
ABC

Text and Image
Extraction Toolkit (TET)
Version 5.5

Toolkit for extracting Text, Images,
and other items from PDF

Copyright © 2002–2023 PDFlib GmbH. All rights reserved.
Protected by European and U.S. patents.

PDFlib GmbH
Franziska-Bilek-Weg 9, 80339 München, Germany
www.pdflib.com

sales@pdflib.com
PDFlib_support@pdftron.com (please include your license number)

This publication and the information herein is furnished as is, is subject to change without notice, and
should not be construed as a commitment by PDFlib GmbH. PDFlib GmbH assumes no responsibility or lia-
bility for any errors or inaccuracies, makes no warranty of any kind (express, implied or statutory) with re-
spect to this publication, and expressly disclaims any and all warranties of merchantability, fitness for par-
ticular purposes and noninfringement of third party rights.

TET contains the following third-party components:

Adobe CMap resources, Copyright © 1990-2019 Adobe
AES, Arcfour and SHA algorithms, Copyright © 1995-1998 Eric Young
Brotli decompression code, Copyright © 2009, 2010, 2013-2016 by the Brotli Authors
Expat XML parser, Copyright © 2001-2022 Expat maintainers
ICClib, Copyright © 1997-2002 Graeme W. Gill
ICU International Components for Unicode, Copyright © 1991-2020 Unicode, Inc.
libjpeg, Copyright © 1991-2019, Thomas G. Lane, Guido Vollbeding
Libtiff image library, Copyright © 1988-1997 Sam Leffler, Copyright © 1991-1997 Silicon Graphics, Inc.
MD5 message digest, Copyright © 1991-2, RSA Data Security, Inc.
OpenJPEG, Copyright © 2002-2014, Université catholique de Louvain (UCL), Belgium
WOFF2 font decompression, Copyright © 2013-2017 by the WOFF2 Authors
Zlib compression library, Copyright © 1995-2022 Jean-loup Gailly and Mark Adler

https://www.pdflib.com
mailto:sales@pdflib.com

 3

0 First Steps with TET 7
0.1 Installing the Software 7

0.2 Applying the TET License Key 8

1 Introduction 11
1.1 Overview of TET Features 11

1.2 Many ways to use TET 13

1.3 Roadmap to Documentation and Samples 14

1.4 What’s new in TET 5.1? 15

1.5 What’s new in TET 5.2? 15

1.6 What’s new in TET 5.3? 16

1.7 What’s new in TET 5.4? 16

1.8 What’s new in TET 5.5? 17

2 TET Command-Line Tool 19
2.1 Command-Line Options 19

2.2 Constructing TET Command Lines 22

2.3 Command-Line Examples 23
2.3.1 Extracting Text 23
2.3.2 Extracting Images 23
2.3.3 Generating TETML 24
2.3.4 Advanced Options 24

3 TET Library Language Bindings 25
3.1 C Binding 25

3.2 C++ Binding 28

3.3 Java Binding 30

3.4 .NET Binding 32

3.5 Objective-C Binding 35

3.6 Perl Binding 37

3.7 PHP Binding 38

3.8 Python Binding 40

3.9 Ruby Binding 41

3.10 RPG Binding 43

4 TET Connectors 45
4.1 Free TET Plugin for Adobe Acrobat 45

4.2 TET Connector for the Lucene Search Engine 46

4.3 TET Connector for the Solr Search Server 49

4.4 TET Connector for Oracle 50

4 Chapter :

4.5 TET PDF IFilter for Microsoft Products 53

4.6 TET Connector for the Apache TIKA Toolkit 55

4.7 TET Connector for MediaWiki 57

5 Configuration 59
5.1 Extracting Content from protected PDF 59

5.2 Resource Configuration and File Searching 61

5.3 Recommendations for common Scenarios 65

6 Text Extraction 69
6.1 PDF Document Domains 69

6.2 Page and Text Geometry 74

6.3 Text Color 80

6.4 Chinese, Japanese, and Korean Text 82
6.4.1 CJK Encodings and CMaps 82
6.4.2 Word Boundaries for CJK Text 82
6.4.3 Vertical Writing Mode 82
6.4.4 CJK Decompositions: Narrow, wide, vertical, etc. 83

6.5 Bidirectional Arabic and Hebrew Text 84
6.5.1 General Bidi Topics 84
6.5.2 Postprocessing Arabic Text 84

6.6 Content Analysis 86

6.7 Layout Analysis and Document Styles 89

6.8 Table and List Detection 92

6.9 Check whether an Area is empty 94

6.10 Annotation Contents 95

7 Advanced Unicode Handling 97
7.1 Important Unicode Concepts 97

7.2 Text Preprocessing (Filtering) 100
7.2.1 Filters for all Granularities 100
7.2.2 Filters for Granularity Word and above 101

7.3 Unicode Postprocessing 103
7.3.1 Unicode Folding 103
7.3.2 Unicode Decomposition 106
7.3.3 Unicode Normalization 110

7.4 Supplementary Characters and Surrogates 112

7.5 Unicode Mapping for Glyphs 113

8 Image Extraction 119
8.1 Image Extraction Basics 119

8.2 Extracting Images 122

 5

8.2.1 Placed Images and Image Resources 122
8.2.2 Page-based and Resource-based Image Retrieval 123
8.2.3 Geometry of Placed Images 125

8.3 Merging Fragmented Images 127

8.4 Small and Large Image Filtering 129

8.5 Image Colors and Masking 130
8.5.1 Color Spaces 130
8.5.2 Image Masks and Soft Masks 131

9 TET Markup Language (TETML) 133
9.1 Creating TETML 133

9.2 TETML Examples 135

9.3 Controlling TETML Details 139

9.4 TETML Elements and the TETML Schema 143

9.5 Transforming TETML with XSLT 152

9.6 XSLT Samples 155

10 TET Library API Reference 159
10.1 Option Lists and other general Topics 159

10.1.1 Option List Syntax 159
10.1.2 Basic Types 161
10.1.3 Geometric Types 164
10.1.4 Unicode Support in Language Bindings 165
10.1.5 Encoding Names 165
10.1.6 Multi-threaded Programming 166

10.2 General Methods 167
10.2.1 Option Handling 167
10.2.2Setup 170
10.2.3 PDFlib Virtual Filesystem (PVF) 171
10.2.4Unicode Conversion 173
10.2.5 Exception Handling 175
10.2.6Logging 177

10.3 Document Methods 179

10.4 Page Methods 188

10.5 Text and Glyph Details Retrieval Methods 198

10.6 Image Retrieval 204

10.7 TET Markup Language (TETML) 208

10.8 pCOS Methods 211

A TET Library Quick Reference 215

B Revision History 217

Index 219

6 Chapter :

0.1 Installing the Software 7

0 First Steps with TET

0.1 Installing the Software
TET is delivered as an installer or compressed package for Windows and as a compressed
archive for all other supported operating systems. All TET packages contain the TET
command-line tool and the TET library/component, plus support files, documentation,
and examples. After installing or unpacking TET the following steps are recommended:

> Users of the TET command-line tool can use the executable right away. The available
options are discussed in Section 2.1, »Command-Line Options«, page 19, and are also
displayed when you execute the TET command-line tool without any options.

> Users of the TET library/component should read one of the sections in Chapter 3,
»TET Library Language Bindings«, page 25, corresponding to their preferred develop-
ment environment, and review the installed examples.

If you obtained a commercial TET license you must enter your TET license key according
to Section 0.2, »Applying the TET License Key«, page 8.

CJK configuration. In order to extract Chinese, Japanese, or Korean (CJK) text which is
encoded with legacy encodings TET requires the corresponding CMap files for mapping
CJK encodings to Unicode. The CMap files are contained in all TET packages, and are in-
stalled in the resource/cmap directory within the TET installation directory.

On non-Windows systems you must manually configure the CMap files:
> For the TET command-line tool this can be achieved by supplying the name of the di-

rectory holding the CMap files with the --searchpath option.
> For the TET library/component you can set the searchpath at runtime:

tet.set_option("searchpath={/path/to/resource/cmap}");

As an alternative method for configuring access to the CJK CMap files you can set the
TETRESOURCEFILE environment variable to point to a UPR configuration file which con-
tains a suitable searchpath definition.

Restrictions of the evaluation version. The TET command-line tool and library can be
used as fully functional evaluation versions even without a commercial license. Unli-
censed versions support all features, but will only process PDF documents with up to 10
pages and 1 MB size. Evaluation versions of TET must not be used for production pur-
poses, but only for evaluating the product. Using TET for production purposes requires
a valid TET license.

8 Chapter 0: First Steps with TET

0.2 Applying the TET License Key
Using TET for production purposes requires a valid TET license key. Once you purchased
a TET license you must apply your license key in order to allow processing of arbitrarily
large documents. There are several methods for applying the license key; choose one of
the methods detailed below.

Note TET license keys are platform-dependent, and can only be used on the platform for which they
have been purchased.

Windows installer. If you are working with the Windows installer you can enter the li-
cense key when you install the product. The installer will add the license key to the reg-
istry (see below).

Working with a license file. PDFlib products read license keys from a license file,
which is a text file according to the format shown below. You can use the template
licensekeys.txt which is contained in all TET distributions. Lines beginning with a ’#’
character contain comments and are ignored; the second line contains version informa-
tion for the license file itself:

Licensing information for PDFlib GmbH products
PDFlib license file 1.0
TET 5.5 ...your license key...

The license file may contain license keys for multiple PDFlib GmbH products on sepa-
rate lines. It may also contain license keys for multiple platforms so that the same li-
cense file can be shared among platforms. License files can be configured in the follow-
ing ways:

> A file called licensekeys.txt is searched in all default locations (see »Default file search
paths«, page 9).

> You can specify the licensefile option with the set_option() API method:

tet.set_option("licensefile={/path/to/licensekeys.txt}");

The licensefile option must be set immediately after instantiating the TET object, i.e.,
after calling TET_new() (in C) or creating a TET object.

> Supply the --tetopt option of the TET command-line tool and supply the licensefile
option with the name of a license file:

tet --tetopt "licensefile=/path/to/your/licensekeys.txt" ...

If the path name contains space characters you must enclose the path with braces:

tet --tetopt "licensefile={/path/to/your license file.txt}" ...

> You can set an environment (shell) variable which points to a license file. On Win-
dows use the system control panel and choose System, Advanced, Environment
Variables; on Unix apply a command similar to the following:

export PDFLIBLICENSEFILE="/path/to/licensekeys.txt"

On IBM System i the license file can be specified as follows (this command can be
specified in the startup program QSTRUP and will work for all PDFlib GmbH prod-
ucts):

0.2 Applying the TET License Key 9

ADDENVVAR ENVVAR(PDFLIBLICENSEFILE) VALUE(<... path ...>) LEVEL(*SYS)

License keys in the registry. On Windows you can also enter the name of the license
file in the following registry key:

HKLM\SOFTWARE\PDFlib\PDFLIBLICENSEFILE

As another alternative you can enter the license key directly in one of the following reg-
istry keys:

HKLM\SOFTWARE\PDFlib\TET5\license
HKLM\SOFTWARE\PDFlib\TET5\5.5\license

The installer will write the license key provided at install time in the last of these en-
tries.

Note Be careful when manually accessing the registry on 64-bit Windows systems: as usual, 64-bit
binaries work with the 64-bit view of the Windows registry, while 32-bit binaries running on a
64-bit system work with the 32-bit view of the registry. If you must add registry keys for a 32-bit
product manually, make sure to use the 32-bit version of the regedit tool. It can be invoked as
follows from the Start, Run... dialog:

%systemroot%\syswow64\regedit

Default file search paths. On Unix, Linux, macOS and IBM System i systems some di-
rectories is searched for files by default even without specifying any path and directory
names. Before searching and reading the UPR file (which may contain additional search
paths), the following directories are searched:

<rootpath>/PDFlib/TET/5.5/resource/cmap
<rootpath>/PDFlib/TET/5.5/resource/codelist
<rootpath>/PDFlib/TET/5.5/resource/glyphlst
<rootpath>/PDFlib/TET/5.5
<rootpath>/PDFlib/TET
<rootpath>/PDFlib

On Unix, Linux, and macOS <rootpath> will first be replaced with /usr/local and then
with the HOME directory. On IBM System i <roothpath> is empty.

Default file names for license and resource files. By default, the following file names
are searched for in the default search path directories:

licensekeys.txt (license file)
tet.upr (resource file)

This feature can be used to work with a license file without setting any environment
variable or runtime option.

Setting the license key in an option for the TET command-line tool. If you use the TET
command-line tool you can supply an option which contains the name of a license file
or the license key itself:

tet --tetopt "license ...your license key..." ...more options...

10 Chapter 0: First Steps with TET

Setting the license key with a TET API call. If you use the TET API you can add an API
call to your script or program which sets the license key at runtime:

> In C:

TET_set_option(tet, "license=...your license key...");

> In C++, .NET/C#, Java, and Ruby:

tet.set_option("license=...your license key...");

> In Perl, Python and PHP:

tet->set_option("license=...your license key...");

> In RPG:

d licensekey s 20
d licenseval s 50
c eval licenseopt='license=... your license key ...'+x'00'
c callp TET_set_option(TET:licenseopt:0)

The license option must be set immediately after instantiating the TET object, i.e., after
calling TET_new() (in C) or creating a TET object.

Licensing options. Different licensing options are available for TET use on one or more
computers, and for redistributing TET with your own products. We also offer support
and source code contracts. Licensing details and the purchase order form can be found
in the TET distribution. Please contact us if you are interested in obtaining a commer-
cial license or have any questions.

1.1 Overview of TET Features 11

1 Introduction
The PDFlib Text and Image Extraction Toolkit (TET) is targeted at extracting text and im-
ages from PDF documents, but can also be used to retrieve other information from PDF.
TET can be used as a base component for realizing the following tasks:

> search the text contents of PDF
> create a list of all words contained in a PDF (concordance)
> implement a search engine for processing large numbers of PDF files
> extract text from PDF to store, translate, or otherwise repurpose it
> convert the text contents of PDF to other formats
> process or enhance PDFs based on their contents
> compare the text contents of multiple PDF documents
> extract the raster images from PDF
> extract metadata and other information from PDF

TET has been designed for stand-alone use, and does not require any third-party soft-
ware. It is robust and suitable for multi-threaded server use.

1.1 Overview of TET Features
Supported PDF input. TET has been tested against millions of PDF test files from vari-
ous sources. It accepts PDF 1.0 up to PDF 1.7 extension level 8 and PDF 2.0, corresponding
to Acrobat 1-DC including encrypted documents. TET attempts to repair various kinds of
malformed and damaged PDF documents.

Note TET does not support XFA forms. XFA is a separate format which is not part of the PDF standard
ISO 32000. Since XFA is packaged inside a small PDF wrapper XFA forms are often confused
with PDF documents although XFA is a completely different file format which requires dedicat-
ed software.

Unicode support. TET includes a considerable number of algorithms and data to
achieve reliable Unicode mappings for all text. Since text in PDF documents is not usu-
ally encoded in Unicode, TET normalizes the text from a PDF document to Unicode:

> TET converts all text contents to Unicode. In C the text is returned in UTF-8 or UTF-16
format; in other language bindings as native Unicode strings.

> Ligatures and other multi-character glyphs are decomposed into a sequence of their
constituent Unicode characters.

> Vendor-specific Unicode values (Corporate Use Subarea, CUS) are identified and
mapped to characters with precisely defined meanings if possible.

> Glyphs which are lacking Unicode mapping information are identified and mapped
to a configurable replacement character.

> UTF-16 surrogate pairs for characters outside the Basic Multilingual Plane (BMP) are
interpreted and maintained. Surrogate pairs and UTF-32 values can be retrieved in all
language bindings.

Some PDF documents do not contain enough information for reliable Unicode map-
ping. In order to successfully extract the text nevertheless TET offers various configura-
tion options which can be used to supply auxiliary information for proper Unicode
mappings. In order to facilitate writing the required mapping tables we make available

12 Chapter 1: Introduction

PDFlib FontReporter, a free plugin for Adobe Acrobat. This plugin can be used for ana-
lyzing fonts, encodings, and glyphs in PDF.

CJK support. TET includes full support for extracting Chinese, Japanese, and Korean
text:

> All predefined CJK CMaps (encodings) are recognized; CJK text is converted to Uni-
code.

> Special character forms (e.g. wide, narrow, prerotated glyphs for vertical text) can op-
tionally be converted (folded) to the corresponding regular forms

> Horizontal and vertical writing modes are supported.
> CJK font names are normalized to Unicode.

Support for Bidirectional Hebrew and Arabic Text. TET includes the following features
for dealing with Bidi text:

> Re-order right-to-left and Bidi text to logical ordering
> Determine dominant text direction of the page
> Normalize Arabic presentation forms and decompose ligatures
> Remove Arabic Tatweel character used for stretching words

Unicode postprocessing. TET’s Unicode postprocessing features include the following:
> Folding: preserve, replace, or remove one or more characters; affected characters can

conveniently be specified as Unicode sets;
> Decomposition: optionally apply canonical or compatibility decompositions as de-

fined in the Unicode standard. This may make the text better usable in some envi-
ronments. For example, you can keep or split accented characters, fractions, or sym-
bols like the trademark symbol.

> Normalization: convert the output to Unicode normalization formats NFC, NFD,
NFKC, or NFKD as defined in the Unicode standard. This way TET can produce the ex-
act format required as input in some environments, e.g. databases or search engines.

Image extraction. TET extracts raster images from PDF. Adjacent parts of a segmented
image are combined to facilitate postprocessing and re-use (e.g. multi-strip images cre-
ated by some applications). Small images can be filtered in order to exclude tiny image
fragments from cluttering the output. If a mask is attached to an image, the mask can
be extracted as well.

Images are extracted in TIFF, JPEG, JPEG 2000, or JBIG2 format.

Geometry. TET provides precise metrics for the text, such as the position on the page,
glyph widths, and text direction. Specific areas on the page can be excluded or included
in the text extraction process, e.g. to ignore headers and footers or margins.

For images the pixel size, physical size, and color space are available as well as posi-
tion and angle.

Text color. TET provides information about the color of glyphs. The color spaces for
filling and stroking and the corresponding color values can be retrieved. A convenient
shortcut is available for easily comparing the colors of multiple glyphs without having
to deal with the complexities of PDF color spaces.

1.2 Many ways to use TET 13

Word detection and content analysis. TET can be used to retrieve low-level glyph in-
formation, but also includes advanced algorithms for high-level content and layout
analysis:

> Detect word boundaries to retrieve words instead of characters.
> Recombine the parts of hyphenated words (dehyphenation).
> Remove duplicate instances of text, e.g. shadow and fake bold text.
> Recombine paragraphs into reading order.
> Reorder text which is scattered over the page.
> Reconstruct lines of text.
> Recognize tabular structures on the page.
> Recognize superscript, subscript and drop caps (large initial characters at the start of

a paragraph).

TET Markup Language (TETML). The information retrieved from a PDF document can
be presented in an XML format called TET Markup Language (TETML) for processing
with standard XML tools. TETML contains text, image, and metadata information and
can optionally also contain font- and geometry-related details. TETML also contains col-
or and color space information as well as interactive elements such as form fields, anno-
tations, bookmarks, etc.

pCOS interface for simple access to PDF objects. TET includes the pCOS interface
(PDFlib Comprehensive Object System) for retrieving arbitrary PDF objects. With pCOS you
can retrieve PDF metadata, interactive elements (e.g. bookmark text, contents of form
fields), or any other information from a PDF document with a simple query interface.
The syntax of pCOS query path is described separately in the pCOS Path Reference.

What is text? While TET deals with a large class of PDF documents, in some cases visi-
ble text cannot be extracted. The text must be encoded using PDF’s text and encoding
facilities (i.e., it must be based on a font). Although the following flavors of text may be
visible on the page they cannot be extracted with TET:

> Rasterized (pixel image) text, e.g. scanned pages;
> Text which is represented by vector elements without any font.

Note that metadata and text in hypertext elements (such as bookmarks, form fields,
notes, or annotations) can be retrieved with TETML or the pCOS interface; see Section
6.1, »PDF Document Domains«, page 69, for details. On the other hand, TET may extract
some text which is not visible on the page. This may happen in the following situations:

> Text using PDF’s invisible attribute (however, there is an option to exclude this kind
of text from the text retrieval process)

> Text which is obscured by some other element on the page, e.g. an image.

1.2 Many ways to use TET
TET is available as a programming library (component) for various development envi-
ronments, and as a command-line tool for batch operations. Both offer similar features,
but are suitable for different deployment tasks. Both the TET library and command-line
tool can create TETML, TET’s XML-based output format.

> The TET programming library can be used for integration into your desktop or server
application. Many different programming languages are supported. Examples for

14 Chapter 1: Introduction

using the TET library with all supported language bindings are included in the TET
package.

> The TET command-line tool is suited for batch processing PDF documents. It doesn’t
require any programming, but offers command-line options which can be used to
integrate it into complex workflows.

> TETML output is suited for XML-based workflows and developers who are familiar
with the wide range of XML processing tools and languages, e.g. XSLT.

> TET connectors are suited for integrating TET in various common software packages,
e.g. databases and search engines.

> The TET Plugin is a free extension for Adobe Acrobat which makes TET available for
interactive use (see Section 4.1, »Free TET Plugin for Adobe Acrobat«, page 45, for
more information).

1.3 Roadmap to Documentation and Samples
Programming samples for the TET library. The TET distribution contains program-
ming examples for all supported language bindings. These samples can serve as a start-
ing point for your own applications, or to test your TET installation. They comprise
source code for the following applications:

> The extractor sample demonstrates the basic loop for extracting text from a PDF doc-
ument.

> The images_per_page sample extracts the images on each page and reports about
their geometry and other properties.

> The image_resources sample demonstrates the basic loop for extracting images from
a PDF document in a resource-oriented way (no geometric information available).

> The dumper sample shows the use of the integrated pCOS interface for querying gen-
eral information about a PDF document.

> The fontfilter sample shows how to process font-related information, such as font
name and font size.

> The glyphinfo sample demonstrates how to retrieve detailed information about
glyphs (font, size, position, etc.) as well as text attributes such as dropcap, shadow,
hyphenation, etc. It also shows how to access text color information.

> The tetml sample contains code for generating TETML (TET’s XML language for ex-
pressing PDF contents) from a PDF document.

> The get_attachments sample demonstrates how to process PDF file attachments, i.e.
PDF documents which are embedded in another PDF document.

XSLT samples. The TET distribution contains several XSLT stylesheets. They demon-
strate how to process TETML to achieve various goals:

> concordance.xsl: create list of unique words in a document sorted by descending fre-
quency.

> fontfilter.xsl: List all words in a document which use a particular font in a size larger
than a specified value.

> fontfinder.xsl: For all fonts in a document, list all occurrences along with page number
and position information.

> fontstat.xsl: generate font and glyph statistics.
> index.xsl: create an alphabetically sorted »back-of-the-book« index.

1.4 What’s new in TET 5.1? 15

> metadata.xsl: extract selected properties from document-level XMP metadata includ-
ed in TETML.

> solr.xsl: generate input for the Solr enterprise search server.
> table.xsl: Extract a table to a CSV file (comma-separated values).
> tetml2html.xsl: convert TETML to HTML.
> textonly.xsl: extract the raw text from TETML input.

TET Cookbook. The TET Cookbook is a collection of source code examples for solving
specific application problems with the TET library. The Cookbook examples are written
in the Java language, but can easily be adjusted to other programming languages since
the TET API is almost identical for all supported language bindings. Some Cookbook
samples are written in the XSLT language. The TET Cookbook is organized in the follow-
ing groups:

> Text: samples related to text extraction
> Font: samples related to text with a focus on font properties
> Image: samples related to image extraction
> TET & PDFlib+PDI: samples which extract information from a PDF with TET and con-

struct a new PDF based on the original PDF and the extracted information. These
samples require the PDFlib+PDI product in addition to TET.

> TETML: XSLT samples for processing TETML
> Special: other samples

The TET Cookbook is available at the following URL:
www.pdflib.com/tet-cookbook.

pCOS Cookbook. The pCOS Cookbook is a collection of code fragments for the pCOS in-
terface which is integrated in TET. It is available at the following URL:
www.pdflib.com/pcos-cookbook.

Details of the pCOS interface are documented in the pCOS Path Reference which is
included in the TET package.

1.4 What’s new in TET 5.1?
The features below are new or considerably improved in TET 5.1:

> numbered and unnumbered lists are identified and expressed in TETML
(with page option structureanalysis={list=true})

> repair mode for damaged input documents with cross-reference streams
> improved workarounds for non-conforming input documents
> improved performance for disabled image, color, and vector engines as well as for

documents without layers
> reduced memory requirements
> pCOS interface updated to version 11 with support for certificate security
> other bug fixes
> updated language bindings

1.5 What’s new in TET 5.2?
The features below are new or considerably improved in TET 5.2:

> improved table detection with row and column span identification

https://www.pdflib.com/tet-cookbook/
https://www.pdflib.com/tet-cookbook/
https://www.pdflib.com/tet-cookbook/
https://www.pdflib.com/pcos-cookbook/
https://www.pdflib.com/pcos-cookbook/

16 Chapter 1: Introduction

> mark Artifacts (irrelevant text and images) in TETML and the API
> extract text and images from annotations and patterns
> support for inline images and images in soft masks (graphics state with a Transpar-

ency Group XObject)
> new language binding for .NET Core
> enhancements in all language bindings and updates for the latest language versions
> many bug fixes, improvements and workarounds for damaged PDF
> security updates for third-party libraries
> optionally retrieve Separation and DeviceN text colors in the simpler alternate color

space instead of the rather complex native color space
> minor pCOS extensions pCOS interface 12)

1.6 What’s new in TET 5.3?
The features below are new or considerably improved in TET 5.3:

> optimized PDF resource handling to improve performance for documents with ex-
cessive numbers of images, patterns or other resources

> security and performance updates of all third-party components
> harden processing of damaged and illegal PDF documents by testing the full »Issue

Tracker« PDF corpus with tens of thousands of »stressful PDF files«
> expanded platform and CPU support including macOS on ARM64 and Linux on

ARM64
> timeout can be specified to limit processing time for large or complex files
> enhancements in all language bindings and updates for the latest language versions

including .NET 5, PHP 8, Perl 5.32 and Ruby 3.0
> support for native UTF-8, UTF-16 and UTF-32 Unicode strings in C++17 and C++20
> implement detection of certain kinds of attacks using legal PDF constructs which try

to construct overly large data structure
> improved TETML output for edge cases
> improved word boundary, list and paragraph detection
> support for Unicode 13
> improved performance of the Classic .NET binding
> many minor bug fixes and improvements
> updated character collections and CMaps for PDF 2.0

1.7 What’s new in TET 5.4?
The features below are new or considerably improved in TET 5.4:

> security and performance updates of third-party components
> enhancements in all language bindings and updates for the latest language versions

including .NET 6/7, PHP 8.1/8.2, Perl 5.34/5.36 and Ruby 3.1
> added support for arm64/x86_64 bindings on macOS
> improved TIKA and MediaWiki connectors
> many minor bug fixes and improvements

1.8 What’s new in TET 5.5? 17

1.8 What’s new in TET 5.5?
The features below are new or considerably improved in TET 5.5:

> security and performance updates of third-party components
> enhancements in all language bindings and updates for the latest language versions

including .NET 8, PHP 8.3, Perl 5.38 and Ruby 3.2
> several minor bug fixes and improvements

18 Chapter 1: Introduction

2.1 Command-Line Options 19

2 TET Command-Line Tool

2.1 Command-Line Options
The TET command-line tool allows you to extract text and images from one or more PDF
documents without the need for any programming. Output can be generated in plain
text (Unicode) format or in TETML, TET’s XML-based output format. The TET program
can be controlled via command-line options. The program inserts space characters
(U+0020) after each word, U+000A after each line, and U+000C after each page. It is
called as follows for one or more input PDF files:

tet [<options>] <filename>...

The TET command-line tool is built on top of the TET library. You can supply library op-
tions using the --docopt, --tetopt, --imageopt, and --pageopt options according to the op-
tion list tables in Chapter 10, »TET Library API Reference«, page 159. Table 2.1 lists all TET
command-line options (this list is also displayed if you run the TET program without
any options).

Note In order to extract CJK text from certain PDF documents you must configure access to the
CMap files which are shipped with TET (see Section 0.1, »Installing the Software«, page 7).

Table 2.1 TET command-line options

option parameters function

-- End the list of options; this is useful if file names start with a - character.

@filename1 Specify a response file with options; for a syntax description see »Response files«,
page 22. Response files are only recognized before the -- option and before the
first filename. Response files cannot be used to replace the parameter for another
option, but must contain complete option/parameter combinations.

--docopt <option list> Additional option list for TET_open_document() (see Table 10.8, page 180). The
filename suboption of the tetml option cannot be used here.

--firstpage
-f

<integer> | last (Ignored for --imageloop resource) The number of the page where content ex-
traction will start. The keyword last specifies the last page, last-1 the page be-
fore the last page, etc. Default: 1

--format utf8 | utf16 Specifies the format for text output (default: utf8):
utf8 UTF-8 with BOM (byte order mark)
utf16 UTF-16 in native byte ordering with BOM
This option does not affect TETML output which is always created in UTF-8.

--help, -?
(or no option)

Display help with a summary of available options.

--image2

-i
Extract images from the whole document (with --imageloop resource) or the
selected pages (with --imageloop page). The file names of extracted images de-
pend on the --imageloop option (see below).

20 Chapter 2: TET Command-Line Tool

--imageloop page | resource Specifies the kind of enumeration for extracting images with the --image option
(default: page, but forced to resource if --tetml is specified):
page Extract all images on the selected page(s). Image resources which are

placed multiply are extracted multiply.
resource Extract all plain and merged image resources in the document. Each

image resource is extracted once, regardless of the number of occur-
rences in the document. Since no size information is available for
image resources, a dummy value of 72 dpi is embedded in generated
TIFF images.

--imageopt <option list> Additional option list for TET_write_image_file() (see Table 10.20, page 206)

--lastpage
-l

<integer> | last (Ignored for --imageloop resource) The number of the page where content ex-
traction will finish. The keyword last specifies the last page, last-1 the page be-
fore the last page, etc. Default: last

--outfile
-o

<filename> (Not allowed if multiple input file names are supplied) File name for text or TETML
output. The file name »-« can be used to designate standard output provided only
a single input file has been supplied. Default: name of the input file, with .pdf or
.PDF replaced with .txt (for text output) or .tetml (for TETML output).

--pagecount Print the number of pages in the document, i.e. the value of the pCOS path
length:pages, to stdout or the file provided with --outfile.

--pageopt <option list> Additional page option list for TET_open_page() if text output is generated, or for
TET_process_page() if TETML output is generated (see Table 10.10, page 188, and
Table 10.21, page 208). For text output the option granularity is always set to
page.

--password,
-p

<password> User, master or attachment password for encrypted documents. In some situa-
tions the shrug feature can be used to index protected documents without sup-
plying a password (see Section 5.1, »Extracting Content from protected PDF«, page
59).

--samedir Create output files in the same directory as the input file(s).

--searchpath1

-s
<path>... Name of one or more directories where files (e.g. CMaps) are searched. Default: in-

stallation-specific

--targetdir
-t

<dirname> Output directory for generated text, TETML, and image files. The directory must
exist. This option is ignored if --samedir is specified. Default: . (i.e. the current
working directory)

--tetml
-m

glyph |
image |
word |
wordplus3 |
line |
page

(Cannot be combined with --text) Create TETML output with information about
text, images, and interactive elements. TETML is created in UTF-8 format. The sup-
plied parameter selects one of several variants (see Section 9.3, »Controlling TET-
ML Details«, page 139):
glyph Glyph-based TETML with glyph geometry and font details
image TETML with image information, but without text and interactive

elements
line Line-based TETML
page Page-based TETML
word Word-based TETML with word boxes
wordplus Word-based TETML with word boxes plus all glyph details
Attachments, bookmarks and destinations are included in the TETML only if all
pages of the documents are processed (see --firstpage and --lastpage).

Table 2.1 TET command-line options

option parameters function

2.1 Command-Line Options 21

Image file names. The file names for extracted images depend on the --imageloop op-
tion. For --imageloop page the extracted placed images are named according to the fol-
lowing pattern:

<filename>_p<pagenumber>_<imagenumber>.[tif|jpg|jp2|jpf|j2k|jbig2]

If an image is designated as Artifact (irrelevant content) the following file name pattern
is used:

<filename>_p<pagenumber>_<imagenumber>_artifact.[tif|jpg|jp2|jpf|j2k|jbig2]

Images which are used as mask for another image are named according to the following
pattern (imagenumber is the number of the masked image):

<filename>_p<pagenumber>_<imagenumber>_mask[_artifact].[tif|jpg|jp2|jpf|j2k|jbig2]

For --imageloop resource the extracted image resources (including images used as mask
for another image) are named according to the following pattern:

<filename>_I<imageid>.[tif|jpg|jp2|jpf|j2k|jbig2]

Here imageid is the index in the images[] resource array. The same image file name pat-
terns are used in the TETML attribute Image/@filename.

--tetopt <option list> Additional option list for TET_set_option() (see Table 10.2, page 167). The option
outputformat is ignored (use --format instead).

--text2 (Cannot be combined with --tetml) Extract text from the document (enabled by
default)

--verbose
-v

0 | 1 | 2 | 3 verbosity level (default: 1):
0 no output at all
1 emit only errors
2 emit errors and file names
3 detailed reporting

--version, -V Print the TET version number.

1. This option can be supplied more than once.
2. The option --image disables text extraction by default, but it can be combined with --text or --tetml.
3. The option --tetml wordplus internally sets the page option tetml={glyphdetails={all}}. If the tetml page option is also sup-
plied with --pageopt, e.g.--pageopt glyphdetails={all}, the internal option is overriddedn, i.e. no glyph details are emitted just
like in word mode.

Table 2.1 TET command-line options

option parameters function

22 Chapter 2: TET Command-Line Tool

2.2 Constructing TET Command Lines
The following rules must be observed for constructing TET command lines:

> Input files are searched in all directories specified as searchpath.
> Short forms are available for some options, and can be mixed with long options.
> Long options can be abbreviated provided the abbreviation is unique.
> Depending on the encryption status of the input file, a user or master password may

be required for successfully extracting text. It must be supplied with the --password
option. TET will check whether this password is sufficient for content extraction, and
will generate an error if it isn’t.

TET checks the full command line before processing any file. If an error is encountered
in the options anywhere on the command line, no files are processed at all.

File names. File names which contain blank characters require some special handling
when used with command-line tools like TET. In order to process a file name with blank
characters you should enclose the complete file name with double quote " characters.
Wildcards can be used according to standard practice. For example, *.pdf denotes all files
in a given directory which have a .pdf file name suffix. Note that on some systems case
is significant, while on others it isn’t (i.e., *.pdf may be different from *.PDF). Also note
that on Windows systems wildcards do not work for file names containing blank charac-
ters. Wildcards are evaluated in the current directory, not any searchpath directory.

On Windows all file name options accept Unicode strings, e.g. as a result of dragging
files from the Explorer to a command prompt window.

Response files. In addition to options supplied directly on the command-line, options
can also be supplied in a response file. The contents of a response file are inserted in the
command-line at the location where the @filename option was found.

A response file is a simple text file with options and parameters. It must adhere to
the following syntax rules:

> Option values must be separated with whitespace, i.e. space, linefeed, return, or tab.
> Values which contain whitespace must be enclosed with double quotation marks: "
> Double quotation marks at the beginning and end of a value are omitted.
> A double quotation mark must be masked with a backslash to use it literally: \"
> A backslash character must be masked with another backslash to use it literally: \\

Response files can be nested, i.e. the @filename syntax can itself be used in a response
file.

Response files may contain Unicode strings for file name arguments. Response files
can be encoded in UTF-8, EBCDIC-UTF-8, or UTF-16 format and must start with the corre-
sponding BOM. If no BOM is found, the contents of the response file are interpreted in
EBCDIC on Z, and in ISO 8859-1 (Latin-1) on all other systems.

Exit codes. The TET command-line tool returns with an exit code which can be used to
check whether or not the requested operations could be successfully carried out:

> Exit code 0: all command-line options could be successfully and fully processed.
> Exit code 1: one or more file processing errors occurred, but processing continued.
> Exit code 2: some error was found in the command-line options. Processing stopped

at the particular bad option, and no input file has been processed.

2.3 Command-Line Examples 23

2.3 Command-Line Examples
The following examples demonstrate some useful combinations of TET command-line
options.

2.3.1 Extracting Text
Extract the text from a PDF document file.pdf in UTF-8 format and store it in file.txt:

tet file.pdf

Exclude the first and last page from text extraction:
tet --firstpage 2 --lastpage last-1 file.pdfSupply a directory where the CJK CMaps are
located (required for CJK text extraction):

tet --searchpath /usr/local/cmaps file.pdf

Extract the text from a PDF in UTF-16 format and store it in file.utf16:

tet --format utf16 --outfile file.utf16 file.pdf

Extract the text from all PDF files in a directory and store the generated *.txt files in an-
other directory (which must already exist):

tet --targetdir out in/*.pdf

Extract the text from all PDF files from two directories and store the generated *.txt files
in the same directory as the corresponding input document:

tet --samedir dir1/*.pdf dir2/*.pdf

Restrict text extraction to a particular area on the page:

tet --pageopt "includebox={{0 0 200 200}}" file.pdf

Use a response file which contains various command-line options and process all PDF
documents in the current directory (the file options contains command-line options):

tet @options *.pdf

2.3.2 Extracting Images
Extract images from file.pdf in a page-oriented manner and store them in the directory
out:

tet --targetdir out --image file.pdf

Extract images from file.pdf in a resource-oriented manner and store them in the direc-
tory out:

tet --targetdir out --image --imageloop resource file.pdf

Extract images from file.pdf without image merging; this can be achieved by supplying a
list of page options for image processing:

tet --targetdir out --image --pageopt "imageanalysis={merge={disable}}" file.pdf

24 Chapter 2: TET Command-Line Tool

2.3.3 Generating TETML
Generate TETML output in word mode for PDF document file.pdf and store it in file.tetml:

tet --tetml word file.pdf

Generate TETML output without any Options elements; this can be achieved by supply-
ing a suitable list of document options:

tet --docopt "tetml={elements={options=false}}" --tetml word file.pdf

Generate TETML output in word mode with all glyph details and store it in file.tetml:

tet --tetml word --pageopt "tetml={glyphdetails={all}}" file.pdf

Extract images and generate TETML with text and image information:

tet --image --tetml word file.pdf

Extract images and generate TETML image information, but no text:

tet --tetml image --image file.pdf

Generate TETML output with topdown coordinates:

tet --tetml word --pageopt "topdown={output}" file.pdf

Generate TETML output with improved table detection:

tet --tetml word --pageopt "vectoranalysis={structures=tables}" file.pdf

2.3.4 Advanced Options
Apply Unicode foldings, e.g. space folding: map all variants of Unicode space characters
to U+0020:

tet --docopt "fold={{[:blank:] U+0020}}" file.pdf

Disable punctuation as word boundary:

tet --pageopt "contentanalysis={punctuationbreaks=false}" file.pdf

3.1 C Binding 25

3 TET Library Language Bindings
Note It is strongly recommended to take a look at the examples which are contained in all TET pack-

ages. They provide a convenient starting point for your own application development and cov-
er many important aspects of TET programming.

3.1 C Binding
In order to use the C binding you can use a static or shared library (DLL on Windows and
MVS), and you need the central TET include file tetlib.h for inclusion in your client
source modules.

Note Applications which use the TET binding for C must be linked with a C++ linker since the library
includes parts which are implemented in C++. Using a C linker may result in unresolved exter-
nals unless the application is linked against the required C++ support libraries.

Exception handling. The TET API provides a mechanism for acting upon exceptions
thrown by the library in order to compensate for the lack of native exception handling
in the C language. Using the TET_TRY() and TET_CATCH() macros client code can be set up
such that a dedicated piece of code is invoked for error handling and cleanup when an
exception occurs. These macros set up two code sections: the try clause with code which
may throw an exception, and the catch clause with code which acts upon an exception.
If any of the API methods called in the try block throws an exception, program execu-
tion will continue at the first statement of the catch block immediately. The following
rules must be obeyed in TET client code:

> TET_TRY() and TET_CATCH() must always be paired.
> TET_new() will never throw an exception; since a try block can only be started with a

valid TET object handle, TET_new() must be called outside of any try block.
> TET_delete() will never throw an exception, and therefore can safely be called outside

of any try block. It can also be called in a catch clause.
> Special care must be taken about variables that are used in both the try and catch

blocks. Since the compiler doesn’t know about the transfer of control from one block
to the other, it might produce inappropriate code (e.g., register variable optimiza-
tions) in this situation.
Fortunately, there is a simple rule to avoid this kind of problem: Variables used in
both the try and catch blocks must be declared volatile. Using the volatile keyword sig-
nals to the compiler that it must not apply dangerous optimizations to the variable.

> If a try block is left (e.g., with a return statement, thus bypassing the invocation of the
corresponding TET_CATCH()), the TET_EXIT_TRY() macro must be called before the re-
turn statement to inform the exception machinery.

> Document processing must stop when an exception was thrown.

The following code fragment demonstrates these rules with the typical idiom for deal-
ing with TET exceptions in client code (a full sample can be found in the TET package):

TET *tet;
volatile int pageno;
...
/* Create a new TET object */

26 Chapter 3: TET Library Language Bindings

if ((tet = TET_new()) == (TET *) 0)
{

printf("Couldn't create TET object (out of memory)\n");
return(2);

}
TET_TRY(tet)
{

for (pageno = 1; pageno <= n_pages; ++pageno)
{
 /* process page */

if (/* error happened */)
{

TET_EXIT_TRY(tet);
return -1;

}
}
/* statements that directly or indirectly call API methods */

}
TET_CATCH(tet)
{

printf("TET exception %d in %s() on page %d: %s\n",
TET_get_errnum(tet), TET_get_apiname(tet), pageno, TET_get_errmsg(tet));

}
TET_delete(tet);

Volatile variables. Special care must be taken regarding variables that are used in both
the TET_TRY() and the TET_CATCH() blocks. Since the compiler doesn’t know about the
control transfer from one block to the other, it might produce inappropriate code (e.g.,
register variable optimizations) in this situation. Fortunately, there is a simple rule to
avoid these problems:

Note Variables used in both the TET_TRY() and TET_CATCH() blocks should be declared volatile.

Using the volatile keyword signals to the compiler that it must not apply (potentially
dangerous) optimizations to the variable.

Unicode handling for name strings. The C programming language supports genuine
Unicode strings only in version C11. Since this version is not yet widely supported, TET
offers Unicode support based on the traditional char data type. Some string parameters
for API methods may be declared as name strings. These are handled depending on the
length parameter and the existence of a BOM at the beginning of the string. In C, if the
length parameter is different from 0 the string is interpreted as UTF-16. If the length pa-
rameter is 0 the string is interpreted as UTF-8 if it starts with a UTF-8 BOM, or as EBCDIC
UTF-8 if it starts with an EBCDIC UTF-8 BOM, or as auto encoding if no BOM is found (or
ebcdic on EBCDIC-based platforms).

Unicode handling for option lists. Strings within option lists require special attention
since they cannot be expressed as Unicode strings in UTF-16 format, but only as byte ar-
rays. For this reason UTF-8 is used for Unicode options. By looking for a BOM at the be-
ginning of an option TET decides how to interpret it. The BOM is used to determine the
format of the string. More precisely, interpreting a string option works as follows:

> If the option starts with a UTF-8 BOM (\xEF\xBB\xBF) it is interpreted as UTF-8.
> If the option starts with an EBCDIC UTF-8 BOM (\x57\x8B\xAB) it is interpreted as

EBCDIC UTF-8.

3.1 C Binding 27

> If no BOM is found, the string is treated as winansi (or ebcdic on EBCDIC-based plat-
forms).

Note The TET_convert_to_unicode() utility function can be used to create UTF-8 strings from UTF-16
strings, which is useful for creating option lists with Unicode values.

Using TET as a DLL loaded at runtime. While most clients will use TET as a statically
bound library or a dynamic library which is bound at link time, you can also load the
DLL at runtime and dynamically fetch pointers to all API methods. This is especially use-
ful to load the DLL only on demand. TET supports a special mechanism to facilitate this
dynamic usage. It works according to the following rules (this is demonstrated in the
extractordl.c sample):

> Include tetlibdl.h instead of tetlib.h.
> Use TET_new_dl() and TET_delete_dl() instead of TET_new() and TET_delete().
> Use TET_TRY_DL() and TET_CATCH_DL() instead of TET_TRY() and TET_CATCH().
> Use function pointers for all other TET calls.
> Compile the auxiliary module tetlibdl.c and link your application against the result-

ing object file.

The dynamic loading mechanism is demonstrated in the extractordl.c sample.

28 Chapter 3: TET Library Language Bindings

3.2 C++ Binding
An object-oriented wrapper for C++ is available for TET clients. It requires the tet.hpp
header file which in turn includes tetlib.h. The template-driven TET interface supports
different string types for passing data from and to TET.

Default interface based on wstring. Strings of the C++ type std::wstring are used for all
strings in the API. This is the default string type unless one of the types discussed below
is selected.

The default interface assumes that all strings passed to and from TET methods are
native wstrings. Depending on the size of the wchar_t data type, wstrings are assumed to
contain Unicode strings encoded in UTF-16 (2-byte characters) or UTF-32 (4-byte charac-
ters). Literal strings in the source code must be prefixed with L to designate wide strings.

Use of the default std::wstring interface is demonstrated in the extractor sample and
all other C++ samples.

Optional UTF-8/UTF-16/UTF-32 interfaces based on u8string/u16string/u32string. The
std::u8string type requires C++20, while the std::u16string and std::u32string types require
at least C++11. As the names imply they store Unicode characters in UTF-8, UTF-16 or
UTF-32 format. These interfaces can be activated by setting one of the TET_CPP_
U8STRING, TET_CPP_U16STRING or TET_CPP_U32STRING macros before including tet.hpp.
Their use is demonstrated in the extractor_u8string, extractor_u16string and extractor_
u32string samples.

Optional UTF-8 interface based on string. All C++ versions support the std::string data
type. This interface can be activated by setting the TET_CPP_STRING macro before includ-
ing tet.hpp. Unlike the u8string interface there is no UTF-8 compiler support with this
string type. The client code is responsible for properly filling and interpreting strings
with UTF-8.

Use of the UTF-8-based std::string interface is demonstrated in the extractor_string
sample.

Note The API descriptions in Chapter 10, »TET Library API Reference«, page 159, use the generic type
String as a placeholder for one of the selected string data types.

Error handling in C++. TET API methods throw a C++ exception in case of an error.
These exceptions must be caught in the client code by using C++ try/catch clauses. In or-
der to provide extended error information the TET class provides a public TET::Exception
class which exposes methods for retrieving the detailed error message, the exception
number, and the name of the TET API method which threw the exception.

Native C++ exceptions thrown by TET methods behave as expected. The following
code fragment catches exceptions thrown by TET:

try {
TET tet
...TET instructions...

} catch (TET::Exception &ex) {
wcerr << L"Error " << ex.get_errnum()
<< L" in " << ex.get_apiname()
<< L"(): " << ex.get_errmsg() << endl;

}

3.2 C++ Binding 29

Using TET as a DLL loaded at runtime. The C++ binding allows you to dynamically at-
tach TET to your application at runtime (see »Using TET as a DLL loaded at runtime«,
page 27). Dynamic loading can be enabled as follows when compiling the application
module which includes tet.hpp:

#define TETCPP_DL 1

In addition you must compile the auxiliary module tetlibdl.c and link your application
against the resulting object file (this is demonstrated in the extractordl sample project).
Since the details of dynamic loading are hidden in the TET object it does not affect the
C++ API: all method calls look the same regardless of whether or not dynamic loading is
enabled.

30 Chapter 3: TET Library Language Bindings

3.3 Java Binding
Installing the TET Java edition. TET is organized as a Java package with the name
com.pdflib.TET. This package relies on a native JNI library; both pieces must be configured
appropriately.

In order to make the JNI library available the following platform-dependent steps
must be performed:

> On Unix systems the library libtet_java.so (on macOS: libtet_java.jnilib) must be placed
in one of the default locations for shared libraries, or in an appropriately configured
directory.

> On Windows the library tet_java.dll must be placed in the Windows system directory,
or a directory which is listed in the PATH environment variable.

The TET Java package is contained in the TET.jar file. In order to supply this package to
your application, you must add TET.jar to your CLASSPATH environment variable, add the
option -classpath TET.jar in your calls to the Java compiler, or perform equivalent steps in
your Java IDE. In the JDK you can configure the Java VM to search for native libraries in a
given directory by setting the java.library.path property to the name of the directory, e.g.

java -Djava.library.path=. extractor

You can check the value of this property as follows:

System.out.println(System.getProperty("java.library.path"));

Unicode and legacy encoding conversion. For the convenience of TET users we list
some useful string conversion methods here. Please refer to the Java documentation for
more details.

The following constructor creates a Unicode string from a byte array, using the plat-
form’s default encoding:

String(byte[] bytes)

The following constructor creates a Unicode string from a byte array, using the encod-
ing supplied in the enc parameter (e.g. SJIS, UTF8, UTF-16):

String(byte[] bytes, String enc)

The following method of the String class converts a Unicode string to a string according
to the encoding specified in the enc parameter:

byte[] getBytes(String enc)

Javadoc documentation for TET. The TET package contains Javadoc documentation for
TET. The Javadoc contains only abbreviated descriptions of all TET API methods; please
refer to Section 10, »TET Library API Reference«, page 159, for more details.

In order to configure Javadoc for TET in Eclipse proceed as follows:
> In the Package Explorer right-click on the Java project and select Javadoc Location.
> Click on Browse... and select the path where the Javadoc (which is part of the TET

package) is located.

After these steps you can browse the Javadoc for TET, e.g. with the Java Browsing perspec-
tive or via the Help menu.

3.3 Java Binding 31

Exception handling. The TET binding for Java throws native Java exceptions of the
class TETException. TET client code must use standard Java exception syntax:

try {
tet = new TET();
...TET instructions...

} catch (TETException e) {
System.err.println("TET exception occurred:");
System.err.println("[" + e.get_errnum() + "] " + e.get_apiname() + ": " +

e.get_errmsg());

} catch (Exception e) {
System.err.println(e);

} finally {
if (tet != null) {

tet.delete(); /* delete the TET object */
}

}

Since TET declares appropriate throws clauses, client code must either catch all possible
exceptions or declare those itself.

32 Chapter 3: TET Library Language Bindings

3.4 .NET Binding
Note The .NET binding is delivered as a universal package for all supported platforms. However, it

still requires a platform-specific license key which cannot be transferred across platforms.

Table 3.1 describes general aspects of the .NET binding.

Installing TET.NET. The product is supplied as NuGet package where the package name
includes the version number. Internal the packages for .NET use semantic version ac-
cording to .NET rules. As a result, the internal version numbers differ from the regular
product version number. A mapping table for both numbering schemes is available in
compatibility.txt.

The NuGet package can be installed locally using any of the following methods:
> The dotnet command-line tool (all platforms). This method is detailed in the next

section.
> Visual Studio’s Package Manager UI (Windows and macOS)
> Visual Studio’s Package Manager Console (Windows)
> The nuget command-line tool (all platforms)

The project files for the supplied samples are prepared for target framework .NET 6.0
(target framework moniker TFM=net6.0).

Installing TET for .NET with the dotnet command-line tool. We describe the installa-
tion, configuration and build process with the dotnet utility, using the supplied
extractor project as an example:

> Unpack the product package in a directory of your choice.
> In a command shell cd to the extractor project directory:

cd <installdir>\bind\dotnet\csharp\extractor

Table 3.1 General properties of the .NET binding

Topic Implementation of the .NET binding

.NET support .NET Standard 2.0 and above, e.g. .NET Core 3.1, .NET 6/7

.NET Framework support .NET Framework 4.6.1 and above

target platforms Windows, Linux, macOS; see system-requirements.txt for exact list of platform/
architecture combinations

download package universal zip package for all supported platforms

package contents NuGet package with managed and native libraries, documentation, and samples

implementation C# assembly TET_dotnet.dll with managed code and platform-specific shared li-
brary TET_dotnet_native.[dll|so|dylib] with native code

.NET integration C# Interop via explicit PInvoke

versioning scheme The versioning scheme conforms to .NET rules. The .NET version numbers are visi-
ble e.g. in the NuGet cache and .csproj project files. They differ from the prod-
uct’s major and minor release numbers. A mapping between both versioning
schemes can be found in compatibility.txt.

3.4 .NET Binding 33

> (This step is not required for the supplied samples which reference the package with
a local NuGet.Config file) Copy the NuGet package to the application’s project directo-
ry:

<installdir>/bind/dotnet/TET_dotnet.X.Y.Z.nupkg

> (This step is not required for the supplied samples which already contain a reference
to TET) Enter the following command with the appropriate version number (the ver-
sion number can be found in the name of the .nupkg file):

dotnet add package TET_dotnet.X.Y.Z

This command adds a TET reference to the .csproj project file. It also installs TET in
the local NuGet package cache if it is not yet present, e.g.

~/.nuget/packages/tet_dotnet/X.Y.Z

Because of this caching you must copy the *.nupkg only for the first project. Subse-
quent projects don’t require the package file since it is taken from the cache.

> Now you can build and run the extractor project to test it:

dotnet build
dotnet run

As a result you will find the generated TET-datasheet.txt output document in the ap-
plication directory.

Full examples with ready-to-use configuration are included in all packages. Once the
.NET binding is properly referenced you can use the TET_dotnet.TET and TET_
dotnet.TETException classes.

Installing TET.NET in a .NET Framework project. Proceed as follows to add TET.NET to a
.NET Framework 4.x project with Visual Studio:

> Add a reference to TET_dotnet.x.y.z.nupkg with the NuGet Package manager. As a re-
sult a reference to TET_dotnet is added to your project as well as a packages.config
management file.

> In the context menu of packages.config choose Migrate packages.config to Package-
Reference... to convert the reference (which initially points only to TET_dotnet.dll) to a
NuGet package reference.

> In the Configuration Manager create a New Solution Platform with the name x86 (32-bit)
or x64 (64-bit). Do not use the setting Any CPU since it won’t work.

> If you plan to use the built-in IIS the selected Bitness must match the platform; set
x86 or x64 appropriately via Project, Properties, Web, Servers.

> If you change the configuration you must rebuild the project to ensure that the cor-
rect version of TET_dotnet_native.dll is copied to the bin directory.

Error handling in .NET. The .NET binding supports .NET exceptions and will throw an
exception with a detailed error message when a runtime problem occurs. The client is
responsible for catching such an exception and properly reacting on it. Otherwise the
.NET framework will catch the exception and usually terminate the application.

In order to convey exception-related information TET defines its own exception
class TET_dotnet.TETException with the members get_errnum, get_errmsg, and get_
apiname. TET implements the IDisposable interface which means that clients can call the
Dispose() method for cleanup.

34 Chapter 3: TET Library Language Bindings

Client code can handle .NET exceptions thrown by PDFlib with the usual try...catch
construct:

try {
p = new TET();
...TET instructions...

} catch (TETException e) {
// caught exception thrown by TET
Console.WriteLine("TET exception occurred:\n");
Console.WriteLine("[{0}] {1}: {2}\n",

e.get_errnum(), e.get_apiname(), e.get_errmsg());
} finally {

if (p != null) {
p.Dispose();

}
}

3.5 Objective-C Binding 35

3.5 Objective-C Binding
Although the C and C++ language bindings can be used with Objective-C, a genuine lan-
guage binding for Objective-C is also available. The TET framework is available in the
following flavors:

> TET for use on macOS
Both frameworks contain language bindings for C, C++, and Objective-C.

Installing the TET Edition for Objective-C on macOS. In order to use TET in your appli-
cation you must copy TET.framework to the directory /Library/Frameworks. Installing the
TET framework in a different location is possible, but requires use of Apple’s install_
name_tool which is not described here. The TET_objc.h header file with TET method dec-
larations must be imported in the application source code:

#import "TET/TET_objc.h"

In order to embed the TET framework in an app XCode’s code signing expects a frame-
work with the version number A while PDFlib products use numeric version numbers.
In order to get around this you can create an appropriately named framework folder as
follows:

cd TET.framework/Versions
mv 5.5 A
rm Current
ln -s A Current

Parameter naming conventions. For TET method calls you must supply parameters ac-
cording to the following conventions:

> The value of the first parameter is provided directly after the method name, separat-
ed by a colon character.

> For each subsequent parameter the parameter’s name and its value (again separated
from each other by a colon character) must be provided. The parameter names can
be found in Chapter 10, »TET Library API Reference«, page 159, and in TET_objc.h.

For example, the following line in the API description:

int open_page(int doc, int pagenumber, String optlist)

corresponds to the following Objective-C method:

- (NSInteger) open_page: (NSInteger) doc pagenumber: (NSInteger) pagenumber optlist:
(NSString *) optlist;

This means your application must make a call similar to the following:

page = [tet open_page:doc pagenumber:pageno optlist:pageoptlist];

Xcode Code Sense for code completion can be used with the TET framework.

Error handling in Objective-C. The Objective-C binding translates TET exceptions to
native Objective-C exceptions. In case of a runtime problem TET throws a native Objec-
tive-C exception of the class TETException. These exceptions can be handled with the
usual try/catch mechanism:

36 Chapter 3: TET Library Language Bindings

TET *tet = NULL;

@try {
tet = [[TET alloc] init];
...TET instructions...

}
@catch (TETException *ex) {

NSLog(@"Error %ld in %@(): %@\n",
[ex get_errnum], [ex get_apiname], [ex get_errmsg]);

}
@catch (NSException *ex) {

NSLog(@"%@: %@", [ex name], [ex reason]);
}
@finally {

if (tet)
[tet release];

}

In addition to the get_errmsg method you can also use the reason field of the exception
object to retrieve the error message.

3.6 Perl Binding 37

3.6 Perl Binding
The TET wrapper for Perl consists of a C wrapper and two Perl package modules, one for
providing a Perl equivalent for each TET API method and another one for the TET object.
The C module is used to build a shared library which the Perl interpreter loads at run-
time, with some help from the package file. Perl scripts refer to the shared library mod-
ule via a use statement.

Installing the TET Edition for Perl. The Perl extension mechanism loads shared librar-
ies at runtime through the DynaLoader module. The Perl executable must have been
compiled with support for shared libraries (this is true for the majority of Perl configu-
rations).

For the TET binding to work, the Perl interpreter must access the TET Perl wrapper
and the modules tetlib_pl.pm and PDFlib/TET.pm. In addition to the platform-specific
methods described below you can add a directory to Perl’s @INC module search path us-
ing the -I command line option:

perl -I/path/to/tet extractor.pl

Unix. Perl will search tetlib_pl.so (on macOS: tetlib_pl.bundle), tetlib_pl.pm and PDFlib/
TET.pm in the current directory, or the directory printed by the following Perl command:

perl -e 'use Config; print $Config{sitearchexp};'

Perl will also search the subdirectory auto/tetlib_pl. Typical output of the above com-
mand looks like

/usr/lib/perl5/site_perl/5.36/i686-linux

Windows. The DLL tetlib_pl.dll and the modules tetlib_pl.pm and PDFlib/TET.pm is
searched in the current directory, or the directory printed by the following Perl com-
mand:

perl -e "use Config; print $Config{sitearchexp};"

Typical output of the above command looks like

C:\Program Files\Perl5.36\site\lib

Exception Handling in Perl. When a TET exception occurs, a Perl exception is thrown. It
can be caught and acted upon using an eval sequence:

eval {
my $tet = new PDFlib::TET;
...TET instructions...

};
if ($@) {

die("$0: TET Exception occurred:\n$@");
}

38 Chapter 3: TET Library Language Bindings

3.7 PHP Binding
Note Detailed information about the various flavors and options for using TET with PHP, can be

found in the PDFlib-in-PHP-HowTo document which is included in the distribution packages
and available on the PDFlib Web site. Although it is mainly targeted at using PDFlib with PHP
the discussion applies equally to using TET with PHP.

Installing the TET Edition for PHP. TET is implemented as a C library which can dy-
namically be attached to PHP. TET supports several versions of PHP. Depending on the
version of PHP you use you must choose the appropriate TET library from the unpacked
TET archive.

You must configure PHP so that it knows about the TET library. Add the following
line in php.ini:

extension=php_tet

PHP searches the library in the directory specified in the extension_dir variable in php.ini
on Unix, and additionally in the standard system directories on Windows. You can test
which version of the PHP TET binding you have installed with the following one-line
PHP script:

<?phpinfo()?>

This will display a long info page about your current PHP configuration. On this page
check the section titled tet. If this section contains the phrase

PDFlib TET Support enabled

(plus the TET version number) you have successfully installed TET for PHP.

File name handling in PHP. Unqualified file names (without any path component) and
relative file names are handled differently in Unix and Windows versions of PHP:

> PHP on Unix systems will find files without any path component in the directory
where the script is located.

> PHP on Windows will find files without any path component only in the directory
where the PHP DLL is located.

Exception handling in PHP. Since PHP supports structured exception handling, TET
exceptions are propagated as PHP exceptions. You can use the standard try/catch tech-
nique to deal with TET exceptions:

try {
$tet = new TET();
...TET instructions...

} catch (TETException $e) {
print "TET exception occurred:\n";
print "[" . $e->get_errnum() . "] " . $e->get_apiname() . ": "

$e->get_errmsg() . "\n";
}
catch (Throwable $e) {

print $e;
}

3.7 PHP Binding 39

Developing with Eclipse and Zend Studio. The PHP Development Tools (PDT) support
PHP development with Eclipse and Zend Studio. PDT can be configured to support con-
text-sensitive help with the steps outlined below.

Add TET to the Eclipse preferences so that it is known to all PHP projects:
> Select Window, Preferences, PHP, Source Paths, Libraries, New... to launch a wizard.
> In User library name enter TET, click Add External folder... and select the folder

bind\php\Eclipse PDT.

In an existing or new PHP project you can add a reference to the TET library as follows:
> In the PHP Explorer right-click on the PHP project and select Include Path, Configure

Include Path...
> Go to the Libraries tab, click Add Library..., and select User Library, TET.

After these steps you can explore the list of TET methods under the PHP Include Path/TET/
TET node in the PHP Explorer view. When writing new PHP code Eclipse will assist with
code completion and context-sensitive help for all TET methods.

3.8 Python Binding
Installing the TET edition for Python. The Python extension mechanism works by
loading shared libraries at runtime. For the TET binding to work, the Python interpreter
must have access to the TET Python wrapper which is searched in the directories listed
in the PYTHONPATH environment variable. The name of Python wrapper depends on
the platform:

> Unix and macOS: tetlib_py.so
> Windows: tetlib_py.pyd

In addition to the TET library the following files must be available in the same directory
where the library sits:

> PDFlib/TET.py

Error Handling in Python. The Python binding throws a TETException in case of an er-
ror. The Python exceptions can be dealt with by the usual try/except technique:

try:
tet = TET()
...TET instructions...

except TETException as ex:
print("Error %d in %s(): %s" % (ex.errnum, ex.apiname, ex.errmsg))

except Exception as ex:
print(ex)

finally:
if tet:

tet.delete()

3.9 Ruby Binding 41

3.9 Ruby Binding
Installing the TET Ruby edition. The Ruby extension mechanism works by loading a
shared library at runtime. For the TET binding to work, the Ruby interpreter must have
access to the TET extension library for Ruby. This library (on Windows and Unix: TET.so;
on macOS: TET.bundle) will usually be installed in the site_ruby branch of the local ruby
installation directory, i.e. in a directory with a name similar to the following:

/usr/local/lib/ruby/site_ruby/<version>/

However, Ruby will search other directories for extensions as well. In order to retrieve a
list of these directories you can use the following ruby call:

ruby -e "puts $:"

This list will usually include the current directory, so for testing purposes you can sim-
ply place the TET extension library and the scripts in the same directory.

Error Handling in Ruby. The Ruby binding installs an error handler which translates
TET exceptions to native Ruby exceptions. The Ruby exceptions can be dealt with by the
usual rescue technique:

begin
tet = TET.new
...TET instructions...

rescue TETException => pe
 print pe.backtrace.join("\n") + "\n"
 print "Error [" + pe.get_errnum.to_s + "] " + pe.get_apiname + ": " + pe.get_errmsg
 print " on page pageno" if (pageno != 0)
 print "\n"
rescue Exception => e
 print e.backtrace.join("\n") + "\n" + e.to_s + "\n"
ensure
 tet.delete() if tet
end

Ruby on Rails. Ruby on Rails is an open-source framework which facilitates Web devel-
opment with Ruby. The TET extension for Ruby can be used with Ruby on Rails. Follow
these steps to run the TET examples for Ruby on Rails:

> Install Ruby and Ruby on Rails.
> Set up a new controller from the command line:

$ rails new tetdemo

$ cd tetdemo

$ cp <TET dir>/bind/ruby/<version>/TET.so vendor/ # use .so/.dll/.bundle

$ cp <TET dir>/bind/data/TET-datasheet.pdf .

$ rails generate controller home demo

$ rm public/index.html

> Edit config/routes.rb:

...

remember to delete public/index.html

root :to => "home#demo"

42 Chapter 3: TET Library Language Bindings

> Edit app/controllers/home_controller.rb as follows and insert TET code for extracting
PDF contents. As a starting point you can use the code in the extractor-rails.rb sample:

class HomeController < ApplicationController
def demo
require "TET"
begin

p = TET.new
doc = tet.open_document(infilename, docoptlist)
...TET application code, see extractor-rails.rb...
...
and finally show the retrieved text
send_data text, :type => "text/plain", :disposition => "inline"
rescue TETException => pe
error handling

end
end
end

> In order to test your installation start the WEBrick server with the command

$ rails server

and point your browser to http://0.0.0.0:3000. The text extracted from the PDF docu-
ment is displayed in the browser.

Local TET installation. If you want to use TET only with Ruby on Rails, but cannot in-
stall it globally for general use with Ruby, you can install TET locally in the vendors direc-
tory within the Rails tree. This is particularly useful if you do not have permission to in-
stall Ruby extensions for general use, but want to work with TET in Rails nevertheless.

3.10 RPG Binding 43

3.10 RPG Binding
TET provides a /copy module that defines all prototypes and some useful constants
needed to compile ILE-RPG programs with embedded TET functions.

Unicode string handling. Since all TET functions use Unicode strings with variable
length as parameters, you have to use the %ucs2 builtin function to convert a single-
byte string to a Unicode string. All strings returned by TET functions are Unicode strings
with variable length. Use the %char builtin function to convert these Unicode strings to
single-byte strings.

Note The %CHAR and %UCS2 functions use the current job’s CCSID to convert strings from and to Uni-
code. The examples provided with TET are based on CCSID 37 (US EBCDIC). This codepage can be
set with CHGJOB CCSID(37). Some characters in option lists (e.g. { [] }) may not be translated
correctly if you run the examples under other codepages.

Since all strings are passed as variable length strings you must not pass the length pa-
rameters in those functions which expect explicit string lengths (the length of a vari-
able length string is stored in the first two bytes of the string).

Compiling and binding RPG programs for TET. Using TET functions from RPG requires
the compiled TET service program. To include the TET definitions at compile time you
have to specify the name in the D specs of your ILE-RPG program:

d/copy QRPGLESRC,TETLIB

If the TET source file library is not on top of your library list you have to specify the li-
brary as well:

d/copy tetsrclib/QRPGLESRC,TETLIB

Before you start compiling your ILE-RPG program you have to create a binding directory
that includes the TETLIB service program shipped with TET. The following example as-
sumes that you want to create a binding directory called TETLIB in the library TETLIB:

CRTBNDDIR BNDDIR(TETLIB/TETLIB) TEXT('TETlib Binding Directory')

After creating the binding directory you need to add the TETLIB service program to your
binding directory. The following example assumes that you want to add the service pro-
gram TETLIB in the library TETLIB to the binding directory created earlier.

ADDBNDDIRE BNDDIR(TETLIB/TETLIB) OBJ((TETLIB/TETLIB *SRVPGM))

Now you can compile your program using the CRTBNDRPG command (or option 14 in
PDM):

ADDLIBLE LIB(TETLIB)
CRTBNDRPG PGM(TETLIB/EXTRACTOR) SRCFILE(TETLIB/QRPGLESRC) SRCMBR(*PGM) DFTACTGRP(*NO)
BNDDIR(TETLIB/TETLIB)

Error Handling in RPG. TET clients written in ILE-RPG can use the monitor/on-error/
endmon error handling mechanism that ILE-RPG provides. Another way to monitor for
exceptions is to use the *PSSR global error handling subroutine in ILE-RPG. If an excep-

44 Chapter 3: TET Library Language Bindings

tion occurs, the job log shows the error number, the function that failed and the reason
for the exception. TET sends an escape message to the calling program.
c eval p=TET_new
*
c monitor
*
c callp TET_set_option(tet:globaloptlist)
c eval doc=TET_open_document(tet:%ucs2(%trim(parm1)):docoptlist)
:
:
* Error Handling
c on-error
* Do something with this error
* don’t forget to free the TET object
c callp TET_delete(tet)
c endmon

4.1 Free TET Plugin for Adobe Acrobat 45

4 TET Connectors
TET connectors provide the necessary glue code for interfacing TET with other software.
TET connectors are based on the TET library or the TET command-line tool.

4.1 Free TET Plugin for Adobe Acrobat
This section discusses the TET Plugin, a freely available packaging of TET which can be
used for testing in Adobe Acrobat and interactive use of TET with any PDF document.
The TET Plugin works with Acrobat X-DC Standard, Pro, and Pro Extended (but not Acro-
bat Reader). It can be downloaded for free from the following location:
www.pdflib.com/products/tet-plugin.

What is the TET Plugin? The TET Plugin provides simple interactive access to TET. Al-
though the TET Plugin runs as an Acrobat plugin, the underlying content extraction fea-
tures do not use Acrobat functions, but are completely based on TET. The TET Plugin is
provided as a free tool which demonstrates the power of PDFlib TET. Since TET is more
powerful than Acrobat’s built-in text and image extraction tools and offers a number of
convenient user interface features, it is useful as a replacement for Acrobat’s built-in
copy and find features. PDFlib TET can successfully process many documents for which
Acrobat provides only garbage when trying to extract the text. The TET Plugin provides
the following functions:

> Copy the text from a PDF document to the system clipboard or a disk file.
> Convert a PDF to TETML and place it on the clipboard or a disk file.
> Copy XMP document metadata to the clipboard.
> Find words in the document.
> Highlight all instances of a search term on the page simultaneously.
> Extract images from the document as TIFF, JPEG, JPEG 2000, or JBIG2 files.
> Display color space and position information for images.
> Detailed configuration settings are available to adjust text and image extraction to

your requirements. Configuration sets can be saved and reloaded.

Advantages over Acrobat’s copy function. The TET Plugin offers several advantages
over Acrobat’s built-in copy facility:

> The output can be customized to match different application requirements.
> TET is able to correctly interpret the text in many cases where Acrobat copies only

garbage to the clipboard.
> Unknown glyphs (for which proper Unicode mapping cannot be established) are

highlighted in red color, and can be replaced with a user-selected character (e.g. ques-
tion mark).

> TET processes documents much faster than Acrobat.
> Images can be selected interactively for export, or all images on the page or in the

document can be extracted.
> Tiny image fragments are merged to usable images.
> Artifacts (irrelevant text and images) in Tagged PDF is highlighted with a dedicated

color and can easily be recognized.

https://www.pdflib.com/products/tet-plugin

46 Chapter 4: TET Connectors

4.2 TET Connector for the Lucene Search Engine
Lucene is an open-source search engine. Lucene is primarily a Java project, but a version
for .NET is also available. For more information on Lucene see lucene.apache.org.

Note Protected documents can be indexed with the shrug option under certain conditions (see
Chapter 5.1, »Extracting Content from protected PDF«, page 59, for details). This is prepared in
the Connector files, but you must manually enable this option.

Requirements and installation. The TET distribution contains a TET connector which
can be used to enable PDF indexing in Lucene Java. We describe this connector for Lu-
cene Java in more detail below, assuming the following requirements are met:

> Java 8 or later for Lucene 8.x.x.
> A working installation of the Ant build tool
> The Lucene distribution with the Lucene core JAR file. The Ant build file distributed

with TET expects the files lucene-core-x.x.x.jar, lucene-analyzers-common-x.x.x.jar and
lucene-queryparser-x.x.x.jar, which are part of the Lucene distribution.

> An installed TET distribution package for Unix, Linux, macOS, or Windows

In order to implement the TET connector for Lucene perform the following steps with a
command prompt:

> Change to the directory <TET install dir>/connectors/lucene.
> Copy the files lucene-core-x.x.x.jar, lucene-analyzers-common-x.x.x.jar and lucene-

queryparser-x.x.x.jar to this directory.
> Optionally customize the settings by adding global, document-, and page-related

TET options in TetReader.java. For example, the global option list can be used to sup-
ply a suitable search path for resources (e.g. if the CJK CMaps are installed in a direc-
tory different from the default installation).
The PdfDocument.java module demonstrates how to process PDF documents which
are stored either on a disk file or in a memory buffer (e.g. supplied by a Web crawler).

> Run the command ant index. This will compile the source code and run the indexer
on the PDF files contained in the directory <TET install dir>/bind/data.

> Run the command ant search to start the command-line search client where you can
enter queries in the Lucene query language.

Testing TET and Lucene with the command-line search client. The following sample
session demonstrates the commands and output for indexing with TET and Lucene, and
testing the generated index with the Lucene command-line query tool. The process is
started by running the command ant index:

amira (1)$ ant index
Buildfile: build.xml
...
index:
 [echo] Indexing PDF files in directory "../../bind/data"
 [java] adding ../../bind/data/Whitepaper-Technical-Introduction-to-PDFA.pdf
 [java] adding ../../bind/data/Whitepaper-XMP-metadata-in-PDFlib-products.pdf
 [java] adding ../../bind/data/PDFlib-datasheet.pdf
 [java] adding ../../bind/data/TET-datasheet.pdf
 [java] 662 total milliseconds

BUILD SUCCESSFUL
Total time: 1 second

https://lucene.apache.org

4.2 TET Connector for the Lucene Search Engine 47

amira (1)$ ant search
Buildfile: build.xml

compile:

search:
 [java] Enter query:
PDFlib
 [java] Searching for: pdflib
 [java] 4 total matching documents
 [java] 1. ../../bind/data/PDFlib-datasheet.pdf
 [java] Title: PDFlib, PDFlib+PDI, Personalization Server data sheet
 [java] Font : PDFlibLogo-Regular
 [java] Font : TheSans-Plain
 ...
 [java] 2. ../../bind/data/Whitepaper-XMP-metadata-in-PDFlib-products.pdf
 [java] Title: Whitepaper: XMP Metadata support in PDFlib products
 [java] Font : PDFlibLogo-Regular
 [java] Font : TheSansLight-Italic
 ...
 [java] 3. ../../bind/data/Whitepaper-Technical-Introduction-to-PDFA.pdf
 [java] Title: Whitepaper: A Technical Introduction to PDF/A
 [java] Font : PDFlibLogo-Regular
 [java] Font : TheSansLight-Italic
 ...
 [java] 4. ../../bind/data/TET-datasheet.pdf
 [java] Title: PDFlib TET datasheet
 [java] Subject: PDFlib TET extracts text, images, and metadata from PDF
documents
 [java] Font : TheSans-Plain
 [java] Font : PDFlibLogo-Regular
 ...
 [java] Press (q)uit or enter number to jump to a page.
q
 [java] Enter query:
title:XMP
 [java] Searching for: title:xmp
 [java] 1 total matching documents
 [java] 1. ../../bind/data/Whitepaper-XMP-metadata-in-PDFlib-products.pdf
 [java] Title: Whitepaper: XMP Metadata support in PDFlib products
 [java] Font : PDFlibLogo-Regular
 [java] Font : TheSansLight-Italic
 ...

Two queries have been performed: one for the word PDFlib in the text, and another one
for the word XMP in the title field. Note that q must be entered to leave the result paging
mode before the next query can be started.

All paths and filenames in the Ant build.xml file are defined via properties so that the
file can be used with different environments, either by providing the properties on the
command line or by entering the properties to override in a file build.properties, or even
platform-specific into the files windows.properties or unix.properties. For example, to run
the sample with a Lucene JAR file which is installed under /tmp you can invoke Ant as
follows:

48 Chapter 4: TET Connectors

ant -Dlucene-core.jar=/tmp/lucene-core-x.x.x.jar -Dlucene-analyzers-common.jar=/tmp/
lucene-analyzers-common-x.x.x.jar -Dlucene-queryparser.jar=/tmp/lucene-queryparser-
x.x.x.jar index

Indexing metadata fields. The TET connector for Lucene indexes the following meta-
data fields:

> path (StringField): the pathname of the document
> modified (DateLongField): the date of the last modification (taken from the PDF file’s

time-stamp, not the PDF metadata)
> contents (ReaderTextField): the full text contents of the document
> All predefined and custom PDF document info entries, e.g. Title, Subject, Author, etc.

Document info entries can be queried with the pCOS interface which is integrated in
TET (see the pCOS Path Reference for more details on pCOS), e.g.

String objType = tet.pcos_get_string(tetHandle, "type:/Info/Subject");
if (!objType.equals("null")) {

doc.add(new TextField("summary",
tet.pcos_get_string(tetHandle, "/Info/Subject"),
Field.Store.YES));

}

> font: the names of all fonts in the PDF document

You can customize metadata fields by modifying the set of indexed document info en-
tries or by adding more information based on pCOS paths in PdfDocument.java.

PDF file attachments. The Lucene connector for TET recursively processes all PDF file
attachments in a document, and feeds the text and metadata of each attachment to the
Lucene search engine for indexing. This way search hits are generated even if the
searched text is not present in the main document but some attachment. Recursive at-
tachment traversal is especially important for PDF packages and portfolios.

4.3 TET Connector for the Solr Search Server 49

4.3 TET Connector for the Solr Search Server
Solr is a high performance open-source enterprise search server based on the Lucene
search library, with XML/HTTP and JSON/Python/Ruby APIs, hit highlighting, faceted
search, caching, replication, and a web admin interface. It runs in a Java servlet contain-
er (see solr.apache.org/solr).

Solr acts as an additional layer around the Lucene core engine. It expects the indexed
data in a simple XML format. Solr input can most easily be generated based on TETML,
the XML flavor produced by TET. The TET connector for Solr consists of an XSLT
stylesheet which converts TETML to the XML format expected by Solr. The TETML input
for this stylesheet can be generated with the TET library or the TET command-line tool
(see Section 9.1, »Creating TETML«, page 133).

Note Protected documents can be indexed with the shrug option under certain conditions (see
Chapter 5.1, »Extracting Content from protected PDF«, page 59, for details). In order to index
protected documents you must enable this option in the TET library or the TET command-line
tool when generating the TETML input for Solr.

Indexing metadata fields. The TET connector for Solr indexes all standard document
info fields. The key of each field are used as the field name.

PDF file attachments. The TET connector for Solr recursively processes all PDF file at-
tachments in a document, and feeds the text and metadata of each attachment to the
search engine for indexing. This way search hits are generated even if the searched text
is not present in the main document but some attachment. Recursive attachment tra-
versal is especially important for PDF packages and portfolios.

XSLT stylesheet for converting TETML. The solr.xsl stylesheet expects TETML input in
any mode except glyph. It generates the XML required to supply input data to the search
server. Document info entries are supplied as fields which carry the name of the info
entry (plus the _s suffix to indicate a string value), and the main text is supplied in a
number of text fields. PDF attachments (including PDF packages and portfolios) in the
document are processed recursively:

<?xml version="1.0" encoding="UTF-8"?><add>
<doc>
<field name="id">TET-datasheet.pdf</field>
<field name="Author_s">PDFlib GmbH</field>
<field name="CreationDate_s">2015-08-04T23:45:46+02:00</field>
<field name="Creator_s">Adobe InDesign CS6 (Windows)</field>
<field name="ModDate_s">2015-08-04T23:45:46+02:00</field>
<field name="Producer_s">Adobe PDF Library 10.0.1</field>
<field name="Subject_s">PDFlib TET: Text and Image Extraction Toolkit (TET)</field>
<field name="Title_s">PDFlib TET datasheet</field>
<field name="text">PDFlib</field>
<field name="text">datasheet</field>
<field name="text">PDFlib</field>
<field name="text">TET</field>
<field name="text">5</field>
...

50 Chapter 4: TET Connectors

4.4 TET Connector for Oracle
The TET connector for Oracle attaches TET to an Oracle database so that PDF documents
can be indexed and queried with Oracle Text. The PDF documents can be referenced via
their path name in the database, or directly stored in the database as BLOBs.

Note Protected documents can be indexed with the shrug option under certain conditions (see
Chapter 5.1, »Extracting Content from protected PDF«, page 59, for details). This is prepared in
the Connector files, but you must manually enable this option.

Requirements and installation. The TET connector has been tested with Oracle 10i and
Oracle 11g. In order use the TET connector you must specify the AL32UTF8 database char-
acter set when creating the database. This is always the case for the Universal edition of
Oracle Express (but not for the Western European edition). AL32UTF8 is the database
character set recommended by Oracle, and also works best with TET for indexing PDF
documents. However, it is also possible to connect TET to Oracle Text with other charac-
ter sets according to one of the following methods:

> Starting with Oracle Text 11.1.0.7 the database can perform the required character set
conversion. Please refer to the section »Using USER_FILTER with Charset and Format
Columns« in the Oracle Text 11.1.0.7 documentation, available at
docs.oracle.com/cd/B28359_01/text.111/b28304/cdatadic.htm#sthref497.

> With Oracle Text 11.1.0.6 or earlier the UTF-8 text generated by the TET filter script
must be converted to the database character set. This can be achieved by adding a
character set conversion command to tetfilter.sh:
Unix: call iconv (open-source software) or uconv (part of the free ICU Unicode library)
Windows: call a suitable code page converter in tetfilter.bat.

In order to take advantage of the TET Connector for Oracle you must make the TET filter
script available to Oracle as follows:

> Copy the TET filter script to a directory where Oracle can find it:
Unix: copy connectors/Oracle/tetfilter.sh to $ORACLE_HOME/ctx/bin
Windows: copy connectors/Oracle/tetfilter.bat to %ORACLE_HOME%\bin

> Make sure that the TETDIR variable in the TET filter script (tetfilter.sh or tetfilter.bat, re-
spectively) points to the TET installation directory.

> If required you can supply more TET options for the global, document, or page level
in the TETOPT, DOCOPT, and PAGEOPT variables (see Chapter 10, »TET Library API Refer-
ence«, page 159, for option list details). This is especially useful for supplying the TET
license key, e.g.:

TETOPT="license=aaaaaaa-bbbbbb-cccccc-dddddd-eeeeee"

See Section 0.2, »Applying the TET License Key«, page 8, for more options for supply-
ing the TET license key.

Granting privileges to the Oracle user. The examples below assume an Oracle user
with appropriate privileges to create and query an index. The following commands
grant appropriate privileges to the user HR (these commands must be issued as system
and must be adjusted as appropriate):

SQL> GRANT CTXAPP TO HR;
SQL> GRANT EXECUTE ON CTX_CLS TO HR;
SQL> GRANT EXECUTE ON CTX_DDL TO HR;

http://docs.oracle.com/docs/cd/B28359_01/text.111/b28304/cdatadic.htm#sthref497

4.4 TET Connector for Oracle 51

SQL> GRANT EXECUTE ON CTX_DOC TO HR;
SQL> GRANT EXECUTE ON CTX_OUTPUT TO HR;
SQL> GRANT EXECUTE ON CTX_QUERY TO HR;
SQL> GRANT EXECUTE ON CTX_REPORT TO HR;
SQL> GRANT EXECUTE ON CTX_THES TO HR;

Example A: Store path names of PDF documents in the database. This example stores
file name references to the indexed PDF documents in the database. Proceed as follows:

> Change to the following directory in a command prompt:

<TET installation directory>/connectors/Oracle

> Adjust the tetpath variable in the tetsetup_a.sql script so that it points to the directory
where TET is installed.

> Prepare the database: using Oracle’s sqlplus program create the table pdftable_a, fill
this table with path names of PDF documents, and create the index tetindex_a (note
that the contents of the tetsetup_a.sql script are slightly platform-dependent because
of different path syntax):

SQL> @tetsetup_a.sql

> Query the database using the index:

SQL> select * from pdftable_a where CONTAINS(pdffile, 'Whitepaper', 1) > 0;

> Update the index (required after adding more documents):

SQL> execute ctx_ddl.sync_index('tetindex_a')

> Optionally clean up the database (remove the index and table):

SQL> @tetcleanup_a.sql

Example B: Store PDF documents as BLOBs in the database and add metadata. This
examples stores the actual PDF documents as BLOBs in the database. In addition to the
PDF data some metadata is extracted with the pCOS interface and stored in dedicated
database columns. The tet_pdf_loader Java program stores the PDF documents as BLOBs
in the database. In order to demonstrate metadata handling the program uses the pCOS
interface to extract the document title (via the pCOS path /Info/Title) and the number of
pages in the document (via the pCOS path length:pages). The document title and the
page count are stored in separate columns in the database. Proceed as follows to run
this example:

> Change to the following directory in a command prompt:

<TET installation directory>/connectors/Oracle

> Prepare the database: using Oracle’s sqlplus program create the table pdftable_b and
the corresponding index tetindex_b:

SQL> @tetsetup_b.sql

> Populate the database: fill the table with PDF documents and metadata via JDBC
(note that this is not possible with stored procedures). The ant build file supplied
with the TET package expects the ojdbc14.jar file for the Oracle JDBC driver in the
same directory as the tet_pdf_loader.java source code. Specify a suitable JDBC connec-
tion string with the ant command. The build file contains a description of all proper-
ties that can be used to specify options for the Ant build. You can supply values for

52 Chapter 4: TET Connectors

these options on the command line. In the following example we use localhost as
host name, port number 1521, xe as database name, and HR as user name and pass-
word (adjust as appropriate for your database configuration):

ant -Dtet.jdbc.connection=jdbc:oracle:thin:@localhost:1521:xe
-Dtet.jdbc.user=HR -Dtet.jdbc.password=HR

> Update the index (required initially and after adding more documents):

SQL> execute ctx_ddl.sync_index('tetindex_b')

> Query the database using the index:

SQL> select * from pdftable_b where CONTAINS(pdffile, 'Whitepaper', 1) > 0;

> Optionally clean up the database (remove the index and table):

SQL> @tetcleanup_b.sql

4.5 TET PDF IFilter for Microsoft Products 53

4.5 TET PDF IFilter for Microsoft Products
This section discusses TET PDF IFilter, which is a separate product built on top of
PDFlib TET. More information and distribution packages for TET PDF IFilter are available
at www.pdflib.com/products/tet-pdf-ifilter.

TET PDF IFilter is freely available for non-commercial desktop use; commercial use
on desktop systems and deployment on servers requires a commercial license.

What is PDFlib TET PDF IFilter? TET PDF IFilter extracts text and metadata from PDF
documents and makes it available to search and retrieval software on Windows. This al-
lows PDF documents to be searched on the local desktop, a corporate server, or the Web.
TET PDF IFilter is based on the patented PDFlib Text Extraction Toolkit (TET), an estab-
lished developer product for extracting text from PDF documents.

TET PDF IFilter is a robust implementation of Microsoft’s IFilter indexing interface. It
works with all search and retrieval products which support the IFilter interface, e.g.
SharePoint and SQL Server. Such products use format-specific filter programs – called
IFilters – for particular file formats, e.g. HTML. TET PDF IFilter is such a program, aimed
at PDF documents. The user interface for searching documents may be the Windows Ex-
plorer, a Web or database frontend, a query script or a custom application. As an alter-
native to interactive searches, queries can also be submitted programmatically without
any user interface.

Unique Advantages. TET PDF IFilter offers the following advantages:
> Supports Western text, Chinese, Japanese, and Korean (CJK) text and right-to-left lan-

guages such as Arabic and Hebrew;
> Text from bookmarks, annotations (comments) and form fields;
> Indexes protected documents and extracts text even from PDFs where Acrobat fails;
> Configurable metadata indexing for document properties;
> Automatic script and language detection for improved search.

Enterprise PDF Search. TET PDF IFilter is available in thread-safe 32- and 64-bit ver-
sions. You can implement enterprise PDF search solutions with TET PDF IFilter and all
all Microsoft or third-party products which support the IFilter interface including the
following:

> Microsoft SharePoint Server
> Microsoft Search Server
> Microsoft SQL Server
> Microsoft Exchange Server
> Microsoft Site Server

Desktop PDF Search. TET PDF IFilter can also be used to implement desktop PDF search
with Windows Search which is integrated in Windows. TET PDF IFilter is free for non-
commercial use on desktop operating systems, which provides a convenient basis for
test and evaluation.

Accepted PDF Input. TET PDF IFilter supports all flavors of PDF input:
> All PDF versions up to Acrobat DC, including ISO 32000-1 and ISO 32000-2.
> Protected PDFs which do not require a password for opening the document.
> Damaged PDF documents are repaired.

https://www.pdflib.com/products/tet-pdf-ifilter/

54 Chapter 4: TET Connectors

Internationalization. In addition to Western text TET PDF IFilter fully supports Chi-
nese, Japanese, and Korean (CJK) text. All CJK encodings are recognized; horizontal and
vertical writing modes are supported. Automatic detection of the locale ID (language
and region identifier) of the text improves the results of Microsoft’s word breaking and
stemming algorithms, which is especially important for East Asian text.

Right-to-left languages such as Hebrew and Arabic are also supported. Contextual
character forms are normalized and the text is delivered in logical order.

PDF is more than just a Bunch of Pages. TET PDF IFilter treats PDF documents as con-
tainers which may contain much more information than only plain pages. TET PDF IFil-
ter indexes all relevant items in PDF documents:

> Page contents
> Text in bookmarks, annotations (comments) and form fields
> Metadata (see below)
> Embedded PDFs and PDF packages/portfolios are processed recursively so that the

text in all embedded PDF documents can be searched.

XMP Metadata and document info. The advanced metadata implementation in TET
PDF IFilter supports the Windows property system for metadata. It indexes XMP meta-
data as well as standard or custom document info entries. Metadata indexing can be
configured on several levels:

> Document info entries, Dublin Core fields and other common XMP properties are
mapped to Windows shell properties, e.g. Title, Subject, Author.

> TET PDF IFilter adds useful PDF-specific properties, e.g. page size, PDF/A confor-
mance level, font names.

> All predefined XMP properties can be indexed.
> User-defined XMP or PDF-based properties can be searched, e.g. company-specific

classification properties, digital signatures or ZUGFeRD conformance.

TET PDF IFilter optionally integrates metadata in the full text index. As a result, even
full text search engines without metadata support (e.g. SQL Server) can search for meta-
data.

Unicode Postprocessing. TET PDF IFilter supports various Unicode postprocessing
steps which can be used to improve the search results:

> Foldings preserve, remove or replace characters, e.g. remove punctuation or charac-
ters from irrelevant scripts.

> Decompositions replace a character with an equivalent sequence of one or more oth-
er characters, e.g. replace a Chinese character with its canonically equivalent Uni-
code character.

4.6 TET Connector for the Apache TIKA Toolkit 55

4.6 TET Connector for the Apache TIKA Toolkit
TIKA is an open-source »toolkit for detecting and extracting metadata and structured
text content from various documents using existing parser libraries«. For more infor-
mation about TIKA see tika.apache.org. The TET connector for Tika replaces the default
PDF parser configured in Tika and hooks up TET as parser for the PDF format. The TET
connector supplies the following items to Tika:

> unformatted text contents of all pages
> predefined and custom document info fields
> number of pages in the document

Note Protected documents can be indexed with the shrug option under certain conditions (see Chap-
ter 5.1, »Extracting Content from protected PDF«, page 59, for details). This is prepared in the
Connector files, but you must manually enable this option. TETPDFParser.java additionally pro-
vides a method for supplying a password in case the shrug option is not sufficient.

Requirements and installation. The TET distribution contains a TET connector for the
Tika toolkit. In the description below <tet-dir> stands for the directory where the TET
package was unpacked. The following requirements must be met:

> JDK 1.5 or later
> A working installation of the Ant build tool
> An installed TET distribution package for Unix, Linux, macOS, or Windows.
> A pre-built JAR file for Tika called tika-app-1.x.jar. Download information for this file

can be found at the following location:
tika.apache.org/download.html
In general Tika 1.8 or above can be used. However, Tika 1.9 has a bug which prevents
overriding the built-in PDF parser. The TET connector can therefore only be used
with Tika 1.9 if some tweaks are applied to the Tika source code, or by using a mecha-
nism like the Tika XML configuration file.

Building and testing the TET connector for Tika. Proceed as follows to build and test
the TET connector for Tika:

> Copy tika-app-1.x.jar to the directory <tet-dir>/connectors/Tika.
> Change to <tet-dir>/connectors/Tika and build the TET connector for Tika:

ant

If your Tika jar file has a name different from tika-app-1.x.jar you must supply the
name of the jar file on the command line:

ant -Dtika-app.jar=tika-app-1.x.jar

> The build file includes a target for running a test with the TET connector for Tika:

ant test

This command should produce the contents of the test document as XHTML on the
standard output. To test with a PDF file of your choice provide the Ant property
test.inputfile on the command line as follows:

ant -Dtest.inputfile=/path/to/your/file.pdf test

The ability to supply a password for protected documents can be tested as follows:

https://tika.apache.org

56 Chapter 4: TET Connectors

ant -Dtest.inputfile=<protected file.pdf> -Dtest.outputfile=<output file name>
-Dtest.password=<password> api-test

> To verify that the TET connector for Tika is actually used for the MIME type applica-
tion/pdf, execute the following command in the directory <tet-dir>/connectors/Tika on
Unix and macOS systems:

java -Djava.library.path=<tet-dir>/bind/java -classpath
<tet-dir>/bind/java/TET.jar:tika-app-1.x.jar:tet-tika.jar
org.apache.tika.cli.TikaCLI --list-parser-details

On Windows:

java -Djava.library.path=<tet-dir>/bind/java -classpath
<tet-dir>/bind/java/TET.jar;tika-app-1.x.jar;tet-tika.jar
org.apache.tika.cli.TikaCLI --list-parser-details

The following fragment should appear in the generated output:

com.pdflib.tet.tika.TETPDFParser
application/pdf

> For running the Tika GUI application with the TET connector, execute the following
command in the directory <tet-dir>/connectors/Tika:
On Unix and macOS systems:

java -Djava.library.path=<tet-dir>/bind/java -classpath
<tet-dir>/bind/java/TET.jar:tika-app-1.x.jar:tet-tika.jar
org.apache.tika.cli.TikaCLI

On Windows:

java -Djava.library.path=<tet-dir>\bind\java -classpath
<tet-dir>\bind\java\TET.jar;tika-app-1.x.jar;tet-tika.jar
org.apache.tika.cli.TikaCLI

Customizing the TET connector for Tika. You can customize the Tika connector as fol-
lows in the TETPDFParser.java source module:

> Add document options to the DOC_OPT_LIST variable, e.g. the shrug option for pro-
cessing protected documents;

> Add page options to the PAGE_OPT_LIST variable;
> Customize the searchpath for resources such as CJK CMaps in the SEARCHPATH vari-

able. Alternatively, the tet.searchpath property can be supplied when processing PDF
documents.

4.7 TET Connector for MediaWiki 57

4.7 TET Connector for MediaWiki
MediaWiki is the free Wiki software which is used to run Wikipedia and many other
community Web sites. More details on MediaWiki can be found at
www.mediawiki.org/wiki/MediaWiki.

Note Protected documents can be indexed with the shrug option under certain conditions (see
Chapter 5.1, »Extracting Content from protected PDF«, page 59, for details). This is prepared in
the Connector files, but you must manually enable this option.

Requirements and installation. The TET distribution contains a TET connector which
can be used to index PDF documents that are uploaded to a MediaWiki site. MediaWiki
does not support PDF documents natively, but allows you to upload PDFs as »images«.
The TET connector for MediaWiki indexes all PDF documents as they are uploaded. PDF
documents which already exist in MediaWiki are not indexed. The following require-
ments must be met:

> MediaWiki 1.25 or above
> A TET distribution package with the TET binding for PHP on Unix, Linux, macOS or

Windows.

In order to implement the TET connector for MediaWiki perform the following steps:
> Install the TET binding for PHP as described in Section 3.7, »PHP Binding«, page 38.
> Copy the files from the directory <TET install dir>/connectors/MediaWiki to

<MediaWiki install dir>/extensions/PDFIndexer.
> If you need support for CJK text copy the CMap files in <TET install dir>/resource/cmap

to <MediaWiki install dir>/extensions/PDFIndexer/resource/cmap.
> Add the following lines to the MediaWiki configuration file LocalSettings.php:

Index uploaded PDFs to make them searchable

wfLoadExtension('PDFIndexer');

> To allow the upload of PDF files the file name extension ».pdf« must be enabled as an
allowed extension. This is achieved by adding the following line to the MediaWiki
configuration file LocalSettings.php:

$wgFileExtensions[] = 'pdf';

How the TET connector for MediaWiki works. The TET connector for MediaWiki con-
sists of the PHP module PDFIndexer.php. Using one of MediaWiki’s predefined hooks it is
hooked up so that it is called whenever a new PDF document is uploaded. It extracts text
and metadata from the PDF document and appends it to the optional user-supplied
comment which accompanies the uploaded document. The text is hidden in an HTML
comment so that it will not be visible to users when they view the document comment.
Since MediaWiki indexes the full contents of the comment (including the hidden full
text) the text contents of the PDF are also indexed. The text for the index is constructed
as follows:

> The TET connector feeds the keys and values of all standard and custom document
info fields to the index.

> The text contents of all pages are extracted and concatenated.
> If the size of the extracted text is below a limit, it is completely fed to the index. The

advantage of this method is that search results display the search term in context.

https://www.mediawiki.org/wiki/MediaWiki

58 Chapter 4: TET Connectors

> If the size of the extracted text exceeds a limit, the text is reduced to unique words
(i.e. multiple instances of the same word are reduced to a single instance of the
word).

If the size of the reduced text is below a limit, it is fed to the index. Otherwise it is trun-
cated, i.e. some text towards the end of the document is not indexed. The limit is taken
from the $wgMaxArticleSize configuration variable which defaults to 2048 KB. If one of
the size tests described above hits the limit, a warning message is written to Media-
Wiki’s DebugLogFile if MediaWiki logging is activated.

Searching for PDF documents. In order to search PDF documents you must activate
the File checkbox in the list of namespaces in the Advanced search dialog.

The search results will display a list of documents which contain the search term. If the
full text has been indexed (as opposed to the abbreviated word list for long documents)
some additional terms are displayed before and after the search term to provide con-
text. Since the PDF text contents are fed to the MediaWiki index in HTML form, line
numbers are displayed in front of the text. These line numbers are not relevant for PDF
documents, and you can ignore them.

Indexing metadata fields. The TET connector for MediaWiki indexes all standard and
custom document info fields. The keys and values of each field are fed to the index so
that they can be used in searches. Since MediaWiki does not support metadata-based
searches you cannot directly search for document info entries, but only for info entries
as part of the full text.

5.1 Extracting Content from protected PDF 59

5 Configuration

5.1 Extracting Content from protected PDF
PDF security features. PDF documents can be protected with password security which
offers the following protection features:

> The user password (also referred to as open password) is required to open the file for
viewing.

> The master password (also referred to as owner or permissions password) is required
to change any security settings, i.e. permissions, user or master password. Files with
user and master passwords can be opened for viewing by supplying either password.

> Permission settings restrict certain actions for the PDF document, such as printing
or extracting text.

> An attachment password can be specified to encrypt only file attachments, but not
the actual contents of the document itself.

If a PDF document uses any of these protection features it is encrypted. In order to dis-
play or modify a document’s security settings with Acrobat, click File, Properties..., Secu-
rity, Show Details... or Change Settings..., respectively.

TET honors PDF permission settings. The password and permission status can be
queried with the pCOS paths encrypt/master, encrypt/user, encrypt/nocopy, etc. as demon-
strated in the dumper sample. pCOS also offers the pcosmode pseudo object which can
be used to determine which operations are allowed for a particular document.

Content extraction status. By default, text and image extraction is possible with TET if
the document can successfully be opened (this is no longer true if the requiredmode op-
tion of TET_open_document() was supplied). Depending on the nocopy permission set-
ting, content extraction may or may not be allowed in restricted pCOS mode (content
extraction is always allowed in full pCOS mode). The following condition can be used to
check whether content extraction is allowed:

if ((int) tet.pcos_get_number(doc, "encrypt/nocopy") == 0)
{

/* content extraction allowed */
}

The need for processing protected documents. PDF permission settings help docu-
ment authors to enforce their rights as creators of content, and users of PDF documents
must respect the rights of the document author when extracting text or image con-
tents. By default, TET will operate in restricted mode and refuse to extract any contents
from such protected documents. However, content extraction does not in all cases auto-
matically constitute a violation of the author’s rights. Situations where content ex-
traction may be acceptable include the following:

> Small amounts of content are extracted for quoting (»fair use«).
> Organizations may want to check incoming or outgoing documents for certain key-

words (document screening) without any further content repurposing.
> The document author himself may have lost the master password.

60 Chapter 5: Configuration

> Search engines index protected documents without making the document contents
available to the user directly (only indirectly by providing a link to the original PDF).

The last example is particularly important: even if users are not allowed to extract the
contents of a protected PDF, they should be able to locate the document in an enterprise
or Web-based search. It may be acceptable to extract the contents if the extracted text is
not directly made available to the user, but only used to feed the search engine’s index
so that the document can be found. Since the user only gets access to the original pro-
tected PDF (after the search engine indexed the contents and the hit list contained a link
to the PDF), the document’s internal permission settings will protect the document as
usual when accessed by the user.

The »shrug« feature for protected documents. TET offers a feature which can be used
to extract text and images from protected documents, assuming the TET user accepts
responsibility for respecting the document author’s rights. This feature is called shrug,
and works as follows: by supplying the shrug option to TET_open_document() the user as-
serts that he or she will not violate any document authors’ rights. PDFlib GmbH’s terms
and conditions require that TET customers respect PDF permission settings.

If all of the following conditions are true, the shrug feature is enabled:
> The shrug option has been supplied to TET_open_document().
> The document requires a master password but it has not been supplied to TET_open_

document().
> If the document requires a user (open) password, it must have been supplied to TET_

open_document().
> Text extraction is not allowed in the document’s permission settings, i.e.

nocopy=true.

The shrug feature will have the following effects:
> Extracting content from the document is allowed despite nocopy=true. The user is re-

sponsible for respecting the document author’s rights.
> The pCOS pseudo object shrug is set to true/1.
> pCOS runs in full mode (instead of restricted mode), i.e. the pcosmode pseudo object

is set to 2.

The shrug pseudo object can be used according to the following idiom to determine
whether or not the contents can directly be made available to the user, or should only
be used for indexing and similar indirect purposes:

int doc = tet.open_document(filename, "shrug");
...
if ((int) tet.pcos_get_number(doc, "shrug") == 1)
{

/* only indexing allowed */
}
else
{

/* content may be delivered to the user */
}

5.2 Resource Configuration and File Searching 61

5.2 Resource Configuration and File Searching
UPR files and resource categories. In some situations TET needs access to resources
such as encoding definitions or glyph name mapping tables. In order to make resource
handling platform-independent and customizable, a configuration file can be supplied
for describing the available resources along with the names of their corresponding disk
files. In addition to a static configuration file, dynamic configuration can be accom-
plished at runtime by adding resources with TET_set_option(). For the configuration file
a simple text format called Unix PostScript Resource (UPR) is used. The UPR file format as
used by TET will be described below. TET supports the resource categories listed in Table
5.1.

The UPR file format. UPR files are text files with a very simple structure that can easily
be written in a text editor or generated automatically. To start with, let’s take a look at
some syntactical issues:

> Lines can have a maximum of 255 characters.
> A backslash ’\’ escapes newline characters. This may be used to extend lines.
> An isolated period character ’ . ’ serves as a section terminator.
> Comment lines may be introduced with a percent ’%’ character, and terminated by

the end of the line.
> Whitespace is ignored everywhere except in resource names and file names.

UPR files consist of the following components:
> A magic line for identifying the file. It has the following form:

PS-Resources-1.0

> A section listing all resource categories described in the file. Each line describes one
resource category. The list is terminated by a line with a single period character.

Table 5.1 Resource categories (all file names must be specified in UTF-8)

category format1

1. While the UPR syntax requires an equal character ’=’ between the name and value, this character is neither required nor allowed
when specifying resources with TET_set_option().

explanation

cmap key=value Resource name and file name of a CMap

codelist key=value Resource name and file name of a code list

encoding key=value Resource name and file name of an encoding

glyphlist key=value Resource name and file name of a glyph list

glyphmapping option list An option list describing a glyph mapping method according to Table 10.9,
page 185. This resource is evaluated in TET_open_document(), and the re-
sult is appended after the mappings specified in the option glyphmapping
of TET_open_document().

hostfont key=value Name of a host font resource (key is the PDF font name; value is the UTF-
8 encoded host font name) to be used for an unembedded font

fontoutline key=value Font and file name of a TrueType or OpenType font to be used for an un-
embedded font

searchpath value Relative or absolute path name of directories containing data files

62 Chapter 5: Configuration

> A section for each of the resource categories listed at the beginning of the file. Each
section starts with a line showing the resource category, followed by an arbitrary
number of lines describing available resources. The list is terminated by a line with a
single period character. Each resource data line contains the name of the resource
(equal signs have to be quoted). If the resource requires a file name, this name has to
be added after an equal sign. The searchpath (see below) is applied when TET searches
for files listed in resource entries.

Sample UPR file. The following listing gives an example of a UPR configuration file:

PS-Resources-1.0
searchpath
glyphlist
codelist
encoding
.
searchpath
/usr/local/lib/cmaps
/users/kurt/myfonts
.
glyphlist
myglyphlist=/usr/lib/sample.gl
.
codelist
mycodelist=/usr/lib/sample.cl
.
encoding
myencoding=sample.enc
.

File search and the searchpath resource category. In addition to relative or absolute
path names you can supply file names without any path specification to TET. The
searchpath resource category can be used to specify a list of path names for directories
containing the required data files. When TET must open a file it will first use the file
name exactly as supplied, and try to open the file. If this attempt fails, TET will try to
open the file in the directories specified in the searchpath resource category one after
another until it succeeds. Multiple searchpath entries can be accumulated, and are
searched in reverse order (paths set at a later point in time will searched before earlier
ones). In order to disable the search you can use a fully specified path name in the TET
functions.

On Windows TET initializes the searchpath resource category with a value read from
the following registry keys:

HKLM\SOFTWARE\PDFlib\TET5\5.5\SearchPath
HKLM\SOFTWARE\PDFlib\TET5\SearchPath
HKLM\SOFTWARE\PDFlib\SearchPath

These registry entries may contain a list of path names separated by a semicolon ’;’
character. The Windows installer initializes the SearchPath registry entry with the name
of the resource directory in the TET installation directory.

Note Be careful when manually accessing the registry on 64-bit Windows systems: as usual, 64-bit
binaries work with the 64-bit view of the Windows registry, while 32-bit binaries running on a
64-bit system work with the 32-bit view of the registry. If you must add registry keys for a 32-bit

5.2 Resource Configuration and File Searching 63

product manually, make sure to use the 32-bit version of the regedit tool. It can be invoked as
follows from the Start, Run... dialog:

%systemroot%\syswow64\regedit

Default file search paths. On Unix, Linux, macOS and IBM System i systems some di-
rectories are searched for files by default even without specifying any path and directo-
ry names. Before searching and reading the UPR file (which may contain additional
search paths), the following directories are searched:

<rootpath>/PDFlib/TET/5.5/resource/cmap
<rootpath>/PDFlib/TET/5.5/resource/codelist
<rootpath>/PDFlib/TET/5.5/resource/glyphlst
<rootpath>/PDFlib/TET/5.5/resource/fonts
<rootpath>/PDFlib/TET/5.5/resource/icc
<rootpath>/PDFlib/TET/5.5
<rootpath>/PDFlib/TET
<rootpath>/PDFlib

On Unix, Linux, and macOS <roothpath> will first be replaced with /usr/local and then
with the HOME directory. On IBM System i <roothpath> is empty.

Default file names for license and resource files. By default, the following file names
are searched for in the default search path directories:

licensekeys.txt (license file)
pdflib.upr (resource file)

This feature can be used to work with a license file without setting any environment
variable or runtime option.

Searching for the UPR resource file. If resource files are to be used you can specify
them via calls to TET_set_option() (see below) or in a UPR resource file. TET reads this file
automatically when the first resource is requested. The detailed process is as follows:

> If the environment variable TETRESOURCEFILE is defined TET takes its value as the
name of the UPR file to be read. If this file cannot be read an exception is thrown.

> If the environment variable TETRESOURCEFILE is not defined, TET tries to open a file
with the following name:

upr (on MVS; a dataset is expected)

tet.upr (Windows, Unix, and all other systems)

If this file cannot be read no exception is thrown.
> On Windows TET will additionally try to read the following registry entry:

HKLM\SOFTWARE\PDFlib\TET5\5.5\resourcefile

The value of this key (which is created with the value <installdir>/tet.upr by the TET
installer, but can also be set manually) serves as the name of the resource file to be
used. If this file cannot be read an exception is thrown.

> The client can force TET to read a resource file at runtime by explicitly setting the
resourcefile option:

set_option("resourcefile=/path/to/tet.upr");

64 Chapter 5: Configuration

This call can be repeated arbitrarily often; the resource entries are accumulated.

Configuring resources at runtime. In addition to using a UPR file for the configuration,
it is also possible to directly configure individual resources at runtime via TET_set_
option(). This function takes a resource category name and pairs of corresponding re-
source names and values as it would appear in the respective section of this category in
a UPR resource file, for example:

set_option("glyphlist={myglyphnames=/usr/local/glyphnames.gl}");

Multiple resource names can be configured in a single option list for a resource category
option (but the same resource category option cannot be repeated in a single call to TET_
set_option()). Alternatively, multiple calls can be used to accumulate resource settings.

Escape sequences for text files. Escape sequences are supported in all text files except
UPR files. Special character sequences can be used to include unprintable characters in
text files. All sequences start with a backslash ’\’ character:

> \x introduces a sequence of two hexadecimal digits (0-9, A-F, a-f), e.g. \x0D
> \nnn denotes a sequence of three octal digits (0-7), e.g. \015. The sequence \000 is ig-

nored.
> The sequence \\ denotes a single backslash.
> A backslash at the end of a line will cancel the end-of-line character.

5.3 Recommendations for common Scenarios 65

5.3 Recommendations for common Scenarios
TET offers a variety of options which you can use to control various aspects of opera-
tion. In this section we provide some recommendations for typical TET application sce-
narios. Please refer to Chapter 10, »TET Library API Reference«, page 159, for details on
the functions and options mentioned below.

Optimizing performance. In some situations, particularly when indexing PDF for
search engines, text extraction speed is crucial and may play a more important role
than optimal output. The default settings of TET have been selected to achieve the best
possible output, but can be adjusted to speed up processing. Some tips for choosing
options in TET_open_page() and TET_open_document() to maximize text extraction
throughput:

> docstyle=searchengine
This page option sets up several internal parameters to speed up operation by reduc-
ing processing in a way which does not affect the indexing process for search en-
gines.

> engines={image=false textcolor=false vector=false}
If image extraction and text color detection are not required, internal processing
steps can be disabled with this document option to speed up operation. The vector
engine is required for clipping calculations and improved table detection

> contentanalysis={merge=0}
This page option disables the expensive strip and zone merging step, and signifi-
cantly reduces processing times for typical files. However, documents where the
contents are scattered across the pages in arbitrary order may result in text which is
not extracted in logical order.

> contentanalysis={shadowdetect=false}
This page option disables detection of redundant shadow and fake bold text, which
can also reduce processing times.

> When creating TETML the following document option can be used to disable creation
of TETML elements for various interactive PDF features:

tetml={elements={annotations=false bookmarks=false destinations=false fields=false

javascripts=false}}

Words vs. line layout vs. reflowable text. Different applications prefer different kinds
of output (hyphenated words are always dehyphenated with these settings):

> Individual words (ignore layout): a search engine may not be interested in any lay-
out-related aspects, but only the words comprising the text. In this situation use
granularity=word in TET_open_page() to retrieve one word per call to TET_get_text().

> Keep line layout: use granularity=page in TET_open_page() for extracting the full text
contents of a page in a single call to TET_get_text(). Text lines are separated with a
linefeed character U+00A0 to retain the existing line structure.

> Reflowable text: in order to avoid line breaks and facilitate reflowing of the extracted
text use the document option lineseparator=U+0020 and the page option granu-
larity=page. The full page contents can be fetched with a single call to TET_get_text().
By default, paragraphs are separated by U+000A. If you want to apply a different
paragraph separator use the document option paraseparator=U+2029 (or another
suitable Unicode value).

66 Chapter 5: Configuration

Writing a search engine or indexer. Indexers are usually not interested in the position
of text on the page (unless they provide search term highlighting). In many cases they
will tolerate errors which occur in Unicode mapping, and process whatever text con-
tents they can get. Recommendations:

> Use granularity=word in TET_open_page().
> If the application knows how to process punctuation characters you can keep them

with the adjacent text by setting the following page option:
contentanalysis={punctuationbreaks=false}

Geometry. The geometry features may be useful for some applications:
> The TET_get_char_info() interface is only required if you need the position of text on

the page, the respective font name, text color or other details. If you are not interest-
ed in text coordinates calling TET_get_text() is sufficient.

> If you have advance information about the layout of pages you can use the include-
box and/or excludebox options in TET_open_page() to get rid of headers, footers, or
similar items which are not part of the main text.

Complex layouts. Some classes of documents use very elaborate page layouts. For ex-
ample, with magazines and periodicals TET may not be able to properly determine the
relationship of columns on the page. In such situations it is possible to enhance the ex-
tracted text at the expense of processing time. Suitable options for this purpose are
summarized in Section 6.7, »Layout Analysis and Document Styles«, page 89. See Table
10.12, page 194, for more details on relevant options.

Legal documents. When dealing with legal documents there is usually zero tolerance
for wrong Unicode mappings since they might alter the content or interpretation of a
document. In many cases the text position is not required, and the text must be extract-
ed word by word. Recommendations:

> Use the granularity=word option in TET_open_page().
> Use the password option with the appropriate document password in TET_open_

document() if you must process documents which require a password for opening, or
the shrug option if content extraction is not allowed in the permission settings and
you are in a legal position to extract text from the document (see »The »shrug« fea-
ture for protected documents«, page 60).

> For absolute text fidelity: stop processing as soon as the unknown field in the charac-
ter info structure returned by TET_get_char_info() is 1, or if the Unicode replacement
character U+FFFD is part of the string returned by TET_get_text(). In TETML with one
of the text modes glyph or wordplus you can identify this situation by the following
attribute in the Glyph element:

unknown="true"

Do not set the unknownchar option to any common character since you may be un-
able to distinguish it from correctly mapped characters without checking the
unknown field.

> Also to ensure text fidelity you may want to disable text extraction for text which is
not visible on the page:

ignoreinvisibletext=true

5.3 Recommendations for common Scenarios 67

Processing documents with PDFlib+PDI. When using PDFlib+PDI to process PDF docu-
ments on a per-page basis you can integrate TET for controlling the splitting or merging
process. For example, you could split a PDF document based on the contents of a page. If
you have control over the creation process you can insert separator pages with suitable
processing instructions in the text. The TET Cookbook contains examples for analyzing
documents with TET and then processing them with PDFlib+PDI.

Legacy PDF documents with missing Unicode values. In some situations PDF docu-
ments created by legacy applications must be processed where the PDF may not contain
enough information for proper Unicode mapping. Using the default settings TET may
be unable to extract some or all of the text contents. Recommendations:

> Start by extracting the text with default settings, and analyze the results. Identify
the fonts which do not provide enough information for proper Unicode mapping.

> Write custom encoding tables and glyph name lists to fix problematic fonts. Use the
PDFlib FontReporter plugin for analyzing the fonts and preparing Unicode mapping
tables.

> Configure the custom mapping tables and extract the text again, using a larger num-
ber of documents. If there are still unmappable glyphs adjust the mapping tables as
appropriate.

> If you have a large number of documents with unmappable glyphs PDFlib GmbH
may be able to assist you in creating the required mapping tables.

Convert PDF documents to another format. If you want to import the page contents of
PDF documents into your application, while retaining as much information as possible
you’ll need precise character metrics. Recommendations:

> Use TET_get_char_info() to retrieve precise character metrics and font names. Even if
you use the uv field to retrieve the Unicode values of individual characters, you must
also call TET_get_text() since it fills the char_info structure.

> Use granularity=glyph or word in TET_open_page(), depending on what is better suited
for your application. Working with granularity=glyph may result in conflicts between
the visual layout of text and the processed logical text created by TET (e.g. the two
characters created by a ligature glyph may not fit into the same space as the liga-
ture).

Corporate fonts with custom-encoded logos. In many cases corporate fonts contain-
ing custom logos include missing or wrong Unicode mapping information for the logos.
If you have a large number of PDF documents containing such fonts it is recommended
to create a custom mapping table with proper Unicode values.

Start by creating a font report (see »Analyzing PDF documents with the PDFlib Font-
Reporter Plugin«, page 114) for a PDF containing the font, and locate mismapped glyphs
in the font report. Depending on the font type you can use any of the available configu-
ration tables to provide the missing Unicode mappings. See »Code list resources for all
font types«, page 115, for a detailed example of a code list for a logotype font.

TeX documents. PDF documents produced with the TeX documents often contain nu-
merical glyph names, Type 3 fonts and other problematic properties which prevent oth-
er products from successfully extracting the text. TET contains many heuristics and
workarounds for dealing with such documents. However, a particular flavor of TeX doc-

68 Chapter 5: Configuration

uments can only be processed with a workaround that requires more processing time,
and is disabled by default. You can enable more CPU-intensive font processing for these
documents with the following document option:

checkglyphlists=true

6.1 PDF Document Domains 69

6 Text Extraction

6.1 PDF Document Domains
PDF documents may contain text in many other places than only the page contents.
While most applications deal with the page contents only, in many situations other
document domains may be relevant as well.

While the page contents can be retrieved with the workhorse functions TET_get_
text() and TET_get_image(), the integrated pCOS interface plays a crucial role for retriev-
ing text from other document domains.

In the remaining section we provide information on domain searching with the TET
library and TETML. In addition, we summarize how to search these document domains
with Acrobat. This is important to locate search hits in Acrobat.

Text on the page. Page contents are the main source of text in PDF. Text on a page is
rendered with fonts and encoded using one of the many encoding techniques available
in PDF.

> How to display with Acrobat: page contents are always visible
> How to search a single PDF with Acrobat DC: Edit, Find or Edit, Advanced Search. TET

may be able to process the text in documents where Acrobat does not correctly map
glyphs to Unicode values. In this situation you can use the TET Plugin which is based
on TET (see Section 4.1, »Free TET Plugin for Adobe Acrobat«, page 45). The TET Plugin
offers its own search dialog via Plug-Ins, PDFlib TET Plugin..., TET Find. However, it is not
intended as a full-blown search facility.

> How to search multiple PDFs with Acrobat DC: Edit, Advanced Search and in Show More
Options under Look In: select All PDF Documents in, and browse to a folder with PDF
documents (see Figure 6.1).

> Sample code for the TET library: extractor sample
> TETML element: /TET/Document/Pages/Page/Content

Predefined document info entries. Standard document info entries are key/value
pairs.

> How to display with Acrobat DC: File, Properties...
> How to search a single PDF with Acrobat DC: not available
> How to search multiple PDFs with Acrobat DC: click Edit, Advanced Search andc Show

More Options near the bottom of the dialog. In the Look In: pull-down select a folder of
PDF documents and in the pull-down menu Use these additional criteria select one of
Date Created, Date Modified, Author, Title, Subject, Keywords.

> Sample code for the TET library: dumper sample
> TETML element: /TET/Document/DocInfo

Custom document info entries. Custom document info entries can be defined in addi-
tion to the standard entries.

> How to display with Acrobat DC: File, Properties..., Custom (not available in Acrobat
Reader)

> How to search with Acrobat DC: not available

https://www.pdflib.com/tet-cookbook/text/text-extractor/
https://www.pdflib.com/pcos-cookbook/interchange/dumper/

70 Chapter 6: Text Extraction

> Sample code for the TET library: dumper sample
> TETML element: /TET/Document/DocInfo/Custom

XMP metadata on document level. XMP metadata consists of an XML stream contain-
ing extended metadata.

> How to display with Acrobat DC: File, Properties..., Description, Additional Metadata..
(not available in Acrobat Reader)

> How to search a single PDF with Acrobat DC: not available
> How to search multiple PDFs with Acrobat DC: click Edit, Advanced Search and Show

More Options. In the Look In: pull-down select a folder of PDF documents and in the
pull-down menu Use these additional criteria select XMP Metadata (not available in
Acrobat Reader).

> Sample code for the TET library: dumper sample
> TETML element: /TET/Document/Metadata

Fig. 6.1
Acrobat’s advanced
search dialog

https://www.pdflib.com/pcos-cookbook/interchange/dumper/

6.1 PDF Document Domains 71

XMP metadata on image level. XMP metadata can be attached to document compo-
nents, such as images, pages, fonts, etc. However, XMP is commonly only found on the
image level (in addition to document level).

> How to display with Acrobat DC: View, Show/Hide, Navigation Panes, Content. Locate
the image in the tree structure, right-click on it and select Show Metadata... .(not
available in Acrobat Reader)

> How to search with Acrobat DC: not available
> Sample code for the TET library: pCOS Cookbook topic image_metadata
> TETML element: /TET/Document/Pages/Page/Resources/Images/Image/Metadata

Text in form fields. Form fields are displayed on top of the page. However, technically
they are not part of the page contents, but represented by separate data structures.

> How to display with Acrobat DC: Tools, Prepare Form (not available in Acrobat Reader)
> How to search with Acrobat DC: Acrobat searches the visible contents of form fields
> Sample code for the TET library (see Section 6.10, »Annotation Contents«, page 95):

annotation appearance streams are processed by default; pCOS Cookbook topic
formfields

> TETML element: /TET/Document/Pages/Page/Fields/Field/Value contains the visible val-
ue. Additional TETML elements are available for other aspects, e.g. /TET/Document/
Pages/Page/Fields/Field/DefaultValue for the default value, /TET/Document/Pages/Page/
Fields/Field/Value for the interactive tooltip, etc.

Text in comments (annotations). Similar to form fields, annotations (notes, com-
ments, etc.) are layered on top of the page, but are represented by separate data struc-
tures. The interesting text contents of an annotation depend on its type. For example,
for Web links the interesting part may be the URL, while for other annotation types the
visible text contents may be relevant.

> How to display with Acrobat DC: Tools, Comment, Comments List
> How to search a single PDF with Acrobat DC: Edit, Search and check the box Include

Comments, or use the Search Comments button on the Comments List toolbar
> How to search multiple PDFs with Acrobat DC: click Edit, [Advanced] Search and Show

More Options. In the Look In: pull-down select a folder of PDF documents and in the
pull-down menu Use these additional criteria: select Comments.

> Sample code for the TET library (see Section 6.10, »Annotation Contents«, page 95):
annotation appearance streams are processed by default; the Contents entry of anno-
tations can be extracted with pCOS, see TET Cookbook topic text_from_annotations

> TETML element: /TET/Document/Pages/Page/Annotations/Annotation

Text in bookmarks. Bookmarks are not directly page-related, although they may con-
tain an action which jumps to a particular page. Bookmarks can be nested to form a hi-
erarchical structure.

> How to display with Acrobat DC: View, Show/Hide, Navigation Panes, Bookmarks
> How to search a single PDF with Acrobat DC: Edit, Advanced Search and check the box

Include Bookmarks
> How to search multiple PDFs with Acrobat DC: click Edit, Advanced Search and Show

More Options. In the Look In: pull-down select a folder of PDF documents and in the
pull-down menu Use these additional criteria select Bookmarks (not available in Acro-
bat Reader)

> Sample code for the TET library: pCOS Cookbook topic bookmarks

https://www.pdflib.com/pcos-cookbook/interchange/image_metadata/
https://www.pdflib.com/pcos-cookbook/interactive/formfields/
https://www.pdflib.com/tet-cookbook/text/text-from-annotations/
https://www.pdflib.com/pcos-cookbook/interactive/bookmarks/

72 Chapter 6: Text Extraction

> TETML element: /TET/Document/Bookmarks/Bookmark/Title

File attachments. PDF documents may contain file attachments (on document or
page level) which may themselves be PDF documents.

> How to display with Acrobat DC: View, Show/Hide, Navigation Panes, Attachments
> How to search with Acrobat DC: Use Edit, AdvancedSearch and check the box Include

Attachments (not available in Acrobat Reader). Nested attachments are not searched
recursively.

> Sample code for the TET library: get_attachments sample
> TETML element: /TET/Document/Attachments/Attachment/Document

PDF packages and portfolios. PDF packages and PDF portfolios are file attachments
with additional properties.

> How to display with Acrobat DC: Acrobat presents the cover sheet of the package/
portfolio and the constituent PDF documents with dedicated user interface ele-
ments for PDF packages.

> How to search a single PDF package with Acrobat DC: Edit, Search Entire Portfolio
> How to search multiple PDF packages with Acrobat DC: not available
> Sample code for the TET library: get_attachments sample
> TETML element: /TET/Document/Attachments/Attachment/Document

PDF standards and other PDF properties. This domain does not explicitly contain text,
but is used as a container which collects various intrinsic properties of a PDF document,
e.g. PDF/X and PDF/A status, Tagged PDF status, etc.

> Acrobat DC: View, Show/Hide, Navigation Panes, Standards (only present for standard-
conforming PDFs)

> How to search with Acrobat DC: not available
> Sample code for the TET library: dumper sample
> TETML elements and attributes: /TET/Document/@pdfa, /TET/Document/@pdfe,

/TET/Document/@pdfua, /TET/Document/@pdfvt, /TET/Document/@pdfx

Tagged PDF and Artifacts. TET reconstructs the layout structure and hierarchy direct-
ly from the page contents without using the structure tree which is present in Tagged
PDF documents. Text and images which are not required to understand the document
but rather are generated for layout purposes or as decoration may be marked as Arti-
facts in Tagged PDF. The most common use of Artifacts is for running headers and foot-
ers including page numbers and chapter titles. Depending on the use case it may or may
not be desirable to process page contents which are marked as Artifacts:

> How to display with Acrobat DC: View, Show/Hide, Navigation Panes, Tags; in the Tags
menu click Find... and select Artifacts. Text, images and vector graphics which are
marked as Artifact are highlighted.
Alternatively, you can activate Tools, Accessibility, Touch Up Reading Order. This tool
highlights the tagged contents on the page with shaded rectangles. Contents which
are not highlighted represents Artifacts.

> How to ignore Artifacts when searching with Acrobat DC: not available
> How to ignore Artifacts with TET: provide the page option ignoreartifacts. Text and

image artifacts can be identified by the TET_ATTR_ARTIFACT flag in the attributes field.
> TETML: Text and image Artifacts are identified in TETML with the artifacts attribute

of the Glyph, Text and PlacedImage elements

https://www.pdflib.com/tet-cookbook/special/get-attachments/
https://www.pdflib.com/pcos-cookbook/document-interchange/dumper/

6.1 PDF Document Domains 73

Layers. Using layers (technically known as optional content) the page contents can be
made visible or invisible. Depending on the use case it may or may not be desirable to
process page contents on invisible layers.

> How to display with Acrobat DC: View, Show/Hide, Navigation Panes, Layers: layers
which are currently visible have an eye symbol in front of the name. Clicking on this
symbol controls the visibility of a layer.

> How to search with Acrobat DC: Acrobat searches the contents of all layers. If a search
result is found on an invisible layer, Acrobat offers to make the layer visible.

> How to process layers with TET: the page option layers can be used to restrict content
extraction to either visible or invisible layers. Alternatively, the contents of all layers
can be processed which only makes sense if the layers don’t overlap.

> TETML: layer contents are processed according to the page option layers. Layer names
as well as their visibility state and other properties are listed in the TETML element
/TET/Document/Pages/Graphics/Layers/Layer.

74 Chapter 6: Text Extraction

6.2 Page and Text Geometry
Default coordinate system. By default TET represents all page and text metrics in the
standard coordinate system of PDF. However, the origin of the coordinate system
(which could be located outside the page) is adjusted to the lower left corner of the visi-
ble page. More precisely, the origin is located in the lower left corner of the CropBox if it
is present, or the MediaBox otherwise. Page rotation is applied if the page has a Rotate
key. The coordinate system uses the DTP point as unit:

1 pt = 1 inch / 72 = 25.4 mm / 72 = 0.3528 mm

The first coordinate increases to the right, the second coordinate increases upwards.
By default, all coordinates expected or returned by TET are interpreted in this coordi-
nate system, regardless of their representation in the underlying PDF document. See
the pCOS Path Reference to learn how to determine the size of a PDF page.

Top-down coordinate system. Unlike PDF’s bottom-up coordinate system some
graphics environments use top-down coordinates which may be preferred by some de-
velopers. In order to facilitate the use of top-down coordinates TET supports an alterna-
tive coordinate system in which all relevant coordinates are interpreted relative to the
upper left corner of the page instead of the lower left corner, with y coordinates increas-
ing downwards. This topdown feature has been designed to make it quite natural for TET
users to work in a top-down coordinate system. As an additional advantage, top-down
coordinates are identical to the coordinate values displayed in Acrobat (see below). The
top-down coordinate system for a page can be activated with the page option topdown=
{output}.

Visualizing coordinates in Acrobat. You can visualize page coordinates in Acrobat as
follows (see Figure 6.2):

> To display cursor coordinates in Acrobat DC use View, Show/Hide, Cursor Coordinates.
> The coordinates are displayed in the unit which is currently selected in Acrobat. To

change the display units to points (as used in TET) in Acrobat DC proceed as follows:
go to Edit, Preferences, Units & Guides, Units and select Points.

Note that the coordinates displayed refer to an origin in the top left corner of the page,
and not the default coordinate system of PDF and TET with an origin in the lower left
corner. See the previous section for details on selecting a top-down coordinate system
which aligns with Acrobat’s coordinate display.

Area of text extraction. By default, TET extracts all text from the visible page area. Us-
ing the clippingarea option of TET_open_page() (see Table 10.10, page 188) you can change
this to any of the PDF page box entries (e.g. TrimBox). With the keyword unlimited all text
regardless of any page boxes can be extracted. The default value cropbox instructs TET to
extract text within the area which is visible in Acrobat.

The area of text extraction can be specified in more detail by providing an arbitrary
number of rectangular areas in the includebox and excludebox options of TET_open_
page(). This is useful for extracting partial page content (e.g. selected columns), or for
excluding irrelevant parts (e.g. margins, headers and footers). The final clipping area is

6.2 Page and Text Geometry 75

constructed by determining the union of all rectangles specified in the includebox op-
tion, and subtracting the union of all rectangles specified in the excludebox option. A
glyph is considered inside the clipping area if its reference point is inside the clipping
area. This means that a character could be considered inside the clipping area even if
parts of it extend beyond the clipping area, or vice versa.

Glyph metrics and other details. Using TET_get_char_info() you can retrieve font and
metrics information for the characters which are returned for a particular glyph. The
following values are available for each character in the output (see Figure 6.3 and Table
10.16):

> The uv value contains the UTF-32 Unicode value of the current character, i.e. the char-
acter for which details are retrieved. This field always contains UTF-32, even in lan-
guage bindings that support only UTF-16 in their native Unicode strings. Accessing
the uv field allows applications to deal with characters outside the BMP without hav-
ing to interpret surrogate pairs.

> The type field specifies how the character was created; it is filled with the constants
TET_CT_NORMAL etc. There are two groups: real and artificial characters. The group of
real characters comprises normal characters (i.e. the complete result of a single
glyph) and characters which start a multi-character sequence that corresponds to a
single glyph (e.g. the first character of a ligature). The group of artificial characters
comprises the continuation of a multi-character sequence (e.g. the second character
of a ligature) and inserted separator characters. For artificial characters the position
(x, y) specifies the endpoint of the most recent real character, width and height are 0,
and all other fields except uv are those of the most recent real character. The end-

Fig. 6.2
Configuring coordinate display in Acrobat; View, Show/Hide, Cursor Coordinates displays cursor coordinates.

76 Chapter 6: Text Extraction

point is the point (x, y) plus the width added in direction alpha (in horizontal writing
mode) or plus the height in direction -90˚ (in vertical writing mode).

> The unknown field is usually false (in C and C++: 0), but has a value of true (in C and
C++: 1) if the original glyph could not be mapped to Unicode and has therefore been
replaced with the character specified in the unknownchar option. Using this field you
can distinguish real document content from replaced characters if you specified a
common character as unknownchar, such as a question mark or space.

> The attributes field contains information about the subscript, superscript, dropcap,
or shadow status of the glyph as determined by TET’s content analysis algorithms. If
the glyph is part of an Artifact (irrelevant content) this is also reported in the
attributes field. This field is populated with the constants TET_ATTR_SUB etc.

> The (x, y) fields specify the position of the glyph’s reference point, which is the lower
left corner of the glyph rectangle in horizontal writing mode, and the top center in
vertical writing mode (see Section 6.4, »Chinese, Japanese, and Korean Text«, page 82
for details on vertical writing mode). For artificial characters, which do not corre-
spond to any glyph on the page, the point (x, y) specifies the end point of the most re-
cent real character. The value of y is subject to the topdown page option.

> The width field specifies the width of a glyph according to the corresponding font
metrics and text output parameters, such as character spacing and horizontal scal-
ing. Since these parameters control the position of the next glyph, the distance be-
tween the reference points of two adjacent glyphs may be different from width. The
width may be zero for non-spacing characters. On the other hand, the outline may
actually be wider than the glyph’s width value, e.g. for slanted text.
The width is 0 for artificial characters.

> The height field in vertical writing mode specifies the height of the corresponding
glyph according to the font metrics and text parameters (e.g. character spacing). The
height is positive in the default coordinate system, but negative for topdown coordi-
nates. In monospaced vertical fonts all glyphs have fontsize as height unless addi-
tional character spacing has been applied. Artificial characters (e.g. separators) have
a height of 0.

(x, y)
width

height

width

baseline

alpha

beta

(x, y)

fontsize

Fig. 6.3
Glyph metrics for horizontal and vertical writing mode

in TET’s default coordinate system
(topdown={output=false})

6.2 Page and Text Geometry 77

For horizontal writing mode an approximation of the glyph height is supplied. This
approximate value is derived from font properties and therefore identical for all
glyphs in a font. There is no guarantee that the visible glyph has the exact height val-
ue supplied here.

> The angle alpha provides the direction of text progression, specified as the deviation
from the standard direction. The standard direction is 0˚ for horizontal writing
mode, and -90˚ for vertical writing mode (see below for more details on vertical writ-
ing mode). Therefore, the angle alpha is 0˚ for standard horizontal text as well as for
standard vertical text. The values of alpha and beta are subject to the topdown page
option.

> The angle beta specifies any skewing which has been applied to the text, e.g. for
slanted (italicized) text. The angle is measured against the perpendicular of alpha. It
is 0˚ for standard upright text (for both horizontal and vertical writing mode). If the
absolute value of beta is greater than 90˚ the text is mirrored at the baseline.

> The fontid field contains the pCOS ID of the font used for the glyph. It can be used to
retrieve detailed font information, such as the font name, embedding status, writing
mode (horizontal/vertical), etc. The pCOS Path Reference contains sample code for
retrieving font details.

> The fontsize field specifies the size of the text in points. It is normalized and therefore
always positive, even for topdown={output}.

> The colorid field contains an index for the text color. It represents the unique combi-
nation of fill color, stroke color, and text rendering. All occurrences of the same com-
bination in a document are represented by the same color id. Different combina-
tions are represented by different ids, which means that colors of multiple glyphs
can be checked for equality by comparing their color ids. For example, by comparing
the colorid values of successive glyphs you can identify changes in text color. The ex-
act color space and color components for filling and/or stroking text can be retrieved
with TET_get_color_info() (see Section 6.3, »Text Color«, page 80).

> The textrendering field specifies the kind of rendering for a glyph, e.g. stroked, filled,
or invisible, and possible use of the text as clipping path. It is filled with the con-
stants TET_TR_FILL etc. This field contains the numerical text rendering mode as de-
fined in PDF (see Table 10.16, page 200). Invisible text (i.e. textrendering=3) is extracted
by default, but this can be changed with the ignoreinvisibletext option of TET_open_
page().
Text in Type 3 fonts: textrendering=3 and 7 result in invisible text; all other values of
textrendering are irrelevant and are ignored.

Font-specific metrics. TET uses the glyph and font metrics system used by PostScript
and PDF which shall be briefly discussed here.

The font size is usually chosen as the minimum distance between adjacent text lines
which is required to avoid overlapping character parts. The font size is generally larger
than individual characters in a font, since it spans ascender and descender, plus possi-
bly additional space between lines.

The capheight is the height of capital letters such as T or H in most Latin fonts. The
xheight is the height of lowercase letters such as x in most Latin fonts. The ascender is the
height of lowercase letters such as t or d in most Latin fonts. The descender is the dis-
tance from the baseline to the bottom of lowercase letters such as j or p in most Latin

78 Chapter 6: Text Extraction

fonts. The descender is usually negative. The values of xheight, capheight, ascender, and
descender are measured in thousands of the font size.

These values vary among fonts, and can be retrieved with the pCOS interface. For ex-
ample, the following code retrieves the ascender and descender values:

/* Query ascender and descender values */
path = "fonts[" + i + "]/ascender";
System.out.println("Ascender=" + p.pcos_get_number(doc, path));

path = "fonts[" + i + "]/descender";
System.out.println("Descender=" + p.pcos_get_number(doc, path));

Note that ascender and other font metrics values should only be queried after calling
TET_get_char_info() for a glyph with this font. In order words, using font ids returned by
TET_get_char_info() is safe, while enumerating all fonts in the fonts[] array does not nec-
essarily provide metrics values from embedded font data, but the possibly inaccurate
values from the PDF FontDescriptor dictionary. For more information refer to the pCOS
Path Reference.

End points of glyphs and words. In order to do proper highlighting you need the end
position of the last character in a word. Using x, y, width, and alpha returned by TET_get_
char_info() you can determine the end point of a glyph in horizontal writing mode, i.e.
the end point of the glyph’s advance vector (the lower right corner of the glyph box):

xend = lrx = x + width * cos(alpha)
yend = lry = y + width * sin(alpha)

In the common case of horizontally oriented text (i.e. alpha=0) this reduces to

xend = lrx = x + width
yend = lry = y

More generally, you can calculate the size of the glyph box by determining the coordi-
nates of the upper right corner (for beta=0, i.e. this formula does not take into account
glyph skewing):

urx = x + width * cos(alpha) - dir * height * sin(alpha)
ury = y + width * sin(alpha) + dir * height * cos(alpha)

font size

baseline

capheight

descender

ascender

Fig. 6.4 Font-specific metrics

6.2 Page and Text Geometry 79

with dir=1 in the default case topdown={output=false} and dir=-1 if topdown={output=
true} (see »Top-down coordinate system«, page 74). The value of height depends on the
fontsize and the font geometry. The following results in useful values for most com-
mon fonts (see »Font-specific metrics«, page 77, for retrieving the ascender value):

height = fontsize * ascender / 1000

In many graphical development environments the glyph transformations can be ex-
pressed as follows:

translate(x, y);
rotate(alpha);
skew(0, -beta);
if (abs(beta) > 90)

scale(1, -1);

After applying these transformations the upper right corner of the glyph box can be ex-
pressed as follows:

urx = x + width
ury = y + dir * height

Glyph calculations for vertical writing mode. For text with vertical writing mode the
end point calculation works as follows:

xend = x
yend = y - height

The upper left and lower right corners of the glyph box can be calculated as follows (for
beta=0):

ulx = x - width/2 * cos(alpha)
uly = y - width/2 * sin(alpha)

lrx = ulx + width * cos(alpha) + dir * height * sin(alpha)
lry = uly + width * sin(alpha) - dir * height * cos(alpha)

with dir=1 in the default case topdown={output=false} and dir=-1 if topdown={output=
true} (see »Top-down coordinate system«, page 74).

80 Chapter 6: Text Extraction

6.3 Text Color
The text color id returned by TET_get_char_info() describes the fill and/or stroke color of
the glyph corresponding to a character. The fill and stroke colors represented by a color
id can be achieved with TET_get_color_info() which returns the following values for a col-
or id. These values can be retrieved separately for the fill and stroke color of a glyph:

> The colorspaceid field contains the index of the color space in the colorspaces[] pseudo
object (see the pCOS Path Reference), or -1 if no color is applied to the glyph.

> The patternid field contains the index of the pattern in the patterns[] pseudo object
(see the pCOS Path Reference), or -1 if no pattern is applied to the glyph.

> The components array contains the color values which must be interpreted in the col-
or space reported with colorspaceid.

> The n field (only available in the C and C++ language bindings) contains the number
of relevant entries in the components field.

The glyphinfo sample demonstrates how to interpret the color values provided by TET_
get_color_info() and how to augment this information with general color space attri-
butes retrieved with pCOS. The colorspaces and page_colorspaces topics in the pCOS Cook-
book demonstrate how to retrieve even more color space details, such as WhitePoint for
calibrated color spaces or the alternate color space of a Separation or DeviceN color space.

Text stroking, i.e. painting the outline of glyphs (as opposed to filling the interior) is
rarely used in PDF documents. Most applications may ignore the stroke color informa-
tion. Also, patterns are rarely used for text. In some cases glyphs don’t carry any fill col-
or nor stroke color information, e.g. invisible text (textrendering=3). This case can be
identified by colorspaceid=-1.

Text color retrieval can be disabled with the following document option:

engines={notextcolor}

If the text color engine is disabled, the colorid field of TET_char_info must not be used
since it doesn’t contain any meaningful value.

Table 6.1 provides an overview of PDF color spaces. Unless noted otherwise, color val-
ues are in the range 0..1.

https://www.pdflib.com/pcos-cookbook/resources/colorspaces/
https://www.pdflib.com/pcos-cookbook/pages/page_colorspaces/

6.3 Text Color 81

Table 6.1 Color spaces in PDF

color space
number of color
components notes

Device color spaces

DeviceGray
DeviceRGB
DeviceCMYK

1
3
4

The device color spaces are widely known, but are device-dependent and therefore
don’t represent reliable color information.

CIE-based (device-independent) color spaces

ICCBased 1, 3 or 4 ICCBased color spaces are defined by an ICC profile for grayscale, RGB or CMYK col-
or.

Lab 3 Lab color spaces are defined by an CIE 1976 L*a*b* space. They require a lightness
value in the range 0...100 and two color values which are often in the range
-128...127.

CalGray
CalRGB

1
3

Calibrated color spaces define a WhitePoint and optional BlackPoint. They are
rarely used since ICCBased color spaces are more flexible.

Special color spaces

Pattern 0 (PaintType=1)
N (PaintType=2)
0 (PatternType=2)

Pattern color spaces are used to apply some graphical pattern instead of a solid
color. Tiling patterns (PatternType=1) colorize by repeatedly placing some graph-
ical shape, where the shape may be colored with intrinsic colors (PaintType=1),
or may be uncolored like a stencil mask and require external color (PaintType=2).
Shading patterns (PatternType=2) apply a color gradient instead of solid color.

Separation1 1 A Separation color space describes a named spot color and requires an alternate
color space which is needed if the named spot color is not directly available for
output.

DeviceN1 N DeviceN is a generalization of Separation color space for more than one named
spot color. It is also used to apply a subset of CMYK process colors.

Indexed 1, but N in the base
color space

Indexed color spaces allow for efficient storage of a small number of different col-
or values (up to 256) and require an underlying base color space.

1. The document option glyphcolor=alternate can be used to report text colors in the alternate color space instead of Separation or
DeviceN.

82 Chapter 6: Text Extraction

6.4 Chinese, Japanese, and Korean Text

6.4.1 CJK Encodings and CMaps
TET supports Chinese, Japanese, and Korean (CJK) text, and converts horizontal and ver-
tical CJK text in arbitrary legacy encodings (CMaps) to Unicode. TET supports the follow-
ing CJK character collections and supplements:

> Simplified Chinese: Adobe-GB1-5
> Traditional Chinese: Adobe-CNS1-7
> Japanese: Adobe-Japan1-7
> Korean: Adobe-Korea1-2 and Adobe-KR-9

The PDF CMaps in turn cover a variety of CJK character encodings such as Shift-JIS, EUC,
Big-5, KSC, and many others. CJK font names encoded with locale-specific encodings
(e.g. Japanese font names encoded in Shift-JIS) are normalized to Unicode.

Note In order to extract CJK text which is encoded with legacy encodings you must configure access
to the CMap files which are shipped with TET according to Section 0.1, »Installing the Soft-
ware«, page 7. If a required CMap is not available TET_open_page() returns an error since the
configuration must be corrected.

6.4.2 Word Boundaries for CJK Text
Ideographic characters don’t constitute a word boundary, but punctuation and the
transition between ideographic and non-ideographic characters still constitute word
boundaries. For granularity=word ideographic comma U+3001 and ideographic full stop
U+3002 also constitute word boundaries. For granularity=page no line separator is insert-
ed at the end of a line containing only ideographic characters.

6.4.3 Vertical Writing Mode
TET supports both horizontal and vertical writing modes, and performs all metrics cal-
culations as appropriate for the respective writing mode. Keep the following in mind
when dealing with text in vertical writing mode:

> The glyph reference point in vertical writing mode is at the top center of the glyph
box. The text position advances downwards as determined by the glyph height, re-
gardless of the glyph width (see Figure 6.3).

> The angle alpha is 0˚ for standard vertical text. In other words, fonts with vertical
writing mode and alpha=0° progress downwards, i.e. in direction -90˚.

> Because of the differences noted above, client code must take the writing mode into
account by using the following pCOS code (note that not all text which appears verti-
cally actually uses a font with vertical writing mode):

count = p.pcos_get_number(doc, "length:fonts");

for (i=0; i < count; i++)

{

if (p.pcos_get_number(doc, "fonts[" + id + "]/vertical"))

{

/* font uses vertical writing mode */

}

}

6.4 Chinese, Japanese, and Korean Text 83

> Prerotated glyphs for vertical text and punctuation are mapped to the correspond-
ing unrotated Unicode characters. Use the following document option to preserve
prerotated characters:

decompose={vertical=_none}

6.4.4 CJK Decompositions: Narrow, wide, vertical, etc.
Unicode and many legacy encodings support the notion of fullwidth and halfwidth
characters (sometimes also called double-byte and single-byte characters). By default,
TET applies the Unicode decompositions wide and narrow which replace fullwidth and
halfwidth characters with the corresponding standard-width counterparts.

In order to preserve the original fullwidth and halfwidth characters you can use the
decompose document option and disable the respective decompositions:

decompose={wide=_none narrow=_none}

Similarly, the small, square, and vertical decompositions also affect CJK characters. Since
all these decompositions (including wide and narrow) are enabled by default, the char-
acters are converted to their normal counterparts. Disable the respective decomposi-
tions in order to preserve the original characters. The following document option dis-
ables all decompositions:

decompose={none}

Table 6.2 demonstrates the CJK decompositions along with examples. See Section 7.3.2,
»Unicode Decomposition«, page 106, for more information on decompositions.

Table 6.2 CJK compatibility decomposition examples (suboptions for the decompose option)

decomposition
name description affected Unicode characters

decompositions
enabled (default)

decompositions
disabled

narrow Narrow (hankaku)
compatibility forms

U+FF61-U+FFDC,
U+FFE8-U+FFEE

small Small forms for CNS
11643 compatibility

U+FE50-U+FE6B

square CJK squared font
variants

U+3250,
U+32CC-U+32CF,
U+3300-U+3357,
U+3371-U+33DF,
U+337B-U+337F,
U+33FF,
U+1F131-U+1F14E,
U+1F190,
U+1F200,
U+1F210-U+1F231

vertical Vertical layout pre-
sentation forms

U+309F,
U+30FF,
U+FE10-U+FE19
U+FE30-U+FE48

wide Wide (zenkaku) com-
patibility forms

U+3000,
U+FF01-U+FF60,
U+FFE0-U+FFE6

U+30F2 U+FF66

U+002C U+FE50

U+30AD U+30ED U+3314

U+FE37 U+007B

£
U+00A3

£
U+FFE1

84 Chapter 6: Text Extraction

6.5 Bidirectional Arabic and Hebrew Text
TET applies additional processing to correctly extract text from documents with right-
to-left scripts such as Arabic and Hebrew. Since these scripts often contain left-to-right
text inserts (e.g. numbers), such documents are called bidirectional. Extracting bidirec-
tional text involves one or more of the processing steps mentioned below.

6.5.1 General Bidi Topics

Reorder right-to-left and bidirectional text. Right-to-left sequences and left-to-right
sequences must be reordered to form the correct sequence of logical text. In granularity
word or higher TET delivers text in logical order with the following page option (which
is the default setting):

contentanalysis={bidi=logical}

Bidi processing can explicitly be disabled with the following page option:

contentanalysis={bidi=visual}

Determine the dominant text direction of the page. Not only the characters within a
word and words within a line are affected by Bidi reordering, but also other aspects of
page layout recognition. In some cases mixed Bidi lines cannot safely be reordered
without taking into account the fact that the page is an overall right-to-left or left-to-
right page. In order to make this decision automatically TET checks the dominant text
direction of the page and adjusts its algorithms depending on whether the page must
be considered mostly left-to-right or mostly right-to-left.

This decision can be overridden with the bidilevel option. For example, the following
option list forces right-to-left handling even on pages where the majority of text runs
left-to-right:

contentanalysis={bidilevel=rtl}

Glyph ordering. The glyph information returned by TET_get_char_info() and the Glyph
elements in TETML are always ordered according to visual order, i.e. from left to right
for horizontal baselines. This left-to-right glyph ordering ensures that client applica-
tions receive glyph coordinates in deterministic ordering without having to check the
Bidi status of the text. This behavior reflects the fact that the glyphs in Arabic and He-
brew fonts generally have the reference point at the left edge and advance to the right,
despite the fact that the actual text direction is right-to-left.

6.5.2 Postprocessing Arabic Text

Normalize Arabic presentation forms and decompose ligatures. Arabic characters ex-
ist in up to four different forms for isolated use, at the beginning, in the middle, or at
the end of a word. These forms can have different Unicode values although semantical-
ly they represent the same character. By default, TET converts all presentation forms to
the corresponding canonical forms. As shown in Table 6.3 the decompose option can be
used to preserve presentation forms (see Section 7.3.2, »Unicode Decomposition«, page
106).

6.5 Bidirectional Arabic and Hebrew Text 85

Since the PDF document may map presentation forms either to the isolated Unicode
character or one of the presentation forms (e.g. in the document’s ToUnicode CMap),
TET cannot guarantee that the output contains presentation forms even when decom-
positions are disabled.

Remove Arabic Tatweel character. The Tatweel character U+0640 (also called kashida)
is often used in Arabic text to stretch words so that they completely fill the line. Since
the Tatweel doesn’t carry any text information itself it is usually not required in the ex-
tracted text. By default, TET removes Tatweel characters from the extracted text. As
shown in Table 6.4 the fold option can be used to preserve Tatweel characters (see Sec-
tion 7.3.1, »Unicode Folding«, page 103).

Table 6.3 Processing Arabic presentation forms with the decompose option

description and option list
before
decomposition

after decomposition
(in logical order)

Decompose final, initial, isolated, and medial presentation forms:
no decompose option (default) or
decompose=
{final=_all medial=_all initial=_all isolated=_all}

Note that ligatures are only decomposed if they are actually repre-
sented by a ligature glyph. If multiple separate glyphs are used
these are retained in the output.

Preserve final, initial, isolated, and medial presentation forms:
decompose=
{final=_none medial=_none initial=_none isolated=_none}
or
decompose=none

Table 6.4 Processing the Tatweel character U+0640 with the fold option

description and option list before folding after folding
Remove Arabic Tatweel characters: no fold option (default) or
fold={{[U+0640] remove}} or fold={default} n/a

Preserve Arabic Tatweel characters (which are removed by default):
fold={{[U+0640] preserve}}

U+FEB2

U+FEB3

U+FD0E

U+FEB4

U+FEFC

U+0644 U+0627

U+0633

U+0633

U+0633 U+0631

U+0633

U+0644 U+0627

U+0644 U+0627

U+FEB2

U+FEB3

U+FD0E

U+FEB4

U+FEFC

U+FEB2

U+FEB3

U+FD0E

U+FEB4

U+FEFC

U+0640

U+0640 U+0640

86 Chapter 6: Text Extraction

6.6 Content Analysis
PDF documents provide the semantics (Unicode mapping) of individual text characters
as well as their position on the page. However, they usually do not convey information
about words, lines, columns or other high-level text units. The fragments comprising
text on a page may contain individual characters, syllables, words, lines, or an arbitrary
mixture thereof, without any explicit marks designating the start or end of a word, line,
or column.

To make matters worse, the ordering of text fragments on the page may be different
from the logical (reading) order. There are no rules for the order in which portions of
text are placed on the page. For example, a page containing two columns of text could
be produced by creating the first line in the left column, followed by the first line of the
right column, the second line of the left column, the second line of the right column etc.
However, logical order requires all text in the left column to be processed before the
text in the right column is processed. Extracting text from such documents by simply
replaying the instructions on the PDF page generally provides undesirable results since
the logical structure of the text is lost.

TET’s content analysis engine analyzes the contents, position, and relationship of
text fragments in order to achieve the following goals:

> create words from characters, and insert separator characters between words if de-
sired;

> remove redundant text, such as duplicates which are only present to create a shadow
effect;

> recombine the parts of hyphenated words which span more than one line;
> identify text columns (zones);
> sort text fragments within a zone, as well as zones within a page.

These operations are discussed in more detail below, as well as options which provide
some control over content processing.

Text granularity. The granularity option of TET_open_page() specifies the amount of
text which is returned by a single call to TET_get_text():

> With granularity=glyph each fragment contains the result of mapping one glyph,
which may be more than one character (e.g. for ligatures). In this mode content anal-
ysis is disabled. TET returns the original text fragments on the page in their original
order. Although this is the fastest mode, it is only useful if the TET client intends to
do sophisticated postprocessing (or is only interested in the text position, but not in
its logical structure) since the text may be scattered all over the page.

> With granularity=word the Wordfinder algorithm groups characters into logical
words. Each fragment contains a word. Isolated punctuation characters (comma, co-
lon, question mark, quotes, etc.) are returned as separate fragments by default, while
multiple sequential punctuation characters are grouped as a single word (e.g. a series
of period characters which simulates a dotted line). However, punctuation treat-
ment can be changed (see »Word boundary detection for Western text«, page 87).

> With granularity=line the words identified by the Wordfinder are grouped into lines.
If dehyphenation is enabled (which is the default) the parts of hyphenated words at
the end of a line are combined, and the full dehyphenated word is part of the line.

> With granularity=page all words on the page are returned in a single fragment.

6.6 Content Analysis 87

Separator characters are inserted between multiple words, lines, or paragraphs if the
chosen granularity is larger than the respective unit. For example, with
granularity=word there’s no need to insert word separators since each call to TET_get_
text() returns exactly one word.

The separator characters can be specified with the wordseparator, lineseparator, and
paraseparator options of TET_open_document() (use U+0000 to disable a separator), for
example:

lineseparator=U+000A

All content processing operations are disabled for granularity=glyph and enabled for all
other granularity settings. However, more fine-grain control is possible via separate op-
tions (see below).

Word boundary detection for Western text. The Wordfinder, which is enabled for all
granularity modes except glyph, creates logical words from multiple glyphs which may
be scattered all over the page in no particular order. Word boundaries for Western text
are identified by two criteria:

> A sophisticated algorithm analyzes the geometric relationship among glyphs to find
character groups which together form a word. The algorithm takes into account a va-
riety of properties and special cases in order to accurately identify words even in
complicated layouts and for arbitrary text ordering on the page.
The suboption usemetrics of the contentanalysis page option can be used to disable
this algorithm for special situations.

> Some characters, such as space and punctuation characters (e.g. colon, comma, full
stop, parentheses) are considered a word boundary, regardless of their width and po-
sition. The suboption useclasses of the contentanalysis page option can be used to dis-
able this algorithm for special situations.

Ignoring punctuation characters for word boundary detection can, for example, be use-
ful for maintaining Web URLs where period and slash characters are usually considered
part of a word (see Figure 6.5). If the punctuationbreaks page option is set to false the
Wordfinder no longer treats punctuation characters as word boundaries:

contentanalysis={punctuationbreaks=false}

Note Word boundary detection for text with ideographic characters works differently; see Section
6.4.2, »Word Boundaries for CJK Text«, page 82, for more information.

Fig. 6.5
The default setting punctuationbreaks=true
separates the parts of URLs (top), while
punctuationbreaks=false keeps the parts to-
gether (bottom).

88 Chapter 6: Text Extraction

Dehyphenation. Hyphenated
words at the end of a line are usu-
ally not desired for applications
which process the extracted text
on a logical level. TET therefore
dehyphenates or recombines the
parts of a hyphenated word. More
precisely, if a word at the end of a
line ends with a hyphen character
and the first word on the next line
starts with a lowercase character,
the hyphen is removed and the
first part of the word is combined
with the part on the next line, provided there is at least one more line in the same zone.
Dash characters (as opposed to hyphens) are left unmodified. The parts of a hyphenated
word are not modified, only the hyphen is removed. Dehyphenation can be disabled
with the following option list for TET_open_page():

contentanalysis={dehyphenate=false}

Shadow and fake bold text removal. PDF documents sometimes include redundant
text which does not contribute to the semantics of a page, but creates certain visual ef-
fects only. Shadow text effects are usually achieved by placing two or more copies of the
actual text on top of each other, where a small displacement is applied. Applying
opaque coloring to each layer of text provides a visual appearance where the majority
of the text in lower layers is obscured, while the visible portions create a shadow effect.

Similarly,
word processing
applications
sometimes sup-
port a feature for
creating artificial bold text. In order to create bold text appearance even if a bold font is
not available, the text is placed repeatedly on the page in the same color. Using a very
small displacement the appearance of bold text is simulated.

Shadow simulation, artificial bold text, and similar visual effects create severe prob-
lems when reusing the extracted text since redundant text contents which contribute
only to the visual appearance is processed although the text does not contribute to the
page contents.

If the Wordfinder is enabled, TET identifies and removes such redundant visual ef-
fects by default. Shadow removal can be disabled with the following page option:

contentanalysis={shadowdetect=false}

Accented characters. In many languages accents and other diacritical marks are
placed close to other characters to form combined characters. Some typesetting pro-
grams, most notably TeX, emit two characters (base character and accent) separately to
create a combined character. For example, to create the character ä first the letter a is
placed on the page, and then the dieresis character ¨ is placed on top of it. TET detects
this situation and recombines both characters to form the appropriate combined char-
acter.

6.7 Layout Analysis and Document Styles 89

6.7 Layout Analysis and Document Styles
TET analyses the layout of text on the page in order to determine the best possible order
of text extraction. This automatic process can be assisted by several options. If you have
advance knowledge of the nature of the documents you can improve the text extraction
results by supplying suitable options.

Document styles. Several internal parameters are available for processing documents
of different layout and style. For example, newspaper pages tend to contain lots of text
in multiple columns, while business reports often contain comments in the margins,
etc. TET contains predefined settings for several types of document. These settings can
be activated with an option for TET_open_page():

docstyle=papers

If the type of input documents is known it is strongly recommended to supply suitable
values of the docstyle page option and (if applicable) also the layouthint page option.
Supplying the docstyle option activates an advanced layout recognition algorithm.
However, supplying an unsuitable value for this option may actually create worse re-
sults.

The following types are available for the docstyle option (Table 6.5 contains typical
examples for some document styles):

> Book: typical book layouts with regular pages
> Business: business documents
> Cad: technical or architectural drawings which are typically heavily fragmented
> Fancy: fancy pages with complex and sometimes irregular layout
> Forms: structured forms
> Generic: the most general document class without any further qualification
> Magazines: magazine articles, usually with three or more columns and interspersed

images and graphics
> Papers: newspapers with many columns, large pages and small type
> Science: scientific articles, usually with two or more columns and interspersed imag-

es, formulae, tables, etc.
> Search engine: this class does not refer to a specific type of input document, but rath-

er optimizes TET for the typical requirements of indexers for search engines. Some
layout detection features are disabled to deliver only the raw text and speed up pro-
cessing. For example, table and page structure recognition are disabled.

> Simple line: simplistic line-oriented layout; this mode disables dehyphenation and
table detection and attempts to retrieve the text as close as possible to the original
line layout. This may be useful if many similar documents are processed and the ap-
plication has advance knowledge of the layout.

> Space grid: this class is targeted at list-oriented reports which are often generated on
mainframe systems. The characteristic of this document class is that the visual lay-
out is generated with space characters instead of explicit positioning of text. When
processing this kind of document text extraction can be accelerated since some pro-
cessing steps (e.g. shadow detection) can be skipped.

Choosing the most appropriate document style can speed up processing and enhance
text extraction results.

90 Chapter 6: Text Extraction

Table 6.5 Document styles

docstyle=book docstyle=business docstyle=fancy

docstyle=magazines docstyle=papers docstyle=science

docstyle=spacegrid docstyle=cad

6.7 Layout Analysis and Document Styles 91

Complex layouts. Some classes of documents often use very elaborate page layouts.
For example, with magazines and periodicals TET may not be able to properly deter-
mine the relationship of columns on the page. In such situations it is possible to en-
hance the extracted text at the expense of processing time. This can be controlled with
the structureanalysis and layoutanalysis page options, e.g.

structureanalysis={list=true bullets={{fontname=ZapfDingbats}}}
layoutanalysis = {layoutrowhint={full separation=preservecolumns}}
layoutdetect=2
layouteffort=high

docstyle=simpleline

Table 6.5 Document styles

92 Chapter 6: Text Extraction

6.8 Table and List Detection
Table detection. TET detects tabular layouts and structures the table contents in rows,
columns and cells. Information about tables detected on the page is not provided
directly by the API, but is only available in TETML output as in the following example:

<Table llx="302.14" lly="639.72" urx="525.50" ury="731.50">
 <Row>
 <Cell colSpan="3" llx="306.14" lly="641.52" urx="516.67" ury="650.52">
 <Para>
 <Box llx="306.14" lly="641.52" urx="516.67" ury="650.52">
 <Word>
 <Text>TET</Text>
 <Box llx="306.14" lly="641.52" urx="319.70" ury="650.52"/>
 </Word>
 <Word>
 <Text>processes</Text>
 <Box llx="321.67" lly="641.52" urx="356.89" ury="650.52"/>
 </Word>
 <Word>
 <Text>all</Text>
 <Box llx="358.85" lly="641.52" urx="368.15" ury="650.52"/>
 </Word>
 ...
 </Box>
 </Para>
 </Cell>
 </Row>
</Table>

TET can optionally analyze the horizontal and vertical lines or colored boxes which are
often used to enhance the table layout. This vector graphics analysis is disabled by de-
fault. It improves the results of table and layout detection if such graphical elements
are present. Vector graphics analysis can be enabled with the page option vectoranalysis,
for example

vectoranalysis={structures=tables}

If the table cells are completely framed with vector graphics you can instruct TET to
identify cells solely based on the cell border lines (instead of analyzing the text posi-
tions). The following page option improves table detection results, but works only for
tables where the cells are completely framed and which don’t contain any row or col-
umn spans:

vectoranalysis={structures=usevectoronly}

By default, table detection ignores lines which are almost as long as the page height or
width. If you know that large tables with long lines are present you can instruct TET to
take these lines into account:

vectoranalysis={structures=usevectoronly pagesizelines=true}

The following page option enables row and column span detection in complex table
layouts:

6.8 Table and List Detection 93

vectoranalysis={structures=vectoriterative}

List detection. TET detects list structures on the page, i.e. one or more list items where
each items consists of a list label, e.g. a bullet, number or character, and a body section
consisting of one or more paragraphs. Only list labels at the beginning of a line can be
detected. Lists may be nested, i.e. a list item’s body may itself contain another list. Infor-
mation about lists detected on the page is not provided directly by the API, but is only
available in TETML output as in the following example:

<List>
 <Item>
 <Label>
 <Word>
 <Text>•</Text>
 <Box llx="35.00" lly="737.00" urx="45.50" ury="767.00"/>
 </Word>
 </Label>
 <Body>
 <Para>
 <Box llx="35.00" lly="737.00" urx="169.15" ury="767.00">
 <Word>
 <Text>four</Text>
 <Box llx="70.00" lly="737.00" urx="85.00" ury="767.00"/>
 </Word>
 <Word>
 <Text>sorts</Text>
 <Box llx="92.50" lly="737.00" urx="169.15" ury="767.00"/>
 </Word>
 </Box>
 </Para>
 ...
 </Body>
 </Item>

</List>

For compatibility reasons list detection is disabled by default, and must be enabled with
the following page option:

structureanalysis={list=true}

The following additional options can be used to control list detection:
> The suboption bullets of the page option structureanalysis can be used to define Uni-

code values and font names which are used for bullet characters. The default list con-
tains a variety of Unicode characters such as asterisks, dashes, bullets which are com-
monly used as list labels.

> The numericentities suboption of the page option contentanalysis can be used to con-
trol the relationship of punctuation and digits which together comprise numeric en-
tities such as composite numbers, fractions or time, e.g. the section number »10.4« in
a heading is treated as follows:
with the default contentanalysis={numericentities=keep}: as single word »10.4«
with contentanalysis={numericentities=split}: as separate words »10«, ».« and »4«.

94 Chapter 6: Text Extraction

6.9 Check whether an Area is empty
TET can also be used to check whether a particular area on the page is empty, i.e. con-
tains any text, image, or vector graphics objects which may be useful for postprocessing
applications. For example, consider that you need to place a stamp, page number, bar-
code or other item somewhere on a page. If the page contents are variable it may be dif-
ficult to specify a location on the page where the stamp or barcode can be placed with-
out obscuring some existing contents. TET can check whether the target area is actually
empty. This feature works as follows with the TET API:

> The emptycheck page option activates the feature and disables any page content re-
trieval.

> The coordinates of the rectangular area which is checked are supplied in the include-
box page option. Double braces are required since this option usually accepts multi-
ple boxes (but only a single box makes sense for emptycheck):

includebox={{100 20 500 100}}

If the includebox option is not supplied the whole clipping area is checked. This can
be used to identify empty pages.

> Instead of retrieving any page contents, TET_get_text() returns one of the strings
empty or notempty as result of the check.

The emptycheck feature can be used in the TET command-line tool as follows:

tet --pageopt "emptycheck includebox={{300 760 450 820}}" input.pdf
box on page 1: empty
box on page 2: empty
box on page 3: notempty

The emptycheck topic in the TET Cookbook demonstrates how to check whether a rectan-
gle on the page is empty.

https://www.pdflib.com/tet-cookbook/special/emptycheck/

6.10 Annotation Contents 95

6.10 Annotation Contents
PDF documents may contain text and images in annotations (comments). There are two
fundamentally different ways how text can be stored in annotations (see Table 6.6):

> The annotation may have an appearance stream which (like a page) can use the full
PDF graphics model with fonts and colors. Text in an appearance stream is styled
and has a position. Appearance streams may also contain images. The appearance
stream is rendered on the page and therefore visible. TET processes annotation ap-
pearance streams by default, but this can be changed with the document option
engines={noannotation}.

> The annotation may contain an entry called Contents which consists of a plain Uni-
code string without any styling or position. The PDF standard describes this entry as
follows: »It is the text that shall be displayed for the annotation or, if the annotation does
not display text, an alternative description of the annotation’s contents in human-readable
form.« Applications must decide whether they are interested in this text. The
Contents entry is processed by default when creating TETML output, but must be re-
trieved explicitly with pCOS methods when using the API.

Table 6.6 Annotation text in appearance streams vs. Contents entry

appearance stream of annotations Contents entry of annotations

General

may contain text and images text

text is styled and has geometry yes no

page option includebox is honored yes no

page option granularity and docu-
ment options wordseparator etc.
are honored

yes no

Extraction with API methods

relevant API methods TET_get_text()
TET_get_image_info()
TET_write_image_file()

TET_pcos_get_string()
TET_pcos_get_number()

extraction controlled by document option
engines={annotation}

application code

Where does the text appear? page contents separately

sample code extractor and images_per_page
samples

text_from_annotations topic in
the TET Cookbook

other notes annotations are integrated in page
processing, e.g. layout analysis and
image merging

application should replace para-
graph separator U+000D with
U+000A

Extraction with TETML

extraction controlled by document option
engines={annotation}

page option
tetml={elements={annotations}}

Where does the text appear? Content element of Page Annotations element

contributes fonts, images and color
spaces to Resources section

yes no

96 Chapter 6: Text Extraction

Form fields in PDF are also coded as annotations. They are therefore also subject to TET’s
annotation engine. The active contents of a form field can be retrieved from the /V (val-
ue) entry; see pCOS Cookbook topic formfields.

A related topic is text which is marked up with a highlight annotation. Proceed as fol-
lows to extract only highlighted text:

> Retrieve the rectangle coordinates of each Highlight annotation with pCOS.
> Use the includebox option of TET_get_text() to restrict text extraction to a particular

annotation, and process all highlight annotations this way.

This method is demonstrated in the topic extract_highlighted_text in the TET Cookbook.

7.1 Important Unicode Concepts 97

7 Advanced Unicode Handling
7.1 Important Unicode Concepts

This section provides basic information about Unicode since text handling in TET heav-
ily relies on the Unicode standard. The Unicode Web site provides a wealth of additional
information:

www.unicode.org

Characters and glyphs. When dealing with text it is important to clearly distinguish
the following concepts:

> Characters are the smallest units which convey information in a language. Common
examples are the letters in the Latin alphabet, Chinese ideographs, and Japanese syl-
lables. Characters have a meaning: they are semantic entities.

> Glyphs are graphical shapes which represent one or more particular characters.
Glyphs have an appearance: they are representational entities.

There is no one-to-one relationship between characters and glyphs. For example, a liga-
ture is a single glyph which represents two or more separate characters. On the other
hand, a specific glyph may be used to represent different characters depending on the
context (some characters look identical, see Figure 7.1).

Unicode postprocessing in TET can change the relationship of glyphs and resulting
characters even more. For example, decompositions may convert a single character into
multiple characters, and foldings may remove characters. For these reasons you must
not assume any specific relationship of characters and glyphs.

BMP and PUA. The following terms occur frequently in Unicode-based environments:
> The Basic Multilingual Plane (BMP) comprises the code points in the Unicode range

U+0000...U+FFFF. The Unicode standard contains many more code points in the sup-
plementary planes, i.e. in the range U+10000...U+10FFFF.

U+0067 LATIN SMALL LETTER G

Characters Glyphs

U+0066 LATIN SMALL LETTER F +
U+0069 LATIN SMALL LETTER I

U+2126 OHM SIGN or
U+03A9 GREEK CAPITAL LETTER OMEGA

U+2167 ROMAN NUMERAL EIGHT or
U+0056 V U+0049 I U+0049 I U+0049 I

Fig. 7.1
Relationship of glyphs
and characters

https://www.unicode.org

98 Chapter 7: Advanced Unicode Handling

> A Private Use Area (PUA) is one of several ranges which are reserved for private use.
PUA code points cannot be used for general interchange since the Unicode standard
does not specify any characters in this range. The Basic Multilingual Plane includes a
PUA in the range U+E000...U+F8FF. Plane fifteen (U+F0000... U+FFFFD) and plane six-
teen (U+100000...U+10FFFD) are completely reserved for private use.

Unicode encoding forms (UTF formats). The Unicode standard assigns a number (code
point) to each character. In order to use these numbers in computing, they must be rep-
resented in some way. In the Unicode standard this is called an encoding form (former-
ly: transformation format); this term should not be confused with font encodings. Uni-
code defines the following encoding forms:

> UTF-8: This is a variable-width format where code points are represented by 1-4 bytes.
ASCII characters in the range U+0000...U+007F are represented by a single byte in
the range 00...7F. Latin-1 characters in the range U+00A0...U+00FF are represented by
two bytes, where the first byte is always 0xC2 or 0xC3 (these values represent Â and Ã
in Latin-1).

> UTF-16: Code points in the Basic Multilingual Plane (BMP) are represented by a single
16-bit value. Code points in the supplementary planes, i.e. in the range U+10000...
U+10FFFF, are represented by a pair of 16-bit values. Such pairs are called surrogate
pairs. A surrogate pair consists of a high-surrogate value in the range D800...DBFF
and a low-surrogate value in the range DC00...DFFF. High- and low-surrogate values
can only appear as parts of surrogate pairs, but not in any other context.

> UTF-32: Each code point is represented by a single 32-bit value.

Unicode encoding schemes and the Byte Order Mark (BOM). Computer architectures
differ in the ordering of bytes, i.e. whether the bytes constituting a larger value (16- or
32-bit) are stored with the most significant byte first (big-endian) or the least significant
byte first (little-endian). A common example for big-endian architectures is PowerPC,
while the x86 architecture is little-endian. Since UTF-8 and UTF-16 are based on values
which are larger than a single byte, the byte-ordering issue comes into play here. An en-
coding scheme (note the difference to encoding form above) specifies the encoding
form plus the byte ordering. For example, UTF-16BE stands for UTF-16 with big-endian
byte ordering. If the byte ordering is not known in advance it can be specified by means
of the code point U+FEFF, which is called Byte Order Mark (BOM). Although a BOM is not
required in UTF-8, it may be present as well, and can be used to identify a stream of
bytes as UTF-8. Table 7.1 lists the representation of the BOM for various encoding forms.

Table 7.1 Byte order marks for various Unicode encoding forms

Encoding form Byte order mark (hex) graphical representation in WinAnsi1

1. The square  denotes a null byte.

UTF-8 EF BB BF ï»¿

UTF-16 big-endian FE FF þÿ

UTF-16 little-endian FF FE ÿþ

UTF-32 big-endian 00 00 FE FF   þÿ

UTF-32 little-endian FF FE 00 00 ÿþ 

7.1 Important Unicode Concepts 99

Composite characters and sequences. Some glyphs map to a sequence of multiple
characters. For example, ligatures are mapped to multiple characters according to their
constituent characters. However, composite characters (such as the Roman numeral in
Figure 7.1) may or may not be split, subject to information in the font and PDF as well as
the decompose document option (see Section 7.3, »Unicode Postprocessing«, page 103).

If appropriate, TET will split composite characters into a sequence of constituent
characters. The corresponding sequence is part of the text returned by TET_get_text().
For each character, details of the underlying glyph(s) can be obtained via TET_get_char_
info(), including the information whether the character is the start or continuation of a
sequence. Position information will only be returned for the first character of a se-
quence. Subsequent characters of a sequence will not have any associated position or
width information, but must be processed in combination with the first character.

Characters without any corresponding glyph. Although every glyph on the page is
mapped to one or more corresponding Unicode characters, not all characters delivered
by TET actually correspond to a glyph. Characters which correspond to a glyph are called
real characters, others are called artificial characters. There are several classes of artifi-
cial characters which are delivered although a directly corresponding glyph is not avail-
able:

> A composite character (see above) will map to a sequence of multiple Unicode char-
acters. While the first character in the sequence corresponds to the actual glyph, the
remaining characters do not correspond to any glyph.

> Separator characters inserted via the lineseparator, wordseparator, and paraseparator
options don’t correspond to any visible glyph.

100 Chapter 7: Advanced Unicode Handling

7.2 Text Preprocessing (Filtering)
TET applies several filters to remove text which is unlikely to be useful. These filters
modify the text before applying any Unicode postprocessing steps. While some filters
are always active, others require the Wordfinder and are therefore active only for
granularity=word or above.

7.2.1 Filters for all Granularities
The following filters can be used with all granularities.

Text in unwieldy font sizes. Very small or very large text can optionally be ignored,
e.g. large characters in the background of the page. The limits can be controlled with the
fontsizerange page option. By default text in all font sizes is extracted.

The following page option limits the range of font sizes for extracted text from 10 to
50 points; text in other font sizes is ignored:

fontsizerange={10 50}

Invisible text. Invisible text (i.e. text with textrendering=3) is extracted by default. Note
that text in PDF may be invisible for various other reasons than the textrendering prop-
erty, e.g. the text color is identical to the background color, the text may be obscured by
other objects on the page, etc. The behavior described here relates only to text with
textrendering=3. This PDF technique is commonly used for the results of OCR where the
text sits invisibly »on top of« the scanned raster image.

Invisible text can be identified with the textrendering member of the TET_char_info
structure returned by TET_get_char_info() (see Table 10.16, page 200), or with the Glyph/
@textrendering attribute in TETML.

Use the following page option if you want to ignore invisible text:

ignoreinvisibletext=true

Completely ignore text with certain font names or font types. In some situations it
may be useful to completely ignore text in one ore more fonts specified by name, e.g. a
symbolic font which does not contribute any meaningful text. As an alternative, the
problematic fonts can also be specified by font type. This is mainly useful for Type 3
fonts which are sometimes used for ornaments. This filter can be controlled via the
remove suboption of the glyphmapping document option.

E.g. ignore all text in Type 3 fonts:

glyphmapping={{fonttype={Type3} remove}}

Ignore all text in the Webdings, Wingdings, Wingdings 2, and Wingdings 3 fonts:

glyphmapping={{fontname=Webdings remove} {fontname=Wingdings* remove}}

The conditions for font name and font type can also be combined, e.g. ignore text in all
Type 3 fonts starting with the letter A:

glyphmapping={{fonttype={Type3} fontname=A* remove}}

7.2 Text Preprocessing (Filtering) 101

Artifacts. Artifacts in Tagged PDF designate irrelevant text or images. Typical exam-
ples are running headers and footers, e.g. page numbers. In Tagged PDF documents such
Artifacts can be marked. By default TET extracts Artifacts like regular content. However,
Artifacts can be skipped with the page option ignoreartifacts. This option affects both
the API and TETML.

Alternatively, Artifacts can be identified with the attributes member of the TET_char_
info structure (see Table 10.16, page 200) or the Glyph/@artifact and Text/@artifact attri-
butes in TETML:

<Para>
 <Box llx="76.58" lly="765.12" urx="82.58" ury="777.12">
 <Word>
 <Text artifact="true">6</Text>
 <Box llx="76.58" lly="765.12" urx="82.58" ury="777.12"/>
 </Word>
 </Box>
</Para>

7.2.2 Filters for Granularity Word and above
The following filters can be used only for granularity=word, line, and page.

Dehyphenation. Dehyphenation removes hyphen characters and combines the parts
of a hyphenated word.

Hyphens used for splitting words across lines can be identified with the attributes
member of the TET_char_info structure (see Table 10.16, page 200), or with the Glyph/
@hyphenation attribute in TETML.

Dehyphenation can be disabled with the following page option:

contentanalysis={dehyphenate=false}

Hyphen reporting. If dehyphenation is enabled you can decide whether or not the hy-
phen characters between the parts of hyphenated words are reported in the generated
glyph lists or not, i.e. the list of glyphs returned by TET_get_char_info() and the Glyph el-
ements in TETML. By default, hyphens are removed.

However, some applications may need to know the exact location of the hyphen on
the page. For example, the highlight_search_terms and search_and_replace_text topics in
the TET Cookbook take the hyphen glyph into account when placing an annotation or
replacement text on top of the original word. In this situation you can instruct TET to
include all hyphens which have been detected by the dehyphenation process with the
following page option:

contentanalysis={keephyphenglyphs=true}

Hyphens can be identified with the TET_ATTR_DEHYPHENATION_ARTIFACT flag of the at-
tributes member in the TET_char_info structure returned by TET_get_char_info() (see Ta-
ble 10.16, page 200), or in TETML with the Glyph/@dehyphenation attribute with value
artifact (unrelated to Artifacts in Tagged PDF).

Shadow removal. Redundant text which creates only visual effects such as shadowed
or artificially bolded text is removed.

https://www.pdflib.com/tet-cookbook/tet_and_pdflib/highlight_search_terms/
https://www.pdflib.com/tet-cookbook/tet_and_pdflib/search_and_replace_text/

102 Chapter 7: Advanced Unicode Handling

Shadow and artificial bold text can be identified with the attributes member of the
TET_char_info structure (see Table 10.16, page 200), or with the Glyph/@shadow attribute
in TETML.

Shadow removal can be disabled with the following page option:

contentanalysis={shadowdetect=false}

7.3 Unicode Postprocessing 103

7.3 Unicode Postprocessing
TET offers various controls for fine-tuning the Unicode characters comprising the ex-
tracted text. The postprocessing steps discussed in this chapter are defined in the Uni-
code standard. They are available in TET and are processed in the following order:

> Foldings are controlled by the fold document option and preserve, remove, or replace
certain characters. Examples: remove hyphens which are used to split words, remove
Arabic Tatweel characters.

> Decomposition is controlled by the decompose document option and replaces a char-
acter with one ore more equivalent characters. Examples: split ligatures, map full-
width ASCII and symbol variants to the corresponding non-fullwidth characters.

> Normalization is controlled by the normalize document option and converts the text
to one of the normalized Unicode forms. Examples: combine base character and dia-
critical character to a common character; map Ohm sign to Greek Omega.

Note Unicode postprocessing does not apply to granularity=glyph and the Glyph element in TETML.
Foldings, decomposition and normalization are not performed in these cases.

7.3.1 Unicode Folding
Foldings process one or more Unicode characters and apply a certain action on each of
the characters. The following actions are available:

> preserve the character;
> remove the character;
> replace it with a another (fixed) character.

Foldings are not chained: the output of a folding will not be processed again by the
available foldings. Foldings affect only the Unicode text output, but not the set of
glyphs reported in the TET_char_info structure or the <Glyph> elements in TETML. For ex-
ample, if a folding removes certain Unicode characters, the corresponding glyphs which
created the initial characters will still be reported.

In order to improve readability the examples in the tables below list isolated subop-
tions of the fold document option list. Keep in mind that these suboptions must be
combined to a single large fold option list if you want to apply multiple foldings; do not
supply the fold option more than once. For example, the following is wrong:

fold={ {[:blank:] U+0020} } fold={ {_dehyphenation remove} } WRONG!

The following document option list shows the correct syntax for multiple foldings:

fold={ {[:blank:] U+0020 } {_dehyphenation remove} }

Folding examples. Table 7.2 lists examples for the fold option which demonstrate vari-
ous folding applications. The options must be supplied in the option list for TET_open_
document(). TET can apply foldings to a selected subset of all Unicode characters. These
are called Unicode sets; their syntax is discussed in »Unicode sets«, page 163.

104 Chapter 7: Advanced Unicode Handling

Table 7.2 Examples for the fold option

description and option list before folding after folding
Remove all characters in a Unicode set
Keep only characters in ISO 8859-1 (Latin-1) in the output, i.e. remove all characters
outside the Basic Latin Block:fold={{[^U+0020-U+00FF] remove} default} n/a

Remove all non-alphabetic characters (e.g. punctuation, numbers):
fold={{[:Alphabetic=No:] remove} default} n/a

Remove all characters except numbers:
fold={{[^[:General_Category=Decimal_Number:]] remove} default}

n/a

Remove all dashes and punctuation characters:
fold={{[:General_Category=Dash_Punctuation:] remove} default} n/a

Remove all Bidi control characters:
fold={{[:Bidi_Control:] remove} default} n/a

Remove all variation selectors for Standard or Ideographic Variation Sequences
(IVS):
fold={{[[\uFE00-\uFE0F][\U000E0100-\U000E01EF]] remove} default}

Replace all characters in a Unicode set with another character
Space folding: map all variants of Unicode space characters to U+0020:
fold={{[:blank:] U+0020} default}

Dashes folding: map all variants of Unicode dash characters to U+002D:
fold={{[:Dash:] U+002D} default}

Replace all unassigned characters (i.e. Unicode code points to which no character
is assigned) with U+FFFD: fold={{[:Unassigned:] U+FFFD} default}

Special handling for individual characters
Preserve all hyphen characters at line breaks while keeping the remaining default
foldings. Since these characters are identified internally in TET (as opposed to hav-
ing a fixed Unicode property) the keyword _dehyphenation is used to identify the
folding’s domain: fold={{_dehyphenation preserve} default}
Preserve Arabic Tatweel characters (which are removed by default):
fold={{[U+0640] preserve} default}

Replace various punctuation characters with their ASCII counterparts:
fold={ {[U+2018] U+0027} {[U+2019] U+0027} {[U+201C] U+0022}
{[U+201D] U+0022} default}

Handle font-specific PUA characters, e.g. Japanese EUDC or logo font
Default behavior: replace PUA characters with the Unicode replacement character
U+FFFD: fold={{[:Private_Use:] U+FFFD} default}

Preserve PUA characters:
fold={{[:Private_Use:] preserve} default}

Remove PUA characters:
fold={{[:Private_Use:] remove} default} n/a

Remove TET PUA values for unmappable glyphs, but preserve PUA characters from
fonts:
fold={{_tet_pua remove} {[:Private_Use:] preserve} default}

U+0104

U+0037

U+0037

U+0041

U+0037

U+002D

U+200E

U+2268
�

U+FE00 U+2268

U+00A0 U+0020

U+2011 U+002D

U+03A2 U+FFFD

U+002D U+002D

U+0640 U+0640

U+201C U+002DU+0022

t U+FFFD

t t

t

t t

7.3 Unicode Postprocessing 105

Default foldings. Except for granularity=glyph TET applies the following default fold-
ings which are explained in Table 7.3:

{[:blank:] U+0020}
{_tetpua unknownchar}
{[:Private_Use:] U+FFFD}
{_dehyphenation remove}
{[[\u0640][:Control:][:Unassigned:]] remove}

In order to combine custom foldings with the default foldings, the keyword default
must be supplied after the custom folding options (this is shown in all examples in Ta-
ble 7.2).For example, the following fold document option list preserves hyphens in dehy-
phenated words and then applies the default foldings:

fold={ {_dehyphenation preserve} default }

Adding the keyword default to the fold document option list is recommended in most
cases unless you want to explicitly disable all default foldings.

Table 7.3 Default foldings

folding and description sample input output
Space folding: map all variants of Unicode space characters to U+0020:
{[:blank:] U+0020}

Map TET PUA values for unmappable glyphs to the character specified in the
unknownchar option (or apply the specified action preserve/remove):
{_tetpua unknownchar}

Map PUA characters to the Unicode replacement character U+FFFD:
{[:Private_Use:] U+FFFD}

Remove hyphens in dehyphenated words:
{_dehyphenation remove} n/a

Remove Arabic Tatweel characters, control characters and characters which are
not assigned in Unicode (these foldings are always performed after all other fold-
ings when creating TETML output):
{[\u0640][:Control:][:Unassigned:] remove}

n/a

U+00A0 U+0020

U+FFFD

t U+FFFD

U+002D

U+0640

U+000C U+03A2

106 Chapter 7: Advanced Unicode Handling

7.3.2 Unicode Decomposition
Decompositions replace a character with an equivalent sequence of one or more other
characters. A Unicode character is called (either compatibility or canonical) equivalent
to another character or a sequence of characters if they actually mean the same, but for
historical reasons (mostly related to round tripping with legacy encodings) are encoded
separately in Unicode. Decompositions destroy information. This is useful if you are
not interested in the difference between the original character and its equivalent. If you
are interested in the difference, however, the respective decomposition should not be
applied.

Note The term »decomposition« is used here as defined in the Unicode standard, although many de-
compositions do not actually split a character into multiple parts, but convert a single charac-
ter to another character.

Canonical decomposition. Characters or character sequences which are canonically
equivalent represent the same abstract character and should therefore always have the
same appearance and behavior. Common examples include precomposed characters

(e.g.) vs. combining sequences (e.g.): both representations are canoni-

cally equivalent. Switching from one representation to the other does not remove infor-
mation. Canonical decompositions replace one representation with another which is
considered the canonical representation.

In the Unicode code charts (but not the character tables) canonical mappings are

marked with the symbol IDENTICAL TO . The decomposition name <canonical> is

implicitly assumed. Table 7.4 contains several examples.

Compatibility decomposition. Characters which are compatibility equivalent repre-
sent the same abstract character, but may differ in appearance or behavior. Examples

include isolated forms of Arabic characters (e.g.) vs. context-specific shaped forms

(e.g. , ,). Compatibility equivalent characters differ in formatting. Re-

moving this formatting information implies loss of information, but may simplify pro-
cessing for certain types of applications (e.g. searching).

In the Unicode code charts compatibility mappings are marked with the symbol

ALMOST EQUAL TO , followed by the decomposition name (or »tag«) in angle

brackets, e.g. <noBreak>. If no tag name is provided, <compat> is assumed. The tag names
are identical to the option names in Table 7.5. As can be seen in some of the examples,
the result of a decomposition may convert a single character to a sequence of multiple
characters.

Note PDF documents may map glyphs to the decomposed sequence instead of to the non-decom-
posed Unicode value. In this situation the decompose option doesn’t affect the output.

Decomposition examples. Decompositions in TET can be controlled with the docu-
ment option decompose. A decomposition can be restricted to operate only on some, but
not all Unicode characters. The subset on which a decomposition operates is called its

U+00C4 U+0041 U+0308

U+00C4U+2261

U+0633

U+FEB2 U+FEB4 U+FEB3

U+00C4U+2248

7.3 Unicode Postprocessing 107

domain. Table 7.5 lists the suboptions for all Unicode decompositions along with exam-
ples.

The following examples for the decompose option must be supplied in the option list
for TET_open_document(). The decomposition names in the decompose option list are
taken from Table 7.5.

Disable all decompositions:

decompose={none}

Preserve wide (double-byte or zenkaku) and narrow (hankaku) characters:

decompose={wide=_none narrow=_none}

Map all canonical equivalents to their counterparts:

decompose={canonical=_all}

Table 7.4 Canonical decomposition: suboption for the decompose option (canonically equivalent characters are

marked with the symbol IDENTICAL TO in the Unicode code charts)

decomposition
name description

before
decomposition after decomposition

canonical1 Canonical decomposition

1. By default this decomposition is not applied to all characters in order to preserve certain characters; see »Default decompo-
sitions«, page 109, for details.

U+00C4U+2261

U+00C0

U+F9F4

U+2126

U+3070

U+FB2F

U+0041 U+0300

U+6797

U+03A9

U+2126U+306F U+2126U+306FU+3099

U+05D0 U+05B8

108 Chapter 7: Advanced Unicode Handling

Table 7.5 Compatibility decomposition: suboptions for the decompose option (canonically equivalent characters

are marked with the symbol ALMOST EQUAL TO in the Unicode code charts)

decomposition
name description

before
decomposition

after decomposition
(in logical order)

circle Encircled characters

compat Other compatibility decompositions, e.g. common
ligatures

final Final presentation forms, especially Arabic

font Font variants, e.g. mathematical set letters, Hebrew
ligatures

fraction Vulgar fraction forms

initial Initial presentation forms, especially Arabic

isolated Isolated presentation forms, especially Arabic

medial Medial presentation forms, especially Arabic

narrow Narrow (hankaku) compatibility characters

nobreak Non-breaking characters

small Small forms for CNS 11643 compatibility

square CJK squared font variants

sub Subscript forms

super Superscript forms

vertical Vertical layout presentation forms

wide Wide (zenkaku) compatibility forms

U+00C4U+2248

㉑
U+3251 U+0032 U+0031

U+FB01 U+0066 U+0069

U+FEB2 U+0633

U+2102 U+0043

U+00BC U+0031 U+2044 U+0034

U+FEB3 U+0633

U+FD0E U+0633 U+0631

U+FEB4 U+0633

U+FF66 U+30F2

U+00A0 U+0020

U+FE50 U+002C

U+3314 U+30AD U+30ED

U+2081 U+0031

U+00AA

U+2122

U+0061

U+0054 U+004D

U+FE37 U+007B

£
U+FFE1

£
U+00A3

7.3 Unicode Postprocessing 109

Default decompositions. By default, all decompositions except fraction are enabled.
While most default decompositions operate on the _all domain (i.e. they are applied to
all characters), some operate on smaller default domains according to Table 7.6. A
straightforward way of dealing with decompositions is via normalization (see Section
7.3.3, »Unicode Normalization«, page 110). Since Unicode postprocessing is disabled for
granularity=glyph no decompositions are active in this case.

Table 7.6 Default domains for Unicode decompositions (suboptions for the decompose option)

decomposition default in TET

canonical canonical={[U+0374 U+037E U+0387 U+1FBE U+1FEF U+1FFD U+2000 U+2001 U+2126 U+212A
U+212B U+2329-U+232A]}

The default domain includes canonical duplicates (singletons), but not other canonically equiva-

lent characters. The default is not _all in order to preserve characters like .

compat compat={[U+FB00-U+FB17]}

The default domain includes Latin and Armenian ligatures, but not other compatibility charac-

ters. The default is not _all in order to preserve characters like .

fraction fraction=_none

Fractions are not decomposed by default because this would lead to undesired sequences of the
digits for integer and fractional parts, e.g. client applications would wrongly interpret the se-

quence (representing the numerical value 9.5) as which

represents the numerical value (91)/2=45.5.

sub
super

sub={[U+208A-U+208E]}
super={[U+207A-U+207E]}

The default domain includes only mathematical signs. Superscript and subscript digits are not de-
composed by default to avoid problems with the numerical interpretation similar to those men-

tioned above for fraction. Characters such as the trademark sign will not be decomposed

to by default.

all others
All decompositions not mentioned above are enabled for all characters by default:
circle=_all final=_all ... vertical=_all wide=_all

U+00C4

U+0132

U+0039 U+00BD U+0039 U+0031 U+2044 U+0032

U+2122

U+0054 U+004D

110 Chapter 7: Advanced Unicode Handling

7.3.3 Unicode Normalization
The Unicode standard defines four normalization forms which are based on the notions
of canonical equivalence and compatibility equivalence.1 All normalization forms put
combining marks in a specific order and apply decomposition and composition in dif-
ferent ways:

> Normalization Form C (NFC) applies canonical decomposition followed by canonical

composition. For example, the composed form C stores Ä as a single character .

NFC is the preferred format for Unicode text in Windows, on the Web and in most da-
tabases.

> Normalization Form D (NFD) applies canonical decomposition. For example, the de-

composed form D stores Ä as a sequence of base character and combining

diacritical character.
> Normalization Form KC (NFKC) applies compatibility decomposition followed by ca-

nonical composition. In other words, some characters are mapped to compatible ba-

sic forms, e.g. the ligature is mapped to the sequence .

> Normalization Form KD (NFKD) applies compatibility decomposition. This is similar
to form KC, but does not apply canonical composition.

The choice of normalization form depends on the application’s requirements. Table
7.7 demonstrates the effect of Normalization on various characters.

TET supports all four Unicode normalization forms. Unicode normalization can be
controlled via the normalize document option, e.g.

normalize=nfc

TET does not apply normalization by default. Because of the possible interaction be-
tween the decompose and normalize options, setting the normalize option to a value dif-
ferent from none disables the default decompositions.

1. The normalization forms are specified in Unicode Standard Annex #15 »Unicode Normalization Forms« (see
www.unicode.org/versions/Unicode8.0.0/ch03.pdf#G21796 and www.unicode.org/reports/tr15/).

Table 7.7 Examples for Unicode normalization forms

before
normalization NFC NFD NFKC NFKD

U+00C4

U+0041 U+0308

U+FB01 U+0066 U+0069

U+00C4 U+00C4 U+0041 U+0308 U+00C4 U+0041 U+0308

U+0041 U+0308 U+00C4 U+0041 U+0308 U+00C4 U+0041 U+0308

U+0308 U+0041 U+0308 U+0041 U+0308 U+0041 U+0308 U+0041 U+0308 U+0041

U+FB01 U+FB01 U+FB01 U+0066 U+0069 U+0066 U+0069

7.3 Unicode Postprocessing 111

Table 7.7 Examples for Unicode normalization forms

before
normalization NFC NFD NFKC NFKD

U+0033 U+2075 U+0033 U+2075 U+0033 U+2075 U+0033 U+0035 U+0033 U+0035

U+212B U+00C5 U+0041 U+030A U+00C5 U+0041 U+030A

U+2122 U+2122 U+2122 U+0054 U+004D U+0054 U+004D

U+2163 U+2163 U+2163 U+0049 U+0056 U+0049 U+0056

U+FB48 U+05E8 U+05BC U+05E8 U+05BC U+05E8 U+05BC U+05E8 U+05BC

U+AC00 U+AC00 U+1100 U+1161 U+AC00 U+1100 U+1161

U+FB48U+3062 U+FB48U+3062 U+3061 U+3099 U+FB48U+3062 U+3061 U+3099

U+32C9 U+32C9 U+32C9 U+0031 U+0030 U+6708 U+0031 U+0030 U+6708

112 Chapter 7: Advanced Unicode Handling

7.4 Supplementary Characters and Surrogates
Supplementary characters outside Unicode’s Basic Multilingual Plane (BMP), i.e. those
with Unicode values above U+FFFF, cannot be expressed as a single UTF-16 value, but re-
quire a pair of UTF-16 values called a surrogate pair. Examples of supplementary charac-
ters include various mathematical and musical symbols at U+1DXXX as well as thou-
sands of CJK extension characters starting at U+20000. TET also uses the Supplementary
Private Use Area to assign Unicode values to glyphs for which no Unicode mapping was
found in the PDF document. By default, these characters are replaced with the Unicode
replacement character U+FFFD. However, with the option unknownchar=preserve they
can occur in the output as Unicode values outside the BMP, i.e. values above U+FFFF (see
»Unmappable glyphs and the TET PUA«, page 113).

TET interprets and maintains supplementary characters and provides access to the
corresponding UTF-32 value even in language bindings where native Unicode strings
support only UTF-16. The uv field returned by TET_get_char_info() for the leading surro-
gate value contains the corresponding UTF-32 value. This allows direct access to the
UTF-32 value of a supplementary character even if you are working in a UTF-16 environ-
ment without any support for UTF-32.

Leading (high) surrogates and trailing (low) surrogates are maintained. The string re-
turned by TET_get_text() contains two UTF-16 values.

7.5 Unicode Mapping for Glyphs 113

7.5 Unicode Mapping for Glyphs
While text in PDF can be represented with a variety of font and encoding schemes, TET
abstracts from glyphs and normalizes all text to Unicode characters, regardless of the
original text representation in the PDF. Converting the information found in the PDF to
the corresponding Unicode values is called Unicode mapping, and is crucial for under-
standing the semantics of the text (as opposed to rendering a visual representation of
the text on screen or paper). In order to provide proper Unicode mapping TET consults
various data structures which are found in the PDF document, embedded or external
font files, as well as builtin and user-supplied tables. In addition, it applies several
methods to determine the Unicode mapping for non-standard glyph names.

Despite all efforts there are still a few PDF documents where some text cannot be
mapped to Unicode. In order to deal with these cases TET offers a number of configura-
tion features which can be used to control Unicode mapping for problematic PDF files.

Unmappable glyphs and the TET PUA. There are several reasons why text in a PDF can-
not be mapped to Unicode. For example, Type 1 fonts may contain unknown glyph
names, and TrueType, OpenType, or CID fonts may be addressed with glyph ids without
any Unicode values in the font or PDF. If TET cannot determine a Unicode value after ex-
amining the information in the PDF document, embedded and external fonts, config-
ured tables and internal tables the glyph is considered as unmappable.

Unmapped glyphs can be identified with the unknown member of the TET_char_info
structure (see Table 10.16, page 200) or the Glyph/@unknown attribute in TETML.

TET assigns decreasing values in the TET Private Use Area (TET PUA) to all unmappa-
ble glyphs. The TET PUA is located in the Supplementary Private Use Area, i.e. outside the
BMP, to avoid conflicts with PUA values assigned in fonts. The TET PUA can be addressed
with the keyword _tetpua as source in the fold option.

By default, TET PUA values for unmappable glyphs are replaced with the Unicode re-
placement character U+FFFD. This behavior can be modified with the unknownchar doc-
ument option which can be set to an arbitrary Unicode character, or to specify that TET
PUA values for unmappable glyphs are preserved or removed. Table 7.2 explains various
combinations of the fold and unknownchar options for different use cases.

Table 7.8 Specifying treatment of TET PUA values for unmappable glyphs with the unknownchar document option

description and option list raw input result
Default behavior: replace TET PUA values for unmappable glyphs with the Uni-
code replacement character U+FFFD: unknownchar=U+FFFD

Replace TET PUA values for unmappable glyphs with a question mark (or any oth-
er suitable Unicode character); this may be useful for visually identifying problem-
atic glyphs in the text: unknownchar=?
Remove TET PUA values for unmappable glyphs: unknownchar=remove

n/a

Preserve TET PUA values for unmappable glyphs; this may be useful for debugging
and analysis: unknownchar=preserve

(TET PUA
value)

U+FFFD

U+003F

114 Chapter 7: Advanced Unicode Handling

Characters in the Private Use Area (PUA). A font or PDF document may map a glyph to
a Unicode character in the Private Use Area. This is commonly used for symbols without
any global standardized meaning, such as fonts for Japanese end-user defined charac-
ters (EUDC) or logo fonts. Since PUA characters cannot meaningfully be used in generic
Unicode workflows they are replaced with the Unicode replacement character U+FFFD
by default. See Table 7.2 for preserving PUA values in situations where the application
can handle PUA values.

Summary of Unicode mapping controls. While TET implements many workarounds in
order to process PDF documents which actually don’t contain Unicode values so that it
can successfully extract the text nevertheless. However, there are still documents where
the text cannot be extracted since not enough information is available in the PDF and
relevant font data structures. TET contains various configuration features which can be
used to supply additional Unicode mapping information. These features are detailed in
this section.

Using the glyphmapping option of TET_open_document() (see Section 10.3, »Document
Methods«, page 179) you can control Unicode mapping for glyphs in several ways. The
following list gives an overview of available methods (which can be combined). These
controls can be applied on a per-font basis or globally for all fonts in a document:

> The suboption forceencoding can be used to completely override all occurrences of
the predefined PDF encodings WinAnsiEncoding or MacRomanEncoding.

> The suboptions codelist and tounicodecmap can be used to supply Unicode values in a
simple text format (a codelist resource).

> The suboption glyphlist can be used to supply Unicode values for non-standard glyph
names.

> The suboption glyphrule can be used to define a rule which is used to derive Unicode
values from numerical glyph names in an algorithmic way. Several rules are already
built into TET. The option encodinghint can be used to control the internal rules.

> In addition to dozens of predefined encodings, custom encodings can be defined for
use with the encodinghint option or the encoding suboption of the glyphrule option.

> External fonts can be configured to provide Unicode mapping information if the
PDF does not provide enough information and the font is not embedded in the PDF.

Analyzing PDF documents with the PDFlib FontReporter Plugin1. In order to obtain the
information required to create appropriate Unicode mapping tables you must analyze
the problematic PDF documents.

PDFlib GmbH provides a free companion product to TET which assists in this situa-
tion: PDFlib FontReporter is an Adobe Acrobat plugin for easily collecting font, encod-
ing, and glyph information. The plugin creates detailed font reports containing the ac-
tual glyphs along with the following information:

> The corresponding code: the first hex digit is given in the left-most column, the sec-
ond hex digit is given in the top row. For CID fonts the offset printed in the header
must be added to obtain the code corresponding to the glyph.

> The glyph name if present.
> The Unicode value(s) corresponding to the glyph (if Acrobat can determine them).

These pieces of information play an important role for TET’s glyph mapping controls.
Figure 7.2 shows two pages from a sample font report. Font reports created with the

1. The PDFlib FontReporter plugin is available for free download at www.pdflib.com/products/fontreporter

https://www.pdflib.com/products/fontreporter/

7.5 Unicode Mapping for Glyphs 115

FontReporter plugin can be used to analyze PDF fonts and create mapping tables for
successfully extracting the text with TET. It is highly recommended to take a look at the
corresponding font report if you want to write Unicode mapping tables or glyph name
heuristics to control text extraction with TET.

Precedence rules. TET will apply the glyph mapping controls in the following order:
> Codelist resources are consulted first.
> If the font has an internal ToUnicode CMap it is considered next.
> For glyph names TET applies an external or internal glyph name mapping rule if one

is available which matches the font and glyph name.
> Lastly, a user-supplied glyph list is applied.

Code list resources for all font types. Code lists are similar to glyph lists except that
they specify Unicode values for individual codes instead of glyph names. Although
multiple fonts from the same foundry may use identical code assignments, codes (also
called glyph ids) are generally font-specific. As a consequence, separate code lists are re-
quired for individual fonts. A code list is a text file where each line describes a Unicode
mapping for a single code according to the following rules:

> Text after a percent sign ’%’ is ignored; this can be used for comments.
> The first column contains the glyph code in hexadecimal notation. This must be a

value in the range 0-255 for simple fonts, and in the range 0-65535 for CID fonts.

Fig. 7.2
Sample font reports created with the PDFlib FontReporter plugin for Adobe Acrobat

116 Chapter 7: Advanced Unicode Handling

> The remainder of the line contains up to 7 Unicode code points for the code. The val-
ues can be supplied in hexadecimal notation with the prefix x or 0x. UTF-32 is sup-
ported, i.e. surrogate pairs can be used.

By convention, code lists use the file name suffix .cl. Code lists can be configured with
the codelist resource category. If no code list resource has been specified explicitly, TET
will search for a file named <mycodelist>.cl (where <mycodelist> is the resource name) in
the searchpath hierarchy (see Section 5.2, »Resource Configuration and File Searching«,
page 61 for details). In other words: if the resource name and the file name (without the
.cl suffix) are identical you don’t have to configure the resource since TET will implicitly
do the equivalent of the following call (where name is an arbitrary resource name):

set_option("codelist {name name.cl}");

The following sample demonstrates the use of code lists. Consider the mismapped logo-
type glyphs in Figure 7.3 where a single glyph of the font actually represents multiple
characters, and all characters together create the company logotype. However, the
glyphs are wrongly mapped to the characters a, b, c, d, and e. In order to fix this you
could create the following code list:

% Unicode mappings for codes in the GlobeLogosOne font

x61 x0054 x0068 x0065 x0020 % The
x62 x0042 x006F % Bo
x63 x0073 x0074 x006F x006E x0020 % ston
x64 x0047 x006C x006F % Glo
x65 x0062 x0065 % be

Then supply the codelist with the following option to TET_open_document() (assuming
the code list is available in a file called GlobeLogosOne.cl and can be found via the search
path):

glyphmapping {{fontname=GlobeLogosOne codelist=GlobeLogosOne}}

Glyph list resources for simple fonts. Glyph lists (short for: glyph name lists) can be
used to provide custom Unicode values for non-standard glyph names, or override the
existing values for standard glyph names. A glyph list is a text file where each line de-
scribes a Unicode mapping for a single glyph name according to the following rules:

> Text after a percent sign ’%’ is ignored; this can be used for comments.
> The first column contains the glyph name. Any glyph name used in a font can be

used (i.e. even the Unicode values of standard glyph names can be overridden). In or-
der to use the percent sign as part of a glyph name the sequence \% must be used
(since the percent sign serves as the comment introducer).

> At most one mapping for a particular glyph name is allowed; multiple mappings for
the same glyph name is treated as an error.

Fig. 7.3
The font report for a logotype font shows that the font contains wrong Unicode mappings.
A custom code list can correct such mappings.

7.5 Unicode Mapping for Glyphs 117

> The remainder of the line contains up to 7 Unicode code points for the glyph name.
The values can be supplied in hexadecimal notation with the prefix x or 0x. UTF-32 is
supported, i.e. surrogate pairs can be used.

> Unprintable characters in glyph names can be inserted by using escape sequences
for text files (see Section 5.2, »Resource Configuration and File Searching«, page 61).

By convention, glyph lists use the file name suffix .gl. Glyph lists can be configured with
the glyphlist resource. If no glyph list resource has been specified explicitly, TET will
search for a file named <myglyphlist>.gl (where <myglyphlist> is the resource name) in the
searchpath hierarchy (see Section 5.2, »Resource Configuration and File Searching«, page
61, for details). In other words: if the resource name and the file name (without the .gl
suffix) are identical you don’t have to configure the resource since TET will implicitly do
the equivalent of the following call (where name is an arbitrary resource name):

set_option("glyphlist {name name.gl}");

Due to the precedence rules for glyph mapping, glyph lists are not consulted if the font
contains a ToUnicode CMap. The following sample demonstrates the use of glyph lists:

% Unicode values for glyph names used in TeX documents

precedesequal 0x227C
similarequal 0x2243
negationslash 0x2044
union 0x222A
prime 0x2032

In order to apply a glyph list called tarski.gl to all font names starting with CMSY use the
following option for TET_open_document():

glyphmapping {{fontname=CMSY* glyphlist=tarski}}

Rules for interpreting numerical glyph names in simple fonts. Sometimes PDF docu-
ments contain glyphs with names which are not taken from some predefined list, but
are generated algorithmically. This can be a »feature« of the application generating the
PDF, or may be caused by a printer driver which converts fonts to another format: some-
times the original glyph names get lost in the process, and are replaced with schematic
names such as G00, G01, G02, etc. TET contains builtin glyph name rules for processing
numerical glyph names created by various common applications and drivers. Since the
same glyph names may be created for different encodings you can provide the
encodinghint option to TET_open_document() in order to specify the target encoding for
schematic glyph names encountered in the document. For example, if you know that
the document contains Russian text, but the text cannot successfully be extracted for
lack of information in the PDF, you can supply the option encodinghint= cp1250 to speci-
fy a Cyrillic codepage.

In addition to the builtin rules for interpreting numerical glyph names you can de-
fine custom rules with the fontname and glyphrule suboptions of the glyphmapping op-
tion of TET_open_document(). You must supply the following pieces of information:

> The full or abbreviated name of the font to which the rule is applied (fontname op-
tion)

> A prefix for the glyph names, i.e. the characters before the numerical part (prefix sub-
option)

118 Chapter 7: Advanced Unicode Handling

> The base (decimal or hexadecimal) in which the numbers are interpreted (base sub-
option)

> The encoding in which to interpret the resulting numerical codes (encoding subop-
tion)

For example, if you determined (e.g. using PDFlib FontReporter) that the glyphs in the
fonts T1, T2, T3, etc. are named c00, c01, c02, ..., cFF where each glyph name corresponds to
the WinAnsi character at the respective hexadecimal position (00, ..., FF) use the follow-
ing option for TET_open_document():

glyphmapping {{fontname=T* glyphrule={prefix=c base=hex encoding=winansi} }}

External font files and system fonts. If a PDF does not contain sufficient information
for Unicode mapping and the font is not embedded, you can configure additional font
data which TET will use to derive Unicode mappings. Font data may come from a True-
Type or OpenType font file on disk, which can be configure with the fontoutline resource
category. As an alternative on macOS and Windows systems, TET can access fonts which
are installed on the host operating system. Access to these host fonts can be disabled
with the usehostfonts option in TET_open_document().

In order to configure a disk file for the WarnockPro font use the following call:

set_option("fontoutline {WarnockPro WarnockPro.otf}");

See Section 5.2, »Resource Configuration and File Searching«, page 61, for more details
on configuring external font files.

8.1 Image Extraction Basics 119

8 Image Extraction

8.1 Image Extraction Basics
Image formats. TET extracts raster images from PDF pages and stores the extracted
images in one of the following formats:

> TIFF (.tif) images are created in most cases. The majority of TIFF images created by
TET are compatible with all TIFF viewers and consumers. However, some advanced
TIFF features are not supported by all image viewers, especially additional spot color
channels (see »Spot colors«, page 130). We regard Adobe Photoshop as benchmark for
the validity of TIFF images.

> JPEG (.jpg) is created for images which are compressed with the JPEG algorithm
(DCTDecode filter) in PDF. JPEG-compressed image data in the PDF document is vali-
dated unless the validation has been disabled with the option validatejpeg=false in
TET_write_image_file() or TET_get_image_data(), which may slightly speed up pro-
cessing. In some cases DCT-compressed images are extracted as TIFF since not all PDF
color spaces can be expressed in JPEG (e.g. spot colors).

> JPEG 2000 is created for images which are compressed with the JPEG 2000 algorithm
(JPXDecode filter) in PDF. JPEG 2000 images come in different flavors. The main fla-
vor with MIME type image/jp2 and file name suffix .jp2 is encoded according to ISO
15444-1 (Annex I). The extended flavor with MIME type image/jpx is encoded accord-
ing to ISO 15444-2 (Annex M). It supports additional features such as CMYK and Lab
color and uses .jpf as file name suffix (note the difference between MIME type and
recommended suffix). Finally, raw JPEG 2000 code streams contain only the bare
pixel data without any additional properties such as color space information. They
are extracted with file name suffix .j2k.
Applications which cannot handle JPEG 2000 output can avoid this extraction for-
mat with the document option allowjpeg2000=false. In this case 8-bit or 16-bit TIFF
images are created instead of JPEG 2000, which may result in larger output. TIFF im-
ages for JPX-compressed data are also created if spot color information must be pre-
served or if image merging is involved. If a JPX-compressed image is extracted as
TIFF, implicit internal ICC profiles in the JPX stream are ignored. For example, sRGB
JPEG 2000 images are extracted as plain RGB TIFF.

> JBIG2 (.jbig2) is created for images which are compressed with the JBIG2 algorithm
(JBIG2Decode filter) in PDF. JBIG2 files are created with »sequential organization« ac-
cording to ISO 14492.

Extracting images to disk or memory. The TET API can deliver the images extracted
from PDF documents in two different ways:

> The TET_write_image_file() API method creates an image file on disk. The base file
name of this image file must be specified in the filename option. TET will automati-
cally add a suitable suffix depending on the image format.

> The TET_get_image_data() API method delivers the image data in memory. This is
convenient if you want to pass on the image data to another processing component
without having to deal with disk files.

120 Chapter 8: Image Extraction

Details depend on your image extraction requirements (see Section 8.2.2, »Page-based
and Resource-based Image Retrieval«, page 123). In both cases you can determine the
type of the extracted image (see next section).

Determine the file format and name of extracted images. The image file type is re-
ported in the Image/@extractedAs attribute in TETML. At the API level you can use the
following code to determine the type of an extracted image:

int imageType = tet.write_image_file(doc, tet.imageid, "typeonly");

/* Map the numerical image type to a format suffix */
String imageSuffix;
switch (imageType) {
case TET.IF_TIFF:

imageSuffix = ".tif";
break;

case TET.IF_JPEG:
imageSuffix = ".jpg";
break;

case TET.IF_JP2:
imageSuffix = ".jp2";
break;

case TET.IF_JPF:
imageSuffix = ".jpf";
break;

case TET.IF_J2K:
imageSuffix = ".j2k";
break;

case TET.IF_JBIG2:
imageSuffix = ".jbig2";
break;

default:
System.err.println("write_image_file() returned unknown value "

+ imageType + ", skipping image, error: "
+ tet.get_errmsg());

}

The image file name is reported in the Image/@filename attribute in TETML. At the API
level you can supply the image file name to TET_write_image_file().

The structure of the image file names produced by the TET command-line tool is
documented in Section 2.1, »Command-Line Options«, page 19.

XMP metadata for images. PDF uses the XMP format to attach metadata to the whole
document or parts of it. You can find more information about XMP on www.pdflib.com.

An image object may have XMP metadata associated with it in the PDF document.
You can check the presence of image XMP in Acrobat XI/DC as follows:

> Click View, Show/Hide, Navigation Panes, Content.
> Locate the image in the tree structure, right-click on it and select Show Metadata... .

8.1 Image Extraction Basics 121

> The image is highlighted and the XMP panel pops up which displays XMP metadata
for the selected image.

If XMP metadata is present, TET by default embeds it in the extracted image for the out-
put formats JPEG and TIFF. This behavior can be controlled with the keepxmp option of
TET_write_image_file() and TET_get_image_data(). If this option has been set to false, TET
ignores image metadata when generating the image output file.

If image metadata is available, TET attaches a Metadata element to the image in the
TETML output. This behavior can be controlled with the tetml={elements={metadata}}
image option.

The image_metadata topic in the pCOS Cookbook demonstrates how to extract image
metadata with the pCOS interface directly, without generating any image file.

TET implements a special heuristic for XMP image metadata which bypasses the
usual PDF method for attaching XMP to an image object, but uses an alternate method
based on marked content properties. This construct is typically generated by Adobe In-
Design. Note that this kind of image XMP is not available via pCOS, but only in TETML
and the extracted image files.

Artifact identification or removal. Artifacts in Tagged PDF designate irrelevant text or
images. By default Artifacts are extracted like regular content. However, Artifacts can be
removed with the page option ignoreartifacts.

Alternatively, Artifact images can be identified with the attributes member of the
TET_image_info structure (see Table 10.19, page 205) or the PlacedImage/@artifact attri-
bute in TETML. The Artifact status is also reflected in the names of the generated image
files when extracting images with the TET command-line tool with --imageloop page
(see »Image file names«, page 21).

Restrictions. In some cases the shape of extracted images may appear different from
its rendering on the PDF page:

> Images may appear mirrored horizontally (upside down) or vertically. This is caused
by the fact that TET extracts the original pixel data of the image, without respect to
any transformation which may have been applied to the image on the PDF page.

> Masking effects achieved by applying a soft mask to another image are not visible in
the extracted image. However, you can extract the mask as a separate image.

https://www.pdflib.com/pcos-cookbook/interchange/image_metadata/

122 Chapter 8: Image Extraction

8.2 Extracting Images
8.2.1 Placed Images and Image Resources

TET distinguishes between placed images and image resources:
> A placed image corresponds to an image on a page. A placed image has geometric

properties: it is placed at a certain location and has a size (measured in points, milli-
meters, or some other absolute unit). In most cases the image is visible on the page,
but in some cases it may be invisible because it is obscured by other objects on the
page, is placed outside the visible page area, is fully or partially clipped, etc. Placed
images are represented by the PlacedImage element in TETML. Processing of placed
images is subject to the clippingarea, excludebox, and includebox options.

> An image resource is a resource which represents the actual pixel data, color space
and number of components, number of bits per component, etc. Unlike placed imag-
es, image resources don’t have any intrinsic geometry. However, they do have width
and height properties (measured in pixels). Each image resource has a unique ID
which can be used to extract its pixel data. Image resources are represented by the
Image element in TETML. Processing of image resources is not subject to the
clippingarea, excludebox, and includebox options.

An image resource may be used as the basis for an arbitrary number of placed images in
the document. Commonly each image resource is placed exactly once, but it could also
be placed repeatedly on the same page or on multiple pages. For example, consider an
image for a company logo which is used repeatedly on the header of each page in the
document. Each logo on a page constitutes a placed image, but all those placed images
may be created by the same image resource in an optimized PDF. On the other hand, in
a non-optimized PDF each placed logo could be based on its own copy of the same im-
age resource. This would result in the same visual appearance, but a larger PDF docu-
ment. Non-optimized PDF documents may even contain image resources which are not
even referenced on any page (i.e. unused resources).

Table 8.1 compares various aspects of placed images and image resources.

How many images are in a document? Surprisingly, there is no simple answer to this
question. The answer depends on the following decisions:

> Do you want to count image resources or placed images?
> Do you want to count images which are only used as parts of merged images, but are

never placed isolated?
> Do you want to count images which are only used as a mask for another image?
> Do you want to count irrelevant images (Artifacts)?
> Do you want to count images in annotations, patterns and soft masks (see »Sources

of images in PDF«, page 124)?

Using TET and pCOS pseudo objects you can determine all variants of the image count
answer. The image_count topic in the TET Cookbook demonstrates various possibilities
of image counting. It generates output like the following:

No of raw image resources before merging: 82
No of placed images: 12
No of images after merging (all types): 83
 normal images: 1
 artificial (merged) images: 1

https://www.pdflib.com/tet-cookbook/image/image_count/

8.2 Extracting Images 123

 consumed images: 81
No of relevant (normal or artificial) image resources: 2

8.2.2 Page-based and Resource-based Image Retrieval
The distinction between placed images and image resources gives rise to two funda-
mentally different approaches to image extraction: page-based and resource-based im-
age extraction loops. Both methods can be used to extract images to a disk file or to
memory.

Page-based image extraction. In this case the application is interested in the exact
page layout and placed images, but doesn’t care about duplicated image data. Extract-
ing images with a page-based loop creates an image file for each placed image, and may
result in the same image data for more than one extracted placed image. The applica-
tion could avoid image duplication by checking for duplicate image IDs. However,
unique image resources can more easily be extracted with the resource-based image ex-
traction loop (see below).

The page-based image extraction loop can be activated in the TET command-line
tool with the option --imageloop page. Code for page-based image extraction at the API
level is demonstrated in the images_per_page Cookbook topic and sample. These sam-
ples also show how to retrieve the image geometry.

Details of the page-based image extraction loop (please refer to the sample code
mentioned above): TET_get_image_info() retrieves geometric information about a
placed image as well as the pCOS image ID (in the imageid field) of the underlying image
data. This ID can be used to retrieve more image details with TET_pcos_get_number(),
such as the color space, width and height in pixels, etc., as well as the actual pixel data

Table 8.1 Comparison of placed images and image resources

property placed images image resources

TETML element PlacedImage Image

associated with a page yes –

width and height in pixels yes yes

geometry: width and height
in points and position on the
page

yes –

may be marked as Artifact yes: the TET_ATTR_ARTIFACT bit in the attributes
member returned by TET_get_image_info() and
PlacedImage/@artifact attribute in TETML

–

number of appearances 1 0, 1, or more

unique ID no: the imageid member returned by TET_get_im-
age_info() and the PlacedImage/@image attribute
in TETML identify the underlying image resource

yes: imageid member returned by
TET_get_image_info() and Image/
@id attribute in TETML

file name convention in the
TET command-line tool

<filename>_p<pagenumber>_
<imagenumber>.[tif|jpg|jp2|jpf|j2k|jbig2]

<filename>_I<imageid>.
[tif|jpg|jp2|jpf|j2k|jbig2]

handling of image masks in
the TET command-line tool

masks are extracted as
<filename>_p<pagenumber>_<imagenumber>_
mask.[tif|jpg|jp2|jpf|j2k|jbig2]

masks are extracted according to
their own image ID without addi-
tional labels in the file name

https://www.pdflib.com/tet-cookbook/image/images_per_page/

124 Chapter 8: Image Extraction

with TET_write_image_file() or TET_get_image_data(). TET_get_image_info() does not
touch the actual pixel data of the image. If the same image is referenced multiply on
one or more pages, the corresponding IDs are the same.

Resource-based image extraction. In this case the application is interested in the im-
age resources of the document, but doesn’t care which image is used on which page. Im-
age resources which are placed more than once (on one or more pages) are extracted
only once. On the other hand, image resources which are not placed at all on any page
are also extracted.

The resource-based image extraction loop can be activated in the TET command-line
tool with the option --imageloop resource. Code for resource-based image extraction at
the API level is demonstrated in the image_resources sample and Cookbook topic.

Details of the resource-based image extraction loop (please refer to the sample code
mentioned above): all pages must be opened before extracting image resources to make
sure that image merging has been performed; if image merging is not relevant this step
can be skipped. In order to extract an image, the corresponding image ID is required.
The code enumerates all values from 0 to the highest image ID which is queried as
follows:

n_images = (int) tet.pcos_get_number(doc, "length:images");

In order to skip the consumed parts of merged images (e.g. the strips of a multi-strip im-
age) the type of each image resource is examined with the mergetype pCOS pseudo ob-
ject. This allows us to skip images which have been consumed by the image merging
process (since we are only interested in the resulting merged image). Once an image ID
has been determined, TET_write_image_file() or TET_get_image_data() can be called to
write the image data to a disk file or pass the pixel data in memory.

Sources of images in PDF. A PDF document may contain images in various places,
some of which are not necessarily expected. TET searches all of the following locations
for images:

> The most common source is the page description itself.
> An annotation or form field may contain an appearance stream with arbitrary

graphics including raster images. Such images can be identified with the TET_ATTR_
ANNOTATION flag in the attributes field returned by TET_get_image_info() and the
source="annoation" attribute of the PlacedImage element in TETML. Annotation pro-
cessing can be disabled with the document option engines={annotation=false}.

> A tiling pattern may contain arbitrary text and graphics including raster images.
Such images can be identified with the TET_ATTR_PATTERN flag in the attributes field
returned by TET_get_image_info() and the source="pattern" attribute of the
PlacedImage element in TETML. Since patterns are rendered repeatedly to tile a filled
object, the image position may not match the visible position on the page. TET plac-
es the pattern at the lower left corner of the page before extracting contents.

> A graphics state may contain a Transparency group XObject describing a soft mask
with arbitrary graphics including raster images (this technique is often used for drop
shadow effects). Such images can be identified with the TET_ATTR_SOFTMASK flag in
the attributes field returned by TET_get_image_info() and the source="softmask" attri-
bute of the PlacedImage element in TETML.

https://www.pdflib.com/tet-cookbook/image/image_resources/

8.2 Extracting Images 125

In TETML the source location of an image can be identified with the attribute Placed-
Image/@source.

8.2.3 Geometry of Placed Images
You can retrieve geometric information for each placed image. The following values are
available for each image in the information returned by TET_get_image_info() (see Fig-
ure 8.1):

> The x and y fields are the coordinates of the image reference point. The reference
point is usually the lower left corner of the image. However, coordinate system
transformations on the page may result in a different reference point. For example,
the image may be mirrored horizontally with the result that the reference point be-
comes the upper left corner of the image. The value of y is subject to the topdown
page option.

> The width and height fields correspond to the physical dimensions of the placed im-
age on the page. They are provided in points (i.e. 1/72 inch).

> The angle alpha describes the direction of the pixel rows. This angle is in the range
-180˚ < alpha ³ +180˚. The angle alpha rotates the image at its reference point. For up-
right images alpha is 0˚. The values of alpha and beta are subject to the topdown page
option.

> The angle beta describes the direction of the pixel columns, relative to the perpen-
dicular of alpha. This angle is in the range -180˚ < beta ³ +180˚, but different from
±90˚. The angle beta skews the image, and beta=180˚ mirrors the image at the x axis.
For upright images beta is in the range -90˚ < beta < +90˚. If abs(beta) > 90˚ the image
is mirrored at the baseline.

> The imageid field contains the pCOS ID of the image. It can be used to retrieve de-
tailed image information with pCOS functions and the image pixel data with TET_
write_image_file() or TET_get_image_data().

> The attributes field contains the bit TET_ATTR_ARTIFACT which is set if the image is
marked as an Artifact (irrelevant content). This field can also contain the bit values
TET_ATTR_ANNOTATION, TET_ATTR_PATTERN and TET_ATTR_SOFTMASK which describe
where the image was found (see »Sources of images in PDF«, page 124).

As a result of image transformations, the orientation of the extracted images may ap-
pear wrong since the extracted image data is based on the image resource in the PDF.
Any rotation or mirror transformations applied to the placed image on the PDF page are
not applied to the extracted pixel data. Instead, the original pixel data is extracted.

width

alpha

beta

(x, y)

height

Fig. 8.1
Image geometry

126 Chapter 8: Image Extraction

Calculating the coordinates of all image corners. The x and y fields retrieved with TET_
get_image_info() provide the coordinates of the image’s reference point. Using the im-
age’s x/y, width/height and alpha/beta values you can calculate the coordinates of all im-
age corners as follows:

llx = x
lly = y

lrx = x + width * cos(alpha)
lry = y + width * sin(alpha)

ulx = x + dir * height * (tan(beta)*cos(alpha) - sin(alpha))
uly = y + dir * height * (tan(beta)*sin(alpha) + cos(alpha))

urx = x + width * cos(alpha) + dir * height * (tan(beta)*cos(alpha) - sin(alpha))
ury = y + width * sin(alpha) + dir * height * (tan(beta)*sin(alpha) + cos(alpha))

with dir=1 in the default case topdown={output=false}. In topdown coordinates, i.e. if
topdown={output= true} (see »Top-down coordinate system«, page 74), you must set
dir=-1 and the corners are swapped, i.e. ll must be swapped with ul, and lr with ur.

While the initial reference point in PDF is the lower left corner of the image, this may no
longer be true depending on the transformations applied when the PDF page was gener-
ated. In order to determine the lower left (or other) corner of the image in the general
case you must calculate all corners as shown above and determine the corner with the
smallest x/y coordinates.

Image resolution. In order to calculate the image resolution in dpi (dots per inch) you
must divide the image width in pixels by the image width in points and multiply by 72:

while (tet.get_image_info(page) == 1) {
String imagePath = "images[" + tet.imageid + "]";
int width = (int) tet.pcos_get_number(doc, imagePath + "/Width");
int height = (int) tet.pcos_get_number(doc, imagePath + "/Height");

double xDpi = 72 * width / tet.width;
double yDpi = 72 * height / tet.height;
...

}

Note that dpi values for rotated or skewed images may be meaningless. Full code for im-
age dpi calculations can be found in the determine_image_resolution topic in the TET
Cookbook.

TET by default records a dummy resolution value of 72 dpi in generated TIFF images
to satisfy the TIFF specification. The dpi option of TET_write_image_file() can be used to
embed calculated resolution values instead. TET cannot embed calculated resolution
values automatically since a particular image may have been placed more than once,
each time with different size and therefore different resolution. The value dpi=0 can be
used to suppress the dummy resolution values.

The TET command-line tool embeds calculated resolution values when operating in
the page-based image loop.

https://www.pdflib.com/tet-cookbook/image/determine_image_resolution/

8.3 Merging Fragmented Images 127

8.3 Merging Fragmented Images
Sometimes it is not desirable to extract images exactly as they are represented in the
PDF document: in many situations what appears to be a single image is actually a collec-
tion of several smaller images which are placed adjacent to each other. There are some
common reasons for such image fragmentation:

> Some applications and drivers convert multi-strip TIFF images to fragmented PDF
images. The number of strips can range from dozens to hundreds.

> Some scanning software divides scanned pages in smaller fragments (strips or tiles).
The number of fragments is usually not more than a few dozen.

> Some applications break images into small pieces when generating print or PDF out-
put. In extreme cases, especially documents created with Microsoft Office applica-
tions, a page may contain thousands of small image fragments.

> Some page layout programs, e.g. Adobe InDesign, cut images into smaller and some-
times irregular fragments when creating PDF output (see Figure 8.2).

TET’s image merging engine detects this situation and recombines the image parts to
form a larger and more useful image. If the merging candidates can be combined to a
larger image, they are merged. Transparency flattening may lead to irregular image lay-
outs which are impossible to merge to a rectangular result.

Fig. 8.2
 Although this image is
segmented into smaller
parts (top), TET extracts it
as a single reusable image
(bottom).

128 Chapter 8: Image Extraction

In order to disable image merging use the following page option:

imageanalysis={merge={disable}}

Merged images in pCOS. Merged images can be identified by the pCOS pseudo object
images[]/mergetype: it has the value 1 (artificial) for merged images and 2 (consumed) for
images which have been consumed by the merging process. Consumed images should
generally be ignored by the receiving application.

Gaps and overlap between images. In order to compensate for inaccuracies in the im-
age locations some amount of gap or overlap is allowed between adjacent images. By
default, images are merged if the gap or overlap is smaller than one point. This value
can be modified with the following page option:

imageanalysis={merge={gap=2}}

Larger gap/overlap values are often required when extracting images from newspapers
or magazines.

When are images merged? Analyzing and merging images on a page are triggered by
the corresponding call to TET_open_page(). This leads to the following consequences:

> The number of entries in the pCOS images[] array, i.e. the value of the length:images
pseudo object, may increase: as more pages are processed, artificial images which re-
sult from image merging are added to the array. In order to extract all merged imag-
es via the images[] array you must therefore open all pages in the document before
querying length:images and extracting image data. Artificial (merged) images are
marked with the corresponding flag artificial (numerical value 1) in the images[]/
mergetype pseudo object.

> On the other hand, some elements in the images[] array may only be consumed as
parts of merged images, but are not used as images in their own right. Such entries
are never removed from the images[] array, but the consumed entries are marked
with the corresponding flag consumed (numerical value 2) in the images[]/mergetype
pseudo object.

8.4 Small and Large Image Filtering 129

8.4 Small and Large Image Filtering
By default, TET ignores small images since these are often irrelevant or useless. Since
the image merging process often combines small image fragments to a larger image,
small images are removed after image merging. Only images which cannot be merged
to form a larger image are candidates for small image removal. In addition, they must
satisfy the size conditions which are specified in the heightrange/sizerange/widthrange
suboptions of the imageanalysis page option. In order to completely disable image filter-
ing use the following page option:

imageanalysis={sizerange={1 unlimited}}

By default, images with a width or height below 20 pixels are ignored. If an image itself
is small, but has a larger mask (i.e. the mask dimensions are within the specified range)
attached to it, the image and its mask are not ignored.

Alternatively to the page option above, the same option list can be applied as docu-
ment option. While size filtering is applied in the same way, small images are removed
before attempting image merging, i.e. TET will no longer be able to merge such small
image fragments. Disabling small images on the document level can improve perfor-
mance in situations with very large numbers of small images at the expense of losing
image merging.

Small and large images in pCOS. Images which have been removed according to the
heightrange/sizerange/widthrange options are ignored by TET_write_image_file() and TET_
get_image_data(), but are still present in the pCOS images[] array. They can be identified
with the pCOS pseudo object images[]/small (the keyword small is used regardless of
whether the images were filtered because they are too small or too large).

130 Chapter 8: Image Extraction

8.5 Image Colors and Masking
8.5.1 Color Spaces

Image color fidelity. Table 6.1 provides an overview of PDF color spaces. All color spac-
es are supported for images. TET does not degrade image quality when extracting imag-
es:

> Raster images are never downsampled.
> The color space of an image is retained in the output. TET never applies any CMYK-

to-RGB or similar color conversion.

ICC profiles. An image in PDF may have an ICC profile assigned which allows precise
color reproduction. By default, TET processes attached ICC profiles and embeds them in
the generated TIFF or JPEG image files. You can disable ICC profile embedding with the
option keepiccprofile=false in TET_write_image_file() and TET_get_image_data(). This re-
duces the size of the image files at the expense of color fidelity. Disabling ICC profile
embedding is not recommended for workflows which need precise color representa-
tion.

Spot colors. Images in PDF may be colorized with a named color. Usually named colors
are used to specify custom spot colors, but the same mechanism can also be used to
apply a subset of CMYK process colors to an image (e.g. only the Cyan and Magenta
channels). The Separation color space in PDF holds a single named color, while the
DeviceN color space can be used to assign multiple named colors. Separation colors are
accompanied by a so-called alternate color which makes it possible to represent the col-
or even if the spot color is not available (e.g. on a monitor). For example, if a Separation
color is called Company Red it is useful to have an alternate representation in a well-
known color space such as RGB or CMYK to display the spot color on devices where
Company Red is not available as named color.

TET extracts images with Separation or DeviceN colors as follows: CMYK process color
names are identified: if a named color is called Black it is treated as process color and the
image is extracted as grayscale image. The color names Cyan, Magenta and Yellow are
also identified and the image is extracted as CMYK image. Custom spot color names, i.e.
names different from Cyan, Magenta, Yellow and Black can be handled in different ways
subject to the document option spotcolor:

> With spotcolor=convert (which is default) spot colors are converted to the correspond-
ing alternate color space if possible. If such a conversion is not possible this method
behaves like spotcolor=ignore (for a single custom spot color) or spotcolor= preserve
(for two or more custom spot colors).

> The option spotcolor=ignore is similar to spotcolor=convert except that images with
exactly one custom spot color are extracted as grayscale image and the spot color
name is lost.

> With spotcolor=preserve spot color names are preserved, and the image is extracted as
grayscale or CMYK image with one or more extra spot color channels. This requires
TIFF output; the generated TIFF flavor can be viewed with Adobe Photoshop and
compatible programs (see Figure 8.3). Simple TIFF viewers often ignore the extra spot
color channels.

8.5 Image Colors and Masking 131

Table 8.2 summarizes the output formats for different combinations of spot color
names and settings of the document option spotcolor.

8.5.2 Image Masks and Soft Masks
Masking information and the actual image data used for masking another image can be
retrieved with TET. PDF supports the following types of image masking:

> A stencil mask is a 1-bit image with the PDF key ImageMask. The image is used as a
stencil which is partly opaque and partly transparent: by default, color is applied
where the image has pixel value 0, and the background shines through unchanged
where the image has pixel value 1.

> A mask is a 1-bit grayscale image which is applied to another image (PDF key Mask). It
specifies which image areas shall be painted and which shall be masked out (left un-
changed).

> A soft mask is a grayscale image of arbitrary bit depth which is applied to another
image (PDF key SMask). It provides a smooth transition between the masked image
and its background, creating a real transparency effect.

Since hard and soft masks differ only in bit depth, they are treated uniformly in TET.

Table 8.2 Output formats for images with Separation and DeviceN colors

Separation or DeviceN color names spotcolor=ignore spotcolor=convert spotcolor=preserve

only Black grayscale

one or more of Cyan, Magenta, Yellow, Black CMYK (unused channels are empty)

exactly one custom spot color (i.e. different
from Cyan, Magenta, Yellow, Black)

grayscale alternate color
space if possible1

1. Behaves like spotcolor=ignore (for a single custom spot color) or spotcolor=preserve (for two or more custom spot colors) if con-
version to the alternate color space is not possible.

empty grayscale channel plus
a named extra channel

two or more color names and all are
different from Cyan, Magenta, Yellow

alternate color space if possible1 grayscale channel plus one or
more named extra channels

two or more color names including one or
more of Cyan, Magenta, Yellow

alternate color space if possible1 CMYK plus one or more
named extra channels

Fig. 8.3
Adobe Photoshop displays spot color channels of TIFF images which
have been extracted with spotcolor=preserve in the Channels
window (left). Double-clicking one of the icons reveals the alternate
color (top).

132 Chapter 8: Image Extraction

Image masks in TETML. Image masking is handled as follows in TETML:
> Stencil masks: the TETML attribute Image/@stencilmask signals that a 1-bit image it-

self is used as a stencil mask.
> Masks: the TETML attribute Image/@maskid references an image mask (Mask or

SMask) which may be attached to an image. Details of the mask image can be re-
trieved in the mask image’s entry in the images[] array.

Image masks in the TET command-line tool. Image masks are handled as follows in
the TET command-line tool (information about stencil masking is not available):

> Extracting images with --imageloop page extracts all plain images as usual. Images
used as mask for one of the extracted plain images are also extracted using the suffix
_mask in the image file name.

> Extracting images with --imageloop resource extracts all plain images and mask imag-
es. The generated file names include the image/@id TETML attribute of the mask im-
age (which is identical to the image/@maskid attribute of the masked image) so that
applications can locate the corresponding files for images referenced in TETML.

Image masks in pCOS. Image masking is handled in the pCOS pseudo objectimages[]
and TET_pcos_get_number() as follows:

> Images which are used as stencil mask can be identified by the images[]/stencilmask
pseudo object.

> If an image has a soft mask assigned the corresponding images[]/maskid pseudo ob-
ject has a value different from -1. The value designates the image ID of the mask and
can be used to query further details of the mask using the corresponding entry in the
images[] array.

Image masks in the API. Image masking is handled as follows in the TET API:
> TET_get_image_info() enumerates only plain images which are placed on the page,

and skips masks. The imageid field in the image_info structure can be used to obtain
the image’s pCOS id, which in turn can be used to query mask and stencil mask infor-
mation via pCOS as described above.

> TET_write_image_file() and TET_get_image_data() can be used to retrieve the pixel
data of the mask, using the image id retrieved with the maskid pCOS object of the
masked image. This is demonstrated in the images_per_page sample. Alternatively,
you can iterate over all entries in the pCOS images[] array to create image files for all
plain images and mask images. This is demonstrated in the image_resources sample.

9.1 Creating TETML 133

9 TET Markup Language (TETML)

9.1 Creating TETML
As an alternative to supplying the contents of a PDF document via a programming in-
terface, TET can create XML output. We refer to the XML output created by TET as TET
Markup Language (TETML). TETML contains the text contents of the PDF pages plus
optional information such as text position, font, font size, etc. If TET detects table-like
structures on the page the tables are expressed in TETML as a hierarchy of table, row,
and cell elements. Note that table information is not available via the TET programming
interface, but only through TETML. TETML also contains information about images and
color spaces as well as annotations, form fields, bookmarks and other interactive ele-
ments.

You can convert PDF documents to TETML with the TET command-line tool or the
TET library. In both cases there are various options available for controlling details of
TETML generation.

Creating TETML with the TET command-line tool. Using the TET command-line tool
you can generate TETML output with the --tetml option. The following command cre-
ates a TETML output document file.tetml:

tet --tetml word file.pdf

You can use various options to convert only some pages of the document, supply pro-
cessing options, etc. Refer to Section 2.1, »Command-Line Options«, page 19, for more de-
tails.

Creating TETML with the TET library. Using a simple sequence of API calls you can gen-
erate TETML output with the TET library. The tetml sample demonstrates the canonical
code sequence for generating TETML. This sample program is available in all supported
language bindings.

TETML is created page by page, which means that the client may choose to process
only a subset of pages. The TETML trailer must be created after processing the last page:

final int n_pages = (int) tet.pcos_get_number(doc, "length:pages");

/* Loop over all pages in the document */
for (int pageno = 1; pageno <= n_pages; ++pageno)
{

tet.process_page(doc, pageno, pageoptlist);
}

/* This could be combined with the last page-related call */
tet.process_page(doc, 0, "tetml={trailer}");

If the filename option has been supplied to TET_open_document() the TETML output is
written to the specified disk file. Otherwise TETML is accumulated in memory and can
be fetched with TET_get_tetml(). This can be done for the full TETML stream in a single
call (only recommended for small documents), or with multiple calls where each call re-
trieves a smaller chunk of the full TETML stream.

134 Chapter 9: TET Markup Language (TETML)

The generated TETML stream can be parsed into a XML tree using the XML support
provided by most modern programming languages. Processing the TETML tree is also
demonstrated in the tetml sample programs for language bindings with integrated XML
support.

What’s included in TETML? TETML output is encoded in UTF-8 (on IBM Z with USS or
MVS: EBCDIC-UTF-8) and includes the following information (some of these items are
optional):

> general document information, encryption status, PDF standards, Tagged PDF etc.
> document info fields and XMP metadata
> text contents of each page (words or paragraphs; optionally lines)
> font, geometry and color of the glyphs
> layout attributes for the glyph (sub/superscript, dropcap, shadow)
> hyphenation attributes
> artifact (irrelevant content) status of text and images
> structure information, e.g. tables and lists
> information about placed images on the page
> resource information, i.e. fonts, color spaces, images, ICC profiles
> output intent information
> layer information (also known as optional content)
> interactive elements: bookmarks, named destinations, annotations, form fields, ac-

tions, and JavaScript
> anchors are provided in the text stream for easy reference of links, form fields, and

bookmark targets
> digital signatures
> error messages if an exception occurred during PDF processing

Various elements and attributes in TETML are optional. See Section 9.3, »Controlling
TETML Details«, page 139, for details.

9.2 TETML Examples 135

9.2 TETML Examples
The TETML samples below demonstrate some important features. The full list of TETML
elements along with descriptions can be found in Section 9.4, »TETML Elements and the
TETML Schema«, page 143.

Document header and text output. The following fragment shows the most import-
ant parts of a TETML document:

<?xml version="1.0" encoding="UTF-8"?>
<!-- Created by the PDFlib Text and Image Extraction Toolkit TET (www.pdflib.com) -->
<TET xmlns="http://www.pdflib.com/XML/TET5/TET-5.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.pdflib.com/XML/TET5/TET-5.0
 http://www.pdflib.com/XML/TET5/TET-5.0.xsd"
 version="5.2">
<Creation platform="Win64" tetVersion="5.2" date="2019-07-05T18:26:02+02:00" />
<Document filename="TET-datasheet.pdf" pageCount="6" filesize="508093" linearized="true"
pdfVersion="1.7">
<DocInfo>
<Author>PDFlib GmbH</Author>
<CreationDate>2015-08-05T17:43:14+02:00</CreationDate>
<Creator>Adobe InDesign CS6 (Windows)</Creator>
<ModDate>2015-08-05T17:43:15+02:00</ModDate>
<Producer>Adobe PDF Library 10.0.1</Producer>
<Subject>PDFlib TET: Text and Image Extraction Toolkit (TET)</Subject>
<Title>PDFlib TET datasheet</Title>
</DocInfo>
<Metadata>
<x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="Adobe XMP Core 5.3-c011 66.145661, 2012/02/
06-14:56:27 ">
 <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
 ...XMP metadata...
 </rdf:RDF>
</x:xmpmeta>
</Metadata>
<Options> tetml={filename={TET-datasheet.word.tetml}}</Options>
<Pages>
<Page number="1" width="595.28" height="841.89">
<Options> granularity=word tetml={}</Options>
<Content granularity="word" dehyphenation="false" dropcap="false" font="false"
geometry="false" shadow="false" sub="false" sup="false">
<Para>
 <Box llx="235.80" lly="796.02" urx="397.67" ury="816.72">
 <Word>
 <Text>PDFlib</Text>
 <Box llx="235.80" lly="796.02" urx="291.91" ury="814.02"/>
 </Word>
 <Word>
 <Text>datasheet</Text>
 <Box llx="306.14" lly="796.22" urx="397.67" ury="816.72"/>
 </Word>
 </Box>

...more page contents...

</Content>

136 Chapter 9: TET Markup Language (TETML)

</Page>
 ...more pages...
<Resources>
<Fonts>
 <Font id="F0" name="TheSans-Plain" fullname="FXLUMY+TheSans-Plain" type="Type 1 CFF"
embedded="true" ascender="1170" capheight="675" italicangle="0" descender="-433"
weight="400" xheight="497"/>
 <Font id="F1" name="PDFlibLogo2-Regular" fullname="DUMIKC+PDFlibLogo2-Regular"
type="Type 1 CFF" embedded="true" ascender="800" capheight="700" italicangle="0"
descender="-9" weight="400" xheight="537"/>
 ...more fonts...
</Fonts>
<Images>
 <Image id="I0" filename="TET-datasheet_I0.tif" extractedAs=".tif" width="885"
height="565" colorspace="CS3" bitsPerComponent="8"/>
 <Image id="I1" filename="TET-datasheet_I1.tif" extractedAs=".tif" width="1253"
height="379" colorspace="CS4" bitsPerComponent="8"/>
 ...more images...
</Images>
<ColorSpaces>
 <ColorSpace id="CS0" name="DeviceCMYK" components="4"/>
 <ColorSpace id="CS1" name="DeviceGray" components="1"/>
 ...more colorspaces...
</ColorSpaces>
</Resources>
...
</Pages>
</Document>
</TET>

Glyph coordinates and color. Depending on the selected TETML mode more glyph de-
tails can be expressed in TETML. TETML modes are discussed in »Selecting the TETML
mode«, page 139. Here is a variation of the sample above with more glyph details. The
Glyph element contains font, position and color information (see below for more details
on color representation):

<Word>
<Text>datasheet</Text>
<Box llx="306.14" lly="796.22" urx="397.67" ury="816.72">
<Glyph font="F0" size="20.5000" x="306.14" y="796.22" width="11.42" fill="C0">d</Glyph>
<Glyph font="F0" size="20.5000" x="317.87" y="796.22" width="10.68" fill="C0">a</Glyph>
<Glyph font="F0" size="20.5000" x="328.61" y="796.22" width="7.61" fill="C0">t</Glyph>
<Glyph font="F0" size="20.5000" x="336.52" y="796.22" width="10.68" fill="C0">a</Glyph>
<Glyph font="F0" size="20.5000" x="347.51" y="796.22" width="8.71" fill="C0">s</Glyph>
<Glyph font="F0" size="20.5000" x="356.53" y="796.22" width="11.79" fill="C0">h</Glyph>
<Glyph font="F0" size="20.5000" x="368.63" y="796.22" width="10.41" fill="C0">e</Glyph>
<Glyph font="F0" size="20.5000" x="379.35" y="796.22" width="10.41" fill="C0">e</Glyph>
<Glyph font="F0" size="20.5000" x="390.07" y="796.22" width="7.61" fill="C0">t</Glyph>

</Box>
</Word>

Color values and color spaces. Colors are represented by a color space (e.g. DeviceRGB)
and a color value. Color values for text are available for the fill and stroke colors. Since
stroked glyphs are quite rare in PDF you will see the fill attribute more often. The color
values for images come from the actual pixel data. Color spaces for text, vector graphics
and images are listed in the ColorSpaces element in the Resources section. Each ColorSpace

9.2 TETML Examples 137

element contains details depending on the type of color space. Some color spaces refer
to others, e.g. an Indexed color space requires an underlying base color space, and Separa-
tion and DeviceN require an alternate color space:

<Resources>
<ColorSpaces>
 <ColorSpace id="CS0" name="DeviceCMYK" components="4"/>
 <ColorSpace id="CS1" name="DeviceGray" components="1"/>
 <ColorSpace id="CS2" name="Indexed" components="1" base="CS0" hival="255">
 <Lookup>000000000705000349340029745300416F50003E775600...</Lookup>
 </ColorSpace>
 <ColorSpace id="CS0" name="Separation" components="1" alternate="CS0">
 <Colorant name="PANTONE 294 CVC"/>
 <Function type="interpolate">

...
 <C1>
 <Value>0.93</Value>
 <Value>0.62</Value>
 <Value>0.00</Value>
 <Value>0.00</Value>
 </C1>
 <Exponent>1</Exponent>
 </Function>
 </ColorSpace>
 ...
</ColorSpaces>
</Resources>

Tables in TETML. Tables identified by TET are expressed with table, row and cell struc-
ture in TETML. Cells which span multiple columns are labeled with a colSpan attribute:

<Table>
 <Box llx="302.14" lly="639.72" urx="525.50" ury="731.50">
 <Row>
 <Box llx="311.64" lly="721.10" urx="521.50" ury="730.70"/>
 <Cell>
 <Box llx="311.64" lly="721.10" urx="375.22" ury="730.70"/>
 <Para>
 <Word>
 <Text>Device-dependent</Text>
 <Box llx="311.64" lly="721.90" urx="375.22" ury="729.90"/>
 </Word>
 </Para>
 </Cell>
 <Cell>
 <Box llx="397.91" lly="721.10" urx="431.99" ury="730.70"/>
 <Para>
 <Word>
 <Text>CIE-based</Text>
 <Box llx="397.91" lly="721.90" urx="431.99" ury="729.90"/>
 </Word>
 </Para>
 </Cell>
...
 <Row>
 <Box llx="306.14" lly="641.52" urx="516.67" ury="650.52"/>
 <Cell colSpan="3">
 <Box llx="306.14" lly="706.42" urx="516.67" ury="716.02"/>

138 Chapter 9: TET Markup Language (TETML)

 <Para>
 <Word>
 <Text>TET</Text>
 <Box llx="306.14" lly="641.52" urx="319.70" ury="650.52"/>
 </Word>
 <Word>
 <Text>.</Text>
 <Box llx="514.83" lly="641.52" urx="516.67" ury="650.52"/>
 </Word>
 </Para>
 </Cell>
 </Row>
 </Box>
</Table>

Interactive elements. Links, bookmarks, form fields etc. are also available in TETML as
shown in the following example:

<Page number="6" width="595.27600" height="841.89000">
<Annotations>
<Annotation id="ANN0" type="Link" anchor="A0">
 <Box llx="327.14" lly="64.89" urx="395.08" ury="79.18"/>
 <Action type="URI" trigger="activate" URI="mailto:sales%40pdflib.com"/>
</Annotation>
<Annotation id="ANN1" type="Link" anchor="A1">
 <Box llx="327.14" lly="52.89" urx="391.05" ury="67.18"/>
 <Action type="URI" trigger="activate" URI="http://www.pdflib.com"/>
</Annotation>
</Annotations>

The text inside a link is wrapped with A (anchor) elements which provide the relation-
ship between the geometrically defined PDF annotation and the corresponding page
contents, i.e. the text which activates the link. Keep in mind that the active content does
not need to correspond to complete semantic entities. For example, a link may span
some fraction of a word or paragraph. Since anchors don’t necessarily span complete
TETML elements separate start/stop anchor elements are required instead of enclosing
the link contents with a single A element:

<Word>
 <Text>www.pdflib.com</Text>
 <Box llx="327.14" lly="56.71" urx="391.05" ury="65.71"/>
</Word>

9.3 Controlling TETML Details 139

9.3 Controlling TETML Details
TETML modes. TETML can be generated in various modes which include different
amounts of font and geometry information, and differ regarding the grouping of text
into larger units (granularity). The TETML mode can be specified individually for each
page. Usually TETML files contain the data for all pages in the same mode. The following
TETML modes include text and image information as well as interactive elements:

> Glyph mode is a low-level flavor which includes the text, font, coordinates, and color
for each glyph, without any word grouping or structure information. It is intended
for debugging and analysis purposes since it represents the original text informa-
tion on the page.

> Word mode groups text into words and adds Box elements with the coordinates of
each word. No font information is available. This mode is suitable for applications
which operate on word basis. Punctuation characters will by default be treated as in-
dividual words, but this behavior can be changed with a page option (see »Word
boundary detection for Western text«, page 87). Lines of text can optionally be iden-
tified with the Line element; this is controlled via the tetml page option.

> Wordplus mode is similar to word mode, but adds font and coordinate details plus
color information for all glyphs in a word. The coordinates are expressed relative to
the lower left or upper left corner subject to the topdown page option. Wordplus mode
makes it possible to analyze font usage and track changes of font, font size, etc. with-
in a word. Since wordplus is the only TETML mode which contains all relevant TETML
elements it is suited for all kinds of processing tasks. On the other hand, it creates
the largest amount of output due to the wealth of information contained in TETML.

> Line mode includes all text which comprises a line in a separate Line element. In addi-
tion, multiple lines may be grouped in a Para element. Line mode is recommended
only in situations where the receiving application can only deal with line-based text
input.

> Page mode includes structure information starting at the paragraph level, but does
not include any font or coordinate details. Note that the layout detection results in
page mode may be slightly different from word mode since anchors for images and
destinations are treated differently.

If you are only interested in image information you can also skip other types of output
in TETML:

> Image mode includes information about placed images and image resources, but not
any text- or font-related elements nor information about interactive elements.

Table 9.1 lists the TETML elements which are present in the TETML modes.

Selecting the TETML mode. With the TET command-line tool (see Section 2.1, »Com-
mand-Line Options«, page 19) you can specify the desired mode as a parameter for the --
tetml option. The following command generates TETML output in wordplus mode:

tet --tetml wordplus file.pdf

With the TET library the TETML mode cannot be specified directly, but as a combination
of options:

> You can specify the amount of text in the smallest element with the granularity op-
tion of TET_process_page().

140 Chapter 9: TET Markup Language (TETML)

> For granularity=glyph or word you can additionally specify the amount of glyph de-
tails. With the glyphdetails suboption of the tetml option you can omit some parts of
the glyph information if you don’t need it.

> In order to suppress all text output (i.e. image mode) you can disable the text engine
with the following document option:

engines={notext}

The following page option list generates TETML output in wordplus mode with all glyph
details:

granularity=word tetml={ glyphdetails={all} }

Table 9.2 summarizes the options for creating TETML modes.

Document options for controlling TETML output. In this section we will summarize
the effect of various options which directly control the generated TETML output. All

Table 9.1 Text-related elements in various TETML modes; PlacedImage and Image are always present.

TETML mode structure tables text position glyph details

glyph – – – Glyph, Color

word Para, Word
optionally: Line, List

Table, Row, Cell Box inside Word
Box inside Para

–

wordplus Para, Word
optionally: Line, List

Table, Row, Cell Box inside Word
Box inside Para

Glyph, Color

line Para, Line – Box inside Para –

page Para Table, Row, Cell Box inside Para –

image – – – –

Table 9.2 Creating TETML modes with the TET library

TETML mode document options options of TET_process_page()

glyph tetml={glyphdetails={all}} granularity=glyph

word – granularity=word

wordplus tetml={glyphdetails={all}} granularity=word

word with Line
elements

tetml={elements={line}} granularity=word

wordplus with Line
elements

tetml={glyphdetails={all} elements={line}} granularity=word

line – granularity=line

page – granularity=page

image engines={notext novector}
tetml={elements={annotations=false docinfo=true
bookmarks=false destinations=false fields=false
javascripts=false metadata=true options=true}}

9.3 Controlling TETML Details 141

other document options can be used to control processing details. The complete de-
scription of document options can be found in Table 10.8.

Document-related options must be supplied to the --docopt command-line option or
to the TET_open_document() function.

The tetml option1 controls general aspects of TETML. The elements suboption can be
used to suppress certain TETML elements if they are not required. The following docu-
ment option list will suppress document-level XMP metadata in the generated TETML
output:

tetml={ elements={nometadata} }

The engines option can be used to disable some of the TET kernel’s processing engines.
The following option list instructs TET to process text contents, but disable text color re-
trieval and image processing:

engines={notextcolor noimage}

The following document option makes sense only for granularity=page. It changes the
default line separator character from linefeed to space:

lineseparator=U+0020

All document options which have been supplied when creating TETML are recorded in
the /TET/Document/Options element unless disabled with the following document op-
tion:

tetml={ elements={nooptions} }

Document options for controlling TETML output for interactive elements. TETML can
also include information about interactive elements in the PDF document. The docu-
ment option tetml with the suboption elements can be used to enable or disable TETML
output for various aspects, e.g.

elements={annotations=true bookmarks=true destinations=true fields=true javascripts=true}

Page options for controlling TETML output. The complete description of page options
can be found in Table 10.10. Page-related options must be supplied to the --pageopt com-
mand-line option or to TET_process_page().

The tetml page option enables or disables coordinate- and font-related information
in the Glyph element. The following page option list enables font details in the Glyph el-
ement, but suppresses other glyph attributes:

tetml={ glyphdetails={font} }

The following page option list adds Line elements to the TETML output:

tetml={ glyphdetails={font} elements={line} }

The following page option adds sub and sup attributes to the Glyph element to designate
subscripts and superscripts:

tetml={ glyphdetails={sub sup} }

1. Keep in mind that there are two different tetml options: one on document level and one on page level.

142 Chapter 9: TET Markup Language (TETML)

The following page option uses all to generate all possible attributes to the Glyph ele-
ment:

tetml={ glyphdetails={all} }

The following page option requests topdown coordinates instead of the default bottom-
up coordinates:

topdown={output}

The following page option list instructs TET to combine punctuation characters with
the adjacent words, i.e. punctuation characters are no longer treated as individual
words:

contentanalysis={nopunctuationbreaks}

All page options which have been supplied when creating TETML are recorded in the /
TET/Document/Pages/Page/Options elements (individually for each page) unless disabled
with the following document option:

tetml={ elements={nooptions} }

Exception handling. If an error happens during PDF parsing TET generally tries to re-
pair or ignore the problem if possible, or throws an exception otherwise. However,
when generating TETML output with TET PDF parsing problems are usually reported as
an Exception element in TETML:

<Exception errnum="4506">Object ’objects[49]/Subtype’ does not exist</Exception>

Applications should be prepared to deal with Exception elements instead of the expected
elements when processing TETML.

Problems which prevent the generation of the TETML output file (e.g. invalid op-
tions, no write permission for the output file) still trigger a runtime exception and no
valid TETML output is created.

9.4 TETML Elements and the TETML Schema 143

9.4 TETML Elements and the TETML Schema
A formal XML schema description (XSD) for all TETML elements and attributes as well as
their relationships is contained in the TET distribution. The TETML namespace is the fol-
lowing:

http://www.pdflib.com/XML/TET5/TET-5.0

The schema can be downloaded from the following URL on the Web:

http://www.pdflib.com/XML/TET5/TET-5.0.xsd

Both TETML namespace and schema location are present in the root element of each
TETML document.

Table 9.3 describes the role of all TETML elements. Elements and attributes which
have been introduced after TET 5.0 are marked. Figure 9.1 and Figure 9.2 visualize the
XML hierarchy of TETML elements.

Table 9.3 TETML elements and attributes

TETML element description and attributes

A (Only for granularity=glyph and word) Anchor for an annotation, destination or field within
the page content
Attributes: id, type (the types start and stop enclose text, type rect abbreviates anchors with-
out any content)

Action Describes a PDF action.
Attributes: filename, name, javascript, URI, trigger, type

Annotation Describes a PDF annotation (excluding form fields which are described in Field elements). If the
annotation has a corresponding popup annotation, the popup is expressed as a nested
Annotation element.
Attributes: alignment, anchor, color, creationdate, destination, hidden, icon, id, intent,
interiorcolor, invisible, moddate, name, onscreen, opacity, open, print, readonly, rotate,
subject, symbol, type
Child elements: Action, Box, Annotation, Contents, Title

Annotations Container of Annotation elements
Attribute: xml:space

Attachment For PDF attachments describes the contents in a nested Document element. For non-PDF attach-
ments only the name is listed, but no contents.
Attributes: name, level, pagenumber

Attachments Container of Attachment elements

BitPerSample Number of bits per sample for sampled functions, i.e. Function/@type="sampled"

BlackPoint Tristimulus value of the black point for CalGray, CalRGB and Lab color spaces
Attributes: x, y, z

Body (TET 5.1) List body
Child elements: Para, List, Table, PlacedImage, A

Bookmark Contains Bookmark and Title elements to describe text, properties and nested bookmarks of a
PDF bookmark (also called outline entry)
Attributes: color, destination, fontstyle, open
Child elements: Action, Bookmark, Title

144 Chapter 9: TET Markup Language (TETML)

Bookmarks Container of Bookmark elements
Attribute: xml:space

Bounds Intervals for stitched functions, i.e. Function/@type="stitching"
Child element: Value

Box Describes the coordinates of a word, paragraph, annotation or form field. The attributes llx and
lly describe the lower left corner, urx and ury describe the upper right corner of the Box1. A word
or paragraph may contain multiple Box elements, e.g. a hyphenated word which spans several
lines of text or a word which starts with a large dropcap character.
Attributes: llx, lly, urx, ury2, ulx2, uly2, lrx, lry2

Child elements: A, Glyph, Line, Para, PlacedImage, Table, Text, Word
Parent elements: Para, Word

C0 Initial color value for interpolation functions, i.e. Function/@type="interpolate"
Child element: Value

C1 Terminal color value for interpolation functions, i.e. Function/@type="interpolate". This ele-
ment describes the alternate color of a spot color. As a convenience feature this element is also
created for sampled functions, i.e. Function/@type="sampled", although it is not present in PDF
for such functions.
Child element: Value

Calculator Operators for PostScript functions, i.e. Function/@type="PostScript"

Cell Describes the contents of a single table cell.
Attributes: colSpan,llx, lly2, urx, ury2, ulx1, uly2, lrx, lry2, rowSpan (TET 5.2)

Color Describes a PDF color.
Attributes: colorspace, id, svgname, pattern

Colorant Colorant of a Separation or DeviceN color space
Attributes: name, colorspace

Colors Container of Color elements

ColorSpace Describes a PDF color space.
Attributes: alternate, base, components, hival, iccprofile, id, name, pattern, subtype
Child elements: BlackPoint, Colorant, Exception, Function, Gamma, Lookup, Matrix, Process,
Range, WhitePoint

ColorSpaces Container of ColorSpace elements

Content Describes the page contents as a hierarchical structure.
Attributes: granularity, dehyphenation, dropcap, font, geometry, shadow, sub, sup

Contents As child of Annotation: contents of an annotation
As child of Field: contents of a form field

Creation Describes the date and operating system platform for the TET execution, plus the version number
of TET.
Attributes: date, platform, tetVersion

Decode Mapping of sample values for sampled functions, i.e. Function/@type="sampled"
Child element: Value

Destination Describes a PDF destination in the document.
Attributes: anchor, bottom2, id, left, name, page, right, top2, type, zoom

Destinations Container of Destination elements

Table 9.3 TETML elements and attributes

TETML element description and attributes

9.4 TETML Elements and the TETML Schema 145

DefaultValue Default value of a form field

DocInfo Predefined and custom document info entries
Child elements: Author, CreationDate, Creator, GTS_PDFXConformance, GTS_PDFXVersion, GTS_
PPMLVDXConformance, GTS_PPMLVDXVersion, ISO_PDFEVersion, Keywords, ModDate, Producer,
Subject, Title, Trapped, Custom (attribute: key), CustomBinary (attribute: key)

Document Describes general document information including PDF file name and size, PDF version number.
Attributes: filename, destination, pageCount, filesize, linearized, pdfVersion, pdfa (TET
5.2: new values for PDF/A-4), pdfe, pdfua (TET 5.2: new value for PDF/UA-2), pdfvcr (TET 5.2),
pdfvt (TET 5.2: new value for PDF/VT-3), pdfx (TET 5.2: new values for PDF/X-6), revisions
(TET 5.0), tagged, usagerights (TET 5.0)
Child elements: Action, Attachments, Bookmarks, Destinations, DocInfo, Encryption,
Exception, JavaScripts, Metadata, Options, OutputIntents, Pages, SignatureFields, XFA

Domain Input value interval(s) for functions
Child element: Value

Encode Mapping of input values for stitched functions, i.e. Function/@type="stitching"
Child element: Value

Encryption Describes various security settings.
Attributes: keylength, algorithm, attachment, description, masterpassword, userpassword,
noprint, nomodify, nocopy, noannots, noassemble, noforms, noaccessible, nohiresprint,
plainmetadata

Exception Error message and number associated with an exception which was thrown by TET and translat-
ed to TETML. The Exception element may replace other elements if not enough information can
be extracted from the input because of malformed PDF data structures.
The following elements may have an Exception element as child:
Annotation, Annotations, Attachment, Attachments, Bookmark, Bookmarks, Color, ColorSpace,
ColorSpaces, Document, Field, Fields, Font, Fonts, ICCProfile, Image, Images, Metadata, Page,
Pattern, Patterns, SignatureField, SignatureFields
Attribute: errnum

Exponent Interpolation exponent for interpolated functions, i.e. Function/@type="interpolate"

Field Describes a PDF form field.
Attributes: alignment, anchor, backgroundcolor, bordercolor, caption, captiondown, caption-
rollover, destination, export, exportvalue (only for type=radiobutton and checkbox),
hidden, id, mappingname, name, onscreen, print, readonly, required, rotate, sort, state, type,
visible

Child elements: Action, Box, Contents, Field (for the buttons comprising a field with
type=radiogroup), DefaultValue, OptionalValue, Tooltip, Value

Fields Container of Field elements
Attribute: xml:space

Font Describes a font resource. The required name attribute contains the canonical font name, while
the optional fullname attribute contains the font name including subset prefix.
Attributes: ascender, capheight, descender, embedded, fullname, id, italicangle, type, name,
vertical, weight, xheight

Fonts Container of Font elements

Table 9.3 TETML elements and attributes

TETML element description and attributes

146 Chapter 9: TET Markup Language (TETML)

Function Tint transform function for a Separation or DeviceN color space
Attribute: type
Child elements: BitsPerSample, Bounds, Calculator, C0, C1, Decode, Domain, Encode, Functions,
Exponent, Order, Range, Samples, Size

Functions Container of sub-functions for stitched functions, i.e. Function/@type="stitching"
Child element: Function

Gamma Gamma values for CalGray or CalRGB color space
Child element: Value

Glyph Describes font and geometry details for a single glyph. The element content holds the Unicode
character(s) produced by the glyph. A single glyph may produce more than one character, e.g. for
ligatures. The Glyph elements for a word are grouped within one or more Box elements.
Attributes: x, y2, width, height (only for vertical writing mode and if the glyph height is different
from the font size), alpha2, beta2, shadow, dropcap, fill, font, size, stroke, sub, sup,
textrendering, unknown, dehyphenation, artifact (TET 5.2)

Graphics Container of the Colors, ICCProfiles, and Layers elements

ICCProfiles Container of ICCProfile elements

ICCProfile Describes an ICC color profile.
Attributes: checksum, iccversion, id, deviceclass, embedded, fromCIE, profilecs, profile-
name, toCIE

Image Describes an image resource, i.e. the actual pixel array comprising the image.
Attributes: bitsPerComponent, colorspace, extractedAs, filename, height, id, maskid,
mergetype, stencilmask, width
The attribute Image/@filename is identical to the image file names created by the TET command-
line tool with the option --imageloop resource (see »Image file names«, page 21).

Images Container of Image elements

Item (TET 5.1) List item containing list label and body, plus optional A and PlacedImage elements
Child elements: Label, Body, A, PlacedImage

JavaScript Describes a sequence of JavaScript code
Attributes: id, name

JavaScripts Container of JavaScript elements

Label (TET 5.1) List label
Child elements: Word

Layer Describes an optional content group (OCG), commonly called layer
Attributes: name, visible, label, locked
Child element: Layer

Layers Container of Layer elements

Line Text for a single line. Line may also contain Word elements.
Attributes: llx, lly2, urx, ury2, ulx1, uly2, lrx, lry2 (all introduced in TET 5.2)
Child elements: Text, Word

List (TET 5.1) Container of List items, plus optional A and PlacedImage elements. This element is only
emitted if list detection is enabled.
Attributes: id
Child elements: Item, A, PlacedImage

Table 9.3 TETML elements and attributes

TETML element description and attributes

9.4 TETML Elements and the TETML Schema 147

Lookup Lookup table for Indexed color spaces, i.e. ColorSpace/@name="Indexed". It contains a hexadeci-
mal sequence of values which must be interpreted in the Indexed color space’s base color space.

Matrix Transformation matrix of a CalRGB color space
Child element: Value

Metadata XMP metadata which can be associated with the document, a font, or an image

OptionalValue Optional value of a form field

Options Document or page options used for generating the TETML

Order Order of sample interpolation for sampled functions, i.e. Function/@type="sampled"

OutputIntent Describes the output intent of a document or page
Attributes: iccprofile, subtype
Child elements: OutputCondition, OutputConditionIdentifier, RegistryName, Info

OutputIntents Container OutputIntent elements

Page Contents of a single page.
Attributes: hasdefaultcmyk, hasdefaultgray, hasdefaultrgb, height, label, number, topdown,
width

Child elements: Action, Annotations, Content, Exception, Fields, Options, OutputIntents

Pages Container of Page elements

Para Text comprising a single paragraph
Child elements: A, Box, Word

Pattern Describes a PDF pattern
Attributes: id, patterntype, painttype, tilingtype

Patterns Container of Pattern elements

PlacedImage Describes an instance of an image placed on the page.
Attributes: alpha2, artifact (TET 5.2), beta2, height, image, source (TET 5.2), width, x, y2

Process Process color space description of a DeviceN color space with subtype NChannel
Attribute: colorspace
Child element: Component

Range As child of ColorSpace: Range of an Lab color space
As child of Function: Range of output values for functions
Child element: Value

Resources Container of ColorSpaces, Fonts, Images, and Patterns resource containers

Row Container of one or more table cells
Child element: Cell

Samples Hexadecimal sequence of samples for sampled functions, i.e. Function/@type="sampled"

SignatureField Describes a signed or unsigned signature field
Attributes: cades, field, fillablefields, permissions, preventchanges, sigtype, visible

SignatureFields Container of SignatureField elements

Size Number of samples in each input dimension for sampled functions, i.e. Function/
@type="sampled"

Child element: Value

Table 9.3 TETML elements and attributes

TETML element description and attributes

148 Chapter 9: TET Markup Language (TETML)

Table Container of one or more table rows
Attributes: llx, lly2, urx, ury2, ulx1, uly2, lrx, lry2

Child element: Row

TET TETML root element. Attribute: version

Text Text contents of a word or other element
Attribute: artifact (TET 5.2)

Title As child of Annotation: Title of an annotation
As child of Bookmark: Title of a bookmark
As child of DocInfo: document info entry Title

Tooltip Tooltip of a form field

Value Value of a form field

WhitePoint Tristimulus value of the white point for CalGray, CalRGB and Lab color spaces
Attributes: x, y, z

Word Single word

XFA The document contains XFA form information
Attribute: type (always static since TET refuses to process dynamic XFA forms)

1. If the Box represents a rectangle with edges parallel to the page edges, the four values llx, lly, urx, ury describe the lower left and
upper right corners; otherwise the coordinates of the upper left and lower right corners are additionally present as ulx, uly, lrx, lry.
2. All vertical coordinates and angles are expressed relative to the lower left or upper left corner subject to the topdown page option.

Table 9.3 TETML elements and attributes

TETML element description and attributes

9.4 TETML Elements and the TETML Schema 149

�������	

��

	�������	

���	�����������

����	�����������	��

��������

�������	��	��

�����	�

�����	

����

���������

 ������	

�����	�

�����	

����

�		������	�

������

�������	��	��

��	��	�

 ������	

!���

����

"��������

����#���

!����

�����	����	�

$�%��������

�����#��	��

������	�

&
&

Fig. 9.1
Main TETML element hierarchy.

(co
nt

in
ue

d)

9.4 TETML Elements and the TETML Schema 151

����

���

����

��	

����

���

����

����

��	

����

��
�

����

���

����

��	

����

�

����

��
�

����

����

��	�

����

��
��
��	���

����

����

����

���

����

�����

����

�����
�����

����

�����

����

�

����

����

����

�����

����

��
�

����

����

����

����

�

����

�����
�����

����

����

����

����

��
��
��	���

����

��
��
�

Fig. 9.2
TETML element hierarchy
for page contents

152 Chapter 9: TET Markup Language (TETML)

9.5 Transforming TETML with XSLT
Very short overview of XSLT. XSLT (which stands for eXtensible Stylesheet Language
Transformations) is a language for transforming XML documents to other documents.
While the input is always an XML document (TETML in our case), the output does not
necessarily have to be XML. XSLT can also perform arbitrary calculations and produce
plain text or HTML output. We use XSLT stylesheets to process TETML input to generate
a new dataset in text, XML, CSV, or HTML format based on the input which reflects the
contents of a PDF document. The TETML document has been created with the TET com-
mand-line tool or the TET library as explained in Section 9.1, »Creating TETML«, page 133.

While XSLT is very powerful, it is considerably different from conventional program-
ming languages. We do not attempt to provide an introduction to XSLT programming
in this section; please refer to the available resources on this topic.

However, we do want to assist you in getting XSLT processing of TETML documents
up and running quickly. This section describes the most important environments for
running XSLT stylesheets and lists common software for this purpose. To apply XSLT
stylesheets to XML documents you need an XSLT processor. There are various free and
commercial XSLT processors available which can be used either in a stand-alone man-
ner or in your own programs with the help of a programming language.

XSLT stylesheets can make use of parameters which are passed from the environ-
ment to the stylesheet in order to control processing details. Since some of our XSLT
samples make use of stylesheet parameters we also supply information about passing
parameters to stylesheets in various environments.

Common XSLT processors which can be used in various packagings include the fol-
lowing:

> Microsoft’s XML implementation called MSXML. A free program called msxsl.exe is
provided by Microsoft.

> Microsoft’s .NET Framework XSLT implementation
> The .NET Core XSLT implementation
> Saxon (www.saxonica.com) is available in free and commercial versions. It is based on

Java, but editions for .NET, C/C++ and PHP are also available.
> Xalan (xalan.apache.org), an open-source project (available in C++ and Java imple-

mentations) hosted by the Apache foundation
> The open-source libxslt library of the GNOME project (xmlsoft.org/XSLT) and the corre-

sponding xsltproc command-line tool are available in most Linux distributions.

XSLT on the command line. Applying XSLT stylesheets from the command-line pro-
vides a convenient development and testing environment. The examples below show
how to apply XSLT stylesheets on the command-line. The samples below process the in-
put file TET-datasheet.tetml with the stylesheet tetml2html.xsl while setting the XSLT pa-
rameter toc-generate (which is used in the stylesheet) to the value 0 and write the gener-
ated output to TET-datasheet.html:

> The Java-based Saxon processor can be used as follows:

java -jar saxon9.jar -o TET-datasheet.html TET-datasheet.tetml tetml2html.xsl

> You can apply XSLT scripts with the ant build tool. A minimal build file for applying
XSLT looks as follows:

<project name="tetml2html" default="tetml2html">

https://www.saxonica.com
https://xmlsoft.org/XSLT/

9.5 Transforming TETML with XSLT 153

<target name="tetml2html">

<xslt in="TET-datasheet.tetml" style="tetml2html.xsl" out="TET-datasheet.html"/>

</target>

</project>

The build.xml file in the TET distribution contains XSLT tasks for all samples. The
command ant applies all XSLT samples and converts the input document TET-
datasheet.pdf to TETML. The following command processes another PDF input docu-
ment:

ant -Dinput.pdf=myfile.pdf

> The xsltproc tool is included in most Linux distributions. Use the following command
to apply a stylesheet to a TETML document:

xsltproc --output TET-datasheet.html --param toc-generate 0 tetml2html.xsl

TET-datasheet.tetml

The runxslt.sh shell script in the TET distribution can be used to run all XSLT samples
with xsltproc (run ant once to create the TETML input files).

> Xalan C++ provides a command-line tool which can be invoked as follows:

Xalan -o TET-datasheet.html -p toc-generate 0 TET-datasheet.tetml tetml2html.xsl

On Windows systems with the MSXML parser you can use the msxsl.exe program as
follows:

msxsl.exe TET-datasheet.tetml tetml2html.xsl -o TET-datasheet.html toc-generate=0

The runxslt.ps1 and runxslt.vbs scripts in the TET distribution can be used to run all
XSLT samples with msxml (run ant once to create the TETML input files).

XSLT within your own application. If you want to integrate XSLT processing in your
application, the choice of XSLT processor obviously depends on your programming lan-
guage and environment. The TET distribution contains sample code for various import-
ant environments. The runxslt samples demonstrate how to load a TETML document,
apply an XSLT stylesheet with parameters, and write the generated output to a file. If
the programs are executed without any arguments they exercise all XSLT samples sup-
plied with the TET distribution. Alternatively, you can supply parameters for the TETML
input file name, XSLT stylesheet name, output file name and additional parameter/val-
ue pairs. You can use the runxslt samples as a starting point for integrating XSLT pro-
cessing into your application:

> Java developers can use the methods in the javax.xml.transform package. This is
demonstrated in the runxslt.java sample.

> .NET Classic developers can use the methods in the System.Xml.Xsl.XslTransform
namespace. This is demonstrated in the runxslt.ps1 PowerShell script. Similar code
can be used with C# and other .NET languages.

> .NET Core developers can use the XslCompiledTransform class. This is demonstrated in
the runxslt.cs sample.

XSLT extensions are available for many other programming languages as well, e.g. Perl.

XSLT on the Web server. Since XML-to-HTML conversion is a common XSLT use case,
XSLT stylesheets are often run on a Web server. Some important scenarios:

154 Chapter 9: TET Markup Language (TETML)

> Windows-based Web servers with ASP.NET can use the .NET interfaces mentioned
above.

> Java-based Web servers can use the javax.xml.transform package.
> PHP-based Web servers can use the XSLTProcessor class.

9.6 XSLT Samples 155

9.6 XSLT Samples
The TET distribution includes several XSLT stylesheets which demonstrate the power of
XSLT applied to TETML and can be used as a starting point for TETML applications. This
section provides an overview of the XSLT samples and presents sample output. Section
9.5, »Transforming TETML with XSLT«, page 152 discusses options for deploying the XSLT
stylesheets. More details regarding the functionality and inner workings of the
stylesheets can be found in comments in the XSLT code. Some general aspects of the
stylesheet samples:

> Most XSLT samples support parameters which can used to control various process-
ing details. These parameters can be set within the XSLT code or overridden from the
environment (e.g. ant).

> Most XSLT samples require TETML input in a certain TETML mode (e.g. word mode,
see »TETML modes«, page 139, for details). In order to protect themselves from wrong
input, they check whether the supplied TETML input conforms to the requirement,
and report an error otherwise.

> Some XSLT samples recursively process PDF attachments in the document (this is
mentioned in the descriptions below). Most samples ignore PDF attachments,
though. They are written in a way so that they can easily be expanded to process at-
tachments as well. It is sufficient to select the relevant elements within the
Attachments element; the relevant xsl:template elements themselves don’t have to be
modified.

Create a concordance. The concordance.xsl stylesheet expects TETML input in word or
wordplus mode. It creates a concordance, i.e. a list of unique words in a document sorted
by descending frequency. This may be useful to create a concordance for linguistic anal-
ysis, cross-references for translators, consistency checks, etc.

List of words in the document along with the number of occurrences:

the 138
and 91
TET 87
to 63
of 59
for 57
PDF 53
text 51
in 50
a 44
is 37
be 36
as 34
are 34
PDFlib 32
...

Font filtering. The fontfilter.xsl stylesheet expects TETML input in glyph or wordplus
mode. It lists all words in a document which use a particular font in a size larger than a
specified value. This may be useful to detect certain font/size combinations or for qual-
ity control. The same concept can be used to create a table of contents based on text por-
tions which use a large font size.

156 Chapter 9: TET Markup Language (TETML)

Text containing font 'TheSansBold-Plain' with size greater than 10:

[ThesisAntiqua-Bold/32.0000] PDFlib
[ThesisAntiqua-Bold/32.0000] TET
[ThesisAntiqua-Bold/32.0000] 5
[ThesisAntiqua-Bold/14.0000] What
[ThesisAntiqua-Bold/14.0000] is
[ThesisAntiqua-Bold/14.0000] PDFlib
[ThesisAntiqua-Bold/14.0000] TET
[ThesisAntiqua-Bold/14.0000] ?
[ThesisAntiqua-Bold/14.0000] PDFlib
[ThesisAntiqua-Bold/14.0000] TET
[ThesisAntiqua-Bold/14.0000] Features
[ThesisAntiqua-Bold/14.0000] Challenges
[ThesisAntiqua-Bold/14.0000] with
[ThesisAntiqua-Bold/14.0000] PDF
[ThesisAntiqua-Bold/14.0000] Text
[ThesisAntiqua-Bold/14.0000] Extraction
[ThesisAntiqua-Bold/14.0000] Challenges
...

Searching for font usage. The fontfinder.xsl stylesheet expects TETML input in glyph or
wordplus mode. For all fonts in a document, it lists all occurrences of text using this par-
ticular font along with page number and the position on the page. This may be useful
for detecting unwanted fonts and checking consistency, locating use of a particular bad
font size, etc.

TheSans-Plain used on:
page 1:
(306, 796)

ThesisAntiqua-Bold used on:
page 1:
(306, 757), (412, 757), (474, 757), (28, 514), (67, 514), (81, 514), (128, 514), (152,
514),
...

Font statistics. The fontstat.xsl stylesheet expects TETML input in glyph or wordplus
mode. It generates font and glyph statistics. This may be useful for quality control and
even accessibility testing since unmapped glyphs (i.e. glyphs which cannot be mapped
to any Unicode character) will also be reported for each font.

17048 total glyphs in the document; breakdown by font:

85.21% TheSansLight-Plain: 14527 glyphs
5.19% TheSansLight-Italic: 885 glyphs
4.83% ThesisAntiqua-Bold: 823 glyphs, 3 uses of ligatures: fi
2.87% TheSansMonoCondensed-Plain: 489 glyphs
0.33% TheSansSemiLight-Caps: 57 glyphs
0.33% TheSansLight-Plain: 56 glyphs
0.25% TheSansLight-Italic: 42 glyphs
0.17% TheSansExtraLight-Italic: 29 glyphs
0.16% TheSansLight-Plain: 28 glyphs
0.16% TheSansLight-Plain: 28 glyphs
0.16% TheSansLight-Italic: 28 glyphs
0.16% TheSansLight-Plain: 28 glyphs
0.06% TheSansBold-Plain: 10 glyphs

9.6 XSLT Samples 157

0.05% TheSans-Plain: 9 glyphs
0.04% WarnockPro-It: 7 glyphs, 7 uses of ligatures: fi fl ffi Th sp ct st
0.01% PDFlibLogo2-Regular: 1 glyphs, 1 uses of ligatures: PDFlib
0.01% WarnockPro-Regular: 1 glyphs

Create an index. The index.xsl stylesheet expects TETML input in word or wordplus
mode. It generates a back-of-the-book index, i.e. an alphabetically sorted list of words in
the document and the corresponding page numbers. Numbers and punctuation charac-
ters are ignored.

Alphabetical list of words in the document along with their page number:

A
able 5
about 2
About 6
accent 3
Accented 3
accents 3
accept 5
Accepted 1
access 6
accessible 6
achieved 3
Acrobat 1 2 4 6
actual 2
actually 5
added 5
adding 6
addition 1 2 5
additional 2 4 5
Adobe 2 5 6
advanced 1
algorithm 3 4
...

Extract XMP metadata. The metadata.xsl stylesheet expects TETML input in any mode.
It targets XMP metadata on the document level, and extracts some metadata properties
from the XMP. PDF attachments (including PDF packages and portfolios) in the docu-
ment are processed recursively:

dc:creator = PDFlib GmbH
xmp:CreatorTool = Adobe InDesign CS6 (Windows)

Extract table of contents in CSV format. The table.xsl stylesheet expects TETML input
in word, wordplus, or page mode. It extracts the contents of a selected table and creates a
CSV file (comma-separated values) which contains the table contents. CSV files can be
opened with all spreadsheet applications. This may be useful to repurpose the contents
of tables in PDF documents.

Convert TETML to HTML. The tetml2html.xsl stylesheet expects TETML input in
wordplus mode. It converts TETML to HTML which can be displayed in a browser. The
converter does not attempt to generate an identical visual representation of the PDF
document, but demonstrates the following aspects:

158 Chapter 9: TET Markup Language (TETML)

> Create a linked table of contents at the beginning of the HTML page, where the en-
tries are based on PDF bookmarks or headings in the document.

> Create heading elements (H1, H2, etc.) based on configurable font sizes and font
names.

> Convert link annotations of type URI to HTML links.
> Map table elements in TETML to HTML table constructs to visualize tables in the

browser.
> Map list elements in TETML to unordered or ordered HTML lists.
> Create a list of images for each page where the images are linked to the correspond-

ing image file.
> Create links from PDF annotations.

Extract raw text from TETML. The textonly.xsl stylesheet expects TETML input in any
mode. It extracts the raw text contents by fetching all Text elements while ignoring all
other elements. PDF attachments (including PDF packages and portfolios) in the docu-
ment are processed recursively.

10.1 Option Lists and other general Topics 159

10 TET Library API Reference

10.1 Option Lists and other general Topics
Option lists are a powerful yet easy method for controlling API method calls. Instead of
requiring a multitude of method parameters, many API methods support option lists,
or optlists for short. These are strings which can contain an arbitrary number of options.
Option lists support various data types and composite data like lists. In most language
bindings optlists can easily be constructed by concatenating the required keywords and
values.

Bindings C language binding: you may want to use the sprintf() function for constructing optlists.

Bindings .NET language binding: C# programmers should keep in mind that the AppendFormat()
StringBuilder method uses the { and } braces to represent format items which are re-
placed by the string representation of arguments. On the other hand, the Append()
method does not impose any special meaning on the brace characters. Since the option
list syntax makes use of the brace characters, care must be taken in selecting the
AppendFormat() or Append() method appropriately.

10.1.1 Option List Syntax

Formal option list syntax definition. Option lists must be constructed according to fol-
lowing rules:

> All elements (keys and values) in an option list must be separated by one or more of
the following separator characters: space, tab, carriage return, newline, equal sign ’=’.

> An outermost pair of enclosing braces is not part of the element. The sequence { }
designates an empty element.

> Separators within the outermost pair of braces no longer split elements, but are part
of the element. Therefore, an element which contains separators must be enclosed
with braces.

> An element which contains braces at the beginning or end must be enclosed with
braces.

> If an element contains unbalanced braces, these must be protected with a preceding
backslash character. A backslash in front of the closing brace of an element must also
be preceded by a backslash character.

> Option lists must not contain binary zero values.

An option may have a list value according to its documentation in this reference. List
values contain one or more elements (which may themselves be lists). They are separat-
ed according to the rules above, with the only difference that the equal sign is no longer
treated as a separator.

Simple option lists. In many cases option lists will contain one or more key/value
pairs. Keys and values, as well as multiple key/value pairs must be separated by one or

160 Chapter 10: TET Library API Reference

more whitespace characters (space, tab, carriage return, newline). Alternatively, keys
can be separated from values by an equal sign ’=’:

key=value
key = value
key value
key1 = value1 key2 = value2

To increase readability we recommend to use equal signs between key and value and
whitespace between adjacent key/value pairs.

Since option lists are evaluated from left to right an option can be supplied multiply
within the same list. In this case the last occurrence will overwrite earlier ones. In the
following example the first option assignment is overridden by the second, and key will
have the value value2 after processing the option list:

key=value1 key=value2

List values. Lists contain one or more separated values, which may be simple values or
list values in turn. Lists are bracketed with { and } braces, and the values in the list must
be separated by whitespace characters. Examples:

searchpath={/usr/lib/tet d:\tet} (list containing two directory names)

A list may also contain nested lists. In this case the lists must also be separated from
each other by whitespace. While a separator must be inserted between adjacent } and {
characters, it can be omitted between braces of the same kind:

fold={ {[:Private_Use:] remove} {[U+FFFD] remove} } (list containing two lists)

If the list contains exactly one list the braces for the nested list must not be omitted:

fold={ {[:Private_Use:] remove} } (list containing one nested list)

Nested option lists and list values. Some options accept the type option list or list of
option lists. Options of type option list contain one or more subordinate options. Options
of type list of option lists contain one or more nested option lists. When dealing with
nested option lists it is important to specify the proper number of enclosing braces.
Several examples are listed below.

The value of the option contentanalysis is an option list which itself contains the sin-
gle option punctuationbreaks:

contentanalysis={punctuationbreaks=false}

The value of the option glyphmapping in the following example is a list of option lists
containing a single option list:

glyphmapping={ {fontname=GlobeLogosOne codelist=GlobeLogosOne} }

The value of the option glyphmapping in the following example is a list of option lists
containing two option lists:

glyphmapping { {fontname=CMSY* glyphlist=tarski} {fontname=ZEH* glyphlist=zeh}}

10.1 Option Lists and other general Topics 161

List containing one option list with a fontname value that includes spaces and therefore
requires an additional pair of braces:

glyphmapping={ {fontname={Globe Logos One} codelist=GlobeLogosOne} }

List containing two keywords:

fonttype={Type1 TrueType}

List containing different types – the inner lists contain a Unicode set and a keyword, the
outer list contains two option lists and the keyword default:

fold={ {[:Private_Use:] remove} {[U+FFFD] remove} default }

List containing one rectangle:

includebox={{10 20 30 40}}

Common traps and pitfalls. This paragraph lists some common errors regarding op-
tion list syntax.

Braces are not separators; the following is wrong:

key1 {value1}key2 {value2} WRONG!

This will trigger the error message Unknown option 'value2'. Similarly, the following are
wrong since the separators are missing:

key{value} WRONG!
key={{value1}{value2}} WRONG!

Braces must be balanced; the following is wrong:

key={open brace {} WRONG!

This will trigger the error message Braces aren't balanced in option list 'key={open brace {}'.
A single brace as part of a string must be preceded by an additional backslash character:

key={closing brace \} and open brace \{} CORRECT!

A backslash at the end of a string value must be preceded by another backslash if it is
followed by a closing brace character:

key={\value\} WRONG!
key={\value\\} CORRECT!

10.1.2 Basic Types

String. Strings are plain ASCII strings (or EBCDIC strings on EBCDIC platforms) which
are generally used for non-localizable keywords. Strings containing whitespace or ’=’
characters must be bracketed with { and }:

password={ secret string } (string value contains three blanks)
contents={length=3mm} (string value containing one equal sign)

The characters { and } must be preceded by an additional \ character if they are sup-
posed to be part of the string:

162 Chapter 10: TET Library API Reference

password={weird\}string} (string value contains a right brace)

A backslash in front of the closing brace of an element must be preceded by a backslash
character:

filename={C:\path\name\\} (string ends with a single backslash)

An empty string can be constructed with a pair or braces:

{}

Non-Unicode capable language bindings: if an option list starts with a [EBCDIC-]UTF-8
BOM, each content, hypertext or name string of the option list is interpreted as a [EBC-
DIC-]UTF-8 string.

Unquoted string values. In the following situations the actual characters in an option
value may conflict with optlist syntax characters:

> Passwords or file names may contain unbalanced braces, backslashes and other spe-
cial characters

> Japanese SJIS filenames in option lists (reasonable only in non-Unicode-capable lan-
guage bindings)

In order to provide a simple mechanism for supplying arbitrary text or binary data
which does not interfere with option list syntax elements, unquoted option values can
be supplied along with a length specifier in the following syntax variants:

key[n]=value
key[n]={value}

The decimal number n represents the following:
> in Unicode-capable language bindings: the number of UTF-16 code units
> in non-Unicode aware language bindings: the number of bytes comprising the string

The braces around the string value are optional, but strongly recommended. They are
required for strings starting with a space or other separator character. Braces, separators
and backslashes within the string value are taken literally without any special interpre-
tation.

Example for specifying a 7-character password containing space and brace charac-
ters. The whole string is surrounded by braces which are not part of the option value:

password[7]={ ab}c d}

Unichar. A Unichar is a single Unicode value where several syntax variants are sup-
ported: decimal values ¹ 10 (e.g. 173), hexadecimal values prefixed with x, X, 0x, 0X, or U+
(xAD, 0xAD, U+00AD), numerical references, character references, and glyph name refer-
ences but without the ’&’ and ’;’ decoration (shy, #xAD, #173). Examples:

unknownchar=? (literal)
unknownchar=63 (decimal)
unknownchar=x3F (hexadecimal)
unknownchar=0x3F (hexadecimal)
unknownchar=U+003F (Unicode notation)
lineseparator={CRLF} (standard glyph name reference)

10.1 Option Lists and other general Topics 163

Single characters which happen to be a digit are treated literally, not as decimal Unicode
values:

replacementchar=3 (U+0033 THREE, not U+0003!)

Unichars must be in the hexadecimal range 0-0x10FFFF (decimal 0-1114111).

Unicode sets. Unicode sets and can be constructed with the following building blocks:
> Patterns are a series of characters bounded by square brackets that contain lists of

Unicode characters and Unicode property sets.
> Lists are a sequence of Unicode characters that may have ranges indicated by a '-' be-

tween two characters, as in U+FB00-U+FB17. The sequence specifies the range of all
characters from the left to the right, in Unicode order. Multiple Unicode characters
must not be separated by whitespace, but must directly follow each other, e.g.
U+0048U+006C.

> Unicode characters in lists can be specified as follows:
ASCII characters can be specified as literals
Exactly 4 hex digits: \uhhhh or U+hhhh
Exactly 5 hex digits: U+hhhhh
1-6 hex digits: \x{hhhhhh}
Exactly 8 hex digits: \Uhhhhhhhh
escaped backslash: \\

> Unicode property sets are specified by a Unicode property. The syntax for specifying
the property names is an extension of POSIX and Perl syntax, where type represents
the name of a Unicode property (see www.unicode.org/Public/UNIDATA/
PropertyAliases.txt) and value the corresponding value (see www.unicode.org/Public/
UNIDATA/PropertyValueAliases.txt):
POSIX-style syntax: [:type=value:]
POSIX-style syntax with negation: [:^type=value:]
Perl-style syntax: \p{type=value}
Perl-style syntax with negation: \P{type=value}
The type= can be omitted for the Category and Script properties, but is required for
other properties.

> Set operations can be applied to patterns:
To build the union of two sets, simply concatenate them: [[:letter:] [:number:]]
To intersect two sets, use the '&' operator: [[:letter:] & [U+0061-U+007A]]
To take the set difference of two sets, use the '-' operator: [[:letter:]-[U+0061-U+007A]]
To invert a set, place a '^' immediately after the opening '[':
[^U+0061-U+007A]

In any other location, the '^' does not have a special meaning.

See Table 10.1 for examples of Unicode sets. You can use the following Web site for inter-
actively testing Unicode set expressions:

util.unicode.org/UnicodeJsps/list-unicodeset.jsp

Boolean. Booleans have the values true or false; if the value of a Boolean option is
omitted, the value true is assumed. As a shorthand notation noname can be used instead
of name=false:

https://util.unicode.org/UnicodeJsps/list-unicodeset.jsp

164 Chapter 10: TET Library API Reference

usehostfonts (equivalent to usehostfonts=true)
nousehostfonts (equivalent to usehostfonts=false)

Keyword. An option of type keyword can hold one of a predefined list of fixed key-
words. Example:

clippingarea=cropbox

For some options the value hold either a number or a keyword.

Number. Option lists support several numerical types.
Integer types can hold decimal and hexadecimal integers. Positive integers starting

with x, X, 0x, or 0X specify hexadecimal values:

-12345
0
0xFF

Floats can hold decimal floating point or integer numbers; period and comma can be
used as decimal separators for floating point values. Exponential notation is also sup-
ported. The following values are all equivalent:

size = -123.45
size = -123,45
size = -1.2345E2
size = -1.2345e+2

10.1.3 Geometric Types

Rectangle. A rectangle is a list of four float values specifying the x and y coordinates of
the lower left and upper right corners of a rectangle. The coordinate system for inter-
preting the coordinates (default or user coordinate system) varies depending on the op-
tion, and is documented separately. Example:

Table 10.1 Unicode set examples

specification of Unicode set characters in the Unicode set

[U+0061-U+007A] lower case letters a through z

[U+0640] single character Arabic Tatweel

[\x{0640}] single character Arabic Tatweel

[U+FB00-U+FB17] Latin and Armenian ligatures

[^U+0061-U+007A] all characters except a through z

[:Lu:]
[:UppercaseLetter:]

all uppercase letters (short and long forms of the Unicode
set)

[:L:]
[:Letter:]

all Unicode categories starting with L (short and long
forms of the Unicode set)

[:General_Category=Dash_Punctuation:] all characters in the general category Dash_Punctuation

[:Alphabetic=No:] all non-alphabetic characters

[:Private_Use:] all characters in the Private Use Area (PUA)

10.1 Option Lists and other general Topics 165

includebox = {{0 0 500 100} {0 500 500 600}}

10.1.4 Unicode Support in Language Bindings
If a programming language or environment supports Unicode strings natively we call
the binding Unicode-capable. The following language bindings are Unicode-capable:

> C++
> .NET and .NET Core
> Java
> Objective-C
> Python
> RPG

String handling in these environments is straightforward: all strings are supplied as
Unicode strings in native UTF-16 format. The language wrappers correctly deal with
Unicode strings provided by the client and automatically set certain options.

The following language bindings are not Unicode-capable by default:
> C
> Perl
> PHP
> Ruby

The use of UTF-8 is recommended for non-Unicode-capable language bindings. Some
aspects of the API differ between Unicode-capable and non-Unicode-capable language
bindings. Such differences are mentioned in the corresponding API descriptions in this
chapter.

The TET_convert_to_unicode() method can be used to convert between UTF-8, UTF-16
and UTF-32 strings or from arbitrary encodings to Unicode with an optional BOM.

10.1.5 Encoding Names
Various options and parameters support the names of encodings, e.g. the filename-
handling option of TET_set_option(), the forceencoding option of TET_open_document(),
and the inputformat parameter of TET_convert_to_unicode(). The following keywords can
be supplied as encoding names:

> The keyword auto specifies the most natural encoding for certain environments:
> On Windows: the current system code page
> On Unix, Windows and macOS: iso8859-1
> On IBM System i: the current job’s encoding (IBMCCSID000000000000)
> On IBM Z: ebcdic

> winansi (=cp1252)
> ebcdic (=code page 1047), ebcdic_37 (=code page 037)
> on the following systems all encodings available on the host system can be used:

> Windows: cpXXXX
> Linux: all codesets known to the iconv facility
> IBM System i: any Coded Character Set Identifier without the CCSID prefix
> IBM Z: any Coded Character Set Identifier (CCSID)

> custom encodings can be defined as resources and referenced by their resource
name

The TET package contains a collection of code page files under the path /resource/
codepage that can be loaded as encoding resources.

166 Chapter 10: TET Library API Reference

10.1.6 Multi-threaded Programming
While TET itself is single-threaded, it can safely be used in multi-threaded applications.
In the common situation that a TET object is only used within one thread, no particular
multi-threading precautions are necessary. If the same object is used in multiple
threads the application must synchronize the threads to make sure that the TET object
is not accessed simultaneously by more than one thread. A typical scenario would in-
volve a pool of TET objects where each thread fetches an existing PLOP object from the
pool instead of creating a new one, and returns it to the pool after creating a document
if the object is no longer needed. Using the same TET object in another thread before the
output document is finished will rarely provide any advantage and is not recommend-
ed.

10.2 General Methods 167

10.2 General Methods
API methods in this section:

> TET_set_option()
> TET_new)
> TET_delete()
> TET_create_pvf()
> TET_delete_pvf()
> TET_info_pvf()
> TET_convert_to_unicode()
> TET_get_apiname)
> TET_get_errmsg()
> TET_get_errnum()

10.2.1 Option Handling

C++ Java C# void set_option(String optlist)
Perl PHP set_option(string optlist)

C void TET_set_option(TET *tet, const char *optlist)

Set one or more global options for TET.

optlist Option list specifying global options according to Table 10.2. The following op-
tions can be used:
asciifile, cmap, codelist, encoding, filenamehandling, fontoutline, glyphlist, hostfont, license,
licensefile, logging, mmiolimit, userlog, outputformat, resourcefile, searchpath, shutdown-
strategy, timeout

Details Multiple calls to this method can be used to accumulate values for those options
marked in Table 10.2. For unmarked options the new value overrides the old one. In or-
der to supply multiple values for an option (e.g. searchpath) in a single call supply all val-
ues in a list argument to this option.

Table 10.2 Global options for TET_set_option()

option description

asciifile (Boolean; Only supported on IBM System i and IBM Z). Expect text files (e.g. UPR configuration files,
glyph lists, code lists) in ASCII encoding. Default: true on IBM System i; false on IBM Z

cmap1, 2 (List of name strings) A list of string pairs, where each pair contains the name and value of a CMap re-
source (see Section 5.2, »Resource Configuration and File Searching«, page 61).

codelist1, 2 (List of name strings) A list of string pairs, where each pair contains the name and value of a codelist re-
source (see Section 5.2, »Resource Configuration and File Searching«, page 61).

encoding1, 2 (List of name strings) A list of string pairs, where each pair contains the name and value of an encoding
resource (see Section 5.2, »Resource Configuration and File Searching«, page 61).

168 Chapter 10: TET Library API Reference

filename-
handling

(Keyword) Indicates the encoding of file names. File names supplied as method parameters without
UTF-8 BOM in non-Unicode aware language bindings are interpreted according to this option to guard
against characters which would be illegal in the file system and to create a Unicode version of the file
name. An error occurs if the file name contains characters outside the specified encoding. Default:
unicode on Windows and macOS, auto on IBM System i, otherwise honorlang:
ascii 7-bit ASCII
basicebcdic Basic EBCDIC according to code page 1047, but only Unicode values <= U+007E
basicebcdic_37

Basic EBCDIC according to code page 0037, but only Unicode values <= U+007E
honorlang (Not supported on IBM System i) The environment variables LC_ALL, LC_CTYPE and LANG are

interpreted. The codeset specified in LANG is applied to file names if it is available.
unicode Unicode encoding in (EBCDIC-)UTF-8 format
all names of 8-bit and CJK encodings

Encoding name according to Section 10.1.5, »Encoding Names«, page 165

fontoutline1, 2 (List of name strings) A list of string pairs, where each pair contains the name and value of a FontOutline
resource (see Section 5.2, »Resource Configuration and File Searching«, page 61).

glyphlist1, 2 (List of name strings) A list of string pairs, where each pair contains the name and value of a glyphlist re-
source (see Section 5.2, »Resource Configuration and File Searching«, page 61).

hostfont1, 2 (List of name strings) A list of string pairs, where each pair contains a PDF font name and the UTF-8 en-
coded name of a host font to be used for an unembedded font.

license (String) Set the license key. It must be set before the first call to TET_open_document*().

licensefile (String) Set the name of a file containing the license key(s). The license file can be set only once before the
first call to TET_open_document*(). Alternatively, the name of the license file can be supplied in an
environment variable called PDFLIBLICENSEFILE or (on Windows) via the registry.

logging1 (Option list; unsupported) Option list specifying logging output according to Table 10.7. Alternatively,
logging options can be supplied in an environment variable called TETLOGGING. An empty option list en-
ables logging with the options set in previous calls. If the environment variable is set, logging starts im-
mediately after the first call to TET_new().

mmiolimit (Integer) Upper limit for the size of input files in MB (=1024*1024 bytes) which are memory-mapped. Set-
ting this option to 0 (zero) disables memory mapping. Disabling memory mapping can be used on non-
Windows systems to avoid problems when remote files suddenly become unavailable while being used.
Default: 50 on 32-bit platforms and IBM System i, 2048 otherwise

userlog (Name string; unsupported) Arbitrary string which is written to the log file if logging is enabled.

output-
format

(Keyword; only for the C, Ruby, RPG, Perl, Python, and PHP language bindings) Specifies the format of the
text returned by TET_get_text():
utf8 Strings are returned in (in C: null-terminated) UTF-8 format .
utf16 Strings are returned in UTF-16 format in the machine’s native byte ordering.
utf32 Strings are returned in UTF-32 format in the machine’s native byte ordering.
ebcdicutf8 (Only available on EBCDIC-based systems) Strings are returned in null-terminated EBCDIC-

encoded UTF-8 format. Code page 37 is used on IBM System i, code page 1047 on IBM Z.
Default: utf8 for C, Ruby, RPG, Perl, Python, PHP, and ebcdicutf8 for C on IBM System i and IBM Z

Table 10.2 Global options for TET_set_option()

option description

10.2 General Methods 169

resourcefile (Name string) Relative or absolute file name of the UPR resource file. The resource file is loaded
immediately. Existing resources are kept; their values are overridden by new ones if they are set again.
Explicit resource options are evaluated after entries in the resource file.
The resource file name can also be supplied in the environment variable TETRESOURCEFILE or with a
Windows registry key (see Section 5.2, »Resource Configuration and File Searching«, page 61). Default:
tet.upr (on MVS: upr)

searchpath1 (List of name strings) Relative or absolute path name(s) of a directory containing files to be read. The
search path can be set multiply; the entries are accumulated and used in least-recently-set order (see Sec-
tion 5.2, »Resource Configuration and File Searching«, page 61). It is recommended to use double braces
even for a single entry to avoid problems with directory names containing space characters. An empty
string list (i.e. {{}}) deletes all existing search path entries including the default entries. On Windows
the search path can also be set via a registry entry. Default: platform-specific, see »File search and the
searchpath resource category«, page 62.

shutdown-
strategy

(Integer) Strategy for releasing global resources which are allocated once for all TET objects. Each global
resource is initialized on demand when it is first needed. This option must be set to the same value for all
TET objects in a process; otherwise the behavior is undefined (default: 0):
0 A reference counter keeps track of how many TET objects use the resource. When the last TET

object is deleted and the reference counter drops to zero, the resource is released.
1 The resource is kept until the end of the process. This may slightly improve performance, but

requires more memory after the last TET object is deleted.

timeout (Integer) Reset the timer and set the maximum processing time in seconds (more precisely: a limit for the
accumulated processing time spent in all TET API methods); zero means no limit. This can be used to end
processing after the specified time. If the timeout is reached TET throws an exception. The timeout is only
changed when this option is supplied (but not automatically for each document). Default: 0

1. Option values can be accumulated with multiple calls.
2. Unlike the UPR syntax an equal character ’=’ between the name and value is neither required nor allowed.

Table 10.2 Global options for TET_set_option()

option description

170 Chapter 10: TET Library API Reference

10.2.2 Setup

C TET *TET_new(void)

Create a new TET object.

Returns A handle to a TET object to be used in subsequent calls. If this method doesn’t succeed
due to unavailable memory it returns NULL.

Bindings This method is not available in object-oriented language bindings since it is hidden in
the TET constructor.

Java void delete()
C# void Dispose()

C void TET_delete(TET *tet)

Delete a TET object and release all related internal resources.

Details Deleting a TET object automatically closes all of its open documents. The TET object
must no longer be used in any API method after it has been deleted.

Bindings In object-oriented language bindings this method is generally not required since it is
hidden in the TET destructor. However, in Java it is available nevertheless to allow ex-
plicit cleanup in addition to automatic garbage collection. In .NET Dispose() should be
called at the end of processing to clean up unmanaged resources.

10.2 General Methods 171

10.2.3 PDFlib Virtual Filesystem (PVF)

C++ void create_pvf(String filename, const void *data, size_t size, String optlist)
C# Java void create_pvf(String filename, byte[] data, String optlist)
Perl PHP create_pvf(string filename, string data, string optlist)

C void TET_create_pvf(TET *tet,
const char *filename, int len, const void *data, size_t size, const char *optlist)

Create a named virtual read-only file from data provided in memory.

filename (Name string) The name of the virtual file. This is an arbitrary string which
can later be used to refer to the virtual file in other TET calls.

len (C and RPG language bindings only) Length of filename (in bytes) for UTF-16
strings. If len=0 a null-terminated string must be provided.

data A reference to the data for the virtual file. In C and C++ it is a pointer to a memory
location. In Java it is a byte array. In Perl and PHP it is a string.

size (C and C++ only) The length in bytes of the memory block containing the data.

optlist Option list according to Table 10.3. The following option can be used: copy

Details The virtual file name can be supplied to any API method which uses input files. Some of
these methods may set a lock on the virtual file until the data is no longer needed. Vir-
tual files are kept in memory until they are deleted explicitly with TET_delete_pvf(), or
automatically in TET_delete().

Each TET object will maintain its own set of PVF files. Virtual files cannot be shared
among different TET objects. Multiple threads working with separate TET objects do not
need to synchronize PVF use. If filename refers to an existing virtual file an exception is
thrown. This method does not check whether filename is already in use for a regular disk
file.

Unless the copy option has been supplied, the caller must not modify or free (delete)
the supplied data before a corresponding successful call to TET_delete_pvf(). Not obey-
ing to this rule will most likely result in a crash.

C++ Java C# int delete_pvf(String filename)
Perl PHP int delete_pvf(string filename)

C int TET_delete_pvf(TET *tet, const char *filename, int len)

Delete a named virtual file and free its data structures.

filename (Name string) The name of the virtual file as supplied to TET_create_pvf().

Table 10.3 Options for TET_create_pvf()

option description

copy (Boolean) If true, PDFlib, creates an internal copy of the supplied data. In this case the caller may dispose
of the supplied data immediately after this call. Default: false for C and C++, but true for all other lan-
guage bindings

172 Chapter 10: TET Library API Reference

len (C language binding only) Length of filename (in bytes) for UTF-16 strings. If len=0 a
null-terminated string must be provided.

Returns -1 if the corresponding virtual file exists but is locked, and 1 otherwise.

Details If the file isn’t locked, TET will immediately delete the data structures associated with
filename. If filename does not refer to a valid virtual file this method will silently do
nothing. After successfully calling this method filename may be reused. All virtual files
will automatically be deleted in TET_delete().

The detailed semantics depend on whether or not the copy option has been supplied
to the corresponding call to TET_create_pvf(): If the copy option has been supplied, both
the administrative data structures for the file and the actual file contents (data) are
freed; otherwise, the contents will not be freed, since the client is supposed to do so.

C++ Java C# int info_pvf(String filename, String keyword)
Perl PHP int info_pvf(string filename, string keyword)

C int TET_info_pvf(TET *tet, const char *filename, int len, const char *keyword)

Query properties of a virtual file or the PDFlib Virtual File system (PVF).

filename (Name string) The name of the virtual file. The filename may be empty if
keyword=filecount.

len (C language binding only) Length of filename (in bytes) for UTF-16 strings. If len=0 a
null-terminated string must be provided.

keyword Keyword according to Table 10.4.

Returns The value of some file parameter as requested by keyword.

Details This method returns various properties of a virtual file or the PDFlib Virtual File system
(PVF). The property is selected by keyword.

Table 10.4 Keywords for TET_info_pvf()

option description

filecount Total number of files in the PDFlib Virtual File system maintained for the current TET object. The
filename parameter is ignored.

exists 1 if the file exists in the PDFlib Virtual File system (and has not been deleted), otherwise 0

size (Only for existing virtual files) Size of the specified virtual file in bytes.

iscopy (Only for existing virtual files) 1 if the copy option was supplied when the specified virtual file was creat-
ed, otherwise 0

lockcount (Only for existing virtual files) Number of locks for the specified virtual file set internally by TET API meth-
ods. The file can only be deleted if the lock count is 0.

10.2 General Methods 173

10.2.4 Unicode Conversion

C++ string convert_to_unicode(String inputformat, string input, String optlist)
C# Java String convert_to_unicode(String inputformat, byte[] input, String optlist)
Perl PHP string convert_to_unicode(string inputformat, string input, string optlist)

C const char *TET_convert_to_unicode(TET *tet,
const char *inputformat, const char *input, int inputlen, int *outputlen, const char *optlist)

Convert a string in an arbitrary encoding to a Unicode string in various formats.

inputformat Unicode text format or encoding name specifying interpretation of the
input string:

> Unicode text formats: utf8, ebcdicutf8 (on EBCDIC platforms), utf16, utf16le, utf16be,
utf32

> An encoding name according to Section 10.1.5, »Encoding Names«, page 165
> The keyword auto specifies the following behavior: if the input string contains a

UTF-8 or UTF-16 BOM it is used to determine the appropriate format, otherwise the
current system codepage is assumed.

input String to be converted to Unicode.

inputlen (C and RPG language bindings only) Length of the input string in bytes. If
inputlen=0 a null-terminated string must be provided.

outputlen (C and RPG language bindings only) C-style pointer to a memory location
where the length of the returned string (in bytes) is stored.

optlist Option list specifying options according to Table 10.5:
> Input filter options: charref, escapesequence
> Unicode conversion options: bom, errorpolicy, inflate, outputformat

Returns A Unicode string created from the input string according to the specified parameters
and options. If the input string does not conform to the specified input format (e.g. in-
valid UTF-8 string) an empty output string is returned if errorpolicy=return, and an ex-
ception is thrown if errorpolicy=exception.

Details This method may be useful for general Unicode string conversion. It is provided for the
benefit of users working in environments which do not provide suitable Unicode con-
verters.

Bindings C binding: the returned strings are stored in a ring buffer with up to 10 entries. If more
than 10 strings are converted, the buffers are reused, which means that clients must
copy the strings if they want to access more than 10 strings in parallel. For example, up
to 10 calls to this method can be used as parameters for a printf() statement since the re-
turn strings are guaranteed to be independent if no more than 10 strings are used at the
same time.

C++ binding: The parameters inputformat and optlist must have the selected string data
type (see Section 3.2, »C++ Binding«, page 28), while input and returned data always have
type string.

174 Chapter 10: TET Library API Reference

Python binding: UTF-8 results are returned as a string, Python 3: non-UTF-8 results are
returned as bytes.

Table 10.5 Options for TET_convert_to_unicode()

option description

charref (Boolean) If true, enable substitution of numeric and character entity references and glyph name refer-
ences. Default: false

bom (Keyword; ignored for outputformat=utf32; in .NET, Java, Objective-C and Python only none is allowed)
Policy for adding a byte order mark (BOM) to the output string. Supported keywords (default: none):
add Add a BOM.
keep Add a BOM if the input string has a BOM.
none Don’t add a BOM.
optimize Add a BOM except if outputformat=utf8 or ebcdicutf8 and the output string contains only

characters in the range < U+007F.

errorpolicy (Keyword) Behavior in case of conversion errors (default: exception):
return The replacement character U+FFFD is used if a character reference cannot be resolved. An

empty string is returned in case of conversion errors.
exception An exception is thrown in case of conversion errors.

escape-
sequence

(Boolean) If true, enable substitution of escape sequences in strings. Default: false

inflate (Boolean; only for inputformat=utf8; ignored if outputformat=utf8) If true, an invalid UTF-8 input
string will not trigger an exception, but rather an inflated byte string in the specified output format is
generated. This may be useful for debugging. Default: false

output-
format

(Keyword) Unicode text format of the generated string: utf8, ebcdicutf8 (on EBCDIC platforms), utf16,
utf16le, utf16be, utf32. An empty string is equivalent to utf16 (default: utf16)
Unicode-aware language bindings: the output format is forced to utf16.
C++ and RPG language bindings: only the following output formats are allowed: ebcdicutf8, utf8,
utf16, utf32.

10.2 General Methods 175

10.2.5 Exception Handling

Exceptions vs. error return values. Errors of a certain kind are called exceptions ifor
good reasons – they are mere exceptions, and are not expected to occur very often. The
general strategy is to use conventional mechanisms with error return codes) for meth-
od calls which may fail often, and use an exception mechanism for those rare occasions
which don’t justify cluttering the code with conditionals. This is exactly the path that
TET goes: some operations can be expected to go wrong rather frequently, for example:

> Trying to open a PDF document for which one doesn’t have the proper password (but
see also the shrug feature described in Section 5.1, »Extracting Content from protect-
ed PDF«, page 59);

> Trying to open a PDF document with a wrong file name;
> Trying to open a PDF document which is damaged beyond repair.

TET signals such errors by returning a special value (usually –1, but 0 in the PHP bind-
ing) documented in the API reference. Other events are considered harmful, but occur
rather infrequently, e.g.

> running out of virtual memory;
> supplying wrong method parameters (e.g. an invalid document handle);
> supplying malformed option lists;
> a required resource (e.g. a CMap file for CJK text extract) cannot be found.

When TET detects such a situation, an exception is thrown instead of passing a special
error return value to the caller.

It is important that processing a document must be stopped when an exception oc-
curred. The only methods which can safely be called after an exception are delete(), get_
apiname(), get_errnum(), and get_errmsg(). Calling any other method after an exception
may lead to unexpected results. An exception delivers the following information:

> A unique error number;
> The name of the API method which caused the exception;
> A descriptive text containing details of the problem;

Querying the reason of a failed method call. Some TET method calls, e.g. open_
document() or open_page(), can fail without throwing an exception (they return an error
code). In this situation the methods get_errnum(), get_errmsg(), and get_apiname() can
be called immediately after a failed method call to retrieve details about the problem.

C++ Java C# String get_apiname()
Perl PHP string get_apiname()

C const char *TET_get_apiname(TET *tet)

Get the name of the API method which caused an exception or failed.

Returns The name of the method which threw an exception, or the name of the most recently
called method which failed with an error code. An empty string is returned if there was
no error.

176 Chapter 10: TET Library API Reference

C++ Java C# String get_errmsg()
Perl PHP string get_errmsg()

C const char *TET_get_errmsg(TET *tet)

Get the text of the last thrown exception or the reason for a failed method call.

Returns Text containing the description of the last exception thrown, or the reason why the
most recently called method failed with an error code. An empty string is returned if
there was no error.

C++ Java C# int get_errnum()
Perl PHP long get_errnum()

C int TET_get_errnum(TET *tet)

Get the number of the last thrown exception or the reason for a failed method call.

Returns The number of an exception, or the error code of the most recently called method which
failed with an error code. This method returns 0 if there was no error.

C TET_TRY(tet)
C TET_CATCH(tet)
C TET_RETHROW(tet)
C TET_EXIT_TRY(tet)

Set up an exception handling block; catch or rethrow an exception; or inform the excep-
tion machinery that a TET_TRY() block is left without entering the corresponding TET_
CATCH() block. TET_RETHROW() can be used to throw an exception again to a higher-level
method after catching it.

Details (C language binding only) See Section 3.1, »C Binding«, page 25.

10.2 General Methods 177

10.2.6 Logging
The logging feature can be used to trace API calls. The contents of the log file may be
useful for debugging purposes or may be requested by PDFlib GmbH support. Table 10.6
lists the options for activating the logging feature with TET_set_option() (see Section
10.2.1, »Option Handling«, page 167).

The logging options can be supplied in the following ways:
> As an option list for the logging option of TET_set_option(), e.g.:

tet.set_option("logging={filename={debug.log} remove}");

> In an environment variable called TETLOGGING. Doing so will activate the logging
output starting with the very first call to one of the API methods.

Table 10.6 Logging-related keys for TET_set_option()

key explanation

logging Option list with logging options according to Table 10.7

userlog String which is copied to the log file

Table 10.7 Suboptions for the logging option of TET_set_option()

key explanation

(empty list) Enable log output after it has been disabled with disable.

disable (Boolean) Disable logging output. Default: false

enable (Boolean) Enable logging output

filename (String) Name of the log file (stdout and stderr are also acceptable). Output is appended to any exist-
ing contents. The log file name can alternatively be supplied in an environment variable called TETLOG-
FILENAME (in this case the option filename will always be ignored). Default: tet.log (on Windows and
macOS in the / directory, on Unix in /tmp)

flush (Boolean) If true, the log file will be closed after each output, and reopened for the next output to make
sure that the output will actually be flushed. This may be useful when chasing program crashes where
the log file is truncated, but significantly slows down processing. If false, the log file is opened only once.
Default: false

includepid (Boolean; not on MVS) Include the process id in the log file name. This should be enabled if multiple pro-
cesses use the same log file name. Default: false

includetid (Boolean; not on MVS) Include the thread id in the log file name. This should be enabled if multiple
threads in the same process use the same log file name. Default: false

includeoid (Boolean; not on MVS) Include the object id in the log file name. This should be enabled if multiple TET
objects in the same thread use the same log file name. Default: false

remove (Boolean) If true, an existing log file is deleted before writing new output. Default: false

removeon-
success

(Boolean) Remove the generated log file in TET_delete() unless an exception occurred. This may be useful
for analyzing occasional problems in multi-threaded applications or problems which occur only sporadi-
cally. It is recommended to combine this option with includepid/includetid/includeoid as appropri-
ate.

stringlimit (Integer) Limit for the number of characters in text strings, or 0 for unlimited. Default: 0

178 Chapter 10: TET Library API Reference

classes (Option list) List containing options of type integer, where each option describes a logging class and the
corresponding value describes the logging level. Level 0 disables a logging class, positive numbers enable
a class. Increasing levels provide more and more detailed output. The following options are supported
(default: {api=1 warning=1}):
api Log all API calls with their method parameters and results. If api=2 a timestamp is created in

front of all API trace lines, and deprecated methods and options are marked.
convertString conversion.
filesearch Log all attempts related to locating files via SearchPath or PVF.

resource Log all attempts at locating resources via Windows registry, UPR definitions as well as the
results of the resource search.

user User-specified logging output supplied with the userlog option.
warning Log all warnings, i.e. error conditions which can be ignored or fixed internally. If warning=2

messages from methods which do not throw any exception, but hook up the message text for
retrieval via TET_get_errmsg(), and the reason for all failed attempts at opening a file
(searching for a file in searchpath) is also logged.

.

Table 10.7 Suboptions for the logging option of TET_set_option()

key explanation

10.3 Document Methods 179

10.3 Document Methods
API methods in this section:

> TET_open_document()
> TET_open_document_callback()
> TET_close_document()

C++ Java C# int open_document(String filename, String optlist)
Perl PHP long open_document(string filename, string optlist)

C int TET_open_document(TET *tet, const char *filename, int len, const char *optlist)

Open a disk-based or virtual PDF document for content extraction.

filename Full path name of the PDF file to be opened. The file is searched by means of
the SearchPath resource.

In non-Unicode language bindings the file name is converted to UTF-8 according to
the filenamehandling option (unless filenamehandling=unicode or the supplied file name
starts with a UTF-8 BOM). If len is different from 0 (C language binding only) the file
name is converted from UTF-16 to UTF-8 regardless of the option filenamehandling. An
error occurs if the file name cannot be converted or if the file name does not constitute
valid UTF-8 or UTF-16.

On Windows it is OK to use UNC paths or mapped network drives as long as you have
the necessary permissions (which may not be the case when running in ASP).

len (C language binding only) Length of filename (in bytes) for UTF-16 strings. If len = 0
a null-terminated string must be provided.

optlist Option list specifying document options according to Table 10.8. The following
options can be used:
acceptdynamicxfa, allowjpeg2000, checkglyphlists, decompose, encodinghint, engines, fold,
glyphcolor, glyphmapping, ignoreactualtext, imageanalysis, lineseparator, normalize, inmemory,
paraseparator, password, pcosengines, repair, requiredmode, shrug, spotcolor, tetml, unknown-
char, usehostfonts, wordseparator

Returns -1 on error, or a document handle otherwise. For example, it is an error if the input doc-
ument or the TETML output file cannot be opened. If -1 is returned it is recommended to
call TET_get_errmsg() to find out more details about the error.

Details Within a single TET object an arbitrary number of documents may be kept open at the
same time. However, a single TET object must not be used in multiple threads simulta-
neously without any locking mechanism for synchronizing the access.

Encryption: if the document is encrypted its user password must be supplied in the
password option if the permission settings allow content extraction. The document’s
master password must be supplied if the permission settings do not allow content ex-
traction. If the requiredmode option has been specified, documents can be opened even
without the appropriate password, but operations are restricted. The shrug option can
be used to enable content extraction from protected documents under certain condi-
tions (see Section 5.1, »Extracting Content from protected PDF«, page 59).

Supported file systems on IBM System i: TET has been tested with PC type file sys-
tems only. Therefore input and output files should reside in PC type files in the IFS (In-
tegrated File System). The QSYS.lib file system for input files has not been tested and is

180 Chapter 10: TET Library API Reference

not supported. Since QSYS.lib files are mostly used for record-based or database objects,
unpredictable behavior may be the result if you use TET with QSYS.lib objects. TET file I/
O is always stream-based, not record-based.

Table 10.8 Document options for TET_open_document() and TET_open_document_callback()

option description

accept-
dynamicxfa

(Boolean) If true, dynamic XFA forms can successfully be opened. Querying pCOS paths is the only rea-
sonable activity. Calling TET_open_page() will fail since no meaningful text or images can be extracted.
Default: false

allowjpeg-
2000

(Boolean) If true, JPEG 2000 (*.jp2, *.jpf or *.j2k) is allowed as output format for TET_write_image_file()
and TET_get_image_data(). Otherwise JPEG 2000 is avoided in favor of TIFF which may result in larger
image files. Default: true

check-
glyphlists

(Boolean) If true, TET checks all builtin glyphmapping rules with condition=allfonts before text ex-
traction starts. Otherwise the global glyphmapping rules are not applied. This option slows down pro-
cessing, but is useful for certain kinds of TeX documents with glyph names which cannot be mapped to
Unicode by default. Default: false

decompose (Keyword or option list; not relevant for granularity=glyph and the Glyph element in TETML) Unicode
decompositions which are applied to all characters which have a specified Unicode decomposition tag
and are part of the specified Unicode set. These conditions are provided in the suboption name and val-
ue. Decompositions can be used to either remove or preserve the distinction between equivalent Unicode
characters (see Section 7.3, »Unicode Postprocessing«, page 103).
Default: see »Default decompositions«, page 109. However, if the normalize option has a value other
than none, all default decompositions are disabled, i.e. setting the normalize option sets the default to
decompose=none. User-specified decompositions can still be applied.
The following keywords can be supplied instead of a list:
none No decompositions are applied.
default The default decompositions (see »Default decompositions«, page 109) are applied before

other specified decompositions.
The following suboptions for decompositions are supported:
canonical, circle, compat, final, font, fraction, initial, isolated, medial, narrow, nobreak, small, square,
sub, super, vertical, wide
Each of these suboptions accepts a string or keyword which specifies the decomposition’s domain, i.e. the
set of Unicode characters to which the decomposition is applied. A string specifies a Unicode set for the
domain. This can be used to restrict decompositions to subsets of the characters with the specified de-
composition tag. Characters outside the domain will not be modified.
As an alternative to a string for a Unicode set the following keywords can be supplied:
_all The set of all Unicode characters, i.e. the decomposition is applied to all characters with the

specified decomposition tag.
_none The empty set, i.e. the decomposition will not be applied at all.

encodinghint (String1) Name of an encoding which is used to determine Unicode mappings for glyph names which can-
not be mapped by standard rules, but only by a predefined internal glyph mapping rule. The keyword
none can be used to disable all predefined rules. Default: winansi

10.3 Document Methods 181

engines (Option list) Enable or disable TET engines for page parsing. Disabled engines never provide any informa-
tion. Disabling engines which are not required improves performance (default: all engines are active):
annotation (Boolean) Enable the annotation engine. Annotation contents are processed subject to the

image and text suboptions.
image (Boolean) Enable image extraction from pages and annotations. Implies pcosengines=

{image=false}.

text (Boolean) Enable text extraction from pages and annotations.
textcolor (Boolean) Enable the text color engine.
vector (Boolean) Enable the vector graphics engine which is relevant for clipping and improved table

detection.

fold (Keyword or list of lists; the first element of each inner list is a Unicode set or keyword, the second ele-
ment is a Unichar or a keyword; not relevant for granularity=glyph and the Glyph element in TETML)
Apply a post-folding (equivalence mapping) to all characters in a folding domain specified as a Unicode
set or keyword. The foldings are applied to all text except separator characters added by the
lineseparator, paraseparator, or wordseparator options (see Section 7.3, »Unicode Postprocessing«,
page 103). Default: see Table 7.3, page 105.
The following keyword can be supplied instead of a list:
none No foldings are applied.
The following keyword can be supplied instead of a sublist:
default The default foldings are applied. It is strongly recommended to append this keyword to user-

supplied foldings because disabling the default foldings can lead to unwanted effects.
The first element of each list specifies the folding’s domain, i.e. the set of Unicode characters to which the
folding is applied. A string specifies a Unicode set for the domain. If a character is included in multiple
sets specified within the fold option, the first matching set definition has priority over all others. In order
to avoid unexpected results it is recommended to use disjoint sets.
As an alternative to specifying the domain as a Unicode set the following keywords can be used:
_dehyphenation

The folding is applied to hyphen characters which have been found within hyphenated words
at line breaks. These characters are flagged as TET_ATTR_DEHYPHENATION_ARTIFACT in the
attributes member returned by TET_get_char_info() and the Glyph/@dehyphenation attri-
bute in TETML.

_tetpua The folding is applied to the TET PUA values which are assigned to unmappable glyphs. These
characters are flagged with the unknown member returned by TET_get_char_info() and the
Glyph/@unknown attribute in TETML.

The second element in each list contains the target character or action for the folding. It is specified with
one of the following variants:
(Unichar) Replace all characters in the domain with the specified Unicode character.
preserve The characters in the domain are not modified.
remove The characters in the domain are removed.
shift Shift all characters in the domain by the specified value (which may be negative).
unknownchar

Replace all characters in the domain with the character specified in the unknownchar option,
or apply the action specified in the unknownchar option.

glyphcolor (Keyword) Select the color space in which fill and stroke colors for text are reported. This option is only
relevant for text using Separation or DeviceN color. It affects the color information reported in both
TET_char_info()/TET_get_color_info() and TETML. Supported keywords (default: native):
native Use the native PDF color space for all text colors.
alternate Use the alternate color space for Separation and DeviceN text colors.

Table 10.8 Document options for TET_open_document() and TET_open_document_callback()

option description

182 Chapter 10: TET Library API Reference

glyphmapping (List of option lists) A list of option lists where each option list describes a glyph mapping method for one
or more font/encoding combinations which cannot be mapped with standard methods. The mappings
are used in least-recently-set order. If the last option list contains the font name wildcard »*«, preceding
mappings will no longer be used. Each rule consists of an option list according to Table 10.9. All glyph
mappings which match a particular font name are applied to this font (default: predefined internal
glyph mappings are applied).
Note that glyph mapping rules can also be specified as an external resource in the UPR file (see Section
5.2, »Resource Configuration and File Searching«, page 61).

ignore-
actualtext

(Boolean) If true, all ActualText mappings in the document are ignored. Default: false

image-
analysis

(Option list) List of suboptions for controlling processing. The following suboption is supported:
sizerange (List of two positive integers, or positive integer and keyword) Minimum and maximum edge

length of extracted images in pixels. Images for which at least one edge lies outside the speci-
fied interval are ignored. The maximum can be specified with the keyword unlimited which
means that no upper limit is active. Small image fragments will be removed before attempt-
ing image merging. In contrast, when size filtering is applied via the same-named page op-
tion, small images are removed after image merging. Default: {1 unlimited}

lineseparator (Unichar; Only for granularity=page) Character to be inserted between lines (but not after the last line
on a page)2. No line separator is inserted in CJK text. Default: U+000A

normalize (Keyword; not relevant for granularity=glyph and the Glyph element in TETML) Normalize the text
output to one of the Unicode normalization forms (default: none):
none Do not apply any normalization.
nfc Normalization Form C (NFC): canonical decomposition followed by canonical composition
nfd Normalization Form D (NFD): canonical decomposition
nfkc Normalization Form KC (NFKC): compatibility decomposition followed by canonical composi-

tion
nfkd Normalization Form KD (NFKD): compatibility decomposition
Since the Unicode normalization forms involve canonical and compatibility decompositions, combina-
tions of the options decompose and normalize must be constructed carefully. Setting the normalize op-
tion to a value different from none sets the decomposition default to decompose=none.

inmemory (Boolean; Only for TET_open_document()) If true, TET will load the complete file into memory and pro-
cess it from there. This can result in a tremendous performance gain on some systems (especially MVS) at
the expense of memory usage. If false, individual parts of the document are read from disk as needed.
Default: false

paraseparator (Unichar; Only for granularity=page) Character to be inserted between paragraphs2. Default: U+000A

password (String) The user, master or attachment password for encrypted documents. If the document’s permission
settings allow text copying then the user password is sufficient, otherwise the master password must be
supplied.
See the pCOS Path Reference to find out how to query a document’s encryption status, and pCOS opera-
tions which can be applied even without knowing the user or master password.
The shrug option can be used to enable content extraction from protected documents under certain con-
ditions (see Section 5.1, »Extracting Content from protected PDF«, page 59).

pcosengines (Option list) Enable or disable pCOS engines for document-wide resource collection. Turning off an engine
means that the corresponding per-document and per-page pseudo object arrays will be empty. Disabling
a pCOS engine does have effects on TET’s corresponding engine, e.g. disabling the pCOS image engine will
prevent image extraction by TET. Supported keywords (default: all pCOS engines are active):
colorspace, extgstate, font, image, pattern, property, shading, template

Table 10.8 Document options for TET_open_document() and TET_open_document_callback()

option description

10.3 Document Methods 183

repair (Keyword) Specifies how to treat damaged PDF documents. Repairing a document takes more time than
normal parsing, but may allow processing of certain damaged PDFs. Note that some documents may be
damaged beyond repair (default: auto):
force Unconditionally try to repair the document, regardless of whether or not it has problems.
auto Repair the document only if problems are detected while opening the PDF.
none No attempt is made at repairing the document. If there are problems in the PDF the call fails.

requiredmode (Keyword) The minimum pcosmode (minimum/restricted/full) which is acceptable when opening the
document. The call will fail if the resulting pcosmode (see pCOS Path Reference) would be lower than the
required mode. If the call succeeds the resulting pcosmode is at least the one specified in this option. How-
ever, it may be higher; e.g. requiredmode=minimum for an unencrypted document results in full mode.
Default: full

shrug (Boolean) If true, the shrug feature is activated to enable content extraction from protected documents
under certain conditions (see Chapter 5.1, »Extracting Content from protected PDF«, page 59). By using
the shrug option you assert that you will honor the PDF document author’s rights. Default: false

spotcolor (Keyword) Control treatment of spot color images in TET_write_image_file() and TET_get_image_
data(). Images with a Separation or DeviceN color space, i.e. one or more named process or spot colors
are extracted as follows (default: ignore):
convert Emit a grayscale or CMYK image if no custom spot colors are used. Otherwise convert spot

colors to the corresponding alternate color space. For some images conversion to the
alternate color space is not possible. In this case this method behaves like spotcolor=ignore
(for a single custom spot color) or spotcolor=preserve (for two or more custom spot colors).

ignore Like convert except that images with exactly one custom spot color are extracted as gray-
scale image and the spot color name is lost.

preserve (Forces TIFF output) Emit a grayscale or CMYK image with one or more extra spot color
channels if required for custom spot color names. TIFF images with preserved spot colors in
extra channels work only in Adobe Photoshop and compatible programs, but not in some
simple TIFF viewers.

Table 10.8 Document options for TET_open_document() and TET_open_document_callback()

option description

184 Chapter 10: TET Library API Reference

tetml (Option list) TETML output is initiated and can be created page by page with TET_process_page(). The
following suboptions are supported:
elements (Option list) Specify whether certain TETML elements are included in the output:

annotations (Boolean) Emit /TET/Document/Pages[]/Page/Annotations if the document con-
tains annotations. Default: true

attachments
(Boolean) Emit /TET/Document/Attachments if the document contains attach-
ments. Default: true

bookmarks (Boolean) Emit /TET/Document/Bookmarks if the document contains bookmarks.
Default: true

destinations (Boolean) Emit /TET/Document/Destinations if the document contains destina-
tions. Default: true

docinfo (Boolean) Emit /TET/Document/DocInfo element if the document contains docu-
ment info entries. Default: true

fields (Boolean) Emit /TET/Document/Pages[]/Page/Fields and TET/Document/Sig-
natureFields if the document contains AcroForm fields or digital signatures. De-
fault: true

javascripts (Boolean) Emit /TET/Document/JavaScripts if the document contains JavaScript.
Default: true

metadata (Boolean) Emit /TET/Document/Metadata and/or /TET/Document/Images[]/
Image/Metadata if the document contains XMP metadata on the document or
image level. Default: true

options (Boolean) The elements /TET/Document/Options and /TET/Document/Pages[]/
Page/Options. Default: true

encodingname
(Keyword) Name to use in the XML encoding declaration of the text declaration of the
generated TETML. The output is always created in UTF-8 (default: UTF-8):
_none No encoding declaration is created; the output is still in UTF-8 format.
UTF-8 The declaration encoding="UTF-8" is created.
Any other encoding name is used literally in the encoding declaration. The client is
responsible for supplying a suitable encoding name and converting the generated TETML
(which is UTF-8) to the specified encoding after TET finished TETML output.

filename (String) Name of the TETML file. If no filename is supplied, output is created in memory and
can be retrieved with TET_get_tetml(). If the call fails (i.e. the PDF input document could not
successfully be opened), no TETML output is created.

unknown-
char

(Unichar or keyword) Character or action to be applied to TET PUA characters for unmappable glyphs (see
»Unmappable glyphs and the TET PUA«, page 113). The following keywords are supported (default: Uni-
code replacement character U+FFFD):
remove Unmappable glyphs are removed. The value U+0000 is equivalent to remove.
preserve Unmappable glyphs are represented by TET PUA values.

usehostfonts (Boolean) If true, data for fonts which are not embedded, but are required for determining Unicode
mappings is searched on the macOS or Windows host operating system. Default: true

wordseparator (Unichar; Only for granularity=line and page) Character to be inserted between words2. Default:
U+0020

1. Encoding name according to Section 10.1.5, »Encoding Names«, page 165
2. Use U+0000 to disable the separator.

Table 10.8 Document options for TET_open_document() and TET_open_document_callback()

option description

10.3 Document Methods 185

Table 10.9 Suboptions for the glyphmapping option of TET_open_document() and TET_open_document_callback()

option description

codelist (String) Name of a codelist resource to be applied to the font. It will have higher priority than an embed-
ded ToUnicode CMap or encoding entry.

fold Apply a pre-folding (equivalence mapping) to all characters in a folding domain specified as a Unicode
set; see description of option fold in Table 10.8. The keywords remove, preserve and unknownchar can
not be used. Font-specific foldings with the shift keyword can be used to correct systematic errors in a
font’s ToUnicode CMap.

fontname (Name string) Partial or full name of the font(s) which are selected for the rule. If a subset prefix has been
supplied only the specified subset is selected. If no subset prefix has been supplied, all fonts where the
name (without any subset prefix) matches are selected. The wildcard character »*« can be used to specify
multiple similar font names. Default: *

fonttype (List of keywords) The glyphmapping will only be applied to the specified font types: * (designates all font
types), Type1, TrueType, CIDFontType2, CIDFontType0, Type3. Default: *

force-
encoding

(List with one or two strings1; if there are two names, the first must be winansi, macroman, or custom,
where custom matches any encoding)
Fonts with an 8-bit encoding: Replace the first encoding with the encoding resource specified by the sec-
ond name. If only one entry is supplied, the specified encoding is used to replace all instances of
MacRoman, WinAnsi, and MacExpert encoding. If this option matches a font no other glyph mappings are
applied to the same font.
CID fonts: Only the single value unicode is supported. It interprets CID values as Unicode values.

forcettsymbol-
encoding

(Keyword or string1) The name of an encoding which are used to determine Unicode mappings for em-
bedded pseudo TrueType symbol fonts which are actually text fonts, or one of the following keywords
(default: none):
auto If the font’s builtin encoding (see below) contains at least one Unicode character in the

symbolic range U+F000-U+F0FF, the encoding specified in the encodinghint option is used
to map the pseudo symbol characters to real text characters. Otherwise encodinghint will
not be used, and the characters are mapped according to the builtin keyword.

builtin Use the font’s builtin encoding, which results from the Unicode mappings of the glyph names
in the font’s post table.

none No encoding is enforced.
The well-known TrueType fonts Wingdings* and Webdings* are always treated as symbol fonts.

globalglyphlist (Boolean) If true, the specified glyph list is kept in memory until the end of the TET object, i.e. it can be
applied to more than one document. Default: false

glyphlist (String) Name of a glyphlist resource to be applied

glyphrule (Option list) Mapping rule for numerical glyph names (in addition to the predefined rules). The option list
must contain the following suboptions:
prefix (String; may be empty) Prefix of the glyph names to which the rule is applied. The wildcard

character »?« can be used. It matches exactly one character provided this character is differ-
ent from 0-9.

base (Keyword) Specifies the interpretation of glyph names:
ascii Single-byte glyphnames are interpreted as the corresponding literal ASCII charac-

ter (e.g. 1 is mapped to U+0031).
auto Automatically determine whether glyph names represent decimal or hexadecimal

values. If the result is not unique, decimal is assumed.
dec The glyphnames are interpreted as a decimal representation of a code.
hex The glyphnames are interpreted as a hexadecimal representation of a code.

encoding (String) Name of an encoding resource which is used for this rule, or the keyword none to
disable the rule.

186 Chapter 10: TET Library API Reference

C++ int open_document_callback(void *opaque, tet_off_t filesize,
size_t (*readproc)(void *opaque, void *buffer, size_t size),
int (*seekproc)(void *opaque, tet_off_t offset),
String optlist)

C int TET_open_document_callback(TET *tet, void *opaque, tet_off_t filesize,
size_t (*readproc)(void *opaque, void *buffer, size_t size),
int (*seekproc)(void *opaque, tet_off_t offset),
const char *optlist)

Open a PDF document from a custom data source for content extraction.

opaque Pointer to some user data that might be associated with the input PDF docu-
ment. This pointer is passed as the first parameter to the callback functions and can be
used in any way. TET does not use the opaque pointer.

filesize Size of the PDF document in bytes. The tet_off_t type is defined conditionally
in tetlib.h. It usually holds 64-bit values as offset type for large files beyond 2GB. The ap-
plication must be built with Large File Support (LFS).

readproc C callback function which copies size bytes to the memory pointed to by
buffer. If the end of the document is reached it may copy less data than requested. The
function must return the number of bytes copied.

seekproc C callback function which sets the current read position in the document.
offset denotes the position from the beginning of the document (0 meaning the first
byte). If successful, this function must return 0, otherwise -1.

optlist Option list specifying document options according to Table 10.8.

Returns See TET_open_document().

Details See TET_open_document(). The callback functions must not call any API method or mac-
ro with the same context pointer.

Bindings This method is only available in the C and C++ language bindings.

ignoreto-
unicodecmap

(Boolean) If true, a ToUnicode CMap for the font is ignored. Default: false

override (Boolean; only reasonable together with the glyphlist or glyphrule option) If true, the glyphmapping
rule is applied before the standard (builtin) glyph name mappings (i.e. the new mappings have priority
over the builtin ones), otherwise the rule is applied after the builtin mappings. Default: true

remove (Boolean) If true, all text which uses the specified font name(s) and/or font type(s) is removed from the
retrieved text.

1. Encoding name according to Section 10.1.5, »Encoding Names«, page 165

Table 10.9 Suboptions for the glyphmapping option of TET_open_document() and TET_open_document_callback()

option description

10.3 Document Methods 187

C++ Java C# STET_Cthe value 1parameterthe opaque pointer passed to interruptvoid close_document(int doc)
Perl PHP close_document(long doc)

C void TET_close_document(TET *tet, int doc)

Release a document handle and all internal resources related to that document.

doc A valid document handle obtained with TET_open_document*().

Details Closing a document automatically closes all of its open pages. All open documents and
pages are closed automatically when TET_delete() is called. It is good programming prac-
tice, however, to close documents explicitly when they are no longer needed. Closed
document handles must no longer be used in any method call.

188 Chapter 10: TET Library API Reference

10.4 Page Methods
API methods in this section:

> TET_open_page()
> TET_close_page()

C++ Java C# int open_page(int doc, int pagenumber, String optlist)
Perl PHP long open_page(long pagenumber, string optlist)

C int TET_open_page(TET *tet, int doc, int pagenumber, const char *optlist)

Open a page for content extraction.

doc A valid document handle obtained with TET_open_document*().

pagenumber The physical number of the page to be opened. The first page has page
number 1. The total number of pages can be retrieved with TET_pcos_get_number() and
the pCOS path length:pages.

optlist Option list specifying page options according to Table 10.10. The following op-
tions can be used:

clippingarea, contentanalysis, docstyle, emptycheck, excludebox, fontsizerange,
granularity, ignoreartifacts, ignoreinvisibletext, imageanalysis, includebox, layers, layout-
analysis, layouteffort, structureanalysis, topdown, vectoranalysis.

Returns A handle for the page, or -1 in case of an error. If -1 is returned it is recommended to call
TET_get_errmsg() to find out more details about the error.

Details Within a single document an arbitrary number of pages may be kept open at the same
time. The same page may be opened multiply with different options. However, options
can not be changed while processing a page.

Layer definitions (optional content groups): the contents of all visible layers on the
page are extracted by default. This behavior can be modified with the layers option.

Table 10.10 Page options for TET_open_page() and TET_process_page()

option description

clippingarea (Keyword; ignored if includebox is specified) Specifies the area from which text and images are extracted
(default: cropbox):
mediabox Use the MediaBox (which is always present)
cropbox Use the CropBox (the area visible in Acrobat) if present, else MediaBox
bleedbox Use the BleedBox if present, else use cropbox
trimbox Use the TrimBox if present, else use cropbox
artbox Use the ArtBox if present, else use cropbox
unlimited Consider all text, regardless of its location

content-
analysis

(Option list; not for granularity=glyph) List of suboptions according to Table 10.11 for controlling high-
level content analysis and text processing.

10.4 Page Methods 189

docstyle (Keyword) A hint which is used by the layout detection engine to select various parameters. These pa-
rameters optimize layout detection for situations where the document belongs to one of the classes be-
low. If the document is known to fall into one of these classes layout detection results can be improved
significantly by supplying a suitable value for this option. This option activates advanced layout recogni-
tion (default: generic):
book Typical book
business Business documents
cad Technical or architectural drawings which are typically heavily fragmented
fancy Fancy pages with complex layout
forms Structured forms
generic The most general document class without any further qualification.
magazines Magazine articles
none No specific document style is known and advanced layout recognition is disabled.
native Disable layout recognition and return the contents in native page content ordering. This may

be useful for layouts such as forms where text is placed all over the page and column
detection is not desired, but rather row-by-row text retrieval.

papers Newspaper
science Scientific article
searchengine

The application is a search engine indexer or similar application, and mainly interested in
retrieving the word list for the page as fast as possible. Table and page structure recognition
are disabled.

simpleline Assume a simplistic single-column page layout and process text as individual lines. Table
detection and dehyphenation are disabled. This may be useful for invoices and other
documents with a simple line-oriented layout. This docstyle is unrelated to granularity.

spacegrid List-oriented report (often generated on mainframe systems) where the visual layout is
generated using space characters. Since many heuristics like shadow detection and
sophisticated word boundary detection are not required for this class of documents text
extraction can be accelerated with this option.

emptycheck (Boolean) If true normal content extraction is disabled. Instead, the box provided in the includebox op-
tion is used to check whether the box contains any text, image, or vector graphics (only a single include-
box is supported). If the includebox option is not supplied the whole clipping area is checked. This can be
used to identify empty pages. The following options are ignored: granularity, engines, fontsizerange.
Clipping operators are ignored.
The result of the check can be retrieved with a call to TET_get_text() which will return one of the strings
empty or notempty instead of any page contents. Default: false

excludebox (List of rectangles) Exclude the combined area of the specified rectangles from text and image extraction.
Default: empty

fontsize-
range

(List of two floats, or float and keyword) Two numbers specifying the minimum and maximum font size
of text. Text with a size outside of this interval is ignored. The maximum can be specified with the key-
word unlimited, which means that no upper limit is active. Default: { 0 unlimited }

Table 10.10 Page options for TET_open_page() and TET_process_page()

option description

190 Chapter 10: TET Library API Reference

granularity (Keyword) The granularity of the text fragments returned by TET_get_text(); all modes except glyph will
enable the Wordfinder. See »Text granularity«, page 86, for more details (default: word).
glyph A fragment contains the result of one glyph, but may contain more than one character (e.g.

for ligatures).
word A fragment contains a word as determined by the Wordfinder.
line A fragment contains a line of text, or the closest approximation thereof. Word separators are

inserted between two consecutive words.
page A fragment contains the contents of a single page. Word, line,and paragraph separators are

inserted as appropriate.

ignore-
artifacts

(Boolean) Ignore text and images which are marked as Artifact. This can be used to skip irrelevant page
contents which are marked as artifact. Content may be marked as Artifact even in documents without
tags. Default: false

ignore-
invisibletext

(Boolean) If true, text with rendering mode 3 (invisible) is ignored. Default: false (since invisible text is
mainly used for image+text PDFs containing scanned pages and the corresponding OCR text)

image-
analysis

(Option list) List of suboptions according to Table 10.13 for controlling high-level image processing.

includebox (List of rectangles) Restrict text and image extraction to the combined area of the specified rectangles.
Default: the complete clipping area

layers (Keyword) Treatment of page contents within layers (also known as optional content). Supported key-
words (default: visible):
all Extract all page contents regardless of layers. Text may be garbled and image merging may

be spoiled if the contents of multiple layers overlap on the page.
invisible Extract contents of all layers which are invisible by default and ignore all other layers.
visible Extract contents of all layers which are visible by default and ignore all other layers.

layout-
analysis

(Option list; not for granularity=glyph) List of suboptions according to Table 10.12 for controlling layout
detection features.

layouteffort (Keyword) Controls the quality/performance trade-off of layout recognition. Layout recognition can be
improved by spending more effort, but this may slow down operation. The layout recognition effort can
be controlled with the keywords none, low, medium, high, and extra. Default: low

layouthint (Option list) Inform the layout recognition engine about the presence of certain page layout elements:
subsummary

(Keyword) Informs the engine about the presence of subsummaries (marginalia) and possibly
also their position. Supported keywords (default: none):
auto No subsummary detection
left Try to detect subsummaries on the left side of the page.
none Try to detect subsummaries automatically.
right Try to detect subsummaries on the right side of the page.

header (Boolean) If true, the engine tries to detect page headers (default: false).
footer (Boolean) If true, the engine tries to detect page footers (default: false).

maxvector-
count

(Float) Maximum number of vector objects to be taken into account by the vector graphics engine. De-
fault: 500

minvectorsize (Float) Minimum size of a vector object to be taken into account by the vector graphics engine. The size of
a vector object is the length of the diagonal of its bounding box in points. Default: 5

structure-
analysis

(Option list; not for granularity=glyph) List of suboptions according to Table 10.14 for controlling page
structure analysis.

Table 10.10 Page options for TET_open_page() and TET_process_page()

option description

10.4 Page Methods 191

topdown (Option list) Specify a coordinate system with the origin in the top left corner of the visible page, and y
coordinates which increase downwards; otherwise the default coordinate system with the origin in the
lower left corner is used. Enabling topdown coordinates enables the same coordinate system which is dis-
played in Acrobat. Supported suboptions:
input (Boolean) If true, enable topdown coordinates for the following items (default: false):

page options includebox, excludebox
output (Boolean) If true, enable topdown coordinates for the following items (default: false):

TET_char_info: y, alpha, beta
TET_image_info: y, alpha, beta
TETML:
Destination/@bottom, Destination/@top,
attributes @lly, @ury, @uly, @lry of the elements Cell, Box, Line, Table,

attributes @y, @alpha, @beta of the elements Glyph, PlacedImage.

vector-
analysis

(Option list; not for granularity=glyph) Suboptions according to Table 10.15 for controlling analysis of
vector graphics for table and layout detection. If this option is present, vector graphics is taken into ac-
count for table and layout detection.

Table 10.10 Page options for TET_open_page() and TET_process_page()

option description

192 Chapter 10: TET Library API Reference

Table 10.11 Suboptions for the contentanalysis option of TET_open_page() and TET_process_page()

option description

bidi (Keyword; ignored for granularity=glyph; has an effect only if right-to-left characters are present on
the page) Control the inverse Bidi algorithm which reorders right-to-left and left-to-right text in a chunk
(default: logical):
visual Keep RTL and LTR characters in a chunk in visual order, i.e. do not apply the inverse Bidi

algorithm
logical Apply the inverse Bidi algorithm to bring the characters in a chunk in logical order.

bidilevel (Keyword) The page’s base level (i.e. the main direction of text progression) for the inverse Bidi algorithm
and layout recognition (default: auto):
auto Determine the main direction of text progression based on the content.
ltr Assume left-to-right as main direction of text progression (e.g. Latin documents)
rtl Assume right-to-left as main direction of text progression (e.g. Hebrew or Arabic documents)

dehyphenate (Boolean) If true, hyphenated words are identified and the text fragments surrounding the hyphen are
combined. The hyphen itself is treated according to the keephyphens option. Default: true

dropcapsize (Float) The minimum size at which large glyphs are recognized as a drop cap. Drop caps are large charac-
ters at the beginning of a zone that are enlarged to »drop« down several lines. They are merged with the
remainder of the zone and form part of the first word in the zone. Default: 35

dropcapratio (Float) The minimum ratio of the font size of drop caps and neighboring text. Large characters are recog-
nized as drop caps if their size exceeds dropcapsize and the font size quotient exceeds dropcapratio. In
other words, this is the number of text lines spanned by drop caps. Default: 4 (drop caps spanning three
lines are very common, but additional line spacing must be taken into account)

includebox-
order

(Integer) If multiple include boxes have been supplied (see option includebox), this option controls how
the order of boxes affects the Wordfinder (default: 0):
0 Ignore include box ordering when analyzing the page contents. The result is the same as if all

the text outside the include boxes was deleted. This is useful for eliminating unwanted text
(e.g. headers and footers) while not affecting the Wordfinder in any way.

1 Take include box ordering into account when creating words and zones, but not for zone
ordering. A word never belongs to more than one box. The resulting zones are sorted in
logical order. In case of overlapping boxes the text belongs to the box which is earlier in the
list. Other than that, the ordering of include boxes in the option list doesn’t matter. This
setting is useful for extracting text from forms, extracting text from tables, or when include
boxes overlap for complicated layouts.

2 Consider include box ordering for all operations. The contents of each include box are treated
independently from other boxes, and the resulting text is concatenated according to the
order of the include boxes. This is useful for extracting text from forms in a particular
ordering, or extracting article columns in a magazine layout in a predefined order. In these
cases advance knowledge about the page layout is required in order to specify the include
boxes in appropriate order.

keephyphen-
glyphs

(Boolean) If true and dehyphenate=true the hyphen glyph between parts of dehyphenated words are
kept in the list of glyphs returned by TET_get_char_info() and the Glyph element in TETML. This is useful
for applications which need detailed information about the position of hyphens, e.g. exactly replacing
text on the page. Note that this is different from fold={{_dehyphenation remove} which only removes
hyphens from the logical text returned by TET_get_text(), but does not affect glyphs. Default: false

linespacing (Keyword) Specify the typical vertical distance between text lines within a paragraph: small, medium,
large or extra (default: medium)

10.4 Page Methods 193

maxwords (Integer or keyword) If the number of words on the page is not greater than the specified number (the
keyword unlimited means that no limit is active) the detected zones on the page are merged appropri-
ately and sorted. If the number of words on the page is greater than the specified number, no zones are
built, and words are retrieved in page content reading order. Processing is faster in the latter case, but the
ordering of the retrieved words may not be optimal. Setting this option to unlimited is recommended
for large pages with many words, such as newspapers. Default: 10000 for docstyle=paper and fancy,
otherwise 8000

merge (Integer) Controls strip and zone merging (default: 2):
0 No merging after strip creation. This can significantly increase processing speed, but may

create less than optimal output, and prevent some shadows from being detected properly.
1 Simple strip-into-zone merging: strips are merged into a zone if they overlap this particular

zone, but don’t overlap strips other than the next one (to avoid zone overlapping for non-
shadow cases).

2 Advanced zone merging for out-of-sequence text: in addition to merge=1, multiple
overlapping zones are combined into a single zone, provided the text contents of both zones
do not overlap.

numeric-
entities

(Keyword) Control word boundary detection for numeric entities such as numbers, fractions, and time
(default: keep):
split Split the entity according to the punctuationbreaks suboption.
keep Keep the entity as a whole word.

shadow-
detect

(Boolean) If true, redundant instances of overlapping text fragments which create a shadow or fake bold
text are detected and removed. Default: true

punctuation-
breaks

(Boolean)
For granularity=word:if true, punctuation characters which are placed close to a letter are treated as
word boundaries, otherwise they are included in the adjacent word. For example, this option may be use-
ful for the treatment of URLs and mail addresses.
For granularity=line, page : if true, punctuation characters which are placed close in between two let-
ters, which are not capital letters or figures are treated as word boundaries, otherwise they are included
in the adjacent word. For example, this option may be useful for the treatment of abbreviations.
Default: false for docstyle=simpleline, spacegrid and forms, otherwise true

remove-
dummy-
spaces

(Keyword; unsupported) Remove space characters below glyphs (»dummy spaces«) which are created by
some applications instead of soft hyphens. Such dummy spaces should generally be ignored when deter-
mining word boundaries since they appear in the middle of a word. Default: auto
none Never remove space characters below glyphs.
auto Conditionally remove space characters below glyphs.
force Always remove space characters below glyphs.

superscript (Integer) Controls subscript and superscript detection (default: 2):
0 No subscript and superscript detection
1 Simple subscript and superscript detection
2 Advanced algorithm for subscript and superscript detection

useclasses (Boolean) If true, Unicode classification is considered to determine word boundaries. Default: true

usemetrics (Boolean) If true, the distance between glyphs is compared with the width of the space glyph to deter-
mine word boundaries. Default: true

Table 10.11 Suboptions for the contentanalysis option of TET_open_page() and TET_process_page()

option description

194 Chapter 10: TET Library API Reference

Table 10.12 Suboptions for the layoutanalysis option of TET_open_page() and TET_process_page()

option description

layout-
astable

(Boolean) If true, layout recognition will treat the zones on the page as one or more tables. The mini-
mum number of columns which is required to consider the sequence as a table depends on the document
style. If false, supertable recognition is disabled (default: true).

layout-
columnhint

(Keyword) This option may improve zone reading order detection for complex layouts. Supported key-
words (default: multicolumn):
multicolumn

The page contains multi-column text; zones are sorted column by column.
none No hint available; zone ordering is determined by page content order.
singlecolumn

The page contains single-column text; zones are sorted row by row. This keyword should be
used with layouteffort=low.

layoutdetect (Integer) Specifies the depth of recursive layout recognition (default: depends on docstyle):
0 No layout recognition.
1 Layout recognition for the whole page. This is sufficient for the vast majority of documents.
2 Layout recognition for the results of level 1. This is required for layouts with different multi-

column sublayouts and titles on different parts of the page as well as multi-paragraph tables.
3 Layout recognition for the results of level 2. This is required only for very complex layouts.

layoutrow-
hint

(Option list) Control layout row processing. Supported options (default: none):
full Enable layout row processing.
none Disable layout row processing.
separation (Keyword) Enable layout row processing, but disable it if layout recognition suspects a

supertable. The following suboptions can be supplied:
preservecolumns

Try to keep vertical columns based on the geometric relationship between zones.
This is recommended if zones within columns are separated by large gaps (e.g.
caused by images).

thick Try to combine neighboring zones and place them in the same layout row. This re-
sults in a smaller number of larger layout rows. This is recommended for complex
layouts, such as magazines and papers where paragraphs within columns are sep-
arated from each other by more than the font size, and for layouts with several
multi-column articles one under the other.

thin Try to separate neighboring zones and place them in different layout rows. This re-
sults in a larger number of smaller layout rows.

Example: layoutanalysis = {layoutrowhint={full separation=thick}}

mergetables (Integer) Tables with a single row are skipped during table recognition, and treated as regular zones. If
two sequential zones are tables (even with only a single row) they can be combined. (default: none):
down Combine downstairs only.
none Don’t combine.
up Combine upstairs only.
updown Combine in both directions.

splithint (Keyword or option list) Activate special treatment of double-page spreads (or even pages consisting of
more spreads). The page may be divided vertically or horizontally in two or more sections. The keyword
includebox means that the split areas are defined by the includebox option. Alternatively the following
options can be supplied:
x (Float) Divider for the x axis, e.g. 0.5 for a double-page spread, 0.33 for a three-page spread.
y (Float) Divider for y axis.

standalone-
fontsize

(Float) Minimum font size for huge glyphs. Huge glyphs form single-glyph strips, and will not be com-
bined with other zones (default: 70).

10.4 Page Methods 195

supertable-
columns

(Integer; only if layoutastable=true) Minimum number of columns in a layout row to consider the se-
quence of zones as a supertable. When a table is created from paragraphs, these columns are recognized
as separate zones instead of being combined. As a consequence of this, layout recognition can identify
these zone sequences as a table (default: 4).

tabledetect (Integer) Specifies the depth of recursive table recognition (default: depends on docstyle):
0 No position-based table recognition; tables with cell borders are still detected if the suboption

structures=usevectoronly of the vectoranalysis option is set.
1 Table recognition for each zone.
2 Table recognition for each table cell detected in level 1. This is required for nested tables and

resolving row spans.

Table 10.13 Suboptions for the imageanalysis option of TET_open_page() and TET_process_page()

option description

heightrange (List of two positive integers, or positive integer and keyword) Minimum and maximum height of ex-
tracted images in pixels. Images for which its height and the height of its mask (if present) lies outside
the specified interval are ignored. The maximum can be specified with the keyword unlimited which
means that no upper limit is active. Default: the value of sizerange

merge (Option list) Control image merging. This process combines adjacent images which together may form a
single larger image. This is useful for multi-strip images where the individual strips have been preserved
in the PDF, and for background images which are broken into a large number of very small images.
Supported options:
disable (Boolean) If true, image merging is disabled. Default: false
gap (Float) Maximum gap or overlap between two images to be considered for merging.The value

is interpreted as absolute distance in points, and also as number of pixels. Default: 1.0

sizerange (List of two positive integers, or positive integer and keyword) Minimum and maximum edge length of
extracted images in pixels. Images for which at least one edge lies outside the specified interval are ig-
nored. The maximum can be specified with the keyword unlimited which means that no upper limit is
active. The sizerange option is a shortcut for setting both heightrange and widthrange to the same val-
ues. Default: {20 unlimited}

smallimages Deprecated, use heightrange/sizerange/widthrange

widthrange (List of two positive integers, or positive integer and keyword) Minimum and maximum width of extract-
ed images in pixels. Images for which the width and the width of its mask (if present) lies outside the
specified interval are ignored. The maximum can be specified with the keyword unlimited which means
that no upper limit is active. Default: the value of sizerange

Table 10.12 Suboptions for the layoutanalysis option of TET_open_page() and TET_process_page()

option description

196 Chapter 10: TET Library API Reference

Table 10.14 Suboptions for the structureanalysis option of TET_open_page() and TET_process_page()

option description

bullets (List of option lists; relevant for list=true) Combinations of Unicode characters and font names which
are used as bullet characters in lists. Supported suboptions:
bulletchars

(List of Unicode values) One or more Unicode values for the bullet characters. If this suboption
is not supplied, all characters using the specified fontname are treated as bullet characters.
Default: a list containing dozens of characters which are commonly used as bullets

fontname (String) Name of the font from which bullet characters are drawn. If this suboption is not
supplied, the characters specified in the bulletchars suboption are always treated as bullet
characters.

Examples:
bullets={{fontname=ZapfDingbats}}
bullets={{bulletchars={U+2022}}}
bullets={{fontname=KozGoPro-Medium bulletchars={U+2460 U+2461 U+2462 U+2463 U+2464}}}

list (Boolean) Enable list recognition for TETML output (default: true). If false, no information about list
structure is determined.

overpagelists (Keyword) Treatment of potential list fragments which span pages. Supported keywords (default:
ascending):

ascending Store list information across pages only if the pages are processed in ascending order without
gaps.

always Always store list information across pages regardless of the order of page processing.
never Never store list information across pages, i.e. detected lists are limited to the same page and

numbered list don’t necessarily start at 1.

10.4 Page Methods 197

C++ Java C# void close_page(int page)
Perl PHP close_page(long page)

C void TET_close_page(TET *tet, int page)

Release a page handle and all related resources.

page A valid page handle obtained with TET_open_page().

Details All open pages of the document are closed automatically when TET_close_document() is
called. It is good programming practice, however, to close pages explicitly when they
are no longer needed. Closed page handles must no longer be used in any method call.

Table 10.15 Suboptions for the vectoranalysis option of TET_open_page() and TET_process_page()

option description

closetablearea (Boolean) If true, create table border for analysis even if none is present. Default: false

ignorelines (Keyword) Specify which lines to exclude from the analysis. Supported keywords (default: none):
horizontal Ignore horizontal lines.
none Don’t ignore any lines.
vertical Ignore vertical lines.

pagesizelines (Boolean) If true, take into account large lines which are almost as long as the page size. Default: false

splitsequence (Boolean) If true, vertical lines are allowed to split text sequences (or horizontal lines for rotated text).
Default: false

structures (Keyword) Specify the algorithm for interpreting vector graphics for table detection. Supported keywords
(default: unions):
tables Extended unions mode: the algorithm additionally checks whether unions form a table net. If

so, the result is treated as a single table zone.
unions The algorithm tries to build sub-layout unions from lines. If such a union is built, it is treated

as a complete sub-layout entity, i.e. all enclosed text zones belong to the sub-layout.
usevectoronly

The algorithm ignores text positions for table detection and uses only vector graphics. This
algorithm is fast and works well for simple tables, but doesn’t handle row and column spans.
It is recommended for tables with complete cell borders, i.e. tables where vector graphics can
reliably be used for identifying each table cell. Such tables are detected even with the
suboption tabledetect=0 of the layoutanalysis option. Default: false

vectoriterative
This algorithm uses only vector graphics, and operates iteratively to identify row and column
spans. It requires more time and is recommended for complex table layouts including table
cells which span multiple rows or columns.

198 Chapter 10: TET Library API Reference

10.5 Text and Glyph Details Retrieval Methods
API methods in this section:

> TET_get_text()
> TET_get_char_info()
> TET_get_color_info()

C++ Java C# String get_text(int page)
Perl PHP string get_text(long page)

C const char *TET_get_text(TET *tet, int page, int *len)

Get the next text fragment from a page’s content.

page A valid page handle obtained with TET_open_page().

len (C and RPG language bindings only) A pointer to a variable which will hold the
length of the returned string depending on the outputformat option of TET_set_option():

If outputformat=utf8 the length is reported as number of Unicode characters. The
number of bytes in the null-terminated string (which is identical to the number of 8-bit
code units) can be determined with the strlen() function.

If outputformat=utf16 the length is reported as number of 16-bit code units; surrogate
pairs are counted as two code units. The number of bytes in the string is 2*len.

If outputformat=utf32 the length is reported as number of 32-bit code units (which is
identical to the number of Unicode characters). The number of bytes in the string is
4*len.

Returns A string containing the next text fragment on the page. The length of the fragment is
determined by the granularity option of TET_open_page(). Even for granularity=glyph the
string may contain more than one character (see Section 7.1, »Important Unicode Con-
cepts«, page 97).

If all text on the page has been retrieved an empty string or null object is returned
(see below). In this case TET_get_errnum() can be called to find out whether there is no
more text because of an error on the page, or because the end of the page has been
reached.

Details If the page option ignoreartifacts has been supplied, text marked as Artifact is ignored. If
the page option ignoreinvisibletext has been supplied, text with rendering mode 3 (invis-
ible) is ignored.

Bindings C language binding: the result is provided as null-terminated UTF-8 (default) or UTF-16/
UTF-32 string according to the outputformat option of TET_set_option(). On IBM System i
and IBM Z EBCDIC-encoded UTF-8 can also be selected, and is enabled by default. The re-
turned data buffer can be used until the next call to this method. If no more text is
available a NULL pointer and *len=0 is returned.

C++: the result is provided as Unicode in the selected string format (see Section 3.2, »C++
Binding«, page 28). If no more text is available an empty string is returned.

Java, .NET and Objective-C: the result is provided as Unicode string. If no more text is
available a null (nil in Objective-C) object is returned.

10.5 Text and Glyph Details Retrieval Methods 199

Perl and PHP: the result is provided as UTF-8 (default) or UTF-16/UTF-32 string according
to the outputformat option of TET_set_option(). If no more text is available undef is re-
turned in Perl and an empty string in PHP.

Python: the result is provided as UTF-8 (default) or UTF-16/UTF-32 string according to
the outputformat option of TET_set_option(). In Python 3 UTF-16/UTF-32 results are re-
turned as bytes. If no more text is available, None is returned.

Ruby: the result is provided as UTF-8 (default) or UTF-16/UTF-32 string according to the
outputformat option of TET_set_option(). If no more text is available a nil object is re-
turned.

RPG language binding: the result is provided as Unicode string according to the output-
format option of TET_set_option(). If no more text is available null is returned.

C++ const TET_char_info *get_char_info(int page)
C# Java int get_char_info(int page)
Perl PHP object get_char_info(long page)

C const TET_char_info *TET_get_char_info(TET *tet, int page)

Get detailed information for the next glyph in the most recent text chunk.

page A valid page handle obtained with TET_open_page().

Note The name of this method is a misnomer. It should better be called TET_get_glyph_info() since
it reports information about visual glyphs on the page, not the corresponding Unicode
characters.

Returns If no more glyphs are available for the most recent text fragment returned by TET_get_
text(), a binding-specific value is returned. See section Bindings below for more details.

Details This method can be called one or more times after TET_get_text(). It will advance to the
next glyph for the current text chunk associated with the supplied page handle (or re-
turn nothing if there are no more glyphs), and provide detailed information for this
glyph. There will be one or more successful calls to this method for a text chunk with N
glyphs and M logical characters. The relationship between N and M depends on the
granularity:

> For granularity=glyph each text chunk corresponds to a single glyph, i.e. N = 1. One
glyph corresponds to one character in many cases, i.e. M = 1. However, for ligature
glyphs a single glyph creates multiple characters, i.e. M > 1 and TET_get_char_info()
must be called more than once.

> For granularities other than glyph a sequence of glyphs creates a sequence of charac-
ters, where each glyph may contribute to 0, 1, or more characters. The sequence of
glyphs serves as raw material for the sequence of Unicode characters. In other words,
there is no fixed relationship between N and M. The relationship between N and M
may be influenced by content analysis (e.g. hyphens are removed by the dehyphen-
ation process) or Unicode postprocessing (e.g. characters are added or deleted be-
cause of a folding).

For granularities other than glyph this method advances to the next glyph which con-
tributes to the chunk returned by the most recent call to TET_get_text(). This way it is
possible to retrieve glyph details when the Wordfinder is active and a text chunk may

200 Chapter 10: TET Library API Reference

contain more than one character. In order to retrieve all glyph details for the current
text chunk this method must be called repeatedly until it returns no more info.

The glyph details in the structure or properties/fields are valid until the next call to
TET_get_char_info(), TET_get_image_info() or TET_close_page() with the same page han-
dle. Since there is only a single set of glyph info properties/fields per TET object, clients
must retrieve all glyph info before they call TET_get_char_info() again for the same or
another page or document.

Bindings C and C++ language bindings: If no more glyphs are available for the most recent text
chunk returned by TET_get_text(), a NULL pointer is returned. Otherwise, a pointer to a
TET_char_info structure containing information about a single glyph is returned. The
members of the data structure are detailed in Table 10.16.

ava, .NET, and Objective-C language bindings: -1 is returned if no more glyphs are avail-
able for the most recent text chunk returned by TET_get_text(), otherwise 1. Individual
glyph info can be retrieved from the TET properties/public fields according to Table
10.16. All properties/fields contain the value -1 (the unknown field contains false) if they
are accessed although the method returned -1.

Perl and Python language bindings: 0 is returned if no more glyphs are available for the
most recent text chunk returned by TET_get_text(), otherwise a hash containing the
keys listed in Table 10.16. Individual glyph info can be retrieved with the keys in this
hash.

PHP language binding: an empty (null) object is returned if no more glyphs are available
for the most recent text chunk returned by TET_get_text(), otherwise an object contain-
ing the fields listed in Table 10.16. Individual glyph info can be retrieved from the mem-
ber fields of this object. Integer fields in the glyph info object are implemented as long
in the PHP language binding.

Ruby binding: nil (null object) is returned if no more glyphs are available, and a TET_
char_info object otherwise.

Table 10.16 Members of the TET_char_info structure (C, C++, Ruby), equivalent public fields (Java, PHP, Objective-C), keys
(Perl) or properties (.NET) with their type and meaning. See Section 6.2, »Page and Text Geometry«, page 74 and Section
6.3, »Text Color«, page 80 for more details.

property/
field name explanation

uv (Integer) Unicode value of the current glyph in UTF-32 format (regardless of the outputformat option).
For granularities other than glyph this may be an artificial value or an inserted separator character
which has no relationship to the final text chunk. For granularity=glyph the sequence of Unicode val-
ues for the glyphs is identical to the logical text, but for other granularities it may be modified by various
processing steps.

type (Integer) Type of the character. The following types describe a real glyph on the page. The values of all
other properties/fields are determined by the corresponding glyph:
0 (TET_CT_NORMAL) Normal character which corresponds to exactly one glyph
1 (TET_CT_SEQ_START) Start of a sequence (e.g. ligature)
The following types describe artificial characters which do not correspond to any glyph on the page. The
x and y fields specify the most recent real glyph’s endpoint, the width field is 0, and all other fields except
uv contain the values corresponding to the most recent real glyph:
10 (TET_CT_SEQ_CONT) Continuation of a sequence, e.g. ligature
12 (TET_CT_INSERTED) Inserted word, line, or paragraph separator

10.5 Text and Glyph Details Retrieval Methods 201

attributes (Integer) Glyph attributes expressed as bits which can be combined:
(none) (TET_ATTR_NONE) If no bits are set no special glyph attribute has been detected.
bit 0 (TET_ATTR_SUB) Geometric or semantic subscript
bit 1 (TET_ATTR_SUP) Geometric or semantic superscript
bit 2 (TET_ATTR_DROPCAP) Drop cap character (initial large character at the start of a paragraph)
bit 3 (TET_ATTR_SHADOW) Glyph- or word-based shadow duplicate of this glyph has been

removed
bit 4 (TET_ATTR_DEHYPHENATION_PRE) Glyph represents last character before hyphenation point.
bit 5 (TET_ATTR_DEHYPHENATION_ARTIFACT) Hyphenation character which was removed unless

contentanalysis={keephyphenglyphs=true} was specified.
bit 6 (TET_ATTR_DEHYPHENATION_POST) Glyph represents the character after hyphenation point.
bit 8 (TET_ATTR_ARTIFACT) Glyph represents an Artifact (irrelevant content).

unknown (Boolean; in C, C++ and Perl: integer) Usually false (0), but true (1) if the original glyph could not be
mapped to Unicode and has been replaced with the character specified as unknownchar.

x, y (Double) Position of the glyph’s reference point. The reference point is the lower left corner of the glyph
box for horizontal writing mode, and the top center point for vertical writing mode. For artificial charac-
ters the x, y coordinates are those of the end point of the most recent real character.

width (Double) Width of the corresponding glyph (for both horizontal and vertical writing mode). For artificial
characters (i.e. inserted separators with type=12 and hyphenation characters with attribute bit 5 set) the
width is 0.

height (Double) For vertical writing mode: height of the corresponding glyph according to the font metrics and
text output parameters (e.g. character spacing). The height is positive in the default coordinate system,
but negative for topdown coordinates. In monospaced vertical fonts all glyphs have fontsize as height
unless character spacing has been applied. Artificial characters (e.g. separators) have a height of 0.
For horizontal writing mode an approximation of the glyph height is supplied. This approximate value is
derived from font properties and therefore identical for all glyphs in a font. There is no guarantee that
the visible glyph has the exact height value supplied here.

alpha (Double) Direction of text progression in degrees measured counter-clockwise (or clockwise for topdown
coordinates). For horizontal writing mode this is the direction of the text baseline; for vertical writing
mode it is the digression from the standard vertical direction. The angle is in the range
-180° < alpha ³ +180°. For standard horizontal text as well as for standard text in vertical writing mode
the angle is 0°.

beta (Double) Text slanting angle in degrees measured counter-clockwise (or clockwise for topdown coordi-
nates), relative to the perpendicular of alpha. The angle is 0° for upright text, and negative for italicized
(slanted) text (positive for topdown coordinates). The angle is in the range -180° < beta ³ 180°, but differ-
ent from ±90°. If abs(beta) > 90° the text is mirrored at the baseline.

fontid (Integer) Index of the font in the fonts[] pseudo object (see the pCOS Path Reference). fontid is never
negative.

fontsize (Double) Size of the font (always positive); the relation of this value to the actual height of glyphs is not
fixed, but may vary with the font design. For most fonts the font size is chosen such that it encompasses
all ascenders (including accented characters) and descenders.

Table 10.16 Members of the TET_char_info structure (C, C++, Ruby), equivalent public fields (Java, PHP, Objective-C), keys
(Perl) or properties (.NET) with their type and meaning. See Section 6.2, »Page and Text Geometry«, page 74 and Section
6.3, »Text Color«, page 80 for more details.

property/
field name explanation

202 Chapter 10: TET Library API Reference

textrendering (Integer) Text rendering mode (plain integers, not bit positions):

0 (TET_TR_FILL) Fill text

1 (TET_TR_STROKE) Stroke text (outline)

2 (TET_TR_FILLSTROKE) Fill and stroke text

3 (TET_TR_INVISIBLE) Invisible text (e.g. for OCR text)

4 (TET_TR_FILL_CLIP) Fill text and add it to the clipping path

5 (TET_TR_STROKE_CLIP) Stroke text and add it to the clipping path

6 (TET_TR_FILLSTROKE_CLIP) Fill and stroke text and add it to the clipping path

7 (TET_TR_CLIP) Add text to the clipping path

Text in Type 3 fonts: textrendering=3 and 7 result in invisible text; all other values of textrendering are
irrelevant and are ignored.

colorid (Integer) Index of the text color which represents the combination of fill color, stroke color, and text ren-
dering. All occurrences of the same combination in a document are represented by the same color id. Dif-
ferent combinations are represented by different ids, which means that colors of multiple glyphs can be
checked for equality by comparing their color ids. For example, by comparing the colorid values of suc-
cessive glyphs you can identify changes in text color. The exact color space and color components for fill-
ing and/or stroking text can be retrieved with TET_get_color_info().
For Separation and DeviceN colors the alternate colors of a Separation or DeviceN color spacecan be re-
quested with the document option glyphcolor.

Table 10.16 Members of the TET_char_info structure (C, C++, Ruby), equivalent public fields (Java, PHP, Objective-C), keys
(Perl) or properties (.NET) with their type and meaning. See Section 6.2, »Page and Text Geometry«, page 74 and Section
6.3, »Text Color«, page 80 for more details.

property/
field name explanation

P
P

10.5 Text and Glyph Details Retrieval Methods 203

C++ const TET_color_info *get_color_info(int doc, int colorid, String optlist)
C# Java int get_color_info(int doc, int colorid, String optlist)
Perl PHP object get_color_info(long doc, long colorid, string optlist)

C const TET_color_info *TET_get_color_info(TET *tet, int doc, int colorid, const char *optlist)

Retrieve color details for a color id which has been retrieved with TET_get_char_info.

doc Valid document handle obtained with TET_open_document*().

colorid Valid color id obtained from the colorid member of TET_get_char_info().

optlist Option list according to Table 10.17 specifying the kind of color to retrieve.

Returns C/C++: A pointer to a structure with details about the requested color space and color.
Perl, Python, PHP, Ruby: a hash or object containing the requested color information.
Java, .NET, Objective-C: the fixed value 1.

Details This method returns details about the color specified by colorid. Depending on the usage
option the fill or stroke color associated with colorid is reported.

Bindings C and C++ language bindings: A pointer to a TET_color_info structure containing infor-
mation about the requested color is returned. The members of the data structure are de-
tailed in Table 10.18.

Java, .NET, and Objective-C language bindings: color information can be retrieved from
the TET properties/public fields according to Table 10.18.

Perl, Python, PHP and Ruby language bindings: color information can be retrieved from
a hash or object containing the keys/fields/members listed in Table 10.18.

Table 10.17 Option for TET_get_color_info()

option description

usage (Keyword) Usage of the color (default: fill)
fill Color used for filling
stroke Color used for stroking

Table 10.18 Members of the TET_color_info structure (C, C++, Ruby), equivalent public fields (Java, PHP, Objective-C), keys
(Perl) or properties (.NET) with their type and meaning. See Section 6.3, »Text Color«, page 80 for more details.

property/
field name explanation

colorspaceid (Integer) Index of the color space in the colorspaces[] pseudo object (see the pCOS Path Reference), or -1
if no color is applied to the glyph, e.g. for invisible text (textrendering=3).

patternid (Integer) Index of the pattern in the patterns[] pseudo object (see the pCOS Path Reference), or -1 if no
pattern is applied to the glyph.

components1

1. This member must only be accessed if the colorspaceid member is not -1.

(Array of double values) Color component values which must be interpreted in the color space reported
with colorspaceid.
C and C++ language bindings: The number of relevant array entries is available in the n member.

n1 (Integer; C and C++ language bindings only) Number of array entries in the components member

204 Chapter 10: TET Library API Reference

10.6 Image Retrieval
API methods in this section:

> TET_get_image_info()
> TET_write_image_file()
> TET_get_image_data()

C++ const TET_image_info *get_image_info(int page)
C# Java int get_image_info(int page)
Perl PHP object image_info get_image_info(long page)

C const TET_image_info *TET_get_image_info(TET *tet, int page)

Retrieve information about the next image on the page (but not the actual pixel data).

page A valid page handle obtained with TET_open_page().

Returns If no more images are available on the page, a binding-specific value is returned, other-
wise image details are available in a binding-specific manner. See section Bindings below
for more details.

Details This method advances to the next image associated with the supplied page handle and
provides detailed information for the image. If there are no more images on the page
the method returns 0, -1 or NULL. The following types of images are ignored:

> Images used as mask are ignored. They can be retrieved via pCOS and the maskid
pseudo object (see Section 8.5.2, »Image Masks and Soft Masks«, page 131).

> Images which have been consumed by the merging process and merged to form a
larger image (i.e. mergetype=consumed) are ignored.

> Images which have been eliminated by the small image filter (see Section 8.4, »Small
and Large Image Filtering«, page 129) are ignored.

> Images which are located completely outside the extraction area specified by the
clippingarea, excludebox, and includebox options are ignored.

> Images which are marked as Artifact are skipped if the ignoreartifacts page option has
been supplied.

The image details in the structure or properties/fields are valid until the next call to
TET_get_image_info() TET_get_text_info() or TET_close_page() with the same page handle.
Since there is only a single set of image info properties/fields per TET object, clients
must retrieve all image info before they call TET_get_image_info() again for the same or
another page.

Bindings C and C++ language bindings: If no more images are available on the page a NULL point-
er is returned, otherwise a pointer to a TET_image_info structure containing information
about the image. The members of the data structure are detailed in Table 10.19.

Java, .NET, and Objective-C language bindings: -1 is returned if no more images are avail-
able on the page, otherwise 1. Individual image info can be retrieved from the TET prop-
erties/fields according to Table 10.19. All properties/fields contain the value -1 if they are
accessed although the method returned -1.

Perl and Python language bindings: 0 is returned if no more images are available on the
page, otherwise a hash containing the keys listed in Table 10.19. Individual image info
can be retrieved with the keys in this hash.

10.6 Image Retrieval 205

PHP language binding: an empty (null) object is returned if no more images are avail-
able on the page, otherwise an object of type TET_image_info. Individual image info can
be retrieved from its fields according to Table 10.19. Integer fields in the image info ob-
ject are implemented as long in the PHP language binding.

Ruby binding: nil (null object) is returned if no more images are available, and a TET_
image_info object otherwise.

C++ Java C# int write_image_file(int doc, int imageid, String optlist)
Perl PHP long write_image_file(long doc, long imageid, string optlist)

C int TET_write_image_file(TET *tet, int doc, int imageid, const char *optlist)

Write image data to disk.

doc A valid document handle obtained with TET_open_document*().

imageid pCOS ID of the image. This ID can be retrieved from the imageid field after a
successful call to TET_get_image_info(), or by looping over all entries in the images pseu-
do object (there are length:images entries in this array).

optlist Option list specifying page options according to Table 10.20. The following op-
tions can be used:

dpi, filename, keepiccprofile, keepxmp, typeonly, validatejpeg.
The following options of other method also affect the generated image output:

> TET_open_document*(): allowjpeg2000, spotcolor (see Table 10.8)
> TET_open_page/TET_process_page(): imageanalysis (see Table 10.10 and Table 10.13)

Table 10.19 Members of the TET_image_info structure (C, C++, Ruby), equivalent public fields (Java, PHP, Objective-C), and
properties (.NET) with their type and meaning. See Section 8.1, »Image Extraction Basics«, page 119, for details.

property/
field name explanation

x, y (Double) Position of the image’s reference point. The reference point is the lower left corner of the image.

width,
height

(Double) Width and height of the image on the page in points, measured along the image’s edges

alpha (Double) Direction of the pixel rows. The angle is in the range -180° < alpha ³ +180°. For upright images
alpha is 0°.

beta (Double) Direction of the pixel columns, relative to the perpendicular of alpha. The angle is in the range
-180° < beta ³ +180°, but different from ±90°. For upright images beta is in the range -90° < beta < +90°.
If abs(beta) > 90° the image is mirrored at the baseline.

imageid (Integer) Index of the image in the pCOS pseudo object images[]. Detailed image and mask properties
can be retrieved via the entries in this pseudo object (see the pCOS Path Reference).

attributes (Integer) Image attributes expressed as bits which can be combined. The following bits are defined (the
least significant bit is bit 0):
bit 8 (TET_ATTR_ARTIFACT) Image represents an Artifact (irrelevant content). Artificial images

which have been merged from Artifact images are also marked as Artifact.
bit 9 (TET_ATTR_ANNOTATION) Image extracted from an annotation (appearance stream).
bit 10 (TET_ATTR_PATTERN) Image extracted from a pattern.
bit 11 (TET_ATTR_SOFTMASK) Image extracted from a soft mask in a graphics state (defined in a

Transparency Group XObject)

206 Chapter 10: TET Library API Reference

Returns -1 on error, or a value greater than 0 otherwise. If -1 is returned it is recommended to call
TET_get_errmsg() to find out more details about the error. No image output is created in
case of an error. If the return value is different from -1 it indicates that the image can be
extracted in the file format indicated by the return value:

> 10 (TET_IF_TIFF): image extracted as TIFF (.tif)
> 20 (TET_IF_JPEG): image extracted as JPEG (.jpg)
> 31 (TET_IF_JP2): image extracted as plain JPEG 2000 (.jp2)
> 32 (TET_IF_JPF): image extracted as extended JPEG 2000 (.jpf)
> 33 (TET_IF_J2K): image extracted as raw JPEG 2000 code stream (.j2k)
> 50 (TET_IF_JBIG2): image extracted as JBIG2 (.jbig2)

The formats TET_IF_JP2, TET_IF_JPF and TET_IF_J2K are only created if allowjpeg2000=true;
otherwise TET_IF_TIFF is created.

Details This method converts the pixel data for the image with the specified pCOS ID to one of
several image formats and writes the result to a disk file. If the typeonly option has been
supplied, only the image type is returned, but no image file is generated.

Bindings C/C++: macros for the return values are available in tetlib.h.

Table 10.20 Options for TET_write_image_file() and TET_get_image_data()

option description

compression (Keyword; deprecated)

dpi (List of one or two non-negative float values) One or two values specifying the image resolution in pixels
per inch in horizontal and vertical direction. If a single value is supplied it is used for both dimensions. The
supplied values are recorded in generated TIFF images. They don’t change the number of pixels in the im-
age (i.e. no downsampling). See »Image resolution«, page 126, for details about determining image reso-
lution. If one or two values are zero no resolution entry is written. Default: 72

filename1

1. Only for TET_write_image_file()

(String; required unless typeonly is supplied) The name of the image file on disk. A suffix is added to the
filename to indicate the image file format.
The file name conventions used by the TET command-line tool with the option --imageloop resource
match those in TETML (see »Image file names«, page 21). It is recommended to use the same file name
patterns if the extracted images are used together with TETML.

keepiccprofile (Boolean) If true and an ICC profile is assigned to the image, the ICC profile is embedded in extracted TIFF
and JPEG images. Setting this option to false may result in smaller image files, but sacrifices color man-
agement. Default: true

keepxmp (Boolean) If true and the image has associated XMP metadata in the PDF, the metadata is embedded in
extracted TIFF and JPEG images. Default: true

preferredtiff-
compression

(Keyword; deprecated)

typeonly1 (Boolean) The image type is determined according to the supplied options, but no image file is written.
This is useful for determining the type of images returned by TET_get_image_data(), which does not re-
turn the image type itself. Default: false

validatejpeg (Boolean) If true, extracted JPEG images are validated to ensure correct image output. If false, process-
ing is slightly faster, but invalid JPEG data is copied unmodified to the generated image file. Default: true

10.6 Image Retrieval 207

C++ const char *get_image_data(int doc, size_t *length, int imageid, String optlist)
C# Java final byte[] get_image_data(int doc, int imageid, String optlist)
Perl PHP string get_image_data(long doc, long imageid, string optlist)

C const char * TET_get_image_data(TET *tet, int doc, size_t *length, int imageid, const char *optlist)

Write image data to memory.

doc A valid document handle obtained with TET_open_document*().

length (C, C++ and RPG language bindings only) C-style pointer to a memory location
where the length of the returned data in bytes is stored.

imageid The pCOS ID of the image. This ID can be retrieved from the imageid field after
a successful call to TET_get_image_info(), or by looping over all entries in the images
pCOS array (there are length:images entries in this array).

optlist Option list specifying image-related options according to Table 10.20. The fol-
lowing option can be used: keepxmp

Returns The data representing the image according to the specified options. In case of an error a
NULL pointer is returned in C and C++, and empty data in other language bindings. If an
error occurs it is recommended to call TET_get_errmsg() to find out more details about
the error.

Details This method converts the pixel data for the image with the specified pCOS ID to one of
several image formats, and makes the data available in memory.

Bindings C and C++ language bindings: The returned data buffer can be used until the next call to
this method.

208 Chapter 10: TET Library API Reference

10.7 TET Markup Language (TETML)
API methods in this section:

> TET_process_page()
> TET_get_tetml()

C++ Java C# int process_page(int doc, int pagenumber, String optlist)
Perl PHP long process_page(long doc, long pagenumber, string optlist)

C int TET_process_page(TET *tet, int doc, int pagenumber, const char *optlist)

Process a page and create TETML output.

doc A valid document handle obtained with TET_open_document*().

pagenumber The physical number of the page to be processed. The first page has page
number 1. The total number of pages can be retrieved with TET_pcos_get_number() and
the pCOS path length:pages. The pagenumber parameter may be 0 if trailer=true.

optlist Option list specifying options from the following groups:
> General page-related options according to Table 10.10 (these are ignored if

pagenumber=0):
clippingarea, contentanalysis, excludebox, fontsizerange, granularity, ignoreinvisibletext,
imageanalysis, includebox, layoutanalysis

> Option specifying TETML details according to Table 10.21: tetml

Table 10.21 Additional options for TET_process_page()

option description

tetml (Option list) Controls details of TETML. The following options are available:
elements (Option list) Specify optional TETML elements:

line (Boolean; only for granularity=word) If true, TETML output includes Line ele-
ments between Para and Word levels. Default: false

glyphdetails
(Option list; only for granularity=glyph and word) Specify which attributes are reported for
each Glyph element (default for all suboptions: false):
all (Boolean) Enable all attribute suboptions.
dehyphenation

(Boolean) Emit attribute dehyphenation to indicate hyphenated words.
dropcap (Boolean) Emit attribute dropcap to indicate large initial characters at the start

of a paragraph.
font (Boolean) Emit attributes font, size, textrendering, unknown.
geometry (Boolean) Emit attributes x, y, width, alpha, beta.
sub (Boolean) Emit attribute sub to indicate subscripts.
sup (Boolean) Emit attribute sup to indicate superscripts.
shadow (Boolean) Emit attribute shadow to indicate shadow or simulated bold text.
textcolor (Boolean) Emit attributes fill and stroke for the glyph colors (subject to

textrendering) and corresponding Color elements.
trailer (Boolean) If true, document trailer data, i.e. data after the last page, is emitted (it must be

appended to the page-specific data emitted earlier). This option is required in the last call to
this method in order to emit trailer data. If pagenumber=0 only trailer data (without any
page-specific data) is emitted. Once trailer=true has been supplied, no more calls to TET_
process_page() are allowed for the same document. Default: false

10.7 TET Markup Language (TETML) 209

Returns This method always returns 1. PDF problems are reported in a TETML Exception element.
Problems related to option list parsing trigger an exception.

Details This method opens a page, creates TETML output according to the format-related op-
tions supplied to TET_open_document*(), and closes the page. The generated data can be
retrieved with TET_get_tetml().

This method must only be called if the option tetml has been supplied in the corre-
sponding call to TET_open_document*(). Header data, i.e. document-specific data before
the first page, is created by TET_open_document*() before the first page data. It can be re-
trieved separately by calling TET_get_tetml() before the first call to TET_process_page(),
or in combination with page-related data.

Trailer data, i.e. document-specific data after the last page, must be requested with
the trailer suboption when this method is called for the last time for a document. Trailer
data can be created with a separate call after the last page (pagenumber=0), or together
with the last page (pagenumber is different from 0). Pages can be retrieved in any order,
and any subset of the document’s pages can be retrieved.

It is an error to call TET_close_document() without retrieving the trailer, or to call TET_
process_page() again after retrieving the trailer.

C++ const char *get_tetml(int doc, size_t *length, String optlist)
C# Java final byte[] get_tetml(int doc, String optlist)
Perl PHP string get_tetml(long doc, string optlist)

C const char * TET_get_tetml(TET *tet, int doc, size_t *len, const char *optlist)

Retrieve TETML data from memory.

doc A valid document handle obtained with TET_open_document*().

len (C, C++ and RPG language bindings only) A pointer to a variable which will hold the
length of the returned string in bytes. len does not count the terminating null byte.

optlist (Currently there are no supported options.)

Returns A byte array containing the next chunk of data. If the buffer is empty an empty string or
null is returned (in C: a NULL pointer and *len=0).

Details This method retrieves TETML data which has been created by TET_open_document*() and
one or more calls to TET_process_page(). The TETML data is encoded in UTF-8, regardless
of the outputformat option. The internal buffer is cleared by this call. It is not required to
call TET_get_tetml() after each call to TET_process_page(). The client may accumulate the
data for one or more pages or for the whole document in the buffer.

In TETML mode this method must be called at least once before TET_close_document()
since otherwise the data would no longer be accessible. If TET_get_tetml() is called exact-
ly once (such a single call must happen between the last call to TET_process_page() and
TET_close_document()) the buffer is guaranteed to contain well-formed TETML output
for the whole document.

This method must not be called if the filename suboption has been supplied to the
tetml option of TET_open_document*().

Bindings C and C++ language bindings: the result is provided as null-terminated UTF-8. On
IBM System i and IBM Z EBCDIC-encoded UTF-8 is returned. The returned data buffer
can be used until the next call to TET_get_tetml().

Java and .NET language bindings: the result is provided as a byte array containing UTF-8
data.

PHP language binding: the result is provided as UTF-8 string.

Python: the result is returned as 8-bit string (Python 3: bytes).

RPG language binding: the result is returned as null-terminated UTF-8.

10.8 pCOS Methods 211

10.8 pCOS Methods
API methods in this section:

> TET_pcos_get_number()
> TET_pcos_get_string()
> TET_pcos_get_stream()

The full pCOS syntax for retrieving object data from a PDF is supported. For a detailed
description please refer to the pCOS Path Reference which is available as a separate doc-
ument.

C++ Java C# double pcos_get_number(int doc, String path)
Perl PHP float pcos_get_number(int doc, string path)

C double TET_pcos_get_number(TET *tet, int doc, const char *path, ...)

Get the value of a pCOS path with type number or boolean.

doc A valid document handle obtained with TET_open_document*().

path A full pCOS path for a numerical or boolean object.

Additional parameters (C language binding only) A variable number of additional pa-
rameters can be supplied if the key parameter contains corresponding placeholders (%s
for strings or %d for integers; use %% for a single percent sign). Using these parameters
will save you from explicitly formatting complex paths containing variable numerical
or string values. The client is responsible for making sure that the number and type of
the placeholders matches the supplied additional parameters.

Returns The numerical value of the object identified by the pCOS path. For Boolean values 1 is re-
turned if they are true, and 0 otherwise.

C++ Java C# String pcos_get_string(int doc, String path)
Perl PHP string pcos_get_string(int doc, string path)

C const char *TET_pcos_get_string(TET *tet, int doc, const char *path, ...)

Get the value of a pCOS path with type name, number, string, or boolean.

doc A valid document handle obtained with TET_open_document*().

path A full pCOS path for a string, name, or boolean object.

Additional parameters (C language binding only) A variable number of additional pa-
rameters can be supplied if the key parameter contains corresponding placeholders (%s
for strings or %d for integers; use %% for a single percent sign). Using these parameters
will save you from explicitly formatting complex paths containing variable numerical
or string values. The client is responsible for making sure that the number and type of
the placeholders matches the supplied additional parameters.

Returns A string with the value of the object identified by the pCOS path. For Boolean values the
strings true or false is returned.

Details This method raises an exception if pCOS does not run in full mode and the type of the
object is string. However, the objects /Info/* (document info keys) can also be retrieved in

212 Chapter 10: TET Library API Reference

restricted pCOS mode if nocopy=false or plainmetadata=true, and bookmarks[...]/Title as
well as all paths starting with pages[...]/annots[...]/ can be retrieved in restricted pCOS
mode if nocopy=false.

This method assumes that strings retrieved from the PDF document are text strings.
String objects which contain binary data should be retrieved with TET_pcos_get_stream()
instead which does not modify the data in any way.

Bindings C language binding: The string is returned in UTF-8 format (on IBM System i and IBM Z:
EBCDIC-UTF-8) without BOM. The returned strings are stored in a ring buffer with up to
10 entries. If more than 10 strings are queried, buffers are reused, which means that cli-
ents must copy the strings if they want to access more than 10 strings in parallel. For ex-
ample, up to 10 calls to this method can be used as parameters for a printf() statement
since the return strings are guaranteed to be independent if no more than 10 strings are
used at the same time.

C++ language binding: the result is provided as Unicode in the selected string format
(see Section 3.2, »C++ Binding«, page 28).

Java and .NET bindings: the result are provided as Unicode string. If no more text is
available a null object is returned.
Perl, PHP, Python and Ruby language bindings: the result is provided as UTF-8 string. If
no more text is available a null object is returned.

C++ const unsigned char *pcos_get_stream(int doc, int *len, string optlist, String path)
C# Java final byte[] pcos_get_stream(int doc, String optlist, String path)
Perl PHP string pcos_get_stream(int doc, string optlist, string path)

C const unsigned char *TET_pcos_get_stream(TET *tet, int doc, int *len, const char *optlist,
const char *path, ...)

Get the contents of a pCOS path with type stream, fstream, or string.

doc A valid document handle obtained with TET_open_document*().

len (C, C++ and RPG language bindings only) A pointer to a variable which will receive
the length of the returned stream data in bytes.

optlist Option list specifying stream retrieval options according to Table 10.22.

path A full pCOS path for a stream or string object.

Additional parameters (C language binding only) A variable number of additional pa-
rameters can be supplied if the key parameter contains corresponding placeholders (%s
for strings or %d for integers; use %% for a single percent sign). Using these parameters
will save you from explicitly formatting complex paths containing variable numerical
or string values. The client is responsible for making sure that the number and type of
the placeholders matches the supplied additional parameters.

Returns The unencrypted data contained in the stream or string. The returned data is empty (in
C and C++: NULL) if the stream or string is empty, or if the contents of encrypted attach-
ments in an unencrypted document are queried and the attachment password has not
been supplied.

10.8 pCOS Methods 213

If the object has type stream all filters are removed from the stream contents (i.e. the
actual raw data is returned) unless keepfilter=true. If the object has type fstream or string
the data is delivered exactly as found in the PDF file, with the exception of ASCII85 and
ASCIIHex filters which are removed.

In addition to decompressing the data and removing ASCII filters, text conversion
may be applied according to the convert option.

JPX-compressed streams are treated as follows: image data with 1..8 bits per compo-
nent is returned with 8 bits per component; Image data with 9..16 bits per component is
returned with 16 bits per component. If no PDF color space is present and the JPX-com-
pressed stream contains an internal color palette, the palette is applied before return-
ing the uncompressed stream data to ensure that the pixel data matches the reported
color space and number of components. Note that the palette is not applied if the PDF
color space Indexed is present.

Details This method throws an exception if pCOS does not run in full mode (see the pCOS Path
Reference). As an exception, the object /Root/Metadata can also be retrieved in restricted
pCOS mode if nocopy=false or plainmetadata=true. An exception will also be thrown if
path does not point to an object of type stream, fstream, or string.

Despite its name this method can also be used to retrieve objects of type string. Un-
like TET_pcos_get_string(), which treats the object as a text string, this method does not
modify the returned data Binary string data is rarely used in PDF, and cannot be detect-
ed automatically. The user is therefore responsible for selecting the appropriate meth-
od for retrieving string objects as binary data or text.

Bindings

Bindings C language binding: If convert=unicode is supplied, the string is returned in UTF-8 format
without BOM (on IBM System i and IBM Z: EBCDIC-UTF8).

C and C++ language bindings: The returned data buffer can be used until the next call to
this method.

Note Python: the result is returned as 8-bit string (Python 3: bytes).

Table 10.22 Options for TET_pcos_get_stream()

option description

convert (Keyword; ignored for streams which are compressed with unsupported filters) Controls whether or not
the string or stream contents are converted (default: none):
none Treat the contents as binary data without any conversion.
unicode Treat the contents as textual data (i.e. exactly as in TET_pcos_get_string()), and normalize it

to Unicode. In non-Unicode-aware language bindings this means the data is converted to
UTF-8 format without BOM.
This option is required for the data type »text stream« in PDF which is rarely used (e.g. it can
be used for JavaScript, although the majority of JavaScripts is contained in string objects, not
stream objects).

keepfilter (Boolean; recommended only for image data streams; ignored for streams which are compressed with
unsupported filters) If true, the stream data remains compressed with the filter which is specified in the
image’s filterinfo pseudo object (see the pCOS Path Reference). If false, the stream data is uncom-
pressed. Default: true for all unsupported filters, false otherwise

214 Chapter 10: TET Library API Reference

A TET Library Quick Reference 215

A TET Library Quick Reference
The following tables contain an overview of all TET API functions. The prefix (C) denotes
C prototypes of functions which are not available in the Java language binding.

Setup

Option Handling

PDFlib Virtual Filesystem (PVF)

Unicode Conversion

Exception Handling

Document

Page

Function prototype page
(C) TET *TET_new(void) 170
void delete() 170

Function prototype page
void set_option(String optlist) 167

Function prototype page
void create_pvf(String filename, byte[] data, String optlist) 171
int delete_pvf(String filename) 171
int info_pvf(String filename, String keyword) 172

Function prototype page
String convert_to_unicode(String inputformat, byte[] input, String optlist) 173

Function prototype page
String get_apiname() 175
String get_errmsg() 176
int get_errnum() 176

Function prototype page
int open_document(String filename, String optlist) 179
(C/C++) int TET_open_document_callback(TET *tet, void *opaque, tet_off_t filesize, size_t
(*readproc)(void *opaque, void *buffer, size_t size), int (*seekproc)(void *opaque, tet_off_t offset), const
char *optlist) 186
STET_Cthe value 1parameterthe opaque pointer passed to interruptvoid close_document(int doc) 187

Function prototype page
int open_page(int doc, int pagenumber, String optlist) 188
void close_page(int page) 197

216 Chapter A: TET Library Quick Reference

Text and Glyph Details Retrieval

Image Retrieval

TET Markup Language (TETML)

pCOS

Function prototype page
String get_text(int page) 198
int get_char_info(int page) 199
int get_color_info(int doc, int colorid, String optlist) 203

Function prototype page
int get_image_info(int page) 204
int write_image_file(int doc, int imageid, String optlist) 205
final byte[] get_image_data(int doc, int imageid, String optlist) 207

Function prototype page
int process_page(int doc, int pagenumber, String optlist) 208
final byte[] get_tetml(int doc, String optlist) 209

Function prototype page
double pcos_get_number(int doc, String path) 211
String pcos_get_string(int doc, String path) 211
final byte[] pcos_get_stream(int doc, String optlist, String path) 212

B Revision History 217

B Revision History

Revision history of this manual

Date Changes
December 14, 2023 > Updates for TET 5.5
December 6, 2022 > Updates for TET 5.4
April 26, 2021 > Updates for TET 5.3
October 17, 2019 > i5-related clarifications for TET 5.2p1
July 18, 2019 > Updates for TET 5.2
May 24, 2017 > Updates for TET 5.1
November 03, 2015 > Updates for TET 5.0
January 27, 2015 > Updates for TET 4.4
May 26, 2014 > Updates for TET 4.3
May 17, 2013 > Updates for TET 4.2
April 04, 2012 > Updates for TET 4.1p1
February 20, 2012 > Updates for TET 4.1
September 22, 2010 > Updates for TET 4.0p2
July 27, 2010 > Updates for TET 4.0
February 01, 2009 > Updates for TET 3.0
January 16, 2008 > Updated the manual for TET 2.3
January 23, 2007 > Minor additions for TET 2.2
December 14, 2005 > Additions and corrections for TET 2.1.0; added descriptions for the PHP and RPG

language bindings
June 20, 2005 > Expanded and reorganized the manual for TET 2.0.0
October 14, 2003 > Updated the manual for TET 1.1
November 23, 2002 > Added the description of TET_open_doc_callback() and a code sample for deter-

mining the page size for TET 1.0.2
April 4, 2002 > First edition for TET 1

219

Index

A
annotations 71
API reference 159
Arabic 84
area of text extraction 74
Artifacts 101
Artifacts in Tagged PDF 190

TET_char_info structure 201
TET_image_info structure 205

ascender 77
attachment password 59

B
bidirectional text 84
BMP (Basic Multilingual Plane) 97, 112
bookmarks 71
Boolean values in option lists 163
Byte Order Mark (BOM) 98

C
C binding 25
C++ binding 28
canonical decomposition 106
capheight 77
categories of resources 61
characters and glyphs 97
CJK (Chinese, Japanese, Korean) 12, 82

compatibility forms 83
configuration 7
word boundaries 82

codelist 115
color of text 80
color spaces 130
command-line tool 19
comments 71
commercial license 10
compatibility decomposition 106
composite characters 99
concordance (XSLT sample) 155
connector 45
content analysis 86
coordinate system 74
CSV format 157

D
decomposition 106
dehyphenation 88
descender 77

DeviceN color space 130
Dispose() 170
document and page functions 179
document domains 69
document info entries 69
document styles 89
double-byte variants 83

E
end points of glyphs and words 78
EUDC fonts 114
evaluation version 7
examples

text extraction status 59
XSLT 155

exception handling
in C 25

F
fake bold removal 88
file attachments 72
file search 62
fill color of text 80
float and integer values in option lists 164
folding 103
font filtering (XSLT sample) 155
font statistics (XSLT sample) 156
FontReporter plugin 12, 114
form fields 71
fullwidth variants 83

G
geometry of images 125
glyph metrics 75
glyph rules 117
glyphlist 116
glyphs 97
granularity 86

H
halfwidth variants 83
Hebrew 84
highlighting 78
HTML converter (XSLT sample) 157

I
ICC profiles 130

220

ideographic text: word boundaries 82
IFilter for Microsoft products 53
images

color fidelity 130
determining type 120
extract to disk or memory 119
extracting 119
formats 119
geometry 125
merging 127
number of images in a document 122
page-based extraction loop 123
placed images 122
resolution 126
resource-based extraction loop 124
resources 122
small image removal 129
XMP metadata 120

inch 74
index (XSLT sample) 157
installing TET 7
invisible text 202

J
Java binding 30
Javadoc 30
JBIG2 119
JPEG 119
JPEG 2000 119

K
keywords in option lists 164

L
layers 73, 190
license key 8
ligatures 99
list detection 93
list values in option lists 160
logging 177
logo fonts 114
Lucene search engine 46

M
master password 59
MediaWiki 57
millimeters 74

N
nested option lists 160
.NET binding 32
normalization 110
numbers in option lists 164

O
Objective-C binding 35
optimizing performance 65
option list syntax 159
option lists 159
Oracle Text 50
outline text 202
owner password 59

P
packages 72
page boxes 74
page-based image extraction loop 123
passwords 59
pCOS

API methods 211
Cookbook 15

PDF versions 11
performance optimization 65
Perl binding 37
permissions password 59
PHP binding 38
placed images 122
points 74
portfolios 72
preprocessing text 100
prerotated glyphs 83
programming samples 14
protected documents 59
PUA (Private Use Area) 98, 104, 114
Python Binding 40

R
raw text extraction (XSLT sample) 158
rectangles in option lists 164
resource configuration 61
resource-based image extraction loop 124
resourcefile parameter 63
response file 22
roadmap to documentation and samples 14
RPG binding 43
Ruby binding 41

S
sample code 14
schema 143
searching for font usage (XSLT sample) 156
searchpath 62
separation color space 130
sequences 99
shadow removal 88
shrug feature 59
single-byte variants 83
small image removal 129
Solr search server 49
spot color 130

221

strings in option lists 161
stroke color of text 80
supplementary characters 112
surrogates 98, 112
syntax of option lists 159

T
table detection 92
table extraction (XSLT sample) 157
Tagged PDF 72, 101
TET command-line tool 19
TET connector 45

for Lucene 46
for MediaWiki 57
for Microsoft products 53
for Oracle 50
for Solr 49
for TIKA 55

TET Cookbook 15
TET features 11
TET Markup Language (TETML) 133
TET plugin for Adobe Acrobat 45
TET_CATCH() 176
TET_close_document() 187
TET_close_page() 197
TET_convert_to_unicode() 173
TET_create_pvf() 171
TET_delete_pvf() 171
TET_delete() 170
TET_EXIT_TRY() 25, 176
TET_get_apiname() 175
TET_get_char_info() 199
TET_get_color_info() 203
TET_get_errmsg() 176
TET_get_errnum() 176
TET_get_image_data() 207
TET_get_image_info() 204
TET_get_tetml() 209
TET_get_text() 198
TET_info_pvf() 172
TET_new() 170
TET_open_document_callback() 186
TET_open_document() 179
TET_open_page() 188
TET_pcos_get_number() 211
TET_pcos_get_stream() 212
TET_pcos_get_string() 211
TET_RETHROW() 176
TET_set_option() 167
TET_TRY() 176
TET_write_image_file() 205

tet.upr 63
TETML 133

schema 143
TETRESOURCEFILE environment variable 63
TeX documents 67
text color 80
text extraction status 59
text filtering 100
TIFF 119
TIKA toolkit 55

U
Unichar values in option lists 162
Unicode

BOM 98
concepts 97
decomposition 106
encoding forms 98
encoding schemes 98
folding 103
in option lists 162
normalization 110
postprocessing 103
sets 163

Unicode-capable language bindings 165
units 74
unmappable glyphs 113
Unquoted string values in option lists 162
UPR file format 61
user password 59
UTF formats 98
UTF-32 112

V
vertical writing mode 82

W
word boundary detection 87
Wordfinder 87

X
XFA forms 11, 148
xheight 77
XMP metadata 70

for images 120
XSLT sample 157

XSD schema for TETML 143
XSLT 152

samples 14, 155

ABC

PDFlib GmbH
Franziska-Bilek-Weg 9
80339 München, Germany
www.pdflib.com

Licensing contact
sales@pdflib.com

Support
PDFlib_support@pdftron.com (please include your license number)

mailto:sales@pdflib.com

	0 First Steps with TET
	0.1 Installing the Software
	0.2 Applying the TET License Key

	1 Introduction
	1.1 Overview of TET Features
	1.2 Many ways to use TET
	1.3 Roadmap to Documentation and Samples
	1.4 What’s new in TET 5.1?
	1.5 What’s new in TET 5.2?
	1.6 What’s new in TET 5.3?
	1.7 What’s new in TET 5.4?
	1.8 What’s new in TET 5.5?

	2 TET Command-Line Tool
	2.1 Command-Line Options
	2.2 Constructing TET Command Lines
	2.3 Command-Line Examples
	2.3.1 Extracting Text
	2.3.2 Extracting Images
	2.3.3 Generating TETML
	2.3.4 Advanced Options

	3 TET Library Language Bindings
	3.1 C Binding
	3.2 C++ Binding
	3.3 Java Binding
	3.4 .NET Binding
	3.5 Objective-C Binding
	3.6 Perl Binding
	3.7 PHP Binding
	3.8 Python Binding
	3.9 Ruby Binding
	3.10 RPG Binding

	4 TET Connectors
	4.1 Free TET Plugin for Adobe Acrobat
	4.2 TET Connector for the Lucene Search Engine
	4.3 TET Connector for the Solr Search Server
	4.4 TET Connector for Oracle
	4.5 TET PDF IFilter for Microsoft Products
	4.6 TET Connector for the Apache TIKA Toolkit
	4.7 TET Connector for MediaWiki

	5 Configuration
	5.1 Extracting Content from protected PDF
	5.2 Resource Configuration and File Searching
	5.3 Recommendations for common Scenarios

	6 Text Extraction
	6.1 PDF Document Domains
	6.2 Page and Text Geometry
	6.3 Text Color
	6.4 Chinese, Japanese, and Korean Text
	6.4.1 CJK Encodings and CMaps
	6.4.2 Word Boundaries for CJK Text
	6.4.3 Vertical Writing Mode
	6.4.4 CJK Decompositions: Narrow, wide, vertical, etc.

	6.5 Bidirectional Arabic and Hebrew Text
	6.5.1 General Bidi Topics
	6.5.2 Postprocessing Arabic Text

	6.6 Content Analysis
	6.7 Layout Analysis and Document Styles
	6.8 Table and List Detection
	6.9 Check whether an Area is empty
	6.10 Annotation Contents

	7 Advanced Unicode Handling
	7.1 Important Unicode Concepts
	7.2 Text Preprocessing (Filtering)
	7.2.1 Filters for all Granularities
	7.2.2 Filters for Granularity Word and above

	7.3 Unicode Postprocessing
	7.3.1 Unicode Folding
	7.3.2 Unicode Decomposition
	7.3.3 Unicode Normalization

	7.4 Supplementary Characters and Surrogates
	7.5 Unicode Mapping for Glyphs

	8 Image Extraction
	8.1 Image Extraction Basics
	8.2 Extracting Images
	8.2.1 Placed Images and Image Resources
	8.2.2 Page-based and Resource-based Image Retrieval
	8.2.3 Geometry of Placed Images

	8.3 Merging Fragmented Images
	8.4 Small and Large Image Filtering
	8.5 Image Colors and Masking
	8.5.1 Color Spaces
	8.5.2 Image Masks and Soft Masks

	9 TET Markup Language (TETML)
	9.1 Creating TETML
	9.2 TETML Examples
	9.3 Controlling TETML Details
	9.4 TETML Elements and the TETML Schema
	9.5 Transforming TETML with XSLT
	9.6 XSLT Samples

	10 TET Library API Reference
	10.1 Option Lists and other general Topics
	10.1.1 Option List Syntax
	10.1.2 Basic Types
	10.1.3 Geometric Types
	10.1.4 Unicode Support in Language Bindings
	10.1.5 Encoding Names
	10.1.6 Multi-threaded Programming

	10.2 General Methods
	10.2.1 Option Handling
	10.2.2 Setup
	10.2.3 PDFlib Virtual Filesystem (PVF)
	10.2.4 Unicode Conversion
	10.2.5 Exception Handling
	10.2.6 Logging

	10.3 Document Methods
	10.4 Page Methods
	10.5 Text and Glyph Details Retrieval Methods
	10.6 Image Retrieval
	10.7 TET Markup Language (TETML)
	10.8 pCOS Methods

	A TET Library Quick Reference
	B Revision History
	Index

