
13.1 Installing the PDFlib Block Plugin 355

13 PPS and the PDFlib Block Plugin
The PDFlib Personalization Server (PPS) supports a template-driven PDF workflow for
variable data processing. Using the Block concept, imported pages can be populated
with variable amounts of single- or multi-line text, images, PDF pages or vector graph-
ics. This can be used to easily implement applications which require customized PDF
documents, for example:

> mail merge
> flexible direct mailings
> transactional and statement processing
> business card personalization

You can create and edit Blocks interactively with the PDFlib Block Plugin, convert exist-
ing PDF form fields to PDFlib Blocks with the form field conversion Plugin. Blocks can be
filled with PPS. The results of Block filling with PPS can be previewed in Acrobat since
the Block Plugin contains an integrated version of PPS.

Note Block processing requires the PDFlib Personalization Server (PPS). Although PPS is contained in
all PDFlib packages, you must purchase a license key for PPS; a PDFlib or PDFlib+PDI license key
is not sufficient. The PDFlib Block Plugin for Adobe Acrobat is required for creating Blocks in PDF
templates interactively.

Cookbook Code samples regarding variable data and Blocks can be found in the blocks category of the
PDFlib Cookbook.

13.1 Installing the PDFlib Block Plugin
The Block Plugin works with the following Acrobat versions (it doesn’t work with Adobe
Reader):

> Windows: Acrobat 8/9/X/XI/DC 32-bit
> Windows: Acrobat DC 64-bit
> macOS: Acrobat DC

Since Acrobat DC is available in 32-bit and 64-bit versions two different installers are
available. It is important to use the appropriate installer which matches the installed
Acrobat version.

Installing the PDFlib Block Plugin on Windows. To install the PDFlib Block Plugin and
the PDF form field conversion Plugin in Acrobat, the plugin files must be placed in a
subdirectory of the Acrobat plugin folder. This is done automatically by the plugin in-
staller, but can also be done manually. The plugin files are called Block.api and AcroForm-
Conversion.api.

The plugin folder for Acrobat 32-bit on 64-bit Windows typically looks as follows:

C:\Program Files (x86)\Adobe\Acrobat DC\Acrobat\plug_ins\PDFlib Block Plugin

The plugin folder for Acrobat 64-bit typically looks as follows:

C:\Program Files\Adobe\Acrobat DC\Acrobat\plug_ins\PDFlib Block Plugin

https://www.pdflib.com/pdflib-cookbook/blocks/

356 Chapter 13: PPS and the PDFlib Block Plugin

Installing the PDFlib Block Plugin on macOS. Proceed as follows to install the Plugin
for all users:

> Double-click the disk image to mount it. A folder with the Plugin files will be visible.
> Copy the Plugin folder to the following path in the system’s Library folder (create the

Plug-Ins folder if it doesn’t yet exist):

/Library/Application Support/Adobe/Acrobat/XXX/Plug-ins

Alternatively you can install the Plugin only for a single user as follows:
> Click the desktop to make sure you’re in the Finder, hold down the Option key, and

choose Go, Library to open the user’s Library folder.
> Copy the Plugin folder to the following path in the user’s Library folder (create the

Plug-Ins folder if it doesn’t yet exist):

/Users/<username>/Library/Application Support/Adobe/Acrobat/XXX/Plug-ins

Multi-lingual Interface. The PDFlib Block Plugin supports multiple languages in the
user interface. Depending on the application language of Acrobat, the Block Plugin
chooses its interface language automatically. Currently English, German and Japanese
interfaces are available. If Acrobat runs in any other language mode, the Block Plugin
uses the English interface.

Sandbox Protection for Acrobat DC on Windows. Acrobat DC 2020 introduced a new
security model called Sandbox Protections which can be activated via Preferences, Security
(Enhanced), Protected Mode and Protected View. If it is enabled various operations are re-
stricted and a yellow bar with a security message appears at the top of the document
window. More information about Sandbox Protections can be found at:

helpx.adobe.com/acrobat/using/whats-new/2020-august.html
www.adobe.com/devnet-docs/acrobatetk/tools/AppSec/sandboxprotections.html

If Sandboxing is enabled it affects the Preview feature of the PDFlib Block Plugin. Pro-
tected View by default grants access to Acrobat’s AppData directory, the temp directory
and several other directories, but not to arbitrary user directories. The Block Plugin can
only read from and write to directories which are included in the default directory list
of Protected View or which have been configured (whitelisted) in a policy file at the fol-
lowing location (for 32-bit and 64-bit versions of Acrobat):

C:\Program Files (x86)\Adobe\Acrobat DC\Acrobat\PDFlibBlockCustomPolicies.txt
C:\Program Files\Adobe\Acrobat DC\Acrobat\PDFlibBlockCustomPolicies.txt

By default the policy file grants access to the following directories, but more directory
names can be added by the Administrator:

; Protected Path Section
FILES_ALLOW_ANY = C:\Users\<username>*.*
FILES_ALLOW_ANY = C:\Users\Public*.*

If Protected Mode or Protected View is enabled and directories are used which are not
whitelisted, some features of the Block Plugin including Preview and Block import/ex-
port may fail.

https://helpx.adobe.com/acrobat/using/whats-new/2020-august.html
https://www.adobe.com/devnet-docs/acrobatetk/tools/AppSec/sandboxprotections.html
https://www.adobe.com/devnet-docs/acrobatetk/tools/AppSec/sandboxprotections.html

13.1 Installing the PDFlib Block Plugin 357

Troubleshooting. If the PDFlib Block Plugin doesn’t seem to work check the following:
> Make sure that in Edit, Preferences, [General...], General the box Use only certified plug-ins

is unchecked. The plugins are not loaded if Acrobat runs in Certified Mode.
> Some PDF forms created with Adobe Designer or Adobe Experience Manager may

prevent the Block Plugin as well as other Acrobat plugins from working properly
since they interfere with Acrobat’s internal security model. For this reason we sug-
gest to avoid Designer’s static PDF forms, and only use dynamic PDF forms as input
for the Block Plugin.

358 Chapter 13: PPS and the PDFlib Block Plugin

13.2 Overview of the Block Concept
13.2.1 Separation of Document Design and Program Code

PDFlib Blocks make it easy to place variable text, images, PDF pages or vector graphics
on imported pages. In contrast to simple PDF pages, pages with Blocks intrinsically car-
ry information about the required processing which will be performed later on the serv-
er side. The Block concept separates the following tasks:

> The designer creates the page layout and specifies the location of variable page ele-
ments along with relevant properties such as font size, color, or image scaling. After
creating the layout as a PDF document, the designer uses the PDFlib Block Plugin for
Acrobat to specify variable data Blocks and their associated properties.

> The programmer writes code to connect the information contained in PDFlib Blocks
on imported PDF pages with dynamic information, e.g., database fields. The pro-
grammer doesn’t need to know any details about a Block (whether it contains a
name or a ZIP code, the exact location on the page, its formatting, etc.) and is there-
fore independent from any layout changes. PPS will take care of all Block-related de-
tails based on the Block properties found in the file.

In other words, the code written by the programmer is »data-blind« – it is generic and
does not depend on the particulars of any Block. For example, the designer can move
the Block with name of the addressee in a mailing to a different location on the page, or
change the font size. The generic Block handling code doesn’t need to be changed, and
will generate correct output once the designer changed the Block properties with the
Acrobat plugin to use the first name instead of the last name.

As an intermediate step Block filling can be previewed in Acrobat to accelerate the
development and test cycles. Block previews are based on default data (e.g. a string or an
image file name) which is specified in the Block definitions.

13.2.2 Block Properties
The behavior of Blocks can be controlled with Block properties. Properties are assigned
to a Block with the Block Plugin.

Predefined Block properties. Blocks are defined as rectangles on the page which are as-
signed a name, a type, and an open set of properties which will later be processed by
PPS. The name is an arbitrary string which identifies the Block, such as firstname,
lastname, or zipcode. PPS supports different kinds of Blocks:

> Textline Blocks hold a single line of textual data which will be processed with the Text-
line output method in PPS.

> Textflow Blocks hold one or more lines of textual data. Multi-line text will be format-
ted with the Textflow formatter in PPS. Textflow Blocks can be linked so that one
Block holds the overflow text of the previous Block (see »Linking Textflow Blocks«,
page 379).

> Image Blocks hold a raster image. This is similar to placing a TIFF or JPEG file in a DTP
application.

> PDF Blocks hold arbitrary PDF contents imported from a page in another PDF docu-
ment. This is similar to placing a PDF page in a DTP application.

> Graphics Blocks hold vector graphics. This is similar to placing an SVG file in a layout
application.

13.2 Overview of the Block Concept 359

Blocks can carry a number of predefined properties depending on their type. Properties
can be created and modified with the Block Plugin (see Section 13.3.2, »Editing Block
Properties«, page 364). A full list of predefined Block properties can be found in Section
13.7, »Block Properties«, page 382. For example, a text Block can specify the font and size
of the text, an image or PDF Block can specify the scaling factor or rotation PPS offers
dedicated functions for processing the Block types, e.g. PDF_fill_textblock(). These func-
tions search a placed PDF page for a Block by its name, analyze its properties, and place
client-supplied data (single- or multi-line text, raster image, PDF page, or vector graph-
ics) on the new page according to the specified Block properties. The programmer can
override Block properties by specifying the corresponding options in the Block filling
functions.

Properties for default contents. Special Block properties can be defined which hold
the default contents of a Block, i.e. the text, image, PDF, or graphics contents that will be
placed in the Block if no variable data is supplied to the Block filling functions, or in sit-
uations where the Block contents are currently constant, but may change in the next
print run.

Default properties are also used by the Preview feature of the Block Plugin (see Sec-
tion 13.5, »Previewing Blocks in Acrobat«, page 372).

Custom Block properties. Predefined Block properties make it possible to quickly im-
plement variable data processing applications, but they are restricted to the set of prop-
erties which are internally known to PPS and can automatically be processed. In order to
provide more flexibility, the designer can also assign custom properties to a Block.
These can be used to extend the Block concept in order to match the requirements of
more advanced variable data processing applications.

There are no rules for custom properties since PPS will not process custom proper-
ties in any way, except making them available to the client. The client code can retrieve
the value of custom properties and process it as appropriate. Based on a custom proper-
ty of a Block the application may make layout-related or data-gathering decisions. For
example, a custom property for a scientific application could specify the number of dig-
its for numerical output, or a database field name may be defined as a custom Block
property for retrieving the data corresponding to this Block.

13.2.3 Why not use PDF Form Fields?
Experienced Acrobat users may ask why we implemented a new Block concept instead
of relying on the existing form field mechanism available in PDF. The primary distinc-
tion is that PDF form fields are optimized for interactive filling, while PDFlib Blocks are
targeted at automated filling. Applications which need both interactive and automated
filling can combine PDF forms and PDFlib Blocks with the form field conversion plugin
(see Section 13.4, »Converting PDF Form Fields to PDFlib Blocks«, page 369).

Although there are many parallels between both concepts, PDFlib Blocks offer sever-
al advantages over PDF form fields as detailed in Table 13.1.

360 Chapter 13: PPS and the PDFlib Block Plugin

Table 13.1 Comparison of PDF form fields and PDFlib Blocks

feature PDF form fields PDFlib Blocks

design objective for interactive use for automated filling

typographic features (beyond
choice of font and font size)

– kerning, word and character spacing, underline/
overline/strikeout

OpenType layout features – dozens of OpenType layout features, e.g. ligatures,
swash characters, oldstyle figures

complex script support limited shaping and bidirectional formatting, e.g. for Ara-
bic and Devanagari

font control font embedding font embedding and subsetting, encoding

text formatting controls left-, center-, right-aligned left-, center-, right-aligned, justified; various for-
matting algorithms and controls; inline options
can be used to control the appearance of text

change font or other text attributes
within text

– yes

merged result is integral part of PDF
page description

– yes

users can edit merged field contents yes no

extensible set of properties – yes (custom Block properties)

use image files for filling – BMP, CCITT, GIF, PNG, JPEG, JBIG2, JPEG 2000, TIFF

use vector graphics for filling – SVG

color support RGB grayscale, RGB, CMYK, Lab, spot color (HKS and Pan-
tone spot colors integrated in the Block Plugin),
DeviceN

PDF standards – PDF/A, PDF/X, PDF/VT, PDF/UA

graphics and text properties can be
overridden upon filling

– yes

transparent contents – yes

Text Blocks can be linked – yes

13.3 Editing Blocks with the Block Plugin 361

13.3 Editing Blocks with the Block Plugin
13.3.1 Creating Blocks

Activating the Block tool. The Block Plugin for creating PDFlib Blocks is similar to the
form tool in Acrobat. All Blocks on the page will be visible when the Block tool is active.
When another Acrobat tool is selected the Blocks will be hidden, but they are still pres-
ent. You can activate the Block tool in the following ways:

> By clicking the Block icon which you can locate as follows in Acrobat DC: click
Tools, Advanced Editing.

> Via the menu item PDFlib Blocks, PDFlib Block Tool.

Creating and modifying Blocks. When the Block tool is active you can drag the cross-
hair pointer to create a Block at the desired position on the page and with the desired
size. Blocks are always rectangular with edges parallel to the page edges (use the rotate
property for Block contents which are not parallel to the page edges). After dragging a
Block rectangle the Block properties dialog appears where you can edit the properties of
the Block (see Section 13.3.2, »Editing Block Properties«, page 364). The Block tool auto-
matically creates a Block name which can be changed in the properties dialog. Block
names must be unique on a page, but can be repeated on another page.

You can change the Block type in the top area to one of Textline, Textflow, Image, PDF,
or Graphics. Different colors are used for representing the Block types (see Figure 13.1).
The Block Properties dialog hierarchically organizes the properties in groups and sub-
groups depending on the Block type.

Note After you added Blocks or made changes to existing Blocks in a PDF, use Acrobat’s »Save as...«
command (as opposed to »Save«) to achieve smaller file sizes.

Selecting Blocks. Several Block operations, such as copying, moving, deleting, or edit-
ing Properties, work with one or more selected Blocks. You can select Blocks with the
Block tool as follows:

> To select a single Block simply click on it.
> To select multiple Blocks hold down the Shift key while clicking on the second and

subsequent Block.
> Press Ctrl-A (on Windows) or Cmd-A (on macOS) or Edit, Select All to select all Blocks

on a page.

The context menu. When one or more Blocks are selected you can open the context
menu to quickly access Block-related functions (which are also available in the PDFlib
Blocks menu). To open the context menu, click on the selected Block(s) with the right
mouse button on Windows, or Ctrl-click the Block(s) on macOS. For example, to delete a
Block, select it with the Block tool and press the Delete key, or use Edit, Delete in the con-
text menu.

If you right-click (or Ctrl-click on macOS) an area on the page where no Block is locat-
ed the context menu contains entries for creating a Block Preview and for configuring
the Preview feature.

362 Chapter 13: PPS and the PDFlib Block Plugin

Block size and position. Using the Block tool you can move one or more selected
Blocks to a different position. Hold down the Shift key while dragging a Block to restrain
the positioning to horizontal and vertical movements. This may be useful for exactly
aligning Blocks. When the pointer is located near a Block corner, the pointer will change
to a double arrow and you can resize the Block.

To adjust the position or size of multiple Blocks, select two or more Blocks and use
the Align, Center, Distribute, or Size commands from the PDFlib Blocks menu or the context
menu. The position of one or more Blocks can also be changed in small increments by
using the arrow keys.

Fig. 13.1
Visualization of Blocks

13.3 Editing Blocks with the Block Plugin 363

Alternatively, you can enter numerical Block coordinates in the properties dialog.
The origin of the coordinate system is in the upper left corner of the page. The coordi-
nates will be displayed in the unit which is currently selected in Acrobat:

> To change the display units in Acrobat DC proceed as follows: go to Edit, Preferences,
[General...], Units & Guides, Page & Ruler Units and choose one of Points, Inches, Milli-
meters, Picas, Centimeters.

> To display cursor coordinates use View, Show/Hide, Cursor Coordinates.

Note that the selected unit will only affect the Rect property, but not any other numeri-
cal properties (e.g. fontsize).

Using a grid to position Blocks. You can take advantage of Acrobat’s grid feature for
precisely positioning and resizing Blocks:

> Display the grid: View, Show/Hide, Rulers & Grids, Grid;
> Enable grid snapping: View, Show/Hide, Rulers & Grids, Snap to Grid;
> Change the grid: go to Edit, Preferences, [General...], Units & Guides. Here you can

change the spacing and position of the grid as well as the color of the grid lines.

Fig. 13.2
The Block properties dialog

364 Chapter 13: PPS and the PDFlib Block Plugin

If Snap to Grid is enabled the size and position of Blocks will be aligned with the config-
ured grid. Snap to Grid affects newly generated Blocks as well as existing Blocks which
are moved or resized with the Block tool.

Creating Blocks by selecting an image or graphic. As an alternative to manually drag-
ging Block rectangles you can use existing page contents to define the Block size. First,
make sure that the menu item PDFlib Blocks, Click Object to define Block is enabled. Now
you can use the Block tool to click on an image on the page in order to create a Block
with the same size and location as the image. You can also click on other graphical ob-
jects, and the Block tool will try to select the surrounding graphic (e.g., a logo). The Click
Object feature is intended as an aid for defining Blocks. If you want to reposition or re-
size the Block you can do so afterwards without any restriction. The Block will not be
locked to the image or graphics object which was used as a positioning aid.

The Click Object feature tries to recognize which vector graphics and images form a
logical element on the page. When some page content is clicked, its bounding box (the
surrounding rectangle) will be selected unless the object is white or very large. In the
next step other objects which are partially contained in the detected rectangle will be
added to the selected area, and so on. The final area will be used as the basis for the gen-
erated Block rectangle. The end result is that the Click Object feature will try to select
complete graphics, not only individual lines.

Automatically detect font properties. The Block Plugin can analyze the underlying
font which is present at the location where a Textline or Textflow Block is positioned,
and can automatically fill in the corresponding properties of the Block:

fontname, fontsize, fillcolor, charspacing, horizscaling, wordspacing,
textrendering, textrise

Since automatic detection of font properties can result in undesired behavior if the
background shall be ignored, it can be activated or deactivated using PDFlib Blocks, Detect
underlying font and color. By default this feature is turned off.

Locking Blocks. Blocks can be locked to protect them against accidentally moving, re-
sizing, or deleting. With the Block tool active, select the Block and choose Lock from its
context menu. While a Block is locked you cannot move, resize, or delete it, nor edit its
properties.

13.3.2 Editing Block Properties
When you create a new Block, double-click an existing one, or choose Properties from a
Block’s context menu, the properties dialog will appear where you can edit all settings
related to the selected Block (see Figure 13.2). As detailed in Section 13.7, »Block Proper-
ties«, page 382, there are several groups of properties available, subject to the Block type.
The Apply button will only be enabled if you changed one or more properties in the dia-
log. The Apply button will be inactive for locked Blocks.

Note Some properties may be inactive depending on the Block type and certain property settings.
For example, the property subgroup Ruler tabs for hortabmethod=ruler where you can edit
tabulator settings is enabled only if the hortabmethod property in the group Text formatting,
Tabs is set to ruler.

13.3 Editing Blocks with the Block Plugin 365

Note If you enter text for a Block property you may experience character replacements, e.g. straight
quotes are replaced by smart quotes. This substitution is done by the operation system and can
be disabled via »System Preferences«, »Keyboard«, »Text«, »Use smart quotes and dashes«.

To change a property’s value enter the desired number or string in the property’s input
area (e.g. linewidth), choose a value from a drop-down list (e.g. fitmethod, orientate), or se-
lect a font, color value or file name by clicking the »...« button at the right-hand side of
the dialog (e.g. backgroundcolor, defaultimage). For the fontname property you can either
choose from the list of fonts installed on the system or type a custom font name. Re-
gardless of the method for entering a font name, the font must be available on the sys-
tem where the Blocks will be filled with PPS.

Modified properties will in be displayed in bold face in the Block Properties dialog. If
any of the properties in a Block has been modified, the suffix (*) will be appended to the
displayed Block name. When you are done editing properties click the Apply button to
update the Block. The properties just defined will be stored in the PDF file as part of the
Block definition.

Stacked Blocks. Overlapping Blocks can be difficult to select since clicking an area will
always select the topmost Block. In this situation the Select Block entry in the context
menu can be used to select one of the Blocks by name. As soon as a Block has been se-
lected this way, the next action within its area will not affect other Blocks, but only the
selected one. For example, press Enter to edit the selected Block’s properties. This way
Block properties can easily be edited even for Blocks which are partially or completely
covered by other Blocks.

Using and restoring repeated values of Block properties. In order to save some
amount of typing and clicking, the Block tool remembers the property values which
have been entered into the previous Block’s properties dialog. These values will be re-
used when you create a new Block. Of course you can override these values with differ-
ent ones at any time.

Pressing the Reset all button in the properties dialog resets most Block properties to
their respective default values. The following items remain unmodified:

> the Name, Type, Rect, and Description properties;
> all custom properties.

Note Do not confuse the default values of predefined Block properties with the defaulttext,
defaultimage, defaultpdf, and defaultgraphics properties which hold placeholder data for
generating previews (see »Default Block contents«, page 372).

Editing multiple Blocks at once. Editing the properties of multiple Blocks at once is a
big time saver. You can select multiple Blocks as follows:

> Activate the Block tool via the menu item PDFlib Blocks, PDFlib Block Tool.
> Click on the first Block to select it. The first selected Block is the master Block. Shift-

click other Blocks to add them to the set of selected Blocks. Alternatively, click Edit,
Select All to select all Blocks on the current page.

> Double-click on any of the Blocks to open the Block Properties dialog. The Block
where you double-click will be the new master Block.

> Alternatively, you can click on a single Block to designate it as master Block, and then
press the Enter key to open the Block Properties dialog.

366 Chapter 13: PPS and the PDFlib Block Plugin

The Properties dialog displays only the subset of properties which apply to all selected
Blocks. The dialog is populated with property values taken from the master Block. Now
you can apply properties to all selected Blocks as follows:

> If the checkbox Apply all properties of the master Block is unchecked: upon clicking
Apply only the properties changed manually in the dialog (highlighted in black) are
copied to all selected Blocks.

> If the checkbox Apply all properties of the master Block is checked: upon pressing Apply
all current properties of the master Block as well as all properties changed manually
in the dialog are copied to all selected Blocks. This can be used to copy all properties
from a particular Block to one or more other Blocks.

The following predefined properties as well as custom properties can not be shared, i.e.
they can not be edited for multiple Blocks at once:

Name, Description, Subtype, Type, Rect, Status

13.3.3 Copying Blocks between Pages and Documents
The Block Plugin offers several methods for moving and copying Blocks within the cur-
rent page, the current document, or between documents:

> move or copy Blocks by dragging them with the mouse, or pasting Blocks to another
page or open document

> duplicate Blocks on one or more pages of the same document using standard copy/
paste operations

> export Blocks to a new file (with empty pages) or to an existing document (apply the
Blocks to existing pages)

> import Blocks from another document

In order to update the page contents while maintaining Block definitions you can re-
place the underlying page(s) while keeping the Blocks. Use Tools, Organize Pages, Replace
for this purpose.

Moving and copying Blocks. You can relocate Blocks or create copies of Blocks by se-
lecting one or more Blocks and dragging them to a new location while pressing the Ctrl
key (on Windows) or Alt key (on macOS). The mouse cursor will change while this key is
pressed. A copied Block has the same properties as the original Block, with the exception
of its name and position which will automatically be adjusted in the new Block.

You can also use copy/paste to copy Blocks to another location on the same page, to
another page in the same document, or to another document which is currently open in
Acrobat:

> Activate the Block tool and select the Blocks you want to copy.
> Use Ctrl-C (on Windows) or Cmd-C (on macOS) or Edit, Copy to copy the selected

Blocks to the clipboard.
> Navigate to the target page (if necessary).
> Make sure that the Block Tool is active, and use Ctrl-V (on Windows) or Cmd-V (on

macOS) or Edit, Paste to paste the Blocks from the clipboard to the current page and
document.

Duplicating Blocks on other pages. You can create duplicates of one or more Blocks on
an arbitrary number of pages in the current document simultaneously:

> Activate the Block tool and select the Blocks you want to duplicate.

13.3 Editing Blocks with the Block Plugin 367

> Choose Import and Export, Duplicate... from the PDFlib Blocks menu or the context
menu.

> Choose which Blocks to duplicate (Selected Blocks or All Blocks on this Page) and the
range of target pages to which you want to duplicate the selected Blocks.

Exporting and importing Blocks. Using the export/import feature for Blocks it is possi-
ble to share the Block definitions on a single page or all Blocks in a document among
multiple PDF files. This is useful for updating the page contents while maintaining ex-
isting Block definitions. To export Block definitions to a separate file proceed as follows:

> Activate the Block tool and select the Blocks you want to export.
> Choose Import and Export, Export... from the PDFlib Blocks menu or the context menu.

Enter the page range and a file name of the new PDF with the Block definitions.

You can import Block definitions via PDFlib Blocks, Import and Export, Import... . Upon im-
porting Blocks you can choose whether to apply the imported Blocks to all pages in the
document or only to a page range. If more than one page is selected the Block defini-
tions will be copied unmodified to the pages. If there are more pages in the target range
than in the imported Block definition file you can use the Repeate Template checkbox. If
it is enabled the sequence of Blocks in the imported file will be repeated in the current
document until the end of the document is reached.

Copying Blocks to another document upon export. When exporting Blocks you can
immediately apply them to the pages in another document, thereby propagating the
Blocks from one document to another. In order to do so choose an existing document to
export the Blocks to. If you activate the checkbox Delete existing Blocks all Blocks which
may be present in the target document will be deleted before copying the new Blocks
into the document.

13.3.4 Customizing the Block Plugin User Interface with XML
Some aspects of the Block Plugin user interface are stored/reloaded upon each Acrobat
session, and can be controlled via an XML configuration file. A sample configuration file
factory settings.xml is included in the distribution. If the configuration has been modi-
fied the new settings are stored in user settings.xml. The modified configuration will be
loaded every time Acrobat is started and written when Acrobat is closed. The configura-
tion file is stored in a location similar to the following (the names of system directories
may be localized; replace DC with another Acrobat track name as appropriate):

Windows: C:\Users\<user>\AppData\Local\Adobe\Acrobat\DC\PDFlib\Block Plugin 5
macOS: /Users\<user>/Library/Application Support/Adobe/Acrobat/DC/PDFlib/Block Plugin 5

The following XML elements can be used to modify the configuration manually:
> The element /Block_Plugin/MainDialog/CloseOnApply controls the initial status of the

Close dialog on apply checkbox in the Block properties dialog. This checkbox deter-
mines whether the Block Properties dialog will be kept open after creating a Block or
modifying Block properties.

> The element /Block_Plugin/MainDialog/ApplyAllProps controls the initial status of the
Apply all properties of the mastesr Block checkbox in the Block properties dialog. This
checkbox determines whether all properties of the master Block are copied to multi-
ple selected Blocks or only those properties which have been modified in the dialog.

368 Chapter 13: PPS and the PDFlib Block Plugin

> The element /Block_Plugin/FontDialog/ShowBaseFonts controls whether the base 14
fonts will be displayed in the font list of the Block Properties dialog (property group
Appearance, property fontname) in addition to the fonts installed on the system.

> The element /Block_Plugin/Command/ControlByClick controls the initial status of the
menu item PDFlib Blocks, Click object to define Block.

> The element /Block_Plugin/Command/DetectFonts controls the initial status of the
menu item PDFlib Blocks, Detect underlying font and color.

> The element /Block_Plugin/Command/KeyAccelerator with the possible values control
(which designates the Ctrl key on Windows and the Command key on macOS), shift
for the Shift key, control+shift or none specifies the accelerator key for the following
keyboard shortcuts:

A (select all), C (copy), I (Block Properties dialog), V (paste), X (cut)

The change will be effective upon the next start of Acrobat since keyboard shortcuts
cannot be changed at runtime. If this entry is absent, no accelerators are available.
The default is control.

> The element Configuration/Preferences/PreviewStatusMessage controls whether a sta-
tus message dialog (e.g. »10 Block(s) processed: ...«) is shown after each Preview opera-
tion.

13.4 Converting PDF Form Fields to PDFlib Blocks 369

13.4 Converting PDF Form Fields to PDFlib Blocks
As an alternative to creating PDFlib Blocks manually, you can automatically convert
PDF form fields to Blocks. This is especially convenient if you have complex PDF forms
which you want to fill automatically with PPS or need to convert a large number of ex-
isting PDF forms for automated filling. In order to convert all form fields on a page to
PDFlib Blocks choose PDFlib Blocks, Convert Form Fields, Current Page. To convert all form
fields in a document choose All Pages instead. Finally, you can convert only selected
form fields (choose Acrobat’s Select Object Tool via Tools, Rich Media) to select one or more
form fields) with Selected Form Fields.

Form field conversion details. Automatic form field conversion will convert form
fields of the types selected in the PDFlib Blocks, Convert Form Fields, Conversion Options...
dialog to Blocks of type Textline or Textflow. By default all form field types will be con-
verted. Attributes of the converted fields will be transformed to the corresponding
Block properties according to Table 13.3.

Multiple form fields with the same name. Multiple form fields on the same page are
allowed to have the same name, while Block names must be unique on a page. When
converting form fields to Blocks a numerical suffix will therefore be added to the name
of generated Blocks in order to create unique Block names (see also »Associating form
fields with corresponding Blocks«, page 369).

Note that due to a problem in Acrobat the field attributes of form fields with the
same names are not reported correctly. If multiple fields have the same name, but dif-
ferent attributes these differences will not be reflected in the generated Blocks. The Con-
version process will issue a warning in this case and provide the names of affected form
fields. In this case you should carefully check the properties of the generated Blocks.

Associating form fields with corresponding Blocks. Since the form field names will be
modified when converting multiple fields with the same name (e.g. radio buttons) it is
difficult to reliably identify the Block which corresponds to a particular form field. This
is especially important when using an FDF or XFDF file as the source for filling Blocks
such that the final result resembles the filled form.

In order to solve this problem the AcroFormConversion plugin records details about
the original form field as custom properties when creating the corresponding Block. Ta-
ble 13.2 lists the custom properties which can be used to reliably identify the Blocks; all
properties have type string.

Table 13.2 Custom properties for identifying the original form field corresponding to the Block

custom property meaning

PDFlib:field:name Fully qualified name of the form field

PDFlib:field:pagenumber Page number (as a string) in the original document where the form field was located

PDFlib:field:type Type of the form field; one of pushbutton, checkbox, radiobutton, listbox, combobox,
textfield, signature

PDFlib:field:value (Only for type=checkbox) Export value of the form field

370 Chapter 13: PPS and the PDFlib Block Plugin

Table 13.3 Conversion of PDF form fields to PDFlib Blocks

PDF form field attribute... ...will be converted to the PDFlib Block property

all fields

Position Rect

Name Name

Tooltip Description

Appearance, Text, Font fontname

Appearance, Text, Font Size fontsize; auto font size will be converted to a fixed font size of 2/3 of the Block
height, and fitmethod will be set to auto. For multi-line fields/Blocks this combi-
nation will automatically result in a suitable font size which may be smaller than
the initial value of 2/3 of the Block height.

Appearance, Text, Text Color strokecolor and fillcolor

Appearance, Border, Border Color bordercolor

Appearance, Border, Fill Color backgroundcolor

Appearance, Border, Line Thickness linewidth: Thin=1, Medium=2, Thick=3

General, Common Properties, Form
Field

Status:
Visible=active
Hidden=ignore
Visible but doesn’t print=ignore
Hidden but printable=active

General, Common Properties, Orien-
tation

orientate: 0=north, 90=west, 180=south, 270=east

text fields

Options, Default Value defaulttext

Options, Alignment position:
Left={left center}
Center={center center}
Right={right center}

Options, Multi-line checked creates Textflow Block
unchecked creates a Textline Block

radio buttons and check boxes

If »Check box/Button is checked by
default« is selected: Options, Check
Box Style or Options, Button Style

defaulttext:
Check=4
Circle=l
Cross=8
Diamond=u
Square=n
Star=H
(these characters represent the respective symbols in the ZapfDingbats font)

list boxes and combo boxes

Options, Selected (default) item defaulttext

buttons

Options, Icon and Label, Label defaulttext

13.4 Converting PDF Form Fields to PDFlib Blocks 371

Binding Blocks to the corresponding form fields. In order to keep PDF form fields and
the generated PDFlib Blocks synchronized, the generated Blocks can be bound to the
corresponding form fields. This means that the plugin will internally maintain the rela-
tionship of form fields and Blocks. When the conversion process is activated again,
bound Blocks will be updated to reflect the attributes of the corresponding PDF form
fields. Bound Blocks are useful to avoid duplicate work: when a form is updated for in-
teractive use, the corresponding Blocks can automatically be updated, too.

If you do not want to keep the converted form fields after Blocks have been generat-
ed you can choose the option Delete converted Form Fields in the PDFlib Blocks, Convert
Form Fields, Conversion Options... dialog. This option will permanently remove the form
fields after the conversion process. Any actions (e.g., JavaScript) associated with the af-
fected fields will also be removed from the document.

Batch conversion. If you have many PDF documents with form fields that you want to
convert to PDFlib Blocks you can automatically process an arbitrary number of docu-
ments using the batch conversion feature. The batch processing dialog is available via
PDFlib Blocks, Convert Form Fields, Batch conversion...:

> The input files can be selected individually; alternatively the full contents of a folder
can be processed.

> The output files can be written to the same folder where the input files are, or to a
different folder. The output files can receive a prefix to their name in order to distin-
guish them from the input files.

> When processing a large number of documents it is recommended to specify a log
file. After the conversion it will contain a full list of processed files as well as details
regarding the result of each conversion along with possible error messages.

During the conversion process the converted PDF documents will be visible in Acrobat,
but you cannot use Acrobat’s menu functions or tools until the conversion is finished.

372 Chapter 13: PPS and the PDFlib Block Plugin

13.5 Previewing Blocks in Acrobat
Note You can try the Preview feature with the block_template.pdf document in the PDFlib distribu-

tion. The required resources (e.g. font and image) are also included in the PDFlib distribution.

PDFlib Blocks will be processed by PPS where the Block filling process can be customized
regarding the data sources (e.g. text from a database, image files on disk) as well as visu-
al and interactive aspects of the generated documents. This process is detailed in Sec-
tion 13.6, »Filling Blocks with PPS«, page 377.

However, the Block Plugin contains an integrated version of PPS which can be used
to generate Preview versions of the filled Blocks interactively in Acrobat without any
programming. Although this Preview feature cannot offer the same flexibility as cus-
tom programming, it provides a quick overview of Block filling results. The Block Pre-
view can be used for improving the position and size of Blocks as well as for checking
the Block properties (e.g. font name and size). You can change the Blocks and create a
new Preview until you are satisfied with the results shown in the Preview. Previews can
be generated for the current page or the whole document.

The Preview will always be shown in a new PDF document. The original document
(which contains the Blocks) will not be modified by generating a Preview. You can save
or discard the generated Preview documents according to your requirements.

Default Block contents. Since the server-side data sources (e.g. a database) for the text,
image, vector graphics or PDF contents of a Block are not available in the Plugin, the Pre-
view feature always uses the Block’s default contents, i.e. the values specified in the
defaulttext, defaultimage, defaultpdf, or defaultgraphics properties. Usually, a sample data
set will be used as default data which is representative for the real Block contents used
with PPS. Blocks without any default contents are ignored when generating the Preview,
as well as Blocks with Status=ignoredefault.

The default properties are empty for new Blocks. Before using the Preview feature
you must fill the defaulttext, defaultimage, defaultpdf, or defaultgraphics properties (de-
pending on the Block type) in the Default contents property group, or supply suitable
values for the options of the same name in the Advanced PPS options... dialog.

Note Entering default text for symbolic fonts can be a bit tricky; see »Using symbolic fonts for de-
fault text«, page 375, for details.

Generating Block Previews. You can create Block Previews with one of the following
methods:

> By clicking the PDFlib Block Preview icon which you can locate as follows in
Acrobat DC: click Tools, Advanced Editing.

> Via the menu item PDFlib Blocks, Preview, Generate Preview.
> If the Block tool is active you can right-click outside of any Block to bring up a con-

text menu with the entries Generate Preview and Preview Configuration.

The Previews will be created based on the PDF file on disk. Any changes that you may
have applied in Acrobat will only be reflected in the Preview if the Block PDF has been
saved to disk using File, Save or File, Save As... . You can identify modified Blocks by the as-
terisk after the Block name. The Preview feature can be configured to save the Block PDF
automatically before creating a Preview. This way you can make sure that interactive
changes will immediately be reflected in the Preview.

13.5 Previewing Blocks in Acrobat 373

Configuring the Preview. Several aspects of Block Preview creation and the underlying
PPS operation can be configured via PDFlib Blocks, Preview, Preview Configuration...:

> Preview for the current page or the full document;
> Output directory for the generated Preview documents;
> Automatically save the Block PDF before creating the Preview;
> Add Block info layers and annotations;
> Copy Blocks to the generated output;
> Clone PDF/A, PDF/UA or PDF/X status of Block PDF: since these standards restrict the use

of layers and annotations the Block info layers and annotations option is mutually ex-
clusive with this option.

> Copy Blocks to Preview File allows you copy the PDFlib Blocks to the generated Preview
upon filling. All Blocks will be copied, regardless of whether or not they could suc-
cessfully be filled.

Fig. 13.3 Preview PDF for the document shown in Figure 13.1. It contains Block info layers and annotations

374 Chapter 13: PPS and the PDFlib Block Plugin

> The Advanced PPS options dialog can be used to specify additional option lists for PPS
functions according to the PPS API. For example, the searchpath option for PDF_set_
option() can be used to specify a directory where fonts or images for Block filling are
located. It is recommended to specify advanced options in cooperation with the de-
veloper of the PPS code.

Block ordering. When the document is stored with »Save as...« in Acrobat the Blocks
are sorted in alphabetical order according to the Block name. This is also the ordering in
which Blocks are processed by Preview and reported by pCOS. However, applications
will typically fill Blocks based on their name (as opposed to the storage order on file), so
the ordering in the PDF document is usually not relevant.

Information provided with the Preview. The generated Preview documents contain
the original page contents (the background), the filled Blocks, and optionally various
other pieces of information. This information can be useful for checking and improving
Blocks and PPS configuration. The following items will be created for each active Block
with default contents:

> Error markers: Blocks which could not be filled successfully are visualized by a
crossed-out rectangle so that they can easily be identified. Error markers will always
be created if a Block couldn’t be processed.

> Bookmarks: The processed Blocks will be summarized in bookmarks which are struc-
tured according to the page number, the Block type, and possible errors. Bookmarks
can be displayed via View, Show/Hide, Navigation Panes, Bookmarks (Acrobat X/XI/DC).
Bookmarks will always be created.

> Annotations: For each processed Block an annotation will be created on the page in
addition to the actual Block contents. The annotation rectangle visualizes the origi-
nal Block boundary (depending on the default contents and filling mode this may
differ from the boundary of the Block contents). The annotation contains the name
of the Block and an error message if the Block couldn’t be filled. Annotations are gen-
erated by default, but can be disabled in the Preview configuration. Since the use of
annotations is restricted in the PDF/A and PDF/X standards, annotations are not cre-
ated if the Clone PDF/A, PDF/UA or PDF/X status of Block PDF option is enabled.

Fig. 13.4 Block Preview configuration

13.5 Previewing Blocks in Acrobat 375

> Layers: The page contents will be placed on layers to facilitate analysis and debug-
ging. A separate layer will be created for the page background (i.e. the contents of the
original page), each Block type, error Blocks which couldn’t be filled, and the annota-
tions with Block information. If a layer remains empty (e.g. no errors occurred) it will
not be created. The layer list can be displayed via View, Navigation Panels, Layers. By
default, all layers on the page will be displayed. In order to hide the contents of a lay-
er click on the eye symbol to the left of the layer name. Layer creation can be disabled
in the Preview configuration. Since the use of layers is restricted in the standards
PDF/A-1 and PDF/X-3, layers are not created if the Clone PDF/A, PDF/UA or PDF/X status
of Block PDF option is enabled.

Cloning PDF/A, PDF/UA or PDF/X status. The Clone PDF/A , PDF/UA or PDF/X status of
Block PDF configuration is useful when PDF output according to one of these standards
must be created. Clone mode can be enabled if the input conforms to one of the follow-
ing standards:

PDF/A-1a:2005, PDF/A-1b:2005
PDF/A-2a, PDF/A-2b, PDF/A-2u
PDF/A-3a, PDF/A-3b, PDF/A-3u

PDF/UA-1

PDF/X-3:2003
PDF/X-4, PDF/X-4p
PDF/X-5n

When Previews are created in clone mode, PPS duplicates the following aspects of the
Block PDF in the generated Preview:

> the PDF standard identification;
> output intent condition;
> page sizes including all page boxes;
> Tagged PDF: document language (if present);
> XMP document metadata.

When cloning standard-conforming PDF documents all Block filling operations must
conform to the respective standard. For example, if no output intent is present RGB im-
ages without ICC profile can not be used. Similarly, all used fonts must be embedded.
The full list of requirements can be found in Section 12.3, »PDF/A for Archiving«, page
319, and Section 12.4, »PDF/X for Print Production«, page 331. If a Block filling operation
in PDF/A or PDF/X cloning mode would violate the selected standard (e.g. because a de-
fault image uses RGB color space, but the document does not contain a suitable output
intent) an error message pops up and no Preview will be generated. This way users can
catch potential standard violations very early in the workflow.

Using symbolic fonts for default text. Two methods are available to supply default
text for Blocks with symbolic fonts:

> Working with 8-bit legacy codes, e.g. as shown in the Windows character map appli-
cation: supply the 8-bit codes for the defaulttext either by entering the correspond-
ing 8-bit character literally (e.g. by copy/pasting from the Windows character map)
or as a numerical escape sequence. In this case you must keep the default value of
the charref property in the Text preparation property group as false and can not work

376 Chapter 13: PPS and the PDFlib Block Plugin

with character references. For example, the following default text will produce the
»smiley« glyph from the symbolic Wingdings font if charref=false:

J
\x4A
\112

> Working with the Unicode values or glyph names used in the font: set the charref
property in the Text preparation property group to true and supply character refer-
ences or glyph name references for the symbols (see Section 5.6.2, »Character Refer-
ences«, page 119). For example, the following default text will produce the »smiley«
glyph from the symbolic Wingdings font if charref=true:


&.smileface;

Keep in mind that with both methods an alternate representation will be visible instead
of the actual symbolic glyphs in the Block properties dialog.

13.6 Filling Blocks with PPS 377

13.6 Filling Blocks with PPS
In order to fill Blocks with PPS you must first place the page containing the Blocks on
the output page with the PDF_fit_pdi_page() function. After placing the page its Blocks
can be filled with the PDF_fill_*block() functions.

Simple example: add variable text to a template. Adding dynamic text to a PDF tem-
plate is a very common task. The following code fragment opens a page in an input PDF
document (the template or Block container), places it on the output page, and fills some
variable text into a text Block called firstname:

doc = p.open_pdi_document(filename, "");
if (doc == -1)

throw new Exception("Error: " + p.get_errmsg());

page = p.open_pdi_page(doc, pageno, "");
if (page == -1)

throw new Exception("Error: " + p.get_errmsg());

p.begin_page_ext(width, height, "");
/* Place the imported page */
p.fit_pdi_page(page, 0.0, 0.0, "");

/* Fill a single Block on the placed page */
p.fill_textblock(page, "firstname", "Serge", "encoding=winansi");

p.close_pdi_page(page);
p.end_page_ext("");
p.close_pdi_document(doc);

Cookbook A full code sample can be found in the Cookbook topic blocks/starter_block.

Overriding Block properties. In certain situations the programmer wants to use only
some of the properties provided in a Block definition, but override other properties
with custom values. This can be useful in various situations:

> Business logic may decide to enforce certain overrides.
> The scaling factor for an image or PDF page will be calculated by the application in-

stead of taken from the Block definition.
> Change the Block coordinates programmatically, for example when generating an

invoice with a variable number of data items.
> Individual spot color names could be supplied in order to match customer require-

ments in a print shop application.

Property overrides can be achieved by supplying property names and the correspond-
ing values in the option list of the PDF_fill_*block() functions, e.g.

p.fill_textblock(page, "firstname", "Serge", "fontsize=12");

This will override the Block’s internal fontsize property with the supplied value 12. Al-
most all property names can be used as options.

Property overrides apply only to the respective function calls; they will not be stored
in the Block definition.

https://www.pdflib.com/pdflib-cookbook/blocks/starter_block/

378 Chapter 13: PPS and the PDFlib Block Plugin

Moving Textflow Blocks while filling. The fixed size of a Textflow Block may not
match its varying textual contents. If there is only few text a gap between two Blocks
may arise; if there is too much text it may not fit into the Block rectangle. In this situa-
tion you can query the results of Textflow fitting to adjust the position of the next
Block:

> The default fitmethod is auto, i.e. the text is forced to fit into the Block rectangle. To
allow excess text to overflow the Block you must set the fitmethod to nofit. This can
be specified in the Block properties in the Block template at design time or by sup-
plying the fitmethod option to PDF_fill_textblock().

> Supply the dummy option textflowhandle=-1 (in PHP: textflowhandle=0) to PDF_fill_
textblock() so that this method returns a Textflow handle for the contents of the
Block.

> The returned Textflow handle is supplied to PDF_info_textflow() to query the end po-
sition of the text using the keyword textendy.

> Query the Block’s lower vertical position with PDF_pcos_get_number() and the pCOS
path pages[..]/blocks/<blockname>/Rect[1].

> Calculate the difference between both values. If this offset is positive the Textflow
didn’t completely fill the Block; if it is negative the Textflow overflowed the Block. In
both cases you can move the next Block up or down by this offset. This can be
achieved with the refpoint option of PDF_fill_textblock() which overrides the Rect
property. Since this option requires absolute coordinates you must query the verti-
cal position of the Block (see previous step) and supply the sum of the original posi-
tion and the offset to the refpoint option.

> You can apply this method to an arbitrary number of Textflow Blocks by accumulat-
ing the per-Block offsets. Depending on the contents each Block will move successive
Blocks up or down by an appropriate amount.

Cookbook A full code sample can be found in the starter_block sample.

Placing the imported page on top of the filled Blocks. The imported page must have
been placed on the output page before using any of the Block filling functions. This
means that the original page will usually be placed below the Block contents. However,
in some situations it may be desirable to place the original page on top of the filled
Blocks. This can be achieved by placing the page once with the blind option of PDF_fit_
pdi_page() in order to make its Blocks and their position known to PPS, and place it
again after filling the Blocks in order to actually show the page contents:

/* Place the page in blind mode to prepare the Blocks, without the page being visible */
p.fit_pdi_page(page, 0.0, 0.0, "blind");

/* Fill the Blocks */
p.fill_textblock(page, "firstname", "Serge", "encoding=winansi");
/* ... fill more Blocks ... */

/* Place the page again, this time visible */
p.fit_pdi_page(page, 0.0, 0.0, "");

Cookbook A full code sample can be found in the Cookbook topic blocks/block_below_contents.

Ignoring the container page when filling Blocks. Imported Blocks can also be useful as
placeholders without any reference to the underlying contents of the Block’s page. You

https://www.pdflib.com/pdflib-cookbook/blocks/starter_block/
https://www.pdflib.com/pdflib-cookbook/blocks/block_below_contents/

13.6 Filling Blocks with PPS 379

can place a container page with Blocks in blind mode on one or more pages, i.e. with the
blind option of PDF_fit_pdi_page(), and subsequently fill its Blocks. This way you can
take advantage of the Block and its properties without placing the container page on
the output page, and can duplicate Blocks on multiple pages (or even on the same out-
put page).

Cookbook A full code sample can be found in the Cookbook topic blocks/duplicate_block.

Linking Textflow Blocks. Textflow Blocks can be linked so that one Block holds the
overflow text of a previous Block. For example, if you have long variable text which may
need to be continued on another page you can link two Blocks and fill the remaining
text of the first Block into the second Block.

PPS internally creates a Textflow from the text provided to PDF_fill_textblock() and
the Block properties. For unlinked Blocks this Textflow is placed in the Block and the
corresponding Textflow handle is deleted at the end of the call; overflow text is lost in
this case.

With linked Textflow Blocks the overflow text of the first Block can be filled into the
next Block. The remainder of the first Textflow is used as Block contents instead of cre-
ating a new Textflow. Linking Textflow Blocks works as follows:

> In the first call to PDF_fill_textblock() within a chain of linked Textflow Blocks the val-
ue -1 (in PHP: 0) must be supplied for the textflowhandle option. The Textflow handle
created internally is returned by PDF_fill_textblock(), and must be stored by the appli-
cation.

> In the next call to PDF_fill_textblock() the Textflow handle returned in the previous
step can be supplied to the textflowhandle option (the text supplied in the text pa-
rameter is ignored in this case, and should be empty). The Block is filled with the re-
mainder of the Textflow.

> This process can be repeated with more Textflow Blocks.
> The returned Textflow handle can be supplied to PDF_info_textflow() in order to de-

termine the results of Block filling, e.g. the end condition or the end position of the
text.

Note that the fitmethod property should be set to clip (this is the default anyway if text-
flowhandle is supplied). The basic code fragment for linking Textflow Blocks looks as fol-
lows:

p.fit_pdi_page(page, 0.0, 0.0, "");
tf = -1;

for (i = 0; i < blockcount; i++)
{

String optlist = "encoding=winansi textflowhandle=" + tf;
int reason;
tf = p.fill_textblock(page, blocknames[i], text, optlist);
text = null;

if (tf == -1)
break;

/* check result of most recent call to fit_textflow() */
reason = (int) p.info_textflow(tf, "returnreason");
result = p.get_string(reason, "");

https://www.pdflib.com/pdflib-cookbook/blocks/duplicate_block/

380 Chapter 13: PPS and the PDFlib Block Plugin

/* end loop if all text was placed */
if (result.equals("_stop"))
{

p.delete_textflow(tf);
break;

}
}

Cookbook A full code sample can be found in the Cookbook topic blocks/linked_textblocks.

Block filling order. The Block functions PDF_fill_*block() process properties and Block
contents in the following order:

> Background: if the backgroundcolor property is present and contains a color space
keyword different from None, the Block area will be filled with the specified color.

> Border: if the bordercolor property is present and contains a color space keyword dif-
ferent from None, the Block border will be stroked with the specified color and line-
width.

> Contents: the supplied Block contents and all other properties except bordercolor and
linewidth will be processed.

> Textline and Textflow Blocks: if neither text nor default text has been supplied,
there won’t be any output at all, not even background color or Block border.

Nested Blocks. Before Blocks can be filled the page containing the Blocks must have
been placed on the output page before (since otherwise PPS wouldn’t know the location
of the Blocks after scaling, rotating, and translating the page). If the page only serves as
a Block container without bringing static content to the new page you can place the im-
ported page with the blind option.

For successful Block filling it doesn’t matter how the imported page was placed on
the output page:

> The page can be placed directly with PDF_fit_pdi_page().
> The page can be placed indirectly in a table cell with PDF_fit_table().
> The page can be placed as contents of a another PDF Block with PDF_fill_pdfblock().

The third method, i.e. filling a PDF Block with another page containing Blocks, allows
nested Block containers. This allows simple implementations of interesting use cases.
For example, you can implement both imposition and personalization with a two-step
Block filling process:

> The first-level Block container page contains several large PDF Blocks which indicate
the major areas on the paper to be printed on. The arrangement of PDF Blocks re-
flects the intended post-processing of the paper (e.g. folding or cutting).

> Each of the first-level PDF Blocks is then filled with a second-level container PDF
page which contains Text, Image, PDF, or Graphics Blocks to be filled with variable
text for personalization.

With this method Block containers can be nested. Although Block nesting works to an
arbitrary level, a nesting level of three or more will only rarely be required.

The second-level Block containers (e.g. a template page for a letter) may be identical
or different for each imposed page. If they are identical the Blocks on the letter template
must be filled before placing the letter template itself in the next first-level Block since
PPS always uses the location of the most recent placement of the template page.

https://www.pdflib.com/pdflib-cookbook/blocks/linked_textblocks/

13.6 Filling Blocks with PPS 381

Cookbook A full code sample can be found in the Cookbook topic blocks/nested_blocks.

Block coordinates. The Rectangle coordinates of a Block refer to the PDF default coor-
dinate system. When the page containing the Block is placed on the output page with
PPS, several positioning and scaling options can be supplied to PDF_fit_pdi_page().
These options are taken into account when the Block is being processed. This makes it
possible to place a template page on the output page multiply, every time filling its
Blocks with data. For example, a business card template may be placed four times on an
imposition sheet. The Block functions will take care of the coordinate system transfor-
mations, and correctly place the text for all Blocks in all invocations of the page. The
only requirement is that the client must place the page and then process all Blocks on
the placed page. Then the page can be placed again at a different location on the output
page, followed by more Block processing operations referring to the new position, and
so on.

The Block Plugin displays the Block coordinates differently from what is stored in
the PDF file. The plugin uses Acrobat’s convention which has the coordinate origin in
the upper left corner of the page, while the internal coordinates (those stored in the
Block) use PDF’s convention of having the origin at the lower left corner of the page. The
coordinate display in the Properties dialog is also subject to the units specified in Acro-
bat (see »Block size and position«, page 362).

Spot colors in Block properties. To use a separation (spot) color in a Block property you
can click the »...« button which will present a list of all HKS and Pantone spot colors.
These color names are built into PPS and can be used without further preparations. For
custom spot colors an alternate color can be defined in the Block Plugin. If no alternate
color is specified in the Block properties, the custom spot color must have been defined
earlier in the PPS application using PDF_makespotcolor() or a suitable color option list.
Otherwise Block filling will fail.

https://www.pdflib.com/pdflib-cookbook/blocks/nested_blocks/

382 Chapter 13: PPS and the PDFlib Block Plugin

13.7 Block Properties
PPS and the Block Plugin support general properties which can be assigned to any type
of Block. In addition there are properties which are specific to the Block types Textline,
Textflow, Image, PDF, and Graphics.

Properties support the same data types as option lists except handles and action
lists. The names of Block properties are generally identical to options for API functions
such as PDF_fit_textline(), PDF_fit_image() (e.g., fitmethod, charspacing). In these cases the
behavior is exactly the same as the one documented for the respective option.

13.7.1 Administrative Properties
Administrative properties apply to all Block types. Required entries will automatically
be generated by the Block Plugin. Table 13.4 lists the administrative Block properties.

Table 13.4 Administrative properties

keyword possible values and explanation

Description (String) Human-readable description of the Block’s function, coded in PDFDocEncoding or Unicode (in the
latter case starting with a BOM). This property is for user information only, and will be ignored by PPS.

Locked (Boolean) If true, the Block and its properties can not be edited with the Block Plugin. This property will
be ignored by PPS. Default: false

Name (String; required) Name of the Block. Block names must be unique within a page, but not within a docu-
ment. The three characters [] / are not allowed in Block names. Block names are restricted to a maxi-
mum of 125 characters.

Subtype (Keyword; required) Depending on the Block type, one of Text, Image, PDF, or Graphics. Note that Text-
line and Textflow Blocks both have Subtype Text, but are distinguished by the textflow property.

textflow (Boolean) Controls single- or multiline processing. This property is not available explicitly in the user in-
terface of the Block Plugin, but will be mapped to Textline or Textflow Blocks, respectively (Default:
false):

false Textline Block: text spans a single line and will be processed with PDF_fit_textline().
true Textflow Block: text can span multiple lines and will be processed with PDF_fit_textflow(). In

addition to the standard text properties Textflow-related properties can be specified (see
Table 13.9).

Type (Keyword; required) Always Block

13.7 Block Properties 383

13.7.2 Rectangle Properties
Rectangle properties apply to all Block types. They describe the appearance of the Block
rectangle itself. Required entries will automatically be generated by the Block Plugin.
Table 13.5 lists the rectangle properties.

Table 13.5 Rectangle properties

keyword possible values and explanation

background-
color

(Color) If this property is present and contains a color space keyword different from None, a rectangle will
be drawn and filled with the supplied color. This may be useful to cover existing page contents. Default:
None

bordercolor (Color) If this property is present and contains a color space keyword different from None, a rectangle will
be drawn and stroked with the supplied color. Default: None

linewidth (Float; must be greater than 0) Stroke width of the line used to draw the Block rectangle; only used if
bordercolor is set. Default: 1

Rect (Rectangle; required) The Block coordinates. The origin of the coordinate system is in the lower left corner
of the page. However, the Block Plugin displays the coordinates in Acrobat’s notation, i.e., with the origin
in the upper left corner of the page. The coordinates will be displayed in the unit which is currently select-
ed in Acrobat, but will always be stored in points in the PDF file.

Status (Keyword) Describes how the Block will be processed by PPS and the Preview feature (default: active):
active The Block will be fully processed according to its properties.
ignore The Block will be ignored.
ignoredefault

Like active, except that the defaulttext/image/pdf/graphics properties and options are
ignored, i.e. the Block remains empty if no variable contents are available (especially in the
Preview). This may be useful to make sure that the Block’s default contents are not used for
filling Blocks on the server side although the Block may contain default contents for
generating Previews. It can also be used to disable the default contents for previewing a Block
without removing the default contents from the Block properties.

static No variable contents will be placed; instead, the Block’s default text, image, PDF, or graphics
contents will be used if available.

384 Chapter 13: PPS and the PDFlib Block Plugin

13.7.3 Appearance Properties
Appearance properties specify formatting details:

> Table 13.6 lists transparency appearance properties for all Block types.
> Table 13.7 lists text appearance properties for Textline and Textflow Blocks.

Table 13.6 Transparency appearance properties for all Block types

keyword possible values and explanation

blendmode (Keyword list; if used in PDF/A-1 mode it must have the value Normal) Name of the blend mode: None,
Color, ColorDodge, ColorBurn, Darken, Difference, Exclusion, HardLight, Hue, Lighten, Luminosity,
Multiply, None, Normal, Overlay, Saturation, Screen, SoftLight. Default: None

opacityfill (Float; if used in PDF/A mode it must have the value 1) Opacity for fill operations in the range 0..1. The val-
ue 0 means fully transparent; 1 means fully opaque.

opacitystroke (Float; if used in PDF/A mode it must have the value 1) Opacity for stroke operations in the range 0..1. The
value 0 means fully transparent; 1 means fully opaque.

13.7 Block Properties 385

Table 13.7 Text appearance properties for Textline and Textflow Blocks

keyword possible values and explanation

charspacing (Float or percentage) Character spacing. Percentages are based on fontsize. Default: 0

decoration-
above

(Boolean) If true, the text decoration enabled with the underline, strikeout, and overline options will
be drawn above the text, otherwise below the text. Changing the drawing order affects visibility of the
decoration lines. Default: false

fillcolor (Color) Fill color of the text. Default: gray 0 (=black)

fontname1 (String) Name of the font as required by PDF_load_font(). The Block plugin will present a list of fonts
available in the system. However, these font names may not be portable between macOS, Windows, and
Unix systems. If fontname starts with an ’@’ character the font will be applied in vertical writing mode.
The encoding for the text must be specified as an option for PDF_fill_textblock() when filling the Block
unless the font option has been supplied.

fontsize1 (Float) Size of the font in points

horizscaling (Float or percentage) Horizontal text scaling. Default: 100%

italicangle (Float) Italic angle of text in degrees. Default: 0

kerning (Boolean) Kerning behavior. Default: false

overline (Boolean) Overline mode. Default: false

shadow (Composite) Create a shadow effect (default: no shadow). The following subproperties are available:
fillcolor (Color) Color of the shadow. Default: {gray 0.8}
offset (List of 2 floats or percentages) The shadow’s offset from the reference point of the text in user

coordinates or as a percentage of the font size. Default: {5% -5%}

strikeout (Boolean) Strikeout mode. Default: false

strokecolor (Color) Stroke color of the text. Default: gray 0 (=black)

strokewidth (Float, percentage, or keyword; only effective if textrendering is set to stroke text) Line width for outline
text (in user coordinates or as a percentage of the fontsize). The keyword auto or the equivalent value
0 uses a built-in default. Default: auto

textrendering (Integer) Text rendering mode. Only the value 3 has an effect on Type 3 fonts (default: 0):

0 fill text 4 fill text and add it to the clipping path

1 stroke text (outline) 5 stroke text and add it to the clipping path

2 fill and stroke text 6 fill and stroke text and add it to the clipping path

3 invisible text 7 add text to the clipping path (not for Blocks)

textrise (Float pr percentage) Text rise parameter. Percentages are based on fontsize. Default: 0

underline (Boolean) Underline mode. Default: false

underline-
position

(Float, percentage, or keyword) Position of the stroked line for underlined text relative to the baseline.
Percentages are based on fontsize. Default: auto

underline-
width

(Float, percentage, or keyword) Line width for underlined text. Percentages are based on fontsize. De-
fault: auto

wordspacing (Float or percentage) Word spacing. Percentages are based on fontsize. Default: 0

1. This property is required in Textline and Textflow Blocks; it will be enforced by the Block Plugin.

P
P

386 Chapter 13: PPS and the PDFlib Block Plugin

13.7.4 Text Preparation Properties
Text preparation properties specify preprocessing steps for Textline and Textflow
Blocks. Table 13.8 lists text preparation properties for Textline and Textflow Blocks.

Table 13.8 Text preparation properties for Textline and Textflow Blocks

keyword possible values and explanation

charref (Boolean) If true, enable substitution of numeric and character entity references and glyph name refer-
ences. Default: the global charref option

escape-
sequence

(Boolean) If true, enable substitution of escape sequences in content strings, hypertext strings, and name
strings. Default: the global escapesequence option

features (List of keywords) Specifies which typographic features of an OpenType font will be applied to the text,
subject to the script and language options. Keywords for features which are not present in the font will
silently be ignored. The following keywords can be supplied:
_none Apply none of the features in the font. As an exception, the vert feature must explicitly be

disabled with the novert keyword.
<name> Enable a feature by supplying its four-character OpenType tag name. Some common feature

names are liga, ital, tnum, smcp, swsh, zero. The full list with the names and descriptions of
all supported features can be found in Section 7.3.1, »Supported OpenType Layout Features«,
page 164.

no<name> The prefix no in front of a feature name (e.g. noliga) disables this feature.
Default: _none for horizontal writing mode. In vertical writing mode vert will automatically be applied.
The readfeatures option in PDF_load_font() is required for OpenType feature support.

language (Keyword; only relevant if script is supplied) The text will be processed according to the specified lan-
guage, which is relevant for the features and shaping options. A full list of keywords can be found in
Section 7.4.2, »Script and Language«, page 172, e.g. ARA (Arabic), JAN (Japanese), HIN (Hindi). Default:
_none (undefined language)

script (Keyword; required if shaping=true) The text will be processed according to the specified script, which is
relevant for the features, shaping, and advancedlinebreaking options. The most common keywords
for scripts are the following: _none (undefined script), latn, grek, cyrl, armn, hebr, arab, deva, beng,
guru, gujr, orya, taml, thai, laoo, tibt, hang, kana, han. The keyword _auto selects the script to which
the majority of characters in the text belong, where _latn and _none are ignored. A full list of keywords
can be found in Section 7.4.2, »Script and Language«, page 172. Default: _none

shaping (Boolean) If true, the text will be formatted (shaped) according to the script and language options. The
script option must have a value different from _none and the required shaping tables must be available
in the font. Default: false

13.7 Block Properties 387

13.7.5 Text Formatting Properties
Table 13.9 lists properties which can only be used for Textflow Blocks, with the excep-
tion of the stamp property which can also be used for Textline Blocks. They will be used
to construct the initial option list for processing the Textflow (corresponding to the
optlist parameter of PDF_create_textflow()). Inline option lists for Textflows can not be
specified with the plugin, but they can be supplied on the server as part of the text con-
tents when filling the Block with PDF_fill_textblock(), or in the Block’s defaulttext proper-
ty.

Table 13.9 Text formatting properties (mostly for Textflow Blocks)

keyword possible values and explanation

adjust-
method

(Keyword) Method used to adjust a line when a text portion doesn’t fit into a line after compressing or
expanding the distance between words subject to the limits specified by the minspacing and maxspacing
options (default: auto):
auto The following methods are applied in order: shrink, spread, nofit, split.
clip Same as nofit, except that the long part at the right edge of the fit box (taking into account

the rightindent option) will be clipped.
nofit The last word will be moved to the next line provided the remaining (short) line will not be

shorter than the percentage specified in the nofitlimit option. Even justified paragraphs
may look slightly ragged.

shrink If a word doesn’t fit in the line the text will be compressed subject to shrinklimit. If it still
doesn’t fit the nofit method will be applied.

split The last word will not be moved to the next line, but will forcefully be hyphenated. For text
fonts a hyphen character will be inserted, but not for symbol fonts.

spread The last word will be moved to the next line and the remaining (short) line will be justified by
increasing the distance between characters in a word, subject to spreadlimit. If justification
still cannot be achieved the nofit method will be applied.

advanced-
linebreak

(Boolean) Enable the advanced line breaking algorithm which is required for complex scripts. This is re-
quired for linebreaking in scripts which do not use space characters for designating word boundaries, e.g.
Thai. The options locale and script will be honored. Default: false

alignment (Keyword) Specifies formatting for lines in a paragraph. Default: left.
left left-aligned, starting at leftindent
center centered between leftindent and rightindent
right right-aligned, ending at rightindent
justify left- and right-aligned

avoid-
emptybegin

(Boolean) If true, empty lines at the beginning of a fitbox will be deleted. Default: false

fixedleading (Boolean) If true, the first leading value found in each line will be used. Otherwise the maximum of all
leading values in the line will be used. Default: false

hortab-
method

(Keyword) Treatment of horizontal tabs in the text. If the calculated position is to the left of the current
text position, the tab will be ignored (default: relative):
relative The position will be advanced by the amount specified in hortabsize.
typewriter The position will be advanced to the next multiple of hortabsize.
ruler The position will be advanced to the n-th tab value in the ruler option, where n is the number

of tabs found in the line so far. If n is larger than the number of tab positions the relative
method will be applied.

hortabsize (Float or percentage) Width of a horizontal tab1. The interpretation depends on the hortabmethod op-
tion. Default: 7.5%

388 Chapter 13: PPS and the PDFlib Block Plugin

lastalignment (Keyword) Formatting for the last line in a paragraph. All keywords of the alignment option are support-
ed, plus the following (default: auto):
auto Use the value of the alignment option unless it is justify. In the latter case left will be used.

leading (Float or percentage) Distance between adjacent text baselines in user coordinates, or as a percentage of
the font size. Default: 100%

locale (Keyword) The locale which will be used for localized linebreaking methods if advancedlinebreak=true.
The keywords consists of one or more components, where the optional components are separated by an
underscore character ’_’ (the syntax slightly differs from NLS/POSIX locale IDs):
> A required two- or three-letter lowercase language code according to ISO 639-2 (see www.loc.gov/
standards/iso639-2), e.g. en, (English), de (German), ja (Japanese). This differs from the language op-
tion.

> An optional four-letter script code according to ISO 15924 (see www.unicode.org/iso15924/iso15924-
codes.html), e.g. Hira (Hiragana), Hebr (Hebrew), Arab (Arabic), Thai (Thai).

> An optional two-letter uppercase country code according to ISO 3166 (see www.iso.org/iso/country_
codes/iso_3166_code_lists), e.g. DE (Germany), CH (Switzerland), GB (United Kingdom)

Specifying a locale is not required for advanced line breaking: the keyword _none specifies that no locale-
specific processing will be done. Default: _none
Examples: de_DE, en_US, en_GB

maxspacing
minspacing

(Float or percentage) The maximum or minimum distance between words (in user coordinates, or as a
percentage of the width of the space character). The calculated word spacing is limited by the provided
values (but the wordspacing option will still be added). Defaults: minspacing=50%, maxspacing=500%

minlinecount (Integer) Minimum number of lines in the last paragraph of the fitbox. If there are fewer lines they will
be placed in the next fitbox. The value 2 can be used to prevent single lines of a paragraph at the end of a
fitbox (»orphans«). Default: 1

nofitlimit (Float or percentage) Lower limit for the length of a line with the nofit method (in user coordinates or as
a percentage of the width of the fitbox). Default: 75%

parindent (Float or percentage) Left indent of the first line of a paragraph1. The amount will be added to
leftindent. Specifying this option within a line will act like a tab. Default: 0

rightindent
leftindent

(Float or percentage) Right or left indent of all text lines1. If leftindent is specified within a line and the
determined position is to the left of the current text position, this option will be ignored for the current
line. Default: 0

ruler2 (List of floats or percentages) List of absolute tab positions for hortabmethod=ruler1. The list may con-
tain up to 32 non-negative entries in ascending order. Default: integer multiples of hortabsize

shrinklimit (Percentage) Lower limit for compressing text with the shrink method; the calculated shrinking factor is
limited by the provided value, but will be multiplied with the value of the horizscaling option. Default:
85%

spreadlimit (Float or percentage) Upper limit for the distance between two characters for the spread method (in user
coordinates or as a percentage of the font size); the calculated character distance will be added to the
value of the charspacing option. Default: 0

stamp (Keyword; Textline and Textflow Blocks) This option can be used to create a diagonal stamp within the
Block rectangle. The text comprising the stamp will be as large as possible. The options position,
fitmethod, and orientate (only north and south) will be honored when placing the stamp text in the
box. Default: none.
ll2ur The stamp will run diagonally from the lower left corner to the upper right corner.
ul2lr The stamp will run diagonally from the upper left corner to the lower right corner.
none No stamp will be created.

Table 13.9 Text formatting properties (mostly for Textflow Blocks)

keyword possible values and explanation

https://www.loc.gov/standards/iso639-2
http://www.unicode.org/iso15924/iso15924-codes.html
https://www.iso.org/iso/country_codes/iso_3166_code_lists

13.7 Block Properties 389

tabalignchar (Unichar) Unicode value of the character at which decimal tabs will be aligned. Default: the period char-
acter ’.’ (U+002E)

tabalignment2 (List of keywords) Alignment for tab stops. Each entry in the list defines the alignment for the correspond-
ing entry in the ruler option (default: left):
center Text will be centered at the tab position.
decimal The first instance of tabalignchar will be left-aligned at the tab position. If no tabalignchar

is found, right alignment will be used instead.
left Text will be left-aligned at the tab position.
right Text will be right-aligned at the tab position.

1. In user coordinates, or as a percentage of the width of the fit box
2. Tab settings can be edited in the property subgroup Ruler Tabs for hortabmethod=ruler in the Block properties dialog.

Table 13.9 Text formatting properties (mostly for Textflow Blocks)

keyword possible values and explanation

390 Chapter 13: PPS and the PDFlib Block Plugin

13.7.6 Object Fitting Properties
Fitting properties are available for all Block types, although some properties are specific
to a certain Block type. They control how the contents will be placed in the Block:

> Table 13.10 lists fitting properties for Textline, Image, PDF, and Graphics Blocks
> Table 13.11 lists fitting properties for Textflow Blocks (mostly related to aspects of

vertical fitting).

The object fitting algorithm uses the Block rectangle as fitbox. Except for fitmethod=clip
there will be no clipping; if you want to make sure that the Block contents do not exceed
the Block rectangle avoid fitmethod=nofit.

Table 13.10 Fitting properties for Textline, Image, PDF, and Graphics Blocks

keyword possible values and explanation

alignchar (Unichar or keyword; only for Textline Blocks) If the specified character is found in the text, its lower left
corner will be aligned at the lower left corner of the Block rectangle. For horizontal text with
orientate=north or south the first value supplied in the position option defines the position. For hori-
zontal text with orientate=west or east the second value supplied in the position option defines the
position. This option will be ignored if the specified alignment character is not present in the text. The
value 0 and the keyword none suppress alignment characters. The specified fitmethod will be applied, al-
though the text cannot be placed within the Block rectangle because of the forced positioning of
alignchar. Default: none

dpi (Float list; only for image Blocks) One or two values specifying the desired image resolution in pixels per
inch in horizontal and vertical direction. With the value o the image’s internal resolution will be used if
available, or 72 dpi otherwise. This property will be ignored if the fitmethod property has been supplied
with one of the keywords auto, meet, slice, or entire. Default: 0

fitmethod (Keyword) Strategy to use if the supplied content doesn’t fit into the Block rectangle: auto, clip, entire,
meet, nofit or slice (default: meet).

margin (Float list; only for Textline Blocks) One or two float values describing additional horizontal and vertical
reduction of the Block rectangle. Default: 0

orientate (Keyword) Specifies the desired orientation of the content when it is placed. Possible values are north,
east, south, west. Default: north

position (Float list) One or two values specifying the position of the reference point within the content. The posi-
tion is specified as a percentage within the Block. Only for Textline Blocks: the keyword auto can be used
for the first value in the list. It indicates right if the writing direction of the text is from right to left (e.g.
for Arabic and Hebrew text), and left otherwise (e.g. for Latin text).
Default: {0 0}, i.e. the lower left corner

rotate (Float) Rotation angle in degrees by which the Block will be rotated counter-clockwise before processing
begins. The reference point is center of the rotation. Default: 0

scale (Float list; only for image, PDF, and Graphics Blocks) One or two values specifying the desired scaling fac-
tor(s) in horizontal and vertical direction. This option will be ignored if the fitmethod property has been
supplied with one of the keywords auto, meet, slice, or entire. Default: 1

shrinklimit (Float or percentage; only for Textline Blocks) The lower limit of the shrinkage factor which will be ap-
plied to fit text with fitmethod=auto. Default: 0.75

13.7 Block Properties 391

Table 13.11 Fitting properties for Textflow Blocks

keyword possible values and explanation

firstlinedist (Float, percentage, or keyword) The distance between the top of the Block rectangle and the baseline for
the first line of text, specified in user coordinates, as a percentage of the relevant font size (the first font
size in the line if fixedleading=true, and the maximum of all font sizes in the line otherwise), or as a
keyword (default: leading):
leading The leading value determined for the first line; typical diacritical characters such as À will

touch the top of the fitbox.
ascender The ascender value determined for the first line; typical characters with larger ascenders, such

as d and h will touch the top of the fitbox.
capheight The capheight value determined for the first line; typical capital uppercase characters such as

H will touch the top of the fitbox.
xheight The xheight value determined for the first line; typical lowercase characters such as x will

touch the top of the fitbox.
If fixedleading=false the maximum of all leading, ascender, xheight, or capheight values found in
the first line will be used.

fitmethod (Keyword) Strategy to use if the Block is too small for the Textflow:
auto fontsize and leading are decreased until the text fits.
clip Text is clipped at the Block margin (useful for linking Textflow Blocks).
nofit Text runs beyond the bottom margin of the Block (useful for moving Blocks).
Default: clip if the textflowhandle option is supplied, otherwise auto

lastlinedist (Float, percentage, or keyword) Will be ignored for fitmethod=nofit) The minimum distance between
the baseline for the last line of text and the bottom of the fitbox, specified in user coordinates, as a per-
centage of the font size (the first font size in the line if fixedleading= true, and the maximum of all
font sizes in the line otherwise), or as a keyword. Default: 0, i.e. the bottom of the fitbox will be used as
baseline, and typical descenders will extend below the Block rectangle.
descender The descender value determined for the last line; typical characters with descenders, such as g

and j will touch the bottom of the fitbox.
If fixedleading=false the maximum of all descender values found in the last line will be used.

linespread-
limit

(Float or percentage; only for verticalalign=justify) Maximum amount in user coordinates or as per-
centage of the leading for increasing the leading for vertical justification. Default: 200%

maxlines (Integer or keyword) The maximum number of lines in the fitbox, or the keyword auto which means that
as many lines as possible will be placed in the fitbox. When the maximum number of lines has been
placed PDF_fit_textflow() will return the string _boxfull.

minfontsize (Float or percentage) Minimum allowed font size when text is scaled down to fit into the Block rectangle
with fitmethod=auto when shrinklimit is exceeded. The limit is specified in user coordinates or as a
percentage of the height of the Block. If the limit is reached the text will be created with the specified
minfontsize as fontsize. Default: 0.1%

orientate (Keyword) Specifies the desired orientation of the text when it is placed. Possible values are north, east,
south, west. Default: north

rotate (Float) Rotate the coordinate system, using the lower left corner of the fitbox as center and the specified
value as rotation angle in degrees. This results in the box and the text being rotated. The rotation will be
reset when the text has been placed. Default: 0

392 Chapter 13: PPS and the PDFlib Block Plugin

verticalalign (Keyword) Vertical alignment of the text in the fitbox (default: top):
top Formatting will start at the first line, and continue downwards. If the text doesn’t fill the

fitbox there may be whitespace below the text.
center The text will be vertically centered in the fitbox. If the text doesn’t fill the fitbox there may be

whitespace both above and below the text.
bottom Formatting will start at the last line, and continue upwards. If the text doesn’t fill the fitbox

there may be whitespace above the text.
justify The text will be aligned with top and bottom of the fitbox. In order to achieve this the leading

will be increased up to the limit specified by linespreadlimit. The height of the first line will
only be increased if firstlinedist=leading.

Table 13.11 Fitting properties for Textflow Blocks

keyword possible values and explanation

13.7 Block Properties 393

13.7.7 Properties for default Contents
Properties for default contents specify how to fill the Block if no specific contents are
provided. They are especially useful for the Preview feature since it will fill the Blocks
with their default contents. Table 13.12 lists properties for default contents.

13.7.8 Custom Properties
Custom properties apply to Blocks of any type of Block, and will be ignored by PPS and
the Preview feature. Table 13.13 lists the naming rules for custom properties.

Table 13.12 Properties for default contents

keyword possible values and explanation

default-
graphics

(String; only for graphics Blocks) Path name of a graphics file which will be used if no graphics is supplied
by the client application.1

1. It is recommended to use file names without absolute paths, and use the SearchPath feature in the PPS client application. This makes
Block processing independent from platform and file system details.

defaultimage (String; only for image Blocks) Path name of an image which will be used if no image is supplied by the
client application.1

defaultpdf (String; only for PDF Blocks) Path name of a PDF document which will be used if no substitution PDF is
supplied by the client application.1

default-
pdfpage

(Integer; only for PDF Blocks) Page number of the page in the default PDF document. Default: 1

defaulttext (String; only for Textline and Textflow Blocks) Text which will be used if no variable text is supplied by the
client application2

2. The text will be interpreted in winansi encoding or Unicode.

Table 13.13 Custom Block properties for all Block types

keyword possible values and explanation

any name not containing
the three characters [] /

(String, name, float, or float list) The interpretation of the values of custom properties is
completely up to the client application; they will be ignored by PPS.

394 Chapter 13: PPS and the PDFlib Block Plugin

13.8 Querying Block Names and Properties with pCOS
In addition to automatic Block processing with PPS, the integrated pCOS facility can be
used to enumerate Block names and query standard or custom properties.

Cookbook A full code sample for querying the properties of Blocks contained in an imported PDF can be
found in the Cookbook topic blocks/query_block_properties.

Finding the number and names of Blocks. The client code must not even know the
names or number of Blocks on an imported page since these can also be queried. The
following statement returns the number of Blocks on page with number pagenum:

blockcount = (int) p.pcos_get_number(doc, "length:pages[" + pagenum + "]/blocks");

The following statement returns the name of Block number blocknum on page pagenum
(Block and page counting start at 0):

blockname = p.pcos_get_string(doc,
"pages[" + pagenum + "]/blocks[" + blocknum + "]/Name");

The returned Block name can subsequently be used to query the Block’s properties or
fill the Block with text, image, PDF or graphics contents. If the specified Block doesn’t
exist an exception will be thrown. You can avoid this by using the length prefix to deter-
mine the number of Blocks and therefore the maximum index in the blocks array (keep
in mind that the Block count will be one higher than the highest possible index since ar-
ray indexing starts at 0).

Checking for the presence of a Block. For additional flexibility of the client applica-
tion code you can check whether for the presence of a Block before attempting to fill it.
This way the designer can move Blocks between pages without breaking the application
which fills the Blocks.

The following code checks whether a Block with the name foo is present on a page:

/* pCOS object type "dictionary" means that the Block is present */
if (pcos_get_string(doc, "type:pages[" + pagenum + "]/blocks/" + "foo").equals("dict"))
{

/* Block "foo" is present on the page */
}

Addressing Blocks by number or name. In the pCOS path syntax for addressing Block
properties the following expressions are equivalent, assuming that the Block with num-
ber 6 has its Name property set to foo:

pages[...]/blocks[6]
pages[...]/blocks/foo

Querying Block coordinates. The two coordinate pairs (llx, lly) and (urx, ury) describing
the lower left and upper right corner of a Block named foo can be queried as follows:

llx = p.pcos_get_number(doc, "pages[" + pagenum + "]/blocks/foo/rect[0]");
lly = p.pcos_get_number(doc, "pages[" + pagenum + "]/blocks/foo/rect[1]");
urx = p.pcos_get_number(doc, "pages[" + pagenum + "]/blocks/foo/rect[2]");
ury = p.pcos_get_number(doc, "pages[" + pagenum + "]/blocks/foo/rect[3]");

https://www.pdflib.com/pdflib-cookbook/blocks/query_block_properties/

13.8 Querying Block Names and Properties with pCOS 395

Note that these coordinates are provided in the default coordinate system (with the ori-
gin in the bottom left corner, possibly modified by the page’s CropBox), while the Block
Plugin displays the coordinates according to Acrobat’s user interface coordinate system
with an origin in the upper left corner of the page. The values queried with the pCOS
pseudo object rect (all lowercase) take into account any relevant CropBox/MediaBox and
Rotate entries and normalize the order of the coordinates. In contrast, the values que-
ried with the native PDF key Rect cannot be directly used as new coordinates if a Crop-
Box is present.

Note that the topdown option is not taken into account when querying Block coordi-
nates.

Querying custom properties. Custom properties can be queried as in the following ex-
ample, where the property zipcode is queried from a Block named b1 on page pagenum:

zip = p.pcos_get_string(doc, "pages[" + pagenum + "]/blocks/b1/Custom/zipcode");

If you don’t know which custom properties are actually present in a Block, you can de-
termine the names at runtime. In order to find the name of the first custom property in
a Block named b1 use the following:

propname = p.pcos_get_string(doc, "pages[" + pagenum + "]/blocks/b1/Custom[0].key");

Use increasing indexes instead of 0 in order to determine the names of all custom prop-
erties. Use the length prefix to determine the number of custom properties.

Non-existing Block properties and default values. Use the type prefix to determine
whether a Block or property is actually present. If the type for a path is 0 or null the re-
spective object is not present in the PDF document. Note that for predefined properties
this means that the default value of the property will be used.

Name space for custom properties. In order to avoid confusion when PDF documents
from different sources are exchanged, it is recommended to use an Internet domain
name as a company-specific prefix in all custom property names, followed by a colon ’:’
and the actual property name. For example, ACME corporation would use the following
property names:

acme.com:digits
acme.com:refnumber

Since standard and custom properties are stored differently in the Block, standard PPS
property names (as defined in Section 13.7, »Block Properties«, page 382) will never con-
flict with custom property names.

396 Chapter 13: PPS and the PDFlib Block Plugin

13.9 Creating and Importing Blocks programmatically

13.9.1 Creating PDFlib Blocks with POCA
PDFlib Blocks can be created programmatically with the POCA interface which is includ-
ed in PPS. Using POCA the required PDF data structures for Block can be prepared and
then supplied to the blocks option of PDF_begin/end_page_ext(). When creating the Block
definitions the requirements in Section 13.10, »PDFlib Block Specification«, page 398,
must be obeyed. The Block properties must be created according to the data types listed
in Section 13.7, »Block Properties«, page 382.

Cookbook A code sample for creating PDFlib Blocks with PPS can be found in the category blocks of the
PDFlib Cookbook.

The PDFlib Block specification contains an unfortunate redundancy in that the name of
a Block is recorded twice: once in the main Blocks dictionary of a page, and again in the
Name entry within a particular Block dictionary. These two names must be identical in
order to avoid problems when filling the Block with PPS or previewing the Block with
the Block Plugin. PDF_begin/end_page_ext() will therefore throw an exception if the dic-
tionary provided with the blocks option contains a block definition which violates the
»same block name« rule. The corresponding pairs are highlighted in blue in the code
sample below.

The following code fragment demonstrates the use of POCA functions for creating
the Block definition shown in Section , »Block dictionary keys«, page 399:

/* Create the Block dictionary */
blockdict = p.poca_new("containertype=dict usage=blocks");

/* ---
* Create a Text Block
* ---
*/
textblock = p.poca_new("containertype=dict usage=blocks type=name key=Type value=Block");

container1 = p.poca_new("containertype=array usage=blocks " +
"type=integer values={70 640 300 700}");

p.poca_insert(textblock, "type=array key=Rect value=" + container1);
p.poca_insert(textblock, "type=name key=Name value=job_title");
p.poca_insert(textblock, "type=name key=Subtype value=Text");
p.poca_insert(textblock, "type=name key=fitmethod value=auto");
p.poca_insert(textblock, "type=string key=fontname value=Helvetica");
p.poca_insert(textblock, "type=float key=fontsize value=12");

/* Hook up the Block in the page's Block dictionary */
p.poca_insert(blockdict, "type=dict key=job_title direct=false value=" + textblock);

/* ---
* Create an Image Block
* ---
*/
imageblock = p.poca_new("containertype=dict usage=blocks " +

"type=name key=Type value=Block");

container2 = p.poca_new("containertype=array usage=blocks " +

https://www.pdflib.com/pdflib-cookbook/blocks/

13.9 Creating and Importing Blocks programmatically 397

"type=integer values={70 440 300 600}");

p.poca_insert(imageblock, "type=array key=Rect value=" + container2);
p.poca_insert(imageblock, "type=name key=Name value=logo");
p.poca_insert(imageblock, "type=name key=Subtype value=Image");
p.poca_insert(imageblock, "type=name key=fitmethod value=auto");

/* Hook up the Block in the page's Block dictionary */
p.poca_insert(blockdict, "type=dict key=logo direct=false value=" + imageblock);

/* ---
* Create a PDF Block
* ---
*/

pdfblock = p.poca_new("containertype=dict usage=blocks " +
"type=name key=Type value=Block");

container3 = p.poca_new("containertype=array usage=blocks " +
"type=integer values={70 240 300 400}");

p.poca_insert(pdfblock, "type=array key=Rect value=" + container3);
p.poca_insert(pdfblock, "type=name key=Name value=pdflogo");
p.poca_insert(pdfblock, "type=name key=Subtype value=PDF");
p.poca_insert(pdfblock, "type=name key=fitmethod value=meet");

/* Hook up the Block in the page's Block dictionary */
p.poca_insert(blockdict, "type=dict key=pdflogo direct=false " + "value=" + pdfblock);

/* ---
* Hook up the Block dictionary in the current page
* ---
*/

p.end_page_ext("blocks=" + blockdict);

/* Clean up */
p.poca_delete(blockdict, "recursive");

13.9.2 Importing PDFlib Blocks
You can copy one ore more PDFlib Blocks from the input document to the current out-
put page with PDF_process_pdi() and action=copyallblocks or action=copyblock as follows:

if (p.process_pdi(p, doc, 0, "action=copyallblocks block={pagenumber=1}") != 1)
{

/* Error */
}

This way you can implement multi-level Block filling workflows. Keep in mind that
Block names must be unique on each page, i.e. you cannot import multiple Blocks with
the same name to the same page. Use the outputblockname suboption to rename Blocks
upon copying.

398 Chapter 13: PPS and the PDFlib Block Plugin

13.10 PDFlib Block Specification
The Block syntax conforms to the PDF Reference which specifies an extension mecha-
nism that allows applications to store private data attached to the data structures com-
prising a PDF page. A description of the PDFlib Block syntax is provided here. Users who
create Blocks with the Block Plugin or PDFlib don’t need this information.

PDF object structure for PDFlib Blocks. The page dictionary contains a PieceInfo entry
which has another dictionary as value. The page dictionary should also contain the key
LastModified which contains a time stamp for the creation or last modification of the
Block structures. This dictionary contains the key PDFlib with an application data dictio-
nary as value. The application data dictionary contains two standard keys listed in Table
13.14.

A Block list is a dictionary containing general information about Block processing, plus
a list of all Blocks on the page. Table 13.15 lists the keys in a Block list dictionary.

Data types for Block properties. Properties support the same data types as option lists
except handles and specialized lists such as action lists. Table 13.16 details how these
types are mapped to PDF data types.

Table 13.14 Entries in a PDFlib application data dictionary

key value

LastModified (Data string; required) The date and time when the Blocks on the page were created or most recently
modified. This entry will be created by PDFlib when creating Blocks with the POCA interface.

Private (Dictionary; required) A Block list (see Table 13.15)

Table 13.15 Entries in a Block list dictionary

key value

Blocks (Dictionary; required) Each key is a name object containing the name of a Block; the corresponding value
is the Block dictionary for this Block (see Table 13.17). The value of the Name key in the Block dictionary
must be identical to the Block’s name in this dictionary.

BlockProducer1

1. Exactly one of the keys BlockProducer, PluginVersion and pdfmark must be present.

(String) Name of the software used to create the Blocks programmatically. This entry will be created by
PDFlib when creating Blocks with the POCA interface.

PluginVersion1 (String) A string containing a version identification of the Block plugin used to create the Blocks.

pdfmark1 (Boolean) Must be true if the Block list has been generated by use of pdfmarks.

Version (Number; required) The version number of the Block specification to which the file complies. This docu-
ment describes version 10 of the Block specification.

Table 13.16 Data types for Block properties

Data type PDF type and remarks

boolean (Boolean)

string (String)

13.10 PDFlib Block Specification 399

Block dictionary keys. Block dictionaries may contain the keys in Table 13.17.

keyword
(name)

(Name) It is an error to provide keywords outside the list of keywords supported by a particular property.

float, integer (Number) While option lists support point and comma as decimal separators, PDF numbers require point.

percentage (Array with two elements) The first element in the array is the number, the second element is a string con-
taining a percent character.

list (Array)

color (Array with two or three elements) The first element in the array specifies a color space, and the second el-
ement specifies a color value. To specify the absence of color the respective property must be omitted.
The following entries are supported for the first element in the array:
/DeviceGray

The second element is a single gray value.
/DeviceRGB

The second element is an array of three RGB values.
/DeviceCMYK

The second element is an array of four CMYK values.
[/Separation/spotname]

The first element is an array containing the keyword Separation and a spot color name. The
second element is a tint value.
The optional third element in the array specifies an alternate color for the spot color, which is
itself a color array in one of the DeviceGray, DeviceRGB, DeviceCMYK, or Lab color spaces. If
the alternate color is missing, the spot color name must either refer to a color which is known
internally to PPS, or which has been defined by the application at runtime.

[/Lab] The first element is an array containing the keyword Lab. The second element is an array of
three Lab values.

unichar (Text string) Unicode string in utf16be format, starting with the BOM U+FEFF

Table 13.17 Entries in a Block dictionary

property group values

administrative
properties

(Some keys are required) Administrative properties according to Table 13.4

rectangle properties (Some keys are required) Rectangle properties according to Table 13.5

appearance
properties

(Some keys are required) Appearance properties for all Block types according to Table 13.6 and
text appearance properties according to Table 13.7 for Textline and Textflow Blocks

text preparation
properties

(Optional) Text preparation properties for Textline and Textflow Blocks according to Table 13.8

text formatting
properties

(Optional) Text formatting properties for Textline and Textflow Blocks according to Table 13.9

object fitting
properties

(Optional) Object fitting properties for Textline, Image, PDF, and Graphics Blocks according to Ta-
ble 13.10, and fitting properties for Textflow Blocks according to Table 13.11

Table 13.16 Data types for Block properties

Data type PDF type and remarks

400 Chapter 13: PPS and the PDFlib Block Plugin

properties for
default contents

(Optional) Properties for default contents according to Table 13.12

Custom (Dictionary; optional) A dictionary containing key/value pairs for custom properties according to
Table 13.13.

Table 13.17 Entries in a Block dictionary

property group values

	13 PPS and the PDFlib Block Plugin
	13.1 Installing the PDFlib Block Plugin
	13.2 Overview of the Block Concept
	13.2.1 Separation of Document Design and Program Code
	13.2.2 Block Properties
	13.2.3 Why not use PDF Form Fields?

	13.3 Editing Blocks with the Block Plugin
	13.3.1 Creating Blocks
	13.3.2 Editing Block Properties
	13.3.3 Copying Blocks between Pages and Documents
	13.3.4 Customizing the Block Plugin User Interface with XML

	13.4 Converting PDF Form Fields to PDFlib Blocks
	13.5 Previewing Blocks in Acrobat
	13.6 Filling Blocks with PPS
	13.7 Block Properties
	13.7.1 Administrative Properties
	13.7.2 Rectangle Properties
	13.7.3 Appearance Properties
	13.7.4 Text Preparation Properties
	13.7.5 Text Formatting Properties
	13.7.6 Object Fitting Properties
	13.7.7 Properties for default Contents
	13.7.8 Custom Properties

	13.8 Querying Block Names and Properties with pCOS
	13.9 Creating and Importing Blocks programmatically
	13.9.1 Creating PDFlib Blocks with POCA
	13.9.2 Importing PDFlib Blocks

	13.10 PDFlib Block Specification

