c, d, e, f See PDF_concat().

Details This function is similar to PDF_concat(). However, it disposes of the current transforma-
tion matrix, and replaces it with the new matrix.

Scope page, pattern, template, glyph

7.4 Path Construction 143

7.4 Path Construction
Note Make sure to call one of the functions in Section 7.5, »Painting and Clipping«, page 147, after us-

ing the functions in this section, or the constructed path will have no effect, and subsequent
operations may raise an exception.

PDF/UA Vector graphics must be tagged as Artifact or Figure with a call to PDF_begin_item().

C++ Java C# void moveto(double x, double y)
Perl PHP moveto(float x, float y)

C void PDF_moveto(PDF *p, double x, double y)

Set the current point for graphics output.

x, y The coordinates of the new current point.

Details The current point is set to the default value of undefined at the beginning of each page.
The current points for graphics and the current text position are maintained separately.

Scope page, pattern, template, glyph, path; this function starts path scope.

C++ Java C# void lineto(double x, double y)
Perl PHP lineto(float x, float y)

C void PDF_lineto(PDF *p, double x, double y)

Draw a line from the current point to another point.

x, y The coordinates of the second endpoint of the line.

Details This function adds a straight line from the current point to (x, y) to the current path. The
current point must be set before using this function. The point (x, y) becomes the new
current point.

The line will be centered around the »ideal« line, i.e. half of the linewidth (as deter-
mined by the value of the linewidth option) will be painted on each side of the line con-
necting both endpoints. The behavior at the endpoints is determined by the linecap op-
tion.

Scope path

C++ Java C# void curveto(double x1, double y1, double x2, double y2, double x3, double y3)
Perl PHP curveto(float x1, float y1, float x2, float y2, float x3, float y3)

C void PDF_curveto(PDF *p, double x1, double y1, double x2, double y2, double x3, double y3)

Draw a Bézier curve from the current point, using three more control points.

x1, y1, x2, y2, x3, y3 The coordinates of three control points.

Details A Bézier curve is added to the current path from the current point to (x3, y3), using (x1, y1)
and (x2, y2) as control points. The current point must be set before using this function.
The endpoint of the curve becomes the new current point.

Scope path

144 Chapter 7: Graphics Functions

C++ Java C# void circle(double x, double y, double r)
Perl PHP circle(float x, float y, float r)

C void PDF_circle(PDF *p, double x, double y, double r)

Draw a circle.

x, y The coordinates of the center of the circle.

r The radius of the circle.

Details This function adds a circle to the current path as a complete subpath. The point (x + r, y)
becomes the new current point. The resulting shape will be circular in user coordinates.
If the coordinate system has been scaled differently in x and y directions, the resulting
curve will be elliptical. The circle is created in counterclockwise direction.

Scope page, pattern, template, glyph, path; this function starts path scope.

C++ Java C# void arc(double x, double y, double r, double alpha, double beta)
Perl PHP arc(float x, float y, float r, float alpha, float beta)

C void PDF_arc(PDF *p, double x, double y, double r, double alpha, double beta)

Draw a counterclockwise circular arc segment.

x, y The coordinates of the center of the circular arc segment.

r The radius of the circular arc segment. r must be nonnegative.

alpha, beta The start and end angles of the circular arc segment in degrees.

Details This function adds a counterclockwise circular arc segment to the current path, extend-
ing from alpha to beta degrees. For both PDF_arc() and PDF_arcn(), angles are measured
counterclockwise from the positive x axis of the current coordinate system. If there is a
current point an additional straight line is drawn from the current point to the starting
point of the arc. The endpoint of the arc becomes the new current point.

The arc segment will be circular in user coordinates. If the coordinate system has
been scaled differently in x and y directions the resulting curve will be elliptical.

Scope page, pattern, template, glyph, path; this function starts path scope.

C++ Java C# void arcn(double x, double y, double r, double alpha, double beta)
Perl PHP arcn(float x, float y, float r, float alpha, float beta)

C void PDF_arcn(PDF *p, double x, double y, double r, double alpha, double beta)

Draw a clockwise circular arc segment.

Details Except for the drawing direction, this function behave exactly like PDF_arc(). In particu-
lar, the angles are still measured counterclockwise from the positive x axis.

7.4 Path Construction 145

C++ Java C# void circular_arc(double x1, double y1, double x2, double y2)
Perl PHP circular_arc(float x1, float y1, float x2, float y2)

C void PDF_circular_arc(PDF *p, double x1, double y1, double x2, double y2)

Draw a circular arc segment defined by three points.

x1, y1 The coordinates of an arbitrary point on the circular arc segment.

x2, y2 The coordinates of the end point of the circular arc segment.

Details This function adds a circular arc segment to the current path. The arc segment will start
at the current point, pass through (x1, y1), and end at (x2, y2). The current point must be
set before using this function. The endpoint of the curve becomes the new current
point.

The arc segment will be circular in user coordinates. If the coordinate system has
been scaled differently in x and y directions the resulting curve will be elliptical.

Scope path

C++ Java C# void ellipse(double x, double y, double rx, double ry)
Perl PHP ellipse(float x, float y, double rx, double ry)

C void PDF_ellipse(PDF *p, double x, double y, double rx, double ry)

Draw an ellipse.

x, y The coordinates of the center of the ellipse.

rx, ry The x and y radii of the ellipse.

Details This function adds an ellipse to the current path as a complete subpath. The point
(x + rx, y) becomes the new current point. The ellipse is created in counterclockwise di-
rection.

Scope page, pattern, template, glyph, path; this function starts path scope.

C++ Java C# void elliptical_arc(double x, double y, double rx, double ry, String optlist)
Perl PHP elliptical_arc(float x, float y, double rx, double ry, string optlist)

C void PDF_elliptical_arc(PDF *p, double x, double y, double rx, double ry, const char *optlist)

Draw an elliptical arc segment from the current point.

x, y The coordinates of the end point of the elliptical arc segment.

rx, ry The x and y radii of the ellipse. At least one of these values must be larger than
half the distance between the current point and (x, y).

optlist An option list specifying construction options for the elliptical arc according to
Table 7.3.

Details This function adds an elliptical arc segment to the current path. The arc segment will
start at the current point and end at (x, y). The current point must be set before using
this function. The end point of the arc becomes the new current point. Two of the four
possible arc segments represent an arc segment of ³ 180˚ (the small arc segments), while
the other two represent an arc segment of ¹ 180˚ (the large arc segments).

146 Chapter 7: Graphics Functions

Scope page, pattern, template, glyph, path; this function starts path scope.

C++ Java C# void rect(double x, double y, double width, double height)
Perl PHP rect(float x, float y, float width, float height)

C void PDF_rect(PDF *p, double x, double y, double width, double height)

Draw a rectangle.

x, y The coordinates of the lower left corner of the rectangle.

width, height The size of the rectangle.

Details This function adds a rectangle to the current path as a complete subpath. Setting the
current point is not required before using this function. The point (x, y) becomes the
new current point. The lines are centered around the »ideal« line, i.e. half of the line-
width (as determined by the value of the linewidth option) is painted on each side of the
line connecting the respective endpoints. The rectangle is created in counterclockwise
orientation. This function implicitly closes the path.

Scope page, pattern, template, glyph, path; this function starts path scope.

C++ Java C# void closepath()
Perl PHP closepath()

C void PDF_closepath(PDF *p)

Close the current path.

Details This function closes the current subpath, i.e. adds a line from the current point to the
starting point of the subpath.

Scope path

Table 7.3 Options for PDF_elliptical_arc()

option description

clockwise (Boolean) If true one of the clockwise arc segments will be created; otherwise one of the counterclock-
wise arc segments will be created. Default: false

largearc (Boolean) If true one of the large arc segments will be created; otherwise one of the small arc segments
will be created. Default: false

rectify (Boolean) If true radii which are too small will be modified so that the elliptical arc can be constructed;
otherwise an exception will be thrown. Default: false

xrotate (Float) Rotation angle for the ellipse, i.e. the angle of the ellipse x axis relative to the current coordinate
system x axis in degrees. The start and end point of the arc segment remain fixed. Default: 0

7.5 Painting and Clipping 147

7.5 Painting and Clipping
Note Most functions in this section clear the path, and leave the current point undefined. Subse-

quent drawing operations must therefore explicitly set the current point (e.g. using PDF_
moveto()) after one of these functions has been called.

C++ Java C# void stroke()
Perl PHP stroke()

C void PDF_stroke(PDF *p)

Stroke the path with the current line width and current stroke color, and clear it.

Scope path; this function terminates path scope.

C++ Java C# void closepath_stroke()
Perl PHP closepath_stroke()

C void PDF_closepath_stroke(PDF *p)

Close the path, and stroke it.

Details This function closes the current subpath (adds a straight line segment from the current
point to the starting point of the path), and strokes the complete current path with the
current line width and the current stroke color.

Scope path; this function terminates path scope.

C++ Java C# void fill()
Perl PHP fill()

C void PDF_fill(PDF *p)

Fill the interior of the path with the current fill color.

Details This function fills the interior of the current path with the current fill color. The interior
of the path is determined by one of two algorithms (see the fillrule option). Open paths
are implicitly closed before being filled.

Scope path; this function terminates path scope.

C++ Java C# void fill_stroke()
Perl PHP fill_stroke()

C void PDF_fill_stroke(PDF *p)

Fill and stroke the path with the current fill and stroke color.

Scope path; this function terminates path scope.

148 Chapter 7: Graphics Functions

C++ Java C# void closepath_fill_stroke()
Perl PHP closepath_fill_stroke()

C void PDF_closepath_fill_stroke(PDF *p)

Close the path, fill, and stroke it.

Details This function closes the current subpath (adds a straight line segment from the current
point to the starting point of the path), and fills and strokes the complete current path.

Scope path; this function terminates path scope.

C++ Java C# void clip()
Perl PHP clip()

C void PDF_clip(PDF *p)

Use the current path as clipping path, and terminate the path.

Details This function uses the intersection of the current path and the current clipping path as
the clipping path for subsequent operations. The clipping path is set to the default val-
ue of the page size at the beginning of each page. The clipping path is subject to PDF_
save()/PDF_restore(). It can only be enlarged by means of PDF_save()/PDF_restore(). The
clipping area is determined according to the algorithm selected with the cliprule option.

Scope path; this function terminates path scope.

C++ Java C# void endpath()
Perl PHP endpath()

C void PDF_endpath(PDF *p)

End the current path without filling or stroking it.

Details This function doesn’t have any visible effect on the page. It generates an invisible path
on the page.

Scope path; this function terminates path scope.

7.6 Path Objects 149

7.6 Path Objects

C++ Java C# int add_path_point(int path, double x, double y, String type, String optlist)
Perl PHP int add_path_point(int path, float x, float y, string type, string optlist)

C int PDF_add_path_point(PDF *p, int path, double x, double y, const char *type, const char *optlist)

Add a point or path to a new or existing path object.

path A valid path handle returned by another call to PDF_add_path_point() or -1 (in
PHP: 0) to create a new path.

x, y Coordinates of the new current point. If polar=false the two numbers designate
the cartesian coordinates (x, y) of the point. If polar=true the two numbers designate the
radius r and angle phi (in degrees or radians depending on the option radians) of the
point. This point will become the new current point for type=circle, circular, elliptical,
ellipse, move, line, curve, rect.

type Specifies the type of the point according to Table 7.4.

Table 7.4 Types of points for PDF_add_path_point()

type description

addpath Add the path definition specified in the svgpath option as a complete subpath, using (x, y) as origin.

circle Add a circle to the path as a complete subpath, using (x, y) as the center and radius for the size.1

1. A new point with type=move and the same coordinates and graphics appearance options is created automatically after the path.

circular Add a circular arc from the current point to (x, y) with the previously defined control point as third cir-
cular arc point which is required. If the new point is identical with the current point a circle with diameter
between the current point and the control point will be created.2

2. Graphics appearance options and path operation options are not allowed for these types.

control Control point for a Bézier curve or a circular arc.2

curve Add a Bézier curve from the current point to the new point with the previously defined control points. At
least one control point must be provided. If only one control point is available, it will be used as the sec-
ond control point for the curve, and the first control point will be constructed as the reflection of the sec-
ond control point at the endpoint of the previous Bézier curve.2

ellipse Add an ellipse to the path as a complete subpath, using (x, y) as the center and the values in the radius
option for the size.1 The ellipse can be rotated with the xrotate option.

elliptical Add an elliptical arc from the current point to (x, y). The size and orientation of the ellipse are defined
by the radius, xrotate, largearc, and clockwise options. If only a single value is provided as radius a
circular arc will be created. In this case an appropriate circular arc point will be created automatically. If
two values are provided in the radius option a set of Bézier curves will be created.2

line Add a line segment from the current point to (x, y).2

move Start a new subpath. Subpaths will be numbered consecutively (1, 2, ...). The first subpath starts at the or-
igin.

pathref Add a reference to the path specified in the path option as a complete subpath, using (x, y) as origin.
Since the path is referenced (and not copied) subsequent changes to path will be reflected when drawing
the path.

rect Add a rectangle to the path as a complete subpath, using (x, y) as the center of the rectangle and width
and height for the size.1 The corners of the rectangle can be rounded with the round option. Alternative-
ly, the corners can be rounded with elliptical arcs with the radius option.

150 Chapter 7: Graphics Functions

optlist An option list specifying path construction options:
> Path calculation and naming options for a point according to Table 7.5:

name, polar, radians, relative
> Path operation options according to Table 7.5:

close, fill, round, stroke
> Options for adding path definitions according to Table 7.5:

path, svgpath
> Options for constructing path elements according to Table 7.5:

clockwise, height, largearc, radius, rectify, width, xrotate
> Graphics appearance options according to Table 7.1 (only for type=addpath, circle,

ellipse, move, rect, or pathref):
dasharray, dashphase, fillcolor, fillrule, flatness, gstate, linecap, linejoin, linewidth,
miterlimit, strokecolor

Returns A path handle which can be used until it is deleted with PDF_delete_path().

Details A path object serves as a container for vector graphics. The path object can be populated
with paths and subpaths incrementally, where new path elements can be created by
specifying individual path nodes or by adding path definitions specified via a path han-
dle or an SVG path description. The generated path can later be used with PDF_draw_
path() and other functions.

A path object can hold any number of paths. Each path in turn may contain one or
more subpaths which can be selected for drawing in the subpaths option of PDF_draw_
path(). All paths will be closed, filled, stroked, and rounded separately according to the
specified options.

An operation with any of the types addpath, circle, ellipse, move, rect, or pathref starts a
new subpath. Graphics appearance options and path operation options (e.g. stroke, fill)
can only be changed for type=addpath, circle, ellipse, move, rect, or pathref. In this situation
a new path within the path object will be started automatically. Shapes of type circle,
ellipse, elliptical, and rect are created in counterclockwise direction by default, but this
can be changed with the option clockwise.

Scope any

Table 7.5 Options for PDF_add_path_point()

option description

clockwise (Boolean; only for type=circle, ellipse, elliptical, rect) If true the shape is created in clockwise
direction, otherwise counterclockwise. Default: false

close (Boolean; only for type=move) If true, the subpath will be closed with a straight line. Default: see foot-
note1

fill (Boolean; only for type=move) If true the subpath will be closed and filled. Default: see footnote1

height (Float; only for type=rect; required in this case) Height of the rectangle

largearc (Boolean; only for type=elliptical) If true one of the large elliptical arc segments will be created; oth-
erwise one of the small elliptical arc segments will be created. Default: false

name (String) Name of the point. Default: p<i> (e.g. p1) where i is the consecutive number of supplied points.

path (Path handle; only for type=pathref) The specified path will be added to the current path by reference.
The coordinates of the added path refer to the current point as origin. Graphics appearance options and
the name option will be ignored.

7.6 Path Objects 151

C++ Java C# void draw_path(int path, double x, double y, String optlist)
Perl PHP draw_path(int path, float x, float y, string optlist)

C void PDF_draw_path(PDF *p, int path, double x, double y, const char *optlist)

Draw a path object.

path A valid path handle returned by a call to PDF_add_path_point() or another func-
tion which returns a path handle (e.g. PDF_info_image() with the boundingbox keyword).

x, y Coordinates of the reference point in user coordinates. The reference point is used
by various options, and specifies the position of the origin of the path object in the cur-
rent user system. This implies a translation of the path object.

polar (Boolean) If true, the (x, y) parameters are polar coordinates specifying radius r and angle phi, other-
wise Cartesian coordinates specifying x and y values. Default:false

radians (Boolean) If true, angles for polar coordinates are specified in radians, otherwise in degrees. Default:
false

radius (One or two floats; required for type=circle, ellipse and elliptical; also allowed for type=rect)
The first value specifies the radius of the circle or the x radius of the ellipse. The second float value, if pres-
ent, specifies the y radius of the ellipse. The first value will be used as default for the second value.
For type=rect the values specify the x and y radii of the elliptical arcs in the rectangle corners. The ellipti-
cal arcs will be created immediately. Default: 0

rectify (Boolean; only for type=ellipse and elliptical) If true radii which are too small will be modified so
that the elliptical arc can be constructed; otherwise an exception will be thrown. Default: false

relative (Boolean) If true, (x, y) are relative to the current point, otherwise to the current origin. Default: see
footnote1

round (Float; only for type=move and rect) Adjacent line vertices in the subpath will be rounded in their join-
ing point by a circular arc with the line segments as its tangents and with the specified radius. If the radi-
us is negative the arc will be grooved so that the corners are circularly grooved. If close=true and no line
from the last to the first point was explicitly specified, the first line and the closing line will also be round-
ed. If round=0 no rounding will be done. The circular arcs will be created when the path is drawn. Default:
see footnote1

stroke (Boolean; only for type=move) If true the subpath will be stroked. Default: see footnote1

svgpath (String; only for type=addpath) String containing a path description in SVG syntax according to
www.w3.org/TR/SVG11/paths.html#PathData. The specified path will be added to the current path. The
coordinates of the specified SVG path refer to the current point as origin. Graphics appearance options
can be specified for the SVG path. The option rectify is taken into account for the inserted SVG path. If
the path stems from an SVG file with a topdown coordinate system it must be mirrored (even if PDFlib
operates in topdown mode). This can be achieved with the option scale={1 -1} in PDF_draw_path()

width (Float; only for type=rect; required in this case) Width of the rectangle

xrotate (Float; only for type=ellipse and elliptical) Rotation angle for the ellipse in current units (see option
radians), i.e. the angle of the ellipse x axis relative to the current coordinate system x axis in degrees.
The start and end point of the arc segment remain fixed. This option will be ignored if only a single value
was supplied as radius. Default: 0

1. The default is specified in PDF_draw_path(), PDF_info_path(), the textpath option of PDF_fit_textline(), the wrap option of PDF_
fit_textflow(), or the fitpath option of PDF_add_table_cell().

Table 7.5 Options for PDF_add_path_point()

option description

152 Chapter 7: Graphics Functions

If the boxsize option is specified, (x, y) is the lower left corner of the fitbox (see Table
6.1) into which the path object will be fit.

optlist An option list specifying path drawing options:
> Fitting options according to Table 6.1:

align, attachmentpoint, boxsize, fitmethod, orientate, position, scale
> Path operation and subpath selection options according to Table 7.6:

clip, close, fill, round, stroke, subpaths
> Options for modifying the bounding box according to Table 7.6:

bboxexpand, boundingbox
> Graphics appearance options for the fill and stroke options according to Table 7.1:

dasharray, dashphase, fillcolor, flatness, gstate, linecap, linejoin, linewidth, miterlimit,
strokecolor

> Graphics appearance options according to Table 7.1 for the clip option according to
Table 7.1: cliprule, fillrule

> Option for abbreviated structure element tagging according to Table 14.5 (only al-
lowed in page scope): tag

Details The path(s) will be placed at the reference point (x, y) and then be stroked, filled, or used
as a clipping path according to the specified options. This function does not modify the
current graphics state unless the clip option is used. The appearance and operation op-
tions override the default settings, but they do not override any appearance option
which may have been specified for a subpath in PDF_add_path_point().

PDF/UA All path objects must be tagged as Artifact or Figure, either with the tag option or with a
preceding call to PDF_begin_item().

Scope page, pattern, template, glyph

Table 7.6 Path operation options for PDF_draw_path() for controlling all subpaths in a path object

option description

bboxexpand (List of floats; will be ignored if the boundingbox option is specified) One or two floats which indicate the
expansion of the automatically calculated bounding box (the smallest enclosing rectangle of the path
object). Default: {0 0}

bounding-
box

(Rectangle) A rectangle in the coordinate system of the path object which will be used as bounding box
for fitting the path object into the fitbox. Default: the smallest enclosing rectangle of the path object,
possibly expanded according to the bboxexpand option

clip (Boolean) If true the path will be closed and used as clipping path. Default: false

close (Boolean) If true, each subpath will be closed with a straight line. Default: the value specified when the
path was constructed, or false if no value was specified

fill (Boolean; overrides clip) If true each path will be filled. Default: the value specified when the path was
constructed, or false if no value was specified

round (Float) For each subpath, adjacent line vertices will be rounded in their joining point by a circular arc
with the line segments as its tangents and with the specified radius. If the radius is negative the arc will
be grooved so that the corners are circular grooved. If close=true and no line from the last to the first
point was explicitly specified, the first line and the closing line will also be rounded. If round=0 no round-
ing will be done. Default: the value specified when the path was constructed, or 0 if no value was speci-
fied

stroke (Boolean; overrides clip) If true the path will be stroked. Default: false

7.6 Path Objects 153

C++ Java C# double info_path(int path, String keyword, String optlist)
Perl PHP float info_path(int path, string keyword, string optlist)

C double PDF_info_path(PDF *p, int path, const char *keyword, const char *optlist)

Query the results of drawing a path object without actually drawing it.

path A valid path handle returned by a call to PDF_add_path_point() or another func-
tion which returns a path handle (e.g. PDF_info_image() with the boundingbox keyword).

keyword A keyword specifying the requested information:
> Keywords for querying the results of object fitting according to Table 6.3:

boundingbox, fitscalex, fitscaley, height, objectheight, objectwidth, width, x1, y1, x2, y2, x3,
y3, x4, y4

> Additional keywords according to Table 7.7:
bboxwidth, bboxheight, numpoints, pathlength, px, py

optlist An option list specifying path drawing options:
> All options of PDF_draw_path() according to Table 7.6
> Additional fitting option according to Table 6.1: refpoint
> Additional option according to Table 7.8:name

Returns The value of some path property as requested by keyword.

Details This function performs the same calculations as PDF_draw_path(), but does not create
any visible output on the page.

subpaths (List of integers or single keyword) List with the numbers of subpaths to be drawn; the first subpath has
number 1. The keyword all specifies all subpaths. Default: all

Table 7.7 Keywords for PDF_info_path()

keyword description

bboxwidth,
bboxheight

Width and height of the bounding box for the path

numpoints Number of supplied points. The option subpaths will be ignored.

px, py The x or y coordinate (in the user coordinate system) of the path point specified in the name op-
tion. The option subpaths will be ignored.

pathlength Length of the path contour.

type Numerical indicator of the type of a point which has been specified with the option name. Path
components of type elliptical, circle, and ellipse are already converted to Bézier curves,
type rect is converted to lines:
0 move
1 line
2 control
3 curve
4 circular

Table 7.6 Path operation options for PDF_draw_path() for controlling all subpaths in a path object

option description

154 Chapter 7: Graphics Functions

Scope any

C++ Java C# void delete_path(int path)
Perl PHP delete_path(int path)

C void PDF_delete_path(PDF *p, int path)

Delete a path object.

path A valid path handle returned by a call to PDF_add_path_point() or another func-
tion which returns a path handle (e.g. PDF_info_image() with the boundingbox keyword).

Details Delete the path object and all associated internal data structures. Note that path objects
will not automatically be deleted in PDF_end_document().

Scope any

Table 7.8 Options for PDF_info_path()

option description

name Name of a path point for the keys px or py. A default name (e.g. p1) can be used even if an explicit name
has been specified in PDF_add_path_point().

8.1 Setting Color 155

8 Color Functions

8.1 Setting Color
Fill and stroke colors can be set with PDF_setcolor() as well as with the options fillcolor,
strokecolor and others. Using options is recommended because this method is more gen-
eral. Section 1.1.4, »Color Data Type«, page 13, contains a discussion of color options.

C++ Java C# void setcolor(String fstype, String colorspace, double c1, double c2, double c3, double c4)
Perl PHP setcolor(string fstype, string colorspace, float c1, float c2, float c3, float c4)

C void PDF_setcolor(PDF *p,
const char *fstype, const char *colorspace, double c1, double c2, double c3, double c4)

Set the current color space and color for the graphics and text state.

fstype One of fill, stroke, or fillstroke to specify that the color is set for filling, stroking,
or both.

colorspace Specifies the color space to be used for the supplied color values or an RGB
color value which is specified by name or hexadecimal values:

> First form: one of gray, rgb, cmyk, spot, devicen, pattern, iccbasedgray, iccbasedrgb,
iccbasedcmyk, or lab to specify the color space.

> Second form: an RGB color name (e.g. pink) or a hash character followed by six hexa-
decimal digits (e.g. #FFC0CB). The parameters c1, c2, c3, and c4 are ignored in this case.

c1, c2, c3, c4 Color components for the chosen color space. The interpretation of these
values depends on the colorspace parameter (see PDFlib Tutorial for a full discussion of
color spaces and values):

> gray: c1 specifies a gray value;
> rgb: c1, c2, c3 specify red, green, and blue values.
> cmyk: c1, c2, c3, c4 specify cyan, magenta, yellow, and black values;
> iccbasedgray: c1 specifies a gray value;
> iccbasedrgb: c1, c2, c3 specify red, green, and blue values;
> iccbasedcmyk: c1, c2, c3, c4 specify cyan, magenta, yellow, and black values;
> spot: c1 specifies a spot color handle returned by PDF_makespotcolor(), and c2 specifies

a tint value between 0 and 1;
> devicen: c1 specifies a DeviceN color space handle returned by PDF_create_devicen();

c2, c3, and c4 specify up to three tint values between 0 and 1. DeviceN colors with N>3
cannot be specified with this function.

> lab: c1, c2, and c3 specify color values in the CIE L*a*b* color space. c1 specifies the L*
(luminance) value in the range 0 to 100, and c2, c3 specify the a*, b* (chrominance)
values in the range -128 to 127.

> pattern: c1 specifies a tiling pattern handle returned by PDF_begin_pattern_ext() or a
shading pattern handle returned by PDF_shading_pattern(). If a tiling pattern has
been created with the option painttype=uncolored in PDF_begin_pattern_ext(), the cur-
rent fill or stroke color is applied when the pattern is used for filling or stroking. In
this situation the current color space must not be another pattern color space.

156 Chapter 8: Color Functions

Details All color values for the gray, rgb, and cmyk color spaces and the tint value for the spot col-
or space must be numbers in the inclusive range 0–1. Unused parameters should be set
to 0. More information about color spaces and color values can be found in the PDFlib
Tutorial.

The fill and stroke color values for the gray, rgb, and cmyk color spaces are set to a de-
fault value of black at the beginning of each page. There are no defaults for spot and pat-
tern colors.

If the iccbasedgray/rgb/cmyk color spaces are used, a suitable ICC profile must have
been set before using one of the iccprofilegray/rgb/cmyk options.

This function is equivalent to PDF_set_text_option() and PDF_set_graphics_option()
with the fillcolor and/or strokecolor options. PDF_setcolor() overrides the values of these
options.

Colors in an iccbased color space and DeviceN colors with N>3 cannot be specified
with this function, but only with color options.

PDF/A colorspace=gray requires an output intent (any type) or the defaultgray option.
colorspace=rgb requires an RGB output intent or the defaultrgb option.
colorspace=cmyk requires a CMYK output intent or the defaultcmyk option.

PDF/X PDF/X-1a: colorspace=rgb, iccbasedgray/rgb/cmyk, and lab are not allowed.
PDF/X-3: Using iccbasedgray/rgb/cmyk and lab color requires an ICC profile in the out-

put intent (a standard name is not sufficient in this case).
PDF/X-3/4/5p/5pg: colorspace=gray requires a grayscale or CMYK device output intent

or the defaultgray option.
colorspace=rgb requires an RGB output intent or the defaultrgb option
colorspace=cmyk requires a CMYK output intent or the defaultcmyk option.

PDF/X-5n: colorspace=gray can only be used if the output intent contains the colorant
Black or the defaultgray option has been set.

colorspace=rgb can only be used if the defaultrgb option has been set.
colorspace=cmyk can only be used if the output intent contains all of the colorants

Cyan, Magenta, Yellow and Black or the defaultcmyk option has been set.

PDF/UA Information should not be conveyed by color or contrast alone.

Scope page, pattern (only if painttype=colored), template, glyph (only if the Type 3 font’s colorized
option is true), document; a pattern color can not be used within its own definition. Set-
ting the color in document scope may be useful for defining spot colors with PDF_
makespotcolor().

8.2 ICC Profiles 157

8.2 ICC Profiles

C++ Java C# int load_iccprofile(String profilename, String optlist)
Perl PHP int load_iccprofile(string profilename, string optlist)

C int PDF_load_iccprofile(PDF *p, const char *profilename, int len, const char *optlist)

Search for an ICC profile and prepare it for later use.

profilename (Name string) The name of an ICCProfile resource, or a disk-based or virtu-
al file name.

len (C language binding only) Length of profilename (in bytes). If len = 0 a null-termi-
nated string must be provided.

optlist An option list describing aspects of profile handling:
> General option: errorpolicy (see Table 2.1)
> Profile handling options according to Table 8.1:

description, embedprofile, metadata, urls, usage

Returns A profile handle which can be used in subsequent calls to PDF_load_image() or for set-
ting profile-related options. If errorpolicy=return the caller must check for a return value
of -1 (in PHP: 0) since it signals an error. The returned profile handle can not be reused
across multiple PDF documents. Depending on the intended use, the loaded profile

Table 8.1 Options for PDF_load_iccprofile()

option description

description (String; only for usage=outputintent and non-standard output conditions) Human-readable description
of the ICC profile which will be used along with the output intent.

embedprofile (Only relevant for usage=outputintent) Control embedding or attaching of the output intent ICC pro-
file:
PDF/X-1a/3: If true, embed the ICC profile even if a standard output intent for PDF/X-1a/3 has been sup-
plied as profilename. Default: false
PDF/X-5n: if true, attach the ICC profile to the document as embedded file stream. Default: true
PDF 2.0: If true, embed the ICC profile; otherwise an external reference is created. Default: true
PDF/X-4p, PDF/X-5pg: the option is forced to false, i.e. the profile is referenced externally.
All other cases including PDF/X-4 and PDF/X-5g: the option is forced to true, i.e. the profile is embedded.

metadata (Option list; deprecated; ignored for usage=outputintent in PDF/X-4p and PDF/X-5pg/5n) Supply meta-
data for the profile (see Section 14.2, »XMP Metadata«, page 263)

urls (List of one or more strings; only for PDF/X-4p, PDF/X-5pg and PDF/X-5n, and required in these cases
except for PDF/X-5n with embedprofile=true) A list of URLs which indicate where a referenced output
intent ICC profile can be obtained. Sender and receiver should arrange reasonable URL entries. The strings
can freely be chosen, but must contain valid URL syntax.

usage (Keyword) Intended use of the ICC profile. Supported keywords (default: iccbased):
iccbased The ICC profile can be used as ICC-based color space for text or graphics, applied to an image,

used as default color space or as blending color space for a transparency group.
outputintent

The ICC profile specifies a PDF/A or PDF/X output intent.

158 Chapter 8: Color Functions

must adhere to certain requirements (see PDFlib Tutorial for details). If the function call
fails you can request the reason of the failure with PDF_get_errmsg().

Details The named profile is searched according to the profile search strategy. Depending on
the intended usage ICC profiles must satisfy the conditions listed in the PDFlib Tutorial.
The sRGB profile is always available internally and doesn’t have to be configured.

PDF/A The output intent can be set using this function or by copying an imported document’s
output intent using PDF_process_pdi(). If only device-independent colors are used in the
document no output intent is required.

PDF/X The output intent must be set either using this function or by copying an imported doc-
ument’s output intent using PDF_process_pdi().

PDF/X-1/3: the name of a standard output intent can be used without a corresponding ICC
profile, but this is deprecated.
PDF/X-4: an output intent profile must be available when generating the PDF and will
be embedded.

PDF/X-4/5: a CMYK output intent profile (i.e. loaded with usage=outputintent) cannot
be used for an ICCBased color space (i.e. loaded with usage=iccbased) in the same docu-
ment. This requirement is mandated by the PDF/X standard, and applies only to CMYK
profiles, but not to grayscale or RGB profiles. If you have a requirement to use the same
CMYK ICC profile as in the output intent also as ICCBased color (e.g. for tagging an im-
age), you can simply omit the ICC profile since PDF/X implies that the output intent
profile will be used anyway.

PDF/X-4p/5pg/5n: The profile is not embedded, but a reference to an external profile
is created. The profile must be available when generating the PDF, and it must also be
available to the PDF consumer when viewing or printing the document.

PDF/X-5n: an n-colorant ICC profile (also called xCLR profile) must be supplied for
usage=outputintent. The externally referenced output intent ICC profile can optionally
be included in the document as attachment subject to the embedprofile option.

Scope If usage=outputintent the only allowed scope is document; the output intent should be
set immediately after PDF_begin_document().

If usage=iccbased the following scopes are allowed: document, page, pattern, template,
glyph.

8.3 Spot Colors 159

8.3 Spot Colors

C++ Java C# int makespotcolor(String spotname)
Perl PHP int makespotcolor(string spotname)

C int PDF_makespotcolor(PDF *p, const char *spotname, int reserved)

Find a built-in spot color name, or make a named spot color from the current fill color.

spotname The name of a built-in spot color, or an arbitrary name for a custom spot
color to be defined. This name is restricted to a maximum of 63 Unicode characters.

The special spot color name All can be used to apply color to all color separations,
which may be useful for painting registration marks. The spot color name None produc-
es no visible output on any color separation. The colorant names Cyan, Magenta, Yellow
and Black always refer to CMYK process colors.

reserved (C language binding only) Reserved, must be 0.

Returns A spot color handle which can be used in subsequent calls to PDF_setcolor() or the
fillcolor and strokecolor options of PDF_set_graphics_option() and other functions. Spot
color handles can be reused across all pages, but not across documents.

Details If spotname is known in the internal color tables of PANTONE and HKS colors, and the
global spotcolorlookup option is true (which is default), the specified spot color name and
corresponding internal Lab alternate color values are used. Otherwise the color values of
the current fill color are used to define the appearance of a new spot color.

If spotname has already been used in a previous call to PDF_makespotcolor(), the re-
turn value is the same as in the earlier call and does not use the current fill color as al-
ternate color.

This function can usually be avoided by supplying options of type Color directly. This
way definition and use of a spot color can be achieved in a single option list without the
need for passing spot color handles (see Table 1.2 for examples).

Table 8.2 lists relevant global options which affect the behavior of this function (see
Section 2.3, »Global Options«, page 25).

PDF/X PDF/X-1a: Pantone colors are not supported.

Scope page, pattern, template, glyph, document; the current fill color must not be a spot color,
DeviceN color, or pattern if a custom spot color is defined.

Table 8.2 Spot color related global options for PDF_set_option()

option description

preserveold-
pantonenames

(Boolean; deprecated) If false, old-style Pantone spot color names with the suffixes CV, CVV, CVU,
CVC and CVP are converted to the corresponding new color names, otherwise they are preserved.
Default: false

spotcolorlookup (Boolean) If false, PDFlib does not use its internal database of spot color names. This can be used
to provide custom definitions of known spot colors, which may be required as a workaround to
match the definitions used by other applications. This feature should be used with care and is not
recommended. Default: true

160 Chapter 8: Color Functions

8.4 DeviceN Colors

C++ Java C# int create_devicen(String optlist)
Perl PHP int create_devicen(string optlist)

C int PDF_create_devicen(PDF *p, const char *optlist)

Create a DeviceN color space with an arbitrary number of color components.

optlist Option list specifying DeviceN color creation options
> General option: errorpolicy (see Table 2.1)
> DeviceN options according to Table 8.1: alternate, names, process, subtype, transform

Returns A DeviceN color space handle which can be used with the fillcolor and strokecolor options
of PDF_set_graphics_option() and other functions. The DeviceN color space handle can be
used until the end of the enclosing document scope.

By default, this function throws an exception in case of an error. However, this be-
havior can be changed to an error return value of -1 (in PHP: 0) with the errorpolicy op-
tion.

PDF/A PDF/A-1/2/3: The color space supplied in the alternate option must adhere to the follow-
ing restrictions:

alternate=devicegray requires a grayscale, RGB or CMYK output intent or the
defaultgray option.

alternate=devicergb requires an RGB output intent or the defaultrgb option.
alternate=devicecmyk requires a CMYK output intent or the defaultcmyk option.
PDF/A-2/3: PDF_makespotcolor() must be called before PDF_create_devicen() for all

custom spot colors used in the DeviceN color space.

PDF/X The color space supplied in the alternate option must adhere to the following restric-
tions:
PDF/X-1a: Only alternate=devicecmyk or devicegray are allowed.
PDF/X-3: alternate=iccbased and lab require a grayscale, RGB or CMYK output intent.
PDF/X-3/4/5: alternate=devicegray requires a grayscale or CMYK output intent or the
defaultgray option.

alternate=devicergb requires an RGB output intent or the defaultrgb option.
alternate=devicecmyk requires a CMYK output intent or the defaultcmyk option.
PDF/X-4 and PDF/X-5g/pg: the colorspace suboption of the process option must match

the PDF/X output intent.
PDF/X-4/5: PDF_makespotcolor() must be called before PDF_create_devicen() for all

custom spot colors used in the DeviceN color space. In PDF/X-5n spot colors found in
the colorant list of the output intent are excluded from this requirement.

PDF/X-5n: The options subtype=nchannel and process are not allowed.

Scope any except object

8.4 DeviceN Colors 161

Table 8.3 Options for PDF_create_devicen()

option description

alternate (Keyword or option list; restrictions apply to PDF/A and PDF/X; required) Alternate color space for the De-
viceN color space. The following keywords can be supplied: devicegray, devicergb, devicecmyk, lab. Al-
ternatively, an option list with the following suboption can be supplied:
iccbased (Keyword or ICC profile handle) ICC profile specified by a handle or the keyword srgb. The ICC

profile must have been loaded with usage=iccbased.

names (List of name strings; required) List containing up to 32 colorant names (PDF 1.4: up to 8 colorant names).
All names must be different from each other except None which may appear more than once. The colo-
rant name All is not allowed. The colorant names Cyan, Magenta, Yellow and Black always refer to
CMYK process colors.
If subtype=nchannel the colorant name None is not allowed and the names of all spot colors used in the
DeviceN color space must be known to PDFlib, i.e. they must be included in the internal spot color data-
base or PDF_makespotcolor() must have been called earlier.

process (Option list; PDF 1.6 or above; required if subtype=nchannel and the names option includes one or more
process colors; not allowed for PDF/X-5n). Supported suboptions:
colorspace (Keyword; required) Process color space: devicegray, devicergb, or devicecmyk. PDF/X-4

and PDF/X-5g/pg: the color space must match the PDF/X output intent.
components

(List of strings; required) Names of all components of the process color space specified in the
colorspace suboption. The list of component names must not include the component name
None or built-in or custom spot color names. If the names option includes one or more process
colors these must match the names supplied here, but the names may differ from the usual
names (e.g. Process Cyan may be used instead of Cyan for colorspace=devicecmyk)

subtype (Keyword; PDF 1.6) Preferred treatment of the colorspace (default: devicen):
devicen The color space is treated as plain DeviceN color space.
nchannel (Not allowed for PDF/X-5n) The color space is treated as NChannel color space. In this case the

names option is subject to certain restrictions.

transform (String; required) PostScript code for the transform function of the DeviceN color space. The transform
function must convert N tint values in the range 0..1 to values in the alternate color space. The number of
output values must correspond to the number of components of the alternate color space. Since the Post-
Script code must be enclosed with brace characters { and }, and the option list string also requires sur-
rounding brace characters if it contains whitespace, the option value generally is enclosed by two pairs of
brace characters.

162 Chapter 8: Color Functions

8.5 Shadings and Shading Patterns

C++ Java C# int shading(String type, double x0, double y0, double x1, double y1,
double c1, double c2, double c3, double c4, String optlist)

Perl PHP int shading(string type, float x0, float y0, float x1, float y1,
float c1, float c2, float c3, float c4, string optlist)

C int PDF_shading(PDF *p, const char *type, double x0, double y0, double x1, double y1,
double c1, double c2, double c3, double c4, const char *optlist)

Define a color shading (color gradient) between two or more colors.

type The type of the shading; must be axial for linear shadings or radial for circle-like
shadings.

x0, y0 Starting point (for type=axial), or center of the starting circle (for type=radial).
The values are interpreted in user coordinates.

x1, y1 Ending point (for type=axial), or center of the ending circle (for type=radial). The
values are interpreted in user coordinates.

c1, c2, c3, c4 Color values of the shading’s end color, interpreted in the color space of
the shading’s start color. If the current fill color space is a spot color space c1 is ignored,
and c2 contains the tint value. The parameters c1, c2, c3, and c4 are ignored if the endcolor
or stopcolors option is supplied. Also, they cannot be used for shadings in a DeviceN col-
or space with N>4.

optlist Option list describing aspects of the shading according to Table 8.4. The follow-
ing options can be used:
antialias, boundingbox, end, endcolor, extend0, extend1, N, r0, r1, startcolor, stopcolors, type

Returns A shading handle that can be used in subsequent calls to PDF_shading_pattern() and
PDF_shfill() during the enclosing document scope.

Details This function creates a shading between the colors supplied in the startcolor and
endcolor options. If the option stopcolors is supplied, a shading is created between all en-
tries in the specified color list. All colors must be from the same color space and must
not use pattern color space. If different spot colors are used all of the following condi-
tions must be satisfied:

> all stop colors are either spot colors known to PDFlib internally, custom spot colors
with Lab alternate values, or direct Lab colors; if a direct Lab color is supplied PDFlib
creates an artificial spot color from it.

> the number of different spot colors in the list of stop colors does not exceed 19 (8 for
PDF 1.4);

> all spot color names are different from All.

If the spot colors supplied as stop colors violate one of the conditions above an excep-
tion is thrown.

As an alternative to the startcolor option the current fill color can be used. As an alter-
native to the endcolor option the values c1, c2, c3, and c4 can be used. As an alternative to
the combination of the startcolor and endcolor options the option stopcolors can be used.
In this case at least two colors must be specified.

8.5 Shadings and Shading Patterns 163

Scope any except object

Table 8.4 Options for PDF_shading() and suboptions for the shading graphics appearance option

option description

antialias (Boolean) Specifies whether to activate antialiasing for the shading. Default: false

boundingbox (Rectangle) A rectangle defining the shading’s bounding box in user coordinates. The bounding box will
be applied as a temporary clipping path when the shading is painted (in addition to the current clipping
path which may be in effect). This option may be useful to clip the shading without applying PDF_clip().
Default for PDF_shading(): no clipping
Default for the shading graphics appearance option: the matchbox or table cell rectangle

end (List of 2 floats or percentages; not for PDF_shading()) Coordinates of the ending point (for type=axial)
or a point on the ending circle (for type=radial), specified as percentages of the rectangle’s width and
height or in user coordinate. Default: {100% 100%}

endcolor (Color; ignored if stopcolors is supplied; one of the options endcolor and stopcolors is required for the
shading graphics appearance option) The shading’s end color. Default for PDF_shading(): the last color
provided in the stopcolors option if specified, otherwise the values supplied in the parameters c1, c2, c3,
and c4

extend0 (Boolean) Specifies whether to extend the shading beyond the starting point or circle. Default: false

extend1 (Boolean) Specifies whether to extend the shading beyond the ending point or circle. Default: false

N (Positive Float) Exponent for the color transition function. Default: 1

r0 (Float; only for type=radial) Radius of the starting circle in user coordinates. Default: 0

r1 (Float; only for type=radial) Radius of the ending circle in user coordinates. Default for PDF_shading():
0. Default for the shading graphics appearance option: distance between start and end

start (List of 2 floats or percentages; not for PDF_shading()) Coordinates of the starting point (type=axial) or
the center of the starting circle (type=radial), specified as percentages of the rectangle’s width and
height or in user coordinates. Default: {0% 0%}

startcolor (Color; ignored if stopcolors is supplied) The shading’s start color. Default: the first color provided in the
stopcolors option if specified, otherwise the color specified in the option fillcolor for the matchbox or
table cell

stopcolors (List of pairs; one of the options endcolor and stopcolors is required for the shading graphics appear-
ance option) List of two or more colors for the shading. Each pair contains a float value or a percentage
for the position of an intermediate shading color in the inclusive interval 0...1 and the corresponding col-
or value. All color values must use the same color space except for spot colors with Lab alternate colors as
described in the Details section above. The positions must be sorted in ascending order, but adjacent po-
sition values may be identical. If no value for position 0 is present the first list entry is used; if no value for
position 1 is present the last list entry is used. If this option is supplied the options startcolor and
endcolor, the parameters c1,...,c4 and the current fill color are ignored. Examples:
stopcolors={0 red 0.4 magenta 0.75 green 1 black}

stopcolors={0% {cmyk 1 0 0 0} 33% {cmyk 0 0.4 0.3 0}} 100% {cmyk 0 0 0.2 0.8}}

stopcolors={0% {spotname {PANTONE 123 U} 1} 100% {spotname {PANTONE 289 U} 1} }

type (Keyword) Shading type: axial for a linear shading or radial for a circle-like shading. Default: value of
the parameter type if present (only for PDF_shading()), otherwise: axial

164 Chapter 8: Color Functions

C++ Java C# int shading_pattern(int shading, String optlist)
Perl PHP int shading_pattern(int shading, string optlist)

C int PDF_shading_pattern(PDF *p, int shading, const char *optlist)

Define a shading pattern using a shading object.

shading Shading handle returned by PDF_shading().

optlist Option list describing details of the shading pattern:
> Graphics appearance option according to Table 7.1: gstate
> Transformation option according to Table 8.5: transform

Returns A pattern handle that can be used in subsequent calls to PDF_setcolor() and for the op-
tions fillcolor and strokecolor during the enclosing document scope.

Details The following steps are required to apply a shading to an object:
> A shading handle must be retrieved using PDF_shading().
> A shading pattern must be defined based on this shading using PDF_shading_

pattern().
> The pattern handle can be supplied to PDF_setcolor() or the options fillcolor and

strokecolor to set the current color to the shading pattern.

Scope any except object

C++ Java C# void shfill(int shading)
Perl PHP shfill(int shading)

C void PDF_shfill(PDF *p, int shading)

Fill an area with a shading.

shading Shading handle returned by PDF_shading().

Details This function allows shadings to be used without involving PDF_shading_pattern() and
PDF_setcolor() or the options fillcolor and strokecolor. However, it works only for simple
shapes where the geometry of the object to be filled is the same as that of the shading it-
self. Since the current clip area will be shaded (subject to the extend0 and extend1 op-
tions of the shading) this function will generally be used in combination with PDF_
clip().

Table 8.5 Option for PDF_shading_pattern()

option description

transform (Option list) A list which defines the transformation that maps the shading pattern coordinate
system to the default coordinate system of the target page, template or glyph description where
the shading pattern is used. The concatenation of the shading pattern matrix with that of the
target page, template or glyph description establishes the coordinate system within which the
shading pattern is interpreted.
The list contains pairs of a keyword and a float list according to Table 9.12 where each pair defines
a transformation. The interpretation and length of the number list depends on the transforma-
tion. The transformations are applied in the specified order. The elements within a pair may be
separated with equals signs ’=’. Default: no transformations are applied.
Example: transform={rotate=45 translate={100 0}}

8.5 Shadings and Shading Patterns 165

Scope page, pattern (only if painttype=colored), template, glyph (only if the Type 3 font’s colorized
option is true)

166 Chapter 8: Color Functions

8.6 Tiling Patterns

C++ Java C# int begin_pattern_ext(double width, double height, string optlist)
Perl PHP int begin_pattern_ext(float width, float height, string optlist)

C int PDF_begin_pattern_ext(PDF *p, double width, double height, const char *optlist)

Start the definition of a tiling pattern with options.

width, height The dimensions of the pattern’s bounding box in the pattern coordinate
system.

optlist Option list describing pattern details:
> Pattern-specific options according to Table 8.6:

painttype, tilingtype, xstep, ystep
> Template options according to Table 9.9: boundingbox, topdown
> Common XObject options according to Table 9.11 (although no XObject is involved):

defaultcmyk, defaultgray, defaultrgb, transform

Returns A pattern handle that can be used in subsequent calls to PDF_setcolor() and for the op-
tions fillcolor and strokecolor during the enclosing document scope.

Details This function starts the definition of a tiling pattern. It resets all text, graphics, and col-
or state parameters to their default values. The transform option defines the mapping of
the pattern coordinate system to the coordinate system of the page, template or glyph
description where the pattern is used.

Scope any except object; this function starts pattern scope, and must always be paired with a
matching PDF_end_pattern() call.

Table 8.6 Options for PDF_begin_pattern_ext(); some options can also be used with PDF_begin_template_ext().

option description

painttype (Keyword) Indicates whether the pattern contains color specifications on its own or is used as a stencil
which will be colored with the current fill or stroke color when the pattern is used for filling or stroking
(default: colored):
colored The pattern is colored with one or more calls to PDF_setcolor() or the options fillcolor/

strokecolor. The pattern description may place images, PDF pages or graphics.
uncolored The pattern does not contain any color specification. Instead, the current fill or stroke color

will be applied when the pattern is used for filling or stroking. Image masks may be used, but
not any images, placed PDF pages or graphics. Before using the pattern, PDF_setcolor() or the
options fillcolor/strokecolor must be called to set the current color with a color space
which is not based on a pattern.

8.6 Tiling Patterns 167

C++ Java C# void end_pattern()
Perl PHP end_pattern()

C void PDF_end_pattern(PDF *p)

Finish the definition of a tiling pattern.

Scope pattern; this function terminates pattern scope, and must always be paired with a
matching PDF_begin_pattern_ext() call.

tilingtype (Keyword) Controls adjustments to the spacing of pattern tiles (default: constantspacing):
constantspacing

Pattern cells will be spaced consistently, i.e. by a multiple of a device pixel. The PDF consumer
may need to distort the pattern cell slightly by making small adjustments to xstep, ystep,
and the transformation matrix.

nodistortion
The pattern cell will not be distorted, but the spacing between pattern cells may vary by as
much as one device pixel, both horizontally and vertically, when the pattern is painted. This
achieves the requested spacing on average but not necessarily for each individual pattern cell.

fastertiling
Pattern cells will be spaced consistently as with constanttiling but with additional
distortion permitted to enable a more efficient implementation.

xstep (Float) Horizontal spacing between pattern cells in pattern coordinates. Default: width

ystep (Float) Vertical spacing between pattern cells in pattern coordinates. Default: height

Table 8.6 Options for PDF_begin_pattern_ext(); some options can also be used with PDF_begin_template_ext().

option description

168 Chapter 8: Color Functions

9.1 Images 169

9 Image, SVG and Template Functions

9.1 Images

C++ Java C# int load_image(String imagetype, String filename, String optlist)
Perl PHP int load_image(string imagetype, string filename, string optlist)

C int PDF_load_image(PDF *p,
const char *imagetype, const char *filename, int len, const char *optlist)

Open a disk-based or virtual image file subject to various options.

imagetype The string auto instructs PDFlib to automatically detect the image file type
(not possible for CCITT and raw images which must always be loaded with the proper
image type). Explicitly specifying the image format with one of the strings bmp, ccitt, gif,
jbig2, jpeg, jpeg2000 (PDF 1.5 and above), png, raw, or tiff offers slight performance advan-
tages. Details of the image formats are discussed in the PDFlib Tutorial.

Note Support for CCITT-compressed and GIF images is deprecated and will be removed in the future.

filename (Name string; will be interpreted according to the global filenamehandling op-
tion, see Table 2.3) Name of the image file to be opened. This must be the name of a disk-
based or virtual file; PDFlib will not pull image data from URLs.

If a file with the specified file name cannot be found and imagetype=auto PDFlib tries
to determine the appropriate file name suffix automatically; it appends all suffixes
from the following list (in both lowercase and uppercase) to the specified filename and
tries to locate a file with that name in the directories specified in the search path:

.bmp, .ccitt, .g3, .g4, .fax, .gif, .jbig2, .jb2, .jpg, .jpeg, .jpx, .jp2, .jpf, .j2k,

.png, .raw, .tif, .tiff

len (C language binding only) Length of filename (in bytes). If len = 0 a null-terminated
string must be provided.

optlist An option list specifying image-related properties according to Table 9.1. The
following options can be used:

> General options: errorpolicy (see Table 2.1) and hypertextencoding (see Table 2.3)
> Color-related options:

chromakey, colorize, decode, honoriccprofile, iccprofile, invert, renderingintent
> Clipping, masking, and transparency options:

alphachannelname, clippingpathname, honorclippingpath, ignoremask, mask, masked
> Special PDF features: interpolate, templateoptions
> Common XObject options can be applied to the image (see Table 9.11):

associatedfiles, georeference, layer, metadata, pdfvt
> Option for analyzing the image without writing PDF output: infomode
> Options for processing the image data: ignoreorientation, page, passthrough
> Options for CCITT, JBIG2 and raw images according to Table 9.2:

bitreverse, bpc, components, copyglobals, height, imagehandle, inline, K, width

170 Chapter 9: Image, SVG and Template Functions

Returns An image handle (or template handle if templateoptions is supplied) which can be used
in subsequent image-related calls. If errorpolicy=return the caller must check for a return
value of -1 (in PHP: 0) since it signals an error. The returned image handle can not be re-
used across multiple PDF documents. If the function call fails you can request the rea-
son of the failure with PDF_get_errmsg().

Details This function opens and analyzes a raster graphics file in one of the supported formats
as determined by the imagetype parameter, and copies the relevant image data to the
output document. This function will not have any visible effect on the output. In order
to actually place the imported image somewhere in the generated output document,
PDF_fit_image() must be used. Opening the same image more than once per generated
document is not recommended because the actual image data will be copied to the out-
put document more than once. If the application cannot prevent this situation you can
remove redundant image data with the optimize option of PDF_begin_document().

PDFlib opens the image file with the provided filename, processes the contents, and
closes the file before returning from this call. Although images can be placed multiply
within a document with PDF_fit_image(), the actual image file will not be kept open af-
ter this call.

PDF/A Some options are restricted.
Grayscale images require an output intent (any type) or the defaultgray option.
RGB images require an RGB output intent or the defaultrgb option.
CMYK images require a CMYK output intent or the defaultcmyk option.
PDF/A-2/3: JPEG 2000 images must satisfy certain conditions; see PDFlib Tutorial for

details.

PDF/X Some options are restricted.
PDF/X-1a: RGB images are not allowed.
PDF/X-1a/3: JBIG2 images are not allowed.
PDF/X-3/4/5p/5pg: Grayscale images require a grayscale or CMYK output intent or the
defaultgray option.

RGB images require an RGB output intent or the defaultrgb option
CMYK images require a CMYK output intent or the defaultcmyk option.
JPEG 2000 images must satisfy certain conditions; see PDFlib Tutorial for details.

PDF/X-5n: Grayscale images can only be used if the output intent contains the colorant
Black or the defaultgray option has been set.

RGB images can only be used if the defaultrgb option has been set.
CMYK color can only be used if the output intent contains all of the colorants Cyan,

Magenta, Yellow and Black or the defaultcmyk option has been set.

PDF/VT This call may fail if the usestransparency=false option was specified in PDF_begin_
document(), but the imported image contains transparency nevertheless.

Scope any except object; if inline=true is supplied, this function can only be called in page,
pattern, template or glyph scope. It should be paired with a matching call to PDF_close_
image().

9.1 Images 171

Table 9.1 Options for PDF_load_image()

option description

alphachannel-
name

(Name string; only for TIFF images; will be ignored if ignoremask=true) Read the alpha channel with the
specified name from the image file and apply it as a soft mask to the image. The named channel must be
present in the image file. Default: the first alpha channel in the image

chromakey (List of n or 2xn integers in the range 0 to 2bitspercomponent-1, where n is the number of components in the
image colorspace; forces ignoremask=true; not allowed if mask is specified; not for imagetype=jpeg and
jpeg2000; ignored for Lab images) Activate chroma key masking (also called color key masking) for a sin-
gle color or a range of colors. Each pair in the list contains the inclusive lower and upper bounds of a color
component range. Pixels where all color components (before applying any decode values or color inver-
sion with the invert option) fall in the specified ranges are treated as transparent, i.e. they are not paint-
ed but allow the background to shine through.
If n values instead of n pairs are supplied each component range contains only a single color value, i.e.
each list value describes both lower and upper bound for a color component.
This option overrides chroma key value found in GIF or PNG images.

clipping-
pathname

(String; only for imagetype=tiff and jpeg; will be ignored if honorclippingpath=false) Read the path
with the specified name from the image file and use it as clipping path. The named path must be present
in the image file. The special name Work Path can be used to address a temporary path created in Photo-
shop. Default: name of the path which is provided as clipping path in the image file

colorize (Spot or DeviceN color handle, or color option defining a spot color; this option is ignored if the
iccprofile option is provided) Colorize the image with a spot or DeviceN color. Colorizing an image with
a spot color works only with black and white or grayscale images. Colorizing an image with a spot color
reverses the polarity interpretation of the color values, i.e. color value zero results in the maximum
amount of spot color. You can compensate this effect with the invert option.
Colorizing an image with a DeviceN color works only with raw images. The number of image compo-
nents must match the number N of color components in the DeviceN color space. DeviceN color spaces
are always subtractive, i.e. color value 0 results in white.

create-
template

(Boolean) Deprecated, use templateoptions

decode (List of 2xn float or percentage values, where n is the number of components in the image colorspace; not
allowed for JPEG 2000 images or if mask is specified) List of n pairs of numbers which map image sample
values to values in the image’s color space. Each pair describes the target color values to which the lowest
and highest component values 0 and 2bitspercomponent-1 are mapped; intermediate values are interpolat-
ed linearly.
For palette images a single decode pair is required, not multiple pairs for the base colorspace (e.g. a single
pair for images with an RGB palette). Since the decode values apply to the palette index and not the pal-
ette entries this option should not be applied to palette images.

honor-
clippingpath

 (Boolean; only for imagetype=tiff and jpeg; forced to false for inline images) Read the clipping path
from the image file if available, and apply it to the image. Default: true

honor-
iccprofile

(Boolean; only for imagetype=jpeg, jpeg2000, png, and tiff; forced to false if the colorize option is
specified or if the embedded profile is identical to the PDF/X-4/5 CMYK output intent) Honor an ICC pro-
file which may be embedded in the image, either directly by embedding or indirectly (e.g. via a reference
in the Exif marker) and apply it to the image. Default: true

iccprofile (ICC handle or keyword) ICC profile which is applied to the image. The keyword srgb selects the sRGB col-
or space. Default: an embedded profile (or equivalent Exif information in the image file) if present in the
image and honoriccprofile=true.

ignoremask (Boolean; must be set to true in PDF/X-1/3 and PDF/A-1 for images with an internal alpha channel) Ignore
transparency information and alpha channels in the image. Default: false

ignore-
orientation

(Boolean; only for imagetype=tiff and jpeg) Ignores any orientation information in the image. This
may be useful for compensating incorrect orientation info in the image data. Default: false

172 Chapter 9: Image, SVG and Template Functions

C++ Java C# void close_image(int image)
Perl PHP close_image(int image)

C void PDF_close_image(PDF *p, int image)

Close an image or template.

image A valid image or template handle retrieved with PDF_load_image() or PDF_
begin_template_ext().

Details This function only affects PDFlib’s associated internal image structure. If the image has
been opened from file, the actual image file is not affected by this call since it has al-

infomode (Boolean) If true the image is loaded, but no pixel data is written to the output. Image properties can be
queried with PDF_info_image(), but the image cannot be placed on a page with PDF_fit_image() or oth-
er functions. This option may be useful to check images without any side effects on the PDF output. If
false the pixel data is written to the PDF output immediately. Default: false

interpolate (Boolean; must be false for PDF/A) Enables image interpolation to improve the appearance on screen
and paper. This is useful for bitmap images for glyph descriptions in Type 3 fonts. Default: false

invert (Boolean; not for imagetype=jpeg2000 unless mask=true) Invert the image (swap light and dark colors).
Default: false

mask (Boolean; only for bitmap images, i.e. one bit per pixel; forces ignoremask=true). Prepare the image for
use as a stencil mask. If the image itself is placed on the page black pixels are painted with the current fill
color while white pixels are ignored, i.e. the background remains unchanged. If the image is used to mask
another base image with the masked option the contents of the base image are shown where the mask is
black and ignored where the mask is white.

masked (Image handle; PDF/A-1 and PDF/X-1/3: only allowed with 1-bit masks; ignored if the image contains an
internal alpha channel and ignoremask=false) Handle for a grayscale image which is applied as alpha
channel to the current image. In PDF/A-1 and PDF/X-1/3 bitmap masks must have been loaded with the
mask option. If the mask image has been loaded with the decode option the decode array must be {0 1}
or {1 0}.

page (Integer; only for imagetype=jbig2 and tiff; must be 1 if used with other formats) Extract the image
with the given number from a multi-page image file. The first image has the number 1. The call fails if
the requested page cannot be found in the image file. Default: 1

passthrough (Boolean; only for imagetype=tiff or jpeg) Controls handling of image data.
TIFF images (default: true): If true, compressed TIFF image data is directly passed through to the PDF
output if possible. Setting this option to false may help in cases where a TIFF image contains damaged
or incomplete data.
JPEG images (default: false): If false, PDFlib transcodes JPEG image data for compatibility with Acro-
bat. If true, JPEG image data is directly copied to the PDF output. This option is ignored for multiscan
and certain CMYK JPEG images. Setting this option to true may speed up processing, but certain rare
JPEG flavors won’t display correctly in Acrobat.

rendering-
intent

(Keyword) Color rendering intent (default: Auto):
Auto, AbsoluteColorimetric, RelativeColorimetric, Saturation, Perceptual

template-
options

(Option list) Create a template (PDF Form XObject) according to the supplied option list (which may be
empty). This may be useful for creating luminosity soft masks or templates for form field icons which
consist of an image only. A handle for the generated template is returned. The option list contains com-
mon XObject options according to Table 9.11.

Table 9.1 Options for PDF_load_image()

option description

9.1 Images 173

ready been closed at the end of the corresponding PDF_load_image() call. An image han-
dle cannot be used any more after it has been closed with this function.

Scope any except object; must always be paired with a matching call to PDF_load_image()
(unless the inline option has been used) or or PDF_begin_template_ext().

Table 9.2 Additional options for PDF_load_image() with imagetype=ccitt, jbig2,jpeg or raw

option description

bitreverse (Boolean; only for imagetype=ccitt) If true, do a bitwise reversal of all bytes in the compressed data.
Default: false

bpc (Integer; only for imagetype=raw; required in this case) Number of bits per component; must be 1, 2, 4, 8
or 16 (in PDF 1.4 the value 16 is not allowed)

components (Integer; only for imagetype=raw; required in this case unless the colorize option is provided) Number of
image components (channels); must be 1, 3, or 4. This option is ignored if the colorize option is supplied
since the number of components is determined from the color space.

copyglobals (Keyword; only for imagetype=jbig2) Specify which global segments in a JBIG2 stream will be copied to
the PDF. If the JBIG2 stream doesn’t contain any global segments this option will not have any effect (de-
fault: current):
all Copy the global segments for all pages in the JBIG2 stream to the PDF. This should be used if

more than one page from the same JBIG2 stream will be imported. The imagehandle option
should be used if more pages from the same JBIG2 stream will be imported later.

current Copy only the global segments required for the current page (i.e. the page specified in the page
option) in the JBIG2 stream to the PDF. This should be used if no more pages from the same JBIG2 stream
will be imported.

height (Integer; only for imagetype=raw and ccitt; required in this case) Image height in pixels.

imagehandle (Image handle; only for imagetype=jbig2) Add a reference to an existing global segment attached to
another image created from the same JBIG2 stream which must have been loaded earlier with the copy-
globals=all option. It is an error to refer to an image which has been created from a different file than
the current JBIG2 stream. The specified image handle must not have been closed. Default: no image han-
dle, i.e. a new PDF object will be created with all required global segments for the current page only

inline (Boolean; only for imagetype=ccitt, jpeg, and raw; not allowed if templateoptions is supplied) If true,
the image is written directly into the content stream of a page, pattern, template, or glyph description.
This option implicitly calls PDF_fit_image() and PDF_close _image() (see PDFlib Tutorial). This option is
recommended only for bitmap glyphs of Type 3 fonts and should not be used in other situations. If this
option is supplied PDF_close_image() must not be called. Default: false

K (Integer; only for imagetype=ccitt) CCITT parameter for compression scheme selection. Default: 0
-1 G4 compression
0 One-dimensional G3 compression (G3-1D)
1 Mixed one- and two-dimensional compression (G3, 2-D)

width (Integer; only for imagetype=raw and ccitt; required in this case) Image width in pixels

174 Chapter 9: Image, SVG and Template Functions

C++ Java C# void fit_image(int image, double x, double y, String optlist)
Perl PHP fit_image(int image, float x, float y, string optlist)

C void PDF_fit_image(PDF *p, int image, double x, double y, const char *optlist)

Place an image or template on the page, subject to various options.

image A valid image or template handle retrieved with PDF_load_image() or PDF_
begin_template_ext(). The image must not have been loaded with infomode=true. Tem-
plate handles can only be used if their definition has been finalized with PDF_end_
template_ext().

x, y The coordinates of the reference point in the user coordinate system where the
image or template will be located, subject to various options.

optlist An option list specifying image fitting and processing options. The following
options are supported:

> Fitting options according to Table 6.1:
boxsize, blind, dpi, fitmethod, matchbox, orientate, position, rotate, scale, showborder

> Options for image processing according to Table 9.3:
adjustpage, gstate, ignoreclippingpath, ignoreorientation

> Option for abbreviated structure element tagging according to Table 14.5 (only al-
lowed in page scope): tag

Details The image or template (collectively referred to as an object below) will be placed relative
to the reference point (x, y). By default, the lower left corner of the object will be placed
at the reference point. However, the orientate, boxsize, position, and fitmethod options
can modify this behavior. By default, an image will be scaled according to its resolution
value(s). This behavior can be modified with the dpi, scale, and fitmethod options.

PDF/UA Images must be tagged as Artifact or Figure

Scope page, pattern (only if the pattern's painttype is colored or the image is a mask), template,
glyph (only if the Type 3 font’s colorized option is true, or if the image is a mask); this
function can be called an arbitrary number of times on arbitrary pages, as long as the
image handle has not been closed with PDF_close_image().

Table 9.3 Options for image, graphics, PDF page and template processing with PDF_fit_image(), PDF_fit_graphics(), PDF_
fit_pdi_page(), PDF_fill_imageblock(), PDF_fill_graphicsblock() and PDF_fill_pdfblock()

option description

adjustpage (Boolean; only effective in page scope; not allowed if the topdown option has been supplied in PDF_be-
gin_page_ext(); not for PDF_fill_*block()) Adjust the dimensions of the current page to the object such
that the upper right corner of the page coincides with the upper right corner of the object plus (x, y) with
the function parameters x and y. The MediaBox will be adjusted, and all other box entries will be reset to
their defaults. With the value 0 for the position option the following useful cases shall be noted:
x >= 0 and y >= 0

The object is surrounded by a white margin. This margin has thickness y in horizontal
direction and thickness x in vertical direction.

x < 0 and y < 0
Horizontal and vertical strips will be cropped from the image.

Default: false

9.1 Images 175

C++ Java C# double info_image(int image, String keyword, String optlist)
Perl PHP float info_image(int image, string keyword, string optlist)

C double PDF_info_image(PDF *p, int image, const char *keyword, const char *optlist)

Format an image or template and query metrics and other properties.

image A valid image or template handle retrieved with PDF_load_image() or PDF_
begin_template_ext().

keyword A keyword specifying the requested information:
> Keywords for querying the results of object fitting according to Table 6.3:

boundingbox, fitscalex, fitscaley, height, objectheight, objectwidth, width, x1, y1, x2, y2, x3,
y3, x4, y4

> Additional keywords according to Table 9.4:
clippingpath, checkcolorspace, filename, iccprofile, imageheight, imagemask, imagetype,
imagewidth, infomode, mirroringx, mirroringy, orientation, resx, resy, strips, transparent,
xid

optlist The following options are supported:
> Options for PDF_fit_image(). Options which are not relevant for determining the val-

ue of the requested keyword are ignored.
> Option for switching between underlying image and template: useembeddedimage

Returns The value of some image property as requested by keyword. If the requested property is
not available in the image file, the function returns 0. If an object handle is requested
(e.g. clippingpath) this function returns a handle to the object, or -1 (in PHP: 0) if the ob-
ject is not available. If the requested keyword produces text, a string index is returned,
and the corresponding string must be retrieved with PDF_get_string().

Details This function performs all calculations required for placing the image according to the
supplied options, but will not actually create any output on the page. The image refer-
ence point is assumed to be {0 0}.

gstate (Gstate handle) Handle for a graphics state retrieved with PDF_create_gstate(). The graphics state af-
fects all graphical elements created with this function. Default: no gstate (i.e. current settings will be
used)

ignore-
clippingpath

(Boolean; only for TIFF and JPEG images) A clipping path which may be present in the image file will be
ignored. Default: false, i.e. the clipping path will be applied

ignore-
orientation

(Boolean; only for TIFF and JPEG images) Ignore any orientation information in the image. This may be
useful for compensating wrong orientation info. Default: the value of the ignoreorientation option in
PDF_load_image()

Table 9.3 Options for image, graphics, PDF page and template processing with PDF_fit_image(), PDF_fit_graphics(), PDF_
fit_pdi_page(), PDF_fill_imageblock(), PDF_fill_graphicsblock() and PDF_fill_pdfblock()

option description

176 Chapter 9: Image, SVG and Template Functions

Scope any except object

Table 9.4 Keywords for PDF_info_image()

keyword description

clippingpath Path handle of the image’s clipping path, or -1 (in PHP: 0) if no clipping path is present

checkcolorspace 1 if the image or template can safely be placed on the current page without risking a color-related
violation of PDF/A or PDF/X; 0 otherwise. This check takes into account the page’s default color
space which is not checked when loading the image.

filename String index for the name of the image file (including a searchpath directory if applicable), or -1
for templates

iccprofile Handle for the ICC profile embedded in the image or -1 (in PHP: 0) if no profile is present

imageheight Images: height in pixels
Templates: user-supplied height, or automatically determined height for the reference option

imagemask Image handle of the mask associated with the image, or -1 (in PHP: 0) if no mask is attached

imagetype String index for the type (format) of the image:
bmp, ccitt, gif, jbig2, jpeg, jpeg2000, png, raw, tiff for raster images. If the object related to
the supplied handle has been created with PDF_begin_template_ext(), the string template will
be returned.

imagewidth Images: width in pixels
Templates: user-supplied width, or automatically determined width for the reference option

infomode 1 if the image has been loaded with the infomode option, 0 otherwise

mirroringx,
mirroringy

Horizontal or vertical mirroring of the image (expressed as 1 or -1) according to the supplied op-
tions

orientation Orientation value of the image. For images containing an orientation tag the value of this tag is
returned; in all other cases 1 is returned. PDFlib automatically compensates orientation values
different from 1.

resx, resy Horizontal or vertical resolution of the image. Positive values represent the image resolution in
pixels per inch (dpi). The value zero means that the resolution is unknown. Negative values can be
used together to determine the aspect ratio of non-square pixels, but don’t have any absolute
meaning.

strips Number of image strips (can be different from 1 only for certain multi-strip TIFF images)

transparent 1 if the image contains transparency (alpha channel with > 1 bit), otherwise 0. Transparency is as-
sumed to be present if an alpha channel was read from the original image file, or the image has
been loaded with the mask option.

xid (Only for PDF/VT) String index for the GTS_XID entry of the image or template, or -1 if no GTS_XID
value has been assigned. The GTS_XID string can be used in the CIP4/Summary/Content/
Referenced metadata property for DPM.

Table 9.5 Option for PDF_info_image()

option description

useembedded-
image

(Boolean; only relevant if templateoptions is supplied) If true the information of the image embedded
in the template will be queried, otherwise the information of the template. If useembeddedimage=true
some keywords (e.g. dpi) are relevant only for the original image, but not for the generated template. In
particular, the values should not be used for fitting the template created for the image. Default: false

9.2 SVG Graphics 177

9.2 SVG Graphics

C++ Java C# int load_graphics(String type, String filename, String optlist)
Perl PHP int load_graphics(string type, string filename, string optlist)

C int PDF_load_graphics(PDF *p, const char *type, const char *filename, int len, const char *optlist)

Open a disk-based or virtual vector graphics file subject to various options.

type Type of vector graphics file. The keyword auto automatically determines the file
type. It is equivalent to svg which specifies SVG graphics.

filename (Name string; will be interpreted according to the global filenamehandling
global option, see Table 2.3) Name of the graphics file to be opened. This must be the
name of a disk-based or virtual file; PDFlib will not pull graphics from URLs.

If a file with the specified file name cannot be found PDFlib will try to determine the
appropriate file name suffix automatically; it will append all suffixes from the follow-
ing list (in both lowercase and uppercase) to the specified filename and try to locate a file
with that name in the directories specified in the searchpath:

.svg, .svgz

len (C language binding only) Length of filename (in bytes). If len = 0 a null-terminated
string must be provided.

optlist An option list specifying graphics-related properties. The following options can
be used:

> General options: errorpolicy (see Table 2.1) and hypertextencoding (see Table 2.3)
> Font-related options according to Table 9.6:

defaultfontfamily, defaultfontoptions, fallbackfontfamily, fallbackfontoptions
> Size options according to Table 9.6:

bboxexpand, fallbackheight, fallbackwidth, forcedheight, forcedwidth
> Image-related options according to Table 9.6: defaultimageoptions, fallbackimage
> Other SVG processing options according to Table 9.6: errorconditions, lang
> Color control options according to Table 9.6: devicencolors, forcesrgb, honoriccprofile,

iccprofilecmyk, iccprofilegray, iccprofilergb
> Template creation option according to Table 9.6: templateoptions

Returns A graphics handle which can be used in subsequent graphics-related calls. If errorpolicy=
return the caller must check for a return value of -1 (in PHP: 0) since it signals an error. If
the function was called in object scope, the graphics handle can be reused across multi-
ple PDF documents. If the function call fails you can request the reason of the failure
with PDF_get_errmsg().

If this function is called in object scope the graphics handle can be reused across mul-
tiple PDF documents. Otherwise the graphics handle is closed automatically at the end
of the current document if necessary.

Details This function opens and analyzes a vector graphics file in one of the supported formats
as determined by the type parameter. The graphics data will be stored in memory until
the graphics is closed with PDF_close_graphics() or at the end of the PDFlib object’s life-
time. This function does not have any visible effect on the PDF output. In order to actu-
ally place the imported graphics somewhere in the generated document, PDF_fit_

178 Chapter 9: Image, SVG and Template Functions

graphics() must be used. Opening the same graphics more than once per generated doc-
ument is not recommended because the graphics data will be copied to the output doc-
ument multiply.

PDFlib opens the graphics file with the provided filename, processes the contents,
and by default closes the file before returning from this call. However, if the template-
options option has been supplied the file contents are required until the first call to PDF_
fit_graphics() with the returned graphics handle.

Font embedding (especially relevant for PDF/A, PDF/X, and PDF/UA): font outline
files for all fonts used in the graphics (or suitable default fonts) must be configured.
This can be facilitated with the enumeratefonts option (see Section 2.3, »Global Options«,
page 25).

PDF/A All fonts must be embedded. If colors are specified as device-gray, device-rgb, or device-
cmyk these are subject to the PDF/A color space requirements (see PDF_set_color()).
PDF/A-1: graphics with transparency are not allowed.
PDF/A-2a/3a: if the graphics contain text with PUA characters, the tag option with the
ActualText suboption must be provided.

PDF/X All fonts must be embedded. If colors are specified as device-gray, device-rgb, or device-
cmyk these are subject to the PDF/X color space requirements (see PDF_set_color()).
PDF/X-1a: this function must not be called.
PDF/X-3: graphics with transparency are not allowed.

PDF/VT This call may fail if the usestransparency=false option was specified in PDF_begin_
document(), but the imported graphics contains transparency nevertheless.

PDF/UA All fonts must be embedded (see above). If the graphics contain text with PUA charac-
ters, the tag option with the ActualText suboption must be provided.

Scope any

Table 9.6 Options for PDF_load_graphics()

option description

bboxexpand (List of two floats or keywords; affects only SVG graphics without explicit size) The calculated bounding
box may be too small because line widths and oversized glyphs are not taken into account. This option
can be used to expand the calculated bounding box by numerical values (in default coordinates) in x and
y direction on both sides. As an alternative the following keyword is supported (default: {offset
offset}):
offset Use the horizontal or vertical distance of the bounding box from the origin of the SVG

coordinate system.

defaultfont-
family

(Name string) Name of the font family which is used if a font for some text in the graphics file is either
not specified or not available. Default: Arial Unicode MS if available, otherwise Helvetica

defaultfont-
options

(Option list) Font loading options according to Table 4.2. When a font is required for text in a graphics file
and this font has not already been loaded earlier, the options specified here are supplied to PDF_load_
font(). Default: {subsetting embedding} in PDF/A, PDF/UA and PDF/X mode; otherwise
{subsetting embedding skipembedding={fstype latincore}}
(the option keepfont is added in all cases if the function is called in object scope)

defaultimage-
options

(Option list) Image loading options according to Table 9.1. When an embedded or external image is pro-
cessed, the options specified here are supplied to PDF_load_image(). Default: { }

9.2 SVG Graphics 179

devicencolors (List of DeviceN color handles) Supply handles to DeviceN color spaces for use in the loaded SVG graphics.
The specified DeviceN color spaces are applied to device-nchannel colors in the SVG graphics according
to the number of colorants.

error-
conditions

(Option list) List of conditions which trigger an error (default: empty):
attributes (List of strings) An error occurs if one of the specified SVG attributes is present, but is not

supported in PDFlib (see PDFlib Tutorial for a list of unsupported attributes). By default,
unsupported attributes are ignored.

elements (List of strings) An error occurs if one of the specified SVG elements is present, but is not
supported in PDFlib (see PDFlib Tutorial for a list of unsupported elements). By default,
unsupported elements are ignored.

references (List of keywords) An error occurs if one of the following types of reference cannot be resolved
or executed (by default all types except image are silently ignored and a warning is emitted):
image reference to an image or graphics file; see option fallbackimage for default be-

havior
internal internal reference to an SVG element
external reference to files other than image or graphics
fontfamily reference to a font family
font reference to a full font name specified via font family, weight and style

fallback-
fontfamily

(Name string) Name of the font family which is used to create a fallback font for each font, in addition to
the fallback fonts which may have been specified in the graphics file. Default: empty

fallback-
fontoptions

(Option list) Options which will be applied to the fallback fonts created via the fallbackfontfamily op-
tion. The following options according to Table 4.3, can be used: fontsize, forcechars, textrise. De-
fault: empty

fallback-
height

(Float; affects only SVG graphics without absolute size; ignored if forcedheight is supplied) Height of the
SVG graphics (in default coordinates) for the fitting process. The value 0 triggers automatic bounding box
calculation. Default: height provided in the SVG graphics, otherwise 0

fallback-
image

(Option list) Specify how to visualize the space reserved for the fitbox of a graphics or image element if
the element is not available. If this option is supplied without any suboptions a gray semi-transparent
checkerboard is painted (default: no fallback display)
fillcolor (sRGB Color or keyword) Color used to fill the area with a checkerboard pattern (if gridsize >

0) where half of the squares are painted with the specified color and the other half of the
squares is transparent, or color used to fill the area with solid color if gridsize=0. The
keyword none means that the area will not be filled. Default: LightGrey

gridsize (Float or percentage) Width of a square in the checkerboard pattern in default coordinates or
as a percentage of the width of the fitbox. Percentages are rounded so that an integer num-
ber of squares fits into the area. gridsize=0 means that the area is filled with solid color
instead of a checkerboard pattern. Default: 10

image (Image or template handle) Image or template which will be placed with fitmethod=entire
into the fitbox. Default: no image or template

opacity (Float in the range 0..1 or percentage) Opacity of the checkerboard squares or the interior of
the area. Default: 0.5

strokecolor (sRGB color or keyword) Color used to stroke the border area and a cross inside the area. The
keyword none means that the border and cross is not stroked. Default: Red

fallback-
width

(Float; affects only SVG graphics without absolute size; ignored if forcedwidth is supplied) Width of the
SVG graphics (in default coordinates) for the fitting process. The value 0 triggers automatic bounding box
calculation. Default: width provided in the SVG graphics if present, otherwise 0

forcedheight (Float >= 1) The height of the SVG graphics (if present) is ignored and the specified value (in default coor-
dinates) is applied instead. Default: height of the graphics

Table 9.6 Options for PDF_load_graphics()

option description

180 Chapter 9: Image, SVG and Template Functions

C++ Java C# void close_graphics(int graphics)
Perl PHP close_graphics(int graphics)

C void PDF_close_graphics(PDF *p, int graphics)

Close vector graphics.

graphics A valid graphics handle retrieved with PDF_load_graphics().

Details PDFlib’s associated internal graphics structure will be deleted. If the templateoptions op-
tion was specified in PDF_load_graphics() the corresponding PDF template will be creat-
ed before closing the graphic. If the graphic has been opened from file, the actual graph-
ics file is not affected by this call since it has already been closed at the end of the
corresponding PDF_load_graphics() call. A graphics handle cannot be used any more af-
ter it has been closed with this function.

Scope any; object scope is not allowed if templateoptions was specified in the corresponding
call to PDF_load_graphics() and the graphics was placed at least once; must always be
paired with a matching call to PDF_load_graphics().

forcedwidth (Float >= 1) The width of the SVG graphics (if present) is ignored and the specified value (in default coordi-
nates) is applied instead. Default: width of the graphics

forcesrgb (Boolean) If true, all non-sRGB color specifications are ignored and the sRGB fallback color is used instead
(or DeviceRGB if honoriccprofile=false). This option does not affect referenced images. Default: false

honor-
iccprofile

(Boolean) If true, honor all ICC profiles in icc-color specifications or implicitly in sRGB colors; otherwise
all explicit ICC colors and implicit sRGB colors are interpreted as device-gray/device-rgb/device-cmyk
colors. In PDF/A and PDF/X-3/4/5 the option honoriccprofile=false requires the defaultrgb option, an
RGB output intent or the iccprofilergb option. Default: true

iccprofilecmyk,
iccprofilegray,
iccprofilergb

(ICC handle or keyword srgb; overrides forcesrgb for icc-color(gray/rgb/cmyk); not allowed in object
scope) The supplied ICC profiles are used instead of the explicit profiles in icc-color specifications or the
implicit sRGB profile. Default: the ICC profiles in icc-color specifications and sRGB for default color spec-
ifications are used.

lang (String) Natural language for the graphics file which can be used e.g. in an SVG switch element. The for-
mat of the language specification is identical to the lang option of PDF_begin_document() (see Table
3.3). Default: the language identifier found in the LANG environment variable.

template-
options

(Option list) Create a template (PDF Form XObject) according to the supplied option list. The template is
written to the PDF output at the first call to PDF_fit_graphics(). This option is recommended if the graph-
ics will be placed more than once, or if specific template features are required (e.g. for PDF/VT). The op-
tion templateoptions={transparencygroup={isolated=true}} is required if the placed SVG is expect-
ed to interact with the existing background via opacity or blend modes. Width and height of the
template are determined based on the size of the graphics.
The supplied option list (which may be empty) is used for PDF_begin_template_ext(). The following
common XObject options can be used (see Table 9.11):
associatedfiles, defaultgray, defaultrgb, defaultcmyk, iconname, layer, metadata, pdfvt, reference,
transparencygroup.

Table 9.6 Options for PDF_load_graphics()

option description

9.2 SVG Graphics 181

C++ Java C# void fit_graphics(int graphics, double x, double y, String optlist)
Perl PHP fit_graphics(int graphics, float x, float y, string optlist)

C void PDF_fit_graphics(PDF *p, int graphics, double x, double y, const char *optlist)

Place vector graphics on a content stream, subject to various options.

graphics A valid graphics handle retrieved with PDF_load_graphics().

x, y The coordinates of the reference point in the user coordinate system where the
graphic will be placed.

optlist An option list specifying graphics fitting and processing options. The following
options are supported:

> Fitting options according to Table 6.1:
boxsize, fitmethod, matchbox, orientate, position, refpoint, rotate, scale, showborder

> Options for graphics processing according to Table 9.3:
adjustpage, gstate

> Option for processing interactive links in the graphics according to Table 9.7:
convertlinks

> Option for abbreviated structure element tagging according to Table 14.5 (only al-
lowed in page scope): tag

Details The graphics will be placed relative to the reference point (x, y). By default, the lower left
corner of the object will be placed at the reference point. However, the orientate, boxsize,
position, and fitmethod options can modify this behavior. By default, a graphic will be
scaled according to its internally specified size. This behavior can be modified with the
scale and fitmethod options.

It is recommended to use PDF_info_graphics() with the fittingpossible keyword before
calling PDF_fit_graphics() to check whether PDF_fit_graphics() will succeed (and avoid an
exception in case of a failure).

PDF/UA Graphics containing vector graphics or raster images must be tagged as Figure or Arti-
fact.

Scope page, pattern (only if the pattern’s painttype is 1), template, glyph (only if the Type 3 font’s
colorized option is true); this function can be called an arbitrary number of times on
arbitrary pages as long as the graphics handle has not been closed with PDF_close_
graphics().

Table 9.7 Additional option for PDF_fit_graphics()

option description

convertlinks (Boolean) If true, interactive links in the graphics file are converted to interactive Link annotations in
PDF. Regardless of this setting links are not created in the following situations (default: true):
> this function is called in a scope other than page
> the templateoptions option was supplied in PDF_load_graphics()
> Tagged PDF mode: the currently active structure item is an Artifact;
> PDF/X: the link annotation is located inside the BleedBox (or TrimBox/ArtBox if no BleedBox is present).

182 Chapter 9: Image, SVG and Template Functions

C++ Java C# double info_graphics(int graphics, String keyword, String optlist)
Perl PHP float info_graphics(int graphics, string keyword, string optlist)

C double PDF_info_graphics(PDF *p, int graphics, const char *keyword, const char *optlist)

Format vector graphics and query metrics and other properties.

graphics A valid graphics or template handle retrieved with PDF_load_graphics().

keyword A keyword specifying the requested information:
> Keywords for querying the results of object fitting according to Table 6.3:

boundingbox, fitscalex, fitscaley, height, objectheight, objectwidth, width, x1, y1, x2, y2, x3,
y3, x4, y4

> Additional keywords according to Table 9.8:
description, filename, fittingpossible, graphicswidth, graphicsheight, istemplate, metadata,
title, type, xid

optlist An option list specifying options for PDF_fit_graphics(). Options which are not
relevant for determining the value of the requested keyword will be ignored.

Returns The value of some graphics property as requested by keyword. If a geometrical property
is requested outside of a page, this function returns -1 (in PHP: 0). If an object handle is
requested this function returns a handle to the object, or -1 (in PHP: 0) if the object is not
available. If the requested keyword produces text, a string index is returned, and the
corresponding string must be retrieved with PDF_get_string().

Details This function performs all calculations required for placing the graphics according to
the supplied options, but will not actually create any output on the page. The graphics
reference point is assumed to be {0 0}.

Scope any

Table 9.8 Keywords for PDF_info_graphics()

keyword description

description String index for the contents of the desc element of the outermost svg element if present, or of
the outermost g element if present, or -1 otherwise. The string may contain markup.

filename String index for the name of the graphics file (including a searchpath directory if applicable)

fittingpossible Check whether the graphics could be placed with PDF_fit_graphics() in the current context. The
value 1 is returned if the graphics can be placed. The value 0 is returned if fitting fails (i.e. PDF_fit_
graphics() would throw an exception) for one of the following reasons:
> An internal problem in the graphics file.
> A conflict with current standards requirements (e.g. transparency not allowed, font must be

embedded but no font file available)
If 0 is returned the nature of the problem can be queried with PDF_get_errmsg(). Since the result
is valid only for the current context this check should be applied immediately before attempting
to place the graphics.

graphicswidth,
graphicsheight

Width and height of the graphic in the default coordinate system according to the information in
the graphics file. If no values are available in the graphics file, 0 will be returned.

istemplate 1 if the templateoptions option has been supplied, 0 otherwise

metadata String index for the contents of the metadata element of the outermost svg element, or -1 if this
element is not present. The string may contain markup.

9.2 SVG Graphics 183

title String index for the contents of the title element of the outermost svg element if present, or of
the outermost g element if present, or -1 otherwise. The string may contain markup.

type String index for the type (format) of the graphics: always svg

xid (Only for PDF/VT) String index for the GTS_XID entry of the template created for graphic, or -1 if
no template was created or no GTS_XID value has been assigned to the template. The GTS_XID
string can be used in the CIP4/Summary/Content/Referenced metadata property for DPM.

Table 9.8 Keywords for PDF_info_graphics()

keyword description

184 Chapter 9: Image, SVG and Template Functions

9.3 Templates (Form XObjects)
Note We use the term »template« as a synonym for PDF Form XObjects. The template functions de-

scribed in this section are unrelated to variable data processing with PDFlib Blocks. Use PDF_
fill_*block() to fill Blocks prepared with the PDFlib Block Plugin (see Chapter 11, »Block Filling
Functions (PPS)«, page 209).

C++ Java C# int begin_template_ext(double width, double height, String optlist)
Perl PHP int begin_template_ext(float width, float height, string optlist)

C int PDF_begin_template_ext(PDF *p, double width, double height, const char *optlist)

Start a template definition.

width, height The dimensions of the template’s bounding box in points. The width
and height parameters can be 0. In this case they must be supplied in PDF_end_template_
ext() or with the boundingbox option. Ultimately both values must be different from 0
unless the watermark option is specified.

optlist Option list specifying template-related properties
> Common XObject options according to Table 9.11):

associatedfiles, defaultcmyk, defaultgray, defaultrgb, iconname, layer, metadata, pdfvt,
reference, transform, transparencygroup

> Template options according to Table 9.9: boundingbox, topdown, watermark

Returns A template handle which can be used in subsequent calls to PDF_fit_image(), PDF_info_
image(), and various options of other functions, or -1 (in PHP: 0) in case of an error.

Details This function resets all text, graphics, and color state parameters to their default values,
and establishes a coordinate system according to the topdown option.

Template size: in the simplest case width and height are supplied in PDF_begin_
template_ext(). However, if they are not yet known they can also be specified as zero. In
this case they must be supplied in the corresponding call to PDF_end_template_ext().

If the reference option has been supplied the size is determined automatically from
the size of the target PDF page, and no values must be specified. However, if width and
height are specified nevertheless they will be used, but are automatically adjusted to the
same aspect ratio as the target page.

Watermarks. If the watermark option is supplied, the template defines a watermark
which can be edited or removed in Acrobat. In this case only PDF_fit_textline() can be
used in the template, as well as functions which are allowed in document or object scope.
The bounding box of the Textline defines the width and height of the template; the
width and height parameters and the options boundingbox and transform are ignored.
The bounding box of a watermark’s Textline is calculated from its rotation angle and
size, especially the option boxheight. A Textline used as watermark has a default
boxheight of {ascender descender} instead of {capheight 0} (see Table 6.4, page 130). The pa-
rameters x and y of PDF_fit_textline() are ignored.

The watermark template is automatically placed on all pages specified by the subop-
tions startpage/endpage/pagesubset. It is marked as an Artifact. The following rules must
be obeyed for creating and using the watermark template:

> The watermark template must be created before the first page where it is used.

9.3 Templates (Form XObjects) 185

> The watermark option can be used only once per document.
> The watermark template’s handle must not be used in any call to PDF_fit_image() or

any option list with an image handle (e.g. in PDF_add_table_cell()) since the water-
mark is placed automatically.

The following rules must be obeyed regarding the watermark template’s contents:
> PDF_fit_textline() must be called exactly once, and its text parameter must not be

empty.
> Only the following color spaces can be used for the fillcolor and strokecolor options:

gray, iccbasedgray, iccbased with a grayscale or RGB profile, rgb (or an HTML color
name or hexadecimal RGB value), iccbasedrgb

Scope any except object; this function starts template scope, and must always be paired with a
matching PDF_end_template_ext() call.

Table 9.9 Option for PDF_begin_template_ext()

option description

boundingbox (Rectangle) Coordinates of the left, bottom, right, and top edges of the bounding box of the pattern cell
or template. The bounding box can be used to clip the pattern cell or template, or to create white space
around the pattern cell or template. Default: {0 0 width height}

topdown (Boolean) If true, the origin of the coordinate system at the beginning of the page is located in the top
left corner of the pattern cell or template, and y coordinates increase downwards; otherwise the default
coordinate system is used. Default: false

watermark (Option list; can only be used once per document) Create an editable watermark according to the options
in Table 9.10

Table 9.10 Suboptions for the watermark option of PDF_begin_template_ext()

option description

endpage (Integer or keyword) Number of the last page with a watermark, or the keyword last for the final page.
Default: last

fixedprint (Boolean) Keep position and size of the watermark constant when printing on different page sizes. De-
fault: false

horizalign (Keyword) One of keywords left/center/right to specify the relative horizontal position of the water-
mark’s bounding box on the page1. Default: center

horizshift (Float) Shift from the relative horizontal position in points. Default: 0

location (Keyword) Specify whether the watermark appears behind or on top of other page contents (default:
ontop):

behind The watermark appears behind the page contents. If location=behind is supplied all future
calls to PDF_begin_page_ext() in the same document must supply a value different from 0
for the width and height parameters.

ontop The watermark appears on top of the page contents.

onprint (Boolean; requires PDF 1.5; the value false is not allowed in PDF/A-2/3, PDF/X-4/5, and PDF/UA-1) If true,
the watermark is shown when printing the page. Default: true

onscreen (Boolean; requires PDF 1.5; the value false is not allowed in PDF/A-2/3, PDF/X-4/5, and PDF/UA-1) If true,
the watermark is shown when displaying the page on screen. Default: true

opacity (Float or percentage; must have the value 1 in PDF/A-1 and PDF/X-1/3) Opacity value for painting the wa-
termark on the page. Default: 1

186 Chapter 9: Image, SVG and Template Functions

C++ Java C# void end_template_ext(double width, double height)
Perl PHP end_template_ext(float width, float height)

C void PDF_end_template_ext(PDF *p, double width, double height)

Finish a template definition.

width, height The dimensions of the template’s bounding box in points. If width or
height is 0, the value supplied in PDF_begin_template_ext() are used. Otherwise the val-
ues supplied in the boundingbox option and the width and height parameters of PDF_
begin_template_ext() are overridden. However, if the reference or watermark option has
been specified in the corresponding call to PDF_begin_template_ext(), the values sup-
plied to PDF_end_template_ext() are ignored.

Scope template; this function terminates template scope, and must always be paired with a
matching PDF_begin_template_ext() call.

pagessubset (Keyword) Select a subset of the pages in the range specified by startpage and endpage (default: all):
all Select all pages in the range.
even Select all pages in the range with an even number.
odd Select all pages in the range with an odd number.

scale (Float, percentage, or keyword) Scaling factor of the watermark’s bounding box relative to the target
page. Scaling preserves the aspect ratio of the Textline’s bounding box (default: 1). Supported keyword:
none No scaling

startpage (Integer) Number of the first page with a watermark (the first page has number 1). If the next page, i.e.
the page created with the next call to PDF_begin_page_ext(), has a higher number than the one speci-
fied in startpage, the value is increased to the next page. Default: the next page

vertalign (Keyword) One of keywords bottom/center/top to specify the relative vertical position of the water-
mark’s bounding box on the page1. Default: center

vertshift (Float) Shift from the relative vertical position in points. Default: 0

1. The page size is defined by the CropBox if present, otherwise the MediaBox.

Table 9.10 Suboptions for the watermark option of PDF_begin_template_ext()

option description

9.4 Common XObject Options 187

9.4 Common XObject Options
The options listed in this section apply to the following functions which create Form
XObjects or Image XObjects:

> PDF_load_image() with the templateoptions option creates a Form XObject, otherwise
an Image XObject which supports a subset of the options below

> PDF_load_graphics() with the templateoptions option
> PDF_open_pdi_page()
> PDF_begin_template_ext()

The following XObject options according to Table 9.11 are available (not all options ap-
ply to all functions above):
associatedfiles, defaultcmyk, defaultgray, defaultrgb, georeference, iconname, layer, metadata,
pdfvt, reference, transform, transparencygroup

PDF/A Some options are restricted.

PDF/X Some options are restricted. The reference option is relevant for PDF/X-5g/5pg.

PDF/VT The pdfvt option is relevant for PDF/VT. The generated XObject is marked as encapsulat-
ed if certain conditions are met (see PDFlib Tutorial for details).

Table 9.11 Common XObject options for PDF_load_image(), PDF_open_pdi_page(), and PDF_begin_template_ext() as
well as PDF_load_graphics() with the templateoptions option

option description

associatedfiles (List of asset handles; only for PDF 2.0 and PDF/A-3) Asset handles for associated files. The files must have
been loaded with PDF_load_asset() and type=attachment.

defaultgray
defaultrgb
defaultcmyk

(ICC handle or keyword; in PDF_load_image() only with templateoptions; not for PDF_open_pdi_
page(); not for PDF/X-1a) Set a default gray, RGB, or CMYK color space for the template according to the
supplied ICC profile handle. The option defaultrgb also supports the keyword srgb. The specified color
space is used to map device-dependent gray, RGB, or CMYK colors on the template (but not on nested
templates).

georeference (Option list; PDF 1.7ext3; only for PDF_load_image()) Description of an earth-based coordinate system
associated with the XObject to use for geospatial measuring; see Section 12.7, »Geospatial Features«,
page 246, for details.

iconname (Hypertext string) Attach a name to a Form XObject so that it can be referenced via JavaScript, e.g. to use
the XObject as an icon for form fields.

layer (Layer handle; PDF 1.5) Layer to which the XObject will belong unless another layer has been activated
with PDF_begin_layer() prior to placing the object. Calling PDF_begin_layer() to activate a layer before
placing the XObject overrides the object’s layer option. Call PDF_end_layer() before placing the object to
make sure that the object’s layer option will not be overridden.

metadata (Option list) Metadata for the XObject (see Section 14.2, »XMP Metadata«, page 263).

pdfvt (Option list; only for PDF/VT) PDF/VT suboptions for the XObject according to Table 9.14

188 Chapter 9: Image, SVG and Template Functions

reference (Option list; deprecated; in PDF_load_image() only with templateoptions; not allowed in PDF/A, PDF/
X-1a/3/4, PDF/X-5n, PDF/VT-1, and PDF/UA-1) Reference a page in an external PDF (the »target« docu-
ment). The XObject is used as proxy for this reference. See Table 9.13 for available suboptions.
PDF_open_pdi_page(): The target PDF must contain the page addressed with the pagelabel or page-
number suboption. The size of the reference page is determined according to the pdiusebox suboption of
the reference option. It can be retrieved with the imagewidth/imageheight keywords of PDF_info_
image(). The proxy page and the target page must have compatible page geometry, i.e. the page boxes
selected with the pdiusebox option must be identical to make sure that both pages can be placed at the
same location on the page.
PDF_begin_template_ext() and PDF_load_image(): If width and height have been supplied with the
value 0 the template size can be retrieved with the imagewidth/imageheight keywords of PDF_info_
image(). If width and height have been supplied with values different from 0, the following suboptions
can also be used (see Table 6.1): fitmethod, position.
PDF_load_graphics(): the graphic will be adjusted to the size of the target page; the following subop-
tions can also be used (see Table 6.1): fitmethod, position.
PDF/X-5g/5pg: the target must conform to one of the following standards: PDF/X-1a:2003, PDF/X-3:2003,
PDF/X-4, PDF/X-4p, PDF/X-5g, or PDF/X-5pg.
PDF/VT-2: the target must conform to one of the following standards: PDF/X-1a:2003, PDF/X-3:2003,
PDF/X-4, PDF/X-4p, or PDF/VT-1.

transform (Transformation list according to Table 9.12; ignored if the cloneboxes option of PDF_open_pdi_page()
has been supplied for the page; not for PDF_load_image()) A list which defines the transformation that
maps the page, pattern, or template coordinate system to the default coordinate system of the target
page, template or glyph description where the page/pattern/template is used. The concatenation of the
page, pattern or template matrix with that of the target page, template or glyph description establishes
the coordinate system within which all graphics objects in the page, pattern or template are interpreted.
The list contains pairs of a keyword and a float list according to Table 9.12 where each pair defines a
transformation. The interpretation and length of the float list depends on the transformation. The trans-
formations are applied in the specified order. The elements within a pair may be separated with equals
signs ’=’. Default: no transformations are applied.
Example: transform={rotate=45 translate={100 0}}

Table 9.11 Common XObject options for PDF_load_image(), PDF_open_pdi_page(), and PDF_begin_template_ext() as
well as PDF_load_graphics() with the templateoptions option

option description

9.4 Common XObject Options 189

transparency
group

(Option list or keyword; not for PDF/A-1 and PDF/X-1a/3; PDF_open_pdi_page() and PDF_load_graphics()
enforce auto in PDF/A-2/3 and PDF/X-4/5 modes) Attach a transparency group to the Form XObject. The
following keywords are supported (default: auto):
auto PDF_open_pdi_page(): a transparency group is created which ensures that the placed page is

rendered the same way as before placing it on the output page. In PDF/VT mode a group is
only created if the imported page actually contains transparency.
PDF_load_graphics(): if transparent objects are present in imported graphics a transparency
group is created with a suitable color space.
PDF_load_image() with templateoptions and PDF_begin_template_ext(): same as none

none Don’t create any transparency group.
Alternatively to one of the keywords above, the following suboptions can be used to explicitly create a
transparency group:
colorspace (Keyword or ICC profile handle; required with a value different from none if the template is

used for the softmask option of PDF_create_gstate() with type=luminosity) Blending color
space; see Table 3.9 (option transparencygroup) for supported keywords and restrictions
(default: none).

isolated (Boolean) Specifies whether the transparency group is isolated. All objects in an isolated
group are composited against a transparent initial background, and the result is composited
against the existing page contents. In effect, compositing the group objects (especially the
result of blend modes) is independent of the background: the group is »isolated«. Objects in a
non-isolated group are composited individually against the existing page contents. Default:
false

knockout (Boolean) Specifies whether the transparency group is a knockout group. All objects in a
knockout group are composited directly against the page background (or a transparent
background if the group is isolated) instead of with the preceding elements in the group. In
effect, there is no interaction among objects in the group: each object knocks out earlier
overlapping objects in the group, and the topmost object is composited against the page
background. Default: false

Table 9.12 Keywords and float lists for the transform option of PDF_begin_pattern_ext(), PDF_begin_template_ext(),
PDF_shading_pattern() and PDF_open_pdi_page()

keyword description

align Rotate by the direction vector {dx dy}. The vector {0 0} implies no rotation.

matrix Specify a non-degenerate transformation matrix with six values {a b c d e f}. The keyword current
creates six values comprising the current transformation matrix. This may be useful for creating a trans-
formation which matches the current user coordinate system.

rotate Rotate by {phi}, where the angle phi is measured in degrees counterclockwise from the positive x axis
of the pattern, page or template coordinate system.

scale Scale by {sx sy}. If sy is not provided it is assumed to be equal to sx.

skew Skew (shear) by {alpha beta}, where alpha is measured in degrees counterclockwise from the positive x
axis of the pattern coordinate system and beta is measured clockwise from the positive y axis. Both an-
gles must not be odd multiples of 90°.

translate Translate by {tx ty}. Since translations are compensated when placing the page, this translation
doesn’t have any visible effect for imported PDF pages.

Table 9.11 Common XObject options for PDF_load_image(), PDF_open_pdi_page(), and PDF_begin_template_ext() as
well as PDF_load_graphics() with the templateoptions option

option description

190 Chapter 9: Image, SVG and Template Functions

Table 9.13 Suboptions for the reference option in PDF_begin_template_ext(), PDF_open_pdi_page() as well as PDF_
load_graphics() with the templateoptions option

option description

filename (Name string; required) Name of the file containing the target PDF. This name will be stored in the PDF
and used by the viewer. It will also be used to locate the target PDF locally (i.e. the PDF must exist) unless
the target option has been supplied. It is recommended to use plain base names without any directories.

hypertext-
encoding

(Keyword) Specifies the encoding for the pagelabel option. An empty string is equivalent to unicode. De-
fault: value of the global hypertextencoding option

pagelabel (Hypertext string; must not be combined with pagenumber) Page label of the page to be referenced

pagenumber (Integer) Number of the page to be referenced. The first page has page number 1. Default: 1 (this may be
overwritten by pagelabel, however).

pdiusebox (Keyword; forced to media in PDF/X-5g/5pg) Specifies which box dimensions will be used for determining
the size of the target page. Default: media in PDF/X-5g/5pg mode, else crop.
media Use the MediaBox (which is always present)
crop Use the CropBox if present, else the MediaBox
bleed Use the BleedBox if present, else the CropBox
trim Use the TrimBox if present, else the CropBox
art Use the ArtBox if present, else the CropBox

strongref (Boolean; forced to true in PDF/X-5g/5pg) If true, PDFlib will use the target’s ID entry to create a strong
reference to the target. If the flexibility of swapping targets is desired, this option must be set to false,
and the local target and the target which is ultimately used for rendering the document must have iden-
tical page boxes and rotation entries. Default: true

target (PDF document handle) Handle to the target document retrieved with PDF_open_pdi_document(). The
target PDF must have been opened with the repair=none option and without the password option. Sup-
plying a document handle in addition to the filename may be useful in two situations:
> If many generated documents reference the same target PDF, the target must be opened only once and

the results can be cached internally.
> The filename of the local target is different from the target filename to be stored in the PDF.

9.4 Common XObject Options 191

Table 9.14 Suboptions for the pdfvt option in PDF_load_image(), PDF_open_pdi_page(), PDF_begin_template_ext() as
well as PDF_load_graphics() with the templateoptions option

option description

environment (Hypertext string; required if scope=stream or scope=global) Specifies a PDF/VT environment context,
i.e. an identifier that can be used by a PDF/VT processor to provide a management interface for manag-
ing related XObjects. For example, the customer name or job name could be used to identify the environ-
ment.

scope (Keyword) PDF/VT scope (not related to PDFlib function scope) of the XObject (default: unknown):
unknown The scope of the XObject is not known.
singleuse The XObject is referenced only once in the PDF/VT file.
record (Only allowed if the recordlevel option for PDF_begin_document() has been specified) The

XObject is referenced more than once in the pages belonging to a single record, but is not
referenced within other records.

file The XObject is referenced more than once in the PDF/VT file. If the recordlevel option has
been supplied, scope=file should only be used if the XObject is used in more than one record
(and scope=record otherwise).

stream (Requires the environment option; only allowed for documents which will be included in a
PDF/VT-2s stream) The XObject or an equivalent XObject is referenced more than once in the
PDF/VT-2s stream containing the PDF/VT file.

global (Requires the environment option) The XObject or an equivalent XObject is referenced in more
than one PDF/VT file or PDF/VT-2s stream.

xid (String; only for PDF_begin_template_ext() since identifiers are automatically created for all other types
of XObjects) Unique identifier for the Form XObject created for the template. It is strongly recommended
to provide this identifier in the format suggested in ISO 16612-2:2010, section 6.7.2, i.e. a URI with the
uuid scheme and 128-bit number according to RFC 4122. The identifiers should be identical for template
definitions which create equivalent PDF Form XObjects according to PDF/VT (i.e. templates which create
the same visual output). Templates which are not equivalent must have different identifiers or no identi-
fier at all.
It is strongly recommended to supply the xid option for templates with scope=stream or scope=global
to allow caching of Form XObjects across documents.
Example xid in the recommended format: uuid:1228c416-48f2-e817-ad69-8206e41dca2d

192 Chapter 9: Image, SVG and Template Functions

10.1 Document Functions 193

10 PDF Import (PDI) and pCOS Functions
Note All functions described in this chapter require the PDF import library (PDI) which is included in

PDFlib+PDI and PDFlib Personalization Server (PPS), but not in the base PDFlib product. Please
visit our Web site for more information on obtaining PDI.

10.1 Document Functions

C++ Java C# int open_pdi_document(String filename, String optlist)
Perl PHP int open_pdi_document(string filename, string optlist)

C int PDF_open_pdi_document(PDF *p, const char *filename, int len, const char *optlist)

Open a disk-based or virtual PDF document and prepare it for later use.

filename (Name string; will be interpreted according to the global filenamehandling op-
tion, see Table 2.3) Name of the PDF file.

optlist An option list specifying PDF open options:
> General option: errorpolicy (see Table 2.1)
> PDF document options according to Table 10.1:

acceptdynamicxfa, checkoutputintentprofile, infomode, inmemory, passwordrepair,
requiredmode, shrug

> Tagged PDF processing options according to Table 10.1:
checktags, usetags

> Layer processing options according to Table 10.1:
parentlayer, parenttitle, uselayers

len (C language binding only) Length of filename (in bytes). If len = 0 a null-terminated
string must be provided.

Returns A PDI document handle which can be used for processing individual pages of the docu-
ment or for querying document properties. A return value of -1 (in PHP: 0) indicates that
the PDF document couldn’t be opened. An arbitrary number of PDF documents can be
opened simultaneously. If the function call fails you can request the reason of the fail-
ure with PDF_get_errmsg().

The error behavior can be changed with the errorpolicy option.

Details By default, the document is rejected if at least one of the following conditions is true:
> The document is damaged and couldn’t be repaired (or repair=none was specified).
> The document is encrypted, but the corresponding master password has not been

supplied in the password option. The shrug option can be used to enable page import
from protected documents under certain conditions (see PDFlib Tutorial).

In the second case, the option requiredmode=minimum or requiredmode=restricted can be
used to open the document nevertheless. This may be useful to query information
about the PDF using the PDF_pcos_get_*() functions, such as encryption, document info
fields, etc.

194 Chapter 10: PDF Import (PDI) and pCOS Functions

In order to get more detailed information about the nature of a PDF import-related
problem (wrong PDF file name, bad PDF data, etc.), use PDF_get_errmsg() to receive a
more detailed error message.

Scope any

Table 10.1 Options for PDF_open_pdi_document()

option description

accept-
dynamicxfa

(Boolean) If true, dynamic XFA forms can successfully be opened. Querying pCOS paths is the only rea-
sonable activity. Calling PDF_open_pdi_page() will fail since no pages can be imported. Default: false

checktags (Keyword) Specifies whether the structure element nesting rules (see PDFlib Tutorial) are checked in PDF_
open_pdi_page() for imported structure elements. Supported keywords (default: none):
none Tag nesting rules are not enforced. This setting is default since many real-world documents

violate structure element nesting rules, and couldn’t otherwise be imported.
relaxed Similar to strict except that a few rules are not enforced (see PDFlib Tutorial).
strict If an imported tag violates the nesting rules the call to PDF_open_pdi_page() will fail.

checkoutput-
intentprofile

(Boolean, only relevant for PDF/A and PDF/X) If true, the number of color components of an output in-
tent is checked against the number of components in the associated ICC profile. This guards against in-
consistent input documents. Setting this option to false reduces memory requirements, but should be
used only if the input documents are known to contain consistent output intent profiles. Default: true

infomode (Boolean) If true, the document will be opened such that information can be queried with the pCOS in-
terface, but the pages can not be imported into the current output document with PDF_open_pdi_
page(). The following documents can be opened when infomode=true: encrypted PDFs where the pass-
word is not known (exception: PDF 1.6 and above documents created with the Distiller setting »Object
Level Compression: Maximum«). Default: false if requiredmode=full, otherwise true

inmemory (Boolean) If true, PDI will load the complete file into memory and process it from there. This can result in
a tremendous performance gain on some systems (especially z/OS) at the expense of memory usage. If
false, individual parts of the document will be read from disk as needed. Default: false

parentlayer (Layer handle; ignored if the input document doesn't contain any layers or uselayers=false) Insert all
layer definitions imported from the document as children of the specified layer. If the specified layer has
been activated anywhere in the output document it is used as parent; otherwise it is used as title (separa-
tor) only. Default: no parent layer

parenttitle (Hypertext string; ignored if the input document doesn't contain any layers or uselayers=false) Add a
title layer which does not directly control the visibility of page contents, but serves as a hierarchical sep-
arator for the imported layer definitions. Default: no parent title

password (String) Master password required to open a protected PDF document for import. If no password has
been supplied at all for an encrypted document the document handle can only be used to query its en-
cryption status. The shrug option can be used to import pages from protected documents under certain
conditions (see PDFlib Tutorial).

repair (Keyword) Specifies how to treat damaged PDF input documents. Repairing a document takes more time
than normal parsing, but may allow processing of certain damaged PDFs. Note that some documents
may be damaged beyond repair. Supported keywords (default: auto):
auto Repair the document only if problems are detected while opening the PDF.
force Unconditionally try to repair the document, regardless of whether or not it has problems.
none No attempt will be made at repairing the document. If there are problems in the PDF the

function call will fail.

10.1 Document Functions 195

C int PDF_open_pdi_callback(PDF *p, void *opaque, pdf_off_t filesize,
size_t (*readproc)(void *opaque, void *buffer, size_t size),
int (*seekproc)(void *opaque, pdf_off_t offset), const char *optlist)

Open a PDF document from a custom data source and prepare it for later use.

opaque A pointer to some user data that might be associated with the input PDF docu-
ment. This pointer will be passed as the first parameter of the callback functions, and
can be used in any way. PDI will not use the opaque pointer in any other way.

filesize The size of the complete PDF document in bytes.

readproc A callback function which copies size bytes to the memory pointed to by
buffer. If the end of the document is reached it may copy less data than requested. The
function must return the number of bytes copied.

seekproc A callback function which sets the current read position in the document.
offset denotes the position from the beginning of the document (0 meaning the first
byte). If successful, this function must return 0, otherwise -1.

optlist An option list specifying PDF open options; all options of PDF_open_pdi_
document() are supported.

Returns A PDI document handle which can be used for processing individual pages of the docu-
ment or for querying document properties. A return value of -1 indicates that the PDF
document couldn’t be opened. An arbitrary number of PDF documents can be opened
simultaneously. The return value can be used until the end of the enclosing document
scope. If the function call fails you can request the reason of the failure with PDF_get_
errmsg().

Details This is a specialized interface for applications which retrieve arbitrary chunks of PDF
data from some data source instead of providing the PDF document in a disk file or in
memory.

requiredmode (Keyword) The minimum pcos mode (minimum/restricted/full) which is acceptable when opening
the document. The call will fail if the resulting pcos mode would be lower than the required mode. If the
call succeeds it is guaranteed that the resulting pcos mode is at least the one specified in this option.
However, it may be higher; e.g. requiredmode=minimum for an unencrypted document will result in full
mode. Default: full

shrug (Boolean) If true, the shrug feature will be activated to enable page import from protected documents
under certain conditions (see PDFlib Tutorial). By using the shrug option you assert that you honor the
PDF document author’s rights. Default: false

uselayers (Boolean; only relevant if the input contains layers) If true, all layer definitions used on any of the im-
ported pages are imported. This option affects only layer definitions, but not the actual layer contents
since PDI always imports the contents of all layers on a page. In order to work with uselayers=false the
generated document must not contain any layers at all, i.e. all PDF documents with layers must be
opened with uselayers=false and PDF_define_layer() must not be called. Default: true

usetags (Boolean; only relevant for tagged PDF input and output; must be true in PDF/UA-1 mode) If true, the
structure hierarchy of the imported document is read so that structure element tags can later be import-
ed along with the pages. Default: false in object scope, otherwise true

Table 10.1 Options for PDF_open_pdi_document()

option description

196 Chapter 10: PDF Import (PDI) and pCOS Functions

Scope any; in object scope a PDI document handle can only be used to query information from
a PDF document.

Bindings Only available in the C binding. The pdf_off_t type is defined conditionally in pdflib.h. It
usually holds 64-bit values as offset type for large files beyond 2GB. The application
must be built with Large File Support (LFS).

C++ Java C# void close_pdi_document(int doc)
Perl PHP close_pdi_document(int doc)

C void PDF_close_pdi_document(PDF *p, int doc)

Close all open PDI page handles, and close the input PDF document.

doc A valid PDF document handle retrieved with PDF_open_pdi_document().

Details This function closes a PDF import document, and releases all resources related to the
document. All document pages which may be open are implicitly closed. The document
handle must not be used after this call. A PDF document should not be closed if more
pages are to be imported. Although you can open and close a PDF import document an
arbitrary number of times, doing so may result in unnecessary large PDF output files.

Scope any

10.2 Page Functions 197

10.2 Page Functions

C++ Java C# int open_pdi_page(int doc, int pagenumber, String optlist)
Perl PHP int open_pdi_page(int doc, int pagenumber, string optlist)

C int PDF_open_pdi_page(PDF *p, int doc, int pagenumber, const char* optlist)

Prepare a page for later use with PDF_fit_pdi_page().

doc A valid PDF document handle retrieved with PDF_open_pdi_document().

pagenumber The number of the page to be opened. The first page has page number 1.

optlist An option list specifying page-specific options:
> General options: errorpolicy (see Table 2.1) and hypertextencoding (see Table 2.3)
> PDF page options according to Table 10.2:

boxexpand, checktransgroupprofile, clippingarea, cloneboxes, forcebox, ignorepdfversion,
initgraphicsstate, pdiusebox, usetags

> Common XObject options (see Table 9.11):
associatedfiles, iconname, layer, metadata, pdfvt, reference, transform, transparencygroup

Returns A PDI page handle which can be used for placing pages with PDF_fit_pdi_page(). A return
value of -1 (in PHP: 0) indicates that the page couldn’t be opened. If the function call fails
you can request the reason of the failure with PDF_get_errmsg(). The returned handle
can be used until the end of the enclosing document scope..

The error behavior can be changed with the errorpolicy option.

Details This function copies all data comprising the imported page to the output document,
but does not have any visible effect on the output. In order to actually place the import-
ed page somewhere in the generated output document, PDF_fit_pdi_page() must be
used. This function fails in the following cases:

> The document uses a PDF version which is incompatible to the current PDF docu-
ment. For PDF versions up to PDF 1.6 all versions up to and including the same ver-
sion are compatible. PDF 1.7, PDF 1.7ext3, PDF 1.7ext8 and PDF 2.0 are all compatible to
each other as far as page import with PDI is concerned. However, in PDF/A mode the
input PDF version number is ignored since PDF version headers must be ignored in
PDF/A.

> The document is not compatible to the current PDF/A, PDF/X, PDF/VT or PDF/UA
output conformance level, or uses an incompatible output intent.

> If the document contains an inconsistent PDF/A or PDF/X output intent no pages
can be imported.

In order to get more detailed information about a problem related to PDF import (bad
PDF data, etc.) you can call PDF_get_errmsg().

If the imported page contains referenced XObjects, PDF_open_pdi_page() copies both
proxy and reference to the target.

An arbitrary number of pages can be opened simultaneously. If the same page is
opened multiply, different handles will be returned, and each handle must be closed ex-
actly once.

PDF/A The imported document must be compatible to the current PDF/A output conformance
level (see PDFlib Tutorial for details) and output intent.

198 Chapter 10: PDF Import (PDI) and pCOS Functions

PDF/X The imported document must be compatible to the current PDF/X output conformance
level (see PDFlib Tutorial for details), and must use the same output intent as the gener-
ated document.

PDF/X-4/5: the imported page is rejected if it uses a CMYK ICC profile which is identi-
cal to the generated document’s output intent profile.

PDF/VT The imported document must be compatible to the current PDF/VT output level (see
PDFlib Tutorial) and must use the same output intent as the generated document.
Document Part Metadata (DPM) in the imported document is not imported. This call
may fail if the usestransparency=false option was specified in PDF_begin_document() , but
the imported page contains transparency nevertheless.

The Form XObject created from the imported page is marked as encapsulated if cer-
tain conditions are met (see PDFlib Tutorial).

PDF/UA The imported document must conform to PDF/UA. The rolemap of the imported docu-
ment must be compatible with the mapping provided by the rolemap option of PDF_
begin_document() (see PDFlib Tutorial for details). This means that custom element
types must not be mapped to different standard types by the rolemap option (or previ-
ously imported documents) and the rolemap of the imported document.

The heading structure of the imported page must be compatible with the structure
type of the generated document, i.e. if structuretype=weak only H1, H2, etc. (but not H)
must be used on the page; if structuretype=strong only H (but not H1, H2, etc.) must be
used on the imported page. Pages with both numbered and unnumbered headings are
rejected.

Scope any except object

Table 10.2 Options for PDF_open_pdi_page()

option description

boxexpand (Float or list with four floats) Expand the page box selected via the pdiusebox option on all four sides by
the same amount (if one value is provided) or on the left/right/bottom/top sides individually (if four val-
ues are provided). Negative values are allowed to reduce the page size. This option may be used to place
content which is located outside of all page boxes of the imported page, or to add margins. Default: 0

checktrans-
groupprofile

(Boolean, only relevant for PDF/A and PDF/X) If true and the imported page contains a transparency
group, its color space is checked for consistency and compatibility with the generated output document.
This guards against inconsistent input documents and color space conflicts which could lead to non-con-
forming PDF/X or PDF/A output. Setting this option to false reduces memory requirements, but should
be used only if the imported page is known to contain a conforming transparency group (if any). Default:
true

clippingarea (Keyword) Specify which of the page boxes of the imported page will be used for clipping. Content out-
side the specified area will not be visible after placing the imported page on a new page. Supported key-
words (default: pdiusebox):
art Use the ArtBox if present, else the CropBox
bleed Use the BleedBox if present, else the CropBox
crop Use the CropBox if present, else the MediaBox
media Use the MediaBox (which is always present)
pdiusebox If cloneboxes is specified use the MediaBox, otherwise the box specified in the pdiusebox

option
trim Use the TrimBox if present, else the CropBox

10.2 Page Functions 199

C++ Java C# void close_pdi_page(int page)
Perl PHP close_pdi_page(int page)

C void PDF_close_pdi_page(PDF *p, int page)

Close the page handle and free all page-related resources.

page A valid PDF page handle (not a page number!) retrieved with PDF_open_pdi_
page().

Details This function closes the page associated with the page handle identified by page, and re-
leases all related resources. page must not be used after this call.

Scope any except object

cloneboxes (Boolean; not allowed if boxexpand, forcebox, or pdiusebox is supplied; must match the cloneboxes op-
tion in PDF_fit_pdi_page()) If true, the page will be prepared for box cloning with the cloneboxes op-
tion of PDF_fit_pdi_page(). Default: false

forcebox (Rectangle) Force the page box to the specified values. This option overrides the pdiusebox and
boxexpand options. It may be used to place content which is located outside of all page boxes of the im-
ported page. The values must be chosen carefully if the imported page contains a /Rotate key. The
boxexpand option is preferable since it works regardless of any /Rotate key. Default: the box selected
with the pdiusebox option

ignore-
pdfversion

(Boolean) If true, the PDF version number of the input PDF document is ignored, i.e. pages from docu-
ments with a higher PDF version than the current PDF output document can be imported. This may be
useful for PDF documents with a higher PDF version which are nevertheless fully compatible to the cur-
rent PDF output level. The user is responsible for making sure that the imported pages do not violate the
PDF output compatibility level. Default: false in general, but true in PDF/A and PDF/X mode

initgraphics-
state

(Boolean; forced to true in PDF/VT mode) If true, all graphics state parameters are initialized explicitly
with the default values for the imported page. This prevents the current graphics state parameters from
being applied to imported pages which rely on the defaults instead of explicitly setting all values. De-
fault: false

pdiusebox (Keyword; not allowed if cloneboxes is supplied) Specifies which box dimensions will be used for deter-
mining an imported page’s size. The box size will be used for scaling operations in PDF_fit_pdi_page().
This box will also determine the visible contents of the page unless modified with the clippingarea op-
tion. Default: crop.
art Use the ArtBox if present, else the CropBox
bleed Use the BleedBox if present, else the CropBox
crop Use the CropBox if present, else the MediaBox
media Use the MediaBox (which is always present and must enclose all other boxes)
trim Use the TrimBox if present, else the CropBox

usetags (Boolean; only relevant for tagged PDF input and output and if the document has been opened with
usetags=true) If true, the structure tags of the imported page will be copied to the structure hierarchy
of the generated output document. In this case PDF_fit_pdi_page() can only be called in page scope. De-
fault: true

Table 10.2 Options for PDF_open_pdi_page()

option description

200 Chapter 10: PDF Import (PDI) and pCOS Functions

C++ Java C# void fit_pdi_page(int page, double x, double y, String optlist)
Perl PHP fit_pdi_page(int page, float x, float y, string optlist)

C void PDF_fit_pdi_page(PDF *p, int page, double x, double y, const char *optlist)

Place an imported PDF page on the output page subject to various options.

page A valid PDF page handle (not a page number!) retrieved with PDF_open_pdi_
page(). The page handle must not have been closed.

x, y The coordinates of the reference point in the user coordinate system where the
page will be located, subject to various options.

optlist An option list specifying page options:
> Fitting options according to Table 6.1:

blind, boxsize, fitmethod, matchbox, orientate, position, rotate, scale, showborder
> Options for page processing according to Table 9.3: adjustpage, gstate
> The cloneboxes option according to Table 10.3.
> Option for abbreviated structure element tagging according to Table 14.5 (only al-

lowed in page scope): tag

Details This function is similar to PDF_fit_image(), but operates on imported PDF pages instead.
A tagged page (i.e. tagged PDF is created and the page is imported with usetags=true

from a tagged PDF) cannot be placed more than once.
In Tagged PDF mode it is recommended to use PDF_info_pdi_page() with the fitting-

possible keyword before calling PDF_fit_pdi_page() to check whether PDF_fit_pdi_page()
will succeed (and avoid an exception in case of a failure).

Scope page, pattern, template, glyph; however, if a page from a Tagged PDF document has been
loaded with usetags=true this function can only be called in page scope.

C++ Java C# double info_pdi_page(int page, String keyword, String optlist)
Perl PHP float info_pdi_page(int page, string keyword, string optlist)

C double PDF_info_pdi_page(PDF *p, int page, const char *keyword, const char *optlist)

Perform formatting calculations for a PDI page and query the resulting metrics.

page A valid page handle retrieved with PDF_open_pdi_page().

Table 10.3 Additional option for PDF_fit_pdi_page()

option description

cloneboxes (Boolean; not allowed if the topdown option has been supplied in PDF_begin_page_ext(); must match
the cloneboxes option in PDF_open_pdi_page(); only in page scope).
Setting this option to true has the following consequences (Default: false):
> All of the Rotate, MediaBox, TrimBox, ArtBox, BleedBox and CropBox entries which are present in the

imported page will be copied to the current output page.
> The page contents will be placed such that the input page is duplicated; the user cannot change posi-

tion or size of the placed page. The parameters x, y and the following options will therefore be ignored:
adjustpage, boxsize, fitmethod, orientate, position, rotate, scale. Duplication of the input page
is only possible if the default coordinate system is active when calling PDF_fit_pdi_page().

> Page boxes created by the cloneboxes option override the artbox, bleedbox, cropbox, trimbox,
mediabox, and rotate options as well as the width and height parameters of PDF_begin_page_ext().

10.2 Page Functions 201

keyword A keyword specifying the requested information:
> Keywords for querying the results of object fitting according to Table 6.3:

boundingbox, fitscalex, fitscaley, height, objectheight, objectwidth, width, x1, y1, x2, y2, x3,
y3, x4, y4

> Page-related keywords according to Table 10.4:
mirroringx, mirroringy, pageheight, pagewidth, rotate, xid

> Keywords related to Tagged PDF according to Table 10.4:
fittingpossible, lang, topleveltag, topleveltagcount

optlist An option list specifying scaling and placement details:
> General option: errorpolicy (see Table 2.1)
> Fitting options according to Table 6.1 (if the PDF page has been opened with the

cloneboxes option of PDF_open_pdi_page() these options will be ignored):
boxsize, fitmethod, matchbox, orientate, position, rotate, scale

> Options for page processing according to Table 9.3 don’t make sense; however, they
can be supplied but are ignored to facilitate unified option lists for PDF_fit_pdi_
page() and PDF_info_pdi_page(): adjustpage, gstate

> Option for abbreviated structure element tagging according to Table 14.5: tag
> Option for selecting one of the page’s top-level structure elements to retrieve some

information from it: index

Returns The value of some page property as requested by keyword. If the requested property is
not available for the page, the function returns 0. If an object handle is requested (e.g.
clippingpath) this function will return a handle to the object, or -1 (in PHP: 0) if the object
is not available. If the requested keyword produces text, a string index is returned, and
the corresponding string must be retrieved with PDF_get_string().

Details This function performs all calculations required for placing the imported page accord-
ing to the supplied options, but will not actually create any output on the page. The ref-
erence point for placing the page is assumed to be {0 0}. If the cloneboxes option of PDF_
open_pdi_page() has been supplied, the page will be placed on the same location (rela-
tive to the page boxes) as in the original page.

PDF/UA The check for fittingpossible is stricter than in non-PDF/UA mode.

Scope any except object

202 Chapter 10: PDF Import (PDI) and pCOS Functions

Table 10.4 Keywords for PDF_info_pdi_page()

keyword description

fittingpossible (Only relevant for Tagged PDF output) 0 if the page cannot be placed (i.e. PDF_fit_pdi_page()
would throw an exception) for one of the following reasons:
> One of the page’s top-level tags is not allowed under the currently active tag according to the

nesting rules for structure elements.
> The non-empty page is untagged or contains no structure elements, and direct content is not

allowed as child of the currently active tag.
> The page has already been placed.
> PDF/UA-1 with weak document structure: there is a gap in the heading level numbers between

the current structure element and its parents, and the imported structure sub-hierarchy.
The value 1 is returned if the page can be placed in the current context. The tag option of PDF_fit_
pdi_page() can be supplied and is taken into account for the result. Only the tagname suboption
of the tag option is evaluated; no other suboptions should be supplied.
Since the result is valid only for the current context this keyword should be used immediately be-
fore attempting to place a page.

lang String index for the Lang attribute of one of the imported page’s top-level structure elements, or
-1 if no Lang attribute could be determined. The index option can be used to select one of the top-
level elements if there is more than one.

mirroringx,
mirroringy

Horizontal or vertical mirroring of the page (expressed as 1 or -1) according to the supplied op-
tions

pageheight,
pagewidth

Original page height and width in points

rotate If cloneboxes=true: the rotation angle of the imported page in degrees, i.e. the value of the
page’s Rotate key. Possible values are 0, 90, 180, and 270).
If cloneboxes=false: always 0

topleveltag String index for the name of one of the imported page’s top-level structure elements if the page
has been opened with usetags=true and contains marked content associated with a structure el-
ement, otherwise -1 (e.g., for a page representing an Artifact). The index option can be used to
select one of the top-level elements if there is more than one. If the tag is a custom element
which is rolemapped in the imported document’s rolemap, the corresponding standard element
name is reported, and not the custom element name.

topleveltagcount Number of structure elements at the top level of the imported page’s structure hierarchy. The
lang and topleveltag keywords can be used to retrieve information about these elements, using
the index option to select one. 0 is returned if no structure elements are imported, either because
the page is untagged or contained no marked content corresponding to a structure element.

xid (Only for PDF/VT) String index for the GTS_XID entry of the page, or -1 if no GTS_XID value has
been assigned. The GTS_XID string can be used in the CIP4/Summary/Content/Referenced meta-
data property for DPM.

Table 10.5 Option for PDF_info_pdi_page()

option description

index (Integer; only relevant for the lang and topleveltag keywords) Selects one of the page’s top-level
structure elements whose attribute is retrieved. The value must be in the range
0..(toplevelcount-1). Default: 0

10.3 Other PDI Processing 203

10.3 Other PDI Processing

C++ Java C# int process_pdi(int doc, int page, String optlist)
Perl PHP int process_pdi(int doc, int page, string optlist)

C int PDF_process_pdi(PDF *p, int doc, int page, const char* optlist)

Process certain elements of an imported PDF document.

doc A valid PDF document handle retrieved with PDF_open_pdi_document().

page If optlist requires a page handle (see Table 10.6), page must be a valid PDF page
handle (not a page number!) retrieved with PDF_open_pdi_page(). The page handle must
not have been closed. If optlist does not require any page handle, page must be -1 (in PHP:
0).

optlist An option list specifying PDI processing options:
> General option: errorpolicy (see Table 2.1)
> PDI processing options according to Table 10.6: action, block

Returns The value 1 if the function succeeded, or an error code of -1 (in PHP: 0) if the function call
failed. If errorpolicy=exception this function will throw an exception in case of an error. If
no Blocks were found on the input page for action=copyallblocks the function returns 1.

PDF/A The output intent can be set using this function with the copyoutputintent option or
with PDF_load_iccprofile(). If only device-independent colors are used in the document
no output intent is required.

PDF/X The output intent must be set using this function with the copyoutputintent option or
with PDF_load_iccprofile().

Scope document for action=copyoutputintent,
page for action=copyallblocks and action=copyblock

Table 10.6 Options for PDF_process_pdi()

option description

action (Keyword; required; this option does not require a page handle) Specifies the kind of PDF processing:
copyoutputintent

(Doesn’t do anything if the output document neither conforms to PDF/X nor PDF/A) Copy the
PDF/X or PDF/A output intent ICC profile of the imported document to the output document.
The second and subsequent attempts to copy an output intent are ignored. If the document
contains more than one output intent the first one is used. Standard output intents (without
an embedded ICC profile) cannot be copied with this method.
If the input and output documents conform to PDF/X-4p or PDF/X-5pg/5n the reference to the
external output intent ICC profile is copied. If a referenced profile is embedded the attached
profile is also copied. The option action=copyoutputintent is not allowed if the input
conforms to PDF/X-4p/5pg/5n, but not the output.

copyallblocks
(Only available in PPS) Copy all PDFlib Blocks from a page of the input document to the
current output page according to the block option.

copyblock (Only available in PPS) Copy a PDFlib Block from a page of the input document to the current
output page according to the block option.

204 Chapter 10: PDF Import (PDI) and pCOS Functions

block (Option list; required for action=copyallblocks and action=copyblock) Specify details of the Block
copying process. The following suboptions are supported:
blockname

(Name string; only for action=copyblock and required in this case) Name of the Block
outputblockname

(Name string; only for action=copyblock) Name under which the Block will be stored in the
output page. Default: value of the blockname option

pagenumber
(Integer; required) The 1-based number of the page in the input document on which the Block
is located.

Table 10.6 Options for PDF_process_pdi()

option description

10.4 pCOS Functions 205

10.4 pCOS Functions
All pCOS functions work with paths designating the target object in the PDF document.
pCOS paths are discussed in detail in the pCOS Path Reference.

Note In evaluation mode pCOS accepts input documents up to a maximum of 1 MB or 10 pages.
However, the following elements can also be queried for larger documents in evaluation mode:
page count, page dimensions, Block details, and all universal pseudo objects.

C++ Java C# double pcos_get_number(int doc, string path)
Perl PHP double pcos_get_number(long doc, string path)

C double PDF_pcos_get_number(PDF *p, int doc, const char *path, ...)

Get the value of a pCOS path with type number or boolean.

doc A valid document handle obtained with PDF_open_pdi_document().

path A full pCOS path for a numerical or boolean object.

Additional parameters (C language binding only) A variable number of additional pa-
rameters can be supplied if the key parameter contains corresponding placeholders (%s
for strings or %d for integers; use %% for a single percent sign). Using these parameters
will save you from explicitly formatting complex paths containing variable numerical
or string values. The client is responsible for making sure that the number and type of
the placeholders matches the supplied additional parameters.

Returns The numerical value of the object identified by the pCOS path. For Boolean values 1 will
be returned if they are true, and 0 otherwise.

Scope any

C++ Java C# string pcos_get_string(int doc, string path)
Perl PHP string pcos_get_string(long doc, string path)

C const char *PDF_pcos_get_string(PDF *p, int doc, const char *path, ...)

Get the value of a pCOS path with type name, number, string, or boolean.

doc A valid document handle obtained with PDF_open_pdi_document().

path A full pCOS path for a name, string, or boolean object.

Additional parameters (C language binding only) A variable number of additional pa-
rameters can be supplied if the key parameter contains corresponding placeholders (%s
for strings or %d for integers; use %% for a single percent sign). Using these parameters
will save you from explicitly formatting complex paths containing variable numerical
or string values. The client is responsible for making sure that the number and type of
the placeholders matches the supplied additional parameters.

Returns A string with the value of the object identified by the pCOS path. For Boolean values the
strings true or false will be returned.

206 Chapter 10: PDF Import (PDI) and pCOS Functions

Details This function raises an exception if pCOS does not run in full mode and the type of the
object is string. However, some objects can nevertheless be retrieved in restricted mode
under certain conditions; see pCOS Path Reference for details.

This function assumes that strings retrieved from the PDF document are text strings.
String objects which contain binary data should be retrieved with PDF_pcos_get_
stream() instead which does not modify the data in any way.

Scope any

Bindings C language binding: The string is returned in UTF-8 format (on IBM System i and IBM Z:
EBCDIC-UTF-8) without BOM. The returned strings are stored in a ring buffer with up to
10 entries. If more than 10 strings are queried, buffers will be reused, which means that
clients must copy the strings if they want to access more than 10 strings in parallel. For
example, up to 10 calls to this function can be used as parameters for a printf() state-
ment since the return strings are guaranteed to be independent if no more than 10
strings are used at the same time.
The returned string is only valid until the next call to any API method; it must also not
be passed as a parameter to other API method calls.

Java, .NET, and Python: the result is provided as Unicode string. If no text is available a
null object is returned.

Perl and PHP language bindings: the result is provided as UTF-8 string. If no text is avail-
able a null object is returned.

RPG language binding: the result is provided as EBCDIC-UTF-16 string.

C++ const unsigned char *pcos_get_stream(int doc, int *len, string optlist, string path)
Java C# final byte[] pcos_get_stream(int doc, String optlist, String path)

Perl PHP string pcos_get_stream(long doc, string optlist, string path)
C const unsigned char *PDF_pcos_get_stream(PDF *p, int doc, int *len, const char *optlist,

const char *path, ...)

Get the contents of a pCOS path with type stream, fstream, or string.

doc A valid document handle obtained with PDF_open_pdi_document().

len (C, C++ language bindings only) A pointer to a variable which will receive the
length of the returned stream data in bytes.

optlist An option list specifying stream retrieval options according to Table 10.7.

path A full pCOS path for a stream or string object.

Additional parameters (C language binding only) A variable number of additional pa-
rameters can be supplied if the key parameter contains corresponding placeholders (%s
for strings or %d for integers; use %% for a single percent sign). Using these parameters
will save you from explicitly formatting complex paths containing variable numerical
or string values. The client is responsible for making sure that the number and type of
the placeholders matches the supplied additional parameters.

Returns The unencrypted data contained in the stream or string. The returned data will be emp-
ty (in C: NULL) if the stream or string is empty, or if the contents of encrypted attach-

10.4 pCOS Functions 207

ments in an unencrypted document are queried and the attachment password has not
been supplied.

If the object has type stream, all filters will be removed from the stream contents (i.e.
the actual raw data will be returned) unless keepfilter=true. If the object has type fstream
or string the data will be delivered exactly as found in the PDF file, with the exception of
ASCII85 and ASCIIHex filters which will be removed.

Details This function will throw an exception if pCOS does not run in full mode. As an excep-
tion, the object /Root/Metadata can also be retrieved in restricted pCOS mode if nocopy=
false or plainmetadata=true. An exception will also be thrown if path does not point to an
object of type stream, fstream, or string.

Despite its name this function can also be used to retrieve objects of type string. Un-
like PDF_pcos_get_string(), which treats the object as a text string, this function will not
modify the returned data in any way. Binary string data is rarely used in PDF, and can-
not be reliably detected automatically. The user is therefore responsible for selecting
the appropriate function for retrieving string objects as binary data or text.

Scope any

Bindings C language binding: If convert=unicode is supplied, the string is returned in UTF-8 format
without BOM (on IBM System i and IBM Z: EBCDIC-UTF8).

C and C++ language bindings: The returned data buffer can be used until the next call to
this function.

Note Python: the result will be returned as 8-bit string (Python 3: bytes).

Table 10.7 Options for PDF_pcos_get_stream()

option description

convert (Keyword; will be ignored for streams which are compressed with unsupported filters) Controls
whether or not the string or stream contents will be converted (default: none):
none Treat the contents as binary data without any conversion.
unicode Treat the contents as textual data (i.e. exactly as in PDF_pcos_get_string()), and

normalize it to Unicode. In non-Unicode-capable language bindings this means the
data is converted to UTF-8 format without BOM.
This option is required for the data type »text stream« in PDF which is rarely used (e.g.
it can be used for JavaScript, although the majority of JavaScripts is contained in
string objects, not stream objects).

keepfilter (Boolean; recommended only for image data streams; will be ignored for streams which are com-
pressed with unsupported filters) If true, the stream data will be compressed with the filter
which is specified in the image’s filterinfo pseudo object. If false, the stream data will be un-
compressed. Default: true for all unsupported filters, false otherwise

11.1 Rectangle Options for Block Filling Functions 209

11 Block Filling Functions (PPS)
The PDFlib Personalization Server (PPS) offers dedicated functions for processing vari-
able Blocks of type Text, Image, and PDF. These PDFlib Blocks must be contained in the
imported PDF page, but will not be retained in the generated output. The imported page
must have been placed on the output page with PDF_fit_pdi_page() before using any of
the Block filling functions. When calculating the Block position on the page, the Block
functions take into account the scaling options which have been in effect when placing
the imported page with PDF_fit_pdi_page().

Note The Block processing functions discussed in this chapter require the PDFlib Personalization
Server (PPS). The PDFlib Block plugin for Adobe Acrobat is required for creating PDFlib Blocks in
PDF templates interactively. Alternatively, Blocks can be created with PPS itself.

11.1 Rectangle Options for Block Filling Functions
Table 11.1 lists rectangle options for PDF_fill_textblock(), PDF_image_block(), PDF_fill_
pdfblock(), and PDF_graphics_block(). Options which are specific for a particular Block
type (i.e. text, image, or PDF Blocks) are listed in the next sections. Almost all Block prop-
erties can be overridden with options with the same name, except for the following
properties which can not be overridden with options:

Name, Description, Subtype, Type

Table 11.1 Rectangle options for the PDF_fill_*block() functions

option description

Rect (Rectangle) The coordinates of the Block in the coordinate system of the Block PDF. The Block rectangle
can be specified with the refpoint and boxsize options (in user coordinates).

Status (Keyword) Describes how the Block will be processed (default: active):
active The Block will be fully processed according to its properties.
ignore The Block will be ignored.
ignoredefault

Like active, except that the defaulttext/image/pdf properties will be ignored, i.e. the Block
remains empty if no contents have been provided. This may be useful to make sure that the
Block’s default contents will not be used for filling Blocks on the server side although the Block
may contain default contents for the Preview in the Block Plugin. It can also be used to disable
the default contents for previewing a Block without removing it from the Block properties.

static No variable contents will be placed; instead, the Block’s default text, image, or PDF contents
will be used if available.

background-
color

(Color) Fill color for the Block; this color will be applied before filling the Block. This may be useful to hide
existing page contents. Default: none

bordercolor (Color) Border color for the Block; this color will be applied before filling the Block. Default: none

linewidth (Float; must be greater than 0) Stroke width of the line used to draw the Block rectangle; only used if
bordercolor is set. Default: 1

210 Chapter 11: Block Filling Functions (PPS)

11.2 Textline and Textflow Blocks

C++ Java C# int fill_textblock(int page, String blockname, String text, String optlist)
Perl PHP int fill_textblock(int page, string blockname, string text, string optlist)

C int PDF_fill_textblock(PDF *p,
int page, const char *blockname, const char *text, int len, const char *optlist)

Fill a Textline or Textflow Block with variable data according to its properties.

page A valid PDF page handle for a page containing PDFlib Blocks. The input PDF page
with Blocks must have been placed on the page earlier, either directly with PDF_fit_pdi_
page(), indirectly in a table cell with PDF_fit_table(), or as contents of a PDF Block with
PDF_fill_pdfblock().

blockname (Name string) Name of the Block.

text (Content string) The text to be filled into the Block, or an empty string if the de-
fault text (as defined by Block properties) is to be used. If the textflowhandle option is
supplied and contains a valid Textflow handle this parameter will be ignored.

len (C language binding only) Length of text (in bytes). If len = 0 a null-terminated
string must be provided.

optlist An option list specifying text Block filling options. The following options are
supported:

> General option: errorpolicy (see Table 2.1)
> Rectangle options for Block filling functions according to Table 11.1:

Rect, Status, backgroundcolor, bordercolor, linewidth
> Fitting options (see Section 6.1, »Object Fitting«, page 121)
> Textline Blocks, i.e. the textflow property or option is false:

all Textline options (see Section 5.1, »Single-Line Text with Textlines«, page 87)
> Textflow Blocks, i.e. the textflow property or option is true:

all options for PDF_add/create_textflow() (see Section 5.2, »Multi-Line Text with Text-
flows«, page 94) and all options for PDF_fit_textflow() (see Table 5.12)

> Text Block options according to Table 11.2: textflow, textflowhandle
> Option for default contents: defaulttext (see PDFlib Tutorial)

Returns -1 (in PHP: 0) if the named Block doesn’t exist on the page, the Block cannot be filled (e.g.
due to font problems), the Block has wrong type, or the Block requires a newer PPS ver-
sion for processing; 1 if the Block could be processed successfully.

If the textflowhandle option is supplied a valid Textflow handle is returned which can
be used in subsequent calls to PDF_fill_textblock() or PDF_info_textflow(). If the property
Status has the value ignore, a handle to an empty Textflow is returned if textflowhandle=-
1, otherwise the supplied Textflow handle is returned without modifying the Textflow
(since no output is created). The user is responsible for deleting the returned Textflow
handle with PDF_delete_textflow() at the end.

If the PDF document is found to be corrupt, this function will either throw an excep-
tion or return -1 subject to the errorpolicy option.

Details The supplied text will be formatted into the Block, subject to the Block’s properties. If
text is empty the function will use the Block’s default text if available (unless Status=

11.2 Textline and Textflow Blocks 211

ignoredefault), and silently return otherwise. This may be useful to take advantage of
other Block properties, such as fill or stroke color.

Font selection: If neither the font option is supplied nor implicit font loading based
on options is used, the font will be implicitly loaded based on the Block properties. Since
the encoding for the font can only be specified as an option, but not as a Block property
it will be set as follows by default:

> builtin if the font is a symbolic font and charref=false and (only relevant for non-Uni-
code aware languages) textformat=auto or bytes.

> unicode otherwise.

It is recommended to avoid the encoding, charref and textformat options if defaulttext is
to be used.

Special care should be taken regarding the embedding option: if the font is implicitly
loaded based on Block properties it will not automatically be embedded. If font embed-
ding is desired the embedding option must be specified.

Linking Textflow Blocks: If a Textflow doesn’t fit into a Block, the textflowhandle op-
tion can be used to connect multiple Blocks to a chain so that they hold multiple parts
of the same Textflow:

> In the first call a value of -1 (in PHP: 0) must be supplied. The Textflow handle created
internally is returned by PDF_fill_textblock(), and must be stored by the user.

> In the next call the Textflow handle returned in the previous step can be supplied to
the textflowhandle option (the text supplied in the text parameter is ignored in this
case, and should be empty). The Block is filled with the remainder of the Textflow.

> This process can be repeated with more Textflow Blocks.
> The returned Textflow handle can be supplied to PDF_info_textflow() in order to de-

termine the results of Block filling, e.g. the end position of the text.

This process can be repeated an arbitrary number of times. The user is responsible for
deleting the Textflow handle with PDF_delete_textflow() at the end.

PDF/UA Block decoration, i.e. ruling and shading created according to the backgroundcolor,
bordercolor, linewidth properties is automatically tagged as Artifact.

Scope page, pattern, template, glyph

Table 11.2 Additional options for PDF_fill_textblock()

option description

textflow (Boolean) Control single- or multiline processing. This property can be used to switch between Textline
and Textflow Blocks:
false Text can span a single line and will be processed with PDF_fit_textline().
true Text can span multiple lines and will be processed with PDF_fit_textflow().
The default depends on the Block type: true for Textflow Blocks, and false for Textline Blocks

textflow-
handle

(Textflow handle; only for PDF_fill_textblock() with textflow=true) This option can be used for Text-
flow Block chaining. For the first Block in a chain of Blocks a value of -1 (in PHP: 0) must be supplied; the
value returned by this function can be supplied as Textflow handle in subsequent calls for other Blocks in
the chain. If this option is supplied with a value different from -1 (in PHP: 0) the default of fitmethod is
changed to clip.
All properties in the Text Preparation, Text Formatting and Appearance property groups of the Block will
be ignored if textflowhandle is supplied since the corresponding values used for creating the Textflow
will be applied.

212 Chapter 11: Block Filling Functions (PPS)

11.3 Image Blocks

C++ Java C# int fill_imageblock(int page, String blockname, int image, String optlist)
Perl PHP int fill_imageblock(int page, string blockname, int image, string optlist)

C int PDF_fill_imageblock(PDF *p, int page, const char *blockname, int image, const char *optlist)

Fill an image Block with variable data according to its properties.

page A valid PDF page handle for a page containing PDFlib Blocks. The input PDF page
with Blocks must have been placed on the page earlier, either directly with PDF_fit_pdi_
page(), indirectly in a table cell with PDF_fit_table(), or as contents of a PDF Block with
PDF_fill_pdfblock().

blockname (Name string) Name of the Block.

image A valid image handle for the image to be filled into the Block, or -1 if the default
image (as defined by Block properties) is to be used.

optlist An option list specifying image Block filling options. The following options are
supported:

> General option: errorpolicy (see Table 2.1)
> Rectangle options for Block filling functions according to Table 11.1:

Rect, Status, backgroundcolor, bordercolor, linewidth
> Fitting options (see Section 6.1, »Object Fitting«, page 121)
> Options for image processing according to Table 9.3
> Option for default contents: defaultimage (see PDFlib Tutorial)

Returns -1 (in PHP: 0) if the named Block doesn’t exist on the page, the Block cannot be filled, the
Block has wrong type, or the Block requires a newer PPS version for processing; 1 if the
Block could be processed successfully. Use PDF_get_errmsg() to get more information
about the nature of the problem.

Details The image referred to by the supplied image handle will be placed in the Block, subject
to the Block’s properties. If image is -1 (in PHP: 0) the function will use the Block’s default
image if available (unless Status=ignoredefault), and silently return otherwise.

If the PDF document is found to be corrupt, this function will either throw an excep-
tion or return -1 subject to the errorpolicy option.

PDF/UA All raster images must be tagged as Artifact or Figure with a preceding call to PDF_begin_
item().

Block decoration, i.e. ruling and shading created according to the backgroundcolor,
bordercolor, linewidth properties is automatically tagged as Artifact.

Scope page, pattern, template, glyph

11.4 PDF Blocks 213

11.4 PDF Blocks

C++ Java C# int fill_pdfblock(int page, String blockname, int contents, String optlist)
Perl PHP int fill_pdfblock(int page, string blockname, int contents, string optlist)

C int PDF_fill_pdfblock(PDF *p, int page, const char *blockname, int contents, const char *optlist)

Fill a PDF Block with variable data according to its properties.

page A valid PDF page handle for a page containing PDFlib Blocks. The input PDF page
with Blocks must have been placed on the page earlier, either directly with PDF_fit_pdi_
page(), indirectly in a table cell with PDF_fit_table(), or as contents of a PDF Block with
PDF_fill_pdfblock().

blockname (Name string) Name of the Block.

contents A valid PDF page handle for the PDF page to be filled into the Block, or -1 if the
default PDF page (as defined by Block properties) is to be used.

optlist An option list specifying PDF Block filling options. The following options are
supported:

> General option: errorpolicy (see Table 2.1))
> Rectangle options for Block filling functions according to Table 11.1:

Rect, Status, backgroundcolor, bordercolor, linewidth
> Fitting options (see Section 6.1, »Object Fitting«, page 121)
> Options for page processing according to Table 9.3
> Options for default contents: defaultpdf, defaultpdfpage (see PDFlib Tutorial)

Returns -1 (in PHP: 0) if the named Block doesn’t exist on the page, the Block cannot be filled, the
Block has wrong type, or the Block requires a newer PPS version for processing; 1 if the
Block could be processed successfully. Use PDF_get_errmsg() to get more information
about the nature of the problem.

Details The PDF page referred to by the supplied page handle contents will be placed in the
Block, subject to the Block’s properties. If contents is -1 (in PHP: 0) the function will use
the Block’s default PDF page if available (unless Status=ignoredefault), and silently return
otherwise.

If the PDF document is found to be corrupt, this function will either throw an excep-
tion or return -1 subject to the errorpolicy option.

PDF/UA Block decoration, i.e. ruling and shading created according to the backgroundcolor,
bordercolor, linewidth properties is automatically tagged as Artifact.

Scope page, pattern, template, glyph

214 Chapter 11: Block Filling Functions (PPS)

11.5 Graphics Blocks

C++ Java C# int fill_graphicsblock(int page, String blockname, int contents, String optlist)
Perl PHP int fill_graphicsblock(int page, string blockname, int contents, string optlist)

C int PDF_fill_graphicsblock(PDF *p, int page, const char *blockname, int contents, const char *optlist)

Fill a graphics Block with variable data according to its properties.

page A valid PDF page handle for a page containing PDFlib Blocks. The input PDF page
with Blocks must have been placed on the page earlier, either directly with PDF_fit_pdi_
page(), indirectly in a table cell with PDF_fit_table(), or as contents of a PDF Block with
PDF_fill_pdfblock().

blockname (Name string) Name of the Block.

contents A valid graphics handle for the graphics to be filled into the Block, or -1 if the
default graphics (as defined by Block properties) is to be used.

optlist An option list specifying graphics Block filling options. The following options
are supported:

> General option: errorpolicy (see Table 2.1)
> Rectangle options for Block filling functions according to Table 11.1:

Rect, Status, backgroundcolor, bordercolor, linewidth
> Fitting options (see Section 6.1, »Object Fitting«, page 121)
> Options for graphics processing according to Table 9.3
> Option for default contents: defaultgraphics (see PDFlib Tutorial)

Returns -1 (in PHP: 0) if the named Block doesn’t exist on the page, the Block cannot be filled, the
Block has wrong type, or the Block requires a newer PPS version for processing; 1 if the
Block could be processed successfully. Use PDF_get_errmsg() to get more information
about the nature of the problem.

Details The graphics referred to by the supplied graphics handle will be placed in the Block, sub-
ject to the Block’s properties. If graphics is -1 (in PHP: 0) the function will use the Block’s
default graphics if available (unless Status=ignoredefault), and silently return otherwise.

If the PDF document is found to be corrupt, this function will either throw an excep-
tion or return -1 subject to the errorpolicy option.

PDF/UA Block decoration, i.e. ruling and shading created according to the backgroundcolor,
bordercolor, linewidth properties is automatically tagged as Artifact.

Scope page, pattern, template, glyph

12.1 Bookmarks 215

12 Interactive Features

12.1 Bookmarks

C++ Java C# int create_bookmark(String text, String optlist)
Perl PHP int create_bookmark(string text, string optlist)

C int PDF_create_bookmark(PDF *p, const char *text, int len, const char *optlist)

Create a bookmark subject to various options.

text (Hypertext string) Text for the bookmark.

len (C language binding only) Length of text (in bytes). If len = 0 a null-terminated
string must be provided.

optlist An option list specifying the bookmark’s properties. The following options can
be used:

> General options: errorpolicy (see Table 2.1), hypertextencoding and hypertextformat (see
Table 2.3)

> Bookmark control options according to Table 12.1:
action, destination, destname, fontstyle, index, item, open, parent, textcolor

Returns A handle for the generated bookmark, which may be used with the parent option in sub-
sequent calls.

Details This function adds a PDF bookmark with the supplied text. Unless the destination option
is specified the bookmark points to the current page (or the least recently generated
page if used in document scope, or the first page if used before the first page).

Creating bookmarks sets the openmode option of PDF_begin/end_document() to
bookmarks unless another mode has explicitly been set.

PDF/UA Creating bookmarks is recommended for PDF/UA-1.

Scope document, page

Table 12.1 Options for PDF_create_bookmark()

option description

action (Action list) List of bookmark actions for the following event (default: GoTo action with the target speci-
fied in the destination option):
activate Actions to be performed when the bookmark is activated. All types of actions are permitted.

destination (Option list; will be ignored if an activate action has been specified) Option list specifying the bookmark
destination according to Table 12.10. Default: {type fitwindow page 0} if destination, destname, and
action are absent.

destname (Hypertext string; may be empty; will be ignored if the destination option has been specified) Name of
a destination which has been defined with PDF_add_nameddest(). Destination or destname actions will
be dominant over this option. If destname is an empty string (i.e. {}) and neither destination nor action
are specified, the bookmark won’t have any action. This may be useful for separator bookmark.

fontstyle (Keyword) Specifies the font style of the bookmark text: normal, bold, italic, bolditalic. Default:
normal

216 Chapter 12: Interactive Features

index (Integer) Index where to insert the bookmark within the parent. Values between 0 and the number of
bookmarks of the same level will be used to insert the bookmark at that specific location within the par-
ent. The value -1 can be used to insert the bookmark as the last one on the current level. Default: -1. How-
ever, for inserted or resumed pages bookmarks will be placed as if all pages had been generated in their
physical order (i.e. the bookmarks reflect the page order).

item (Item handle or keyword; the handle must refer to an active structure element, but not to an inline or
pseudo element; only for Tagged PDF) Handle for a structure item which will be associated with the
bookmark. The value 0 always refers to the structure tree root. The value -1 and the equivalent keyword
current refer to the currently active element.

open (Boolean) If false, subordinate bookmarks will not be visible. If true, all children will be folded out. De-
fault: false

parent (Bookmark handle) The new bookmark will be specified as a subordinate of the bookmark specified in
the handle. If parent=0 a new top-level bookmark will be created. Default: 0

textcolor (Color) Specifies the color of the bookmark text. Supported color spaces: none, gray, rgb.
Default: rgb {0 0 0} (=black)

Table 12.1 Options for PDF_create_bookmark()

option description

12.2 Annotations 217

12.2 Annotations

C++ Java C# void create_annotation(double llx, double lly, double urx, double ury, String type, String optlist)
Perl PHP create_annotation(float llx, float lly, float urx, float ury, string type, string optlist)

C void PDF_create_annotation(PDF *p,
double llx, double lly, double urx, double ury, const char *type, const char *optlist)

Create an annotation on the current page.

llx, lly, urx, ury x and y coordinates of the lower left and upper right corners of the an-
notation rectangle in default coordinates (if the usercoordinates option is false) or user
coordinates (if usercoordinates is true).

Note that annotation coordinates are different from the parameters of the PDF_rect()
function. While PDF_create_annotation() expects coordinates of two corners, PDF_rect()
expects the coordinates of one corner plus width and height values.

If the usematchbox option has been specified, llx/lly/urx/ury will be ignored.

type The annotation type according to Table 12.2. Markup annotations are marked in
the table since certain options apply only to markup annotations.

Table 12.2 Annotation types

type notes; options specific for this type (in addition to general options)

3D (PDF 1.6) 3D model: 3Dactivate, 3Ddata, 3Dinteractive, 3Dshared, 3Dinitialview

Caret1 (PDF 1.5) rectdiff, symbol

Circle1 cloudy, createrichtext, inreplyto, interiorcolor, replyto

File-
Attachment1

attachment, createrichtext, iconname, inreplyto, replyto

FreeText1 alignment, calloutline, cloudy, createrichtext, endingstyles, fillcolor, font, fontsize,
inreplyto, orientate, replyto

Highlight1 createrichtext, inreplyto, polylinelist, replyto

Ink1 createrichtext, inreplyto, polylinelist, replyto

Line1 captionoffset, captionposition, createrichtext, endingstyles, interiorcolor, inreplyto,
leaderlength, leaderoffset, line, showcaption, replyto

Link destination, destname, highlight

Movie (Movie annotation; deprecated; use type=RichMedia instead) attachment, movieposter, playmode,
showcontrols, soundvolume, windowposition, windowscale

Polygon1 (PDF 1.5; vertices connected by straight lines): cloudy, createrichtext, inreplyto, interiorcolor,
polylinelist, replyto

PolyLine1 (PDF 1.5; similar to polygons, except that the first and last vertices are not connected) createrichtext,
endingstyles, inreplyto, interiorcolor, polylinelist, replyto

Popup (Must be associated with a markup annotation via parentname) open, parentname

RichMedia (PDF 1.7ext3) RichMedia annotations with Flash are no longer supported in Acrobat DC: richmedia

Square1 cloudy, createrichtext, inreplyto, interiorcolor, replyto

Squiggly1 (squiggly-underline annotation) createrichtext, inreplyto, polylinelist, replyto

218 Chapter 12: Interactive Features

optlist An option list specifying annotation properties:
> General option: hypertextencoding (see Table 2.3)
> The following common options according to Table 12.3 are supported for all annota-

tion types:
action, annotcolor, borderstyle, cloudy, contents, createdate, custom, dasharray, datestring,
display, layer, linewidth, locked, lockedcontents, name, opacity, popup, readonly, rotate,
subject, template, title, usematchbox, usercoordinates, zoom

> The following type-specific options according to Table 12.3 are supported only for
some annotation types according to Table 12.2:
alignment, calloutline, captionoffset, captionposition, createrichtext, destname,
endingstyles, fillcolor, font, fontsize, highlight, iconname, inreplyto, interiorcolor,
leaderlength, leaderoffset, line, movieposter, open, orientate, parentname, playmode,
polylinelist, rectdiff, replyto, richmedia, showcaption, showcontrols, state, statemodel,
soundvolume, symbol, windowposition, windowscale

> Options for type=3D according to Table 13.4:
3Dactivate, 3Ddata, 3Dinteractive, 3Dshared, 3Dinitialview

> Option for abbreviated structure element tagging according to Table 14.5: tag

Details This method creates an annotation on the current page using the supplied box coordi-
nates or the box specified in the matchbox option.

While most annotation types must have rectangles with edges parallel to the page
edges, the following annotation types may also appear rotated or skewed (e.g. if the co-
ordinate system has been rotated): Highlight, Link, Squiggly, StrikeOut, Underline.

In Tagged PDF mode this function automatically creates a suitable OBJR element for
the generated annotation. The user must create a corresponding Link or Annot container
element (see PDFlib Tutorial) before calling this function.

PDF/A PDF/A-1: only the following annotation types are allowed:
Circle, FreeText, Highlight, Ink, Line, Link, Popup, Square, Squiggly, Stamp, StrikeOut, Text,
Underline
PDF/A-2/3: only type=Link is allowed.
Some options are restricted, see Table 12.3.

PDF/X Annotations are only allowed if they are positioned completely outside of the BleedBox
(or TrimBox/ArtBox if no BleedBox is present).
PDF/X-1a/3: the annotation type FileAttachment is not allowed.

PDF/UA Annotations of type=Link must be contained in a Link structure element. Annotations of
all other types except Popup must be contained in an Annot structure element.

Stamp1 createrichtext, iconname, inreplyto, orientate, replyto

StrikeOut1 createrichtext, inreplyto, polylinelist, replyto

Text1 (In Acrobat this type is called sticky note) createrichtext, iconname, inreplyto, open, replyto state,
statemodel

Underline1 createrichtext, inreplyto, polylinelist, replyto

1. Markup annotation; this is relevant for the createrichtext option.

Table 12.2 Annotation types

type notes; options specific for this type (in addition to general options)

12.2 Annotations 219

The option contents or the option tag with the suboption ActualText is required for
visible annotations.

Scope page

Table 12.3 Options for PDF_create_annotation()

option description

action (Action list) List of annotation actions for the following events (default: empty list). All types of actions
are permitted:
activate (Only for type=Link) Actions to be performed when the annotation is activated.
close (PDF 1.5) Actions to be performed when the page containing the annotation is closed.
open (PDF 1.5) Actions to be performed when the page containing the annotation is opened.
invisible (PDF 1.5) Actions to be performed when the page containing the annotation is no longer

visible.
visible (PDF 1.5) Actions to be performed when the page containing the annotation becomes visible.

alignment (Keyword; only for type=FreeText) Alignment of text in the annotation: left, center, or right. Default:
left

annotcolor (Color) The color of the background of the annotation’s icon when closed, the title bar of the annotation’s
pop-up window, and the border of a link annotation. Supported color spaces: none (not for type=Square,
Circle), gray, rgb, and (in PDF 1.6) cmyk. Default: white for type=Square, Circle, otherwise none
PDF/A-1: this option can only be used if an RGB output intent has been specified, and gray or rgb color
must be used.

attachment (Asset handle; only for type=FileAttachment and Movie; required) File attachment which has been load-
ed with PDF_load_asset() and type=attachment.
For type=FileAttachment: file associated with the annotation
For type=Movie: media file which must have been loaded with external=true in PDF_load_asset().

borderstyle (Keyword) Style of the annotation border or the line of the annotation types Polygon, PolyLine, Line,
Square, Circle, Ink: solid, beveled, dashed, inset, or underline. Note that the beveled, inset, and
underline styles do not work reliably in Acrobat. Default: solid

calloutline (List of four or six floats; PDF 1.6; only for type=FreeText) List of 4 or 6 float values specifying a callout
line attached to the FreeText annotation. Six numbers {x1 y1 x2 y2 x3 y3} represent the starting, knee
point, and end coordinates of the line. Four numbers {x1 y1 x2 y2} represent the starting and end coor-
dinates of the line. The coordinates will be interpreted in default coordinates (if the usercoordinates op-
tion is false) or user coordinates (if it is true).
The start point will be decorated with the symbol specified in the first keyword of the endingstyles op-
tion.

captionoffset (2 Floats; only for type=Line; PDF 1.7) The offset of the caption text from its normal position. The first
value specifies the horizontal offset along the annotation line from its midpoint, with a positive value in-
dicating offset to the right and a negative value indicating offset to the left. The second value specifies
the vertical offset perpendicular to the annotation line, with a positive value indicating a shift up and a
negative value indicating a shift down. Default: {0, 0}, i.e. no offset from the normal position

caption-
position

(Keyword; only for type=Line; PDF 1.7) The annotation’s caption position. This option will be ignored if
showcaption=false. Supported keywords (default: Inline):
Inline The caption will be centered inside the line.
Top The caption will be positioned on top of the line.

cloudy (Float; only for type=Circle, FreeText, Polygon, and Square; PDF 1.5) Specifies the intensity of the
»cloud« effect used to render the polygon. Possible values are 0 (no effect), 1, and 2. If this option is used
the borderstyle option will be ignored. Default: 0

220 Chapter 12: Interactive Features

contents (String for type=FreeText, otherwise Hypertext string with a maximum length of 65535 bytes; PDF/UA-1:
required if no ActualText is supplied in the tag option, and always required for type=Link) Text to be
displayed for the annotation or (if the annotation does not display text) an alternate description of its
contents in human-readable form. Carriage return or line feed characters can be used to force a new
paragraph. PDF/A-1a/2a/3a: recommended for annotations which do not display text.

createdate (Boolean; PDF 1.5) If true, a date/time entry is created for the annotation. Default: true for Markup an-
notations, false otherwise

createrich-
text

(Option list; only for markup annotations; option contents must be empty; PDF 1.5) Create rich text con-
tents from a Textflow. This may be useful to generate formatted text for annotations. Supported subop-
tions:
textflow (Textflow handle) A Textflow which will be attached to the annotation as rich text. Color

specifications in the Textflow must use only grayscale or RGB colors. If the Textflow handle
has been supplied to PDF_fit_textflow/table() before the call to PDF_create_annotation()
only the remaining text is used for the annotation. If no more text is available the Textflow is
restarted from the beginning. Using a Textflow for an annotation does not affect subsequent
calls to PDF_fit_textflow/table().

userunit (Keyword) Measurement unit for scalar values (e.g. firstlinedist, fontsize): cm (centimeter), in
(inches), mm (millimeters), or pt (points). Default: pt

The following Textflow options are honored when creating rich text; all others are ignored:
nextline, alignment, fillcolor, underline, strikeout, font, fontsize, textrise, text formatting op-
tions
Rich Text is emitted as XFA, an XML language. Therefore XML syntax characters in a Textflow for annota-
tion rich text must be quoted appropriately, e.g. < However, this is difficult if the Textflow is used both
with PDF_fit_textflow() and PDF_create_annotation() since the boundary between is usually not
known (Textflow does not require quoted characters, while XFA for annotations does). Setting font and
alignment doesn’t have the expected effect in Acrobat.

custom (List of option lists) This option can be used to insert an arbitrary number of private entries in the annota-
tion dictionary, which may be useful for specialized applications such as inserting processing instructions
for digital printing machines. Using this option requires knowledge of the PDF file format and the target
application. Supported suboptions:
key (String; required) Name of the dictionary key (excluding the / character). Any non-standard

PDF key can be specified, as well as the following standard keys: Contents, Name (option
iconname), NM (option name), and Open. The corresponding options will be ignored in this case.

type (Keyword; required) Type of the corresponding value, which must be one of boolean, name, or
string

value (Hypertext string if type=string, otherwise string; required) Value as it will appear in the PDF
output; PDFlib will automatically apply any decoration required for strings and names.

dasharray (List of two non-negative floats; only for borderstyle=dashed). The lengths of dashes and gaps for a
dashed border in default units (see Table 7.1). Default: 3 3

datestring (String; forces createdate=true) PDF date string with the desired creation date for the annotation. The
date string is written unmodified to the annotation dictionary. It is an error to supply an invalid date
string. Default (only relevant if createdate=true: the current date

destination (Option list; only for type=Link; will be ignored if an activate action has been specified) Option list ac-
cording to Table 12.10 defining the destination to jump to

destname (Hypertext string; only for type=Link; will be ignored if the destination option has been specified)
Name of a destination which has been defined with PDF_add_nameddest(). Actions created with the
destination or destname options of PDF_create_action() are dominant over this option.

Table 12.3 Options for PDF_create_annotation()

option description

12.2 Annotations 221

display (Keyword; only visible allowed in PDF/A) Visibility on screen and paper: visible, hidden, noview,
noprint. Default: visible

endingstyles (Keyword list; only for type=FreeText, Line, PolyLine) A list with two keywords specifying the line end-
ing styles. The second keyword will be ignored for type=FreeText (default: {none none}):
none, square, circle, diamond, openarrow, closedarrow
Additionally for PDF 1.5: butt, ropenarrow, rclosedarrow
Additionally for PDF 1.6: slash

filename Deprecated, use attachment

fillcolor (Color; only for type=FreeText) Fill color of the text. Supported color spaces are none, gray, rgb, and (in
PDF 1.6) cmyk. Default: {gray 0} (=black)
PDF/A-1: this option can only be used if an RGB output intent has been specified, and gray or rgb color
must be used.

font (Font handle; only for type=FreeText; required) Specifies the font to be used for the annotation.

fontsize (Fontsize; only for type=FreeText; required) The font size in default or user coordinates depending on the
usercoordinates option. The value 0 or keyword auto means that the fontsize is adjusted to the rectan-
gle.

highlight (Keyword; only for type=Link) Highlight mode of the annotation when the user clicks on it: none,
invert, outline, push. Default: invert

iconname (String; only for type=Text, Stamp, FileAttachment) Name of an icon to be used in displaying the anno-
tation (to create an annotation without any visible icon set opacity=0):
For type=Text (default: note):

comment , key , note , help , newparagraph , paragraph , insert

For type=Stamp, but note that these don’t work reliably in Adobe Reader; the template option is recom-
mended instead (default: draft):
approved, experimental, notapproved, asis, expired, notforpublicrelease, confidential, final,
sold, departmental, forcomment, topsecret, draft, forpublicrelease
For type=FileAttachment (default: pushpin):

graph , pushpin , paperclip , tag

The template option can be used to create custom icons.

inreplyto (Hypertext string; PDF 1.5; only for markup annotations; required if the replyto option is supplied) The
name of the annotation (see option name) that this annotation is in reply to. Both annotations must be
on the same page of the document. The relationship between the two annotations must be specified by
the replyto option.

interiorcolor (Color; only for type=Line, Polygon, PolyLine, Square, Circle) The color for the annotation’s interior ar-
ea. Supported color spaces are none, gray, rgb, and (in PDF 1.6) cmyk. Default: none
PDF/A-1: this option can only be used if an RGB output intent has been specified, and gray or rgb color
must be used.

layer (Layer handle; PDF 1.5) Layer to which the annotation will belong. The annotation will only be visible if
the corresponding layer is visible.

Table 12.3 Options for PDF_create_annotation()

option description

222 Chapter 12: Interactive Features

leaderlength (List with one or two floats; the second float must not be negative; only for type=Line; PDF 1.6) The
length of leader lines in default coordinates (if the usercoordinates option is false) or user coordinates
(if it is true). Leader lines are auxiliary lines which are drawn from each endpoint of the line perpendicu-
lar to the line itself. The length is specified by two numbers (default: {0 0}):
The first number is the extension from each endpoint of the line perpendicular to the line itself. A positive
value means that the leader lines appear in the direction that is clockwise when traversing the line from
its start point to its end point (as specified by the line option); a negative value indicates the opposite di-
rection.
The second value, which can be omitted, represents the length of leader line extension which is drawn on
the opposite side of the line. A positive value is ignored if the first value is 0.

leaderoffset (Non-negative float; only for type=Line; PDF 1.7) The length of the leader line offset, which is the
amount of empty space between the endpoints of the annotation and the beginning of the leader lines
in default coordinates (if the usercoordinates option is false) or user coordinates (if it is true). De-
fault: 0

line (Line; only for type=Line; required) A list of four numbers x1, y1, x2, y2 specifying the start and end points
of the line in default coordinates (if the usercoordinates option is false) or user coordinates (if it is
true).

linewidth (Integer) Width of the annotation border or the line of the annotation types Line, PolyLine, Polygon,
Square, Circle, Ink in default units (=points). If linewidth=0 the border will be invisible. Default: 1

locked (Boolean) If true, the annotation properties (e.g. position and size) cannot be edited in Acrobat. How-
ever, the contents can still be modified. Default: false

locked-
contents

(Boolean; PDF 1.7) If true, the annotation contents cannot be edited in Acrobat. However, the annotation
can still be deleted or properties changed (e.g. position and size) Default: false

mimetype Deprecated, use attachment

movieposter (Keyword or image handle; only for type=Movie) Keyword or handle for an image which specifies a post-
er image representing the movie on the page. Supported keywords: auto (the poster image will be re-
trieved from the movie file), none (no poster will be displayed). Default: none

name (Hypertext string) Name uniquely identifying the annotation. The name is necessary for some actions,
and must be unique on the page. This option is strongly recommended if you intend to digitally sign the
document after creation. Default: none

opacity (Float or percentage; not for PDF/A-1; only for markup annotations) Opacity (0-1 or 0%-100%) for stroke
and fill operations when painting the annotation. Default: 1

open (Boolean; only for type=Text, Popup) If true, the annotation will initially be open. Default: false

orientate (Keyword; only for type=FreeText, Stamp) Specifies the desired orientation of the annotation within its
rectangle. Supported keywords: north (upright), east (pointing to the right), south (upside down), west
(pointing to the left). Default: north

parentname (String; only for type=PopUp) Name of the parent annotation for the popup annotation. If this option is
supplied, the options contents, annotcolor and title of the parent annotation override the corre-
sponding values of the popup annotation.

playmode (Keyword; only for type=Movie) The mode for playing the movie or sound. Supported keywords: once
(play once and stop), open (play and leave the movie controller bar open), repeat (play repeatedly from
beginning to end until stopped), palindrome (play continuously forward and backward until stopped).
Default: once

Table 12.3 Options for PDF_create_annotation()

option description

12.2 Annotations 223

polylinelist (List containing one or more polylines or quadrilaterals; only for type=Polygon, PolyLine, Ink,
Highlight, Underline, Squiggly, Strikeout). The coordinates will be interpreted in default coordinates
(if the usercoordinates option is false) or user coordinates (if it is true). Default: a polyline connecting
the vertices of the annotation rectangle.
type=Polygon, PolyLine, Ink

A list containing a polyline consisting of one or more points.
others The list contains n sublists with 8 float values each, specifying n quadrilaterals (minimum:

n=1). Each quadrilateral encompasses a word or group of contiguous words in the text
underlying the annotation. The quadrilaterals must be provided in zigzag order (top right, top
left, lower right, lower left).

popup (String) Name of a PopUp annotation for entering or editing the text associated with this annotation.
Default: none

readonly (Boolean) If true, do not allow the annotation to interact with the user. The annotation may be dis-
played or printed, but should not respond to mouse clicks or change its appearance in response to mouse
motions. Default: false

rectdiff (Rectangle; only for type=Caret) Four non-negative numbers which describe the difference between the
annotation rectangle and the boundaries of the underlying caret.

replyto (Keyword; PDF 1.6; only for markup annotations) Specifies the relationship (the reply type) between this
annotation and the one specified by the inreplyto option. Supported keywords (default: reply):
reply The annotation must be considered a reply to the annotation specified by inreplyto.
group The annotation must be grouped with the annotation specified by inreplyto.

richmedia (Option list; only for type=RichMedia, and required in this case) Rich media options according to Table
13.7

rotate (Boolean; must not be set to true for text annotations in PDF/A) If true, rotate the annotation to match
the rotation of the page. Otherwise the annotation’s rotation will remain fixed. This option will be ig-
nored for the icons of text annotations. Default: false for text annotations in PDF/A, otherwise true

showcaption (Boolean; only for type=Line; PDF 1.6) If true, the text specified in the contents or createrichtext op-
tions will be replicated as a caption in the appearance of the line. Default: false

showcontrols (Boolean; only for type=Movie) If true a controller bar while playing the movie or sound will be dis-
played. Default: false

state (String; only for type=Text; PDF 1.5) The state to which the annotation specified in the inreplyto option
shall be set.
Supported keywords for statemodel=Marked (default: Unmarked): Marked, Unmarked
Supported keywords for statemodel=Review (default: None): Accepted, Rejected, Cancelled,
Completed, None

statemodel (String; required if the state option is supplied; only for type=Text; PDF 1.5). Supported keywords:
Marked Supports the state values Marked, Unmarked
Review Supports the state values Accepted, Rejected, Cancelled, Completed, None

soundvolume (Float; only for type=Movie) The initial sound volume at which to play the movie, in the range -1.0 to 1.0.
Higher values denote greater volume; negative values mute the sound. Default: 1.0

subject (Hypertext string; PDF 1.5) Text representing a short description of the subject being addressed by the an-
notation. Default: none

symbol (Keyword; only for type=Caret) Type of the caret symbol (default: none):
paragraph paragraph symbol
none no symbol

Table 12.3 Options for PDF_create_annotation()

option description

224 Chapter 12: Interactive Features

template (Option list) Visual appearance of the annotation for one or more states. This may be useful e.g. for cus-
tom stamps. Supported suboptions:
normal/rollover/down

(Template handle or keyword) Template which will be used for the annotation’s normal,
mouse rollover, or mouse button down appearance, respectively. The keyword viewer
instructs Acrobat to create the appearance when rendering the page. Default for normal:
viewer; default for rollover and down: the value of normal

fitmethod (Keyword) Method to fit the template into the annotation rectangle. If fitmethod is different
from entire the annotation rectangle will be adapted to the template box (default: entire):
nofit Position the template only, without any scaling or clipping.
meet Position the template according to the position option, and scale it so that it en-

tirely fits into the rectangle while preserving its aspect ratio. Generally at least
two edges of the template will meet the corresponding edges of the rectangle.

entire Position the template according to the position option, and scale it such that it
entirely covers the rectangle. Generally this method will distort the template.

position (List of floats or keywords) One or two values specifying the position of the reference point
(x, y) within the template with {0 0} being the lower left corner of the template, and
{100 100} the upper right corner. The values are expressed as percentages of the template’s
width and height. If both percentages are equal it is sufficient to specify a single float value.
The keywords left, center, right (in x direction) or bottom, center, top (in y direction) can
be used as equivalents for the values 0, 50, and 100. If only one keyword has been specified
the corresponding keyword for the other direction will be added. Default: {left bottom}.

Supplying an annotation appearance template with the template option and suboption normal is
strongly recommended if you intend to digitally sign the document after creation.

title (Hypertext string; recommended for movie annotations) The text label to be displayed in the title bar of
the annotation’s pop-up window when open and active. This string corresponds to the Author field in
Acrobat. The maximum length of title is 255 single-byte characters or 126 Unicode characters. However,
a practical limit of 32 characters is advised. Default: none

usematchbox (List of strings) The llx/lly/urx/ury parameters are ignored and the named matchbox is used instead.
The first element in the option list is a name string which specifies a matchbox. The second element is ei-
ther an integer specifying the number of the desired rectangle (starting with 1), or the keyword all to
specify all rectangles of the selected matchbox. If the second element is missing, it defaults to all.
If the matchbox itself or the specified rectangle does not exist on the current page, the function silently
returns without creating any annotation. When using matchboxes to create annotations in a table cell
PDF_create_annotation() must be called after PDF_fit_table() to make sure that the matchbox size has
already been calculated.

user-
coordinates

(Boolean) If false, annotation coordinates and font size will be expected in the default coordinate sys-
tem; otherwise the current user coordinate system will be used. Default: the value of the global
usercoordinates option

window-
position

(List of 2 floats or keywords; only for type=Movie) For floating movie windows, the relative position of
the window on the screen. The two values specify the position of the floating window on the screen, with
{0 0} denoting the lower left corner of the screen and {100 100} the upper right corner. The keywords
left, center, right (in horizontal screen direction) or bottom, center, top (in vertical screen direction)
can be used as equivalents for the values 0, 50, and 100. Default: {center center}

windowscale (Float or keyword; only for type=Movie) The zoom factor at which to play the movie in a floating win-
dow. If the option is absent, the movie will be played in the annotation rectangle. The value of this op-
tion is either a zoom factor for the movie, or the following keyword (default: option is absent, i.e. the
movie is played in the annotation rectangle):
fullscreen The movie will be played using all of the available screen area.

Table 12.3 Options for PDF_create_annotation()

option description

12.2 Annotations 225

zoom (Boolean; must not be set to true for text annotations in PDF/A) If true, scale the annotation to match
the magnification of the page. Otherwise the annotation’s size will remain fixed. This option will be ig-
nored for the icons of text annotations. Default: false for text annotations in PDF/A, otherwise true

Table 12.3 Options for PDF_create_annotation()

option description

226 Chapter 12: Interactive Features

12.3 Form Fields

C++ Java C# void create_field(double llx, double lly, double urx, double ury,
String name, String type, String optlist)

Perl PHP create_field(float llx, float lly, float urx, float ury, string name, string type, string optlist)
C void PDF_create_field(PDF *p, double llx, double lly, double urx, double ury,

const char *name, int len, const char *type, const char *optlist)

Create a form field on the current page subject to various options.

llx, lly, urx, ury x and y coordinates of the lower left and upper right corners of the
field rectangle in default coordinates (if the usercoordinates option is false) or user coor-
dinates (if it is true).

Note that form field coordinates are different from the parameters of the PDF_rect()
function. While PDF_create_field() expects coordinates for two corners directly, PDF_
rect() expects the coordinates of one corner, plus width and height values.

name (Hypertext string) The form field name, possibly prefixed with the name(s) of
one or more groups which have been created with PDF_create_fieldgroup(). Group names
must be separated from each other and from the field name by a period ».« character.
Field names must be unique in a document and must not end in a period ».« character.

len (C language binding only) Length of text (in bytes). If len = 0 a null-terminated
string must be provided.

type The field type according to Table 12.4.

optlist An option list specifying field properties:

Table 12.4 Form field types

type icon Options specific for this type (in addition to general options)

checkbox buttonstyle, currentvalue, itemname

combobox commitonselect, charspacing, currentvalue, editable, itemnamelist, itemtextlist, sorted,
spellcheck

listbox charspacing, commitonselect, currentvalue, itemnamelist, itemtextlist, multiselect,
sorted, topindex

pushbutton buttonlayout, caption, captiondown, captionrollover, charspacing, fitmethod, icon,
icondown, iconrollover, position, submitname

radiobutton buttonstyle, currentvalue, itemname, toggle, unisonselect
Requires a group with fieldtype=radiobutton.

signature charspacing, fieldcontent, lockmode

textfield comb, charspacing, currentvalue, fileselect, maxchar, multiline, password, richtext,
scrollable, spellcheck

Text fields are also used for barcodes: barcode

12.3 Form Fields 227

> General options: hypertextencoding and hypertextformat (see Table 2.3)
> Options for field properties according to Table 12.5. The following options are sup-

ported for all field types:
action, alignment, backgroundcolor, barcode, bordercolor, borderstyle, calcorder,
dasharray, defaultvalue, display, exportable, fieldtype, fillcolor, font, fontsize, highlight,
layer, linewidth, locked, orientate, readonly, required, strokecolor, taborder, tooltip, user-
coordinates

> The options listed in Table 12.4 are supported for specific field types. They are also
detailed in Table 12.5.

> (Not for PDF_create_fieldgroup()) Option for abbreviated structure element tagging
according to Table 14.5: tag

Details The tab order of the fields on the page (the order in which they receive the focus when
the tab key is pressed) is determined by the order of calls to PDF_create_field() by default,
but a different order can be specified with the taborder option. The tab order can not be
modified after creating the fields. However, this behavior can be overridden with the
taborder option of PDF_begin/end_page_ext().

In Acrobat it is possible to assign a format (number, percentage, etc.) to text fields.
However, this is not specified in the PDF standard, but implemented with custom Java-
Script. You can achieve the same effect by attaching JavaScript actions to the field which
refers to the predefined JavaScript functions in Acrobat (see PDFlib Tutorial).

In Tagged PDF mode this function automatically creates a suitable OBJR element for
the generated form field. The user must create the corresponding Form container ele-
ment (see PDFlib Tutorial) before calling this function.

Fonts and the associated encodings for use in form fields must be selected with care
to work around restrictions in Acrobat. Some recommendations:

> The font should be installed on the viewing machine if possible.
> Type 1 fonts except core fonts should be loaded with an 8-bit encoding; encoding=

unicode should be avoided.
> TrueType and OpenType fonts should be loaded with an 8-bit encoding and the op-

tion list embedding nosubsetting. The option encoding=builtin can be used for symbol
fonts.

PDF/A Some options are restricted; see Table 12.5 for details. The options backgroundcolor,
bordercolor, fillcolor, and strokecolor are subject to the following conditions: RGB colors are
always allowed, Grayscale colors are only allowed with an output intent (any type), and
CMYK colors are only allowed with a CMYK output intent.

PDF/X Form fields are only allowed if they are positioned completely outside of the BleedBox
(or TrimBox/ArtBox if no BleedBox is present).

PDF/UA A structure element of type Form must be created with PDF_begin_item() or the tag op-
tion when this function is called. The tooltip option is required.

Scope page

228 Chapter 12: Interactive Features

C++ Java C# void create_fieldgroup(String name, String optlist)
Perl PHP create_fieldgroup(string name, string optlist)

C void PDF_create_fieldgroup(PDF *p, const char *name, int len, const char *optlist)

Create a form field group subject to various options.

name (Hypertext string) The name of the form field group, which may in turn be pre-
fixed with the name of another group. Field groups can be nested to an arbitrary level.
Group names must be separated with a period ».« character. Group names must be
unique within the document, and must not end in a period ».« character.

len (C language binding only) Length of text (in bytes). If len = 0 a null-terminated
string must be provided.

optlist An option list with field options for PDF_create_field()

Details Field groups are useful for the following purposes depending on the fieldtype option:
> A group with fieldtype=radiobutton is required as container for radio buttons. For all

other field types group membership is optional.
> Arbitrary fields with the same or different types can be assembled in a logical group

with fieldtype=mixed. The names of all fields in the group start with the group name,
e.g. name.prefix, name.first, name.initial, name.last.

> All other values of fieldtype can be used to create synchronized fields, i.e. one or more
group fields of the same type display the same current value.

If the name of a field group (e.g. button) is provided as prefix for a field name created
with PDF_create_field() (e.g. button.1), the new field becomes part of this group. Field op-
tions supplied in the optlist for a group are inherited by all fields in the group.

PDF/A See PDF_create_field().

PDF/UA See PDF_create_field().

Scope any except object

12.3 Form Fields 229

Table 12.5 Options for field properties with PDF_create_field() and PDF_create_fieldgroup()

option description

action (Action list; not allowed for PDF/A) List of field actions for one or more of the following events. The
activate event is allowed for all field types, the other events are not allowed for type=pushbutton,
checkbox, radiobutton. Default: empty list
activate Actions to be performed when the field is activated.
blur Actions to be performed when the field loses the input focus.
calculate JavaScript actions to be performed in order to recalculate the value of this field when the

value of another field changes.
close (PDF 1.5) Actions to be performed when the page containing the field is closed.
down Actions to be performed when the mouse button is pressed inside the field’s area.
enter Actions to be performed when the mouse enters the field’s area.
exit Actions to be performed when the mouse exits the field’s area.
focus Actions to be performed when the field receives the input focus.
format JavaScript actions to be performed before the field is formatted to display its current value.

This allows the field’s value to be modified before formatting.
invisible (PDF 1.5) Actions to be performed when the page containing the field is no longer visible.
keystroke JavaScript actions to be performed when the user types into a text field or combo box, or

modifies the selection in a scrollable list box.
open (PDF 1.5) Actions to be performed when the page containing the field is opened.
up Actions to be performed when the mouse button is released inside the field’s area (this is

typically used to activate a field).
validate JavaScript actions to be performed when the field’s value is changed. This allows the new

value to be checked for validity.
visible (PDF 1.5) Actions to be performed when the page containing the field becomes visible.

alignment (Keyword) Alignment of text in the field: left, center, right. Default: left

background-
color
bordercolor

(Color; subject to PDF/A color restrictions) Color of the field background or border. Supported color spaces:
none, gray, rgb, cmyk. Default: none

barcode (Option list; only for type=textfield; implies readonly; PDF 1.7ext3; deprecated and not allowed in PDF
2.0) Create a barcode field according to the options in Table 12.6. The field should provide the action op-
tion with a calculate event script which determines the barcode contents based on the contents of oth-
er fields or supplies a static value: action={calculate=...}.
Barcode fields work only in the full version of Acrobat, but neither in Acrobat Reader nor third-party PDF
viewers.

borderstyle (Keyword) Style of the field border: solid, beveled, dashed, inset, underline. Default: solid

button-
layout

(Keyword; only for type=pushbutton) The position of the button caption relative to the button icon, pro-
vided both have been specified: below, above, right, left, overlaid. Default: right

buttonstyle (Keyword; only for type=radiobutton and checkbox) Symbol to be used for the field: check, cross,
diamond, circle, star, square. Default: check

calcorder (Integer; only used if the field has a JavaScript action for the calculate event) Calculation order of the field
relative to other fields. Fields with smaller numbers will be calculated before fields with higher numbers.
Default: 10 plus the maximum calcorder used on the current page (and 10 initially)

caption (Content string; only for type=pushbutton; one of the caption or icon options must be supplied for push
buttons) Caption text which is visible when the button doesn’t have input focus. An empty string (i.e.
caption {}) produces neither caption nor icon. Default: none

caption-
down

(Content string; only for type=pushbutton; requires highlight=push; not allowed for PDF/A) Caption
text which is visible when the button is activated. Default: none

230 Chapter 12: Interactive Features

caption-
rollover

(Content string; only for type=pushbutton; requires highlight=push; not allowed for PDF/A) Caption
text which is visible when the button has input focus. Default: none

charspacing (Float; not for type=radiobutton, checkbox, signature) Character spacing for text in the field in units of
the current user coordinate system. Default: 0

comb (Boolean; only for type=textfield; PDF 1.5) If true and the multiline, fileselect, and password op-
tions are false, and the maxchar option has been supplied with an integer value, the field will be divided
into a number of equidistant subfields (according to the maxchar option) for individual characters. De-
fault: false

commit-
onselect

(Boolean; only for type=listbox, combobox; PDF 1.5) If true, an item selected in the list will be committed
immediately upon selection. If false, the item will only be committed upon exiting the field. Default:
false

currentvalue (Not for type=pushbutton, signature) The field’s initial value. Type and default depend on the field
type:
checkbox, radiobutton

(String) The string Off means that the button is deactivated. An arbitrary string other than
Off means that the button is activated. This option should be set for the first button. Default:
Off

combobox (Content string) Selected value in the combobox. It must be one of the strings supplied in the
option itemtextlist. Default: empty

listbox (List of integers) Zero-based index of the selected item within itemtextlist (before sorting if
the sorted option is supplied). Default: none

textfield (Content string) Contents of the text field. Default: empty

dasharray (List of two non-negative floats; only for borderstyle=dashed). The lengths of dashes and gaps for a
dashed border in default units (see Table 7.1). Default: 3 3

defaultvalue The field’s value after a ResetForm action. Types and defaults are the same as for the currentvalue op-
tion. Exception: for listboxes only a single integer value is allowed.

display (Keyword; forced to visible for PDF/A) Visibility on screen and paper: visible, hidden, noview, noprint.
Default: visible

editable (Boolean; only for type=combobox) If true, the currently selected text in the box can be edited. Default:
false

exportable (Boolean) The field will be exported when a SubmitForm action happens. Default: true

fieldcontent (Template handle; only for type=signature) The supplied template is displayed in the signature field; it
may contain signing instructions. The template must have the same width and height as the field.

fieldtype (Keyword; only for PDF_create_fieldgroup()) Type of the fields in the group (default: mixed):
radiobutton

The group contains only radio buttons. The option unisonselect must be supplied. The
options itemtextlist, itemnamelist, currentvalue and defaultvalue must be specified in
PDF_create_fieldgroup() and not in PDF_create_field().

mixed The group may contain an arbitrary mixture of field types.
pushbutton, checkbox, listbox, combobox, textfield

The group contains only fields of the specified type. The current value is displayed in all group
fields simultaneously, even if the fields are located on separate pages. Common options, e.g.
currentvalue, must be specified in PDF_create_fieldgroup() and not in PDF_create_field().

fileselect (Boolean; only for type=textfield) If true, the text in the field will be treated as a file name. Default:
false

Table 12.5 Options for field properties with PDF_create_field() and PDF_create_fieldgroup()

option description

12.3 Form Fields 231

fillcolor (Color; subject to PDF/A color restrictions) Fill color for text. Supported color spaces: gray, rgb, cmyk. De-
fault: {rgb 0 0 0} for PDF/A without output intent, otherwise {gray 0} (=black)

fitmethod (Keyword; only for type=pushbutton) Method of placing a template provided with the icon, icondown,
and iconrollover options within the button. Supported keywords (default: meet):
auto same as meet if the template fits into the button, otherwise clip
nofit same as clip
clip template will not be scaled, but clipped at the field border
meet template will be scaled proportionally so that it fits into the button
slice same as meet
entire template will be scaled so that it fully fits into the button

font (Font handle; not for type=pushbutton, signature) Font to be used for the field; see Details section
above regarding font and encoding recommendations. Acrobat can display characters even if they are
not included in the font’s encoding. For example, you can use encoding=winansi and supply Unicode
characters outside winansi. Font usage depends on the field type:
> Fields with type=listbox, combobox, or textfield: this option is required.
> For type=pushbutton this option is required if one or more of the caption, captionrollover, or cap-
tiondown options are specified.

> Fields with type=radiobutton or checkbox always use ZapfDingbats and encoding=builtin.

fontsize (Fontsize; not for type=pushbutton, signature) Font size in user coordinates. The value 0 or keyword
auto means that the fontsize is adjusted to the rectangle. Default: auto

highlight (Keyword) Highlight mode of the field when the user clicks on it: none, invert, outline, push. Default:
invert

icon (Template handle1; only for type=pushbutton; one of the caption or icon options must be supplied for
push buttons) Handle for a template which will be visible when the button doesn’t have input focus. De-
fault: none

icondown (Template handle1; only for type=pushbutton; requires highlight=push; not allowed for PDF/A) Handle
for a template which will be visible when the button is activated. Default: none

iconrollover (Template handle1; only for type=pushbutton; requires highlight=push; not allowed for PDF/A) Handle
for a template which will be visible when the button has input focus. Default: none

itemname (Hypertext string; only for type=radiobutton and checkbox; must be used if the export value is not a
Latin 1 string) Export value of the field. Item names for multiple radio buttons in a group may be identi-
cal. Default: field name

item-
namelist

(List of hypertext strings; only for type=listbox and combobox) Export values of the list items. Multiple
items may have the same export value. Default: none

itemtextlist (List of content strings; only for type=listbox and combobox, and required in these cases) Text contents
for all items in the list. If both itemnamelist and itemtextlist are specified both must contain the
same number of strings.

layer (Layer handle; PDF 1.5) Layer to which the field will belong. The field will only be visible if the correspond-
ing layer is visible.

linewidth (Integer) Line width of the field border in default coordinates. Default: 1

locked (Boolean) If true, the field properties cannot be edited in Acrobat. Default: false

lockmode (Keyword; only for type=signature; PDF 1.5) Indicates the set of fields that should be locked when the
field is signed:
all All fields in the document will be locked.

Table 12.5 Options for field properties with PDF_create_field() and PDF_create_fieldgroup()

option description

232 Chapter 12: Interactive Features

maxchar (Integer or keyword; only for type=textfield) The upper limit for the number of text characters in the
field, or the keyword unlimited if there is no limit. Default: unlimited

multiline (Boolean; only for type=textfield) If true, text will be wrapped to multiple lines if required. Default:
false

multiselect (Boolean; only for type=listbox) If true, multiple items in the list can be selected. Default: false

orientate (Keyword) Orientation of the contents within the field: north, west, south, east. Default: north

password (Boolean; only for type=textfield) If true, the text will not be visible upon input. No currentvalue
should be supplied for password fields. Default: false

position (List of floats or keywords; only for type=pushbutton) One or two values specifying the position of a tem-
plate provided with the icon... options within the field rectangle, with {0 0} being the lower left corner of
the field, and {100 100} the upper right corner. The values are expressed as percentages of the field rect-
angle’s width and height. If both percentages are equal it is sufficient to specify a single float value.
The keywords left, center, right (in x direction) or bottom, center, top (in y direction) can be used as
equivalents for the values 0, 50, and 100. If only one keyword has been specified, the corresponding key-
word for the other direction will be added. Default: {center}. Examples:
{0 50} or {left center} left-justified template
{50 50} or {center} centered template
{100 50} or {right center} right-justified template

readonly2 (Boolean) If true, the field does not allow any input. Default: false

required (Boolean) If true, the field must contain a value when the form is submitted. Default: false

richtext (Boolean; only for type=textfield; PDF 1.5) Allow rich text formatting. If true, the fontsize must not be
0, and fillcolor must not use color space cmyk. Default: false

scrollable (Boolean; only for type=textfield) If true, text will be moved to the invisible area outside the field if
the text doesn’t fit into the field. If false, no more input will be accepted when the text fills the full field.
Default: true

sorted (Boolean; only for type=listbox and combobox) If true, the contents of the list will be sorted. Default:
false

spellcheck (Boolean; only for type=textfield and combobox) If true, the spell checker will be active in the field. De-
fault: false if type=textfield and password=true, otherwise true

strokecolor (Color; subject to PDF/A color restrictions) Stroke color for text. Supported color spaces: gray, rgb, cmyk.
Default: {rgb 0 0 0} for PDF/A without output intent, otherwise {gray 0} (=black).

submitname (Hypertext string; recommended only for type=pushbutton) Mapping name to be used when exporting
form field data.

taborder (Integer) Specifies the tab order of the field relative to other fields. Fields with smaller numbers will be
reached before fields with higher numbers. Default: 10 plus the maximum taborder used on the current
page (and 10 for the first field on the page); the result of this default is that the creation order will specify
the tab order.

toggle (Boolean; only for PDF_create_fieldgroup() and type=radiobutton) If true, a radio button within a
group can be activated and deactivated by clicking. If false, it can only be activated by clicking, and de-
activating by clicking another button. Default: false

tooltip2 (Hypertext string; non-empty value required in PDF/UA-1) The text visible in the field’s tooltip, also used
by screen readers. For radio buttons and groups Acrobat uses the tooltip of the first button in the group,
others are ignored. Default: none

topindex (Integer; only for type=listbox) Index of the first visible entry. The first item has index 0. Default: 0

Table 12.5 Options for field properties with PDF_create_field() and PDF_create_fieldgroup()

option description

12.3 Form Fields 233

unisonselect (Boolean; only for PDF_create_fieldgroup(), type=radiobutton and PDF 1.5) If true, radio buttons with
the same field name or item name will be selected simultaneously. Default: false

user-
coordinates

(Boolean) If false, field coordinates are expected in the default coordinate system; otherwise the current
user coordinate system will be used. Default: the value of the usercoordinates global option

1. Templates for icons can be created with the PDF_begin_template_ext() function; if the icon consists of an image only you can create
the template by supplying the template option to PDF_load_image().
2. For type=radiobutton this option should not be used with PDF_create_field(), but only with PDF_create_fieldgroup().

Table 12.6 Suboptions for the barcode option of PDF_create_field() and PDF_create_fieldgroup()

option description

caption (Hypertext string) Caption which will be rendered below the barcode. By default, Acrobat creates the
file: URL for the document as caption.

dataprep (Integer) Applicable data preparation. Supported values (default: 0):
0 Do not apply any compression before encoding the data in the barcode.
1 Compress the data with the Flate compression algorithm before encoding the data.

ecc (Integer; required for symbology=PDF417 and QRCode) Error correction coefficient where higher values
create better error correction through redundancy, but require a larger barcode. For symbology=PDF417
the values must be in the range 0-8; for symbology=QRCode the values must be in the range 0-3.

resolution (Positive integer) Resolution in dpi at which the barcode is rendered (default: 300)

symbology (Keyword; required) Barcode technology to use:
PDF417 PDF417 bar code according to ISO 15438
QRCode QR Code 2005 bar code according to ISO 18004
DataMatrix Data Matrix bar code according to ISO 16022

xsymheight (Integer; only for symbology=PDF417, and required in this case) Vertical distance between two barcode
modules in pixels. The ratio xsymheight/xsymwidth must be an integer value. The allowed range for this
ratio is 1-4.

xsymwidth (Integer; required) Horizontal distance between two barcode modules in pixels

Table 12.5 Options for field properties with PDF_create_field() and PDF_create_fieldgroup()

option description

234 Chapter 12: Interactive Features

12.4 Actions

C++ Java C# int create_action(String type, String optlist)
Perl PHP int create_action(string type, string optlist)

C int PDF_create_action(PDF *p, const char *type, const char *optlist)

Create an action which can be applied to various objects and events.

type The action type according to Table 12.7.

optlist An option list specifying properties of the action:
> General options: errorpolicy (see Table 2.1) and hypertextencoding (see Table 2.3)
> The following type-specific options according to Table 12.8:

3Dview, richmediaargs, canonicaldate, defaultdir, destination, destname, duration, exclude,
exportmethod, filename, functionname, hide, instance, ismap, layerstate, menuname,
namelist, newwindow, operation, parameters, preserveradio, script, scriptname, submit-
emptyfields, target, targetpath, transition, url

Table 12.7 Action types

type notes; options allowed for this type

GoTo Go to a destination in the current document: destination, destname

GoTo3DView (PDF 1.6) Set the current view of a 3D animation: 3Dview, target

GoToE (PDF 1.6) Go to a destination in an embedded document: destination, destname, filename, newwindow,
targetpath

GoToR Go to a destination in another (remote) document: destination, destname, filename, newwindow

Hide Hide or show a form field: hide, namelist

ImportData Import form field values from a file: filename

JavaScript Execute a script with JavaScript code: script, scriptname

Launch Launch an application or document: defaultdir, filename, newwindow, operation, parameters

Movie (Deprecated; use type=RichMediaExecute instead) Play an external sound or movie file in a floating win-
dow or within the rectangle of a movie annotation: operation, target

Named Execute an Acrobat menu item identified by its name: menuname

ResetForm Set some or all form fields to their default values: exclude

RichMedia-
Execute

(PDF 1.7ext3) Send a command to a RichMedia annotation: functionname, instance, richmediaargs,
target

SetOCGState (PDF 1.5) Hide or show layers: layerstate, preserveradio

SubmitForm Send data to a uniform resource locator, i.e. an Internet address: canonicaldate, exclude, export-
method, submitemptyfields, url

Trans (PDF 1.5) Update the display using some visual effect. This can be useful to control the display during a se-
quence of multiple actions: duration, transition

URI Resolve a uniform resource identifier, i.e. jump to an Internet address: ismap, url

12.4 Actions 235

Returns An action handle which can be used to attach actions to objects within the document
The action handle can be used until the end of the enclosing document scope.

Details This function creates a single action. Various objects (e.g. pages, form field events, book-
marks) can be provided with one or more actions, but each action must be generated
with a separate call to PDF_create_action(). Using an action multiply for different objects
is allowed. It is recommended to re-use existing handles if an action with the same op-
tions has already been created earlier.

PDF/A Only the following action types are allowed:
GoTo, GoToE, GoToR, Named, SubmitForm, URI

PDF/X This function must not be called.

PDF/UA The ismap=true option is not allowed.

Scope any except object. The returned handle can be used until the next call to PDF_end_
document().

Table 12.8 Options for action properties with PDF_create_action()

option description

3Dview (Keyword or 3D view handle; GoTo3DView; required) Selects the view of a 3D annotation; One of the key-
words first, last, next, previous (referring to the respective entries in the annotation’s views option),
or default (referring to the annotation’s defaultview option), or a 3D view handle created with PDF_
create_3dview().

canonical-
date

(Boolean; SubmitForm) If true, any submitted field values representing dates are converted to a standard
format. The interpretation of a field as a date is not specified explicitly in the field itself, but only in the
JavaScript code that processes it. Default: false

defaultdir (String; Launch; deprecated in PDF 2.0) Set the default directory for the launched application. This is only
supported by Acrobat on Windows. Default: none

destination (Option list; GoTo, GoToE, GoToR; required unless destname is supplied) Option list according to Table 12.10
defining the destination to jump to.

destname (Hypertext string) GoTo (required unless destination is supplied): name of a destination which has been
defined with PDF_add_nameddest().The destination can be created before or after referring to it.
GoToR, GoToE (required unless destination is supplied): name of a destination in the remote or embed-
ded document.

duration (Float; Trans) Set the duration of the transition effect in seconds for the current page. Default: 1

exclude (Boolean) SubmitForm: If true, the namelist option specifies which fields to exclude; all fields in the doc-
ument are submitted except those listed in the namelist array and those whose exportable option is
false. If false, the namelist option specifies which fields to include in the submission. All members of
specified field groups will be submitted as well. Default: false
ResetForm: If true, the namelist option specifies which fields to exclude; all fields in the document are
reset except those listed in the namelist array. If false, the namelist option specifies which fields to in-
clude in resetting. All members of specified field groups will be reset as well. Default: false

236 Chapter 12: Interactive Features

export-
method

(Keyword list; SubmitForm) Controls how the field names and values are submitted. Default: fdf.
html, fdf, xfdf, pdf

In HTML, FDF, XFDF, or PDF format, respectively
annotfields (Only for fdf) Include all annotations and fields.
coordinate (Only for html) The coordinates of the mouse click that caused the submitform action will be

transmitted as part of the form data. The coordinate values are relative to the upper-left
corner of the field’s rectangle.

exclurl (Only for fdf) The submitted FDF will exclude the url string.
getrequest (Only for html and pdf) Submit using HTTP GET; otherwise HTTP POST
onlyuser (Only for fdf and annotfields) The submit will include only those annotations whose name

matches the name of the current user, as determined by the remote server.
updates (Only for fdf) Include all incremental updates contained in the underlying PDF document
Example for combined options: exportmethod={fdf updates onlyuser}

filename (Hypertext string) GoToR, Launch (required): name of an external (PDF or other) file or application which
will be opened when the action is triggered. UNC file names must be written as \\server\volume.
ImportData (required): name of the external file containing forms data.
GoToE: name of the root document of the target relative to the root document of the source. If this entry
is absent, the source and target share the same root document.

functionname (Hypertext string; RichMediaExecute; required) String specifying the script command as a JavaScript
function name (not a full script). If the target instance specified by the instance option contains Flash
content, the command string represents an ActionScript ExternalInterface call to the script engine
context specific to the target instance. If the target instance is a 3D model, the call is made in the global
context of the annotation’s instance of the 3D JavaScript engine.

hide (Boolean; Hide) Indicates whether to hide (true) or show (false) fields. Default: true

instance (Integer; RichMediaExecute) Index of the option list (starting with 1) in the instances suboption of the
configuration suboption of the richmedia option of PDF_create_annotation() to specify a 3D instance
of the RichMedia annotation for which to execute the script. Default: 1

ismap (Boolean; URI; true not allowed for PDF/UA-1) If true, the coordinates of the mouse position will be add-
ed to the target URI when the url is resolved. Default: false

layerstate (Option list; SetOCGState; required) List of pairs where each pair consists of a keyword and a layer han-
dle. Supported keywords:
on Activate the layer
off Deactivate the layer
toggle Reverse the state of the layer. If this is used preserveradio should be set to false.

menuname (String; Named; required) The name of the menu item to be performed. In PDF/A only nextpage, prevpage,
firstpage, lastpage are allowed. Otherwise more names will be accepted. A full code sample for finding
the names of other menu items can be found in the Cookbook topic interactive/acrobat_menu_items.

namelist (List of strings; Hide; required) The names (including group names) of the fields to be hidden or shown.
(SubmitForm) The names (including group names) of form fields to include in the submission or which to
exclude, depending on the setting of the exclude option. Default: all fields are submitted except those
whose exportable option is false.
(ResetForm) The names (including group names) of form fields to include in the resetting or which to ex-
clude, depending on the setting of the exclude option. Default: all fields are reset.

Table 12.8 Options for action properties with PDF_create_action()

option description

http://www.pdflib.com/pdflib-cookbook/interactive-elements/acrobat-menu-items

12.4 Actions 237

newwindow (Boolean; GoToE, GoToR) A flag specifying whether to open the destination document in a new window. If
this flag is false, the destination document will replace the current document in the same window.
Launch: This entry is ignored if the file is not a PDF document. Default: Acrobat behaves according to the
current user preference.

operation (Keyword; Launch; deprecated in PDF 2.0) A keyword specifying the operation to be applied to the docu-
ment specified in the filename option. This is only supported by Acrobat on Windows. If the filename
option designates an application instead of a document, this option will be ignored and the application
is launched. Supported keywords (default: open):
open open a document
print print a document

(Keyword; Movie) A keyword specifying the operation to be applied to the movie or sound. Supported
keywords (default: play):
play Start playing the movie, using the mode specified in the movie annotation’s playmode option.

If the movie is currently paused, it is repositioned to the beginning before playing.
stop Stop playing the movie.
pause Pause a playing movie.
resume Resume a paused movie.

parameters (String; Launch; deprecated in PDF 2.0) A parameter string to be passed to the application specified with
the filename option. This is only supported by Acrobat on Windows. Multiple parameters can be sepa-
rated with a space character, but individual parameters must not contain any space characters. This op-
tion should be omitted if filename designates a document. Default: none

preserve-
radio

(Boolean; SetOCGState) If true, preserve the radio-button state relationship between layers. Default:
true

richmediaargs (POCA container handle; RichMediaExecute) Handle for an array container which specifies an arbitrary
number of arguments for the command. Valid arguments are objects of type string, integer, float, or
Boolean. The array must have been created with the option usage=richmediaargs. Default: no argu-
ments

script (Hypertext string; JavaScript; required) A string containing the JavaScript code to be executed. In order to
pass arbitrary strings with this option the option list syntax described in »Unquoted string values«, page
10, may be useful.

scriptname (Hypertext string; JavaScript) If present, the JavaScript supplied in the script option will be inserted as
a document-level JavaScript with the supplied name. If the same scriptname is supplied more than once
in a document only the first script will be used. Document-level JavaScript will be executed after loading
the document in Acrobat. This may be useful for scripts which are used in form fields.

submit-
emptyfields

(Boolean; SubmitForm) If true, all fields characterized by the namelist and exclude options are submit-
ted, regardless of whether they have a value. For fields without a value, only the field name is transmit-
ted. If false, fields without a value are not submitted. Default: false

target (String; GoTo3DView, Movie; RichMediaExecute; required) Name of the target 3D, movie, or rich media
annotation for which to execute the script as specified in the name option of PDF_create_annotation().

targetpath (Option list; GoToE; required unless filename is specified) A target option list (see Table 12.9) specifying
path information for the target document. Each target option list specifies one element in the full path
to the target and may have nested target option lists with additional elements.

Table 12.8 Options for action properties with PDF_create_action()

option description

238 Chapter 12: Interactive Features

transition (Keyword; Trans) Set the transition effect; see Table 3.9 for a list of keywords. Default: replace

url (String; URI and SubmitForm; required) A Uniform Resource Locator encoded in 7-bit ASCII or EBCDIC (but
only containing ASCII characters) specifying the link target (for type=URI) or the address of the script at
the Web server that will process the submission (for type=SubmitForm). It can point to an arbitrary (Web
or local) resource, and must start with a protocol identifier (such as http://). Characters with special
meaning in URLs (e.g. ’%’) must be quoted according to RFC 3986.

Table 12.9 Suboptions for the targetpath option of PDF_create_action()

option description

annotation (Hypertext string; required if relation=child and the target is associated with a file attachment anno-
tation) Specifies the name of the target’s file attachment annotation on the page specified by
pagenumber or destname.

destname (Hypertext string; required unless pagenumber is supplied and relation=child and the target is associat-
ed with a file attachment annotation) Specifies a named destination for a page in the current document
which contains the target’s file attachment annotation. This option will be ignored if pagenumber is spec-
ified.

name (Hypertext string; required if relation=child and the target is located in the attachments list; other-
wise it must be absent; will be ignored if annotation is specified) Name of the target in the attachments
list of PDF_begin/end_document().

pagenumber (Integer; required unless destname is supplied and relation=child and the target is associated with a
file attachment annotation; will be ignored if destname is specified) Specifies the number of a page in the
current document which contains the target’s file attachment annotation.

relation (Keyword; required) Specifies the relationship of the current document and the target (which may be an
intermediate target). Supported keywords:
parent The target is the parent of the current document.
child The target is a child of the current document.

targetpath (Option list) A target option list according to Table 12.9 specifying additional path information to the tar-
get document. If this option is absent the current document is the target file containing the destination.

Table 12.8 Options for action properties with PDF_create_action()

option description

12.5 Named Destinations 239

12.5 Named Destinations

C++ Java C# void add_nameddest(String name, String optlist)
Perl PHP add_nameddest(string name, string optlist)

C void PDF_add_nameddest(PDF *p, const char *name, int len, const char *optlist)

Create a named destination on a page in the document.

name (Hypertext string) The name of the destination, which can be used as a target for
links, bookmarks, or other triggers. Destination names must be unique within a docu-
ment. If the same name is supplied more than once for a document only the first defini-
tion is used, the others are silently ignored.

len (C language binding only) Length of name (in bytes). If len = 0 a null-terminated
string must be provided.

optlist An option list specifying the destination. An empty list is equivalent to
{type=fitwindow page=0}. The following options can be used:

> General options: errorpolicy (see Table 2.1), hypertextencoding and hypertextformat (see
Table 2.3)

> Destination control options according to Table 12.10:
bottom, group, left, page, right, top, type, zoom
Coordinates in these options are always interpreted in the default coordinate sys-
tem; user coordinates are not supported since the coordinate system of the target
page is not known.

Details The destination details must be specified in optlist, and the destination may be located
on any page in the current document. The provided name can be used with the destname
option in PDF_create_action(), PDF_create_annotation(), PDF_create_bookmark(), and PDF_
begin/end_document(). This way defining and using a destination can be split into two
separate steps.

Alternatively, if the destination is known at the time when it is used, defining and
using the named destination can be combined by using the destination option of those
functions, and PDF_add_nameddest() is not required in this case.

Scope any except object

Table 12.10 Destination options for PDF_add_nameddest(), as well as for the destination option in PDF_create_action(),
PDF_create_annotation(), PDF_create_bookmark(), and PDF_begin/end_document().

option description

bottom (Float; only for type=fitrect) The y coordinate of the page in default coordinates which will positioned
at the bottom edge of the window. Default: 0

group (String; required if the page option has been specified and the document uses page groups; not allowed
otherwise.) Name of the page group that the destination page belongs to.

left (Float; only for type=fixed, fitheight, fitrect, or fitvisibleheight) The x coordinate of the page in
default coordinates which will positioned at the left edge of the window. Default: 0

page (Integer) Page number of the destination page (first page is 1). The page must exist in the destination PDF.
Page 0 means the current page if in page scope, and page 1 if in document scope. Default: 0

240 Chapter 12: Interactive Features

right (Float; only for type=fitrect) The x coordinate of the page in default coordinates which will positioned
at the right edge of the window. Default: 1000

top (Float; only for type=fixed, fitwidth, fitrect, or fitvisiblewidth) The y coordinate of the page in de-
fault coordinates which will positioned at the top edge of the window. Default: 1000

type (Keyword) Specifies the location of the window on the target page. Supported keywords (default:
fitwindow):

fitheight Fit the page height to the window, with the x coordinate left at the left edge of the window.
fitrect Fit the rectangle specified by left, bottom, right, and top to the window.
fitvisible Fit the visible contents of the page (the ArtBox) to the window.
fitvisibleheight

Fit the visible contents of the page to the window with the x coordinate left at the left edge
of the window.

fitvisiblewidth
Fit the visible contents of the page to the window with the y coordinate top at the top edge of
the window.

fitwidth Fit the page width to the window, with the y coordinate top at the top edge of the window.
fitwindow Fit the complete page to the window.
fixed Use a fixed destination view specified by the left, top, and zoom options. If any of these is

missing its current value will be retained.

zoom (Float or percentage; only for type=fixed) The zoom factor (1 means 100%) to be used to display the
page contents. If this option is missing or 0 the zoom factor which was in effect when the link was acti-
vated will be retained.

Table 12.10 Destination options for PDF_add_nameddest(), as well as for the destination option in PDF_create_action(),
PDF_create_annotation(), PDF_create_bookmark(), and PDF_begin/end_document().

option description

12.6 PDF Packages and Portfolios 241

12.6 PDF Packages and Portfolios
Portfolio features are implemented with the following functions and options:

> Portfolios can be created with the portfolio option of PDF_end_document(). This func-
tion is described in Section 3.1, »Document Functions«, page 41, the portfolio option is
described below in Table 12.13.

> Files and folders can be added to a portfolio with PDF_add_portfolio_folder() and PDF_
add_portfolio_file(). These functions are described below.

> Actions for navigating within a portfolio can be created with PDF_create_action() and
type=GoToE (see Section 12.4, »Actions«, page 234).

C++ Java C# int add_portfolio_folder(int parent, String, foldername, String optlist)
Perl PHP int add_portfolio_folder(int parent, string foldername, string optlist)

C int PDF_add_portfolio_folder(PDF *p, int parent, const char *foldername, int len, const char *optlist)

Add a folder to a new or existing portfolio (requires PDF 1.7ext3).

parent The parent folder, specified by a folder handle returned by an earlier call to
PDF_add_portfolio_folder(), or -1 (in PHP: 0) for the root folder.

foldername (Hypertext string with 1-255 characters; the characters / \ : * " < > | must not
be used; the last character must not be a period ’.’) Name of the folder. Two folders with
the same parent must not have the same name after case normalization. The name of
the root folder will be ignored by Acrobat.

len (C language binding only) Length of foldername (in bytes). If len=0 a null-terminat-
ed string must be provided.

optlist An option list specifying portfolio properties. The following options can be
used:

> General options: errorpolicy (see Table 2.1), hypertextencoding and hypertextformat (see
Table 2.3)

> Options for folder properties according to Table 13.6: description, thumbnail
> Metadata option according to Table 12.11: fieldlist

Returns A handle which can be used in PDF_add_portfolio_folder() or PDF_add_portfolio_file().

Details The generated folder structure will be used to create a PDF portfolio for the current doc-
ument. The folder structure will be deleted after PDF_end_document(). This function
must not be used if the attachments option has been supplied to PDF_begin_document().

Scope any except object

Table 12.11 Options for PDF_add_portfolio_folder() and PDF_add_portfolio_file()

option description

fieldlist (List of option lists) Specify metadata fields for the file or folder. Each list refers to a field in the schema
suboption of the portfolio option of PDF_end_document(). Supported suboptions are listed in Table
12.12.

242 Chapter 12: Interactive Features

C++ Java C# int add_portfolio_file(int folder, String filename, String optlist)
Perl PHP int add_portfolio_file(int folder, string filename, string optlist)

C int PDF_add_portfolio_file(PDF *p, int folder, const char *filename, int len, const char *optlist)

Add a file to a portfolio folder or a package (requires PDF 1.7).

folder A folder handle returned by an earlier call to PDF_add_portfolio_folder() or -1 (in
PHP: 0) for the root folder. Folders different from the root folder require PDF 1.7ext3.

filename (Name string; will be interpreted according to the filenamehandling global op-
tion, see Table 2.3) Name of a disk-based or virtual file which will be attached to the spec-
ified folder of the PDF portfolio. With the createpvf option of PDF_begin_document() you
can create documents in memory and pass them on for inclusion in a PDF Portfolio
without creating any temporary files on disk.

Note that Acrobat will use the file name suffix to determine which application to
launch when interacting with the file in Acrobat. If a file name with the appropriate suf-
fix cannot be used due to external restrictions you can create a PVF file (which supports
arbitrary file names) instead.

len (C language binding only) Length of filename (in bytes). If len=0 a null-terminated
string must be provided.

optlist An option list specifying file properties:
> General options: errorpolicy (see Table 2.1) and hypertextformat (see Table 2.3)
> Options for file properties according to Table 13.6:

description, filename, mimetype, name, password, relationship, thumbnail
> Metadata option according to Table 12.11: fieldlist

Returns The value 1 if the file could be added successfully, or an error code of -1 (in PHP: 0) if the
function call failed. If errorpolicy=exception this function will throw an exception in case
of an error. PDF documents will be opened to fetch the modification and creation dates.
If the PDF document cannot be opened (e.g. because no password was supplied) the doc-
ument will be included in the PDF portfolio nevertheless.

Details The specified file will be attached to the specified folder of a PDF 1.7ext3 portfolio or a
PDF 1.7 package. If PDI is available, PDF documents will be opened if possible and their
creation and modification dates will be written to the portfolio. This function must not
be used if the attachments option has been supplied to PDF_begin_document().

PDF/A PDF/A-1: this function must not be called.
PDF/A-2: filename must refer to a PDF/A-1 or PDF/A-2 document. Some options are re-
stricted, see Table 13.6.
PDF/A-3: arbitrary file types can be added. The relationship option is required. Files add-
ed to a package are implicitly associated with the whole document.

Scope any except object

12.6 PDF Packages and Portfolios 243

Table 12.12 Suboptions of the fieldlist option of PDF_add_portfolio_folder() and PDF_add_portfolio_file()

option description

key (String; required) Name of the field, which must refer to a key in the schema suboption of the portfolio
option list of PDF_end_document(). The name must be unique.

prefix (Hypertext string) A prefix string which will be prepended to the field value presented to the user. Acrobat
will use this entry only if type=text. Default: none

type (Keyword) Data type of the field. Supported keywords (default: text):
text Text field: the field value will be stored as hypertext string.
date Date field: the field value will be stored as PDF date string.
number Number field: the field value will be stored as PDF number.

value (Hypertext string; required) Specifies the value of a field in the schema suboption of the portfolio option
list of PDF_end_document(). The data type must be specified in the type option and must match the cor-
responding type suboption of the schema suboption of the portfolio option.

Table 12.13 Suboptions of the portfolio option of PDF_end_document()

option description

coversheet (Hypertext string) The name of the file within the portfolio which will be initially presented in the user
interface. Default: the document which contains the portfolio

coversheet-
folder

(Folder handle) The name of the folder within the portfolio which contains the file specified in the
coversheet option. If a file with the coversheet name exists in multiple portfolio folders and no
coversheetfolder has been specified, the first occurrence will be used. Default: none

initialview (Keyword) Specifies the initial view. Supported keywords (default: detail):
custom (PDF 1.7ext3; requires the navigator option; deprecated) The portfolio is presented by a

custom Flash-based navigator.
detail The portfolio is presented in details mode, with all information in the schema option

presented in a multi-column format. This mode provides the most information to the user
(Acrobat: View, Portfolio, Details).

hidden The portfolio is initially hidden, without preventing the user from obtaining a file list via
explicit action (Acrobat: »Minimize view«).

tile The portfolio is presented in tile mode, with each file in the collection denoted by a small icon
and a subset of information from the schema option. This mode provides top-level
information about the file attachments to the user (Acrobat: View, Portfolio, Layout).

navigator (Option list; PDF 1.7ext3; deprecated; required for initialview=custom) Embed a custom Flash-based
navigator in the portfolio. In order to actually use the custom navigator when the document is opened
use initialview=custom; otherwise the navigator can be used for editing the portfolio, but will not be
active upon opening the document. Supported suboptions are listed in Table 12.14.
The values of category, description, icon, and name will be used to present the navigator in the list of
available portfolio layouts when the portfolio is edited in Acrobat.

244 Chapter 12: Interactive Features

schema (List of option lists) Metadata schema for the portfolio: each option list defines a field with a unique
name which corresponds to a key in the fieldlist of a folder or file, or to the name of a standard field.
These fields define the display behavior of the portfolio in Acrobat (default: Acrobat displays the file
name and size, modification date, and description if specified):
editable (Boolean) Specifies whether Acrobat should allow editing the field value. Default: false
key (String; required) The internal field name, which must be unique.

The following names (which can not be used for user-defined fields) can be used to assign
new labels to the builtin fields: _creationdate, _description, _filename, _moddate, _size.

label (Hypertext string; required) The textual field label that is displayed to the user.
order (Integer) Relative order of the fields in the user interface (1,2,3,...)
type (Keyword) Data type of the field. The following types can be used to refer to user-defined

fields in the fieldlist option (default: text):
text hypertext string
date PDF date string
number number

visible (Boolean) Initial visibility of the field in the user interface. Default: true; however, in the
presence of user-defined fields Acrobat hides builtin fields unless they are explicitly specified
as visible.

sort (List of option lists, where each list contains a string and an optional keyword) Specifies the order in
which the fields specified in the schema option will be sorted in the user interface. Each sublist contains
the field name (required) and a keyword (optional). Supported keywords (Default: ascending):
ascending field values are sorted in ascending order
descending field values are sorted in descending order
Acrobat uses this list to sort the fields in the portfolio. The list is used to allow additional fields to contrib-
ute to the sort, where each additional field is used to break ties: if multiple fields in the schema option
have the same value for the first field in the list, the values for successive fields in the list are used for sort-
ing until a unique order is determined or until the field names are exhausted. Default: no sorting

split (Option list; PDF 1.7ext3) Specifies the orientation and position of the splitter bar. The default depends on
the initialview option: The value detail (or no value) implies horizontal orientation and tile indi-
cates vertical orientation. No splitter is used if initalview=hidden. Supported suboptions:
direction (Keyword) Orientation of the splitter bar. Supported keywords:

horizontal Split the window horizontally.
vertical Split the window vertically.
none Don’t split the window. The entire window is dedicated to the file navigation view.

position (Percentage) Initial position of the splitter bar, specified as a percentage of the available
window area. Allowed values are in the range from 0 to 100. This entry will be ignored if
direction=none. Default: viewer dependent

Table 12.13 Suboptions of the portfolio option of PDF_end_document()

option description

12.6 PDF Packages and Portfolios 245

Table 12.14 Suboptions of the navigator suboption of the portfolio option of PDF_add_portfolio_folder() and PDF_
add_portfolio_file() (deprecated)

option description

apiversion (String; required) Version of the navigator API required by the navigator SWF file, specified as a string of
the form m[.n[.p[.q]]], where m, n, p, and q are non-negative integers. If not present, n, p, and q default
to 0. The following entries are recommended for use with Acrobat X and above: 9.5.0.0

assets (List of option lists, required) Assets that are used to implement the navigator, e.g. a Flash file, an icon
and other resources such as images or XML files. Supported suboptions:
asset (Asset handle; required) Handle for an asset loaded with PDF_load_asset().
name (Hypertext string with 1-255 characters; the characters : * " < > | must not be used; the last

character must not be a period ’.’; required) Name of the asset which can be used to identify it
in Flash code.

category (Hypertext string) Category in which the navigator will be presented

description (Hypertext string) Description of the navigator

flash (Hypertext string; required) Name of an asset in the assets option list with type=Flash, containing the
SWF code which implements the portfolio layout.

icon (Hypertext string) Name of an asset in the assets option list with type=JPEG or PNG, containing an icon
for the navigator. However, the use of PNG images is recommended since JPEG images don’t seem to
work consistently in Acrobat. A size of 42x42 pixels is recommended for best results in Acrobat.

id (String; required if version is specified) String representing a unique ID for the navigator, expressed as a
URI. If a versioning scheme is to be implemented, it is necessary to provide the same id across all versions
of the navigator. If no id is specified, PDFlib will generate a URN based on a machine-generated GUID.

loadtype (Keyword) Method used to load the navigator SWF. Supported keywords (default is the keyword
default):

module The navigator SWF is loaded as Adobe Flex 2 module.
default The navigator SWF is loaded as an ordinary SWF file.

locale (String) String with a locale according to Unicode Technical Standard #35. Examples: en_GB, de_DE, zh_
Hans

name (Hypertext string; required) Name of the portfolio

strings (List of pairs of hypertext strings) Localized strings for the navigator. Each pair consists of an identifier for
the localized string and the localized string itself.

version (String; requires the id option) Version of the navigator, specified as a string of the form m[.n[.p[.q]]],
where m, n, p, and q are non-negative integers. If not present, n, p, and q default to 0.

246 Chapter 12: Interactive Features

12.7 Geospatial Features
Geospatial features are implemented with the following functions and options:

> One or more georeferenced areas can be assigned to a page with the viewports option
of PDF_begin/end_page_ext().

> The georeference option of PDF_load_image() can be used to assign an earth-based co-
ordinate system to an image.

> The georeference option of PDF_open_pdi_page(), PDF_load_graphics() and PDF_begin_
template_ext() can be used to assign an earth-based coordinate system to a Form
XObject. However, this method is not recommended since it is not supported in any
known viewer including Acrobat DC.

Table 12.15 and subsequent tables specify the options for geospatial features in detail.

Table 12.15 Suboptions for the viewports option of PDF_begin/end_page_ext()

option description

bounding-
box

(Rectangle; required) A rectangle in default coordinates specifying the location of the viewport on the
page.

georeference (Option list; required) Description of a world coordinate system associated with the viewport to use for
geospatial measuring; see Table 12.16 for supported options.

hypertext-
encoding

(Keyword) Specifies the encoding for the name option. An empty string is equivalent to unicode. Default:
the value of the hypertextencoding global option

name (Hypertext string) A descriptive title of the viewport (map name). However, Acrobat does not display the
viewport name in the user interface.

Table 12.16 Suboptions for the georeference option of PDF_load_image(), PDF_open_pdi_page(), PDF_load_graphics(),
PDF_begin_template_ext() and the georeference suboption of the viewports option of PDF_begin/end_page_ext()

option description

angularunit (Keyword) Specifies the preferred angular display unit (default: deg):
degree degrees
grad grad (1/400 of the full circle, or 0.9 degrees)

areaunit (Keyword) Specifies the preferred area display unit (default: sqm):
sqm square meter
ha hectar (10.000 square meters)
sqkm square kilometer
sqft square foot
a acre
sqmi square mile
The specified unit will be used for display only if the following Acrobat setting is disabled: »Preferences,
Measuring (Geo), Use Default Area Unit«.

bounds (Polyline with two or more points) Specifies the bounds of an area for which the geospatial transforma-
tions are valid (for maps this bounding polyline is known as a neatline). The points are expressed relative
to the boundingbox of a page viewport or the extent of an template or image. Default: {0 0 0 1 1 1 1
0}, i.e. the full viewport, template or image area will be used for the map.

12.7 Geospatial Features 247

displaysystem (Option list) Specifies a coordinate system according to Table 12.17 for the user-visible display of position
values, such as latitude and longitude. This entry can be used to display the coordinates in another sys-
tem than the one supplied in the coords option to specify the map.

linearunit (Keyword) Specifies the preferred linear display unit (default: m):
m meter
km kilometer
ft international foot
usft US survey foot
mi international mile
nm nautical mile
The specified unit will be used for display only if the following Acrobat setting is disabled: »Preferences,
Measuring (Geo), Use Default Distance Unit«.

mappoints (List with two or more pairs of floats; required) A list of numbers where each pair defines a point in a 2D
unit square. The unit square is mapped to the rectangular bounds of the page viewport, graphics, tem-
plate or PDI page, or image which contains the georeference option list. The mappoints list must con-
tain the same number of points as the worldpoints list; each point is the map position in the unit square
corresponding to the geospatial position in the worldpoints list.

worldpoints (List with two or more pairs of floats; required) A list of coordinate pairs where each pair specifies the
world coordinates of the corresponding point in the mappoints option. The number of pairs must match
the number of pairs in the mappoints option. The coordinate values are based on the coordinate system
specified in the worldsystem option: if type=geographic, latitude/longitude values in degrees must be
provided. If type=projected, projected x/y values must be provided.

worldsystem (Option list; required) World coordinate system (for interpretation of worldpoints) according to Table
12.17.

Table 12.17 Suboptions for the worldsystem and displaysystem suboptions of the georeference option of PDF_load_
image(), PDF_open_pdi_page(), PDF_load_graphics(), PDF_begin_template_ext() and the georeference suboption of
the viewports option of PDF_begin/end_page_ext()

option description

epsg (Integer; exactly one of epsg or wkt must be supplied) Specifies the coordinate system as an EPSG refer-
ence code. Note that Acrobat does not support EPSG codes for type=geographic; use wkt in this case.

type (Keyword; required) Specifies the type of the coordinate system:
geographic geographic coordinate system (supports only wkt)
projected projected coordinate system (supports wkt and epsg)

wkt (String with up to 1024 ASCII characters; exactly one of epsg or wkt must be supplied) Specifies the coordi-
nate system as a string of »Well Known Text« (WKT). WKT is recommended for custom coordinate sys-
tems without any EPSG code.

Table 12.16 Suboptions for the georeference option of PDF_load_image(), PDF_open_pdi_page(), PDF_load_graphics(),
PDF_begin_template_ext() and the georeference suboption of the viewports option of PDF_begin/end_page_ext()

option description

248 Chapter 12: Interactive Features

13.1 3D Artwork 249

13 Multimedia Features

13.1 3D Artwork
3D features are implemented with the following functions and options:

> 3D data can be loaded with PDF_load_3ddata(). This function is described below.
> 3D views can be created with PDF_create_3dview(). This function is described below.
> 3D annotations can be created with PDF_create_annotation() and type=3D. This func-

tion is described in Section 12.2, »Annotations«, page 217. However, the options of
this function for controlling 3D annotations are described in Table 13.4 below.

> Actions for controlling 3D annotations can be created with PDF_create_action() and
type=3Dview (see Section 12.4, »Actions«, page 234).

C++ Java C# int load_3ddata(String filename, String optlist)
Perl PHP int load_3ddata(string filename, string optlist)

C int PDF_load_3ddata(PDF *p, const char *filename, int len, const char *optlist)

Load a 3D model from a disk-based or virtual file (requires PDF 1.6).

filename (Name string; will be interpreted according to the filenamehandling global op-
tion, see Table 2.3) Name of a disk-based or virtual file containing a 3D model.

len (C language binding only) Length of filename (in bytes). If len = 0 a null-terminated
string must be provided.

optlist An option list specifying properties of the 3D model:
> General options: errorpolicy (see Table 2.1) and hypertextencoding (see Table 2.3)
> Options for specifying properties of the 3D model according to Table 13.1:

animation, defaultview, script, type, views

Returns A 3D handle which can be used to create 3D annotations with PDF_create_annotation().
The 3D handle can be used until the end of the enclosing document scope. If
errorpolicy=return the caller must check for a return value of -1 (in PHP: 0) since it signals
an error.

Details The file must contain 3D data in PRC or U3D format.

Scope any except object. The returned handle can be used until the next call to PDF_end_
document().

Table 13.1 Options for PDF_load_3ddata()

option description

animation (Option list) Preferred method to drive keyframe animations present in the artwork. Supported options
are playcount, speed, and style (same as for the animation suboption of the activate suboption of the
richmedia option of PDF_create_annotation(), see Table 13.8)

defaultview (Keyword or 3D view handle) Specifies the initial view of the 3D annotation; One of the keywords first
or last (referring to the respective entries in the views option), or a 3D view handle created with PDF_
create_3dview(). Default: first

250 Chapter 13: Multimedia Features

C++ Java C# int create_3dview(String username, String optlist)
Perl PHP int create_3dview(string username, string optlist)

C int PDF_create_3dview(PDF *p, const char *username, int len, const char *optlist)

Create a 3D view (requires PDF 1.6).

username (Hypertext string) User interface name of the 3D view.

len (C language binding only) Length of username (in bytes). If len = 0 a null-terminat-
ed string must be provided.

optlist An option list specifying 3D view properties:
> General options: errorpolicy (see Table 2.1) and hypertextencoding (see Table 2.3)
> Options for specifying 3D view properties according to Table 13.2:

background, camera2world, cameradistance, lighting, name, rendermode, type, U3Dpath

Returns A 3D view handle which can be used until the end of the enclosing document scope. If
errorpolicy=return the caller must check for a return value of -1 (in PHP: 0) since it signals
an error.

Details The 3D view handle can be attached to 3D models with the views option in PDF_load_
3ddata() or can be used to create 3D annotations with PDF_create_annotation() or 3D-
related actions with PDF_create_action().

Scope any except object. The returned handle can be used until the next call to PDF_end_
document().

script (Hypertext string) String containing JavaScript code to be executed when the 3D model is instantiated.
Default: no script

type (Keyword) Specify the type of 3D data (default: U3D):
PRC (PDF 1.7ext3) Product Representation Compact (PRC) format (ISO 14739-1)
U3D (PDF 1.6) Universal 3D File Format (U3D) in the following flavors (see www.ecma-

international.org): Universal 3D File Format (U3D), 1st Edition and ECMA-363, Universal 3D File
Format (U3D), 3rd Edition;

views (List of 3D view handles) List of predefined views for the 3D model. Each list element is a 3D view handle
created with PDF_create_3dview(). The type option used when creating the views with PDF_create_
3dview() must match the type option in PDF_load_3ddata(). Default: empty list

Table 13.2 Options for PDF_create_3dview()

option description

background (Option list) Specifies the background for the 3D model:
fillcolor (Color) Background color, expressed in the RGB color space. Default: white
entire (Boolean) If true, the background applies to the entire annotation; otherwise it applies only

to the rectangle specified in the annotations’s 3Dbox option. Default: false

camera2world (List of 12 floats) 3D transformation matrix specifying position and orientation of the camera in world co-
ordinates (see description below). Default: the initial view defined internally in the 3D model

Table 13.1 Options for PDF_load_3ddata()

option description

http://www.ecma-international.org/
http://www.ecma-international.org/

13.1 3D Artwork 251

Camera position. The position of the camera can be specified with the camera2world
option. Alternatively, JavaScript code can be attached to position and align the camera
towards the model. The PDFlib Cookbook contains sample code for attaching JavaScript
code to a 3D model.

The following values can be supplied to the camera2world option for common cam-
era positions. x, y, and z are suitable values which describe the position of the camera.
These values should satisfy the stated conditions (see below):
View from the front:

{-1 0 0 0 0 1 0 1 0 x y z} x small, y large negative, z small

View from left:

{ 0 1 0 0 0 1 1 0 0 x 0 z} x large negative, z small

View from the top:

{-1 0 0 0 1 0 0 0 -1 x 0 z} x small, z large positive

camera-
distance

(Float; must not be negative; will be ignored if camera2world is not specified) Distance between the cam-
era and the center of the orbit. For details see description of the CO key in section 13.6.4 »3D Views« of ISO
32000-1. Default: defined internally in the 3D data

lighting (Option list; PDF 1.7) Specifies the lighting scheme for the 3D artwork. The following option is supported:
type (Keyword) Specifies the lighting scheme. Supported keywords (Default: Artwork):

Artwork Lights are specified in the 3D artwork.
None No lights; lights specified in the 3D artwork will be ignored.
White Three light-grey infinite lights, no ambient term
Day Three light-grey infinite lights, no ambient term
Night One yellow, one aqua, and one blue infinite light, no ambient term
Hard Three grey infinite lights, moderate ambient term
Primary One red, one green, and one blue infinite light, no ambient term
Blue Three blue infinite lights, no ambient term
Red Three red infinite lights, no ambient term
Cube Six grey infinite lights aligned with the major axes, no ambient term
CAD Three grey infinite lights and one light attached to the camera, no ambient term
Headlamp Single infinite light attached to the camera, low ambient term

name (Hypertext string) Name of the 3D view, which can be used in GoTo actions. This is an optional internal
name which is treated separately from the required username parameter.

rendermode (Option list; PDF 1.7) Specifies the render mode for displaying the 3D artwork. Table 13.3 lists the supported
suboptions.

type (Keyword; required if the view will be used in PDF_load_3ddata() with type=PRC) Specify the type of 3D
data (default: U3D):
PRC The view will be used in PDF_load_3ddata() with type=PRC.
U3D The view will be used in PDF_load_3ddata() with type=U3D.

U3Dpath (Hypertext string; will be ignored if the camera2world option is specified; only for type=U3D) A View
Node name used to access a view node within the 3D artwork.

Table 13.2 Options for PDF_create_3dview()

option description

252 Chapter 13: Multimedia Features

View from the back:

{ 1 0 0 0 0 1 0 -1 0 x y z} x small, y large positive, z small

View from the bottom:

{-1 0 0 0 -1 0 0 0 1 x 0 z} x small, z large negative

View from right:

{ 0 -1 0 0 0 1 -1 0 0 x 0 z} x large positive, z small

Isometric view, i.e. the direction of projection intersects all three axes at the same angle.
There are exactly eight such views, one in each octant:

{0.707107 -0.707107 0 -0.5 -0.5 0.707107 -0.5 -0.5 -0.707107 x y z}
x, y, z large positive

The x, y, z values should be selected depending on the position and size of the model.
»Large« means the values should be significantly larger than the size of the model in or-
der to provide a large enough distance between the camera and the model. If the value
is too large the model will appear very small and will quickly get out of sight when ro-
tating the view. If the value is too small the model may not completely fit into the view.
»Small« means the absolute value should be small compared to the large value and
should not exceed the size of the model very much.

13.1 3D Artwork 253

Table 13.3 Suboptions for the rendermode option of PDF_create_3dview()

option description

crease (Float in the range 0..180) Crease value

facecolor (RGB color or keyword; only for type=Illustration) Face color; this color will be used by several render
modes. The keyword backgroundcolor refers to the current background color. Default: backgroundcolor

opacity (Float in the range 0..1 or percentage) Opacity for some render modes. Default: 0.5

rendercolor (RGB color) Auxiliary color. This color will be used by several render modes. Default: black

type (Keyword; PDF 1.7) Render mode for displaying the 3D artwork (default: Artwork):
Artwork Render mode is specified in the 3D artwork; all other suboptions of the rendermode option

will be ignored.
Solid Displays textured and lit geometric shapes.
SolidWireframe

Displays textured and lit geometric shapes (triangles) with single color edges on top of them.
Transparent

Displays textured and lit geometric shapes (triangles) with an added level of transparency.
TransparentWireframe

Displays textured and lit geometric shapes (triangles) with an added level of transparency.
BoundingBox

Displays textured and lit geometric shapes (triangles) with an added level of transparency,
with single color opaque edges on top of it.

TransparentBoundingBox
Displays bounding boxes faces of each node, aligned with the axes of the local coordinate
space for that node, with an added level of transparency.

TransparentBoundingBoxOutline
Displays bounding boxes edges and faces of each node, aligned with the axes of the local
coordinate space for that node, with an added level of transparency.

Wireframe Displays bounding boxes edges and faces of each node, aligned with the axes of the local
coordinate space for that node, with an added level of transparency.

ShadedWireframe
Displays only edges, though interpolates their color between their two vertices and applies
lighting.

HiddenWireframe
Displays edges in a single color, though removes back-facing and obscured edges.

Vertices Displays only vertices in a single color.
ShadedVertices

Displays only vertices, though uses their vertex color and applies lighting.
IllustrationDisplays silhouette edges with surfaces, removes obscured lines.
SolidOutline

Displays silhouette edges with lit and textured surfaces, removes obscured lines.
ShadedIllustration

Displays silhouette edges with lit and textured surfaces and an additional emissive term to
remove poorly lit areas of the artwork.

254 Chapter 13: Multimedia Features

Table 13.4 3D options for PDF_create_annotation() with type=3D

option description

3Dactivate (Option list; only for type=3D) Specifies when the 3D annotation should be activated and its state upon
activation/deactivation. Supported suboptions:
enable (Keyword) Specifies when the animation should be enabled (default: click):

open Activate when the page is opened.
visible Activate when the page becomes visible.
click Annotation must explicitly be activated by a script or user action.

enablestate (Keyword) Initial animation state (default: play):
pause The 3D model is instantiated, but script animations are disabled.
play The 3D model is instantiated; script animations are enabled if present.

disable (Keyword) Specifies when the animation should be disabled (default: invisible):
close Deactivate when the page is closed.
invisible Deactivate when the page becomes invisible.
click Annotation must explicitly be deactivated by a script or user action.

disablestate (Keyword) State of the animation upon disabling (default: reset):
pause The 3D model can be rendered, but animations are disabled.
play The 3D model can be rendered and animations are enabled.
reset Initial state of the 3D model before it has been used in any way.

modeltree (Boolean; PDF 1.6) If true, the Model Tree navigation tab will be opened when the annotation
is activated (default: false)

toolbar (Boolean; PDF 1.6) If true, the 3D toolbar (at the top of the annotation) will be displayed
when the annotation is activated (default: true)

3Ddata (3D handle; only for type=3D; required) 3D handle created with PDF_load_3ddata().

3Dinteractive (Boolean; only for type=3D) If true, the 3D model is intended for interactive use. If false, it is intended to
be manipulated with JavaScript. Default: true

3Dshared (Boolean; only for type=3D) If true, the 3D data specified in the 3Ddata option will be referenced indi-
rectly. Multiple 3D annotations which reference the same data share a single run-time instance of the
model. This means that changes will be visible in all such annotations simultaneously. Default: false

3Dinitialview (Keyword or 3D view handle) Specifies the initial view of the 3D model; One of the keywords first, last,
(referring to the respective entries in the views option of PDF_load_3ddata()), or default (referring to
the model’s defaultview option), or a 3D view handle created with PDF_create_3dview(). Default:
default

13.2 Asset and Rich Media Features 255

13.2 Asset and Rich Media Features
Multimedia features are implemented with the following functions and options:

> Multimedia assets for use in RichMedia annotations can be loaded with PDF_load_
asset(). It can also be used to load assets which will be used as file attachments. This
function is described below.

> RichMedia annotations can be created with PDF_create_annotation() and type=Rich-
Media. This function is described in Section 12.2, »Annotations«, page 217. However,
the relevant suboptions of the richmedia option of this function are described in Ta-
ble 13.7 and following tables below.

> Actions for controlling rich media annotations can be created with PDF_create_
action() and type=RichMediaExecute (see Section 12.4, »Actions«, page 234).

C++ Java C# int load_asset(String type, String filename, String optlist)
Perl PHP int load_asset(string type, string filename, string optlist)

C int PDF_load_asset(PDF *p, const char *type, const char *filename, int len, const char *optlist)

Load a rich media asset or file attachment from a disk-based or virtual file.

type Keyword designating the type of the loaded asset according to Table 13.5.

Table 13.5 Asset types

type allowed contents asset can be used with function and option/suboption

3D U3D and PRC PDF_create_annotation(): richmedia/assets/asset

Attachment PDF/A-2: only PDF/A-
1 and PDF/A-2;
otherwise: any

> PDF_end_document(): attachments
> PDF/A-3 and PDF 2.0: PDF_end_document(), PDF_begin/end_page_ext(), PDF_

begin/end_dpart(), PDF_begin_template_ext(), PDF_load_image(), PDF_
open_pdi_page(), PDF_load_graphics(): associatedfiles

> PDF_create_annotation(): attachment
> PDF_create_annotation() with type=FileAttachment or Movie and option
attachment

Flash
(Deprecated)

Shockwave (*.swf) PDF_create_annotation(): richmedia/configuration/instances/asset
PDF_end_document(): portfolio/navigator/flash

Generic
(Deprecated)

any PDF_create_annotation(): richmedia/assets/asset
PDF_end_document(): portfolio/navigator/assets (deprecated)

JavaScript text file containing
ECMAScript edition 31

1. in ISO 8859-1 encoding or UTF-16 LE or BE with BOM

PDF_create_annotation(): richmedia/activate/scripts

JPEG
(Deprecated)

JPEG image PDF_end_document(): portfolio/navigator/icon (deprecated)

PNG
(Deprecated)

PNG image PDF_end_document(): portfolio/navigator/icon (deprecated)

Sound MP3 etc. PDF_create_annotation(): richmedia/configuration/instances/asset

Video FLV, QuickTime, F4V,
H.264 etc.

PDF_create_annotation(): richmedia/configuration/instances/asset

256 Chapter 13: Multimedia Features

filename (Name string; will be interpreted according to the filenamehandling global op-
tion, see Table 2.3) Name of a disk-based or virtual file which will be embedded in the
PDF file. Unicode file names are supported, but require PDF 1.7 for correct display in
Acrobat.

len (C language binding only) Length of filename (in bytes). If len = 0 a null-terminated
string must be provided.

optlist An option list which may contain the following options:
> General option for all types: errorpolicy (see Table 2.1)
> If type=Attachment additional attachment property options according to Table 13.6

are supported:
description, documentattachment, external, filename, mimetype, name, password,
relationship, thumbnail

Returns An asset handle for rich media or file attachments which can be used with the functions
listed in Table 13.5 until the end of the enclosing document scope. The returned asset
handle cannot be reused across multiple PDF documents.

If errorpolicy=return the caller must check for a return value of -1 (in PHP: 0) since it
signals an error. If the function call fails you can request the reason of the failure with
PDF_get_errmsg().

In PDF 2.0 an asset handle created with type=Attachment must be supplied to at least
one associatedfiles option.

Details This function can be used with all PDF compatibility levels if type=Attachment, and re-
quires PDF 1.7ext3 for all other types.

PDF/A PDF/A-1: this function must not be called.
PDF/A-2: filename must refer to a PDF/A-1 or PDF/A-2 document. Some options are re-
stricted.
PDF/A-3: some options are restricted. An asset handle created with type=Attachment
must be associated with one or more objects in the document, i.e. the asset handle must
be supplied to at least one associatedfiles option.

PDF/X PDF/X-1a/3: this function must not be called.

Scope any except object

Table 13.6 Options for PDF_load_asset() with type=Attachment, for PDF_add_portfolio_folder/file(), and for use as
suboptions for the attachments option of PDF_begin/end_document()

option description

description (Hypertext string; PDF 1.6; recommended for PDF/A-2/3 and PDF/UA-1) Descriptive text associated with
the file.

document-
attachment

(Boolean; only for PDF/A-3 and PDF 2.0 and only if the relationship option is specified; not for PDF_
add_portfolio_file/folder()) Store the associated file also as a document-level attachment (embedded
file). This may be useful for listing the attachments in the user interface of PDF viewers which are not
aware of associated files data structures (this includes Acrobat X/XI/DC). Default: false

external (Boolean; must be false for PDF/A; not for the attachments option and PDF_add_portfolio_file/folder())
If true, the contents of the file will not be embedded in the PDF, but only a reference to an external file
will be created. Default: false

13.2 Asset and Rich Media Features 257

filename (Name string) Name of the file. The contents must conform to the requirements listed in Table 13.5
according to the specified type. This option can alternatively be provided via the function parameter
filename of PDF_load_asset() and PDF_add_portfolio_file/folder(), but is required if used with the
attachments option of PDF_begin/end_document(). Only the base part of the filename without any
directory components will be written to the PDF output.

mimetype (String; required for PDF/A-3; not for PDF_add_portfolio_folder()) MIME type of the file. If the MIME type
is unknown, the string application/octet-stream must be used in PDF/A-3.

name (Hypertext string; not for PDF_add_portfolio_folder()) Name of the attachment. Default: filename
without any path component

password (String with up to 127 characters; not for PDF/A-2; only if PDI is available; not for PDF_add_portfolio_
folder()) PDF master password required to open a protected PDF document for fetching its date entries.

relationship (Hypertext string; only for PDF 2.0 and PDF/A-3; ; not for PDF_add_portfolio_folder()) Relationship of the
file to the part of the document with which it is associated. The value may be an arbitrary string, but the
following predefined keywords are listed in PDF/A-3 and PDF 2.0 (default: Unspecified):
Alternative

The file is an alternative representation (e.g. audio).
Data The file represents information used to derive a visual presentation (e.g. CSV data for a table

or graph).
FormData The file represents data associated with the form fields in the document.
Schema The file contains a schema definition for the associated object (e.g. an XML schema for meta-

data).
Source The file is the original source material (e.g. word processor document associated with the

document; spreadsheet associated with an image).
Supplement

The file represents a supplemental representation of the original source or data which may be
more easily consumable (e.g. MathML representation of an equation in an image).

Unspecified
The relationship is not known or cannot be described with the other keywords.

thumbnail (Image handle) Image to be used as thumbnail for the file. The handle must have been created with PDF_
load_image() and the image must be a grayscale or RGB image without ICC profile.. Acrobat ignores the
thumbnail for attachments.

Table 13.6 Options for PDF_load_asset() with type=Attachment, for PDF_add_portfolio_folder/file(), and for use as
suboptions for the attachments option of PDF_begin/end_document()

option description

258 Chapter 13: Multimedia Features

Table 13.7 Suboptions for the richmedia option of PDF_create_annotation() with type=RichMedia

option description

activate (Option list) Option list according to Table 13.8 which specifies the style of presentation, default script be-
havior, default view information, and animation style when the annotation is activated.

assets (List of option lists; required) Named asset:
asset (Asset handle; required) Handle for an asset loaded with PDF_load_asset().
name (Hypertext string with 1-255 characters; the characters : * " < > | must not be used; the last

character must not be a period ’.’; required) Name of the asset which can be used to identify it.

configuration (Option list, required) The configuration option list may contain one or more instance option lists:
instances (List of option lists; required) Each list specifies a single instance of an asset with settings to

populate the artwork of an annotation. Supported options:
asset (Hypertext string; required) A rich media asset name specified in the assets op-

tion. Only names of rich media assets of type 3D, Flash (deprecated), Sound, Video
may be specified here.

params (Option list; only for type=Flash; deprecated) Parameters related to a Flash asset
according to Table 13.10

name (Hypertext string) Unique name of the configuration
type (Keyword) Primary content type for the configuration. Valid keywords are 3D, Flash, Sound,

and Video. Default: the scene type is determined by referring to the type of the file specified
in the first element of the instances option list.

deactivate (Option list) Specifies the condition of unloading (restart or pause):
condition (Keyword) Specifies when the annotation will be deactivated (default: clicked):

clicked The annotation is explicitly deactivated by a user action or script.
closed The annotation is deactivated as soon as the page that contains the annotation

loses the focus as current page.
invisible The annotation is deactivated as soon as the page that contains the annotation is

no longer visible.

views (List of 3D view handles) 3D view handles returned by PDF_create_3dview(). If no views are specified, de-
fault values are used for the components of a 3D view, including rendering/lighting modes, background
color, and camera data. Default: empty list

Table 13.8 Suboptions for the activate suboption of the richmedia option of PDF_create_annotation()

option description

animation (Option list) Preferred method to drive keyframe animations present in the artwork. Supported options:
playcount (Integer) A nonnegative number represents the number of times the animation is played. A

negative integer indicates that the animation is infinitely repeated. Default: -1
speed (Positive Float) A value greater than one shortens the time it takes to play the animation, or

effectively speeds up the animation. This allows authors to change the desired speed of
animations without re-authoring the content. Default: 1

style (Keyword) Specifies the animation style (default: none):
none Keyframe animations should not be driven directly by the viewer application. This

value is used by documents that are intended to drive animations through alter-
nate means such as JavaScript. The remaining suboptions of the animation op-
tion will be ignored.

linear Keyframe animations are driven linearly from begin to end. This results in a repet-
itive playthrough of the animation, such as in a walking motion.

oscillating Keyframe animations should oscillate along their time range. This results in a
back-and-forth playing of the animation, such as exploding or collapsing parts.

13.2 Asset and Rich Media Features 259

condition (Keyword) Specifies when the annotation will be activated (default: clicked):
clicked The annotation is explicitly activated by a user action or script.
opened The annotation is activated as soon as the page that contains the annotation receives the

focus as current page.
visible The annotation is activated as soon as any part of the page that contains the annotation

becomes visible.

presentation (Option list) Specifies how the annotation and user interface elements will be laid out and drawn. Sup-
ported options are listed in Table 13.9.

scripts (List of hypertext strings) List containing the names of rich media assets of type=JavaScript which have
been embedded with PDF_load_asset() and specified in the assets suboption of the richmedia option.

view (Keyword or 3D view handle) Specifies the activation view of 3D rich media. The handle must also be con-
tained in the views suboption of the richmedia option list. If the views option was not specified default
values for the components of a 3D view will be used. Supported keyword (default: first):
first The first element in the views suboption of the richmedia option list

Table 13.9 Suboptions for the presentation suboption of the activate suboption of the richmedia option of PDF_
create_annotation()

option description

navigation-
pane

(Boolean) Default behavior of the navigation pane user interface element. If true the navigation pane is
visible when the content is initially activated. Default: false

passcontext-
click

(Boolean) Indicates whether a context click on the rich media annotation is passed to the media player
runtime or is handled by the PDF viewer. If false the PDF viewer handles the context click. If true, the
PDF viewer’s context menu is not visible, and the user sees the context menu and any custom items gen-
erated by the media player runtime. Default: false

style (Keyword) Specifies how the rich media will be presented (default: embedded):
embedded embedded within the PDF page
windowed in a separate window specified by the window option list

toolbar (Boolean) Default behavior of an interactive toolbar associated with this annotation. If true a toolbar is
displayed when the annotation is activated and given focus. Default: true for type=3D, false otherwise

transparent (Boolean) Indicates whether the page content is displayed through the transparent areas of the rich me-
dia content. If true the rich media artwork is composited over the page content using an alpha channel.
If false the rich media artwork is drawn over an opaque background prior to composition over the page
content. Default: false

window (Option list) Size of the floating window for style=windowed. Coordinates are expressed in user or de-
fault coordinates depending on the usercoordinates option. The behavior is similar to when the anno-
tation options zoom and rotate are set to false. Supported suboptions:
heightdefault

(Float) Default height of the window. Default: 216 (in default coordinates)
widthdefault

(Float) Default width of the window. Default: 288 (in default coordinates)

Table 13.8 Suboptions for the activate suboption of the richmedia option of PDF_create_annotation()

option description

260 Chapter 13: Multimedia Features

Table 13.10 Suboptions for the params suboption of the instances suboption of the configuration suboption of the
richmedia option of PDF_create_annotation() (deprecated)

option description

binding (Keyword) Specifies to which entity the Flash content is bound (default: none):
background

The Flash content is bound to the background and is rendered behind any 3D model content
or Flash foreground elements in the active annotation. For a given RichMedia annotation
there can be one active instance that has a params option list with binding=background. If
more than one is specified, the last instance specified for the background is used.

foreground
The Flash content is bound to the foreground and is rendered in front of the 3D model and the
background Flash content in the active annotation. If more than one instance has
binding=foreground, the Flash content is rendered in order from back to front, each instance
composited over prior instances using its alpha channel.

material The Flash content is bound to a material that is part of 3D content. If that material is applied
to geometry within a 3D scene, the Flash object appears to be playing upon this object as if
conforming to the surface of the object.

none The Flash content is unbound and is not visible at playback time.

cuepoints (List of option lists) A video can contain cue points that are encoded in the video stream or may be creat-
ed by an associated ActionScript within the Flash content. Each option list specifies a state that relates
the cue point to an action that may be passed to the application or may be used to change the appear-
ance. Cue points in the Flash content are matched to the cue points declared in the PDF file by the values
specified by the name or time options. Supported options:
action (Action list) Action that is executed if this cue point is triggered, meaning that the Flash

content reached the matching cue point during its playback. Supported action trigger:
activate Actions to be performed if this cue point is triggered, meaning that the Flash con-

tent reached the matching cue point during its playback.
name (Text string; required) Name of the cue point to match against the cue point within the Flash

content and for display purposes.
time (Float; required) The time value of the cue point in milliseconds to match against the cue

point within the Flash content and for display purposes. A dummy value can be provided.
type (Keyword) Type of the cue point:

Event An event is a generic cue point of no specific significance other than that a corre-
sponding action is triggered.

Navigation
A navigation cue point is an event encoded in a Flash movie (FLV). A chapter stop
may be encoded so that when the user requests to go to or skip a chapter, a navi-
gation cue point is used to indicate the location of the chapter.

flashvars (Hypertext string) Formatted name value pairs passed to the Flash player context when activated. For
the format specifics see the document »Using FlashVars to pass variables to a SWF«, TechNote tn_16417,
available at www.adobe.com/go/tn_16417. Default: no data is sent to the Flash player

materialname (Hypertext string; required if binding=material) The material name that content is to be bound to.

settings (Hypertext string) A text string used to store settings information associated with a Flash instance. This
value is passed by the ActionScript ExternalInterface command multimedia_loadSettingsString.
Default: undefined

14.1 Document Information Fields 261

14 Document Interchange

14.1 Document Information Fields

C++ Java C# void set_info(String key, String value)
Perl PHP set_info(string key, string value)

C void PDF_set_info(PDF *p, const char *key, const char *value)
C void PDF_set_info2(PDF *p, const char *key, const char *value, int len)

Fill document information field key with value.

key (Name string) The name of the document info field, which may be any of the stan-
dard names, or an arbitrary custom name (see Table 14.1). There is no limit for the num-
ber of custom fields. Regarding the use and semantics of custom document information
fields, PDFlib users are encouraged to take a look at the Dublin Core Metadata element
set.1

value (Hypertext string) The string to which the key parameter will be set. Acrobat im-
poses a maximum length of value of 255 bytes.

len (Only for PDF_set_info2(), and only for the C language binding) Length of value (in
bytes). If len = 0 a null-terminated string must be provided.

Details The supplied info value will only be used for the current document, but not for all docu-
ments generated within the same object scope. If the autoxmp option has been supplied
to PDF_begin/end_document() PDFlib automatically creates synchronized XMP docu-
ment metadata from the info fields supplied to PDF_set_info(). Custom info keys are
synchronized to the pdfx schema in XMP (which stands for »PDF Extension schema«,
and is unrelated to the PDF/X standard).

Document info fields override corresponding properties in XMP document metada-
ta supplied to the metadata option of PDF_begin/end_document().

PDF/A Custom document info fields are not synchronized to XMP since custom metadata
properties require an extension schema description in PDF/A.

PDF/X Info fields with key=Title and key=Creator must be supplied with non-empty values. Al-
ternatively in PDF/X-4 and PDF/X-5 the metadata option of PDF_begin_document() with
the dc:title and xmp:CreatorTool XMP properties can be supplied.

Only the values True and False are allowed for the Trapped info field.

PDF/UA An info field with key=Title must be supplied with a non-empty value. Alternatively, the
metadata option of PDF_begin_document() with the dc:title XMP property can be sup-
plied.

Scope any; if used in object scope the supplied values will only be used for the next document.

1. See dublincore.org

http://dublincore.org

262 Chapter 14: Document Interchange

Table 14.1 Keys for document information fields

key description

Subject Subject of the document

Title Title of the document

Creator Software used to create the document (as opposed to the Producer of the PDF out-
put, which is always PDFlib). Acrobat displays this entry as Application.

Author Author of the document

Keywords Keywords describing the contents of the document

Trapped Indicates whether trapping has been applied to the document. Allowed values are
True, False, and Unknown.

any other name User-defined document information field. PDFlib supports an arbitrary number of
fields. A custom field name should only be supplied once.
Fields which are used for standard identification are not allowed.

14.2 XMP Metadata 263

14.2 XMP Metadata
XMP metadata can be supplied for the whole document or individual pages, fonts, ICC
profiles, images, templates, and imported PDF pages. Table 14.2 lists suboptions for the
metadata option of various functions.

PDF/A The XMP identification properties for PDF/A are created automatically.
PDFlib synchronizes relevant entries in user-supplied XMP streams to standard doc-

ument info fields (similar to autoxmp mode which synchronizes document info fields to
XMP). However, PDFlib does not synchronize other XMP entries to custom document
info fields. Additional PDF/A requirements for XMP document metadata are discussed
in the PDFlib Tutorial. The following validation is applied to XMP metadata:

> PDF/A-1: document-level XMP must conform to XMP 2004 or include an extension
schema description. The schema description for document-level XMP can be sup-
plied in PDF_begin_document() or PDF_end_document().

> PDF/A-2/3: document-level and component-level (e.g. page) XMP must conform to
XMP 2005 or include an extension schema description. The schema description for
component-level XMP can be supplied with the respective component-level XMP
(e.g. in PDF_begin_page_ext()) or with the document-level XMP in PDF_begin_
document().

PDF/X The XMP identification properties for PDF/X-4/5 are created automatically.

PDF/VT The XMP identification properties for PDF/VT are created automatically.

PDF/UA The XMP identification properties for PDF/UA are created automatically.

Table 14.2 Suboptions for the metadata option in PDF_begin/end_document(), PDF_begin/end_page_ext(), PDF_load_
font(), PDF_load_iccprofile(), PDF_load_image(), PDF_begin_template_ext(), PDF_open_pdi_page() and the
templateoptions option of PDF_load_graphics()

option description

compress (Boolean; not for PDF_begin/end_document()) Compress the XMP metadata stream in the PDF output. If
the option is only supplied in PDF_begin_page_ext() but not in PDF_end_page_ext(), its value takes pre-
cedence over the default. Default: false
PDF/A-1 and PDF/X: compress=true is not allowed.

inputencoding (Keyword) The encoding to interpret the metadata supplied in filename. Default: unicode

inputformat (Keyword) The format of the metadata supplied in filename. Default: utf8, but bytes if inputencoding
is an 8-bit encoding

keepxmp (Boolean; only for PDF_load_image() and PDF_load_graphics(); can not be combined with filename)
XMP metadata present in an image or graphics file will be kept, i.e. attached to the resulting image in the
PDF document. XMP metadata is honored in the TIFF, JPEG, and JPEG 2000 image formats as well as in
SVG graphics. If no valid XMP metadata is found in the image or graphics file this option doesn’t have
any effect. Default: false

filename (Name string; required unless keepxmp is supplied) The name of a file containing well-formed XMP meta-
data. It will be interpreted according to the filenamehandling global option, see Table 2.3.

strict (Boolean) If false, certain XMP violations are not reported as errors, but are silently fixed. If true, such
violations trigger an exception. Default: false

264 Chapter 14: Document Interchange

14.3 Tagged PDF
The tagged option in PDF_begin_document() must be set to true in order to generate
Tagged PDF. Tagged PDF mode is automatically activated for the PDF/A-1a/2a/3a and
PDF/UA standards. It is strongly recommended to obey to PDF/UA rules when creating
Tagged PDF.

C++ Java C# int begin_item(String tagname, String optlist)
Perl PHP int begin_item(string tagname, string optlist)

C int PDF_begin_item(PDF *p, const char *tagname, const char *optlist)

Open a structure element or other content element for Tagged PDF.

tagname Name of the item’s element structure type. The following groups of element
types are supported according to Table 14.3 (see PDFlib Tutorial for details):

> standard element types (a detailed description of standard element types can be
found in the PDFlib Tutorial)

> pseudo element types which are not structure elements
> The tag name Plib_custom_tag implies use of a custom element type (this is equiva-

lent to customtag=true); the actual tag name must be supplied in the tagname option.
Custom element types require the rolemap document option.

The tag name can alternatively be provided via the tagname option which overrides this
parameter.

optlist An option list specifying details of the item. All inheritable settings will be in-
herited to child elements, and therefore need not be repeated. All properties of an item
must be set here since they cannot be modified later. The following options can be used:

> General option: hypertextencoding (see Table 2.3)
> Tag control and accessibility options according to Table 14.4:

ActualText, Alt, customtag, direct, E, Lang, tagname, Placement, Title
> Options related to Artifacts according to Table 14.4:

artifactsubtype, artifacttype, Attached
> Table-related options according to Table 14.4:

ColSpan, Headers, id, RowSpan, Scope, Summary
> Geometry options according to Table 14.4:

BBox, Height, usercoordinates, Width
> Options for the relationship of elements according to Table 14.4: index, parent
> Option for attaching a bookmark according to Table 14.4: bookmark
> Option for specifying a list property according to Table 14.4: ListNumbering
> Option for inserting a nested structure element according to Table 14.4: tag

Returns An item handle which can be used in subsequent item-related calls.

Details Start a new structure element or Artifact (collectively called item). By default, the new el-
ement is inserted as a child of the currently active item. However, another position in
the structure tree can be specified with the parent and index options. Structure elements
can be nested to an arbitrary level. Except for pseudo and direct element types structure
elements are not bound to the page where they have been opened, but can be continued
on an arbitrary number of pages.

14.3 Tagged PDF 265

Structure elements and Alt/ActualText attributes must be properly nested according
to the rules in the PDFlib Tutorial. Some decorative elements are automatically tagged
as Artifact; see PDFlib Tutorial for details.

PDF/A Although Tagging is required for PDF/A-1a/2a/3a, there are no specific requirements for
tag usage or nesting. We recommend to obey PDF/UA requirements.

PDF/UA All image and graphics contents must be tagged as Artifact or Figure.
Additional rules apply to various element types and options (see PDFlib Tutorial).

Scope page; for grouping elements also document; must always be paired with a matching PDF_
end_item() call. This function is only allowed in Tagged PDF mode.

Table 14.3 Standard, pseudo, and custom element types for PDF_begin_item(), PDF_begin_mc(), and PDF_mc_point()
and the tag option of various functions

category tags

standard structure element types

grouping Art, BlockQuote, Caption, Div, Document, Index, NonStruct,Part, Private, Sect, TOC, TOCI

heading and
paragraph

P, H, H1, H2, H3, H4, H5, H6, H7, H8 etc.

label and list L, LI, Lbl, LBody

table Table, TR, TH, TD, THead1, TBody1, TFoot1

(all table tags can be created automatically by PDF_fit_table(), see PDFlib Tutorial)

inline BibEntry, Code, Note, Quote, Reference, Span

illustration Figure, Formula, Form

Japanese Ruby1 (grouping), RB1, RT1, RP1, Warichu1 (grouping), WT1, WP1

pseudo structure element types

non-
structural
elements

Artifact Artifact, to be distinguished from real page content.
ASpan (Accessibility span; written to PDF as Span, but must be distinguished from the inline item

Span) Can be used to attach accessibility attributes to content which does not belong to a
structure element or which resembles a part of a structure element.

ReversedChars
(Not recommended) Specifies text in a right-to-left language with reversed characters.

Clip (Not recommended) Specifies a marked clipping sequence, i.e. only clipping paths or text in
rendering mode 7, but no visible graphics or PDF_save() / PDF_restore().

custom structure element types

user-defined
elements

The tag name Plib_custom_tag must be supplied in the tagname parameter. The actual tag name which
will be written to PDF must be supplied in the tagname option. Custom element types require the rolemap
document option.

1. Requires PDF 1.5 or above

Table 14.4 Options for structure and pseudo tags for PDF_begin_item() as well as for abbreviated tagging with the tag
option of various functions. Some options are also available in PDF_begin_mc() and PDF_mc_point().

option description

ActualText (Hypertext string; not for pseudo tags except in PDF 1.5 with ASpan;if used in PDF 1.4 the direct option
must be set to false) Equivalent replacement text for the content item and its kids.

266 Chapter 14: Document Interchange

Alt (Hypertext string; not for pseudo tags except in PDF 1.5 with ASpan;if used in PDF 1.4 the direct option
must be set to false) Word or phrase as alternate description for the content item and its children. It
should be provided for figures, images, etc. which cannot be recognized as text.

artifact-
subtype

(Keyword; only for tagname=Artifact and artifacttype=Pagination; PDF 1.7) Subtype of the artifact:
Header, Footer, Watermark

artifacttype (Keyword; only for tagname=Artifact) Identifies the artifact type of the content item:
Pagination Ancillary page features such as running heads or page numbers
Layout Typographic or design elements such as footnote rules or table shading
Page Production aids such as cut marks and color bars
Background (PDF 1.7) Images or colored blocks that run the entire length and/or width of the page or a

structural element.

Attached (Keyword list; only for tagname=Artifact and artifacttype=Pagination or Background with full-page
background artifacts) Specify the edges of the page, if any, to which the artifact is logically attached. The
list contains one to four of the keywords Top, Bottom, Left, and Right. Including both Left and Right or
both Top and Bottom indicates a full-width or full-height artifact, respectively.

BBox (Rectangle; only for tagname=Artifact, Figure, Form, Table; required for artifacttype=Background,
otherwise optional, but recommended for Reflow) The element’s bounding box in default coordinates (if
usercoordinates=false) or user coordinates (if usercoordinates=true). PDFlib automatically creates
the BBox for placed images, graphics, PDF pages (with tagname=Figure or Artifact), form fields (with
tagname=Form or Artifact) and tables created by the table engine (with tagname=Table or Artifact).

bookmark (Bookmark handle; only for regular elements) Handle for a bookmark which will be associated with the
structure element.

ColSpan (Integer; only for tagname=TH and TD) Number of table columns spanned by a cell. Default: 1

contents (String; only for PDF_begin_mc()) Content string describing the marked content sequence.

customtag (Boolean; requires the rolemap document option) If true, the element type name supplied in the
tagname option is a custom element type which must be mapped to a standard element type via the
rolemap document option. Default: false
Setting this option to true is equivalent to providing the parameter tagname=Plib_custom_tag.

direct (Boolean; only for tagname=Artifact, Code, BibEntry, Em, FENote, Note, Quote, Reference, Span; for Lbl
as child of BibEntry, TOCI or Note, and for the pseudo items ASpan, ReversedChars, Clip) If true only a
marked content sequence (»direct« element) is emitted without an entry in the structure tree. Otherwise,
emit the item as marked content sequence and create an entry in the structure tree (»regular« element).
Default: false if the Title option is supplied, otherwise true

E (Hypertext string; not for pseudo tags except ASpan;requires PDF 1.5 for structure tags) Abbreviation ex-
pansion for the content item. It should be provided for explaining abbreviations and acronyms. Acrobat’s
Read Aloud feature considers the expansion text as a separate word even in the absence of explicit word
breaks.

Headers (List of strings; only for tagname=TH and TD; PDF 1.5) Each string in the list is the identifier of a table head-
er cell (TH element) which is associated with the cell. The identifier(s) must have been assigned to the tar-
get cell with the id option. If multiple header cells are referenced, row headers should be listed before col-
umn headers. Within these groups headers should be ordered from most specific to most general.

Height (Float; only for tagname=Figure, Form, Formula, Table, TD, TH) Height of the element in default coordi-
nates (if usercoordinates=false) or user coordinates (if usercoordinates=true)

Table 14.4 Options for structure and pseudo tags for PDF_begin_item() as well as for abbreviated tagging with the tag
option of various functions. Some options are also available in PDF_begin_mc() and PDF_mc_point().

option description

14.3 Tagged PDF 267

id (String; not for pseudo elements and inline elements except Note; in PDF/UA-1 required for footnotes and
endnotes tagged as Note) Assign an identifier to the element for use with the Headers option. The string
must be unique among all structure elements.

index (Integer; not forpseudo tags) The zero-based index at which to insert the element within the parent.
Starting at this position, existing descendants of the parent are shifted upwards. Values between 0 and
the current number of children can be supplied. The value -1 adds the element at the end, i.e. as the new
last item. This is identical to supplying the current number of elements as index. Default: -1

inline Deprecated, use direct

Lang (String; not for pseudo tags except ASpan) Language identifier for the content item (and associated op-
tions ActualText, Alt, E) in the format described in Table 3.3 for the lang option. It can be used to over-
ride the document’s default language for individual content items.

List-
Numbering

(Keyword; only for tagname=L; required in PDF/UA-1; must be None in PDF/UA-1 for lists where no LI child
contains any Lbl element) Numbering system used for the contents of the Lbl elements in a numbered
list or the symbol which precedes each item in an unnumbered list (default: None):
Circle Open circular bullet
Decimal Decimal arabic numerals (1–9, 10–99, ...)
Disc Solid circular bullet
LowerAlpha Lowercase letters (a, b, c, ...)
LowerRoman

Lowercase roman numerals (i, ii, iii, iv, ...)
None No autonumbering; Lbl elements (if present) contain arbitrary text without numbering. In

this case any graphics representing the list’s labels should be marked as Artifact.
Square Solid square bullet
UpperAlpha Uppercase letters (A, B, C, ...)
UpperRoman

Uppercase roman numerals (I, II, III, IV, ...)

parent (Item handle; not for pseudo and inline element types) The element’s parent as returned by an earlier call
to PDF_begin_item() or the activeitemid keyword of PDF_get_option(). The value 0 refers to the struc-
ture tree root. -1 refers to the currently active element. In other words, parent=-1 opens a child of the
current element. Default: -1

Placement (Keyword; not for pseudo elements and the inline element types Span,Quote, Note, Reference, BibEntry
and Code) Specifies positioning of the element with respect to the enclosing reference area. This is rele-
vant when the document is reformatted or exported to other formats. The option Placement=Block is
recommended for Figure, Formula, Form, Link, Annot elements if they are created as children of group-
ing elements (default: Inline):
Before Placed so that the »before« edge of the element’s allocation rectangle coincides with that of

the nearest enclosing reference area.
Block Stacked in the block progression direction within an enclosing reference area or parent BLSE.
End Placed so that the »end« edge of the element’s allocation rectangle coincides with that of the

nearest enclosing reference area.
Inline Packed in the inline progression direction within an enclosing BLSE.
Start Placed so that the »start« edge of the element’s allocation rectangle coincides with that of

the nearest enclosing reference area.

RowSpan (Integer; only for tagname=TH and TD) The number of table rows spanned by a cell. Default: 1

Table 14.4 Options for structure and pseudo tags for PDF_begin_item() as well as for abbreviated tagging with the tag
option of various functions. Some options are also available in PDF_begin_mc() and PDF_mc_point().

option description

268 Chapter 14: Document Interchange

C++ Java C# void end_item(int id)
Perl PHP end_item(int id)

C void PDF_end_item(PDF *p, int id)

Close a structure element or other content item.

id The item’s handle, which must have been retrieved with PDF_begin_item().

Details Direct items must be closed before the end of the page. All regular items must be closed
before the end of the document. However, it is strongly recommended to close all regu-
lar items as soon as they are completed. An item can only be closed if all of its children
have been closed before. After closing an item its parent becomes the active item.

Scope page; for grouping items also document; must always be paired with a matching PDF_
begin_item() call. This function is only allowed in Tagged PDF mode.

Abbreviated tagging. Structure elements and artifacts can be created with PDF_begin/
end_item() pairs. As an alternative, abbreviated tagging is available with the tag option
of the following functions (see Table 14.5):

> PDF_add_table_cell() and the corresponding options in PDF_add_table_cell():
fitgraphics, fitimage, fitpath, fitpdipage, fittextline, fittextflow, fitannotation, fitfield

Scope (Keyword; only for tagname=TH; PDF 1.5; recommended for PDF/UA-1) One of the keywords Row, Column, or
Both indicating whether the table header cell applies to the rest of the cells in the row that contains it,
the column that contains it, or both the row and the column that contain it.

Summary (Hypertext string; only for tagname=Table; PDF 1.7) Summary of the table’s purpose and structure

tag (Option list) Additional structure element which will be inserted as a child of the current element. All op-
tions according to Table 14.4 are supported as suboptions. Tags can be nested to an arbitrary level.

tagname (Name string; except in PDF_add_table_cell() this option is required for abbreviated tagging with the
tag option) Name of a standard element type or a pseudo element type according to Table 14.3, or name
of a custom tag. The value of this option can alternatively be provided via the function parameter
tagname.
Specify the option customtag=true or the parameter tagname=Plib_custom_tag to supply custom tag
names. In this case the tagname option contains an arbitrary name of a custom tag for which a mapping
to a standard element type must have been defined with the rolemap option of PDF_begin_document().
Custom element type names are restricted to 127 winansi characters or a sequence of Unicode characters
which expands to a maximum of 127 UTF-8 bytes. Custom element type names must not start with the
reserved prefix Plib.

Title (Hypertext string; not for inline and pseudo element types; recommended for headings in PDF/UA-1) Title
of the structure element. The title may be useful for viewing or manipulating the structure tree in Acro-
bat.

user-
coordinates

(Boolean) If false, BBox, Width and Height are expected in default coordinates; otherwise user coordi-
nates will be used. Default: the value of the usercoordinates global option

Width (Float; only for tagname=Figure, Form, Formula, Table, TD, TH) Width of the element in default coordi-
nates (if usercoordinates=false) or user coordinates (if usercoordinates=true)

Table 14.4 Options for structure and pseudo tags for PDF_begin_item() as well as for abbreviated tagging with the tag
option of various functions. Some options are also available in PDF_begin_mc() and PDF_mc_point().

option description

14.3 Tagged PDF 269

> PDF_begin_document(): abbreviated tagging can be used to create the root element of
the structure hierarchy

> PDF_create_annotation()
> PDF_create_field()
> PDF_draw_path()
> PDF_fit_graphics()
> PDF_fit_image()
> PDF_fit_pdi_page() and PDF_info_pdi_page()
> PDF_fit_table(); abbreviated tagging triggers automatic table tagging
> PDF_fit_textflow()
> PDF_fit_textline()
> the matchbox option of various functions

 Except for PDF_begin_document() these functions create page content items and there-
fore cannot be used to create grouping elements unless the grouping element is accom-
panied by another element via a nested tag option. Except for PDF_begin_document()
and PDF_add_table_cell() abbreviated tagging can only be used in page scope. A detailed
description of abbreviated tagging can be found in the PDFlib Tutorial.

C++ Java C# void activate_item(int id)
Perl PHP activate_item(int id)

C void PDF_activate_item(PDF *p, int id)

Activate a previously created structure element or other content item.

id The item’s handle, which must have been retrieved with PDF_begin_item(), and
must not yet have been closed. Pseudo and direct element types can not be activated.

Details Suspending a structure element and activating it later gives additional flexibility for ef-
ficiently creating Tagged PDF pages even when there are multiple parallel structure
branches on a page, e.g. with multi-column layouts or text inserts which interrupt the
main text.

While the parent and index tagging options (see Table 14.4) can be used to insert struc-
ture elements at a specific location in the structure tree, PDF_activate_item() can be used
to add more content to a previously created structure element.

In order to work around problems in Acrobat, no content items should be added im-
mediately after calling PDF_activate_item(), but only other structure elements.

Scope document, page; this function is only allowed in Tagged PDF mode.

Table 14.5 Option for abbreviated tagging in PDF_add_table_cell() and the corresponding fit* options in PDF_add_
table_cell(), PDF_create_annotation(), PDF_create_field(), PDF_draw_path(), PDF_fit_graphics(), PDF_fit_image(), PDF_
fit_pdi_page(), PDF_fit_table(), PDF_fit_textflow(), PDF_fit_textline(), and the matchbox option of various functions

option description

tag (Option list) Create a structure element or artifact for the placed content. The suboptions listed in Table
14.4 can be used. Since the tag option is also allowed as suboption nested tag structures can be created
with a single call.

270 Chapter 14: Document Interchange

14.4 Marked Content

C++ Java C# void begin_mc(String tagname, String optlist)
Perl PHP begin_mc(string tagname, string optlist)

C void PDF_begin_mc(PDF *p, const char *tagname, const char *optlist)

Begin a marked content sequence with optional properties.

tagname The name of the marked content sequence. The following tags are support-
ed:

> All direct and pseudo element types in Table 14.3.
> The tag name Plib_custom can be used for custom entries with user-defined proper-

ties.
> The tag name Plib is reserved.

optlist The following options for marked content sequences are supported:
> General option: hypertextencoding (see Table 2.3)
> Options for standard properties of the marked content sequence; the following sub-

set of tagging options in Table 14.4 can be used:
ActualText, Alt, artifactsubtype, artifacttype, contents, customtag, E, Lang, ListNumbering,
Placement, tagname

> The tags Plib_custom and Plib additionally support the properties option in Table 14.6.

Details A marked content sequence with the specified tag and properties is started. If no op-
tions are provided a sequence without any properties is created. Marked content se-
quences can be nested to an arbitrary level. The user is responsible for creating properly
nested sequences of PDF_begin/end_item() and PDF_begin/end_mc().

Scope page, pattern, template, glyph; must always be paired with a matching PDF_end_mc() call
in the same scope.

C++ Java C# void end_mc()
Perl PHP end_mc()

C void PDF_end_mc(PDF *p)

End the least recently opened marked content sequence.

Details All marked content sequences must be closed before calling PDF_end_page_ext().

Scope page, pattern, template, glyph; must always be paired with a matching PDF_begin_mc()
call in the same scope.

Table 14.6 Option for user-defined properties of tags with PDF_begin_mc() and PDF_mc_point()

option description

properties (List of option lists; only for tagname=Plib and tagname=Plib_custom) Each list contains three options
which specify a user-defined property:
key (String; required) Name of the property
type (Keyword; required) Type of the property value: boolean, name, or string
value (Hypertext string if type=string, otherwise string; required) Value of the property

14.4 Marked Content 271

C++ Java C# void mc_point(String tagname, String optlist)
Perl PHP mc_point(string tagname, string optlist)

C void PDF_mc_point(PDF *p, const char *tagname, const char *optlist)

Add a marked content point with optional properties.

tagname The name of the marked content point. The following tags are supported:
> All direct and pseudo element types in Table 14.3.
> The tag name Plib_custom can be used for custom entries.
> The tag name Plib is reserved.

optlist The following options are supported:
> Options for standard properties of the marked content point according to Table 14.4.
> The tags Plib_custom and Plib additionally support the option in Table 14.6.

Details A marked content point with the specified tag name and properties will be created. If no
options are provided a marked content point without any properties will be created.

Scope page, pattern, template, glyph

272 Chapter 14: Document Interchange

14.5 Document Part Hierarchy

C++ Java C# void begin_dpart(String optlist)
Perl PHP begin_dpart(string optlist)

C void PDF_begin_dpart(PDF *p, const char *optlist)

Open a new node in the document part hierarchy (requires PDF/VT or PDF 2.0).

optlist An option list specifying document part hierarchy options according to Table
14.7: associatedfiles, dpm

PDF/VT This function and its counterpart PDF_end_dpart() must be called at least once when
creating PDF/VT. The first call to PDF_begin_dpart() implicitly creates the root node of
the document part (DPart) hierarchy. It is an error to call PDF_begin_dpart() more than
once at the top level.

A call to PDF_begin_dpart() followed by a call to PDF_begin_page_ext() defines the
start of the page range of a document part. All subsequent pages until the next call to
PDF_begin_dpart() belong to the same document part. All calls together create the docu-
ment part hierarchy as a tree structure which can contain two types of nodes:

> Inner nodes have one or more other nodes as descendants. The descendants may be
inner nodes or leaf nodes, but a particular inner node may not contain descendants
of both types.

> Leaf nodes describe the page(s) in a range. Leaf nodes never have descendant nodes.

The calls to PDF_begin_dpart() and PDF_end_dpart() must match when PDF_end_
document() is called. If a document part hierarchy is to be created for the document, this
function must be called at least once before calling PDF_begin_page_ext() for the first
time. Calling PDF_begin_dpart() multiply creates deeper levels of the document part hi-
erarchy. The generated depth of the document part hierarchy (i.e. the maximum nest-
ing levels of PDF_begin_dpart()) must match the length of the list specified with the
nodenamelist document option.

Scope document; this function must always be paired with a matching PDF_end_dpart() call.

Table 14.7 Options for PDF_begin/end_dpart()

option description

associatedfiles (List of asset handles; PDF 2.0) Asset handles for associated files. The files must have been loaded with
PDF_load_asset() and type=attachment.

dpm (POCA container handle; may be supplied to PDF_begin_dpart() or PDF_end_dpart(), but not to both
functions for the same document part) Handle for a dictionary container created with PDF_poca_new()
which contains document part metadata for the new node. The dictionary must have been created with
the option usage=dpm.

14.5 Document Part Hierarchy 273

C++ Java C# void end_dpart(String optlist)
Perl PHP end_dpart(string optlist)

C void PDF_end_dpart(PDF *p, const char *optlist)

Close a node in the document part hierarchy (requires PDF/VT or PDF 2.0).

optlist An option list specifying document part hierarchy options according to Table
14.7: associatedfiles, dpm

PDF/VT The first call to PDF_end_dpart() after PDF_end_page_ext() implicitly defines the end of
the page range belonging to a leaf of the document part hierarchy. The calls to PDF_
begin_dpart() and PDF_end_dpart() must match when PDF_end_document() is called.

Scope document; this function must always be paired with a matching PDF_begin_dpart() call.

274 Chapter 14: Document Interchange

Chapter A: List of all API Functions 275

General
set_option
get_option
get_string
new (C only)
delete
create_pvf
delete_pvf
info_pvf
get_errnum
get_errmsg
get_apiname
get_opaque (C/C++ only)
poca_new
poca_delete
poca_insert
poca_remove

Document and Page
begin_document
begin_document_callback
(C/C++ only)
end_document
get_buffer
begin_dpart
end_dpart
begin_page_ext
end_page_ext
suspend_page
resume_page
define_layer
set_layer_dependency
begin_layer
end_layer

Font
load_font
close_font
setfont
info_font
begin_font
end_font
begin_glyph_ext
end_glyph
encoding_set_char

Simple Text Output
set_text_pos
show
show_xy
continue_text
stringwidth

Unicode Conversion
convert_to_unicode

Text Formatting
set_text_option
fit_textline
info_textline
add_textflow
create_textflow
fit_textflow
info_textflow
delete_textflow

Table Formatting
add_table_cell
fit_table
info_table
delete_table

Matchboxes
info_matchbox

Color
setcolor
load_iccprofile
makespotcolor
create_devicen
shading
shading_pattern
shfill
begin_pattern_ext
end_pattern

Image and template
load_image
close_image
fit_image
info_image
begin_template_ext
end_template_ext

SVG Graphics
load_graphics
close_graphics
fit_graphics
info_graphics

A List of all API Functions
This appendix lists all API functions. Click on a function name to jump to the cor-
responding description.

276 Chapter A: List of all API Functions

Graphics State
set_graphics_option
setlinewidth
save
restore
create_gstate
set_gstate

Coordinate Transformation
translate
scale
rotate
align
skew
concat
setmatrix

Path Construction
moveto
lineto
curveto
circle
arc
arcn
circular_arc
ellipse
elliptical_arc
rect
closepath

Path Painting and Clipping
stroke
closepath_stroke
fill
fill_stroke
closepath_fill_stroke
clip
endpath

Path Objects
add_path_point
draw_path
info_path
delete_path

PDI
open_pdi_document
open_pdi_callback
(C/C++ only)
close_pdi_document
open_pdi_page
close_pdi_page
fit_pdi_page
info_pdi_page
process_pdi

pCOS
pcos_get_number
pcos_get_string
pcos_get_stream

Block Filling (PPS)
fill_textblock
fill_imageblock
fill_pdfblock
fill_graphicsblock

Interactive Features
create_action
add_nameddest
create_annotation
create_field
create_fieldgroup
create_bookmark
add_portfolio_folder
add_portfolio_file

Multimedia
load_3ddata
create_3dview
load_asset

Document Interchange
set_info
begin_item
end_item
activate_item
begin_mc
end_mc
mc_point

Chapter B: List of all Options and Keywords 277

B List of all Options and Keywords
This index contains an alphabetical list of all options and keywords along with the func-
tions in which they can be used. Click on the page number to jump to the description.

&
&name option list macro call in fit_textflow() 100

3D
3Dactivate in create_annotation() 254
3Ddata in create_annotation() 254
3Dinitialview in create_annotation() 254
3Dinteractive in create_annotation() 254
3Dshared in create_annotation() 254
3Dview in create_action() 235

A
acceptdynamicxfa in open_pdi_document() 194
acrobat in info_font() 72
action

in begin/end_page_ext() 53
in create_annotation() 219
in create_bookmark() 215
in create_field/group() 229
in end_document() 43
in process_pdi() 203

activate suboption of richmedia in
create_annotation() 258

activeitemid keyword in get_option() 29
activeitemindex keyword in get_option() 29
activeitemisinline keyword in get_option() 29
activeitemkidcount keyword in get_option() 29
activeitemname keyword in get_option() 29
activeitemstandardname keyword in

get_option() 29
actual in info_font() 71
actualtext

in begin_item() and the tag option 265
in set_text_option(), fit_textline(), and
fill_textblock() 74

addfitbox suboption for wrap in fit_textflow()
107

addpath keyword in add_path_point() 149
adjustmethod in add/create_textflow() 97
adjustpage

in fit_image/fit_graphics/fit_pdi_page() 174
in fit_pdi_page() 200

advancedlinebreak in add/create_textflow() 97
align

in draw_path() 123
keyword for the transform option in
begin_pattern_ext(), begin_template_ext(),
shading_pattern() and open_pdi_page() 189

alignchar in fit/info_textline() 123

alignment
in add/create_textflow() 95
in create_annotation() 219
suboption for leader in fit/info_textline() and
add/create_textflow() 90

alpha keyword for the type suboption of
softmask in create_gstate() 138

alphachannelname in load_image() 171
alphaisshape in create_gstate() 137
Alt in begin_item() and the tag option 266
alternate in create_devicen() 161
angle keyword in info_textline() 92
angularunit suboption for georeference 246
animation

in load_3d() 249
suboption for the activate suboption of
richmedia in create_annotation() 258

annotation suboption for targetpath in
create_action() 238

annotationtype in add_table_cell() and
suboption for the caption option 114

annotcolor in create_annotation() 219
antialias

in shading() and suboption of the shading
graphics appearance option 163

api in info_font() 71, 72
apiversion sub-suboption for portfolio in

PDF_add_portfolio_file/folder() 245
area suboption for fill in fit_table() 117
areaunit suboption for georeference 246
artbox in begin/end_page_ext() 53
artifactsubtype in begin_item() and the tag

option 266
artifacttype in begin_item() and the tag option

266
ascender

in info_font() 71
in load_font() 64
keyword in info_textline() 92

asciifile in set_option() 25
assets

sub-suboption for portfolio in
PDF_add_portfolio_file/folder() 245
suboption of richmedia in
create_annotation() 258

278 Chapter B: List of all Options and Keywords

associatedfiles
in begin/end_dpart() 272
in begin/end_page_ext() 53
in end_document() 43
in load_image(), load_graphics(),
open_pdi_page(), and begin_template_ext()
187

Attached in begin_item() and the tag option 266
attachment in create_annotation() 219
attachmentpassword in begin_document() 47
attachmentpoint in draw_path() 123
attachments in begin/end_document() 43
autospace in set_option() 25
autosubsetting in load_font() 64
autoxmp in begin/end_document() 43
avoidbreak in add/create_textflow() 97
avoiddemostamp in set_option() 26
avoidemptybegin in add/create_textflow() 95
avoidwordsplitting

in add_table_cell() 112
in fit_textflow() 103

B
backdropcolor suboption of softmask in

create_gstate() 138
background in create_3dview() 250
backgroundcolor in create_field/group() 229
barcode in create_field/group() 229
BBox in begin_item() and the tag option 266
bboxexpand

in draw_path() 152
in load_graphics() 178

bboxwidth, bboxheight keywords in info_path()
153

begoptlistchar in create_textflow() 101
beziers suboption for wrap in fit_textflow() 107
bitreverse in load_image() 173
bleedbox in begin/end_page_ext() 53
blendmode in create_gstate() 137
blind

in fit_table() 116
in fit_textflow() 103
in many functions 123

block in process_pdi() 204
blockname suboption of block in process_pdi()

204
blocks in begin/end_page_ext() 53
bookmark in begin_item() and the tag option

266
bordercolor in create_field/group() 229
borderstyle

in create_annotation() 219
in create_field/group() 229

borderwidth in several functions 133
bottom in add_nameddest() and suboption for

destination in create_action(),
create_annotation(), create_bookmark() and
begin/end_document() 239

boundingbox
in begin_glyph_ext() 85
in begin_pattern_ext() and
begin_template_ext() 185
in draw_path() 152
in shading() and suboption of the shading
graphics appearance option 163
keyword in info_*() 128
keyword in info_matchbox() 132
keyword in info_textflow() 109
suboption for viewports in begin/
end_page_ext() 246

bounds suboption for georeference 246
boxes suboption for wrap in fit_textflow() 107
boxexpand in open_pdi_page() 198
boxheight suboption for matchbox 130
boxlinecount keyword in info_textflow() 109
boxsize in various functions 124
boxwidth suboption for matchbox 130
bpc in load_image() 173
buttonlayout in create_field/group() 229
buttonstyle in create_field/group() 229

C
calcorder in create_field/group() 229
calloutline in create_annotation() 219
camera2world in create_3dview() 250
cameradistance in create_3dview() 251
canonicaldate in create_action() 235
capheight

in info_font() 71
in load_font() 64
keyword in info_textline() 92

caption
in create_field/group() 229
in fit_table() 116
suboption for barcode in create_field/group()
233

captiondown in create_field/group() 229
captionoffset in create_annotation() 219
captionposition in create_annotation() 219
captionrollover in create_field/group() 230
category sub-suboption for portfolio in

PDF_add_portfolio_file/folder() 245
centerwindow suboption for viewerpreferences

in begin/end_document() 50
charclass in add/create_textflow() 98
charmapping in add/create_textflow() 99
charref

in set_option() 26
in set_text_option(), fit/info_textline(),
fill_textblock() and add/create_textflow() 74

charspacing
in create_field/group() 230
in set_text_option(), fit/info_textline(),
fill_textblock() and add/create_textflow() 75

checkcolorspace keyword in info_image() 176

Chapter B: List of all Options and Keywords 279

checkoutputintentprofile in
open_pdi_document() 194

checktags
in begin_document() 46
in open_pdi_document() 194

checktransgroupprofile in open_pdi_page() 198
children in set_layer_dependency() 60
chromakey in load_image() 171
cid in info_font() 70, 71
cidfont in info_font() 71
circle keyword in add_path_point() 149
circles suboption for wrap in fit_textflow() 107
circular keyword in add_path_point() 149
classes suboption for logging in set_option() 19
clip in draw_path() 152
clipping suboption for matchbox 130
clippingarea in open_pdi_page() 198
clippingpath keyword in info_image() 176
clippingpathname in load_image() 171
cliprule in several functions 133
clockwise

in add_path_point() 150
in elliptical_arc() 146

cloneboxes
in fit_pdi_page() 200
in open_pdi_page() 199

close
in add_path_point() 150
in draw_path() 152

cloudy in create_annotation() 219
CMap in set_option() 26
code

in begin_glyph_ext() 85
in info_font() 70, 71

codepage in info_font() 71
codepagelist in info_font() 71
colorize in load_image() 171
colorized in begin_font() 83
colscalegroup in add_table_cell() 112
colspan in add_table_cell() 112
ColSpan in begin_item() and the tag option 266
colwidth in add_table_cell() 112
colwidthdefault in fit_table() 116
comb in create_field/group() 230
comment option list macro definition in

fit_textflow() 98
commitonselect in create_field/group() 230
compatibility in begin_document() 45
components in load_image() 173
compress

in set_option() 26
suboption for metadata 263

condition suboption for the activate suboption of
richmedia in create_annotation() 259

configuration suboption of richmedia in
create_annotation() 258

containertype in poca_new() 37
contents in begin_mc() 266

contents in create_annotation() 220
continuetextflow in add_table_cell() 112
control keyword in add_path_point() 149
convert in pcos_get_stream() 207
convertlinks in fit_graphics() 181
copy in create_pvf() 34
copyglobals in load_image() 173
count keyword in info_matchbox() 132
coversheet suboption for portfolio in

end_document() 243
coversheetfolder suboption for portfolio in

end_document() 243
crease suboption for rendermode in

create_3dview() 253
createdate in create_annotation() 220
createfittext in fit_textflow() 103
createlastindent in fit_textflow() 104
creatematchboxes suboption for wrap in

fit_textflow() 107
createoutput in begin_document() 48
createpvf in begin_document() 48
createrichtext in create_annotation() 220
createwrapbox suboption for matchbox 130
creatorinfo in define_layer() 58
cropbox in begin/end_page_ext() 53
ctm_a/b/c/d/e/f keywords in get_option() 29
currentvalue in create_field/group() 230
currentx/y keywords in get_option() 29
curve keyword in add_path_point() 149
custom in create_annotation() 220
customtag in begin_item() and the tag option

266

D
dasharray

in add_path_point() 150
in create_annotation() 220
in create_field/group() 230
in set_text_option(), fit/info_textline(),
fill_textblock() and add/create_textflow() 75
in several functions 133

dashphase
in add_path_point() 150
in several functions 133

dataprep suboption for the barcode option in
create_field/group() 233

datestring in create_annotation() 220
deactivate suboption of richmedia in

create_annotation() 258
debugshow in fit_table() 116
decodein load_image() 171
decorationabove in set_text_option(), fit/

info_textline(), fill_textblock() and add/
create_textflow() 75

280 Chapter B: List of all Options and Keywords

defaultcmyk
in begin_font() 83
in begin_page_ext() 53
in load_image(), load_graphics(),
open_pdi_page(), and begin_template_ext()
187

defaultdir in create_action() 235
defaultfontfamily in load_graphics() 178
defaultfontoptions in load_graphics() 178
defaultgray

in begin_font() 83
in begin_page_ext() 53
in load_image(), load_graphics(),
open_pdi_page(), and begin_template_ext()
187

defaultimageoptions in load_graphics() 178
defaultrgb

in begin_font() 83
in begin_page_ext() 53
in load_graphics(), begin_template_ext() and
begin_pattern_ext() 187

defaultstate in define_layer() 58
defaultvalue in create_field/group() 230
defaultview in load_3d() 249
depend in set_layer_dependency() 60
descender

in info_font() 71
in load_font() 64
keyword in info_textline() 92

description
in load_asset() and suboption for other
functions 256
in load_iccprofile() 157
keyword in info_graphics() 182
sub-suboption for portfolio in
PDF_add_portfolio_file/folder() 245

destination
in begin/end_document() 43
in create_action() 235
in create_annotation() 220
in create_bookmark() 215

destname
in create_action() 235
in create_annotation() 220
in create_bookmark() 215
in end_document() 43
suboption for targetpath in create_action()
238

devicencolors in load_graphics() 179
direct

in begin_item() and the tag option 266
in poca_insert() 39

direction suboption for viewerpreferences in
begin/end_document() 50

disable
suboption for 3Dactivate in
create_annotation() 254
suboption for logging in set_option() 18
suboption for shadow in add/
create_textflow() 76

disablestate suboption for 3Dactivate in
create_annotation() 254

display
in create_annotation() 221
in create_field/group() 230

displaydoctitle suboption for viewerpreferences
in begin/end_document() 50

displaysystem suboption for georeference 247
documentattachment in load_asset() and

suboption for other functions 256
doubleadapt suboption for matchbox 130
doubleoffset suboption for matchbox 130
down suboption for template in

create_annotation() 224
dpi

in load_image() 124
dpm in begin/end_dpart() 272
drawbottom, drawleft, drawright, drawtop

suboptions for matchbox 130
dropcorewidths in load_font() 65
duplex suboption for viewerpreferences in begin/

end_document() 50
duration

in begin/end_page_ext() 53
in create_action() 235

E
E in begin_item() and the tag option 266
ecc suboption for the barcode option in

create_field/group() 233
editable in create_field/group() 230
ellipse keyword in add_path_point() 149
elliptical keyword in add_path_point() 149
embedding in load_font() 65
embedprofile in load_iccprofile() 157
enable

suboption for 3Dactivate in
create_annotation() 254
suboption for logging in set_option() 18

enablestate suboption for 3Dactivate in
create_annotation() 254

encoding
in info_font() 71
in load_font() 65

Encoding in set_option() 26
end

suboption for matchbox 130
suboption of the shading graphics
appearance option 163

endcolor in shading() and suboption of the
shading graphics appearance option 163

endingstyles in create_annotation() 221

Chapter B: List of all Options and Keywords 281

endoptlistchar in create_textflow() 101
endx, endy keywords in info_textline() 92
entire suboption for background in

create_3dview() 250
enumeratefonts in set_option() 26
environment suboption for pdfvt in

load_image(), load_graphics(),
open_pdi_page() and begin_template_ext()
191

epsg suboption for the coords and displaycoords
suboptions of georeference 247

errorconditions in load_graphics() 179
errorpolicy option for various functions 21
escapesequence

in set_option() 26
in set_text_option(), fit/info_textline(),
fill_textblock() and add/create_textflow() 74

exceedlimit suboption for matchbox 130
exchangefillcolors in fit_textflow() 104
exchangestrokecolors in fit_textflow() 104
exclude in create_action() 235
exists keyword in info_matchbox() 132
exportable in create_field/group() 230
exportmethod in create_action() 236
extend0, extend1 in shading() and suboption of

the graphics appearance option 163
external in load_asset() and suboption for other

functions 256

F
facecolor suboption for rendermode in

create_3dview() 253
fakebold in set_text_option(), fit/info_textline(),

fill_textblock() and add/create_textflow() 75
faked in info_font() 71
fallbackfont in info_font() 71
fallbackfontfamily in load_graphics() 179
fallbackfontoptions in load_graphics() 179
fallbackfonts in load_font() 65
fallbackheight in load_graphics() 179
fallbackimage in load_graphics() 179
fallbackwidth in load_graphics() 179
familyname

in begin_font() 83
in info_font() 71

feature in info_font() 71
featurelist in info_font() 72
features in fit/info_textline(), fill_textblock() and

add/create_textflow() 91
fieldcontent in create_field/group() 230
fieldlist in add_portfolio_folder() 241
fieldname in add_table_cell() and suboption for

the caption option 114
fieldtype

in add_table_cell() and suboption for the
caption option 114
in create_fieldgroup() 230

filemode in begin_document() 48

filename
in create_action() 236
in load_asset() and suboption for other
functions 257
keyword in info_graphics() 182
keyword in info_image() 176
suboption for logging in set_option() 18
suboption for metadata 263
suboption for reference in
begin_template_ext(), load_image(), and
open_pdi_page() 190
suboption for search in begin/
end_document() 44

filenamehandling in set_option() 26
fileselect in create_field/group() 230
fill

in add_path_point() 150
in draw_path() 152
in fit_table() 117

fillcolor
in add_path_point() 150
in create_annotation() 221
in create_field/group() 231
in set_text_option(), fit/info_textline(),
fill_textblock() and add/create_textflow() 75
in several functions 133
suboption for background in create_3dview()
250
suboption for leader in fit/info_textline() and
add/create_textflow() 90
suboption for shadow in add/
create_textflow() 76

fillrule
in add_path_point() 150
in several functions 133
suboption for wrap in fit_textflow() 107

firstbodyrow keyword in info_table() 119
firstdraw in fit_table() 117
firstlinedist

in fit_textflow() 104
keyword in info_textflow() 109

firstparalinecount keyword in info_textflow() 109
fitannotation in add_table_cell() and suboption

for the caption option 114
fitfield in add_table_cell() 114
fitgraphics in add_table_cell() and suboption for

the caption option 113
fitheight keyword for the type option for

add_nameddest(), as well as for the
destination option 240

fitimage in add_table_cell() and suboption for
the caption option 113

fitmethod
in create_field/group() 231
in fit_textflow() 104
in various functions 124
suboption for template in
create_annotation() 224

282 Chapter B: List of all Options and Keywords

fitpath in add_table_cell() and suboption for the
caption option 113

fitpdipage in add_table_cell() and suboption for
the caption option 113

fitrect keyword for the type option for
add_nameddest(), as well as for the
destination option 240

fitscalex, fitscaley keywords in info_*() 128
fittext keyword in info_textflow() 109
fittextflow in add_table_cell() and suboption for

the caption option 113
fittextline in add_table_cell() and suboption for

the caption option 114
fittingpossible

keyword in info_graphics() 182
keyword in info_pdi_page() 202

fitvisible keyword for the type option for
add_nameddest(), as well as for the
destination option 240

fitvisibleheight, fitvisiblewidth keywords for the
type option for add_nameddest(), as well as
for the destination option 240

fitwidth keyword for the type option for
add_nameddest(), as well as for the
destination option 240

fitwindow
keyword for the type option for
add_nameddest(), as well as for the
destination option 240
suboption for viewerpreferences in begin/
end_document() 50

fixed keyword for the type option for
add_nameddest(), as well as for the
destination option 240

fixedleading in add/create_textflow() 96
fixedtextformat in create_textflow() 101
flash sub-suboption for portfolio in

PDF_add_portfolio_file/folder() 245
flatness

in add_path_point() 150
in create_gstate() 137
in several functions 133

flush
in begin_document() 48
suboption for logging in set_option() 18

font
in create_annotation() 221
in create_field/group() 231
in set_text_option(), fit/info_textline(),
fill_textblock() and add/create_textflow() 75
suboption for leader in fit/info_textline() and
add/create_textflow() 90

FontAFM in set_option() 27
fontfile in info_font() 72
fontname

in info_font() 72
in load_font() 66

FontnameAlias in set_option() 27

FontOutline in set_option() 27
FontPFM in set_option() 27
fontscale

in fit_textflow() 104
keyword in info_textflow() 109

fontsize
in create_annotation() 221
in create_field/group() 231
in info_font() 71
in set_text_option(), fit/info_textline(),
fill_textblock() and add/create_textflow() 76
suboption for leader in fit/info_textline() and
add/create_textflow() 90

fontstyle
in create_bookmark() 215
in info_font() 72
in load_font() 66

fonttype in info_font() 72
footer in fit_table() 117
forcebox in open_pdi_page() 199
forcedheight/forcedwidth in load_graphics() 179
forcesrgb in load_graphics() 180
full in info_font() 72
functionname in create_action() 236

G
georeference

in load_image() 187
suboption for viewports in begin/
end_page_ext() 246

glyphcheck
in set_option() 27
in set_text_option(), fit/info_textline(),
fill_textblock() and add/create_textflow() 74

glyphid in info_font() 70, 72
glyphname

in begin_glyph_ext() 85
in info_font() 70, 72

graphics in add_table_cell() and suboption for
the caption option 114

graphicsheight, graphicswidth keywords in
info_graphics() 182

group
in begin_page_ext() 53
in resume_page() 57
in set_layer_dependency() 60
option in add_nameddest() and suboption
for destination option in create_action(),
create_annotation(), create_bookmark() and
begin/end_document() 239
suboption for labels in begin_document() 49

groups in begin_document() 43

Chapter B: List of all Options and Keywords 283

gstate
in add_path_point() 150
in fit_image/fit_graphics/pdi_page() 175
in fit_pdi_page() 200
in fit_table() 117
in fit/info_textline() and add/
create_textflow() 104
in many graphics functions 133
in set_text_option(), fit/info_textline(),
fill_textblock() and add/create_textflow() 76
in shading_pattern() 164
suboption for shadow in add/
create_textflow() 76

H
header in fit_table() 117
Headers in begin_item() and the tag option 266
height

in add_path_point() 150
in begin/end_page_ext() 54
in load_image() 173
keyword in info_*() 128
keyword in info_matchbox() 132

Height in begin_item() and the tag option 266
hide in create_action() 236
hidemenubar suboption for viewerpreferences in

begin/end_document() 50
hidetoolbar suboption for viewerpreferences in

begin/end_document() 50
hidewindowui suboption for viewerpreferences

in begin/end_document() 50
highlight

in create_annotation() 221
in create_field/group() 231

honorclippingpath in load_image() 171
honoriccprofile in load_graphics() 180
honoriccprofile in load_image() 171
horboxgap keyword in info_table() 119
horizscaling in set_text_option(), fit/

info_textline(), fill_textblock() and add/
create_textflow() 76

horshrinking keyword in info_table() 119
horshrinklimit in fit_table() 117
hortabmethod in add/create_textflow() 96
hortabsize in add/create_textflow() 96
hostfont in info_font() 72
HostFont in set_option() 27
hypertextencoding

in set_option() 27
suboption for labels in begin/
end_document() and label in begin/
end_page_ext() 49
suboption for reference in
begin_template_ext(), load_image(), and
open_pdi_page() 190
suboption for viewports in begin/
end_page_ext() 246

hypertextformat in set_option() 27

hyphenchar in add/create_textflow() 99

I
icccomponents keyword in get_option() 30
iccprofile

in get_option() 30
in load_image() 171
keyword in info_image() 176

ICCProfile in set_option() 27
iccprofilecmyk, iccprofilegray, iccprofilergb

in load_graphics() 180
iccprofilecymk, iccprofilegray, iccprofilergb

in set_option() 27
icon

in create_field/group() 231
sub-suboption for portfolio in
PDF_add_portfolio_file/folder() 245

icondown in create_field/group() 231
iconname

in create_annotation() 221
in load_image(), load_graphics(),
open_pdi_page(), and begin_template_ext()
187

iconrollover in create_field/group() 231
id

in begin_item() and the tag option 267
sub-suboption for portfolio in
PDF_add_portfolio_file/folder() 245

ignoreclippingpath in fit_image() 175
ignoremask in load_image() 171
ignoreorientation

in fit_image() 175
in load_image() 171

ignorepdfversion in open_pdi_page() 199
image in add_table_cell() and suboption for the

caption option 114
imagehandle in load_image() 173
imageheight keyword in info_image() 176
imagemask keyword in info_image() 176
imagetype keyword in info_image() 176
imagewidth keyword in info_image() 176
includeoid suboption for logging in set_option()

18
includepid suboption for logging in set_option()

18
includetid suboption for logging in set_option()

18
index

in begin_item() and the tag option 267
in create_bookmark() 216
in info_font() 73
in info_pdi_page() 202
in poca_insert() and poca_remove() 39

indextype suboption for search in begin/
end_document() 44

284 Chapter B: List of all Options and Keywords

infomode
in load_image() 172
in open_pdi_document() 194
keyword in info_image() 176

initgraphicsstate in open_pdi_page() 199
initialexportstate in define_layer() 59
initialprintstate in define_layer() 59
initialsubset in load_font() 66
initialview suboption for portfolio in

end_document() 243
initialviewstate in define_layer() 59
inittextstate

in set_text_option(), fit/info_textline(),
fill_textblock() and add/create_textflow() 76
in set_text_state() 134

inline
in begin_item() and the tag option 267
in load_image() 173

inmemory
in begin_document() 48
in open_pdi_document 194

innerbox suboption for matchbox 130
inputencoding suboption for metadata 263
inputformat suboption for metadata 263
inreplyto in create_annotation() 221
instance in create_action() 236
intent in define_layer() 59
interiorcolor in create_annotation() 221
interpolate in load_image() 172
inversefill suboption for wrap in fit_textflow()

107
invert in load_image() 172
ismap in create_action() 236
istemplate keyword in info_graphics() 182
italicangle

in info_font() 72
in set_text_option(), fit/info_textline(),
fill_textblock() and add/create_textflow() 76

item in create_bookmark() 216
itemname in create_field/group() 231
itemnamelist in create_field/group() 231
itemtextlist in create_field/group() 231

J
justifymethod in fit/info_textline() 88

K
K in load_image() 173
keepfilter in pcos_get_stream() 207
keepfont in load_font() 66
keephandles in delete_table() 120
keepnative

in info_font() 72
in load_font() 66

keepxmp suboption for metadata 263

kerning
in set_option() 27
in set_text_option(), fit/info_textline(),
fill_textblock() and add/create_textflow() 76

kerningpairs in info_font() 72
key

in poca_insert() and poca_remove() 39
suboption for custom in create_annotation()
220
suboption for fieldlist in add_portfolio_file/
folder() 243
suboption for properties in begin_mc() and
mc_point() 270

L
label in begin/end_page_ext() 54
labels in begin/end_document() 43
lang

in begin_document() 46
in load_graphics() 180
keyword in info_pdi_page() 202

Lang in begin_item() and the tag option 267
language

in define_layer() 59
in fit/info_textline(), fill_textblock() and add/
create_textflow() 91
in info_font() 71

largearc
in add_path_point() 150
in elliptical_arc() 146

lastalignment in add/create_textflow() 96
lastbodyrow keyword in info_table() 119
lastfont keyword in info_textflow() 109
lastfontsize keyword in info_textflow() 109
lastlinedist

in fit_textflow() 105
keyword in info_textflow() 109

lastmark keyword in info_textflow() 109
lastparalinecount keyword in info_textflow() 109
layer

in create_annotation() 221
in create_field/group() 231
in load_image(), load_graphics(),
open_pdi_page(), and begin_template_ext()
187

layerstate in create_action() 236
leader

in add/create_textflow() 96
in fit/info_textline() 88

leaderlength in create_annotation() 222
leaderoffset in create_annotation() 222
leading

in set_text_option(), fit/info_textline(),
fill_textblock() and add/create_textflow() 76
keyword in info_textflow() 109

left option in add_nameddest() and suboption
for destination in create_action(),

Chapter B: List of all Options and Keywords 285

create_annotation(), create_bookmark() and
begin/end_document() 239

leftindent in add/create_textflow() 96
leftlinex, leftliney keywords in info_textflow()

109
license in set_option() 27
licensefile in set_option() 27
lighting in create_3dview() 251
limitcheck in begin_document() 45
line

in create_annotation() 222
keyword in add_path_point() 149
suboption for stroke in fit_table() 118

linearize in begin_document() 43
linearunit suboption for georeference 247
linecap

in add_path_point() 150
in create_gstate() 137
in several functions 134

linegap
in info_font() 72
in load_font() 66

lineheight suboption for wrap in fit_textflow()
107

linejoin
in add_path_point() 150
in create_gstate() 137
in several functions 134

linespreadlimit in fit_textflow() 105
linewidth

in add_path_point() 150
in create_annotation() 222
in create_field/group() 231
in create_gstate() 137
in several functions 134

ListNumbering in begin_item() and the tag option
267

loadtype sub-suboption for portfolio in
PDF_add_portfolio_file/folder() 245

locale
in add/create_textflow() 97
sub-suboption for portfolio in
PDF_add_portfolio_file/folder() 245

locked
in create_annotation() 222
in create_field/group() 231

lockedcontents in create_annotation() 222
lockmode in create_field/group() 231
logging in set_option() 27
luminosity keyword for the type suboption of

softmask in create_gstate() 138

M
macro option list macro definition in

fit_textflow() 100
maingid in info_font() 72
major keyword in get_option() 30
mappoints suboption for georeference 247

margin
in add_table_cell() 112
in fit_textline() 124
suboption for matchbox 131

marginbottom, marginleft, marginright,
margintop in add_table_cell() 112

mark in add/create_textflow() 98
mask in load_image() 172
masked in load_image() 172
masterpassword in begin_document() 47
matchbox

in add_table_cell() and suboption for the
caption option 114
in add/create_textflow() 98
in various functions 124
suboption for createlastindent in
fit_textflow() 104

matrix keyword for the transform option in
begin_pattern_ext(), begin_template_ext(),
shading_pattern() and open_pdi_page() 189

maxchar in create_field/group() 232
maxcode in info_font() 72
maxfilehandles in set_option() 27
maxlinelength keyword in info_textflow() 109
maxlines in fit_textflow() 105
maxliney keyword in info_textflow() 109
maxspacing in add/create_textflow() 97
maxuvsunicode in info_font() 72
mediabox in begin/end_page_ext() 54
menuname in create_action() 236
metadata 263

in begin/end_document() 43
in begin/end_page_ext() 54
in load_font() 66
in load_iccprofile() 157
in load_image(), load_graphics(),
open_pdi_page(), and begin_template_ext()
187
keyword in info_graphics() 182

metricsfile in info_font() 72
mimetype in load_asset() and suboption for other

functions 257
minfontsize in fit_textflow() 105, 124
mingapwidth in fit_textflow() 105
minlinecount in add/create_textflow() 96
minlinelength keyword in info_textflow() 109
minliney keyword in info_textflow() 109
minor keyword in get_option() 30
minrowheight in add_table_cell() 112
minspacing in add/create_textflow() 97
minuvsunicode in info_font() 72
mirroringx, mirroringy

keywords in info_image() 176
keywords in info_pdi_page() 202

missingglyphs keyword in info_textline() 92

286 Chapter B: List of all Options and Keywords

miterlimit
in add_path_point() 150
in create_gstate() 137
in several functions 134

modeltree suboption for 3Dactivate in
create_annotation() 254

move keyword in add_path_point() 149
movieposter in create_annotation() 222
multiline in create_field/group() 232
multiselect in create_field/group() 232

N
N in shading() and suboption of the shading

graphics appearance option 163
name

in add_path_point() 150
in create_3dview() 251
in create_annotation() 222
in info_font() 71
in load_asset() and suboption for other
functions 257
keyword in info_matchbox() 132
sub-suboption for portfolio in
PDF_add_portfolio_file/folder() 245
suboption for matchbox 131
suboption for targetpath in create_action()
238
suboption for viewports in begin/
end_page_ext() 246

namelist in create_action() 236
names in create_devicen() 161
navigator suboption for portfolio in

end_document() 243
newwindow in create_action() 237
nextline in add/create_textflow() 98
nextparagraph in add/create_textflow() 98
nodenamelist in begin_document() 45
nofitlimit in add/create_textflow() 97
nonfullscreenpagemode suboption for

viewerpreferences in begin/end_document()
50

normal suboption for template in
create_annotation() 224

normalize
in set_text_option(), fit/info_textline(),
fill_textblock() and add/create_textflow() 75

numcids in info_font() 72
numcopies suboption for viewerpreferences in

begin/end_document() 50
numglyphs in info_font() 72
numpoints keyword in info_path() 153
numusableglyphs in info_font() 72
numusedglyphs in info_font() 72

O
objectheight, objectwidth keywords in info_*()

128

objectstreams in begin_document() 44
offset

suboption for shadow in add/
create_textflow() 76
suboption for wrap in fit_textflow() 107

offsetbottom, offsetleft, offsetright, offsettop
suboptions for matchbox 131

onpanel in define_layer() 59
opacity

in create_annotation() 222
suboption for rendermode in create_3dview()
253

opacityfill, opacitystroke in create_gstate() 137
open

in create_annotation() 222
in create_bookmark() 216

openmode in begin/end_document() 44
openrect suboption for matchbox 131
operation in create_action() 237
optimize in begin_document() 44
optimizeinvisible in load_font() 66
orientate

in create_annotation() 222
in create_field/group() 232
in fit_textflow() 105
in various functions 124

outlineformat in info_font() 72
outputblockname suboption of block in

process_pdi() 204
overline in set_text_option(), fit/info_textline(),

fill_textblock() and add/create_textflow() 76
overprintfill, overprintmode, overprintstroke in

create_gstate() 137

P
page

in load_image() 172
option in add_nameddest() and suboption
for destination in create_action(),
create_annotation(), create_bookmark() and
begin/end_document() 239

pageelement in define_layer() 59
pageheight, pagewidth

keywords in get_option() 30
keywords in info_pdi_page() 202

pagelabel suboption for reference in
begin_template_ext(), load_image(), and
open_pdi_page() 190

pagelayout in begin/end_document() 44

Chapter B: List of all Options and Keywords 287

pagenumber
in begin_page_ext() 54
in resume_page() 57
suboption for labels in begin/
end_document() and label in begin/
end_page_ext() 49
suboption for reference in
begin_template_ext(), load_image(), and
open_pdi_page() 190
suboption for targetpath in create_action()
238
suboption of block in process_pdi() 204

pages suboption for separationinfo in begin/
end_page_ext() 54

painttype in begin_pattern_ext() 166
parameters in create_action() 237
parent

in begin_item() and the tag option 267
in create_bookmark() 216
in set_layer_dependency() 60

parentlayer in open_pdi_document 194
parentname in create_annotation() 222
parenttitle in open_pdi_document 194
parindent in add/create_textflow() 96
passthrough in load_image() 172
password

in create_field/group() 232
in load_asset() and suboption for other
functions 257
in open_pdi_document 194

path
in add_path_point() 150
in add_table_cell() and suboption for the
caption option 114
suboption for textpath in fit_textline() 89

pathlength
keyword in info_path() 153
keyword in info_textline() 92

pathref keyword in add_path_point() 149
paths suboption for wrap in fit_textflow() 107
pdfa in begin_document() 45
pdfua in begin_document() 45
pdfvt

in begin_document() 45
in load_image(), load_graphics(),
open_pdi_page(), and begin_template_ext()
187

pdfx in begin_document() 46
pdi keyword in get_option() 30
pdipage in add_table_cell() and suboption for the

caption option 114
pdiusebox

in open_pdi_page() 199
suboption for reference in
begin_template_ext(), load_image(), and
open_pdi_page() 190

permissions in begin_document() 47
perpendiculardir keyword in info_textline() 92

picktraybypdfsize suboption for
viewerpreferences in begin/end_document()
50

Placement in begin_item() and the tag option 267
playmode in create_annotation() 222
polar in add_path_point() 151
polygons suboption for wrap in fit_textflow() 107
polylinelist in create_annotation() 223
popup in create_annotation() 223
portfolio in end_document() 44
position

in create_field/group() 232
in various functions 125
suboption for template in
create_annotation() 224

predefcmap in info_font() 73
prefix

suboption for fieldlist in add_portfolio_file/
folder() 243
suboption for labels in begin/
end_document() and label in begin/
end_page_ext() 49

presentation suboption for the activate
suboption of richmedia in
create_annotation() 259

preserveoldpantonenames in set_option() 159
preservepua in load_font() 66
preserveradio in create_action() 237
printarea suboption for viewerpreferences in

begin/end_document() 50
printclip suboption for viewerpreferences in

begin/end_document() 50
printpagerange suboption for viewerpreferences

in begin/end_document() 50
printscaling suboption for viewerpreferences in

begin/end_document() 50
printsubtype in define_layer() 59
process in create_devicen() 161
properties in begin_mc() and mc_point() 270
px, py keywords in info_path() 153

R
r0 in shading() and suboption of the shading

graphics appearance option 163
r1 in shading() and suboption of the shading

graphics appearance option 163
radians in add_path_point() 151
radius in add_path_point() 151
readfeatures in load_font() 67
readkerning in load_font() 67
readonly

in create_annotation() 223
in create_field/group() 232

readselectors in load_font() 67
readshaping in load_font() 67
readverticalmetrics in load_font() 67
recordlevel in begin_document() 46
recordsize in begin_document() 48

288 Chapter B: List of all Options and Keywords

rect keyword in add_path_point() 149
rectangle keyword in info_matchbox() 132
rectdiff in create_annotation() 223
rectify

in add_path_point() 151
in elliptical_arc() 146

recursive in poca_insert() 38
reference in load_image(), load_graphics(),

open_pdi_page(), and begin_template_ext()
188

refpoint
in fill_*block() and info_path() 125
in info_path() 153

relation suboption for targetpath in
create_action() 238

relationship in load_asset() and suboption for
other functions 257

relative in add_path_point() 151
remove suboption for logging in set_option() 18
removeonsuccess suboption for logging in

set_option() 18
removeunused in define_layer() 59
rendercolor suboption for rendermode in

create_3dview() 253
renderingintent

in create_gstate() 138
in load_image() 172

rendermode in create_3dview() 251
repair in open_pdi_document 194
repeatcontent in add_table_cell() 112
replacedchars in info_textline() 92
replacementchar

in info_font() 73
in load_font() 67

replyto in create_annotation() 223
required in create_field/group() 232
requiredmode in open_pdi_document 195
resetfont in add/create_textflow() 98
resolution suboption for the barcode option in

create_field/group() 233
resourcefile in set_option() 27
resourcenumber in get_option() 30
restore in add/create_textflow() 98
resx, resy keywords in info_image() 176
return

in add_table_cell() 113
in add/create_textflow() 98

returnatmark in fit_textflow() 105
returnreason

keyword in info_table() 119
keyword in info_textflow() 109

revision keyword in get_option() 30
rewind

in fit_table() 117
in fit_textflow() 105

richmedia in create_annotation() 223
richmediaargs in create_action() 237
richtext in create_field/group() 232

right option in add_nameddest() and suboption
for destination in create_action(),
create_annotation(), create_bookmark() and
begin/end_document() 240

rightindent
in add/create_textflow() 96
suboption for createlastindent in
fit_textflow() 104

rightlinex, rightliney keywords in info_textflow()
109

righttoleft in info_textline() 92
rolemap in begin_document() 46
rollover suboption for template in

create_annotation() 224
rotate

in begin/end_page_ext() 54
in create_annotation() 223
in fit_textflow() 105
in various functions 125
keyword for the transform option in
begin_pattern_ext(), begin_template_ext(),
shading_pattern() and open_pdi_page() 189
keyword in info_pdi_page() 202

round
in add_path_point() 151
in draw_path() 152
in fit_table() 117
suboption for matchbox 131

rowcount keyword in info_table() 119
rowheight in add_table_cell() 113
rowheightdefault in fit_table() 118
rowjoingroup in add_table_cell() 113
rowscalegroup in add_table_cell() 113
rowspan in add_table_cell() 113
RowSpan in begin_item() and the tag option 267
rowsplit keyword in info_table() 119
ruler in add/create_textflow() 96

S
save in add/create_textflow() 98
saveresources in set_option() 27
scale

in various functions 125
keyword for the transform option in
begin_pattern_ext(), begin_template_ext(),
shading_pattern() and open_pdi_page() 189

scalex, scaley keywords in info_textline() 92
schema suboption for portfolio in

end_document() 244
scope

keyword in get_option() 30
suboption for pdfvt in load_image(),
load_graphics(), open_pdi_page() and
begin_template_ext() 191

Scope in begin_item() and the tag option 268

Chapter B: List of all Options and Keywords 289

script
in create_action() 237
in fit/info_textline(), fill_textblock() and add/
create_textflow() 91
in info_font() 71
in load_3d() 250

scriptlist keyword in info_textline() 92
scriptname in create_action() 237
scripts suboption for the activate suboption of

richmedia in create_annotation() 259
scrollable in create_field/group() 232
search in begin/end_document() 44
searchpath in set_option() 28
selector

in info_font() 70
keyword in info_font() 73

selectorlist keyword in info_font() 73
separationinfo in begin_page_ext() 54
shading in several functions 134
shadow in fit/info_textline(), fill_textblock() and

add/create_textflow() 76
shaping in fit/info_textline(), fill_textblock() and

add/create_textflow() 91
shapingsupport in info_font() 73
showborder

in fit_textflow() 105
in various functions 125

showcaption in create_annotation() 223
showcells in fit_table() 118
showcontrols in create_annotation() 223
showgrid in fit_table() 118
showtabs in fit_textflow() 105
shrinklimit

in add/create_textflow() 97
in fit_textline() 126

shrug in open_pdi_document 195
shutdownstrategy in set_option() 28
simplefont in load_font() 67
singfont in info_font() 73
skew keyword for the transform option in

begin_pattern_ext(), begin_template_ext(),
shading_pattern() and open_pdi_page() 189

skipembedding in load_font() 68
smoothness in create_gstate() 138
softmask in create_gstate() 138
sort suboption for portfolio in end_document()

244
sorted in create_field/group() 232
soundvolume in create_annotation() 223
space in add/create_textflow() 98
spellcheck in create_field/group() 232
split

keyword in info_textflow() 109
suboption for portfolio in end_document()
244

spotcolor suboption for separationinfo in begin/
end_page_ext() 54

spotcolorlookup in set_option() 159

spotname suboption for separationinfo in begin/
end_page_ext() 54

spreadlimit in add/create_textflow() 97
stamp

in fit_textflow() 106
in various functions 126

standardfont in info_font() 73
start

suboption for labels in begin/
end_document() and label in begin/
end_page_ext() 49
suboption of the shading graphics
appearance option 163

startcolor in shading() and suboption of the
shading graphics appearance option 163

startoffset suboption for textpath in fit_textline()
89

startx, starty keywords in info_textline() 92
state in create_annotation() 223
statemodel in create_annotation() 223
stopcolors in shading() and suboption of the

shading graphics appearance option 163
stretch in begin_font() 83
strict suboption for metadata 263
strikeout in set_text_option(), fit/info_textline(),

fill_textblock() and add/create_textflow() 76
stringformat

in set_option() 28
stringlimit suboption for logging in set_option()

18
strings sub-suboption for portfolio in

PDF_add_portfolio_file/folder() 245
strips keyword in info_image() 176
stroke

in add_path_point() 151
in draw_path() 152
in fit_table() 118

strokeadjust in create_gstate() 138
strokecolor

in add_path_point() 150
in create_field/group() 232
in set_text_option(), fit/info_textline(),
fill_textblock() and add/create_textflow() 76
in several functions 134
suboption for shadow in add/
create_textflow() 76

strokewidth
in set_text_option(), fit/info_textline(),
fill_textblock() and add/create_textflow() 77
suboption for shadow in add/
create_textflow() 76

strongref suboption for reference in
begin_template_ext() and open_pdi_page()
190

structuretype in begin_document() 47
style suboption for labels in begin/

end_document() and label in begin/
end_page_ext() 49

290 Chapter B: List of all Options and Keywords

subject in create_annotation() 223
submitemptyfields in create_action() 237
submitname in create_field/group() 232
subpaths in draw_path() 153
subsetlimit in load_font() 68
subsetminsize in load_font() 68
subsetting in load_font() 68
Summary in begin_item() and the tag option 268
supplement in info_font() 73
svgpath in add_path_point() 151
symbol in create_annotation() 223
symbolfont in info_font() 73
symbology suboption for the barcode option in

create_field/group() 233

T
tabalignchar in add/create_textflow() 99
tabalignment in add/create_textflow() 96
tableheight, tablewidth keywords in info_table()

119
taborder

in begin/end_page_ext() 54
in create_field/group() 232

tag
in begin_document() 47
in begin_item() and the tag option 268
in fit_image(), fit_pdi_page(), fit_graphics(),
fit_table(), fit_textline(), fit_textflow(),
draw_path(), create_annotation(),
fill_*block(), create_field() and suboption in
add_table_cell() 269

tagged in begin_document() 47
tagname in begin_item() and the tag option 268
tagtrailinghyphen in set_text_option(), fit/

info_textline() and fill_textblock() 77
target

in create_action() 237
suboption for reference in
begin_template_ext(), load_image(), and
open_pdi_page() 190

targetpath
in create_action() 237
suboption for targetpath in create_action()
238

tempdirname in begin_document() 48
tempfilenames in begin_document() 48
template

in create_annotation() 224
suboption of softmask in create_gstate() 138

templateoptions
in load_graphics() 180
in load_image() 172

text
in add_table_cell() and suboption for the
caption option 114
suboption for leader in fit/info_textline() and
add/create_textflow() 90

textcolor in create_bookmark() 216

textendx, textendy keywords in info_textflow()
109

textflow
in add_table_cell() and suboption for the
caption option 114
in fill_textblock() 211
suboption for createrichtext in
create_annotation() 220

textflowhandle in fill_textblock() 211
textformat

in set_option() 28
in set_text_option(), fit/info_textline(),
fill_textblock() and add/create_textflow() 75

textheight
keyword in info_textflow() 109
keyword in info_textline() 92

textknockout in create_gstate() 138
textlen in create_textflow() 101
textpath in fit/info_textline() 88
textrendering

in set_text_option(), fit/info_textline(),
fill_textblock() and add/create_textflow() 77
suboption for shadow in add/
create_textflow() 76

textrise in set_text_option(), fit/info_textline(),
fill_textblock() and add/create_textflow() 77

textstate in get_option() 30
textwidth

keyword in info_textflow() 110
keyword in info_textline() 92

textx, texty keywords in get_option() 30
thumbnail in load_asset() and suboption for

other functions 257
tilingtype in begin_pattern_ext() 167
title

in create_annotation() 224
keyword in info_graphics() 183

Title in begin_item() and the tag option 268
toggle in create_fieldgroup() 232
tolerance suboption for textpath in fit_textline()

89
toolbar suboption for 3Dactivate in

create_annotation() 254
tooltip in create_field/group() 232
top option in add_nameddest() and suboption

for destination in create_action(),
create_annotation(), create_bookmark() and
begin/end_document() 240

topdown
in begin_page_ext() 54
in begin_pattern_ext() and
begin_template_ext() 185

topindex in create_field/group() 232
topleveltag keyword in info_pdi_page() 202
topleveltagcount keyword in info_pdi_page()

202

Chapter B: List of all Options and Keywords 291

transform
in create_devicen() 161
in load_image(), load_graphics(),
open_pdi_page(), and begin_template_ext()
188
in shading_pattern() 164

transition
in begin/end_page_ext() 55
in create_action() 238

translate keyword for the transform option in
begin_pattern_ext(), begin_template_ext(),
shading_pattern() and open_pdi_page() 189

transparencygroup
in begin/end_page_ext() 55
in load_image(), load_graphics(),
open_pdi_page(), and begin_template_ext()
189

transparent keyword in info_image() 176
trimbox in begin/end_page_ext() 55
truncatetrailingwhitespace in fit_textflow() 106
type

in create_3dview() 251
in load_3d() 250
in poca_insert() 39
in shading() and suboption of the shading
graphics appearance option 163
keyword in info_graphics() 183
option in add_nameddest() and suboption for
destination in create_action(),
create_annotation(), create_bookmark() and
begin/end_document() 240
suboption for custom in create_annotation()
220
suboption for fieldlist in add_portfolio_file/
folder() 243
suboption for properties in begin_mc() and
mc_point() 270
suboption for rendermode in create_3dview()
253
suboption for the coords and displaycoords
suboptions of georeference 247
suboption of softmask in create_gstate() 138

U
U3Dpath in create_3dview() 251
underline, underlineposition, underlinewidth in

set_text_option(), fit/info_textline(),
fill_textblock() and add/create_textflow() 77

unicode in info_font() 70, 73
unicodefont in info_font() 73
unicodemap in load_font() 68
unisonselect in create_fieldgroup() 233
unknownchars in info_textline() 92
unmappedchars

in info_font() 73
in info_textline() 92

uri in begin/end_document() 45
url in create_action() 238

urls in load_iccprofile() 157
usage

in load_iccprofile() 157
in poca_new() 38

used keyword in info_textflow() 110
usedglyph in info_font() 73
useembeddedimage in info_image() 176
usehostfonts in set_option() 28
usehypertextencoding in set_option() 28
uselayers in open_pdi_document 195
usematchbox in create_annotation() 224
usematchboxes suboption for wrap in

fit_textflow() 107
usercoordinates

in begin_item() and the tag option 268
in create_annotation() 224
in create_field/group() 233
in set_option() 28

userlog in set_option() 28
userpassword in begin_document() 47
userunit

in begin/end_page_ext() 55
suboption for createrichtext in
create_annotation() 220

usestransparency in begin_document() 46
usetags

in open_pdi_document 195
in open_pdi_page 199

V
value

in poca_insert() 40
suboption for custom in create_annotation()
220
suboption for fieldlist in add_portfolio_file/
folder() 243
suboption for properties in begin_mc() and
mc_point() 270

values in poca_insert() 40
version sub-suboption for portfolio in

PDF_add_portfolio_file/folder() 245
vertboxgap keyword in info_table() 119
vertical

in info_font() 73
in load_font() 68

verticalalign in fit_textflow() 106
vertshrinking keyword in info_table() 119
vertshrinklimit in fit_table() 118
view suboption for the activate suboption of

richmedia in create_annotation() 259
viewarea suboption for viewerpreferences in

begin/end_document() 50
viewclip suboption for viewerpreferences in

begin/end_document() 50
viewerpreferences in begin_document() and

end_document() 45
viewports in begin/end_page_ext() 56

292 Chapter B: List of all Options and Keywords

views
in load_3d() 250
suboption of richmedia in
create_annotation() 258

W
watermark in begin_template_ext() 185
weight

in begin_font() 83
in info_font() 73

wellformed keyword in info_textline() 93
width

in add_path_point() 151
in begin_glyph_ext() 85
in begin/end_page_ext() 56
in load_image() 173
keyword in info_*() 128
keyword in info_matchbox() 132

Width in begin_item() and the tag option 268
widthsonly in begin_font() 84
willembed in info_font() 73
willsubset in info_font() 73
windowposition in create_annotation() 224
windowscale in create_annotation() 224
wkt suboption for the coords and displaycoords

suboptions of georeference 247
wordspacing in set_text_option(), fit/

info_textline(), fill_textblock() and add/
create_textflow() 77

worldpoints suboption for georeference 247
worldsystem suboption for georeference 247
wrap in fit_textflow() 106
writingdirx, writingdiry keywords in

info_textline() 93

X
x1, y1, ..., x4, y4

keywords in info_*() 128
keywords in info_matchbox() 132
keywords in info_textflow() 110

xadvancelist in fit/info_textline() 89
xheight

in info_font() 73
in load_font() 68
keyword in info_textline() 93

xid
keyword in info_graphics() 183
keyword in info_image() 176
keyword in info_pdi_page() 202
suboption for pdfvt in begin_template_ext()
191

xrotate
in add_path_point() 151
in elliptical_arc() 146

xstep in begin_pattern_ext() 167
xsymheight, xsymwidth suboption for the

barcode option in create_field/group() 233
xvertline keyword in info_table() 119

Y
yhorline keyword in info_table() 119
yposition suboption for leader in fit/

info_textline() and add/create_textflow() 90
ystep in begin_pattern_ext() 167

Z
zoom

in add_nameddest() and suboption for
destination in create_action(),
create_annotation(), create_bookmark() and
begin/end_document() 240
in create_annotation() 225
in define_layer() 59

C Revision History 293

C Revision History
Date Changes

July, 27, 2022 > Updates for PDFlib 9.4.0

March 29, 2021 > Minor updates for PDFlib 9.3.1

July 14, 2020 > Updates for PDFlib 9.3.0

February 01, 2019 > Updates for PDFlib 9.2.0

February 01, 2018 > Updates for PDFlib 9.1.2

July 24, 2017 > Updates for PDFlib 9.1.1

December 15, 2016 > Updates for PDFlib 9.1.0

July 27, 2016 > Updates for PDFlib 9.0.7

November 23, 2015 > Updates for PDFlib 9.0.6

May 18, 2015 > Updates for PDFlib 9.0.5

December 16, 2014 > Updates for PDFlib 9.0.4

May 12, 2014 > Updates for PDFlib 9.0.3

December 17, 2013 > Updates for PDFlib 9.0.2

July 24, 2013 > Updates for PDFlib 9.0.1

March 11, 2013 > Updates for PDFlib 9.0.0

May 30, 2011 > Updates for PDFlib 8 VT Edition (internally 8.1.0)

May 30, 2011 > Various updates and corrections for PDFlib 8.0.3

December 09, 2010 > Various updates and corrections for PDFlib 8.0.2

September 22, 2010 > Various updates and corrections for PDFlib 8.0.1p7

April 13, 2010 > Various updates and corrections for PDFlib 8.0.1

December 04, 2009 > Updates for PDFlib 8.0.0

April 20, 2010 > Minor corrections for PDFlib 7.0.5

March 13, 2009 > Various updates and corrections for PDFlib 7.0.4

February 13, 2008 > Various updates and corrections for PDFlib 7.0.3

August 08, 2007 > Various updates and corrections for PDFlib 7.0.2

March 09, 2007 > Various updates and corrections for PDFlib 7.0.1

October 03, 2006 > Updates and restructuring for PDFlib 7.0.0; split the manual in Tutorial and API reference

February 15, 2007 > Various updates and corrections for PDFlib 6.0.4

February 21, 2006 > Various updates and corrections for PDFlib 6.0.3; added Ruby section

August 09, 2005 > Various updates and corrections for PDFlib 6.0.2

November 17, 2004 > Minor updates and corrections for PDFlib 6.0.1
> introduced new format for language-specific function prototypes in chapter 8
> added hypertext examples in chapter 3

294 C Revision History

June 18, 2004 > Major changes for PDFlib 6

January 21, 2004 > Minor additions and corrections for PDFlib 5.0.3

September 15, 2003 > Minor additions and corrections for PDFlib 5.0.2; added block specification

May 26, 2003 > Minor updates and corrections for PDFlib 5.0.1

March 26, 2003 > Major changes and rewrite for PDFlib 5.0.0

June 14, 2002 > Minor changes for PDFlib 4.0.3 and extensions for the .NET binding

January 26, 2002 > Minor changes for PDFlib 4.0.2 and extensions for the IBM eServer edition

May 17, 2001 > Minor changes for PDFlib 4.0.1

April 1, 2001 > Documents PDI and other features of PDFlib 4.0.0

February 5, 2001 > Documents the template and CMYK features in PDFlib 3.5.0

December 22, 2000 > ColdFusion documentation and additions for PDFlib 3.03; separate COM edition of the manual

August 8, 2000 > Delphi documentation and minor additions for PDFlib 3.02

July 1, 2000 > Additions and clarifications for PDFlib 3.01

Feb. 20, 2000 > Changes for PDFlib 3.0

Aug. 2, 1999 > Minor changes and additions for PDFlib 2.01

June 29, 1999 > Separate sections for the individual language bindings
> Extensions for PDFlib 2.0

Feb. 1, 1999 > Minor changes for PDFlib 1.0 (not publicly released)

Aug. 10, 1998 > Extensions for PDFlib 0.7 (only for a single customer)

July 8, 1998 > First attempt at describing PDFlib scripting support in PDFlib 0.6

Feb. 25, 1998 > Slightly expanded the manual to cover PDFlib 0.5

Sept. 22, 1997 > First public release of PDFlib 0.4 and this manual

Date Changes

Index 295

Index
Note that options and keywords are listed separately in Appendix B, page 277.

A
abbreviated tagging 268
action lists in option lists 12
All spot color name 159
Author field 262

B
Bézier curve 143
Boolean values in option lists 11

C
circles in option lists 16
CMYK color 13
cmyk keyword 14
color functions 155
color in option lists 14
Creator field 262
curves in option lists 16

D
DeviceN color 13
devicen keyword 15
document and page functions 41
document information fields 261
document scope 17
Dublin Core 261

F
fast Web view 43
float and integer values in option lists 12
floats in option lists 11
font scope 17
fontsize in option lists 12
function scopes 17

G
global options 25
glyph scope 17
graphics functions 133, 177
gray keyword 14

H
handles in option lists 12

I
ICC Profiles 157
ICC-based color 13
iccbased keyword 15
iccbasedcmyk keyword 15
iccbasedgray keyword 15
iccbasedrgb keyword 15
Ideographic Variation Sequences (IVS) 67
image functions 169
import functions for PDF (PDI) 193
info fields 261
inline option lists for Textflows 101
inner cell box for table cells 112
invisible text 77
IVS 67

K
Keywords field 262
keywords in option lists 11

L
Lab color 13
lab keyword 14
landscape mode 54
linearized PDF 43
lines in option lists 15
list values in option lists 8

M
metadata 263

N
Nchannel color spaces 161
nested option lists 8
None spot color name 159
numbers in option lists 11

O
object scope 17
option list syntax 7
outline text 77

P
page scope 17
page size formats 52
path painting and clipping 147

296 Index

path scope 17
pattern color 14
pattern keyword 15
pattern scope 17
pCOS functions 193, 205
PDF import functions (PDI) 193
PDF Object Creation API (POCA) 37
PDF_activate_item() 269
PDF_add_nameddest() 239
PDF_add_path_point() 149
PDF_add_portfolio_folder() 241, 242
PDF_add_table_cell() 111
PDF_add_textflow() 94
PDF_align() 141
PDF_arc() 144, 145
PDF_arcn() 144
PDF_begin_document() 41
PDF_begin_dpart() 272
PDF_begin_font() 83
PDF_begin_glyph_ext() 84
PDF_begin_item() 264
PDF_begin_layer() 61
PDF_begin_mc() 270
PDF_begin_page_ext() 52, 53
PDF_begin_pattern_ext 166
PDF_begin_template_ext() 184
PDF_circle() 144
PDF_clip() 148
PDF_close_font() 68
PDF_close_graphics() 180
PDF_close_image() 172
PDF_close_pdi_document() 196
PDF_close_pdi_page() 199
PDF_closepath_fill_stroke() 148
PDF_closepath_stroke() 147
PDF_closepath() 146
PDF_concat() 141
PDF_continue_text() 81
PDF_continue_text2() 81
PDF_convert_to_unicode() 23
PDF_create_3dview() 250
PDF_create_action() 234
PDF_create_annotation() 217
PDF_create_bookmark() 215
PDF_create_devicen() 160
PDF_create_field() 226
PDF_create_fieldgroup() 228
PDF_create_gstate() 137
PDF_create_pvf() 34
PDF_create_textflow() 100
PDF_curveto() 143
PDF_define_layer() 58
PDF_delete_dl() 33
PDF_delete_path() 154
PDF_delete_pvf() 35
PDF_delete_table() 120
PDF_delete_textflow() 110
PDF_delete() 33

PDF_draw_path() 151
PDF_ellipse() 145
PDF_elliptical_arc() 145
PDF_encoding_set_char() 86
PDF_end_document() 42
PDF_end_dpart() 273
PDF_end_font() 84
PDF_end_glyph() 85
PDF_end_item() 268
PDF_end_layer() 61
PDF_end_mc() 270
PDF_end_pattern() 167
PDF_end_template_ext() 186
PDF_endpath() 148
PDF_fill_graphicsblock() 214
PDF_fill_imageblock() 212
PDF_fill_pdfblock() 213
PDF_fill_stroke() 147
PDF_fill_textblock() 210
PDF_fill() 147
PDF_fit_graphics() 181
PDF_fit_image() 174
PDF_fit_pdi_page() 200
PDF_fit_table() 114
PDF_fit_textflow() 102
PDF_fit_textline() 87
PDF_get_apiname() 22
PDF_get_buffer() 51
PDF_get_errmsg() 22
PDF_get_errnum() 21
PDF_get_opaque() 22
PDF_get_option() 28
PDF_get_string() 30
PDF_info_font() 69
PDF_info_graphics() 182
PDF_info_image() 175
PDF_info_matchbox() 131
PDF_info_path() 153
PDF_info_pdi_page() 200
PDF_info_pvf() 35
PDF_info_table() 119
PDF_info_textflow() 108
PDF_info_textline() 91
PDF_lineto() 143
PDF_load_3ddata() 249
PDF_load_asset() 255
PDF_load_font() 63
PDF_load_graphics() 177
PDF_load_iccprofile() 157
PDF_load_image() 169
PDF_makespotcolor() 159
PDF_mc_point() 271
PDF_moveto() 143
PDF_new_dl() 32
PDF_new() 32
PDF_new2() 32
PDF_open_pdi_callback() 195
PDF_open_pdi_document() 193

Index 297

PDF_open_pdi_page() 197
PDF_pcos_get_number() 205
PDF_pcos_get_stream() 206
PDF_pcos_get_string() 205
PDF_poca_delete() 38
PDF_poca_insert() 39
PDF_poca_new() 37
PDF_poca_remove() 40
PDF_process_pdi() 203
PDF_rect() 146
PDF_restore() 137
PDF_resume_page() 56
PDF_rotate() 140
PDF_save() 136
PDF_scale() 140
PDF_set_graphics_option() 135
PDF_set_gstate() 139
PDF_set_info() 261
PDF_set_info2() 261
PDF_set_layer_dependency() 59
PDF_set_option() 25
PDF_set_text_option() 78
PDF_set_text_pos() 79
PDF_setcolor() 155
PDF_setfont() 79
PDF_setlinewidth() 136
PDF_setmatrix() 142
PDF_shading_pattern() 164
PDF_shading() 162
PDF_shfill() 164
PDF_show_xy() 80
PDF_show_xy2() 80
PDF_show() 80
PDF_show2() 80
PDF_skew() 141
PDF_stringwidth() 81
PDF_stringwidth2() 81
PDF_stroke() 147
PDF_suspend_page() 56
PDF_translate() 140
PDF/A or PDF/X output intent 203
PDFlib Personalization Server (PPS) 209
PDI (PDF import) 193
POCA (PDF Object Creation API) 37
polylines in option lists 15
PPS (PDFlib Personalization Server) 209

R
raster image functions 169

rectangles in option lists 16
RGB color 13
rgb keyword 14
rich media 255

S
scopes 17
separation color space 13
setup functions 32
skewing 141
spot color (separation color space) 13
spot keyword 14
spotname keyword 14
standard page sizes 52
strings in option lists 9
Subject field 262
subscript 77
superscript 77
SVG 177
syntax of option lists 7

T
table formatting 111
template scope 17
text appearance options 87
text filter options 87
text functions 63
Textflow: inline option lists 101
Title field 262
Trapped field 262

U
Unichar values in option lists 11
Unicode ranges in option lists 11
Unquoted string values in option lists 10

V
vector graphics functions 177

W
web-optimized PDF 43

X
XMP metadata 263

ABC

PDFlib GmbH
Franziska-Bilek-Weg 9
80339 München, Germany
www.pdflib.com
phone +49 • 89 • 452 33 84-0

Licensing contact
sales@pdflib.com

Support
support@pdflib.com (please include your license number)

	Contents
	1 Programming Concepts
	1.1 Option Lists
	1.1.1 Syntax
	1.1.2 Simple Data Types
	1.1.3 Fontsize and Action Data Types
	1.1.4 Color Data Type
	1.1.5 Geometric Data Types

	1.2 Function Scopes
	1.3 Logging

	2 General Functions
	2.1 Exception Handling
	2.2 Unicode Conversion
	2.3 Global Options
	2.4 Creating and Deleting PDFlib Objects
	2.5 PDFlib Virtual File System (PVF)
	2.6 PDF Object Creation API (POCA)

	3 Document and Page Functions
	3.1 Document Functions
	3.2 Fetching PDF Documents from Memory
	3.3 Page Functions
	3.4 Layers

	4 Font and Text Functions
	4.1 Font Handling
	4.2 Text Filter and Appearance Options
	4.3 Simple Text Output
	4.4 User-defined (Type 3) Fonts
	4.5 User-defined 8-Bit Encodings

	5 Text and Table Formatting
	5.1 Single-Line Text with Textlines
	5.2 Multi-Line Text with Textflows
	5.3 Table Formatting

	6 Object Fitting and Matchboxes
	6.1 Object Fitting
	6.2 Matchboxes

	7 Graphics Functions
	7.1 Graphics Appearance Options
	7.2 Graphics State
	7.3 Coordinate System Transformations
	7.4 Path Construction
	7.5 Painting and Clipping
	7.6 Path Objects

	8 Color Functions
	8.1 Setting Color
	8.2 ICC Profiles
	8.3 Spot Colors
	8.4 DeviceN Colors
	8.5 Shadings and Shading Patterns
	8.6 Tiling Patterns

	9 Image, SVG and Template Functions
	9.1 Images
	9.2 SVG Graphics
	9.3 Templates (Form XObjects)
	9.4 Common XObject Options

	10 PDF Import (PDI) and pCOS Functions
	10.1 Document Functions
	10.2 Page Functions
	10.3 Other PDI Processing
	10.4 pCOS Functions

	11 Block Filling Functions (PPS)
	11.1 Rectangle Options for Block Filling Functions
	11.2 Textline and Textflow Blocks
	11.3 Image Blocks
	11.4 PDF Blocks
	11.5 Graphics Blocks

	12 Interactive Features
	12.1 Bookmarks
	12.2 Annotations
	12.3 Form Fields
	12.4 Actions
	12.5 Named Destinations
	12.6 PDF Packages and Portfolios
	12.7 Geospatial Features

	13 Multimedia Features
	13.1 3D Artwork
	13.2 Asset and Rich Media Features

	14 Document Interchange
	14.1 Document Information Fields
	14.2 XMP Metadata
	14.3 Tagged PDF
	14.4 Marked Content
	14.5 Document Part Hierarchy

	A List of all API Functions
	B List of all Options and Keywords
	C Revision History
	Index

